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ABSTRACT

In Part I, numerical solutions of the Navier-Stokes equations
are given for steady, viscous, incompressible, axisymmetric flow
past a rigid sphere and a spherical gas bubble, The problem is for-
mulated in terms of a stream function and the vorticity which are
expanded in finite Liegendre series. The coefficients in these series
satisfy a finite system of ordinary differential equations. A finite-
difference scheme is used to solve the system with Newton's method
used to solve the nonlinear difference equations., The results agree
very well with low and high Reynolds number theories.

In Part II, systems of ordinary differential equations with
singular points of the first kind are considered. The singular point
may be at either end, at both ends, or in the interior of a finite
interval. A two-point linear system of boundary conditions is im-
posed at the endpoints. A theory is developed stating the conditions
under which a unique solution will exist, A numerical method is
developed for solving these problems. In this method, a series
solution about the singular point is matched to a finite difference
solution away from the singular point. Error estimates are devel-

oped, and numerical examples are given,
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PART 1
NUMERICAL SOLUTION OF STEADY VISCOUS
FLOW PAST SPHERES AND GAS BUBBLES
I. INTRODUCTION

In this thesis, we study the numerical solution of axisymmetric
steady, viscous, incompressible, laminar flow past a rigid sphere
and past a spherical gas bubble for low to moderate Reynolds numbers.

One reason for studying this problem is to better understand
numerical solution techniques for investigating fluid flow problems.
Also we wish to check the theoretical results of D. W. Moore [15]
for high Reynolds number flow past a gas bubble. Exact solutions of
the Navier-Stokes equations for moderate or larger Reynolds numbers
cannot be expected. Since experimental work is limited to low Reyn-
olds number flow because of instability and turbulence, this problem
is usually approached by numerical means. Because large amounts
of computer time are usually needed for these problems, considerable
emphasis is placed on developing an efficient computation scheme,

The method we use may be logically broken into two parts.
First is the representation of the solution as infinite Liegendre series
in the polar angle 6 and the derivation of the coupled system of ordi-
nary differential equations for the coefficients in the series. In this
part, we follow the work of Dennis and Walker {3} with the exception
of the treatment of the boundary conditions.

The second part of the method is the numerical solution of the
coupled nonlinear system of differential equations. For this, we use

the centered Euler finite difference scheme of H. B. Keller E?} using
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Newton's method for systems to solve the resulting nonlinear differ-
ence equations. Newton's method gives rise to large block tridiagonal
systems which we solve with direct factorization. Several factorings
were investigated and one proved superior to the rest. Finally,
Richardson extrapolation was used to increase the order of accuracy.
This increased accuracy was verified by examining the drag coeffi-
cient as calculated at various distances from the sphere.

Keller and Nieuwstadt [9] used much the same methods in
investigating the two-dimensional flow past a cylinder with good
results,

Very good agreement is obtained with the results of Dennis
and Walker [3] for the rigid sphere. Good agreement is also ob-
tained with both low Reynolds number theory and high Reynolds

number theory for the gas bubble.
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2. EQUATIONS OF MOTION

There are two basic numerical methods used for solving fluid
flow problems past blunt bodies. The first involves integrating the
time-dependent flow equations in time until little change is found in
the flow field, and the flow is presumed steady. Work of this type
for the rigid sphere has been done by Dennis and Walker [4].

In the second method, the equations of motion for steady flow
are solved directly. This method is the one used here.

The Navier-Stokes equations for three-dimensional steady

state flow are:

Ve.g*=0

(2. 1)
3,* . \73)* = - évp* +v\72g>;<

where g* is the fluid velocity. These equations can be nondimension-

alized with the velocity at infinity, S’i‘;)O = (U, 0), and a characteristic

body length (in our case, the radius of the sphere, a). These dimen-

sionless equations are:
V-g=0
- A
g-Vgs= mgraépfﬁv q
q = g*/U (2.2)
p = p*/pU”

R =2aU/v .
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For spherical coordinates, Landau and Lifshitz [11] give these

equations as:

du  2u 1

8a+a ~Fasm@ Er) (vsing) = 0

v ov ov uw 1L op, 2,52 v 2 du

a0 TV te e ne TRV YV ot ] (203)
a sin 8 a

a a a

where here u and v are the dimensionless radial and transverse
components of the velocity, respectively, and account has been
taken of the axisymmetric nature of the flow to eliminate dependence
on the other angle, ¢. Here, a is the dimensionless radial variable
and 6 is the polar angle with 6 = 0 pointing downstream into the wake.
Also, because of symmetry, only the half plane needs to be treated
(i.e., 00 < 7). (See fig. 1.)

In order to look at the far field more effectively and still

€

retain significance near the sphere, the transformation a = e is

introduced and the equations become:

gu 1

(a) BE + 2u + 56 5% (vsinB) = 0
ov av
(b} Vé‘é‘?‘h*g‘é‘?‘h‘f
o op L2zt % oy, 1 8 (sine 20). Y45 2y
= - 7 - S {81 - ey
96 R agz EI ) 90’ %0 90
ou ., du , 2
{c) Vg tuge Ty
"’g qz
:.,@B Ze augau_?_ AR
8§+ = {*——‘-—Z’f‘é—g Zu - 2cotl v~ 2861‘ (2. 4)
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We introduce a stream function ¢ and a vorticity { which are

defined by:
_ e-2§ L enZ% s
T sin® 89’ 8in® O
(2.5)
€, _ov ou
e’b =3tV -5

Then the continuity equation, (Z.4a}), is automatically satisfied by
the definition of Y. Substituting (2. 5) into (2. 4b, ¢) and eliminating

the pressure, we have:

2
{a)} 8; -g% + 5inG 886 (szie gg) + sxn8e3g§ =0

8

(2.6)
2

92 8L, o8 8%t _t 1. & 8L 8L
{b) — + coth 2 + —=2 - == Re®(u +v -ué-—vt_,cote)

pe?  OF % 592 gin% © (3

For both the rigid sphere and gas bubble, we have u= 0 on
the surface of the sphere since no fluid can enter or leave the sphere.
This implies § = constant on the sphere; we take this constant to be
zero. On the axis of symmetry, 6 =0 and 8 = 7, we have y = { =0
due to symmetry.,

For an outer boundary condition as £— 00, we use the Oseen
asymptotic expansion for the stream function and the vorticity instead
of merely the free stream conditions. We impose this boundary
condition at a finite radius from the sphere, call it gm, and require
the stream function and vorticity at goo to be equal to the value of
the asymptotic expansion there, The Oseen expansion as given by

Batchelor [2] is
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' in €
boo(E:0) =~§e2§sinze+ i—e‘gsinze -%(Hcose)u,e“tf{e (1~0088))

(2.7)

11 ‘
L (£,0) = »%e“?“g sing e ¥ Re (1-c0s0)y 4 1y £y

The only difference between the rigid sphere and the gas bub-
ble is in the second boundary condition prescribed at the surface of
the sphere. For the rigid sphere, we have the ""no slip'" condition
which says that the fluid velocity on the sphere is zero; that is, v =0

oy

and hence —«+ = 0, For the gas bubble, the no slip condition is

9% |£=0

replaced by the requirement that there be no stress on the bubble

surface. This condition is (where p is the fluid viscosity)

prg=rle S B+ B e v =oong=0. (2.8)

To summarize, the boundary conditions for the rigid sphere

are:

(a)  $(£,0) =0 on£ =0

{(b) -g%(g’e):o ongzO

{c) P(E,B8) =¢(6,0)=0 onB =0,6-=7n (2.9)
(d) WE_,0) =4 (£ ,8)

(e) 444
For the gas bubble, (2. 9b) is replaced by

(b} g{ewg%-%-gg(e"évﬂ =0 on£=0. (2.9)



.
Equations (2.6) along with boundary conditions (2. 9) constitute
an elliptic boundary value problem. We now wish to solve this prob-

lem numerically for various values of R,
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3. METHODS OF SOLUTION

Different methods of solution of (2.6, 2. 9) have been attempted
in the past for flow past spheres and (in the two-dimensional case)
cylinders. Several, such as Jenson [6] have used finite differences
and relaxation methods on the stream function and vorticity equations,
Others, for example Rimon and Cheng [16] and Dennis and Walker [4]
have obtained steady solutions by integrating the time-dependent
equations to a steady solution.

The method of series truncation applied to the stream function
has been used for the cylinder by Underwood [19], by Keller and
Nieuwstadt {9], and for the rigid sphere, by Dennis and Walker[4].
Many investigators compute, iteratively, a finite difference solution
to the vorticity equation, and then use this solution to compute a
solution to the stream function equation, etc. There are difficulties
with this due to the overspecification and underspecification of bound-
ary conditions for the equations. Our method here solves both
equations simultaneously, eliminating the boundary condition speci-
fication problem,

Our method here breaks logically into two parts. The first
part is much like the method of Dennis and Walker in representing |
the stream function and vorticity by Legendre series. Dennis and
Walker only treat the rigid sphere case and not the gas bubble; also,
we handle the boundary conditions in a much different manner. The
second part of the method is to solve the resulting infinite coupled
nonlinear system of ordinary differential equations, Here we differ

completely from Dennis and Walker since we treat the entire
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(truncated) system as a unit using H. B. Keller's centered Euler
finite difference scheme.
3.1 Series Representation

We wish now to represent the stream function and vorticity as
series each of whose terms is a product of an unknown function of the
radial variable £ and a known function of the angle 6. The known
functions of the angle 6 must vanish at @ = 0 and 0 = 7 to satisfy (2. 9c).
We choose Legendre functions for the angular functions and assume

that the stream function and vorticity may be represented as:

;gm 1
(@) $(E,8)=e2" ) £ (£) [ P_(t)at
n=1 Z
(3.1.1)
_S (1)
(b) z;(&@)-}_}1 g,(E) P, '(2)
ns

(1)

n (z) are, respectively, the Legendre

where z = cosf and Pn(’z) and P
function and first associated Legendre function of order n.
We insert (3.1.1) in the stream function equation (2. 6a) and

use standard orthogonality relationships (given in Abramowitz and

Stegun [1]) along with

1
1
.z‘r Pﬁ(%}dt = Znti gpn-

, +‘ i Z(Z} Pl’l‘i'l(Z)]
Cup {3.1.2)
(1), .22 SRt
P; )iz} = «{l-z )} dz

fo arrive at the equations:

2008 - e 1208 = ¥ Poaminig (6, n =12, (3.1.3)
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In order to determine the equations for the g, we first use

