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ABSTRACT

A consistent set of continuum-like equations which describe,
under certain limitations, the flow of bubbly gas-liquid mixtures is
developed. These equations are then applied in the so‘lution of a few
problems that bear on technological issues of nuclear reactor safety.
The solutions of these problems illustrate the irﬁportance of the ratio
between the viscous relaxation time of the bubbles and the character-
istic time of the flow, in scaling experimental results.

The choked flow of a bubbly mixture through a contraction in a
one dimensional duct‘is treated. It is found that in many cases the
ratio of the contraction residence time to the viscous relaxation time
is small, indicating the motion of the bubbles will be dictated largely
by the dynamic forces on them. The one-~-dimensional equations are
solved approximately for small values of this ratio.

A rudimentary experiment on choked bubbly flow through a con-
traction was conducted using a contraction with gradual changes in
area, making the experimental situation amenable to a one-dimensional
analysis. Pressures and mass flow rates of liquid and gas were
measured. The results compare favorably with theoretical calculations.

The rise through a liquid of a uniform cloud of bubbles is alsob
analyzed. Self-preserving wave solutions of the non-linear equations
are found to exist. They have the form of transitions between a region
of high void fraction below and a region of lower void fraction above.
These waves are unstable to small disturbances, so when they are
created they will steepen, developing into clumps of bubbles above

which are regions of low void fraction. The fact that the bubbles in
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these clumps may coalesce presents a mechanism for a change in flow
regime from bubbly to some other, perhaps slug or annular flow. The
effect of bubble-bubble interactions in impeding the formation of these
clumps is speculated upon.
Finally, the flow of a bubbly mixture over a wavy wall is ‘analyzed.

The solution illustrates that the effect of interactions between bubbleé
and solid boundaries is lacking in our formalism. It is concluded that
more work is required in the area of interactions, both of the bubble-

bubble and bubble-boundary varieties.
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CHAPTER 1

Introduction

In recent years the difficulties in our understanding of two-
phase flow systems have become apparent, largely through our
concern over the safety of nuclear power plants. In the so-called
Loss of COOlat;lt Accident, ébnsidered to be one of the most trouble-
some problems for a nuclear reactor, the pipe supplying the cooling
fluid to the reactor is assumed to break allowing the reactor to
depi'essurize rapidly. Because‘ of this rapid depressurization
vapor would be generated in the feactor, and the ens@ing flow of
coolant from the reactor would almost certainly be a bubbly one,
at least initially.

One peculiarity of such bubbly flows is that the fluid, con-
sidered as a continuum, supports a system of acoustic waves that
move with velocities that may be less than 40 m/sec.. Such flows
exhibit some features of gas dynamic flow fields in addition tov their
other complexities. It is the purpose of this thesis to examine
some of the properties bf bubbly flows by solving some relatively
elementary problems which, although perhaps not of great tech-
nological interest in themselves, contribute to the understanding of
more complex flow fields. |

In an early investigation, Tangren, Do‘dge and Seifert (1.1),
1949, used a homogeneous flow model to ana}yze the choked flow
of a bubbly mixture through a nozzle. Isbin, Moy and DaCruz (1.2),
1957, performed an experiment on the choked flow of a steam-water

mixture. They found that the homogeneous flow model did not



describe the situation adequately. Muir and Eichhorn (1.3), 1963,
performed an extensive experimental investigation on the choked
fiow of an air-water mixture. The use of an air-water mixture
removed complications due to phase change.I Muir and Eichhorn
concluded that the inability . to account for slip between the phases
of the homogeneous flow model of Tangren, Dodge and Sgifert was
a major factor in accounting for the differences in the theoretical
and experimental results. Experiments very similar to those of
Muir and Eichhorn were performed by Henry (1.4), 1971 and Baum
(1.5), 1972. Their motivation was to ascertain whether a choked
nozzle could be used to meas'ure the gas content in liquid sodium,
as described by Henry (1.6), 1970. The analytical models of.
Zivi (1.7), 1964, Moody (1.8), 1965, Cruver and Moulton (1.4),
1967 and Fauske (1.10) 1964 attempt to account for slip between
the phases by using the slip ratio as a parameter with respect to
which different physical quantities are maximized. The correctness
.of such a model is questionable. Levy (1.11), 1965, accounts for
the slip between the phéses in a separated flow by neglecting
friction between the two phases, and using a momentum equation
for each phase. Models based on the idea that a sound wave
cannot propagate upstream through the throat of a choked nozzle
have been presented by D'Arcy (1.12), 1971 and Baum and Horn
(1.13), 1971. The difficulty with these models lies in postulating
the relationship between the differential changest in gas and liquid
velocity across a sound wave. For a separated flow Giot and

Fritte (1.14), 1972, demonstrated that the slip must be determined



from a momentum equation for each phase and that interphase
friction and heat transfer is important in determining the critical
flow rate. Bouré, Fritte, Giot and Réocreux (1.15), 1976,

have recently pointed out the similarities between two-phase and
single-phase critical flow and have postulated the possible importance
of gradient dependant interphase transport mechanisms in the former.
Restricting their attention to bubbly flow, Prospératti and Van
Wijngaarden (1.16), 1976, have offered an explanation of critical
flow in terms of the characteristics of the equations of motion. A
great deal of the analytical work mentioned here is discussed in
more detail in the book by Hsu and Graham (1.17), 1976.

Analytical studies of situations where compressibility is not
an important feature have usually either assumed that the flow is
homogeneous, as did Gonzalez and Lahey (1.18), 1973, or used
a drift flux mode. Drift flux models are described in detail in the
book by. Wallis .(1. 19), 1969. Zuber and Staub (1.20), 1967,
analyzed a two-phase boiling system wusing a drift flux model and
showed it to be a form éf the theory of kinematic waves (1.21, 1.22),
1955. They also verified experimentally the accuracy of their
analysis (1.23, 1.24), 1966, 1967. Of course these models are
only accurate for low frequency transients..

In Chapter 2 of this thesis we derive equations which, under
certain approximations, describe the flow of a bubbly mixture in
three dimensions. These equations state mathe.rnatically that the
mass of both gas and liquid are separately conserved, that the

momentum of the mixture is conserved, and that the sum of the
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forces on each of the bubbles is equal to its mass times its
acceleration. The first three of these have vappeared in the
literature before (1.25) and are well accepted. The fourth has
apparently entered the literature only recently (1.26) in a less
general form.

In Chapter 3 we consider the choked flow of a bubbly
mixture through a contraction in a one-dimensional duct, accountiny
for the relative motion of the two phases. It is found that in many
instances the relétive motion between the bubbles and liquid is
almost wholly determined by the dynamic forces on the bubbles and
that the viscous forces are 'unimportexnt. A perturbation solution
of the governing equations is presented, in which the small par-
ameter is the ratio between the residence time of a bubble in the
contraction and the time associated with the action of viscosity in
slowing down the bubbles.

It is easily shown that the restrictions guaranteeing the
accuracy of one-dimensional flow are more severe for bubbly
flow than for homogeneous liquids. 'As a consequence, there is
considerable doubt whether the experirflent of Muir and Eichhorn
can be well described by a one-dimensional analysis; Therefore,
some rudimentary experiments on the choked flow of a bubbly
mixture through a contraction were performed using a duct with
very gradual area changes. The results of these experiments,
described in Chapter 4, are compared with the theoretical solution
presented in Chapter 3. The comparison is quite reasonable even

for void fractions as high as .3 or .4. This indicates that the



flow is still bubbly at these high void fractions, probably because
the bubbles are created not very far upstream of the contraction.
'i‘his implies that in the blow down of a reactor vessel, if the
bubbles are nucleated homogeneously, the flow may remain bubbly
to void fractions higher than previously expected.

In Chapter 5 we study the motion and stability of a cloud of gas
bubbles rising through a liquid; the goal being to describe the
development of a disturbance to the uniform void fraction. Although
the resulting problem is mathematically ill-posed, we find tlat we
may still describe the growth of such a disturbance quite reasonably.
Both a solution of the linearized equations and singular perturbation
analysis applicable to long length scale disturbances are presented.
’.T.‘he results suggest that the growth of these disturbances may be
a mechanism for a change in the flow regime from bubbly to some
other, perhaps slug or annular flow. A question posed by the |
results of this analysis is: whether or not bubble-bubble inter-
actions may impede the growth of a disturbance and hence prevent
such a change of flow regime.

Chapter 6 deals with the flow of a bubbly mixture over a
wavy wall. It is found that when the waves in the wall are of
small amplitude both the gas and liquid velocity fields may be
described by potentials. The governing equations are then solved
in linearized form. The solution illustrates clearly the basic
character of the motion of the bubbles; reacting more quickly to
a pressure gradient than the liquid. Also, being a two-dimensional

problem, it demonstrates_direétly the consequences of our inability



to prescribe a boundary condition on the gas velocity field at a
solid boundary. This difficulty arises due to.our neglect of forces
due to interactions with boundaries m deriving the equation of
motion for the bubbles. It results in our solution beihg invalid

in a thin layer near the wall which is of a thickness on the order

of the range of these interaction forces.
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CHAPTER 2

The Equations Governing Bubbly Two-Phase Flow

The description of the flow of a liquid-bubble mixture as a
continuous medium is not completely agreed upon, largely because of
the "constituitive relations" which describe interactions between |
bubbles and liquid.

Many aspects of the flow of liquid~bubb1e fnixtures can be des-
cribed using simple formulations wflich ignore relative motion between
the bubbles and liquid. Such a model was successfully used by van
Wijngaarden (2.1), 1968, to studypressure waves of small and mod-
erate amplitude prépagating in a bubbly mixture. Of course, such a
formulation will be of little help if prediction of the extent to which the
bubbles will migrate through the liquid is the desired result.

A formulation accounting for relative motion in a general (not
necessarily bubbly) two-phase flow has been presentéd by Ishii (2.2),
1975. He shows that mathematically rigorous continuum equations may
be obtained by time-averaging the governing equations for each individ-
ual phase. In this manner he obtains mass, momentum and energy
conservation equations for each phase. These equations involve
unspecified interfacial transfer terms, whi.ch would depend on flow
regime. Ishii shows ﬁhat these equations may be used directly in a
two-fluid model, or combined to form mixture equations for use as a
diffusion model. A diffusion model uses conservation equations for
thé mixture, and supplements them with a diffusion equation which
prescribes changes in concentration. The model we will present here

resembles a diffusion model in that we will use a mixture equation of
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motion, and specify the relative velocity through use of an equation
arrived at by considering the forces on individual bubbles. The
equations we use to enforce mass conservation of each phase, and our
mixture equation of motion may be obtained from Ishii's through the
neglect of viscous stress andy phase change terms.

In order to make clear t‘he assumptions that underlie the form-
ulation to be employed here, we develop in detail the equations with
which we shall examine the flow of bubbly gas-liquid miz;ctures. We
will consider only the circumstances where the bubble size is suf-
ficiently small in comparison with other characteristic lengths that
the mixture may be described as a coatinuum.

To develop these equations we will invoke the following four
physical laws: |

1) That the liquid is conserved.

2) That the gas comprising the bubbles is conserved.
3) That the mixture as a whole obeys Newton's second
law.

4) That Ehe individual bubbles obey Newton's second law.

If the bubbles are far enough apart to be non-interacting, as we will
assume, theﬁ (2) implies also that the number of bubbles is conserved.
To permit description of the mixture as a continuum, we

must require that the bubble sizes and the distances between
adjacent bubbles be small in comparison with .any characteristic
1éngth of the flow. This permits us to define sﬁme volume which
is small compared to the flow dimensions and yet is large enough

to contain many bubbles. The existence of such a volume enables
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us to cqrnpute average properties of the mixture unambiguously
and without appealing to the time-averaging procedures described
by Ishii. For example, the void fraction is simply defined as the
fraction of such a volume which is‘_occupied by gas. Also, we

cén easily define average velocity fields for the gas and liquid by
averaging over this same vollume. We will assume that within this
volume the density of the gas and the density of the liquid do not
vary. This means the méss flux of gas will be pgoz'gg, where
ag is the averaged gas velocity, and that of the liquid will be
pL(l - ) GL where - HL is the averaged liquid velocity. Strictly
speaking, to compute the flux of momentum we need to compute
averaged values of the velocit'ies -sq‘uaredo Assuming, though,

that locally (in the volume over which we average) all of the bubbles.
are the same size, they will all have the same velocity. = In this
case we will not incur too greaf an error by taking the average
squared velocity as the square of the ‘average velocity., This does
involve the neglect of some momentum. flux terms similar to

. Reynolds stresses in turbulent floﬁv, but these should be small
compared with those accounted for. The average properties we
.caléulate vary continuously in space since the volume over which
we perform the averaging contains many bubbles.

‘We may now consider a stationary volume, V, arbitrary
except that it is taken to be larger than the volume over which we
average. We choose to work with a stationary 4control volume to
avoid the ambiguity of having the control surface follow eifher the

'1iquid or the gas. At every point within V we may calculate
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average properties for the mixture. The mass of liquid within the

volume V is:

JIT o (1 - a)av
Vv

This mass changes only because of the flux of liquid out of the

volume V, which is:

~

j;IpL(l-a)a’L- hd s

in which h is the outward pointing normal uait vector of the
surface, S, of V.

So, for liquid to be conserved:

Jsij‘pL(l—a)ﬁ’LoﬁdS+§E ‘J”\j;pr(l-a)dV:O (2.1)

The first integral in (2.1) may be transformed into a volume
integral and combined with the second integral:
9p. (1 ~a) -
"L a2 ~
I{TFJ‘{T—I—Vv(pL(l-a)uL)}dV =0 (2.2)

Since the volume V 1is arbitrary it must be that:

O0p, (1-a) :
————-———-—-——-———-I‘ét +V - {pL(l—a)aL3=0 (2.3)

An exactly analagous argument for the gas yields:

—E— + V- (pad ) = O (2.4)

Equations 2.3 and 2.4 express mathematically the conservation
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of liquid and gas for a bubbly mixture in which there is no exchange
of mass betweén the two phases (by conde.nsatioﬁ, for example).
Had we included the possibility of mass exchange, Kquations 2.3
‘and 2.4 would have séurce terms on the right hand side.

The x-component of the momentum of the mixture ﬁthin
our arbitrary volume, V, is:

[I] togany + pp(1-a)uy, Tav

This quantity changes for two reasons. First, because the mixture
entering and leaving-the volume, 7V, possesses a certain amount
of momentum, and second, since there are forces acting on the
mixture inside V. The x-component of the momentum leaving

V  per unit time is:

Isf{pgqugx(ﬁg‘z R)+py (1- oz)uLX('aL'?l)}dS
The forces on the mixture in V fall into two classes:
1) surface stresses, and 2) body forces. If viscous stresses are
unimportant then the surfacé stresses reduce to pressure forces
given by:
.‘g‘]‘ -p /ﬁx ds
The body forces which will here be taken to be due to a gravitation-

al force are given by:
@{pga tpy(l-a) }g av

Combining these, the equation expressing conservation of momentum
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in the x-direction for the mixture is:

____é._ ¥ _ av + . S+
dt f{]ur{ pgaugx'l' PL(l CY)ULX} +u5':r{ pgo!llgx(llg n)
+p(1- a)uLX(a’L° n) s = éf- pn_ds (2.5)

+j'_\j;f{pgog+pL(1-a)} g dvV

The surface integrals in (2.5) may be transformed into volume

integrals and thus all the integrals combined:

dp au Op; (1-ajug,
rrrl 8 8X Lg. gu B 4 —T x
dg;é ot Pe®g. g ot
4 | (2.6)
- 9
+ Ve opr(l-au, up + -52 - (pga tpp (1-a)g AV =0

Again, because the volume V is arbitrary the quantity in brackets

must be zero:

: 9p, (1 -a)ug, : :
8 Bx . 2 L X o _ -+
r +v pgaugxug] + [ 5T +V-pp (1 oz)uLqu]

' 9 (2.7)
= -5+ [pgatp (1-a)le,

With the aid of Equations 2.3 and 2.4 this may be written:

3] .
(U-gx) + PL(l -a) a(’iE ('U.LX) = - -—8—5 + [pga/-FpL(l-oz)]g

o
R
S

(2.8)

where —]%)E is the convective derivative following the gas and a—%— is

that following the liquid. Equation 2.8 expresses conservation of

the x-component of momentum for the mixture. Similar equations
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for the y and 2z componrents of momentum cap be derived in the
same manner. The three equations can be combined into the
single vector equation:

Du du

8 e A, T |
Pga' Dt +PL(1 o) at = -Vp + {pgoz+pL(1 oz)}g (2.9)

This equation is quite similar to the equation of motion for an
ordinary fluid except that we have two contributions to time rate
of change of the morﬁentum of the mixture.

Equations 2.3, 2.4 and 2.9 have appeared in the literature
on two-phase flow before and are well accepted. They actually do
not fely on the fiow being bubbly, only on both phases being
capable of description as continua and our ability to perform the
averaging previously deséribed.

In contrast to the manner in which we developed the previous
three equatioﬁs, we now consider the forces on a single bubble, whose
nearest neighboring bubbles are far enough away that they do not
interact withv our bubble.l To do this we must analyze the flow of
the liquid in the immediate neighborhood of our bubble.

The bubble is taken to be spherical and may be expanding or
contracting as it moves through the liquid. Theiliquid around the
bubble is itself moving and in general will have a velocity and
acceleration different from that of the bubble.

Because of the absence of a no-slip boundary condition on
the surface of a bubble, we can closely approxiﬁate the flow of
the liquid around the bubble by a potential flow. This assumes that

the Reynolds number based on the bubble size, relative velocity and



17

liquid kinematic viscosity is reasonably large. This is not a very
restrictive assumption and will be met in rriany practical flow
situations. We may divide the potential describing the flow of the

liquid near the bubble into two portions:
b= 4 + b,

The first portion QSO describes the motion the liquid would execute
in the absence of the bubble. The second portion géb describes
the motion caused entirely by the presence and motion of the bubble.

We place at the center of our bubble both a cartesian coordi-

nate system and a spherical coordinate system. This is shown in
Figure 2.1. The relations between the two coordinate systems
are: |

x = rcosf@ ; y = rsinfcosw ; z:rsinlesinw,

Both ¢, and «Sb must satisfy Laplace's Equation. We take the

attitude that ¢, is known, and we wish to find ¢ the potential

b b
due to the presence of the bubble. The potential, ‘qu, is the

solution of the following mathematical problem:

2 —
v qu = 0 (2.10)
0d od
b _ o) . o ,
57 = - 5 + a + & cosB
r=a r=a

(2.11)
+ 'r] sin@ cosw + ésine‘ sin ¢
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The boundary condition (2.11) states that the liquid does not flow
through the surface of the bubble. The other boundary condition
(2.12) is a statement that the neighboring'bubbles are far enough
away so as not to interact with our bubble.

In order to solve this mathematical problem we expand the

potential, ;60 , in Taylor's Series about the.center of the bubble:

b, (x,y,2) = & +§l‘iibx+%§é‘1’oy+%€%lz+...’ (2.13)

0 ox o

With the aid of (2.13) we can now solve our problem for qu,,

Adding this to ¢ we have the complete potential, ¢ .

.

_ a’a a {8150 0 8
$= 4 - =+ (x| - 8P (cos®)

+ (_éQ_L_ n) cos wpll (cos 9) + ( %—Q-SZO—I - g )sinw}?'l1 (cos 8)}
0 .

8% ¢

8x3§rlo

cos WP, (cos )

" )cos 2 WPy (cos 8)
0

2 8% ¢y . 1, 1 ,‘f_éo_
+ 5 —_—7:051an2 (cos 0) .+ 18 ( 9,2
2 3 7
19 (250, sin2 WP, (cos )} + 0(8 : a4 )
x 0x® r

o .

O
(o5}

<
Q

(2.14)

Knowing this potential ‘we may use the Bernoulli Integrall to calculate
the pressure on the surface of the bubble. We must use care,
though, since we have calculated the potential in an accelerating
reference frame. If we integrate the pressure -over the surface

of the bubble to find the force on it we find, for the k—compc;)nent

of this force:
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Fy = -p20% - e B -U,)0
X L2 2 "L 0
+%pLo{ 88[30 + U, ay; +V, aaUOJrWO %-go-}
TP < | - (2. 15)
in which we have recognized that g—;—ig— is U the x—corﬁponent of

0

the liquid velocity in the absence of the bubble and so on. This
is also the average velocity of the liquid in the neighborhood of the
bubble.

The first term in Equation 2.15 is the familiar virtual mass
term. The second term corresponds to a change in the virtual
mass as the bubble changes size. The third term is the accelera-
tion of the liquid times the mass of a volume of liquid ’equivalent
to the bubble volume plus the volume of its virtual mass. The -
final term is a buoyancy force.

There is also a viscous force on the bubble. Still believing
that the potential flow solution closely resembles the actual flow,
we calculate the dissipation that occurs when a viscous fluid
executes the potential flow past a sphere. Althougﬁ this is slightly
inconsistent, we can get a reasonable approximation to the true
dissipation in this manner. KEquating this to the rate at which the
viscous force on the bubble does work on the surrounding liquid,
we find, as does Batchelor (2.3) that the x—corﬁponent of the viscous

force on the bubble is:

FY = -1zmka - U) o (2.16)
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Finally, there is a gravitational force on the bubble:

Fg:

N PeO s (2.17)

The sum of the forces on the bubble equals its mass times its
acceleration. Enforcing this, and describing the bubble and liquid.
velocities as field variables,we arrive at the equation of motion

for the bubbles:.

e
Du : ‘
& .1 nd 1 Do
lbgtze) B t 3 P (% - 9)5 B
du P
3 L Lo 2 =+
CEPLE Y, (Mg ) = (Pgmep) g (2-18)
_ 18a°
T =
A\ v

in which +v is the viscous relaxation time of the bubble.. If we
set a massless bubble in motion throﬁgh a stagnant liquid this is

the time it will take to decay to 1/e of its initial velocity. A

1esé general form of Equation 2.18 was derived by Chernyy (2.4),
1973, in a one-dimensional situation.

In the following chapters we will apply our four governing
equations (2.3, 2.4, 2.9 and 2.18) to several interesting physical
- problems. In all of these probiems we will find it sufficient to
assume that the liquid is incompressible and that the gas expands
and contracts isothermally. This means, in effect, that each of
the phases is a barotropic fluid., Because of this we will not find
it necessary to use mathematical equations expressing the conserva-

tion of energy. So at this point we have developed all of the
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equipment necessary to analyze physical problems in the flow of

bubbly mixtures.
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Notation for Chapter 2

a Radius of bubble
F Force on bubble
g Acceleration of gravity
h Oiutward pointing normal unit vector
P Pressure
m

- Associated Legendre function
Velocity

U,» Vo, Wo Velocity components of liquid

@ Void fraction
VR Liquid viscosity

% Liquid kinematic viscosity
é,ﬁ,t Velocity cofnponents of bubble
p © Density

g Volumse «f bublle

T Viscous relaxation time

) Velocity potential

Subscripts
g Gas
1 Liquid

Superscripts

g Gravitational
H Hydrodynamic

v Viscous
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CHAPTER 3

One-Dimensional Flow in a Duct

Consider the flow of a bubbly mixture in a one-dimensional duct
of varying cross-sectional area . The problem of choked bubbly
.flow was apparently first treated by Tangren, Dodge and Seifert (3.1),
1949 using a homogeneous flow model _and assuming that the gas
bubbles flowed with the liquid, and at the 1iquid temperature, which
was allowed to vary through the channel. Under these assumptions
the mixture is equivalent to a single barotropic fluid with a peculiar
equation of state. This made it possible to obtain exact integrals of
" the equations of motion. These solutions were compared to a limited
number of experiments they performed on a choked two-phase nozzle
and the comparison was not completely satisfactory. |

A more complete experimental investigation was presented by
Muir and Eichhorn (3. 2)in 1963, Their experiments were performed
on a two-phase nozzle with an air-water mixture flowing through it.
They determined that the homogeneous flow theory of Tangren, Dodge
and Siefert predicted pressure ratios between the throat and upstreaﬁ
sections that were in all instances lower than those measured. They
attributed these discrepancies directly to the fact that the homogeneous
{low model excludes the possibility of having a relative velocity between
the phases. One of the aims of the present analysis is to account for
the relative velocity.

The assumptions made in the present analysis are:

(1) That the flow is everywhere one-dimensional »

(II) That the liquid and gas behave isothermally as they
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flow through .the contraction
(III) That the liquid is incompressible
(IV) That the gas has negligible inertia coxnpared with that
of the liquid |
(V) That the pressure inside thé gas bubbles is éssentially
» the same as that in the surrounding liquid
(VI) That the gas. bubbles do not interact with each other
and that their viscous interaction with the surrounding
liquid may be described by a linear drag law
(V1I) That the frictional forces on the walls of the duct are
negligible
The governing equations are considerably simplified by the
preceding assumptions and the justification of assumptions (II) and
(V) will be examined later.

Under these assumptions the conservation equations take the

form:
Gas Conservation -
» LAY -V
1l ¢ 9 , 1l r9p 9p g . __ g dA '
aEt+Vgaxj+p[at+Vgaxj+ax“A = (3.1)
Liquid Conservation
oV -V '
1 b da L __ L dA 3.2
Tz b Vsl t e R & (3.2)

Mixture Motion

oV oV
L L 0
prLil-a) lgp= + vV 5= 1+ 52 = 0 (3.3)
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Bubble Motion

IBV A Y -VL 9 N
& v w5 ] (2[R y v 2R
.ot g Ox P ot g ox
(3.4)
oV oV
L 1 1
3l Vo I Vg V) = 0

Formally Equations 3.1 -~ 3.3 follow from Equations 2.3,2.4 and 2.9
by integration across the channel, satisfying appropriate boundar.y
conditions on the duct walls and taking the remaining variables as
averages across the channel. One consequence of this is the appear-
ance of terms to account for the area change of the duct. KEquation
3.4 is derived from first principles as was (2.18) and ignoring gradients
normal to #he channel axis. The material derivative of the gas
density in the gas conservation equation has been replaced by a de-
rivative of the pressure as a result of our assuming isothermal
behavior for the bubbles. For the same reason, the term accounting
for changes‘ of the virtual mass of the bubbles, in the bubble motion
equation, has also become a material derivative of the pres;sui'e. In
the mixture motion equation, the momentum of the gas has been
ignored in favor of the much greater momentum of the liquid. Finally,
in the bubble motion equation, the actual mass of the bubbles has been
ignored compared with their virtual mass.

When we examine the characteristics of this set of eQuations, we

find that four characteristic speeds are determined by the equation:

‘L -k)a(V—ic){(V-ch(V—V.)} |
P g g g 'L (3.5)

1 o \2 3
“w Vg ¥ -y

Vy,

(V. -%F = 0

L
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In the circumstance that the gas and liquid velocities are equal
we find that the four roots of this equation are:

X = V, a double root

+2a'
+
v ( 1—a)

The second of these pairs of roots corresponds to a pair of acoustic

b .
!

and

waves that may travel up and down the duct. The speed of these

waves, (azl(’llh ZC;)) , is the acoustic speed one would calculate
Py, -

for an isothermal mixture of bubbles and liquid if there were no
viscous forces betweén the liquid and bubbles. The significance of

the double root x = V 1is not as clear. If the liquid and gas velocities
are not eqﬁal the double root x = V splits into a complex conjugate
pair of roots. If we have a small relative velocity between the pha.sés,
that is (Vg - VL) €< V, we can easflly determine that the two roots

are approximately:

(1-a)V +'3avL iVIa(l-a) |
~ £ & . VgV

) (3.6)
(1 + 2a) (1 + 2a) L

N °
2

where the imaginary part of each root is proportional to the relative
velocity. Similarly, for small relative velocity, the two acoustic

roots are approximately:

. 1

. { (1+8a)V_ + (1-4a)V (1+2 2

%~ %{ Vg @) L} + _E)_._..I_f_)__ g (3.7)
(1 + 2a) ppall-a)
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which remain real and keep their significance as acoustic waves.

The fact that two of the characteristics become complex when
there is a relative velocity, causes mathematical problems when we
attempt to solve an initial value probleni, because these character-
istics are the curves in the x - t plane, along which disturbances
may propagate. It is clear therefore that these complex character- '
istics will be of considerable interest and this wi‘ll be dealt with in
Chapter 5.

For stead&r flow, however, the partial derivatives With respect to

time vanish and leave the following regular set:

Gas Conservation

- av '
1 de 1dp , 1 g . =zl da (3.8)
a dx p dx Vg dx A dx
Liquid Conservation
S N PR R VIS UV (3.9)
1 - dx v dx - A dx
1
Mixture Motion
dv
' L dp .
pL(l"o{)VL : e - 0 (3.10)
Bubble Motion
av vV (V_-V av. -
v g _ g( g L) dp 5y L
g dx P dx L dx (3.11)
+ ~L(V -V_) = 0
T g L
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The relaxation time, in the bubble motion equation, is not a
constant, but varies as the bubbles expand. Because of the iéo—
thermal behavior assumed for the bubbles, T, can be expressed
in terms of the pressure and the conditions upstream of the contraction.

That relationship is:

-2/
T = T (_R—)23

| v Vo P
To make these equations dimensionless, we use: 1) the length scale,
Ly, the length of the contraction; 2) the pressure scale p, , the
upstream pressure; and 3) the ve].bcity scale, U, , formed by taking

the square root of the upstream pressufe divided by the liquid density.

They then take the form:

Gas Conservation

du

lde, 1dp, 1 T -1 da
ozX+de+ug dx =~ A dx ' (3.12)
Liquid Conservation
du
1 de 1 L _ -1dA (3.13)
1 -« dx u dx A dx
‘ L
Mixture Motion
du
- L dp . 3.14
(1 oz)uL dx * dx - 0 ( )
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Bubble Motion

" dug ug(ug - uL) dp | du

g dx S S o= (3.15)

P dx
' Lo o3 . , _
+ (“ﬁ‘T)P tgmog) = 0

Of particular significance in the transformed equations is the

appearance of the dimensionless numbgr, <—[~Jg-l-%,;~;) , which
has an interesting physical significance. It is a ratio between the
time we may expect a bubble to reside in the contraction, L,/9, ,
and the viscous relaxation time. It is therefore a measure of how
effective viécosity is‘in reducing the relative velocity between the
phases. If this number were very large we would expect viscosity
to be very effective and hence expect the flow to be nearly homo-
geneous. If, however, this number were instead very small, we would
expect viscosity to be rather ineffective, and that the relative motion
would be determined almo‘St wholly by the dynamic terms in the
bubble equation of motion. In many cases of interest this number.is _
small. For instance if we consider 1/8" dia. bubbles in room temp-
erature water, with a 1 foot contraction and upstream pressure
80 psia, it turns out that:

L,

T . 0938
UO TVO

In this case we would expect the dynamic forces on the bubbles
to determine their motion. This is, of course, exactly the opposite
of the case c;)nsidered by Tangren and Dodge, witﬁ their homogeneous
flow model. |

The dimensionless equations may now be written in a convenient
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matrix form,

1, 1 1 gl 1 oaa
ug P o dx A dx
o L 0 IR O e 70 I RS UV
uy, - dx A d=x
% =
0 (1~ oz)ul 1 0 dp 0
N > Lo \sh
U.g - U.L 8 8 ] do -G p {u -u.)
P i ‘a:: OTV' g 1
. | <L 0 _J

(3.16)

a form similar to that in which the equations of one-dirnensional gas
dynamics are often written. In gas dynamics we find a choking con-
dition on the flow by setting the determinant of the matrix of coef-

ficients equal to zero., When this is done in the present case we find

Uy 3uL u
S @ug-up) - e C ~—§—-M = 0 (3.17)

g L N

We could have arrived at this relation utilizing Equation 3.5. When
the characteristic speed, X, is set equal to zero and the gas and liquid
velocities are non-dimensionalized, 3.5 becomes identical to 3.17.