{3.1.1) in (2. 5) to get

n- n
n=1
{3.1.4)
-3/2¢ o 1
v=- S Z,I{f;@wéfn(a)}[& P_(t)dt .
n=

Calculation of the linear portion of the g, equation from the left hand

side of (2. 6b) is straightforward. Calculation of the nonlinearity from

the right hand side, however, requires use of the 3-J symbols. These

are tabulated, along with formulas for their calculation, by Rotenberg,
et al. [17]. Talman [18] gives many relations between the 3-J sym-

bols and Legendre functions, among which we needed

i

Ao (1) 3
f P, (2)P_(2)P, '(z)dz = -2[m(m+1)(2+1)]>
-1 n m (3.1.5)
m n 4 m n b
x
-1 0 1 0 0 0
ST S
where are the 3-J symbols., The resulting equa-
m, m m
1 2 3
tion for g, n = 1,2,..., is

gl (& )+g! (£)-n(n+1)g (&) =

i __ééCG ; a )
E 2% z .
sReT2E ) 21{ampgzmigng;(g»gi(g;z
B, g 8y (EVLEL ()4 %fné‘i”} (3.1.6)
3 1 n J
.o £(£+1)3(n m )( )
wreres o=@ o ) 0

e

m
o
2 < i A
L, 5 = -(2nr1) [LL 1EAZ) (n - ﬁ) (n o g)
m, nm{n+Ym+l) -1 -1 2 0 6 ©
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For boundary conditions, we simply substitute the series

{(3.1.1) into the boundary conditions (2. 9). Condition (2. 9c) is sat-

isfied automatically by the series because of (3.1.2)., The zero

streamline condition (2. 9a) is satisfied if and only if fn(O) =
n=1,2,... . For the rigid sphere, the no slip condition (2. 9b)
implies f;l(O) =0, n=1,2,... . It can be shown that the gas bubble

zero stress condition (2, 9b') is satisfied if and only if

£ ,_.:!-_ = peet
fn(O) zn(n+1)gn(0) 0, n=1,2,... .

Using the definitions of L@)OO and éoo’ (2. 7), and a bit of calculation,

it can be shown that the fn({;m) and gn(goo) must satisfy

_ 2., - 2603 2.1 1 -2
8 =120 = e e bt J o 20 L L )
p° p
ey 00y _ 45 -;;-g{z 3 2.2 1 -2p2-2p}
BB =58 =g "V 3-FTrpt -z e T -3
p p° P p
Zn+3 -t
£,06 =12 (8)= 2252 ¢ (6)rani3)mthe 30
i i ~£ 1 2€
X{ 15 %,2&e "tze )
L3P R ()t Jon- 23) \_S (p) - Bo2itlg (p)]}
R ,n jL-EJO 3.pn 23+1( ~ n- 23 P n-2j+l1
-3 5 2
gn‘{g} = gg)(g)—“z‘ ﬁ%}fﬂ §1+p)e pl X
A 2.{

(-1 20 24y (n-2j+1)(n-2j)
[Sﬁ*zj"l(p) B 2 Sn—ZjJrl(p)]

$(n-1), n odd
i o=
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p = 4Re®
P i (-p) _ P %t‘ p'
S(P):e — - e > kzoaly"'
k o g o i
. (3.1.7)
6 - 0, &k cont'd
i,k .
’ 1, i=k

To summarize, the boundary conditions for the fn and g, are,

for the rigid sphere case:

(a) fn(0)=0, n=1,2,...
(b) f;l(O):O, n=1,2,...
(3.1.8)

7 . Y . y
RC) fn(gOl)} - fn (gCO} ¥ n = 1:2’*’09

s m .
(d} gﬂ(gm} - gn {gCO) 3 n = 1925~‘* *
For the gas bubble case, (3.1.8b) is replaced by
(b") flil(O‘-%n(n+l)gn(0)=O, n=1,2,... . (3.1.8)

The equations (3.1.3), (3.1.6) along with boundary conditions

(3.1.8) form a coupled nonlinear infinite system of ocrdinary differen-

tial equations to be solved for the fnig} and griﬁ)g Once this system

18 8

olved, the flow field is known since the stream function and vor-

ticity can be reconstructed from the {(assumed convergent) series

expansions (3. 1.1}
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From the solution of this system, we can also calculate the
velocity from (3. 1. 4) and various physical parameters such as the
drag coefficient and pressure coefficient., The drag coefficient is

defined by

D 5
s e . .1ﬁ
) z 7 (3.1.9)
mpU a

where p is the (constant) fluid density and D is the drag on the sphere.
Milne-Thompson [14] gives the force on the sphere as

D==- [p*nds-p [ n x g*dS - p [ g (n - g*)ds (3,1.10)

S S 5

where p*, [ *, g* are the dimensional pressure, vorticity, and
velocity; the integration is performed over any sphere enclosing
the rigid sphere or gas bubble, and n is the outward unit normal
vector, Evaluating this at the sphere £ = constant, we calculate the

drag coefficient (in terms of dimensionless quantities) as
T T
Cp = _e%6 [f p(E, 8)sin 20d0 + = [ L(£,0)sin"0de
0 R
T 4
-2 [ uv sin®edo + [ u? sin zede] ) (3.1.11)
0 0
In order to compute CD in terms of the fn(g) and gﬁ(g), we use the

expansions (3.1.1), (3.1.4), Legendre function identities, the Navier-

Stokes equations, and the following addition formula [18]:

({+m)! (" +m' ) 2
(I-m) (' -m')!

! R L L)(£ £ L) (L_M)!§ (M)
%izmz)(m m' -M/\o 0 o [(L+M)'] Pp, (cos)

(3.1.12)

P;m}(cese)P;rgngj(cose) = {—E)M [
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where M = m+m' and the sum is over all L for which the 3-J symbols

are nonzero, This lengthy calculation gives

o0
Cpi€) = -e°5. [—5%<g}<a>+gg<g>>+4e‘3i§2 b1 (B (8 e
3§CO 1 1 n+l o/l ntl
e n2;£§5§>+%fa<§ﬂ U£+ﬂ§)+?fn+1(gﬁ uynjuun+2)ﬁ(o -1 1)(0 0 0)

_igoo n+l n 1 n+l n 1
t2\Z2 e 2 nz:lgn(g)\/n(n+l) [fn+1(§) ( ) ( )

0 1 -1 o 0 o0
n-1 n 1 n-1 n 1
08 ) )]
n-1 o 1 -1 o 0 o0
*%%’gﬁg) (3.1.13)
-3t R 1 [, 1 . 1
+Ze él fn(g) n+% [fn‘i‘}.(g) 2n+3 - fn-l(g) 21’1-—1] e

On the rigid sphere surface making use of the boundary conditions

(3.1.8), this reduces to
CH(0) = 2= [g,(0) - g (0)] | (3.1.14)
D 3R 1 1 : c e
For the gas bubble, we have
ol A 8 [ H
MD(O; = 3R Egl(o} - g}(ﬁfl
1 n+l n 1 nt+l =n
1
- ), €,(0)g, 1 (0)(ntl) \B(n+2) :
n=i o -1 i/ \¢ 0 "y

(3.1,14%)

~18

We define a pressure coefficient, k(8), as follows:
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k(9)

I
o

0., |
-2 M{ 46 + k() (3.1.15)
T i

il
N
Sy
[0
Py
e
fei)
pov—

where k{r)

Then, we have for both the gas bubble and the rigid sphere,

w £ 1 Eoo
k(r) =1 - % ), natl) [ g, (£)dE + OReTZRE T foo)

n=l 0

(3, 1.16)
For the rigid sphere

4 ] n

iqe;==k(w>+§iéJl[gnun-%gnun}[115cose»4~1> ], (3.1.17)
n=

and for the gas sphere,

k() = k() + g} (0) + g (0)] [P_(cos6)-(-1)"] - +5%(0,0) .

1

ol
B8

(3.1.17")

The problem is now reduced to solving the system (3. 1. 3,
3.1.6) and boundary conditions (3.1.8). The first step is
to truncate the infinite series to reduce the system to a finite system,
But solving even this reduced system is far from simple. Dennis
and Walker use a finite difference method to solve the g, equation
and a shooting method to solve the fn equation and alternate between
these two to couple the system. They are also forced to use a relax-
ation parameter which decreases as the Reynolds number increases,

thereby entailing more and more iterations as R — co.
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Our method, as described in the next section, seems much
more efficient, as well as appearing capable of going to much higher
Reynolds numbers,

3.2 Numerical Solution

The infinite system given by (3.1.3), (3.1.6), (3.1.8) is made

finite by truncating the stream function and vorticity series (3.1.1)

at N. This is equivalent to taking
£(£) =g (£)=0, n>N. (3.2.1)
The problem is then reduced to the finite system:

(@) - (n+ 142 £ - eS/Zgn(nH)gn -0

b) Py ot +1) = iR -%§§ %L n f [ 1
( g, t 8y - nlntllg, =3Re L 1%m, i'm gi-gi]
m=] i=1
N ,
" B s Gl * 0 g0 6]
(c) £(0)=0
(3.2.2)

(d) f;i(O) =0 (rigid sphere)
(d") £ (0) - 3 n(n+l)g (0) = 0 (gas bubble)
4 L SG %
(e} fﬁ(gwi = fn ({;OD)

4 — 00! 5 . T
{f} gnﬂgm}“gn \gm} ﬂ“‘lszaé"‘;l\‘*

We now rewrite the problem (3.2.2) as a first order system

iy

by defining
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-

, Ee[0,€ ]

Then the differential equations (3. 2. 2a,b) become

N
&

1) = :

1,2 5/2&
(n+3) £n+e g,

’ i
. 1n.26 E n
vn+n(n+1 )gn+2Re Y i (a__, Vi f

m, i=l

m

. g;)

(3.2.3)

N rows

N rows

(3.2.4)

o

I .1
1402 g lu + 36 ] L geloE ] .
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Breaking this system into its linear and nonlinear parts, we

can rewrite it as

7@ =ac) ZeNed

- (3/2)'2 85/2;2 o
Agy= | 0 0 . "
(N+1)? 325N (N+1)
2
O "I 0 ’ %
N(N+1)
I 0 0 0
0 I 0 0
(3.2.5)
1. NN - -
N(&Z}E%Re_zg E 0 N rows
m=1 i=l n
ym,i N rows
0 N rows
.0 J N rows

Here the I's are N x N identity matrices,
The boundary conditions are linear and of the separated end-

point type. Hence, for the rigid sphere case, they may be represented

by:
(a)  B_Z(0)=0,B,.J(E =T
(b} B = 10 0 I 0 N rows

I 0 0 0 N rows (3.2.6)



(c) Bl = 0 0 I 0
0 0 0 I
GO
(d) £7(8_ )
R (3.2.6)
: cont'd
- 69]
g) (E)
gy (o)
For the gas bubble, Bo is replaced by
®) B = |o0 0 I 0 i
-1 B (3.2.6)
I 0 0 TIN(N+D)

Equation (3. 2. 5) and boundary conditions (3.2, 6) form a 4N component
first order nonlinear system of ordinary differential equations with
two-point linear separated end conditions.