We can conclude from this that 3. 17 is the choking condition for our

du du
flow. The condition that any of —£ bl =3 , dp and da must
dx dx dsc dx

be finite at the location where the flow chokes, leads to the conclusion

that the flow chokes at the location where:

1 dA L als  u,-up
il (u - >°‘P RN (3-18)
V,
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Since we re-alize that ug >uL , it is clear that one effect of the finite
inter-phase friction'is to move the location of the sonic point down-
stream of the geometric throat of the contraction. To proceed further
we must actually solve the equations. To do this it is convenient to
interchange the roles of the variables x and p, as was done by
Rannie (3.3), 1962,and Marble (3. 4) 1963, making p our mdependent

variable. This can be accornp11shed by simply multiplying our equation

through by g—?—) . This leaves only the drag term in the equation for

bubble motion involving x. That term is also the one term involving

our dimensionless number, Lo , which in many cases we expect
Uo Vo

will be small. One convenient method for approximate solution of

these equations is a perturbation expansion in the small parameter

L, L, .

—Tjo-?“ . If we denote —ﬁ;—r—- by €, and form the following

Vo Vo
expansion:

uL(p) = uI_(,O)(p) +- € uL(l )(p) + €° uL(g)(p)

. _ () W), 2z (2)

Uy (p) = v (p) + ¢ Uy (p) + € u_ “’(p)

alp) = a®lp) 4+ eallp) 1+ @ ol

(3.19)
Ap) = AP)p), + eallp 4+ e aAl)y)
(1)
x(p) = X(O )(p) + e x p) + ¢€° X(g )(P)

we may derive scts of equations for the successive terms in the
expansion. This is done by simply substituting each of the above
series into Equations 3.12, 3.13, 3.14, and 3.15 and equatmg like

powers of &, Of course we- presume that the area distribution
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A = A(x)‘

is known from the geometry of our particular nozzle or contraction.

The sets of equations for the zeroth and first orders of the expansion

are:
Zeroth Order
)
-1 de©) 1 duyg, 1 aal)
) dp T T e I "6y Ta 0
1-a% p uLO- P A% p
o) )
1 ) L L du, o duy © R S
LI P B B T o ©) P |
. lo) (3.20)
du
(1-a°)) uL(O) d; + 1 =0
o) o) o)
IS I M S S B 'S NP b B AU
g dp P g L L dp
A)dp) = AP
First Order
(1) _
____d___ ) a(l) N UL N A(l) _ 0
dp 1- Cl/(o ) uL(O ) A(O )
) ()
4 M) e R T SR
dp Q’(o)(l-a/)(o) ug(0) uL(o )
(3.21)
duL(O) _ \ j U‘L(l) ) | (1) »
dp uL(O)(l—af(o)) l uL(O) 1-q0)
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) (o) (1)
(0) du du u
u . (1) g _ g .. (o) (0)
g dp +ug dp P (U.g - uLO )
(o)
BB S B S N P
P g L (1- Q(O)-f
)
d
+ d}p{' pg /s (ug(o) - uL(O)) = 0
(x) _ dA (
A (P) = a‘; (O) o Xl)(P)
x=x"'(p)

These tén equations, upon integration, will yield the zeroth and
first order terms in our perturbation expansions.The boundary conditions
that we should apply depend strongly on the flow situation upstream of |
the contraction. In the most unambiguous situation, Which we will
consider first, consider fluid flowing in a long pipe before enfering
the contraction. By a long pipe we imply that the liquid and gas
entering the contraction will be flowing at the same velocity. Theb
boundary conditions for this situation are:

(1) That.ups'tream of the contraction the dimensionless
pressure equals one.

(II) That upstream of the contraction the velocities of gas
and liquid are equal, but unknown for the chéked flow
until the entire problem is solved.

(III) That the area of the channel upstréam, where p =1,
is given. |

(IV)V That the area of the contraction at its minimum,
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where da = 0, is given.

dp

(V) That the void fraction upstream of the contraction is
given.
Expressing these conditions mathematically, from (II) we have:

(o) (1)

o) (1)eee =u ')+ eu M), L

(2)

o) .
ug (1)+E:U.g g

(1) + €®y
which means that
(0)y  n=o0,1,2... (3.22)

From (III) we get

(2)(1),.. =

upstream

A() = ALy r e A®) ) 4 e2a

SO

upstream

a®ay = o m=1,2,3...

Mathematical expression of (IV) is not quite as simple as the
previous conditions. For this reason we will only work out the con-
dition to 0(¢®). The condition is to be enforced at the throat pressure,

Py, given by:

_ (o) () . .= (=)
Pgp = Pyp T € Py 0t €T Py

This throat pressure is defined by:

() ' (1)
.(_i._A_ = dA 4+ € dA + = 0
dp dp dp
Pih Pih . Pth

If we expand each term in this equation we get:
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() (1) 2 5 (o)
T TG
P ©) P dp ()
Pth Pth Pth
So
dA(O) _ 0
dp o)
Pth
which defines ptg) , and
o) o (dA(l) /'dzA(°)>I
. th‘ ap dpa )
Pth
S0
@) 42 ,0) _
_ () dA da® A
pth—pth-G:(dp /dz )l e (3.24)
P ©)
Pth
Now, our boundary condition says:
A(p ) - A(O)(p ) + €A(1)( )’_!_ BBA(B)( ) 4 = A
'th th Pth L th
Again, we must expand each term in the equation, to get;
©), ©) 1), ©), , aa®) )
ATy ) T e ATy D)t , Pth
b (0)
. o {A(z)( ©), , aa®) ) aa® )
Pth dp l o) | th dp , ) th
Pth Pth
2, (o) 2
+3EA 1)) } + = Ay
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Al) g ()

Realizing that dd = 0 and knowing p we can now state
\p o) “th

pth

the boundary condition on the zeroth, first, and second orders:

A(O)(ptg)) = A
AWp o) = o |
, (o) , '.
AP = 1 (dp )/ ] (3.25)
th

Our final boundary condition is on the upstream void fraction:

a(1) = V) + ey + a1y L.
So
a/(o)(l) =
| (3. 26)
A1) = o m=1,2,3, ..

With these boundary condifions we ha%re enough information to
integrate KEguations 3.20 and 3.21 and obtain solutions for the zeroth
and first order terms of our perturbation expansion.

Because of the choking éondition we have a two-point boundary
value problem and the nume.ricai integration requires some care.

We are unable to specify the gas and liquid velocities upstream. This
is because the flow is choked and we do not have thbe ability to specify
the mass flow rate a priori. To surmount this difficulty we make an
initial guess as to the upstream velocity. Then the equatioﬁs are
integrated as an initial %ralue problem. The solution obtained is then

checked to see if it obeys the condition to be enforced at Ptg) , (3.25).
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If the condition is not met, the initial guess of the upstream velocity
is impro’ved and the process repeated. This is continued until a
solution that obeys (2.16) is obtained.

Next, we consider the case of a nozzle being supplied from a
stagnation chamber. The situation is described by the same equations
but with different boundary éonditions. A stagnation chamber up-
stream is effectively a section with infinite are'a.’ Hence the gas and

‘liquid velocities upstream will be zero. This condition replaces
condition (III) in the contraction problem. This enables us to integrate
the governing equations, Wifhout use of the shooting procedure des-
cribed previously. But this change in boundary conditions has more
important consequences than enabling easy integration. Examining

the bubble motion equation near the upstream condition we find:

du (0 )2 du (O )8 ‘ u (O ) )
1 g _ B L ~ g (u () N U.(O)) = 0
2 dp 2 dp p g L
At the upstream condition ug(o) = uL(O) = 0, so we conclude that
near p=1;
) =~ 2 (o) :
ug = /3 vy, v (3.27)

From the mixture motion equation we find that in particular:

a0 )z 2(1 - p)
i (1-a)
(3.28)
o ©) \/E’_(_l:__Rl ‘
g (1-a,) (near p = 1)

From (3.27) we may calculate the volume flow ratio, B, at the

entrance to the nozzle:
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au /_ Olo
P T Tw)

This is /3 times as great as the volume ratio in the stagnation
chamber. This means that the gas in the chamber will be depleted
faster than the liquid. If we are considering a stagnation chamber of
finite size, which is being idealized as infinite, then our problem is
inherently time-dependent. We also see now that the important
characteristic of a given flow is not its upstream void fraction, but
the volume flow fraction of gas upstream. In the contraction problem
these two quantities are equal, so there is no confusion. In a general
situafzion, we have no guarantee the two will be equal so it is important
to realize which quantity more completely characterizes the flow
situation.

With this in mind we can examine the computed solutions for both
the contraction in a duct and the nozzle. Tables 3.1 through 3.3
are computed zeroth order solutions for a‘contraction in a duct with
an upstream to throat area ratio of four to one. These three solutions
are for upstream void fractions of 0.05, 0.10, and 0.20. The most
noticeable feature of these solutions is the magnitude of slip between
the phases. When the upstream void fraction is 0.20 the gas travels
a full 50% faster than the liquid at the throat of the contraction.
Another feature of the solution is that the void fraction goes down just
as the mixture is entering the contraction. On the basis of the gas
expanding we expect the void fraction to go up, as it ultimately does.

Near the entrance to the contraction though, the dominant effect is
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that of the gas accelerating much faster than the l‘iquid; The gas thus
requires less area to flow through and the void fraction decreases
initially. When the gas has accelerated to about /3 times the liquid
speed, the expansion of the gas begins to dominate and the void
fraction increases from then on. |

Tables 3.4 - 3.6 are steady-state solutions to the‘nozzle
problem.. Both the zeroth and first order solution solutions have been
calculated for a special nozzle whose geometry (the function A(x) )

was just such that:
X(O)(p) - (l_p)z

This choice of the geometry simplifies calculation of the first order
solution considerably ahd yields a reasonable looking nozz-le. The
calculations were made for stagnation void fractions of 0.05, 0.10,
and 0.20. Unlike the case éf a contraction, the void fraction in the
nozzle increases monotonically as the pressure .decreases,, This is
because the volume flow fraction upstream is not constrainéd to equal
the upstrearﬁ void f.ractiono

From the first order nozzle solution we can see that the largest
correction to the zeroth order solution will occur in the gas velocity.
This is reasonable since one would expect that the effect of inter- -
phase friction would be to slow the gas down. To assess how good an
approximation the zeroth order solution is alone, we compute the
value of € for which the first order correctioﬁ inlthe gas velocity is
about 10%. This occurs for € about equal to 5. This indicates that

the zeroth order solution is quite a bit better approximation than we
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had any right to expect. The reasons for this are two-fold. Firstly,
we have estimated the time of residence in the nozzle of a. bubble based
on the assumption that it travels at speed \/—1)—0—7;3—1: , as we can see
from the zeroth order solution the bubbles can go considerably faster
than this. Secondly, to estimate the relaxation time of the bubbles

we have used their relaxation time upstream. The bubbles expand to
quite low pressures as they go through the nozzle, their size increases,
and so does their relaxation time. We therefore underestimate the
relaxation time by quite a bit. The combination of these two errors

makes our estimate for the ratio of residence time to relaxation time,

~——Iﬁ7—-—~, considerably high. This explains why the zeroth order
T y g P y

0 v, :
solution is a reasonable approximation even for € quite a bit greater
than cne.” We can also compute the effect of interphase friction on

the pressure at the throat. We have already seen that:

d‘?Ab
P = Pth -

For the nozzle solution with «, = 0.05
(1)

dA _ ©)

I = A {0.010)
Which means that:

(o) 0.010

= + €
Pin Pih 1 d:aA(o)
[\ =
Al) dp ©)
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a2 A ©
2

dp

the effect of increasing the pressure at the throat of the nozzle. We

is a positive quantity, interphase friction will have

Since

may not have guessed this at the outset. The interphase friction not
only slows down-the bubbles but also speeds up the liquid. Hence the
greater the friction between gas and liquid the greater thé amount of
kinetic energy associated with bulk motion of the liquid. On this basis |
we would expect that thé throat pressure would decrease as €
increases. But, there is also a certain amount of kinetic energy
associated with the relative motion between bubbles and liquid (virtual
- mass effect). This kinetic energy decreases with increasing € and
thus the throat pressure would increase if this were the dominant
effect. Since the throat pressure does increase with increasing €
this must be the dominant effect.

We can now better justify assumptions (II) and (V) madé in
arriving at our simplified equations.

Assumption (V) states that the pressure inside the bubbles is
essentially that in the surrounding liquid. This would be untrue only
if the bubbles could not expand as fast as the pressure around thém
decreased. The rate of expansion of the bubbles is governed by the
Rayleigh Equation:

(py, - Pg)

.o 3 .n
RR + = R =
2 pL

Here, R is the radius of the bubble and (pb - ps).is the pressure
difference between inside the bubble and in the surrounding liquid.

From this equation we find that the characteristic time for bubble
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expansion is:
Ty T R/I/AE
P1,

where Ap is a measure of the change in the surrounding pressure.

Replacing Ap by the upstream pressure p,

- P -rj/u, = B
Tex R/ Py, R/, 1, tres

So the ratio between the characteristic time for bubble expansion and

bubble residence time is:

Tex - R./
t = RiL

res

Since the bubble radius is much smaller than the length of the nozzle
the bubbles will have no trouble expanding quickly enough to keep the
pressure inside the bubbles essentially equal to that outs;;deo
Justification of (II) by analytical means is difficult. This is
because the major impedance to heat transfer between the ga.s and.
liquid is the low thermal conductivity of the gas. To compute the heat
transferred between the gas and liquid we need to know kthe flow field
inside the bubbles. Not wishing to compute the flow field inside the
bubbles we will rely on indirect experimental verification of (II). In
1966 R. B. Eddington.(3.5) presented an extensive experimental
investigation of shock phenomena in bubbly two-phase mixtures. He
concluded that shock angles and pressure rises could be accurately
predicted by a simple isothermal theory. Since Eddington studied

shocks with pressure ratios as high as 40 to 1, and still found an
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isothermal equation of state to be applicable, we can conclude that in
a nozzle, in which pressure gradients will be much less drastic,
isothermal expansion of the gas will be a justified assumi:)tion.

With our initial assumptions now justified, we have a cansistent
model for the choked flow of a bubble mixture in a one-dimensional

“duct, and can apply it with confidence in the results.



46

REFERENCES

R.F. Tangren, C.H. Dodge, and H. S. Seifert, "Compressibil-
ity Effects in Two-Phase Flow', Journal of Applied Physics
Volume 20, Number 7, July 1949, pp. 637 - 645.

T.F. Muir and R. Eichhorn, "Compressible Flow of an Air-
Water Mixture Through a Vertical, Two-Dimensional, Con-
verging-Diverging Nozzle', (1963), Proceedings of the 1963
Heat Transfer and Fluid Mechanics Inst., Stanford Univeristy,
Stanford University Press, pp. 183 - 204.

W.D. Rannie, "A perturbation analysis of one-dimensional
heterogeneous flow in rocket nozzles', Progress in Astro-
nautics and Rocketry: Detonation and Two-Phase Flow
(Academic Press, New York, 1962), Volume 6.

P.E. Marble, "Dynamics of a gas containing small solid
particles', Praceedings of the Fifth AGARD Combustion
and Propulsion Colloguium (Pergamon Press, New York,

1963).

R.B. Eddington, 'Investigation of Shock Phenomena in a
Super Sonic Two-Phase Tunnel', AIAA 3rd Aerospace Sciences
Meeting, Paper No. 66-87, 1966,



47

Notation for Chapter 3
A Area of duct

Length of contraction or nozzle

P Pressure

P, Upstream pressure

R Radius of bubble

u Dimensionless velocity

U, Velocity scale based on upstream pressure and l'iquid
velocity

v Velocity

X Characteristic velocity

o Void fraction

B : Volume flow fraction of gas upstream

€ Ratio of nozzle residence time and viscous relaxation
time '

p ' Density

T, Viscous relaxation time

Subs cripts
g Gas

L Liquid

th Throat of contraction or nozzle
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TABLE 3.1 Computed Solution for a. Choked Contraction - Zeroth Order
(Pressure Normalized by p, ; Velocities by VP, 7p'L ).