To solve this system numerically, we use the centered Fuler
finite difference scheme proposed and analyzed by H. B. Keller [7].
Keller shows that this scheme has O(hz) truncation error where h is
the mesh spacing. He also shows that under certain conditions the
error in the computed solution has a certain asymptotic form and
that Richardson extrapolation may be used to increase the order of

accuracy. Keller outlines the use of Newton's method for solving the
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nonlinear equations and gives sufficient conditions for it to converge
guadratically. Finally, he discusses LU decompositions for the solu-
tion of the Newton iterates. We will follow basically this same plan
of attack in solving the system (3.2.5), (3.2.6).

We first define a uniform mesh on the interval [0, goo} as

follows

S N N Ry

Then the centered Euler scheme for (3.2.5), (3.2.6) is the difference

equations
7. «;% 7.+ 1.+ 7.
-1 LT ; -1
25l Cage, ) LN, ,, S0
J-z 2 ~ Tl-2 -
€. 1=¢& -h/2 j=l2,..0,0 . (3.2.7)
3=z J
BO?ZO:(QJ ? Blzjzg ?
ul,_]
where Zj = . is to be the computed approximation to Z(&J.) .
uN,j
v, .
1,3
Easr -
LN

We now define a "maxi-vector" of 4N{J+1) components by
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Lk
i

and write (3.2.7) as a maxi-vector system:

(3.2.8)

B(E) = .h it |
Zj Zj-l B ZA(ﬁj_y(Zj*”Zj_;>-hﬂ<€j_%, 2 )| =9 .
B, 7.-T
R A B

(3.2.8) is a nonlinear algebraic system for EF. We wish to

solve this problem using Newton's method. To formulate Newton's

method, assume E(v} is an approximation to F*, the desired root of

{3.2.8), and define

g(v+1):g(v}+éN(V} } (3.2.9)
Then we want
s(E" oo
, . oF
hence, ®(F")+55)) = g(r™)+ 5 My er i =0

0P

where ?ﬁ‘ is the Jacobian matrix of $ with respect to F. Linearizing,

we can determine é&g(v} from the equation

¢

=t
N

TR NS 5 L) (3.2.10)
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0)

Thus, with an appropriate selection of an initial guess g( , We can
determine successively closer iterates E(v) to E*" We stop the
process when we are as close as desired as determined by a preset
error criterion,

For our problem (3. 2. 8), then, all we need do is calculate
¢
Yl (F) and specify the method of solving the linear system (3.2.10).

o~

We can calculate the Jacobian of @ by blocks; that is,

9% 5% .
o () = e (i block row, ;2 block column).

Using (3.2.5), this calculation yields

2% B B
_— = o
5F
3 -L, R, 0
-L R
2 2. (3.2.11)
0 -L R;
a/V 7+7. }
Lo=I1+2a )+2 Z (e ,, 2201 4Nx4N matrices)
j 2 j-z7 2 QZ i-3 2
o/ Z.+ .
R, =1- %A{& i) - h (€. 1, ———}———l:i), {4Nx4N matrices)
j 27 7"%-30 2 87 Iz 2 ~

— (&, F) = [ o 0 0 o |

J o J j
8ym, i:} "8/m, i] [%m, i} [Bym’ i}
8uk SVk afk 08

G G 0 0

G G 0 0
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where
o) h th
m,i j .t
m—é{g{—- = {3”;_1,1 g; 6m,k (j=~ row, k— column)
J
omyi ]
v, “%m,im %,k
oyl ‘ .
m, 1 J R
Tof {O’m,i{vi"gi] 2P, gi}6m,k (3.2.12)
oyl
m, 1 J J 1
88y - {_ nmi,i m Bm,i [um 2 fm} } 61,k

Equations (3.2.10) and (3. 2.11) define a linear system to be
solved for each successive Newton iterate. In order to solve this
system, we note that (3.2.11) can be looked upon as a block tridiagonal

matrix of 4N x 4N blocks grouped as follows:

8@ - i N
— = BO § i
¢ i
B | :
{
SRS SR S - PR 0
1 i { .
i H {
¢ { {
- e e e b - 2..-:-.,R.,2,.-g..
£ i
‘ A (3.2.13)
- Iy
i P e «
L el AR 5
! ! ; ! 1
: ¢ )
i i i - ) R
! o Zge e e R
v g X J
o X :
’ i
2 { B
{ i 1
Comzt; ; § N
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In more standard tridiagonal notation,

I
8}3: B2 AZ - C2 ‘ 0
c- ) (3.2.14)
B A. C
J ) J
0 E
B5+1 AJ+1
- -
or written in a shorthand notation
o2
= |{B.,A., C. . 3.2.15)
= (B a5 )] (

Note that the upper half (i.e., the first 2N rows) of each Cj and the
lower half (i. e., the last 2N rows) of each ZESj are all zeros; this will
become important in determining the easiest and most efficient
scheme for solving the linear system. The specific elements of

the block matrices Bj’ Aj’ and Cj are given in Appendix A.

Keller [7] examines direct factorization methods for linear

systems of the form

;45(;./{ (3.2.16)

a4

where A is the block tridiagonal matrix (3. 2. 14} and

M

), AT

£ 1rocee s Xy O (gl,.e.,rgj.ﬂ)e {(3.2.17)

We briefly summarize that work here, and then go further.

We seek factorizations of the form

A=LU,L E[ﬁ;,éj,OE,UE [0,a07,] , 1 sj<+l (3.2.18)
P
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{in our previous shorthand notation where ﬁj’ 6j’ aj,yj are 4N-‘E—}}-
order matrices) so that [ and [/ are block lower and upper triangu-

lar, respectively. Solving (3.2.16) is equivalent to solving the two

systems

LYy=R . UX=Y . (3.2.19)

ot

Then, merely carrying out the multiplication of LU gives the fol-

lowing recursion relations for the {3}., 63., a., V.

it
610,1 =AI
i T (3.2.20)
4. . =B, . 2<i< T+l
Piaj1 = B .
§.a. = A.-B. 7. , 2<j<J+1
i% = A7P % J

The solution of (3. 2.19) is then obtained by solving the 4Ni—t-—}-1- order

systems

01417 &) 418541 T ga (3.2.21)

8.7, =r.-P.y. 1, 2S5 < T+l ax.=y.-yx. . Tz 1
i T E P PRI Ry Y% ]

Keller distinguishes four common choices of the §. and % as follows:

T *:
. . = . 0 - ey
case i} &, =1 case iii) §, =|— ,a; = —_
J J = 4 o =
DU ¥ - %

% - T
—% o r———
case ii} a. = I case iv) §, = |/ o , 6. = /=
J J - J =
T R " '

(3.2.22)
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Operational counts for our problem using these methods are (to lead-

ing orders):

case i) J(g—gﬁ- N3 + 32 NZ - :;L-N)
case ii) J(——Z—g—q N3 + 441\12 - —?- Nj (3.2.23)

182 NPz n? - S

cases iii) and iv) J(——T 3

It is especially important to notice here that the work involved
in solving for one Newton iterate increases with the cube of the num-
ber of series terms, N, and only linearly with the number of mesh
intervals J. Hence, doubling the number of terms taken in the Legen-
dre series involves eight times the computing time per Newton
iterate,

In performing the actual computations, we began by using
case (i) of (3. 2. 22) in order to ease the coding difficulty (since some
subroutines needed for this method had been previously written for
other calculations). Although good results were obtained for the
lower Reynolds number (R< 10), poor convergence and even divergence
was obtained for Newton's method at higher Reynolds numbers. Be-
lieving this to be a problem of ill-conditioning and accumulation of
round-off error when computing (3. 2.20) and (3. 2.21), we tried
iterative improvement techniques to refine our solution. This gave
improved results at first, but as R and N were increased, the conver-
gence of Newton's method became very bad once again. Convinced
that Newton's method should be converging and that the problem was

in the solution of the linear system (3.2.10), we tried a new factori-
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zation scheme which worked quite well,

This new factorization was suggested by the ""parallel shooting"
method proposed by Keller [8] for numerically solving systems of
ordinary differential equations with multi-point boundary conditions.
The parallel shooting method is used when accumulation of truncation
error in using a regular shooting method leads to too inaccurate a
solution., The method splits the interval of integration into several
subintervals and performs the integration over each subinterval,

The solutions over the subintervals are patched together using appro-
priate continuity requirements. This results in an exponential
decrease in truncation error accumulation. We use an analogous
""parallel shooting' factorization in solving (3. 2. 10) to reduce the
propagation of round-off error through the recursions (3. 2. 20),
(3.2.21).

In this factorization, we consider methods which basically
partition the block tridiagonal matrix (3. 2. 14) into two parts which
are then factored into LU and UL decompositions. The factorization

proceeds as follows, for some fixed k:

@, 7 7 .
6o te. a0
A= b T
fsk e o [+ J;‘ ?:‘
Jl’al ?:n ﬁw; “M% 0
Lo, Boueg Doz
%
o ‘{’:‘i - Bra "‘3‘5.

(3.2.24)
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This factorization gives rise to the following recursion relations for

the a., B., 6., V.:
J ﬁJ

i
alél = Al
%
v. = C.
%% 7%
Pis1%5 = By Y i=1,2,0.0,k-1
4418541 = AP Y
S 141%5+1 T B (3.2.25)
- 3
Yiois1 = C;
6j+lﬁj+1 sz+1 > j=73,J-1,...,k+l
S.a. = A.-v.B.
N J YJﬁJ*‘l
J
Qk'yk = Ck
Oy 41Prr1 = Brys

As in the other direct factorizations, solving the system (3.2.16) is
equivalent to solving the two systems (3.2.19). For the current fac-

torization (3. 2. 24}, the recursion relations for the X and y. are

©¥; =4, Sr1lr+15E 10
Sy TR Py I E B i 8= Ly 3R I e KA

(3.2.26)
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O Xk T ik T Xk

(3.2.27)
P12k 0415 k41 = Lkt 1
051251 TXj7Ygay o I Ek kel 2

(3.2.28)

aj'%‘l"%j'f‘j_ :’X‘j”’*‘l‘ﬁj‘}’};\%j g }:k+}-,k+2,aga,J ®

Using the above relations, we solve the linear system in an
"inward sweep, ' "link, ' and an ""outward sweep."” We first solve
equations (3. 2. 25) for the aj’ 6;’ @j’ \‘/j and at the same time solve
equations (3. 2, 26) for the Z'j as j goes toward k from ! and J+1. This
constitutes the "inward sweep.' Next we solve equations (3.2.27) for
%) and Xpalr This is the "link' between the two halves of the par-
titioning of A. Then using these values of 3N and Xy to start, we
perform the "outward sweep," solving equations (3. 2.28) for the rest
of the 553'

The specific choice of as, 6_} we have used for computing has

been

oy =L j=1,..c0k b =L j=ktl,..., T4, (3.2.29)

This "parallel shooting' decomposition has proven much more
stable for appropriate values of k than the scheme (3. 2.18) in terms
of propagation of round-off error through the sweeps. That is, it
gets much more accurate solutions to cur linear system than did the
other schemes. In general, for our system (3. 2.10), the greatest

accuracy was obtained for k approximately equal to J/2; for k near
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J+1, the accuracy was degraded substantially., {(Note that for k = J+1,
the parallel shooting decomposition becomes the same as the straight
LU decomposition (3.2.18).)