UPSTREAM VOID FRACTIOH=D.059
COMTRACTION RATIO= 4.00

SS# U-LIN(N) U-GAS(0) ALPIIACO) ACOY/ZACTH)

PRE
1.00000 0.29842 0.29842 0.05000 L.00004
0.97500 0.37591 0.49244 0.03958 3.14008
0.95000 0.43965 0.62491 0.03752 2.67380
0.92500 0.49521 0.73145 0.03709 2.37814
0.99000 0.54513 0.82261 - 0.03731 2.16035
0.37500 0.59086 0.90327 0.037356 1.99475
0.85000 0.53333 0.97514 0.03862 1.835243
2.82500 0.67315 1.04220 0.03955 1.75337
0.30000 0.71079 1.10472 0.040581 1.66294
0.77500 0.74657 1.16238 0.08130 1.558519
0.75000 0.730756 1.21648" 0.04319 1.51785
0.72500 0.81355 1.256749 S 0.0ul52 1.465382
0.70000 0.84513 1.31575 0.0u4607 1.40650
0.67500 0.87562 1.35153 0.04775 1.36002
0.65000 0.90513 1.40507 0.0495% 1.31320
0.62500 10.93377 1.446510 0.051556 1.23044
0.60000 0.96152 1.18509 0.05371 1.245620
0.57500 0.98374 1.52383 0.05605 1.21503
0.55000 1.01521 1.55286 0.05%53 1.185653
0.52500 1.04108 1.59425 0.05144 1.15056
0.50000 1.06640 1.62708 0.0AU54 1.136756
0.47500 1.09121 1.55836 0.06795 1.11498%
0.45000 1.11557 1.68313 0.07174 1.09509
0.42500 1.13951 1.71640 0.07597 1.07598%
0.40000 1.16307 1.74315 0.935071 1.06060
0.37500 1.13629 1.75840 0.03605 1.04592
0.35000 1.2090290 1.79207 0.09212 1.03297
0.32500 1.23135 1.21411 0.09907 1.02180
¢.30000 1.25427 1.33843 0.10711 1.01256
0.27500 1.27651 1.85293 0.11549 1.00549
0.25000 1.29862 1.35944 0.12758 1.00094
0.22500 1.32065 1.88375 0.140R39 0.99647
0.20000 1.34272 1.89559 0.15712 1.00198
0.17500 1.35U438 1.90457 0.17731 1.00991
0.15000 1.38730 1.271015 0.203018 1.02572
0.12500 1.41020 1.21155 0.23700 1.053%2.
0.10000 1.43393 1.90759 0.28348 1.10371
0.07500 1.45917 1.89630 0.3506M 1.19580
0.05000 1.43745 1.87409 0.45519 1.39930
0.02500 1.52375 1.83290 0.63538 2.04559

THROAT PRESSURE= - D.240753

THROAT U-LIQUID= 1.3068776

TIHUROAT N-GAS= 1.875000

THROAT VOID FRACTION= 0.132215
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TABLE 3.2 Computed Solution for a Choked Contraction - Zeroth Order
(Pressure Normalized by p, ; Velocities by vV p,

PS5 TRF’\’ YOID FRACTION=0.100
CONTRACTION RATIO= 4.00

PRESS* J-LIQC0) U-GAS(0) ALPHA(D) AC0)Y/A(TH)
1.00000 0.23554 D.28554 0.12009 4.00001
0.97500 0.36909 C.49201 0.073756 3.02315
0.95000 0.435631 0.62911 0.07500 2.54700
0.92500 0.49435 0.73925  0.07k35 2.24635
0.90000 0.54628 0.33305 0.07439 2.03405
0.87500 0.59372 0.915983 0.07605 1.87336
0.85000 0.63770 0.99091 0.07760 1.74755
0.82500 0.67891 1.05960 0.07044 1.60476
0.50000 0.7178U4 1.12324 0.08152 1.55909
0.77500 0.75485 1.18257 0.083%4 1.48639
0.75000 0.79022 1.23851 0.0%534 1.42378%
0.72500 0.82417 1.2912Y4 0.08910 1.36924
0.70000 0.85588 1.34121 0.09207 - 1.32129
0.67500 0.88848 1.38871 0.09528 1.27880
0.A5000 0.91912 1.43398 0.09875 1.24093
0.62500° 0.94388 1.47721 . 0.10249 1.20703
0.A0000 0.97785 1.51856 0.106548  1.17657
0.57500 1.00613 1.55814 n.11004 1.14915
0.55000 1.03377 1.59604% 0.11571 1.12445
0.52500 1.06085 1.63241 0.12091 1.10225
0.59000 1.08741 1.65725 0.12659 1.08232
0.47500 1.11351 1.70066 0.13282 1.06451
0.45000 1.13920 1.73254 0.13947 1.004882
0.42500 1.15450  1.75323 n.1h724 1.03511
0.40000 1.18957 1.79245 0.15565 1.02343
0.37500 1.2143% 1.82030 0.156504 1.01382
0.35000 1.23890 1.8U4675 0.17558  1.00642
0.32500 1.26331 1.87179 0.18743 1.00144
0.30000 1.23753 1.89535. 0.20103 0.9991%
0.27500 1.31194 1.91737 0.21658 1.00011

- 0.25000 1.33631 1.93775 0.23459 1.00500
0.22500 1.36086 1.95638% 0.255568 1.01483
0.20000 1.38573 1.97305 0.280A”7 1.0312L
0.17500 1.41109 1.93755% 0.31071 1.0568n
0.15000 1.43724 1.99955 0.34744 1.09601
0.12500 1.46458 2.008690 0.29325 1.15577
0.10000. 1.49381 2.01404 0.45179 1.25522
0.07590 1.52623 2.01491 0.52878% 1.42931
0.05000 1.56430 2.00975 0.A3373 1.79351
0.02500 1.61897 1.995839 0.78275 2.92275

THROAT PRESSHRE= 0.313107
THROAT U-LINUID= 1.274287
THROAT U-GA3= 1.983183
THROAT YOID FRACTION= 9.1393703
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TABLE 3.3 Computed Solution for a Choked Contraction - Zeroth Order
(Pressure Normalized by p, ; Velocities by vp,p3,)-

UPSTREAM VNTID FRACTINN=0.200
CONTRACTIOMN RATIO= 4.00

DRESS® H-LIN(0) U-GAS(0) ALPIA(D) A(0)/A(TH)
1.00000 0.277973 0.27793 0.20000 3.99995
0.97500 n.37099 0.50U49 N.15836M4 2.84931
0.95000 0.44359 0.465036 0.15218 2.36U475
0.92500 0.50557 0.76631 9.15135 2.072u44
0.90000 - 0.5609H 0.%6520 0.15261 1.87101
0.87500 ~ 0.61134 0.95258 0.15494 1.72149
0.35000 0.565803. 1.03192 0.1579% 1.60505
0.82500 0.72179 1.10451 0.15145 1.51128
0.80000 0.74315 1.17202 0.15535% 1.43388
0.77500 0.78252 1.23524 D.15963 1.36379
0.75000 0.82019 1.29482 . 0.17u34 1.31328%
0.72500 0.35642 1.35126 . 0.17935 -~ 1.26542
0.70000 0.89139 1.40495 0.13474 1.22380
0.567500 0.92527 1.45620 0.10059 1.18739
0.65000 - 0.95819 1.50526 0.12558% 1.15541
0.62500 0.99027 1.55235 0.20329  1.12727
0.60000 1.02150 1.59763 0.21038% 1.10251
0.57590 1.05223 1.64125 0.21799 1.08078
0.55000 1.08239 1.63334 0.22617 1.05182
0.52500 1.11200 1.723985 n.23499 1.0U541
0.50000 1.14118 1.76329 n.ohuug 1.03152
0.47500 1.17001 "1.80132 0.254745 1.01969
0.45000 1.19355 ' 1.838%15 0.2A5Q2 1.01083
0.42500 1.22636. 1.87384 n.27305 1.00409
0.40000 1.25502 1.90843 0.29129 n.99990
0.37500 1.28310 1.91194 0.30579  0.9931h5
0.35000 1.31118 1.97447 0.32173 1.00002
0.32500 1.339356 2.00598 0.33932 1.0050A
0.30000 1.35773 2.03653 n.35%49H 1.01415
0.27500 1.39642 2.05513% 0.3305% 1.02820
0.25000 1.42559 2.09481 0.40495 1.04341
0.22500 1.45540 2.12258 n.43242 1.07661
0.20000 1.48622 2.1u4949 0.44350 1.11540
0.17500 1.51830 2.17556 0.49924 1.1%975
0.15000 1.5521¢0 2.20089 0.54032 1.24545
n0.12500 1.58871 2.2254h%5 0.53%308 1.35899
0.10000 1.62917 2.25021 0.44113 1.53398
0.07500 1.67507 2.27541 0.71959 1.83347
0.05000 1.73502 2.30371 0.79017 2.442845
0.02500 1.82365 2.31495 0.33A04 n.23031

THRNAT PRESSURE= 0.400837

THROAT U~LINUID= 1.254083

THROAT U~5GAS: 1.007299

THROAT VOID FRACTINN= 0.290823
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TABLE 3.4 Computed Solution for a Choked Nozzle - Zeroth and
First Orders
(Pressure Normalized by p, ; Velocities by /p, 7'pL)'

STAGHATIONY YOID FRACTINY= 0.050
Y(0)=(1.0=P)%%2

PRESS® . U=LIN(G) H=345(0) ALPHA(G)Y  A(I)/A(TH
1.90G00 5.0 6.0 0. G5000 _
6.97500 0.22955 G.39G61, (.052067 H.oT4189
G.95000 0.32479 0.54350 . 06.05375 3.35741
05.92500 0.39797 0.65205 ., 0.0554n1 2.7484897
G.900600 0.45971 G.75770 0.05717 2.38465]
0.87500 G.51424 0.%5459 5 05859 2.1322%
0.85000 6.56252 - 0.92237 1.0508%5 1 94350
0.32500 0.60904 1.00320 G.65295 1 24732
0.3GG00 G.55141 1.64240 G.ohuaN 1.69400
6.77500 0G.50120 1.12921 G.05715 - 1.500609
0.75G00 G.729G7 1.13507 0.05955 1.520663
0.72560 . G.7A508 1.23959 6.072G0 1.45331
5.7G6000 G.79955 $1.22619 G.07H55 1.39451
0.575G0 0.83272 1.33215% T9.07759 1.34322
0.65G00 0.86M740 1.23379 5.0G30655 1.22732
0.62500 0.R95h/5 1.42725 0.63322 1.257h7
0.500060 0.02547 1.44975 0.0°725 1.22139
G.57560 6.954835 1.506329 0.0911% 1.18902
0.550600 0.92331. 1.34535 0.0G9532 1.15291%
5.525840 1.011569 1.53255 (3.0S9283 1.13359
0.506060 . 1.03827 1.A01722 G.15474 1.11009
0.47500 1.0%49G 1.65037 5.11015 1 03326
0.45000 1.09105 1.58203 5.11511 1.04%995
0.42500 1.115877 1.71223 6.12270 1.95317
0.40500 1.14210 1.74%697 0.13093 1.03343
0.37500G 1.15710 1.75%25 G.13823 1.G625949
0.35000 1.12193 1.794G67 0.1n7u7 1.015590
- 0.32500 1.21533 1.91%25% 0.15794 1.00743
G.30000 1.240%57 1.8410R8 G.15902 1.00197
G.27500 1.25491 1.85213 5.18374 0.99935
5.250090 1.28913 1.283141 0.12033 1.00022
G.225G0 1.31342 1.89375  ° §.2148%4 1.66571
G.26000 1.33791 1.91395 G.21157 1.01533
G.175060 1.23A275 1.92473 0.25918% 1.G38605
6.15006 1.33821 1.93670 n.30337 1.06693
0.12506 101461 1.9h320 0.TMAT 1 1.11552
0.16060 1.144257 1.04570 6.40G322 1.19356
0.07500 1.172320 1.01255 0.1795% 1.34579
0.05G00 1.50904 1.93207 0.52739 1.55716
0.02550 1.55925 1.91545 G.71332 2.63005
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TABLE 3.4 (Cont'd.)

STAGHMATION YNID FRACTION: 6.050
Y(0)=(1.0=-P)%%ED
PRESSH H-LT2(1) J-GAS(1) ALPIACTY  A(1)/A(TH)
1.06000 G.0 - 0.0 6.0 - :
0.97500 5.0 ~0.05020. 0.00002  ~0.060355
1 6.95000 6.0 =0.06G073 - 0.006067  -0.00351
G.225006 6.00061  ~6.0G17G » 5.00013 =0.050347
G.906060 0.00002  ~G.00293 6.06021 -5.060341
G.R7506 6.00003 =06.60115 6.06020 -6.00333
6.35900 . 0.00005 -0.00G521 5.000639 ~0.00224
0.%2500 0.0600% -0.060%12 6.00049  -0.00315
0.806060 06.066008  -0.01635 5.00950G  =0.060357
G.775G0 0.00010  =0G.01259 0.06071 -0.00227
G.75600 5.50013 -0.0151" G.GO08Y  ~06.002%%
0.725060 0.00015  =5.71759 G.0G097  -0.00275
0.70000 0.00019 -0.02031 0.09110 . -5.002673
6.67500 6.06022  -0.62224 5.00125  -G.00249
0.H5G60G 0.00625  ~0.02552 G.6%132 -0.00237
6.52560 G.00030  -0.02825 5.00135  -0.00223
5.50000 0.0G063% -0.03032 5.060170 -0.0062G9
G.57500 6.00639 -0.0333G 5.60136.  ~0.00135
0.55G00 §.006050  ~0.03555 6.60203 -0.00179
6.525%0 6.60049 -5.0637853 6.66219 ~-0.0G164
0.500600 0.6005%  -0.03991 6.0N23% =0.0611h7
G.H7560 0.000G50 =0.0M172 5.006253 ~0.00130
G.450600 G.G00RH -0.04329 G.60270  -G.650113
G.02500 0.60073  ~0.01U58 G.00287 ~0.060037
0.40000 ° ~ 0.060035  ~0.04557 6.00300 -0.060670
0.375006 0.00087  -0.0%%521 6.060320 -0.00052
0.35000 - 0.006095  ~0.64542 6.00335 . -0.0051k
0.325060 G.00162  ~0.0h535 06.00350  -0.065627
$.30000 59.00111 -0.0%578 6.00353  -0.G0G11
G.27500 0.66119 =0.01175 6.00375 0.000607
0.25000 5.00128 © -0.0u322 G .0031773 n.06Go21
0.2250G06 0.0013% -0.0u117 6.06339 0.060034
0.250G6 6H.00148 - -6.03955 6.003%9 6.0000Y
6.17500 0:00153  =0.03538 6.06334% ° £.00651
5.15000 0.0015% -6.03151 5.00371 6.060653
0.12560 0.C5179 -1.62723 560315 5.96045 .
n.106060 6.061906  =0.02224 5.60307 C.0062n
G.075G0 0.602G1 ~0.01555 0.6002423 ~G.06518
5.05060 6.060212  -0.01552 6.00155  =05.000a7
0.00054  -0.0623°2

5.02500 0.606221 -0.00402
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TABLE 3.5 Computed Solution for a Choked Nozzle - Zeroth and
First Orders '

(Pressure Normalized by p,; Velocities by /p, / P1, )