Having solved the linear system (3.2.10) for @F(v), we gen-
erate EWH) from (3. 2.9) and we have a new Newton iterate, We
continue generating Newton iterates until some error criterion is met.
This error criterion and other sources of error are discussed in the
next section,

3.3 Error Analysis

To estimate how close the last Newton iterate is to the exact
solution, we observe that there are five sources of error:

(1) Newton's method error (in a finite number of iterations),

(2) Truncation error in the finite difference discretization,

(3) Series truncation error,

(4) Error from the outer boundary conditions,

(5) Accumulation of round-off error.

Of these, the first two can be analyzed theoretically and computation-
ally, and the last three less thoroughly., We will discuss each one
separately. |

Keller {7] shows that under certain conditions (involving iso-
latedness of the solution to (3. 2.5), (3.2.6) and closeness of the initial
approximation of (3. 2. 7)) that Newton's method converges quadrati-
cally. By guadratic convergence, we mean that the error g{v} between

th . {3 R
the v— Newton iterate Ew} and the actual root F* of (3.2, 8) satisfies

e 2
e <k ™). (3.3.1)
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In solving (3. 2. 8) by Newton's method, we observed the Newton cor-
v)

rections, 6F' ’, and observed '"quadratic convergence' in the sense:
~~t

2
1oz 1 < x| o5 (3.3.2)

~ :

This can be shown to be equivalent to (3, 3.1). Another measure of
the convergence is in the change of various physical parameters,
especially the drag coefficient (CD), as calculated from successive
Newton iterates. The drag coefficient as given by (3. 1. 14) can be
calculated at each Newton iterate; we call it C(v) for the v—t—b— Newton

D

iterate. Then if

v} _ ~(v) (v-1) , -
6CD —CD -CD , v=1,2,... (3.3.3)
we observed that
M) <k lsc-D) .y
lsch | <k [6Cy | (3. 3. 4)

both for the rigid sphere and the gas bubble for all Reynolds numbers.
Table 1 shows these observations for various Reynolds numbers.

The generation of Newton iterates is normally terminated when

-3

1sc | < 10 (3.3.5)

D

(sometimes the iterates were terminated before or, more frequently,
after this criterion has been met, but all results for which physical
or theoretical results are cited satisfy at least (3. 3.5)).

When computations were made for Reynolds number 40, we
found that Newton's method would not converge quadratically after

two iterations as was the usual case. Upon increasing the number
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of net points, J, from 30 to 60, however, Newton's method converged
quadratically once more, The mechanism behind this behavior is not
definitely understood, but the behavior was also observed by Keller
and Nieuwstadt [9]. In this connection, it should be recalled that
the theoretical quadratic convergence proof for Newton's method in
Keller | 7] required that the net spacing be sufficiently small, We
expect finer nets to be required for the same accuracy as R increases
(since the solutions change faster near the body), and it may be this
effect that is observed here.

The second source of error is the truncation error involved
in the approximation of the differential equation (3. 2.5) by the box
scheme discretization (3.2.7), Keller [7] shows that if N(&,z) and

2(&) are sufficiently smooth, then
R op 2 2m+2
Z(éj)—jj 221(7) &, (&) + Olh ), 0<j<T . (3.3.6)
V=

Knowing this, Richardson extrapolation can be used to improve the

accuracy by constructing

4723,2‘23',1
3

8|

(“éj) = (3.3.7)

&

Comt

where i1 is the approximation to 2(53.) computed from (3. 3.7}

using mesh spacing h, and -Zj o is the approximation to 2(&.} using
) J
mesh spacing h/2. Then from (3. 3. 6} we have

—

jgg}.} -4.= om?) .

ot

H

A=

One measure of the accuracy of a solution to (3, 3. 7) is ob-

tained by computing the drag coefficient CE(?},) from (3.1.13) at
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different values of £&. The more accurate the solution, the more
nearly constant Cy(£) should be. Keller and Takami [10] use this
as a measurement of the accuracy of their solutions for the cylinder
problem. More recently, Keller and Nieuwstadt [9] showed that
the constancy of CD(g) improved remarkably with the application of
Richardson extrapolation.

In our solutions we observed the same improvement in the
constancy of cD(g). For example, as shown in Table 2, for Reynolds
number 0.5 and J = 31 and goo = 4,9, the calculated value of CD(E)
for the gas bubble dropped 12.3% from § = 0 to § = €., however,
using Richardson extrapolation, the corresponding change was only
.27%. Similar improvement was noted for other Reynolds numbers.
Although (due to the presence of other errors) this does not prove
the validity of the extrapolation procedure for our problem, it does
demonstrate a dramatic improvement in the computed solution.

The third source of error is that stemming from the replace-
ment of the infinite series for ¢ and ¢ (3.1.1) by the finite series of
N terms each. This error is much more difficult to treat than the
two previously discussed errors because there is no expression for
the remainder of the series. Since we cannot treat this error theo-
retically, we try to estimate the number of terms necessary fér the
desired accuracy empirically, We compute the solution for succes-
sively larger values oi N until the solution is as accurate as is
consistent with the computing budget. This same practice has been
used by Keller and Nieuwstadt [9), Dennis and Walker [3], and

others. In fact, our experiments with various numbers of terms led
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us to agree with the final choices of N made by Dennis and Walker.
Table 3 shows the effects on CD(O) of changing N for several Reynolds
numbers., Figure 2 shows the effect of varying N on {(0,6) for R =5
for the rigid sphere.

One interesting observation is that the fn and g, are so small
for n greater than about four that these terms are negligible in sum-
ming the series for CD. One might think, then, that in solving
{3.2.2) a smaller value of N could be used. However, inclusion of
these higher terms changes the values of the first few fn and g, sub-
stantially, which in turn changes the calculated value of CD’

Tirle error introduced by imposing an outer boundary at a finite
distance from the sphere with asymptotic boundary conditions is also
difficult to treat theoretically. Again we relied on an empirical
evaluation of the appropriate distance and boundary conditions. We
tried only two values of f;w, §00 = 7 and goo = 4.,9. The former is the
distance used by Keller and Nieuwstadt and the latter is used by
Dennis and Walker. For R =0.1, £

€

the greater value of gw is most likely the more accurate, and since

o = T gave CD(O) = 121.1 while

o = 4,9 gave CD(O) = 118.1, both being computed with J = 31. Since

the difference was substantial, we chose gw = 4,9, Note that §m: '
corresponds to the outer boundary's being taken at 23, 14 body radii
while ?},m = 4.9 corresponds tc 134, 2 body radii or more than five
times as far away.

As mentioned before, the conditions to be met by ¥ and £ on
the outer boundary were the Oseen conditions given by Batchelor [2].

It was virtualiy no more expensive to use this condition than the free
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stream condition. However after much computation using the Oseen
conditions, a test was made to see how a solution computed using the
free stream condition would differ, For R =5, J = 31, éco =4,9,

C~(0) was 2,09575 for the Oseen solution and 2, 09581 for the free

b
stream solution, a difference of only 0.6 x 10"4, or less than the

Newton iteration error. Also, the gn(gm) were typically on the order

£ (6§ )

of 10-6 and the —f}i('gggf , n>1 were on the order of 10“4‘ Changes

of this magnitude lcargflot influence the solution substantially and so,
perhaps, the free stream conditions might have been used, but were
not.

Accumulation of round-off, the last source of error, is de-
pendent upon the computer used to calculate the solutions. Our
calculations were performed on an IBM 370/155 which carries about
seven significant digits in single precision, At about R = 10 and
N = 14, we encountered a failure of Newton's method to converge
using the standard decomposition schemes (3.2.18) to solve the linear
systems. Residual correction methods as discussed in Isaacson and
Keller [5] were applied to reduce the round-off error to the point
where Newton's method would converge. While this worked satis-
factorily for the rigid sphere solutions, it did not work for the gas
bubble. When the parallel shooting decomposition (3. 2. 24) was tried,
the results improved dramatically., Once again, Newton's method
was seen to converge quadratically., No residual correction procedure
was necessary for accurate solution of the linear systems when using

the parallel shooting decomposition. Although round-off accumulation
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(greatly aggravated by the ill-conditioned nature of the linear system)
was a serious problem, it is believed that it is no longer a threat to

the accuracy of the solutions obtained.
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4. RESULTS AND ASSESSMENT

In this chapter we present and discuss the results and conclu-
sions gained from our solution of the Navier-Stokes equations. We
compare our results with theoretical and experimental results and
the numerical results of others.

The following is a list of the Reynolds numbers for which
solutions were computed, along with the largest used values of N and
J, whether Richardson extrapolation was done and whether computa-

tions were performed for the rigid sphere, gas bubble or both:

R N J Richardson Rigid/Gas
0.1 6 60 yes both
0.5 6 60 yes both
1 6 60 yes both
5 6 60 yes gas
5 14 60 yes rigid
10 16 30 no both
20 20 30 no gas
40 20 60 yes gas
60 20 90¢ ves gas (4.1)

Cur computations for flow past a rigid sphere were largely
in preparation for the work on the gas bubble. ’Because of this we
only computed solutions for Reynolds numbers 0.1, 0.5, 1, 5, and
10 and went no higher. Our main purpose was to test out the numeri-
cal method and the computer code, Nevertheless, we did check our

computations with the results of Dennis and Walker. We found very
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close agreement with them on drag coefficients and pressure coeffi-
cients and vorticity values. The following table shows our values
and those of Dennis and Walker for the drag coefficient CD and the
pressure coefficient at § = 0 and 6 = 7, as well as the drag coefficients

calculated by Le Clair, et al. [12].