STAGHATION VOID FRACTINN= £.130
1(0)=(1.0-P)*¥2 ,

PREGSIE H-LIN(S) H-545(0) ALOHACOY A(D)/A(TH)
1.0C6G0 G.0 0.0 06.10000G :
0.975060 0.23599 o.00175 7. 10327 N .32055
0.95000 0.33404 5.55H452 7 0.10701 3.05302
6.925060 0.809u3 ¢.A53793 7 G.11G15 2.50753
G.9066G0 G.1h7325 G.7910% 5.1123° 2.17753
0.87500 0.521959 G.73115 0.11572 1.95324
G.35000 . 0.5%04/7 0.95194 G.12621 1.78345
6.025G0 0.A2780 1.03584 6.12335 1.56109
G.]6000 G.AT181 - 1.1G377 0.12749 1.5596G3
G.77500 G.71328% 1.15727 6H.13172 1.4752%
0.75000G (G.7525% 1.22539 G.13597 1.40495
0.72500 0.7902% 1.23314 5.1uonT 1.34511
0.70600 0.22535 1.33/52 0.14525 1.2935%
0.67500 0.85111 1.32736 6G.15632 1.2u4]71Y
0.55600 O.R9474 1. 435746 . 0.15573 1.20952
§.52500 5.92725 1.13212 6.15150 1.17502
0.60000 (G.95907 1.5245 6,157A7 1.144859
0.57505 0.92002 1.563214 5.17130 1.11759
G:55000 . 1.62627 1.41023 0.1311h2 1.09372
6.52500 1.049901 1.64974 6.19917 1.07319
0.5G00060 1.079062 1.68730 0.19712 1.055%5
0.47500 1.10757 1.72415 n.20845 1.03945
5.05000 1.13522 1.75973 5.21429 1.02631
0.42500 1.14336 1.793%1u 0.22702 1.01550
G.10000 1.19153 1.724485% n.23382 1.0073%
0.3750% 1.21901 1.859327 0,251 1.00175
6.35060 1.24438 1.83353 §.2561D C0.,99899
0.32500 1.27371 1.91791 06.28220 n.g9934
0.300060 1.3G110 1.94596 0.36G16 1.00334
0.275%50 1.32356 1.97231 G.32027 1.01147
0.25000 1.35551 1.793un 5.3 1.0253%
0.225G0 1.3%4833 2.62282 §.35920 1.04529
6.200G0 1.41383 2.04590 n0.39932 1.07523
G.17550 1.1M4332 2.0ATA2 6. 13429 1.118352
G.15000 1.47522 2.07792 O.h7540G 1.120570
G.12500 1.50370 2.10ATY 5.52H431 1.27310
G.16000 1.514537 2.12407 6.53329 1.413881
G.07500 1.53729 2.14012 0.45543 1.87G78%
G.050006 1.453211 2.15594 §.74525 2.1%311
0.02560 1.71559 2.17732 0.495813 2.75181
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TABLE 3.5 (Cont'd.)

QT MATION YOTD FRACTION= .10
(0 ) (1.0-pP)*%2

(e

PREGSH® LI N-2AS(1) ALPHA(TY  &(1)Y/A(TH)

-

1.00550 .0

6.0 o 0.

0.97560 0.0 -0.06020 6.,00005  -0.060511
6.95000 6.06001  -0.0060677 , 0.66613  -0.06505
5.92500 0.00002  -G.0G153 0.06025 =0.06491
0.900660 0.066008 -6.G0200 0.6003%  =0.00423
0.87500 5.000505  =0.060UL0 6.06053  ~0.00458
0.85000 §.000090  ~5.5051% .06059 -0.06G454
0.8250G G.00612  =G.00%069 0.60637 -0.00u37
0.36000 5.00015 =0.61023 ALOG105 =6G.00410
0.77500 0.00521 =5.01252 5.006124 =G.004061
0.756G00 6.060026  ~0.01493 G.00147  =0.073381
G.72500 0.06031 =0.61784  0.006159 =6.0G3A0
G.76000 0.06037  -0.0G2651 7.06191  =G.0533%
0.67500 G.O0GUY - ~0.62255 6.06215  ~0G.006315
0.5650600 0.060651 -0.02520 0.9G238  ~0.06292
6.62500 6.00G52  =0.62777 0.00252 ~0.00257
G.50000 0.00657  -0.03027 6.06297 ~0.60242
0.57500 G.00G76. -0.03269  5.G5311 =5.00217
6.55G60G 0.000%5  -0.03493 5.066335  -G.0G6191
0.5250G 5.00095  ~G.53711 0.0%5350 ~G.G5155
0.5G000 0.00105 -6.07004 5.063%2  =5.00139
5.47500 G.CO117 5. GHOTR 5.60M5  =5.06112
0.45000 0.50129  -0.04225 0.60M25 ~0.006027
6.42500 G.0G141  =0.GH345 G.GONNE -6.G0051
0. 00000 600158 ~0.GYU35 6.69455  ~5.0G035
0.?75Jo 6.G0163 =5.01439 5.00131 -5.066612
0.356 6.50192  ~0.04505 6.069195 5.05612
0.3950J G.0G197  —-0.0k432  G§.60565 6.00032
0.30000 0.00212 =6.GU4415 5.00511 6.00050
5.27500 0.06222  -0.04301 5.6G0512 5.060655
6.25000 0.002u _0.ou137 6.006567 5.00675
0.22560 G.00251 . =5.063922 0.00495 5.50079
0.206660 0.00627%  -G. 02>>? 5.0GU75 5.006677
5.17500 G.00296  -0.03325 LT 5.00665
G.15060 0.60310  —G.G2940 0.004GH 5.00045
0.125C0 G.00332 -0.02495 6.00350 -G.GGGO1
0.106G0 G.06350 =0.0179% 6.00233  =0.000654
59.67560 0.G03567  =0.51435 G.6020%  ~0.00155
5.6G5000 5.003382 -0.50%32 6.06113  =0.06237
0.02505 6.06393  -0.00205 5.06039  ~0.0G0M71
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TABLE 3.6 Computed Solution for a Choked Nozzle - Zeroth and

First Orders :
(Pressure Normalized by p, ; Velocities by /7, 7pL )

STATNATIOY VOID FRACTICY= 0,200
2

X(0Y=(1.5-p)%%;

PRESSH U=-L19(0) U-GAS(6) ALPHA(G)  A(G)/A{TT)

1.0004006 G.G 5.0 0.25000

7.97506 0.25059 n.127G63, G.2G669 3.84718
5.95500 0.355062 0.80083 1.21213 2.734145
6.92560 0.43537 G.73314% | §.21755 2.24019
0.90030 6.50333 6.314G2 0.22307 1.95391
0.87505 5.55430 G.ah123 G.22874 1.7574G
0.9%506G0 0.61929 1.02375 G.2345M0 " 1.51355
0.82500 0.57015 1.10394 G.2u075 1.506319
G.R0060 G.71730  1.18234 G.20712 1.41527
C.77500 n.7523%5 1.25202 0 .25374 1.24354
0.75600 0.20574 1.31875  0.24072 1.233%5
0.72500 G.34439 1.372111 6.2530G1 1.23377
0.70600 . 0,3%3450 1.080053 0.27568 1.13110
0.87500 G.02432 1.997506 6.2%270 1.15458
0.65000 7.06203 1.5521% 0.22217 1.12212
0.52500 0.99%93¢C 1.50N35 6.30111 1.09423
G.506G0 1.0337% 1.65574 £.321955 1.67315
6.57500 1.05349 1.705C1 0.32656 1.05357
0.550G0 1.10245 1.75291 7.3311% 1.063745%
0.52500 1.13432 1.7023298 6.3h212 1.02352
0.50050 1.15259" 1.34153 0.35%41 1.0129%
0.47550 1.20257 1.22362 0.25726 1.0G555
0.1506G0 1.23533 1.93193 6.386945 1.60006
G.42560 1.26797 1.97406A 6.39540 G.99733
0.4%0000 1.35059 2.01542 0.411240 G.92937

0.37500 1.33330 2.035%16 612210 1.60354
0.35000 1.35/21 2.069510 6. NNA3R 1.01115
0.32500 1.39915 2.1355% 0. MAAGY 1.02354
0.30600 1.1331% 2.17473 0. N337YH2 1.04115
0.275G0 1.43758 2.21345 0.5105" 1.0655469
0.250006 1.50299 2.25201 0.52502 1.09597
0.22500 1.53941 2.29n058% 6.54339 1.13924
0.20060 1.57752 2.32939 0.594"15 1.19551
0.175095 1.51777 2.35%20 0.62817 1.27147
0.15000 1.5A095 2.h0931 0.56550 1.37563
0.12500 1.7092 2.45173 6.70G755 1.5236G9)
0.109065 1.75171 209740 n.75331 1.75987
0.G7500 1.325451 2.514914% n.36515 2.15634
G.05000 1.9045"1 2.4132% G.25331 2.9351h
0.02505 2.0719H 2.71123 n.n23n5 5.25G97
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TABLE 3.6 (Gont'd.)

FRACTION= 9.200

BN
Y=

~
-
~ 2
i

—~
— 3]
¢
1)
=
<
»
s}
N D

PRESS U-LI2(1)  U=GAS(1)  ALPHAC1)  A(1)/A(TH)
1.00000 0.6 6.0 5.0 - o
6.97500 0.0 -C.06019.  6.6000%  =0.00555
0.95606  6.006652  -0.00075 . G.006G22  -0.00552
0.92500  5.00G04  -0.60164 . 6.00G%C  -0.00533
0.0G000  G.000663 -0.00228  6.06051  -0.00512
6.375060  6.00G012  -0.0G429  0.G6034  -6.00537
06.25000  6.0901%  -0.66599  5.66110 ~0.00556

10.92506  0.506025  -0.606732  5.00137  -5.00532
0.30060 . 0.00032  -5.06997  0.G0155  ~0.06505
0.77500  0.G561  -0.01219  0.65194%  -0.G0LS53
6.75600  0.006050  =G.61M53  0.0522%  -6.00U3Y
6.72500  0.000651  -G.01595  6.00255  -0.0039°
5.70000  5.00073 -0.019%3  6.092%5  -0.00352
6.67500 . 0.060%5  =0.0G2193  0.60215  -0.00325
6.55000  0.00020  ~0.0624M3  5.0603%7  -5.G60237
G.62500  6.00114° =0.02638  6.060374  -6.00251
G.60606  0.60122  -0.62027  G.O04G5  -5.G5212
G.57560  G.0015  -5.G3156 0.00432 -5.00174
6.55000  0.6G15%  -G.03371  0.G5459  =0.00137
6.52500 0.69183  -6.73571  §.GG482  ~G.00101
6.50050  0.00202 -5.63751 5.00565  -0.00055
017500 6.00223  -0.63916 6.G652%  -05.000632
6.45060  G.0024%  -0.Ghou2  0.GG540  5.065G0
0.42560  0.606257  ~0.641M7°  §.0G553  G.06630
6.40066 0.0029C  -06.0Y220-  0.065551 5.006055
6.3750G  0.00315  ~G.0Y4258  §.G0555 5.00577
0.35000 . G.003WG  -0.G"259  0.6956%  §.06095
6.32500  0.00365  -0.04219  0.00557  G6.00103
6.3600G  0.006392  ~G.0W137  0.G054%  5.060113
6:27506  0.6G419  =0.GM0G63  0.0652%  0.0G111
G.25060  G.00447  -0.03330  0.60%7  0.06099
6.22560G G.OGUTE ~0.03502  G.G0453 . G.0GGT9
5.20600  0.50502  -0.63321  0.55%20  0.00043
6.17500  6.566530  =0.02985  §.GG371  =0.0G5G5
6.15060  0.00558  -0.06259%  G.60314%  -6.060G72
0.12500  0.00585 -0.0214%  §.6G252  -G.0G0157
0.16006  6.00A10 =0.015%2  5.05137  -0.00253
G.07500  G.66631  =0.01162  0.06122  -5.06394
6.05000  6.505U3  -0.66520 6.006065%  -6.00515
6.02506  0.00552  0.6G557  6.00620 -0.00715
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CHAPTER 4

Experiments on One-Dimensional Duct Flow

Some rudimentary experiments on the choked flow of a bubbly
mixture were performed utilizing a two-dimensional contraction in a
rectangular duct.

A photograph of the contraction is shown in Figure 4.1. It
was made of two 3/4" Plexiglass sheets spaced by 1/2" Plexiglass.
Figure 4.2 shows the contour of the contraction which was formed from
cii‘c‘ulal; arcs. The cross section up and downstream of the contraction
is 2" x 1/2". That at the throat is 1/2" x 1/2'. The length of the
contraction is six inches. The bubble injection system is situated
upstream of the contraction and consists of 20 tubes running across
the channel, each with 36 holes of 1/64'" diameter. Figure 4.3 is
a detail photograph of these tubes taken from the rear of the channel.
The axial .extent of this injection system was six inches.

The contraction and bubble injection system was placed in the
flow system shown in Figure 4.4. The system operated in a blow down
manner. The sixty gallon tank on the right was fillad with water at
the start of each test. This provided enough water for the choked
contraction to operate in a steady-state for about a minute. High
pressure nitrogen was used to force the water up the pipe extending
down into the tank. It then flowed through the venturi where its flow
rate was measured. This measurement was performed with a mercury
manometer connected to the venturi. Next the water flowed into the
bubble injection system and was joined by nitrogen gas bubbles. The

flow rate of the bubble gas was measured with a rotameter before it
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entered the injection system. From this point the mixture flbwed
directly into the contraction. The pressure of the mixture was
measured at five stations in the contraction. The pressure taps at
these locations consisted of 1/32'" dia. holes in the wall of the channel.
Each of the taps was conneéted to a solenoid valve. These valves may
be seen in Figure' 4.1. This allowed any of the five pressures to be
measured alternatively using the same bourdon tube pressure gauge.
. After leaving the contraction the mixture flowed through a gate valve,
and into a fifty-five gallon drum, to be drained later.

The procedure for running each test was as follows: First,
the higﬁ pressure tank was filled with water. Next the gate valve
downstream and the bubble injection tubes were closed 6ff. The
system was then pressurized to about 110 psig. The bubble gas
pressure was then adjusted so that bubbles would flow into the liquid
when the injection tubes were opened.. The final step before operation
was to bleed any air out of the pressure tap lines, and out of the lines -
from the venturi to the manometer. To begin operation the bubble
injection tubes and the downstream gate valve were opened. As the
gate valve was opened the throat pressure in the contraction was mon-
itored. At some point, opening the gate Valvev further no longer
decreased the throat pressure, indicating the flow was choked. Before
taking data the gate valve was opened fully so that the mixture ex-
panded throughout the contraction. At this point the following measure-
ments were recorded.

1) The rotameter reading and the pressure of the gas in the

rotameter
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2) . The preésure difference across the venturi

3) The pressure in the upstream tank

4) The pressuré at each of five 1ocations.in the contraction

This procedure was carried out eighteen separate times. For
each test the pressure in the bubble injection tubes was set at a dif-
ferent level to achieve different upstream void fractions. vIn this
manner we were able to vary the upstream void fraction between 0. 04
and 0.45. Table 4.1 contains all the data recorded in the eighteen
tests. | |

Several photographs were taken of the flow in and upstream of
the contraction to verify that the bubble injectors were producing a
uniform stream of bubbles. Two of these are shown in Figure 4.5.
They were taken with speed 3600 black and white Polaroid film using
a spark discharge which gave an exposure time of less than 10 psec.
This was sufficiently fast to stop the motion of the bubbles. The
contraction was illuminated from the rear. Both the.photos in Figure
4.5 were taken just a bit upstreafn of the throat. it appears that the
distribution of the gas, which appears black in the photographs, is
reasonably uniform. We can even rmake out an occasional single
 bubble in the photographs. These appear to be round so modeling then
as spheres should be a reasonable approximation.