Present Dennis & Walker Le Clair et al, Present Present
R CD(O) CD CD k(0) k()
0.1 122.10 122.10 122.04 -60. 07 62.03
0.5 25,74 25,85 - -12.03 13.84
1.0 13.72 13,72 13.66 -5.889% 7, 366%
5.0 3.594 3.605 3.515 -1.243 2. 546
10.0 2. 074% 2,212 2.144 -, 6627% 1,726%
*computed without Richardson extrapolation, (4. 2)

Dennis and Walker computed solutions for Reynolds numbers
as high as 40 and extrapolated the onset of separated flow behind the
sphere at Reynolds number 20, 5. Since our calculations did not
extend that far, we were unable to observe separated flow., Figures
3 and 4 show streamline and equivorticity line plots computed for
Reynolds number 10, Figure 5 shows the development of vorticity at
the sphere surface with Reynolds nun&ben Figure 6 shows the devel-
opment of pressure at the sphere surface with increasing Reynolds
number.

Dennis and Walker stated that Reynolds number 40 was ap-
proximately the upper limit of their numerical treatment since as
Reynolds number, R, and the number of series terms, N, increased,

the relaxation parameter they are forced to use becomes so small
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that their convergence criteria become meaningless., Also as this
relaxation parameter becomes small, the number of iterations and
hence the amount of computation become forbiddingly large.

Since we have consistently observed the quadratic convergence
of Newton's method even for large R and N, we feel confident that
our numerical method is not only more efficient than theirs, but also
capable of going tc much higher Reynolds numbers. In fact as we
have mentioned and will discuss further, we carried our calculations
to Reynolds number 60 for the gas bubble with no weakening of the
method, Keller and Nieuwstadt [9] used the same type of numerical
technique on the cylinder with up to 30 terms in the (Fourier) series
with few difficulties., They were thus solving 120-component systems.
Hence, we believe our method valid for Reynolds numbers of 100 or
greater and 30 or more terms in the series.

Our main interest is in the calculation of solutions of fluid
flow past a spherical gas bubble. To our knowledge calculations for
this problem have never been performed before by any method. This
problem does not lend itself easily to solution by methods like those
of Dennis and Walker which iterate between solving first an equation
for the vorticity, then the equation for the stream function, etc,

This is because the no-stress boundary condition at the bubble surface
(2. 8) ties the stream function and the vorticity together there as is
seen by the expression for the f; and g, in (3.1.8b'). Our method

can treat this problem just as naturally as the rigid sphere problem
because of the ease with which it handles very general boundary con-

ditions.
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We now compare the results gained from our numerical cal-
culations with the theoretical results of Levich [13] and Moore [15]
for high Reynolds number and the standard results for low Reynolds
number cited by Batchelor {2]. We will also mention briefly exper-
imental results cited by Levich and their disagreement with both
theory and our numerical results.

Batchelor derives an asymptotic formula for the drag coeffi-

cient at low Reynolds number:
(4. 3)

This value is exactly 2/3 the value for a rigid sphere. Our calcula-
tions agree with this formula very well for R < 0.1. The table below
shows, for each Reynolds number, the theoretical value of CD, our
calculated value, and the difference as a percentage of the theoretical

value.

R s Pg; (sg)nt % diff.

0.1 80 80, 83 1.04

0.5 16 16.85 5.31  (4.4)
1.0 8 8. 795 9.95

5. 0 1.6 2.184 36, 3

Thus we see that (4. 3) is not very accurate for R = 0. 5,
The theory for high Reynolds number flow past a bubble is
more interesting and has received more attention than low Reynolds

number flow. Batchelor [2] derives the first asymptotic term for
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the drag coefficient for high Reynolds number flow from the rate of

energy dissipation in an irrotational flow and calculates this value as

C. = =2 . (4. 5)

(Batchelor, Moore, and Levich all define C_ to be ——-—D—Z——Z- in

D tmpU-a
2
contrast to our definition (CD = ——D—Z—z ); hence, they actually give
) mpU a
D= fi—?— .) Moore [15] goes further and calculates the energy dis-

sipation rate in the boundary layer at the bubble and in the wake and

C

arrives at the next term in the expansion for C

p» giving
o, = 2 (1 | INZ(OE45NZ-14) O(R-5/6)> 4. 6)
5\7 Rz
or evaluating the constant involved,
c. = 24 _2.2107 + O(R-S/é) (4. 7)
D R REI

Our calculations bear out Moore's theoretical result very well. The
table below shows, for each Reynolds number, our calculated value
of CD’ Moore's value computed from (4. 7), the value given by the
first term in the expansion (4.5), and the difference between our

value and Moore's value as a percentage of the latter.

Present Moore - 24 .
R Cp(0) Cp T % diff.
10 1.175 . 1222 2.4 62.7
20 .6810 . 6068 1.2 12,2
40 . 4156 . 3903 .6 6.47
60 . 3001 . 2858 .4 5.00

(4.8)
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If we assume, as Moore shows, that the next term in the expansion

is O(R—5/6), and write

24 1 5/6

- T _ -2 =
Cp = % (1-2.2107R72 + cR ) (4. 9)

we may use our calculated results from (4. 8) to determine possible

values of c. Then for R = 40, we calculate c to be 0, 9167 and for

R = 60, we calculate ¢ to be 1,016, Thus c would appear to be roughly

1, lending further support to the orde;' of the third term R-5/6.
Another physical parameter of interest in studying flow past

drops and bubbles is the velocity of rise of a bubble of a certain

size. Levich derives the terminal rate of rise for gas bubbles

through a liquid in the presence of gravity by equating the drag on

the bubble to the buoyant force acting on the bubble:

2 2 4 3
CD'/er a’ = zwpa’g . (4.10)

where g is the acceleration of gravity.

Levich uses the first term in the expansion so that

C = e— = , ’ (4011)

giving for the terminal velocity

Iaz
U=g5 52 . (4.12)

If Moore's results had been available at the time, Levich could have

used the more accurate expansion (4, 6) for C., and computed

D
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2
1l a k 4a.
Usg5E e Vza\/ ty e (4. 13)
where
K = \/_6\/——+5"/7‘14)_22107... i
5NT .

In determining terminal velocity, U, as a function of bubble radius,
a, from our numerical solutions, we are faced with only knowing the
drag for certain Reynolds numbers. Hence, for a given Reynolds

number and drag coefficient, U and a must satisfy

2Ua
v

= R (4. 14)

and the terminal velocity condition (4.10). These two equations

determine U and a in terms of R, C g, and v. The solution is

D’
1 g
16Rgv]
U = z[ 3 (4.15)
3CDv2R2 ‘
a = ——_T?)—g- (4. 16)

Thus, we can, for any fluid whose kinematic viscosity v is known,
compute the radius and rise velocity for given R and CD. Figure 7
shows the terminal velocity for various radii bubbles rising through
pure water at 20°C. It also plots the values given by Levich's theory
(4. 12) and the modified theory (4.13). Finally, figure 7 shows the
same curve when using the low Reynolds number value for CD (4. 5)

which gives

U=%?‘——3 . (4.17)
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Levich cites experimental results in support of his theoretical
results, but finds large discrepancies between the work of most ex-
perimentalists and his theory. He is forced to consider (as are we
since our results agree closely with his) the reasons for this dis-
crepancy. There are two possible reasons: either the bubble is not
spherical or the fluid is not pure. Although at higher Reynolds num-
bers the bubble does deform from the spherical, Levich shows that
there is no significant deformation until the Reynolds number is
greater than about 1600. Since we are dealing with much lower Reyn-
olds numbers, this possibility cannot be regarded as the real reason
for the discrepancy. Levich goes on to show that the presence of
even a small amount of surface contaminants (or surfactants) can,
through the attachment of large molecules to the surface of the bubble,
cause the bubble to act as though it were a rigid sphere. Levich also
cites experiments conducted by Gorodetskaya with doubly distilled
water which agree alosely with his theory.

Moore and Levich both agree that any separation of the wake
behind the bubble is slight. Levich states that, for example, the
separation zone extends only 2° on either side of the line of symmetry
behind the bubble at R = 1250! This coincides with our observed lack
of separation for R < 60,

Figure 8 shows the vorticity on the bubble surface with in-
creasing Reynolds number. Figure 9 shows the same kind of plot
for the pressure coefficient k(@). Figures 10 and 11 show streamline

and equi-vorticity line plots for R = 60.
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Our computations were perfo‘rmed on an IBM 370/155. Single
precision arithmetic (of about seven decimal digits accuracy) was
used, except for certain minor calculations (such as computation of
3-J symbols)., Since the number of terms N necessary increases
with Reynolds number as does the number of mesh intervals J, the
amount of computation increases with Reynolds number. The time

required for one Newton iterate increases as

t .o N3 . (4.18)

As an example, the actual computation time for several values of N

and J is given below.

N J tc (in secs.)
6 30 22. 4
6 60 47,7
10 30 103
20 30 - 1100
20 60 2100 . (4.19)

The chief advantages of the method of series truncation are
due to the problem's being reduced to the solution of ordinary rather
than partial differential equations. This eliminates differencing in
the © direction and thus avoids two difficulties - that of using very
small 6 steps in the wake, and that of mushrooming core requirements
as goo is increased.

The main disadvantage of the series truncation concept is that

it uses series of analytic functions to approximate the vorticity which
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behaves non-analytically as R—~o. This necessitates the use of
greater and greater numbers of series terms which then greatly in-
creases the amount of computation required by (4. 18).

For the future we would propose dividing the flow region
angularly into sectors and approximating the stream function and
vorticity by, say, cubic polynomials in § whose coefficients are
functions of £, Continuity requirements across sector boundaries
would reduce the number of unknowns considerably. The resulting
problem would be a system of ordinary differential equations in §.
The advantage of this type of method is that the sector containing
the wake could be made smaller as Reynolds number increased to
more closely approximate the important part of the vorticity.