Local measurements of the void fraction were attempted using
~a resistivity probe similar to that of Nassos and Bankoff (4.1). This
probe consisted of a needle pointed directly into the oncoming flow.
The sides of the needle were insulated so that current could pass only

through the very tip. The probe was placed in a bridge circuit powered
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by a 1l.5-volt battery and the signal from the bridge was monitored on
an oscilloscope. It was conclude‘d that the signal associated with the
arrival of a bubble at the probe tip was not sharp enough to determine
the void fraction with confidence. The probe was located just upstream
of the contraction where the flow velocity was about 20 ft/sec in most
cases. This is quite a bit higher than the velocities at which these
probes have been used previously, and it seems that they are not well
suited for usé at high speeds. |
Figures 4.6 through 4.11 are direct comparisons of the
pressure data taken in six of the eighteen tests to the zeroth order
analytical solution described in Chapter 3. Each is a plot of the area
of the channel, normalized by the throat area, versus the pressure
normalized by the upstream pressure. The measured quantity is the
pressui‘e, plotted on the absissa. Agreement between the measure-
ments and the theory is quite reasonable until we reach the divergent
section of the contraction where it is doubtful that bubbly flow persists.
Because the flow is choked, whether or not the flow is bubbly in the
divergent section will have no influence on the flow upstream of the
throat, We can be reasonably certain that the flow will remain bubbly
up to the throat. The reason is, that even though the mixture has
expanded to quite a low pressure at the throat, the void fraction does
not increase proportionately since the gas accelerates faster than the
liquid. For example, when the upstream void fraction is 0.20 we can
expect the throat void fraction to be less than 0.30 even though the
pressure decreases by a factor of 2.5. This indicates that we can

expect bubbly flow, at least up to the throat, for upstream void
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fractions considerably higher than we might originally estimate.

The pressure gauge used to measure the pressures in the con-
traction was graduated in units of 1/2 psi. Assuming we could read it to
*1/4 psi the accuracy of our pressure rétio measurements should be
better than #2%. Measurements of the gas flow rate were made with
either of two rotameters used in the experiment, both of which were
graduated in oné~percent divisions of full scale. So the accuracy of our
gas flow rate measurements is £1%, The manometer connected to the ven-
turi was graduated in tenths of an inch. This made for an accurac.y of :hl% '
in our water flow rate. We can therefore estimate that the accuracy of the
upstream void fraction, calculated on the basis of equal velocities up-
stream is * 2,%.,

This brings us to an interesting .point. In reducing our data we cal-
culate the upstream void fraction assuming that the velocities of both
phases are equal. This is also fhe boundary condition we used in our an-
alytical work. Since the gas shoots ahead of the liquid as soon as it enters
the contraction (accompanied by a decrease in void fraction)the analytical
solution is very sensitive to this condition being met. If instead of ug =
Uy we enforced the condition ugz 1. lqu the solution we would calculate
would be considerably different. With this in mind, reasonable care was
taken to be sure the experimental situation was one in which
'ug = uy upstream. 'Tests‘ 10 through 13 were made with only the
four bubble injectors farthest from the contraction operating. If a
difference between the results of these tests and t;he others was

noticed it would indicate that bubbles being injected from those

tubes close to the contraction did not have sufficient time to
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accelerate to the liquid speed. No such diffefence could be
discerned. This is shown in Figure 4. 12 ‘which gives the throat
pressure normalized by the upstream pressure vs. the upstream
void fraction. The line on the graph is the zeroth order analytical
solution. The poinﬁs denoted by boxes represent data taken with
all the bubble injectors operating. The points denoted by asterisks
represent data taken with only the four farthest upstream injectors
operating. We can see that the experiment aﬁd theory agree well
until the upstream void fraction reaches about .3. Above this value
the predicted pressure ratios are slightly higher than those ob-
served. This maybbe due to the increasing importance of inter-
actions between bubbles at higher void fractions.

Figure 4.13 is a comparison of the data taken by Muir and
Eichh‘orn (4.2) 1963, to the zeroth order analyfical solution for a
nozzle. Muir and Eichhorn used a contraction ratio of 14 in their
experim"ents so in the upstream section the fluid was essentially at
rest. The throat pressure ratio is plotted against the upstream
volume flow fraction of gas.

The agreement is only slightly better than that obtained using
thek homogeneous flow theory of Tangren, Dodge and Seifert (4.3).
Muir and Eichhorn explained the difference between their data and
the homogeneous theory as a consequence of the failure of the homo-
geneous theory to account for slip between the ‘phases. Our cal-
culation accounts for the slip and jret still does not agree with their
data. Inclusion of the next order term in our theoretical calculation

will bring our prediction into closer agreement with Muir and
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Eichhorn’§ data, but it seems unlikely that this will account for
all of the difference. A more plausible explanation is that two-
dimensional effects are important in the Muir and Eichhorn ex-
periment. The radius of curvature at the throat region of their
nozzle was 1/2'". This indicates that bubbles passing through the
nozzle may experiencé considerable ‘accelerations normal to the
nozzle axis. Our model assumes these accelerafions are ﬁn—
important and is- therefore not exactly applicable to this experi-
mental situation. The radius of curvature ‘at the throat of our
cbntraction was 3 3/16'" so these two-dimensional effects will be
much less important. It seems possible that the two-dimensional
effects in the Muir and Eichhorn nozzle could be accounted for in
the manner used by Henry and Fau"ske, (4.4) in studying one-
component critical flow through orifices and short tubes.

The preliminary experiments described herein show quite
good agreement with the zeroth order analytical solution for flow
through a contraction which was described ih Chapter 3. This
indicates that the model described in Chapter 3 is accurate and
may be used in other similar situations with a high degree of
confidence.

It also shows that the flow in our contraction is bubbly even
at void fractions as high as .3 or .4, where bubbly flow is
usually not thought to persist. This is probably because we
cr.eate the mixture not very far upstream as a b:ubbly one, and
there is not enough time for a change of flow regime to take

place. This idea may have implications for the analysis of a
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blow-down from a pressure vessel WhiICh has undergone a sudden
depressurization. If bubbles are generated homogeneously in the
fluid it is likely that the flow out of the vessel will remain bubbly

to higher void fractions than previously expected.
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FIGURE 4.1 Photograph of the Contraction
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FIGURE 4.3 Photograph of the Bubble Injection Tubes
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CHAPTER 5

The Rise of a Cloud of Bubbles Through a Liquid

5.1 Statement of the _Problem'

In this chapter we address an interesting stability problem
which appears to have some bearing oyn the question of whether a
bubbly flow will maintain its bubbly structure or will eventually
deveiop into some other sort of flow, perhaps a slug-type flow.

‘The possible mechanism for this change of flow regime is
related to the- fact that the characteristics of the equations for
one-dimensional flow are not always real. We recall from our
discussion in Chapter 3 that two of the four characteristics are
complex whenever a relati.ve velocity between the gas and liquid
exists. The other two characteristics are altered onlyv slighfly
by the relative velocity, and retain their significance as acoustic
speeds. - This suggests that compressibility is not ‘an essentiai
feature of the physicél phenomena related to the two complex
" characteristics. Therefore, in order to gain an unde.rstanding
of these phenomena, we should analyze a problem in which the
relative velocity between the phases is the sole essential feature.

We consider the one-dimensional situatién depicted in
Figure 5.1. Liquid is flowing down, in a vertical pipe, through
‘a cloud of small gas bubbles. | The velocity of the liquid is equal
to the terminal rise velocity of the bubbles which are at rest.
The void fraction of the mixture is uniform at value @, . The
object of our analysis will be to examine the development of a

small disturbance to this uniform state.
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A somewhat similar situation was treated by Likht and
Shteinbert (5.1) 1974, who found that a horizontal layer éf liquid
with bubbles rising ‘through it is >unstable. Our work will show
that even the one-dimensional sit’uatién is unstable and we shall
further attempt to discover the final form this disturbance reaches.

Table 5.1 gives pertinent information about 1/32" dia. air
bubbles rising through water. It is worthwhile to note that the
.Reynolds number of such a bubble is 133; which is high enough to
be well within the range described by our bubble equation of
motion. It is also i-fnportant that even with such a large Reynolds
number, the Weber number, a comparison between pressure and
surface tension forces, is only .16. This indicates that the
bubbles will indeed be spherical, as we have assumed in deriving
their equation of motion. A final item to be noted from Table 5.1

pr Vo® :
is that -——I"——-é——-— , the scale on which we expect fractional bubble

c
Pe"g

size changes to occur, is only .0002. Therefore, any effects

associated with the bubbles changing size will be unimportant, and

we can assume them to be incompressible without incurring sig-

nificant error. With this in mind we can write down our governing

equations for the situation. They are, referring to (2.3,2.4,2.9,2.18)

Gas Conservation

0 o ) B
ot toay lavy) = 0 (5.1)
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Liquid Conservation

81 - @) , B

skt g ((1-avy) = 0 - (5.2)
Mixture Motion
ov v .
L L 9 . . -
prlre) lg= + vy =1+ 55 = - ppl-a)s (5.3)
Bubble Motion
v ov 9+ 8VL 1
{—-—-&at tv, ——583, 3‘3{'56‘ +vL~57—3+;;(vg—vL) = 2g (5.4)

The approxirnations we have made to this point are:

1) One-dimeasional flow

2) Mass of the gas bubbles is negligible

3) Both liquid and gas are incomp‘ressible

Seeking the characteristicé of the above set of equaﬁons we
discover that there are only two, instead of the previous four.
This follows from the assumption that the gas is incompressible
and as such will no longer carry acoustic disturbances. Therefore,
the characteristics corresponding to these disturbances no longer
appear. The two remaining characteristic speéds are given by the
expression:

(1 -a)vg + 3ov. * 1/3a (1 - ) (vg - Vi)

Y = L (5.5)
(1 + 2 &)

This expression, which gives the characteristics of the approximate
equations we are now dealing with, is identical to Equation 3.5.

. That equation gives approximate values of the characteristic speeds
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of our more exact set of one-dimensional equations. This confirms
our belief that compressibility is not an important feature of the

phenomena associated with these complex characteristic speeds.

5.2 Linear Analysis of the Growth of a Disturbance
| In problems such as this, where one wishes to follow the
development of a small disturbance about a uniform state, the first
procedure to try is linearization. If the linearized equations
predict that the magni.tude of the disturbance will decay with the
passage of time, then the linearization techniqué will be wvalid for
all time. I1f, on the other hand, the linearized equations predict
amplification of the disturbance, they will only be accurate while
the disturbance is still small enough to make linea'rization valid.
In either case the linearized equations will provide an accurate
descriptionb of the situation initially.

Using the linearized versions of (5.1-5.4) we can easily find
an equation for the void fraction perturbation by differentiating the
bubble motion equation with respect to y and utilizing the two

continuity equations. The equation thus obtained is:

9 ¢ 1 % 9 )
’*—"atv{"g-t-‘i‘?;r;}a' + (1_0[){3(5—{—\706—_;—-)
(5.6)
1 0 9 3 _
+'_-l_—-}{'5—t' -Vo“a‘}—r}-oz' = 0

v

Because this equation is of second order in ', we need two initial
1
values. For instance, we could specify a'( 0,y) and -%C—E-—(O,y).

Assuming that we have solved for o' we can then go ahead and
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use the other three linearized equations to find the gas and liquid

velocity and pressure perturbations. These equations are:
1
avg | da'
oy - o ot
ov.!
1 _ 1 - O o'
ay_ - - 1 - % [ at - VO 8Y ] (5'7)
v, ov!
ap'’ - . _ <L L - '

If o'(y,t) is known it becomes a simple matter to calculate vg:(y, t),
VL' (y,t) and p'(y,t). For this reason we will concentrate our
efforts on calculating o'(y, t).

Equation 5.6, from which we expect to find a'(y; t), 1is of
course a linear elliptic partial differential equation. The initial
value problem for this equation is therefore an ill-posed one, as
discussed by Garabedian (5.2). We realize that, except for certain
special initial conditions, solutions of Equation 5.6 will in general
diverge as time passes. As we mentioned before, this is not
particularly'alarrning because we know that at some time nonlinear
terms will become important and Equation 5.6 will cease to be
accurate. We can still use Equation 5.6 though, to calculate the
solution initially. If we measure time in units of Ty the
relaxation time, and length in units of V, Ty 2 the relaxation
1éngth, then Equation 5.6 becomes:

9 9 L % 9 9 9 9
stlap tlie' v {3(5€-5—§,-)+13 {7 -

W}a" = 0 (5.8)
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N .
If we let '—1——9——&—-— equal y and multiply this equation out we then
- @ _

have the mathematical pi‘oblem:

' ].'l"! .1 _ 6! ! 3L_ 1 ___y_____ L—
att+(l+3y)at (1'+3y)ayt+(1+3y )ayy (1+3y)ay 0

(5.9)
a'ly,0) = gly) ; ei(y,0) = h(y)

We can solve this problem by using the Fourier transform in the

y~-direction. The resulting solution is:

@'y, t) = —— [ Fk,t) e KV qx (5.10)
/z e
- where
s (K)G(k) - H(k) s, (K)t
F(k,t) = e
s_(k) - 8, (k)
(5.11)
H(k) - s,(k) Gk)  s_(k)t
+ e
s_(k) - 5, (k)
in which
. 2 2 .
s, (k) = - {1+ y)+ 6y11;}(_;1:+\/3(y1)+ v)©+ 12yk® +8yik (5.12)
and
Gx) = —— [ gly) ™Y gy
T e
. (5.13)
H(k) = —— [ hiy)e™ gy
Iz e
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Examining S:l:(k) we realize that:
(k) (5. 14)

and for all real k:

Re{s+(k)} > 0 ; Refs ()} < o0 (5.15)

- As we expected, most solutions of Equation 5.6 will be divergent.
The only solutions which will not diverge are those special ones

corresponding to initial conditions for which:

s (k) G(k) - Hk) = 0 (for all k)

For these special initial conditions none of the divergent solutions

. s (k)t : ’
involving the e term in F(kt) are excited. As we have
stated, though, a general set of initial data leads to a divergent
solution. Also, under certain initial conditions, no solution may be

calculated at all. To see this, we write our solution in the form

of two integrals:

‘ ® s, (k)t -iky
1
a'(yt) = ——1{ [ q,(k)e e dk
/2T -
(5.16)
® s (k)t -iky
+J a (ke e dk }
-~ 0
: s+(k)t
The first integral contains the term e where t 2 0 and
Re {s+(k)} > 0. In fact
/3
Refs (k)] nglf—- [k]as [{—>e (5.17)
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So, if q_l,_(k) does not go to zero fast enough, for large ,k] , the

first integral will not converge and no solution exists. The two
functions qi(k), are formed from the Fourier transforms of the
initial data. For a solution of the problem to exist we must put
a limit on their high wave number content. This is equivalent to
a restriction on the high wave number content of the initial data.
Liuckily, this is a restriction which will be met by any sensible
initial data. The reason is that we are, of course, describing a
collectionv of discrete bubbles as a continuum. There is, then,a
natural limit on the high wave number content of the initial data.

- This is because we need a volume of at least a few bubble
spacings cubed, just to define quantities like the void fraction. It
Wé'uld therefore make very little sense to impose initial data on our
problem, which varied on a length scale shorter than a féew bubble
spacings. We can expect then that for sensible initial data the

functions qd:(k) will have the property:

quk) = 0 for |k] >_kmax

So we see that the restriction of the high wave number content o.f‘
the initial data is a physical one as well as a mathematical one.

Having established that we can calculate sol'ﬁtions for all
reasonable initial data, we can now investigate the properties of
the solutions we calculate. Actually, all of the important informa-
tion about the solutions is contained within the two functions

S:l:(k)" Of course, S;l:(k) are two quite complicated functions of k.
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For this reason analysis of s,(k) is most conveniently done with

the aid of a computer. If we set:

our basic solutions become:

esi(k)tedky s oAt ~i(ky - ba(k)t)

This exhibits their wavelike nature and shows that b:h(k)/k is the

phase speed of the wave. Tables 5.2 and 5.3 give values of

ad:_(k) and b:l:(k) as a function of wave number for +y = .10 and
.25. From these tables we can learn several things. First:
b:,c(k) < 0

which indicates that the wave motion will be in the downward
b (k)
+

" in a normalized form,

- direction. Second, by plotting

(1 + 3y)by(k)

- 3vyk , as we have done in Figure 5.2, we can see that

we can expect considerable dispersion in our solutions. This is
becaﬁse the phase speed of our waves is not constant but is de-
pendent on wave number. We can therefore expect our solutions
to exhibit three properties:

1) The disturbance as a whole will move in the downward

direction
2) The disturbance will be amplified as it moves
3) The disturbance will spread out due to the dispersive

nature of the waves.
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These three properties can be seen readily in the calculated
solution, shown in Figures 5.3 through 5.6. These give the

solution for the initial conditions:

sinT vy v
(y +2)(y - 2)y

i

4
a'(Y, 0) - 'ﬁ-’

da'! _

l
o

The specific functional form of o'(y,0) was chosen with consider-

able care so that the condition that q:h(k) # 0 for k> km'

ax
would be met. This function is part of the more general set of
functions:
4772 sin (kmaxx)
fly) = - & )3 21 21
max x(x - T ) +k )
max max

whose Fourier transforms are:

T{——-———-—"&T{l - cos Zn(kk- )3 Ikl <k,
max max -
F(k) =
0 B I

Our specific initial value corresponds to kmax = TT. Since

[+

‘r a'(y,0)dy = 0 this solution corresponds to a disturbance which
-

does not involve any addition of bubbles to the system, just a re-
arrangement of them. The graphs in Figures 5.3 through 5.6 are to

be read in the following manner:

1) In each case the absissa is the y-axis ; it is in units of
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v, T and up is to the right

All the quantities plotted are dimensionless. Figure 5.3

gives the void fraction perturbation, «', Figure 5.4 gives

v
the dimensionless gas velocity perturbation, —8_ , Figure

Vo

5.5 gives the dimensionless liquid velocity perturbation,

VL'
T

e}

w1
and Figure 5.6 the dimensionless pressure perturbation, {——2-\—7—2' :

1, Vo
3) All of the graphs are normalized by the maximum of the
absolute value of the quantity plotted. This value is
written in the lower right hand cornerl of each graph.
4) The time is written in the lower right hand corner of
each graph in units of T
The solution shown was calculated for a value of y equal

to 0. 1.

pected are exhibited by this solution.

As the reader can verify all three of the properties ex-

Of course, the gas velocity

for time equals zero is not plotted because it is identically =zero.

Before leaving our linear analysis entirely, it is interesting

to consider what happens to a disturbance which has a length scale

that is lo'ng compared to the relaxation length. In such a case

the

two functions qi(k) are non-zero oanly for very small k. This

means it will be sufficient to approximate s

4

k. These approximations are:

s () & -dak
: 1 + vy
s (k) = (T“m )

So, the second integral in Equation 5.16 will become very un-

k) for very small
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important after only a few T The solution will then be approx-

imately:

w -
ally,t) » ——— [ q ) e KT T %) gy (5.18)
v 2m -5

This is just a wave that maintains its form and moves downward
-at speed ¢«,V, . Using Equation 5.18 and the Equations 5.7, we

can also discover that when Equation 5.18 applies:’

So, long length scale disturbances quickly relax to a’ situation ivnb
which the gas and liquid velocity perturbations are equal to the
negative of the void fraction perturbation. This implies that after
this quick relaxation our description of the éystem can in some way
be simplified. We will see later that this is actually the case.

5.3 Non-Linear Analysis of the Growth of a Disturbance

We now return to our full non-linear equations with the hope
that somehow the non-linear terms  which have been omitted in our
linear analysis will act to stop the growvth of a dist‘urb_ance,

The simplest thing we can do with a set of non-linear equations
such as (5.1) to (5.4) is to look for wave solutions of permanent

form. That is, we look for solutions such that:

o = aly + u, t)

v = v (y + u t)

& & ’ (5.19)
Vi, = VL(y + u, t)

P = ply + ut)
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Since the pressure only appears in the mixture motion equation,
we really only need to work with the other three equations and the
quantities «, vg and vy If we substitute the assumed solution

from Equation 5.19 into our equations, we find that (5. 19")'is a

oossible solution form and that the solution is:

Ao
Vg= -u, +(oz ) u,
1-q
vy = mu «l-(l'_a)(u0 - V,)

n - ( ) (1"0-’)3 dOZ
*0 (@-a,) (a-a) (5.20)
110 = aVo » ﬂ - V+’:'1 t

The solution comes out in an implicit form; we can calculate 1 as
a function of «@. What we do is pick «afo) somewhere between
a, and a. Then, as a(n) goes to @, or a, 1 wil go to
plus or minus infinity., Thus the void fraction profile will look
like that in Figure 5.7, and the solution we have found is a sort
of transition between regions of undisturbed void fractions a and
a. It turns out that the greater of , and a will always be the
void fraction below the transition,. and that to interchange the two

amounts only to a Galilean transformation. This is evident from

the symmetry in the integral in (5.20) between a, and a.
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Figure 5.7 is actually a solution calculated from Equation 5.20 for

a transition between o« = .2 and e« = .1. The void fraction is
plotted as a function of Z—_\:;——E-Q——t—~ , and up is to the right on
: 0Ty

the graph. We can see that what this solution resembles most is .
a region of high void fraction below the transition, from which
bubbles are escaping into a regioh of lower void fraction above.
This interpretation is useful in déaling with a2 more general
disturbance, and seems physically reasonable,

In the case of a very weak wave, in which a 1is very close

to a,, we can compute the integral in Equation 5.20 approximately

to find:
@ m.(a;"‘o) + (2% )tanh 2% q
(5.21)
v o= o (1-a,) (- 2q)

In addition, we note that for a weak wave there is a simple relation-
ship between the strength of the wave, (a - @,), and the maximum

slope thickness in units of Vj T That relationship is:
Strength x Thickness = 2v (5.22)

Now, the existence of wave-like solutions such as the ones
we have found poses a question for us: Just what role do they play
in the solution of a general initial value problem, and under what
circumstances are they created? In an effort to answer this ques-
tion we consider disturbances which have length scales that are

much greater than the relaxation length of the bubbles. In many
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cases this is not a severe limitation and it greatly simplifies our
task. If we call this long length scale L, and the time scale
associated with it t (L, = V,t ), then a logical approach to the

solution of our problem is to form the perturbation series:

o = o, + €« (-—f%—,——tt;-)+oo
v
_ ), vy t
v Vel /) F
(5.23)
VL. ygeel) (X by oy
Vo L VL0 T
TV
* T Y

Upon substitution of these series into our equations we find that:

9 a(l) 9 oz(l) _ 0
o/t T % By/L)
‘ (5.24)
Vg(1) - VI(_.l) - G0)

This equation describes waves that maintain their form and move
downwérd with speed a,V,. This is exactly the same result we
arrived at in our linear analysis by considering long length scale
disturbances. Of course, the waves described by Equation 5.24
actually do change form slowly as they propagate. After all, one
of our reasons for setting up the perturbation scheme in

Equation 5.23 was to describe this slow modulation of the waves
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- formed by a long disturbance. Although (5.23) is too crude an approx-
imation to do this, it does point us in the right direction. What we

should have done is to set up the following type of perturbation

scheme:

« = o tE oz(l)(’ﬂ,a) t

:’_g (1)

Vo = evg n,o)y + . . . (5.25)

u

Lo L &)

A 1+ € vy m,o) +
where:

y ooVt t

n = — ; g = & —
Voto ' to

In this manner the motion of the waveform is described by the

dependence on urs and the slow change in shape of the waveform
‘is described by the 5 dependence. On substituting these series
into our equations we discover that to first order in € they are

satisfied identically if:

v mo) = vMime) = - a0 (5.26)
g ,
which, by this time, comes as no surprise. On examining the

equations of the second order in €, we find that if they are not to

contradict one another it must be that:

8a'(l) 2 () aa(l) _ 8201(1)
oa - o 8’]’1 - -V ana ‘

(5.27)
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This will be recognized as Burger's equation with a negative

diffusion coefficient. Using the Cole - Hopf transformation:
@) _ ¢
o = Y By / ¢ : (5.28)

575 (5.29)

We can therefore solve Equation 5.27 by offering one initial con-
dition on the disturbance. This is somewhat surprising since
originally we had a .second order problem and required two initial.
conditions. The reason is, that the perturbation we have performed
is a singuiar one. We could have guessed that this would be the
case from our linearized analysis of long length scale disturbances. '
From that discussion we recall, no matter what co'mb'inat'ion of

initial data we gave, the disturbance quickly decayed into one for

Vg! VE

which; = = ~g' . This type of behavior is characteristic
Vo Vo

of systems described by singular perturbations. In our case we can

expect that the quick decay will take place on the time scale, Ty

Therefore, to analyze the behavior in this initial layer, we can

assume that:

) v t
« = o tea (F+—,—) *+
(6] Lb TV
v
- evit) (L, 2oy 4 : (5.30)
v, g L T,
v
Lo )yt
A = 1+ ev (LO » 7 y o+
v
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Substitution of these into our equations yields:

@), v t _ (1)
-, ;:) =« (-I% y 0)

dv(l) : : |
(1 + 20,) —E—  + vo)b oo ) (5.31)

(=) & |

v
()

Y R S S B
L l—afo. g L= a

From these it is evident that whatever initial conditions we offer on

() (1)0

(1)
Vg and VL

(@)

Meanwhile « will remain constant through the initial 1ayer,'

, they will quickly (after a few -rV) decay to -«

This indicates that the 'proper condition to be enforced on Equation
5.27 is the value of the void fraction initially.

Knowing the proper initial condition we can now solve
.Equation 5.27 for oz(l)(n,ﬁ.). This is done by using (5.28) and

®n, 09

(5.29). When 0 = 0, whatever reasonable initial value «
we g.ive yields a transformed variable #(1,0) that is either always
positive or always negative, but never zero. We can see from
Equation 5.28 that if ¢(n,0) were ever to go to zero, it would
signify the breakdown of our perturbation scheme. Of course,
since we have a negative diffusion coefficient, we can expect that

at some time ¢ will go to zero. What occurs when this happens

cah be seen in the computed solution shown in Figure 5.8.

()
In Figure 5.8 we see plots of Q__(QLE_)_ versus 1 for three

different values of vd. The value of v0, and the scale of the
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ordinate are read from the lower left hand corner‘ of each graph.
The initial data for this sovlut_ion are shown in the first graph. Again
we have chosen initial data which correspond to no net addition or
removal of bubbles, only a rearrangement of them. We can not

see any het Wav-e motion of the disturbance because our coordinate

N is already following this motion. We can see that the disturbance
grows with passing time, and there is still evidence of the disper-
sion found in the 1inearized. solution. A new feature, which is of

a strictly non-linear nature, can be seen in the third of these
graphs. At two points on the graph there are regions of partic-

(1)_

ularly steep gradients of K] Both of these regions appear to be
transitions of some sort between regions ofbhigh void fraction
below and lower void fraction above. What is happening here is
that our transformed variable ¢ is approaching zero. Since ¢

obeys the linear diffusion equation, as it approaches zero it must

be described approximately by:
4 M,0) ¥ M-n,F - 2v(O - 0,) (5.32)

so that at m =1, ;0 =g , ¢ will become zero. Based on

this approximate equation we can compute the approximate profile
oz(l)(n,O’) for the transition. If we find from this the relation
between the strength and maximum slope thickness for these trans-
ition regions,we discover it is identical to Equation 5.22. That
relation was found to hold for weak, finite—amplitude waves of

permanent form. So, it seems that the breakdown of our perturba-

tion scheme is associated with the formation of one of the finite
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amplitude waves we discovered earlier.
This knov&ledge enables us to paint a reasonably clear picture
of what will happen to a long length scale disturbance. This is
illustrated in Figure 5.9. Figure 5.9a is a y -t diagram. It
shows that if we prescribe a smooth long-length scale disturbance
as shown in Figure 5.9b, the disturbance will quickly relax to a
@ _, 0 - _ )

condition in which v = v
g L

an initial layer which is several relaxation times long. For a time

This will take place in

period of approximétely (TV/QE) the disturbance will be descriBed
accurately by Equation 5.24. The end of this period is marked by
the formation of one or more of the finite-amplitude permanent
waves we found earlier. At this time we can expect the disturbance
to look somewhat like Figure 5.9c. This shows a series of finite-
amplitude waves separated by regions of only gentle variations in
void fraction. Just below each of the finite-amplitude waves the
void fraction may become quite high. This suggests that the
formation of these waves could be a mechanism for a change in flow
regime. The clump of bubbles just below the finite wave may
coalesce into a slug of gas, thus fprming slug flow.

5.4 Speculation on the Effect of Bubble-Bubble Interactions

’

We have still not discovered exactly what it is that limits the
growth of these disturbances if the flow remains bubbly. This is
an important question in determining whether a disturbance will
grow to great enough strength to cause a change in flow regime.

It seems likely that the physical mechanism that limits this growth

is not included in our model.
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The most obﬁrioﬁs shortcoming of our equations is that the
bubble rﬂotion equation does not include the effects of bubble-bubble
hydrodynamic interactions. Previous work on.the interaction
between bubbles (5.3, .5.4) has concentrated on calculating the effect
of a uniform void fraction on the virtual mass of indiVi_dual bubbles.
We can do a simple calculation §vhich indicates that the effect of
gradients in void fraction and relative velocity may be more
important.

We consider the three bubbles shown in Figure 5.10. All
three are moving with constant velocity through a stagnant liquid.
In orderb for this motion to be méintained each bubbie must have
some forqe applied to it. This is beéa‘use when spheres move
along one in front of another they appear to repel each other.
Considering the flow to be that of three dipoles we can calculate

the force which must be exerted on sphere 2.

ae o2 = 2
F = 6mp {TYl - vs®
Clg © Caz .
Letting ¥ be a continuous function of y:
s 1 ) dy”®
F o= 6mpa® {—y °| + | )
Cio 2 dy =
1 -2 dy?
- am Wl- gl e ]

1

3
by recognizing that %TT %—5- is the void fraction and that in a more
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general situation y corresponds to (vg - VL) :

— A 3 _d___ - 2 97
¥ = 9Pa dY Ca<vg VL) d

In a more general situation the magnitude of the force will be
different but we can say that it will have the same fuctional form.

So:

F = Bp 0 ;%; {a(vg- v Pl

where B is some unknown positive constant. Since this force is
required to maintain the motion it must be the net resultant of the
other forces on the bubble. In the problem we have been consider-

ing this leads to a bubble equation of motion:

ov ov Bvo BVL
st Ve - 3 Ly tvp

(5.33)
t 28 f{a(v-v, P14+ (v-v, -V ) =0
9y g L T, 8 L ° ’
When this equation is used in our set of governing equations, the -

characteristics become: "

{{ _ (1 - oz)vg + 3¢ Vi, + IZBa(vg— VL) + (vg~ VL)\/ f{a)
(1 +2a)
_ (5.34)
fla) = (2B-3)a + (4B%- 6B+3)d° + 4Bd°

If B is large enough f(e) can become positive for large o and our

system may become hyperbolic.
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If we perform our singular perturbation analysis again, using
this new bubble motion equation, the results are exactly the same

as before except that the diffusion coefficient v 1is now given by:

v = a(l-a)3-28-~2a) ‘ (5.35)

For large enoﬁgh B, v can become negative and our system can
be stable. |

We conclude from this, that the type of term we would need
to include in the bubble motion equation to account for intervactions
might possibly change the charac’ter of our equations for high void
fraction and thus limit the growth of. a disturbance.,. It is also
interesting to note that the diffusion coefficient, v, depends
strongly enough on the interaction term, B, that one might possibly
learn the magnitude of the interaction term from an experiment
measuring the growth rate of a disturbance.

In any event, it is significant that our equations provide such
a reasonable description of the system for low void fractions. This
shows that although the resulting mathematicall problem is not well-
posed, it does not necessérily mean that we have modeled the
physics of the problem incorrectly.