In conclusion, we believe that the method of series trun-
cation coupled with the centered Euler scheme, Newton's method,
and the parallel shooting factorization of the block tridiagonal system
is an accurate, efficient method for sblving fluid flow problems in

separable regions.
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APPENDIX A

Thé elements of the Aj’ Bj’ and Cj as given by (3. 2. 14) are

given below. The symbol x is symbolic for h/2 times some nonzero

~

.+ 7.
element of the Jacobian matrix —— (§. —'1——2—1——1), the actual value

82 J—%,
being obvious during the programming.
[0 0 I 0 7
A = ‘
1 a
L. o
I 0 0 0
N
G 2B
. 0 . 0
-1 0 o . o .
(N2 B —N(N+1)—1%e5/2g%
-X .- =X -1+-}2}--—x -X ... =X -’2h-x
. ; 2
. =X : : T, -x
- A . .
h X
-X - =X -1+-2-—X -X ---X -N(N+1)%-x ]
[ n Y
-51 0 I 0
A =
+1
J 0 by 0 0

o
(]
-
(=)
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~h/21 0 I
h
0 'EI 0
32h
20z
-1 0 o -
-(N+
~X ... X =l+x-x -X -x
' ' . -X
X - ex X -1+%-x -x -x

r h '1
'EI 0 I 0
h
0 ——Z-I 0 I
0 0 0 0
LO 0 0 (_)J
" 0 0 0
0 0 0
32h
-5 =
1 0 272 o
o .
2h
-(N+3)" 3
-}'g “u. _:j{ 1+%-';'; _ -}'c ver =X
. -X ’ '- ’
| -X 0 =X 1+%—x =X .re =X

_Z%es/.zgj—%

0
0
-N(N+1) 3 h 5/2¢; 1
h
“27X Ly
-X *
-N(N+1)-—-x
0
0
S
L] . 0
0
N(N+l)h 5/2¢; 1
h
-2 2% x
-x
-N(N+1)— -x
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Iis the N x N identity matrix and 0 is the N x N zero matrix.
aj in A1 is zero for the rigid sphere case and 1j(j+1) for the gas bub-
ble. Note that Bj and ijare each half zeros, In general the centered
Euler scheme gives rise to this structure for separated end condi-

tions; if there are p conditions at the left end, then B. will have p

rows of zeros and Cj will have n-p rows of zeros (where n is the size

of each block).
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(1) (2)
GCD 6CD
Jext™) Bl

77. 61 . 4575

2335.0 3.789

. 6254 .1053 (-2)
4,334 . 2635 (-1)
. 3545 . 4194 (-3)
4, 375 . 1238
2, 340 1.161

. 7448 (-1) . 7151 (-2)

1.799 1.193
. 1890 . 1831 (-3)
16.19 .1782 (-1)

.1902(-1) .2731 (-2)

7,223 . 5153

TABLE 1

Convergence of 6CD(V)9 ”‘SE(V) ”

(. 1234 (-5) means . 1234 x 10”°)

5

(3)
6Cp

3
(B’

. 6256 (-3)

. 3388 (-2)

0.0

. 3812 (-3)

. 6986 (-5)

. 3738 (-3)

L5717 (-3)

. 4582 (-1)

. 9614 (-4)

. 3662

L1717 (-4)

. 1661 (-2)
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CD(O) Difference
. 6858
. 6810 ., 0048
13.16
13.19 .03
3.720
3. 629 . 091
3.594 - .035
2.085
2,074 .011
TABLE 3

Effect of N on CD(O)

% of Higher N

.70

.23

2.5

.98

.53
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PART II
NUMERICAL SOLUTION OF SINGULAR ENDPOINT
BOUNDARY VALUE PROBLEMS
1. INTRODUCTION

In this part, we consider a system of linear ordinary differen-
tial equations on a finite (or infinite) interval with a singularity of the
first kind at one endpoint, subject to a linear system of two-point
boundary conditions. We determine conditions under which unique
solutions exist., We study a numerical method of high order accuracy
for these problems., We also treat the same problem with singulari-
ties at both endpoints and with a singﬁlarity on the interior of the
interval.

Previous work on numerical methods for these problems has
been done by Gustafsson [2], Natterer [7], Jamet [3], and Sham-
pine [8] Gustafsson uses a numerical method similar to ours, but
treats only scalar problems, not systems, and does not deal at all
with existence or uniqueness of solutions. Natterer treats systems,
using a projection method and gets O(h2 [ln h]r) accuracy. He also
treats existence and uniqueness of solutions, but uses unnatural
looking boundary conditions, and does not state when the problem
has a solution, only when the operator is Fredholm with index zero
(not when the operator's inverse exists). Jamet alsé treats only
scalar equations and uses three-point finite difference schemes,
which, for a model problem, gives O(hl—c) accurate solutions (oe(0,1)
is a parameter of the problem). Shampine treats a class of nonlinear

second order scalar equations, all with the same linear differential
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operator. He proves existence and uniqueness of solutions of this
equation for certain boundary value problems and the convergence of
collocation and finite difference methods.

In Chapter 2, we define what we mean by a solution to the
‘boundary value problem and examine the question of existence and
uniqueness, We show that this is equivalent to a certain linear alge-
bra-calculus problem, and we analyze this problem. We give
examples of the application of this theory, and also discuss the theory
for singularities at both endpoints, and on the interval's interior, and
the infinite interval case.

In Chapter 3, we describe a numerical method based on the
nature of the fundamental solution matrix near the singularity as
described in Coddington and Levinson [1]. We use this to reduce
the problem to a regular one away from the singularity. Then we
briefly describe a class of finite difference schemes for solving the
regular problem and show how Richardson extrapolation may be used
to improve the accuracy.

Finally, in Chapter 4, we give numerical examples demon-
strating the theory. We employ the box scheme (with and without
Richardson extrapolation) and a new one step implicit finite difference

scheme of accuracy O(h4).
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2. EXISTENCE AND UNIQUENESS
2.1 The Problem |
The system of linear differential equations we consider has
a singular point of the first kind, as defined by Coddington and Levin-

son[l]. This system may be written:

y' = A(x)y + b(x), xe€(0,1) (2.1.1)
where
A(x) = %R +Ax) . (2.1.2)

Here y(x), b(x) are n component vectors, ahd A(x), R, :‘:(x) arenxn
matrices. R is a constant matrix, A (x) is énalytic on [0,1], and
b(x)e C(O0, 1] (u(x)€Ck(a, b] means u(x) has k continuous derivatives on

(a,b]). For any solution y(x) of (2.1.1), we require
1
y(x) €eC7(0,1] . (2.1, 3)
We also impose a linear system of two-point boundary conditions

written as

Syl +Byy(l) =B . (2. 1. 4)

Note that we cannot merely write
B,y(0) + Byy(l) = 8 (2.1.5)

because y(x) is not even necessarily defined at x = 0. Notice also

that (2. 1. 4) implies that ™, B_y(x) is bounded.
X

0
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Let Y(x) be a fundamental solution matrix for the homogeneous

equation for (2.1.1). That is, Y(x) satisfies

Y' = Ax)Y, x€(0,1], Y(x ) =1, x_e(0,1]. (2. 1. 6)
Then any solution to (2, 1.1) can be written

y(x) = Y(x)c + yp(x), x€(0, 1] (2.1.7)

where c is a constant vector and yp(x) is any particular solution of
(2.1.1). By the variation of parameters method, a formula for yp(x)

can be easily determined as
|
y,(x) = Y(x) [ Y (t)b(t)dt, € = 0. (2.1.8)
€ .

For a regular equation (2.1.1) (i.e., for A(x) analytic on
[0, 1] ), it can be easily shown that a necessary and sufficient condi-
tion for a solution to exist for (2.1.1), (2.1.5) for every B is that
BOY(O) + BlY(l) be nonsingular, We now derive similar conditions
for the singular problem.
2.2 The Theory

Requiring y(x) to be a unique solution for (2.1.1), (2.1.4) is
obviously equivalent to requiring that there exists a unique c in (2.1.7)

such that

lim
0+ 1Bo(Y(x)ety, ()} + By (Y(Lety (1)) = (2.2.1)

Then we are really faced with the problem of solving a system of the
form:

XE?+{B(X)c+g(X)} =y, (2.2.2)



~-71-
where B(x) and g(x) may be singular (i.e., ”B(x) “, “g(x)” may — 0o
as x apprdaches zero). It is possible that singularities in the g(x)
may exactly cancel singularities in B(x)c for specific choices of c,
and that if B (and hence y) is chosen appropriately, (2.2.2) may have
a unique solution ¢, Among the results we will now prove is that
there exists a unique solution ¢ for every choice of y if and only if

l1m+ B(x) exists and is nonsingular and }iir,%+g(x) exists,

x—+0
We now discuss the existence of solutions ¢ to (2.2.2). Let
bij(x) be the ijt—11 component of B(x), and let cs gi(x), and y'i be the

i-t—}-l— components of ¢, g(x), and y, respectively., Then the i-t—}—l- equation

of (2.2.2) is just

lim j 4

X__OJF{J_; byj(x)e; + g (x)} = y; - (2.2.3)
Suppose gi(x) remains bounded as x approaches zero. Then the sum
in (2. 2. 3) must also be bounded. Now suppose that all bij(x) are
bounded, except one bij'(x) which is not bounded. Then, obviously,
cj, must be zero, and precisely one extra condition is imposed on ¢
by the singularity. If two components, bij'(x) and bij w(x), are un-
bounded (assuming still that gi(x) is bounded) then either there is one
condition between Cj' and Cj"’ namely bij'(x)cj'+bij " (X)Cj" = 0O(l) as
x —+ 0, or else cjF = Cj" = 0, Thus, there are either one or two extra
conditions imposed on ¢ by the singularity, If gi(x) is unbounded at
x = 0, there must be at least one bij(x) unbounded at x = 0, and there
will be at least one extra condition imposed on c by the singularity in
order to cancel the singularity of gi(x). Thus we see that any singu-

" larity in B(x) or g(x) imposes additional (linear) constraints on the n
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unknowns Cse Hence we make the following definition:

Definition 2. 2.4, The number of independent linear constraints im-

posed on c by the singularity of B(x) and g(x) is called the singularity
index, s, of the system (2.2.2).

If we require a solution for every y in (2, 2. 2), then we can
show that the singularity index, s, is zero, and that B(x) and g(x) are
bounded as x approaches zero. To see this, suppose that one com-
ponent gf g(x), say gl(x), is unbounded at x = 0. Then, as we have
seen, this imposes at least one extra condition on ¢. This condition
must be linearly independent from the system (2. 2. 2) since it does
not involve y. Also, the system (2. 2.2) prescribes n linearly inde-
pendent conditions, This is true since if the left hand side of the i-@
equation of (2. 2.2) is a linear combination of the others, the right
hand side, \7T must be the same linear combination of the other vy.;
but since we seek a solution for every v, Y; is not a fixed linear com-
bination of the other Yj' Hence, we have at leastn + 1 independent
linear conditions (n from the equations of (2. 2. 2), and at least one
imposed by the singularity) on the n components of c. Thus, there
can be no solution c of (2. 2. 2) for every y if any component of g(x) is
unbounded as x approaches zeroc. The same argument can be applied
now to show that all the bij(x) are bounded. So B(x) and g(x) must be

bounded as x goes to zero, and the singularity index, s, is zero.

Then B(0) and g(0) exist, and B(0) must be nonsingular. We have
-1
c = B(0) " (y-g(0)). (2.2.5)

In terms of our original problem, we have proved the following:
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Theorem 2. 2. 6

A necessary and sufficient condition for a solution of (2.1.1),

lim 1i

. . m
(2.1.4) to exist for every B is that x—-»O"'BoY(x) and % - 0+Boyp(x)

exist and that

¥
o) 1m0+BoY(x) +B

il

x> Y(1) (2.2.7)

1
must be nonsingular. This solution is given by (2.1.7) where

c=Q7lp - 1B,y ) - Byy (1) (2.2.8)

4
If n> s> 0, there can clearly be at most n-s independent
equations in (2, 2. 2) and hence y lies in an at most n-s dimensional

subspace of E™.

To be more specific, suppose B(x) has the form

p

B(x) = ), M,q,(x) + M_(x) as x—0, (2.2.9)
{21 |

where the M!l are constant n x n matrices, the ql(x) are scalar func-

tions, and

(a) M (x) = O(1) as x =0 (2.2.10)
(b) g, (x)#0(q (x)) as x =0, if g+ ¢'

()  |q,x)| ~wasx—0.

Suppose further that g(x) has the form
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P
g(x)= g,9,(x)+g (x) asx —0 (2.2.11)
12-—-1 274 o

where the g, are constant vectors, the qz(x) are the same functions

described above, and
g,(x) =0(l)as x —0 . (2.2.12)

(Although (2. 2. 9)-(2. 2. 12) are little restriction on B(x) and g(x), we
will show shortly that for our boundary value problem, these forms

occur.) We define the pn x n matrix /M and the pn component vector

Gby

=
i
K
I

(2.2,13)

Some of the Mﬁ. and g, may be zero.
Given the above structure, we can now rewrite (2.2.2) as
lim >

x0T {121 q,(x) [M ctg,] + M _(x)ctg (x)} =v.

From (2.2.10), (2.2.12) we must have

(a) Mﬁc=-g£9 £=1,...,p

(2.2.14)
(b)  My(0)c = y-g,(0) .

In matrix form, (2.2.14a) can also bve written as
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Me=-G. (2.2.15)

Hence, grnust be in the range of M (ge R(/M)). Also, the number of
independent equations of (2.2.15) is just the singularity index, s, and

is also the rank of /}1 Thus we have
s =rk (M) ==k (M G]) (2.2.16)

where [/M, 9] is the augmented matrix for the system (2. 2.15).
Since ¢ must satisfy the (effectively) s conditions (2. 2.15), we have
that there are exactly n-s free parameters of ¢ to satisfy (2. 2. 14b),

and
n-s 2 rk(M_(0)) = vk ([M_(0), y-g_(0)]) , (2.2.17)

and thus that y-go(O) lies in an at most n-s dimensional subspace of
E® (and, therefore, that y, too, lies in an at most n-s dimensional
subspace). |

To summarize these results we have the following:

Theorem 2.2.18

The system (2, 2. 2) with B(x) and g(x) of the forms (2.2.9-12)

has a solution c if and only if
(a) Mec = - g

has a solution where (2.2.19)

M, (0) | g,(0)-
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An equivalent condition is that
k(M) = (M, G 1) (2.2.20)

The solution ¢ will be unique if and only if this common rank is n,

Three extreme cases illustrate the dévelopment thus far. The
first case, s = 0, we have already discussed. s = rk(/n) = 0 implies
M=o apd hence B(x) = Mo(x) = O(1l) as x — 0 which in turn implies
gE 0 and g(x) = go(x) = 0O(l) as x—+ 0. If a solution is required for
every vy, then since y-go(O)e /\)(MO(O)), MO(O) = B(0) must be nonsingu-
lar as was shown before, The second case is s = n. The solution ¢
is uniquely determined from the singularity by (2. 2.15), and there is
exactly one y, determined by (2. 2. 14b), consistent with c. Hence,
this one y is the only right hand side for which the original system
(2.2.2) has a solution, If y is not this value, th_en (2. 2.2) has no
soliution. The thifd case is g(R(/M), and in this case there is no
solution of (2. 2.2). This is the case when the singularities of g(x)
are such that they cannot be cancelled by the singularities of B(x).

To return to our original problem and show that for the bound-
ary value problem the restrictions on the form of B(x) and g(x) are
not unreasonable, we will examine the structure of the fundamental
solution matrix Y(x) and the particular solution yp(x). Coddington
and Levinson [1] show that if the constant matrix A in (2.1. 2) has no
eigenvalues which differ by a positive integer, the fundamgntal solu-

tion matrix for (2. 1. 1) has the form
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Y(x) = P(x) 2, xe(0,8] (2.2.21)

for some &§ > 0, where P(x) (an n x n matrix) is analytic in (0, 6] and .
xR is defined as exp(R ln x). Then since K(x) in (2. 1. 2) is analytic,

it can be expanded as
~J k
- 1
A(x) _kZIO A x, xe(0,8') (2. 2. 22)

for some 6' > 0, where the Ak are constant matrices. P(x) can also

be expanded as
R k
P(x) = ), P x", xe(0,8'") (2.2.23)
k=0

where the P, are constant matrices, and the radius of convergence

k
of the series is the same as that for K(x). Po can be chosen to be
the identity matrix, and the Pk are defined recursively in terms of
the Ak' The condition that R has no eigenvalues separated by a posi-
tive integer is no real restriction since, as they show, the equation
(2.1.1) can always be transformed easily and reversibly into one

where this condition is satisfied.

If R is a Jordan block, i, e.

A1 i
. ‘v 0
R = — (2. 2.24)
. 1
0
L. A‘_J
nxmn

then



r loghx | -
1 log x ST
xB = x o . log x - =tz (2.2.25)
! 1
and |
Yx) = Pl = O P xSt (2.2.26)

k=0
If Rer> 0, there are no singular terms here so the singularity index

will be 0, If Rex < 0, then writing kmax = [-Re)], (2.2.26) becomes

kmax oo
Y(x) = E P xk“‘Z(x) + Z P xk+>‘2(x) (2.2.27)
k.=0 k:k

+1
max

where the terms in the first sum may be unbounded as x— 0 and those

in the second sum are bounded. Thus since B(x) = BOY(x)+B1Y(1),

k+

the q,(x) in (2.2.9) have the form x “(Inx)', 0 < k<k

?

max

0 <is<n-l. Suppose b(x) has the form

(0 0) .
b(x) = x* ) 'bkxk . xe(0,8") (2. 2.28)
k:mb

where a is a scalar constant, the bk are constant vectors, and my

is a (possibly negative) integer. Then from (2.1. 8)

O o0 X

_ kI+R (at£)I-R

o= ) ), P [ dtb, . (2.2.29)
k=0 £=my €

Evaluating this integral shows that if a +m, > -1, then g(x) = BOYP(X)

b
has exactly the same type singularities as B(x). If atm, < - 1, then

atk

there may be additional ql(x) of the form x (1n x)l, O0<ks< [-a]

0 < i< n. Sothe number of singularities, p, is at most
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n([-aJ+[-ReA]+2). If R is not a Jordan block or if a is a constant
matrix instead of a scalar, the problem is more complicated. But
obviously it can still be shown that B(x) and g(x) have the form
(2.2.9-12).
In summary we have the follox;'ving:

Theorem 2.2, 30

For the problem (2.1.1), (2.1.4) with b(x) of the form (2. 2. 28),
B(x) and g(x) are of the forms (2.2.9-12), Furthermore, this prob-
lem has a splutidn if and only if the rank condition (2. 2.20) holds.

This solution is unique if and only if the common rank in (2. 2. 20) is n,
2.3 Example

We now consider the equation

u' + % u' = -xl—ccosx-(Z—G)x-Gsinx, 0<x<1 (2.3.1)

studied by Gustafsson [2] This same differential operator is also
treated by Natterer [7], Jamet [3], and Shampine [8]. Equation

(2. 3.1) has the general solution
l-o l-0
u(x) =a,ta, x +x cosx, O0<x<1, (2.3.2)
We rewrite (2.3.1) as a two component first order system:

(a) y' = A(x)y+b(x), xe€(0,1] : (2. 3. 3)

where



0 1 0
(b) Ax) = » b(x) =
0 - % : -xl-ocosx-(Z—G)x—GsinX
u
y = . (2.3.3)
ul
In this case,
0 0 0 1
R = R K(X) = (2. 3. 4)
0 -0 0 0
and
1 1l-0 [~ 1-0 ]
1 —xX x cosx
l-0
Y(x) = y Y (x) = .
-0 p ' 1
0 x (1-0)x %cosx-x" ~Isinx
b —
(2.3.5)
We use the boundary conditions (2. 1. 4) where
™ - o = r—
0 0 1 1
Py P2 P11 b pﬂ
Bo—:- ’B1§ , B= . (2.3.6)
0 0 1 1
(P21 P22 P21 Pe i)
ot o - by .

We investigate the conditions on B, Bl’ and B for which solutions

exist for 0 > 0. We have



0 .1 1 1-6,0 .0 -o 1 .1 ,1 ]
bytby TooX  bptPipx A rTebpthy,

(a) B(x)=B_Y(x)+B Y(1)=

0,1 1 1-0,0 .0 -0, 1 .1 1
PartPa ToX PartPa® 15 Pathzz |

(2.3.7)
~ ' -
b?lxl—Gcosx+bf2(1-a)x-ocosx-bfle_csinx

1 1 .
+b11cosl+b12[(l-o)cosl—sml]
(b) g(x)=B_y (x)*Byy (1) =
bglxl_acosx+bg2(l-0‘)x-0cosx—b22xl-Gsinx
1 1 .
i +b21cos1+b22[(1-0)cosl-s1n1] _
For 0< o< 1, we have
0 7
0 b12 .
B(x) = x  + M (x),
0
0 bZZ_J ,
(2. 3. 8)
0
LY (1-0)] .
g(x) = o x - tg x) .
byz (1-0)]
Taking ql(x) = x_o, the singularity conditions (2. 2. 13) become
- 0 M : - 0 - r -
0 by, by ,(1-0) c,
Me = c = - where ¢ = . (2.3.9)
0 ' 0
0 b bo _(1-0) c
B ZZ_J 22 ] L ?_J

If a solution is required for every f, we have seen that s = »rk(/}") =0,

which implies bO = bo = 0,

12 22 In terms of the scalar equation (2, 3. 1),

this means that we cannot include the derivative of the solution at the
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origin in the boundary conditions. The other alternative is 8 = rk(/y}) =1,

and either bO must be -(1-0),.and the

12

other conditions on ¢ (2. 2. 14b) become

0
+0 or b22 # 0, or both. Then <,

—~ Aar a1 r —~
0 1 1 1,.1 1 1 .
b1 tP 15 Puthya ) ﬁl-bllcosl-blz[(l—c)copl-sml]
M _(0)c = -
0 .1 1 1 1 1 1 .
—_— -1 - - - -
.._b21+b21 T b21+b22J ...O 1 _ﬁz b, cosl b22[(1 o)cosl s1n.1J
(2. 3.10)
’ 0,1 1 1 1,
bll+bll ﬁl-(bll+(0—1)b12)(1-cosl)+blzs1nl
¢, - | , (2.3.11)
0 1 1 1 1 1 bl inl
b21+b21 ﬁz-(b21+(0-1)b 22)( -cosl )+ 5p8in

which implies that a necessary and sufficient condition for a solution

to exist if either of b(l)Z or bgz is nonzero is that

1 1 | 1 1 1 .
pl-(bn+(0-l)b12)(1-cosl)+b1251n1 _ ﬁ2-—(b21+(c-1)b22)(1-cosl)+b225;nl

(a) ,
0.1 0 1
by1tP1 bo1tP21
., 0 .1 . 0 .1
if b11+b11=/= 0 apd b21+b21 # 0,
1 1 1 . . .. .01 _ 0.1
() By = (b Ho-1)by,)(1-cosl)-b] ,sinl if by +by =0 and b) +bs # 0,
1 1 1 . ... .01 0.1 _
{c) Bz = (b21+(0‘-1)b22)(1-cosl)-bzzsml if bu+b11¢ 0 and b21+b.21 =0,
or
(d) both (b) and (c) if b+b' = 0 and b, 4bt. = 0 (2.3.12)
1nthy = 21tP21 = 0. - 3.