It is also of some interest to note that in the problem of
choked flow through a contraction (which motivated this whole
discus.sion), the bubble residence time is small cornpéred with Ty
Since the disturbances we have been considering here grow on a
time scale proportional to T they will not have enough time to

grow significantly during the time the bubbles actually reside in the
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v e,
contraction. Hence, in that discussion we were correct not to be

concerned about these disturbances and consider only stead.y flow.
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Notation for Chapter 5

Ratio between self-preserving wave speed and bubble
terminal velocity; bubble radius, '

Real parts of S;;;(k)

Imaginary parts of si(k)

Distance between bubbles

Speed of sognd in the gas

Fourier transform

Acceleration of gravity

Force ona bubble

Wave ﬁumber

Length scéle of a long disturbance
Pressure

Functions formed from the Fourier transforms of
initial data

Exponents in Fourier transform solution of
linearized equations

Self-preserving wave spéed

Velocity

Characteristic speed

Void fraction

Undisturbed void fraction ‘

Interaction term coefficient

Undisturbed void ratio

Ratio of relaxation length to disturbance length scale
Coordinate following a wave form

Diffusion coefficient

Density
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Notation for Chapter 5 (Cont'd. )

o Stretched time coordinate; bubble volume
T Viscous relaxation time

Subscripts
g Gas

L Liquid
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TABLE 5.1

Pertinent Data on 1/32" Diameter
Air Bubbles Rising in Water

Relaxation Time =T
Terminal Velocity= V
Relaxation Length =V, T
Reynolds Number

Weber Number

Expected Fractional Bubbile
Size Charge

1

H

1

1

0. 0086 sec
0.56 ft/sec.
0. 058 inches
133

0.16

0. 0002
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Figure 5.3 Solution of Linearized Equations for One-
Dimensional Disturbance; Void Fraction Perturbation



113

! VAN L al |/\.1 1 I ! J

[ |-
-12.0 0.0 8o ~€0 \uj 0 [e 2, Ny 8T 8d 0 1os 12.0

-0.5

WL TIME= 3.000 ABSCV-GAS)-MAX= 9.043  GAMMA= 0.100

0.5
¥

V-GAS(Y)

3 Pam AN i I ! Q L /\ st N V- | J
124100 N A-8.0 \/s.u -ufo -2.0 b 2.0 v.o N A0 o 100 12,0

~AXI

-6.5

0

TL  TIME= 6.000 #ABS(V-CAS)-MAXaS0.717  GAMMA= 0.100

Figure 5.4 Solution of Linearized Equations for One-
Dimensional Disturbance; Gas Velocity Perturbation
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CHAPTER 6

Bubbly Flow over a Wavy Wall

The flow of fluid over a wavy wall, which is a classical
problem in elementary fluid mechanics, serves also to illustrate
some of the phenomena concerning the motion of a bubbly flow.

Consider the situation, depicted in Figure 6.1, in which a
mixture of liquid and gas bubbles is flowing over a wavy wall. The

height of the wall, m, 1is given by:
n = €Xlcos 53— . (6.1)

The number, €, is the ratio between the height of the wall and
its wavelength. We expect considerable simplification of the prob-
lem When_'e is small. In this case, the flow will be a small
perturbation to the uniform rectilinear flow and we may solve the
problem by linearizing the governing equations and boundary condi-
tions. |
We simplify the governing equations, (2.3,2.4, 2.9 and 2.18)
with the following assumptions:
(1) That the inertia of the gas is negligible compared
with that of the liquid
(II) That the liquid and gas behave isothermally
(II1) That the liquid is incompressible
(Iv) That the pressure in the gas bubbles is essentially
the same as in the surrounding liquid
(V) That the gas bubbles do not interact with each other

and that their wviscous interaction with the surrounding
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liquid may be described by a linear drag law.
With these assumptions the governing equations take the

following form:s:

Gas Conservation:

——]I:)—)—t—(poz) + paV - a = 0 (6.2).

Liquid Conservation:

~a§t——(1-a)+(1-a)v-a’L = 0 (6.3)
Mixture Motion:
| da’L
pL(l - a) T + Vp = O (6.4)
Bubble Motion:
- -
Du du
— & .32 2,10 _ L L 2 -2, -
B (u.g U’L)p D 3 ar +_|_ 3 (ug uL) 0 (6.5)

- These equations apply to any bubbly flow obeying assumptions 1
through V. If, in addition, we assume that the flow is a small perturba-
tion to a uniform flow in the x-direction we can then linearize these

equations about that uniform flow.

~

o= uio+ e W

o = UO§ poegl)

g g( ) (6.6)
o = Ay + ea" :

p = p + &pt)

Substituting this into Equations 6.2 through 6.5 we find that:
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{__BQE+UO 5 } (CYDP(l) + poa(l)) + @, pO v . ag(l) = 0 (6.7)
- {-BQ’E + UO%} @+ ~a,) 9 - -"u’Ifl) = 0 (6.8)
b (l-a) [Z Uyl + 928 = o | (6.9)

D 04 G) a0, L1 ) )

{81: +U08X}(ug 3up’) A Tv(po‘) (ug upt’) o (6.10)

These four equations enable us, with the help of appropriate

(1) o (1)

boundary and initial conditions, to find a’LEl), u“,

g
p(l) as functions of space and time. It should be noted that we

and

have not yet assumed the flow to be two-dimensional or steady,
so (6.7) to (6.10) describe any small perturbation to a rectilinear

flow. If we take the curl of Equation 6.9 we find:

{~é~t—+Uo—é—§}(vXa’L(1)) = 0 (6.11)
And by taking the curl of (6.10):
9 e .1 ), _ 1 2 Q)
{Bt I-anx-l'_rv(po)}(v}cug)—TV(pO)VXuL (6.12)

Equation 6.11 tells us that to order € the convective derivative of
the vorticity of the liquid is zero. If we imagine that at some
place far upstream the flow is completely uniform, then ¢ x IIL(”
will always be zero. In effect, we have a restricted form of the

Kelvin Theorem for the liquid. Under these same conditions,

Equation 6,12 tells us that to order ¢ the vorticity of the gas
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will also be zero. We therefore also have the same restricted
Kelvin Theorem for the gas. .So, as a consequence of (6.11) and
(6.12) we can state that in any flow, which is a small perturbation
to the uniform flow, the g‘as and liquid velocity fields fnay be
derived from potentials. In this respect our problem is similar to
a gas-particle flow over a wavy wall wh‘ich was studied in detail
by Zung (6.1).

If we now define the potentials:

2 @)
u = V¢
L L (6.13)
= (1)
= v
“g Yy
we can integrate Equation 6.9 to find:
2 0
p" = o -a) {2ty 2t by (6.14)

Now, performing entirely algebraic manipulations on (6.7), (6.8)

and (6.10), we can find a wave equation for éL :

2

9 9 1 5} 0 2
{“é‘i__—'i‘Uo 8X}t_c:.;é— -éE'I‘UO'é';{‘} éL—(l'FZOlO)V 'ZSL] v
1. 1,9 9 o (6-19)
2 —
+-—; P l3ptUopzd 4, - V4.1 = o0
where cog o
pLozo(1~a/0)

Equaticn 6. 15 applies for a general, three-dimensional, time

dependent, perturbation to the uniform flow, U, in the x-direction.

The speed, c,, is the speed of an acoustic wave propagating iso-
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thermally and generating no relative motion. If we set U, =0

we recover a wave equation which describes the acoustics of a

stationary bubbly mixture.

5% ¢ 0% ¢
1 L 2 1 el L 2 _
_(1+2aO)V¢L]+;_;L,—-——2- -VqSL]_o

ol L
9t "c,° Ot c,® ot2

(6.16)

From (6.16) it is clear that low frequency sound waves (Lm'V << 1)
travel at speed c, while high frequency waves (Uo'rV >> 1) travel
at \/—i—-T-—Z_&: c,. Waves of the type obeying (6.16) have been studied
by Marble (6.2) in cénnection with their occurrence in dusty gases,
and by Whitham (6.3) with regard to applications in magnetohydro-
dynamics. |

Returning to the flow over the wavy wall, we can simplify

Equation 6.15 for steady, two-dimensional flow:

9 2 82¢L 2 1 2 82¢L 2
32 My - (14 2a,)Y ¢L}+-ﬁ;—;;—{1\/xo -V 6.1 =0  (6.17)

in which V® is now a two-dimensional operator, and M, is the
- Mach number, (U, /co ).
To solve Equation 6.17 for q‘L‘ we must offer certain
boundary conditions. The physical conditions are these:
1) The liquid adjacent to the wall must follow the contour
of the wall as it moves
2) The disturbance caused by the waves in the wall
must disappear as we move far away from the

wall.



125

These two conditions expressed mathematically, in linearized

form, are:

1 on _ .o 2T -
"ET:UOS'EI;'”eZTTUOSln(T)’OﬂY—O_ (6.18)
é 4 0 as y -+ © ' (6.19)

It is convenient to find qSL by solving (6.17) for the flow
over a wavy wall whose height is complex. If we let the wall

height, 1, be given by:

n = e ;kZT (6.20)

It becomes particularly simple to solve the problem, and the solution
to our original problem may be extracted by taking the real part
of the quantity in question. This is a consequence of the linearity
of our problem.

" If m is given by Equation 6.20, then we have the mathemat-

ical problem:

0 { 282¢L 2 } 1 { 282(25]__‘ 2 }
— M - (142 )V I+ M -véd. 1 =0
8:; 0 §x° o L Uo'rV 0 942 L
(6.21)
BT .
-5—-1—*— z =ie ZTTUOelkX
2
rzSL + 0 as y + ®
The solution for QSL is:
4 - ie2mn U, e 8V + ikx (6.22)
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where s 1is given by the expression:

: 1
2 2 = . 2 2
(1-M7)+vy (1+2ao)(1+2a0-M0)+21y010M0 .
s = - .
1+v° (1+2a, F '
(6.23)
vy = kUOTV

The square root in Equation 6.23 i.s taken so that Re[s ] < 0, and

thus ¢$L-+O as y = 0.

Using Equation 6.10 we can find the potential for the gas

velocity.

e + 3 bk |
by = L._z__fl_%{-li—:ﬁ?l}esy ik (6.24)

From (6.8) the void fraction perturbation is:

2 2 ey :
o' = Zﬂe(lfao)ﬁﬁ—e”y+lkx+g(y) (6.25)

in which integration with respect to « has introduced the function

g(y). This means physically that we can prescribe the void fraction
a.s a function of y somewhere upstream of where the waves in the
wall begin.

Using (6.14) we find the pressure perturbation:

sy +ikx

p' = 2Mep (1-4,)T07(k/s) e (6.26)

Equations 6.22 through 6.26 give the solution for flow over a
wavy wall of height, ~—2—£—§~ coskx, is found very simply by taking
the real part of each of these expressions.

We can see from these expressions that the parameter, v,
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is quite important in determining the character of the solution.

This number has the physical significance of being the ratio between
the viscous relaxation fime, and the time a bubble will take in
passing one wavelength of wall. Therefore, we can expect that if :
v is small there will be very little relative motion between the
phases, since viscosity will be effective in retarding this motion.

If, on the other hand, vy 1is a large number, the bubbles will not
have sufficient tirne to relax viscously and their motion will be
almost entirely controlled by the dynamic forces on them. This is

clearly seen when we realize:

_ 1 + 3iy
¢g =TT iy éy (6.27)
~For vy = 0, the gas and liquid execute exactly the same motion.

For large vy the gas moves in the same fashion as the liquid but
with three times the amplitude. This is because the gas responds
much more quickly to a pressure gradient than the liquid. For
.intermediate values of y the combination of viscous and dynamic
forces on.the bubbles causes a phase difference between the liquid
and gas motions. The gas executes a motion similar to that of the

liquid but displaced upstream by an angle &:

2

T 3Y2) (6.28)

& = tan *( 7

The phase difference has a maximum value of 30° when vy :7—
: : 3
It is interesting to note that the velocity calculated from the
gas potential indicates that some of the bubbles will go in and out

of the wall. Of course, in the actual physical situation, this does
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not happen. What is happening here is that the liquid is executing a
motion which forces bubbles alternately toward and away from the
wall. When they get near the wall, interaction forces between the
bubbles and the wall will become important. We have left these
forces out of our equation of motion for the bubbles and therefore
cannot expect our bubbles to detect the presence of the wall. After
the mixture has flowed past many wavelengths of thé wall we can
expect that the function g(y) (in Equation 6.25) will have adjusted
itself so that there are no bubbles near fhe wall, By '"near the
wall'" we mean in a layer as thick as the range of the bubble-wall
interaction forces.. |

Another interesting quantity which we may calculate from our
solution is the drag on the wall. We expectbthat there will be some
drag, because there is viscous dissipation corresponding to the
motion of the bubbles with respect to the liquid. The drag on one

wavelength of the wall is:

2n
k
D = ( p'] . (%U-)dx | (6.29)
J B =0 X
Ov Y
Performing the integration we find:
D = (mefp. (1-a,)0%Im [T
—(x)pL -y )U Im {3
As we expect the drag will be zero for y = 0 and vy = =, these

two cases corresponding to no relative motion and free relative
motion, respectively.
We have seen that the bubbly flow over a wavy wall may be

solved by the use of potentials.for both the gas and liquid velocity



129

fields. In solving the problem we are unable to enforce a boundary
condition on the gas velocity at the surface of the wall., The result
is that the gas velocity normal to the wall is.not zero. The
difficulty is alleviated when we realize that after flowing over many
wavelengths of the wall the bubbles will rearrange themselves so
that the void fraction is zero next to the wall. In a2 more practical
problem such a flow around a corner or a bend in a pipe the
bubbles would not have time to rearrange themselves and the non-
zero gas velocity at the wall would correspond to a collection of
bubbles there. If this occurred to a great extent, these bubbles
might form a film of gas next to the wall and thus change the flow

regime.
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Notation for Chapter 6

<, Sound speed
D Drag on one wavelength of wall |
k Wave number of wall
M, Mach number
P Pressure
S Exponent describing y dependence of solution
u Velocity
a Void fraction
Y Dimensionless wave number of wall
) Phase angle
e . Ratio of height of wall to its wavelength
n W‘all height
Wavelength of wall
p Density
T Viscous relaxation time
) Velocity potential

Subscripts
g Gas

L Liquid

0 Undisturbed state
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CHAPTER 7

Concluding Remarks

It has been the aim of this thesis to develop a consistent
set of equations which describe, under some .limitations, the flow
of bﬁbbly gas-liquid mixtures and apply them in the solution of a.
few problems that bear on technological issues of nuclear reactor
safety.

Interpreting these results, and applying them to the scaling
of experimental résults, the importance of the ratio of the viscous
relaxation time to the characteristic time of the flow is evident.

In the case of a choked flow through a contraction this parameter

was the dimensionless number (Uol_:f’v) . Examination of this
ratio led to the conclusion that in many cases of practical interest
the dynamic, rather than viscous, forces on the bubbles almost
wholly determine their motion. In analyzing the rise of a cloud
of gas bubbles through a liquid, this parameter takes the form of
the ratio between the relaxation length, Vo Ty and the character-
istic length scale of a disturbance to the flow. Owur analysis of
the problem was considerably simplified when this ratio was small,
and the viscous forces on the bubbles dominated their motion. In
the flow of a bubbly mixture over a wavy wall, the important
parameter was the ?atio of the viscous relaxation time to the time
it took the bubbles to pass one wavelength of the wall. The effect
of this ratio on the motion of the gas bubbles v?as clearly dem on-

strated.

It has also become very clear that substantial extensions
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of this Work require accounting properly for the bubble interaction
forces of both the bubble-bubble and bubble-boundary varieties.,

Our inability to take bubble-boundary interactions into account
causes us not to be able to enforce boundary.conditions on the gas
velocity at a solid wall. This was shown in the flow over the wavy
wall. Our lack of skill in accounting for bubble-bubble interactions
rendersour theoretical work inaccurate for vaid fractions higher
than about .2. From our speculation in Chaptér 5 on the effect
of bubble-bubBle interactions, it is evident that not only analytical

but experimental work as well is required in this area.