In (a, b, c) here, the solution for ¢ (and hence for y(x)) will be unique,

but will not in (d). For example, with the scalar equation (2. 3.1), we
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can pose the following boundary condition (which includes the deriva-

tive of the solution at the origin):

uwo) =1 _
(2.3.13)
}ilfo u'(x) + u'(l) = (0-1)(1-cosl)-sinl .
This problem has the unique solution
u(x) = 1-x1 7% + %177 cosx . (2.3.14)

For.1< 0 < 3, a similar analysis may be carried out, showing
that if a solution is required for every B, then Bo must be the zero
matrix, and the problem must be posed as an initial value problem
from x =1, If a solution is not required for every B, conditions
similar to (2. 3.12) must hold.

For o > 3, the analysis easily yields the fact that Bo must
always be the zero matrix, so the only problem which can reasonably
be posed is the initial value problem from x = 1.

In treating this problem, Gustafsson [2] makes no mention of
conditions like (2. 3,12), but only treats cases where u'(0) does not
appear in the boundary conditions for 0< o< 1l. For other ranges of
0, our results are also more general éhan his treatment. Also,
Guatafsson requires bounded solutions u(x) on [0, 1] , a special case
of our theory. In Chapter 4, we treat a numerical example which
Gustafsson's treatment does not allow.

2,4 Other Singular Problems

We now consider three extensions of the theory developed
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before., The first of these is the case of an equation with a singularity

at both ends of the interval [0,1]:

R

=K 7 A(x)) Y+‘§(X) , xe(0,1) (2.4.1)

vvhereARo and R1 are constant n x n matrices, K(x) is analytic on

[0, 1] , and b(x)eC(0,1). We use the boundary conditions

xli_¢0+B Y(X)+1 -Byy(1) =g . (2. 4.2)

Substituting the form of y(x) (2. 1. 7) into this boundary condition we
have

lim lim
X_,O+[BOY(x)c+Bo yp(x)] t o 1_[B Y(x)e+By p x)] =B (2.4.3)

and since the limits are independent, this implies

{a) BOY(x)c-%-Boyp(x) =0O(l)yasx =0,

(2. 4. 4)
(b) BlY(x)c+B1yp(x) =QO(lyasx —1 .
Then if we define /MO, /}11, go, G, M;)(x), M, (x), g, (x), and g (x) in

analogy to (2.2.9-12), we have

(2) B, Y(x) = Z quﬂ(x) + M (x) as x =0
P
{b) BlY(x) = 12’1 M;qi(x) + Ml(x) as x —1

(c) Boyp(x Z gquﬁ ) + g,(x)as x =0

_ 1.1 -
(d) By, (%) = 121 g,9,(x)+ g;(x) as x ~1 (2. 4.5)
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(e) M (x), g (x) = O(1) as x =0

0
() M,(x), g, (x) = O(1) as x — 1

(8) .. Jage0) | ~oo, adx)# Ofq, (x)) as x 0 if 14 ¢

(h) lqi(X) | = o0, q}z(X) # O(q}z.(x)) asx —~1 if g+ ¢' (2.4.5)

Cont'd

Mg, MJ]é are constant matrices, and gg, gi are constant vectors. As

before, we define

r~ - ~ = -
0 1 ) 1
M, My g | g)
My = M, = v 9= |- %
0 ' 0 1
M M g g
- poJ L PiJ - po.J L. ph

(2. 4. 6)

If b(x) has the form of (2.4. 5c) near x = 0 and (2, 4.5d) near x =1,
we have

Theorem 2.,4.7

The boundary value problem (2.4.1-2) has a solution if and

only if the system

mo go
(@) Me = ¢ = - 1 =-q

/}11 gl (2. 4. 8)
(b) [M,(0) + M (1)] c = B-g (0) - g;(1)

has a solution c¢. An equivalent condition is
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M M , g
rk( ) = rk( ) .
M_(0)+M, (1) Mg(01+M, (1), B-g,(0)-g(1)
(2.4.9)

This solution is unique if and only if this common rank is n,

Natterer [7] derives matrix rank conditions similar to these,
but only for the equation (2. 4. 1) with K(x) = 0 and b(x) bounded on

[0,1]. In this case our results reduce to his., For A(x)# 0, he allows

A(x) to have singularities which are weaker than %Ro + —li_x Rl' The
boundary conditions he treats are
lim g "R lim g (1 x)-Rl =0 (2. 4.10)
x—0 (o] Y(X) x— 1 1 - Y(X) - . T,

instead of (2. 4. 2).
The second extension of the theory is the case of a singularity
in the interior of the interval. The equation is the same as our

original equation (2.1.1) but on the interval xe[-1, 0)U(0, 1]:

g =(-}-1(-R+K(x)) y+b(x), xe[-1,0)U(0,1]. | (2.4.11)
We use a system of boundary conditions at -1 agd 1.

B_,y(-1)+ Byy(1) =B . (2. 4.12)

Coddington and Levinson's statement [1] about the fundamental solu-

tion matrix is that |
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R
Y(z) =P(z)z , 0< |z|<s, (2.4.13)

where R has no eigenvalues separated by a positive integer, and P(z)
is analytic (and therefore single-valued) in the punctured disk about
the origin, Also, yp(x) is analytic on (0, l]. Hence, the solution

y. (x) can be analytically continued onto the negative real axis from
the positive real axis. By a solution to (2.4.11), (2.4.12), we mean

any of the functions
y(x).= Y(x)c+yp(x) , xe[-1,0)U(o0, 1] | (2. 4,14)
which satisfies (2. 4. 12). In satisfying (2.4, 12), we must have
[B_lY(—l) + BlY(l)] c = ﬁ-B_lyp(-l)-Blyp(l) (2.4.15)

since Y(-1), Y(1), yp(-l), and yp(l) exist with no singularities. Then
here the singularity index is zero, so that if a solution is required
for every B, B_lY(-1)+B1Y(1) must be nonsingular. If B_'IY(-I)+B1Y(1)

is singular, then ﬁ—B_lyp(—l)—B y'p(l) must lie in its range and hence

1
be orthogonal to the nullspace of its conjugate transpose. The numer-
ical treatment of interior singularities is discussed in section 3.1.

The third and final extension to the theory is simply treating
the case of a regular differential equation on an infini’ge interval.

We will illustrate this case for a semi-infinite interval, treating the

problem

(a) y' = A(x)ytb(x), xe€[0,00)
(2.4.16)

®) M B_yx)B_y(0) = 8.
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If we make the change of variable

t = or x:%—-l (2.4.17)

1
x+l ’
. 1 A 1
we map xe [0, 00) into te [1,0). Letting §(t) = y(g -1), A(t) = A(--1),
1

g(t) = b(—t- - 1), the problem is transformed into

A
(@) () = - t——lz— At)yie) + -t—lz b(t), te[1,0)

(2. 4.18)

(B) (i B_§it)+ B Y1) = B .

Then a necessary and sufficient condition for (2. 4. 18) to have at most
a singularity of the first kind at t = 0 is that A(x) is analytic at oo and
A(0) = 0. This result is proved by Coddington and Levinson [1].

This statement implies that if

1

A(x) =2 R +0() asx o , (2.4.19)

x

(2. 4.18) will have exactly a singularity of the first kind if R is not
the zero matrix, Hence, for any problem (2. 4. 16) for which (2. 4. 19)
holds, we can apply our regular theory.

Having discussed existence and uniqueness for problems with
a singularity of the first kind, we now turn to their numerical solu-
tion. In the next chapter we discuss a numerical method for solving
these problems with arbitrary order accuracy, and in Chapter 4 we

give numerical examples of this method.
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3. NUMERICAL SOLUTION

In this chapter we assume that (2.1.1), (2.1.4) has a unique
solution, and we develop a numerical method for computing an approx-
imation to it., This method, unlike the pure finite difference methods
of Jamet [3] or the projection method of Natterer [7], has arbitrary
order accuracy, depending upon the scheme used to implement the
method. The basic idea used here was also used by Gustafsson in
[2] for scalar equations,

Essentially, our method consists in using the series form
(2.2.21) of the fundamental solution matrix Y(x) to get away from the
singular point. With this we define an equivalent boundary value
problem on [6,1] instead of (0, 1]. The problem defined on [6,1]
is regular, and any number of finite difference schemes may be ap-
plied to compute its solution., Then knowing an approximation to the
fundamental solution matrix on (0, 6] , We can compute an approxima-
tion to the particular solution yp(x) from the variation of parameters
formula (2. 1.8), and hence an approximation to y(x) on (0,8]. This
combined with the finite difference solution on (&, 1] gives a numerical
solution on (O, 1]. We now examine this method in more detail, es-
pecially the formulation of the boundary value problem on [6,1].

3.1 Numerical Method

In order to formulate a boundary value problem on [6, 1] (for
fixed §) which is equivalent to our original problem, we use the same
differential equation (2.1.1) and need only examine the boundary

conditions, From (2.2.9-12), we have
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BOY(X) =

A Mﬂql(x) + Qo(x) as x—0

By, (%) = g,9,(x) + r (x) as x—~0 (3.1.1)
Q (x), r (x) =0O(l) asx—~0.

Then, from the original boundary conditions (2.1.4), we have

6).

(a): Me = - g
| (3.1.2)
(b) Q,(0) ¢ + B y(1) = p-7_(0) .
Since, from (2.1.7)
= Y1 (8)(y(8)-y,(8)) (3.1. 3)
we have
B_ v(8) + By ,y(1) = B,
(3. 1. 4)
SKOI B’ B-r_(0)
Bos = Y @), Big=l | B E *BosVp!
M | 0 -G

‘Then (2.1.1) and (3.1.4) form a regular two-point boundary value
problem on [§,1]. It is easily seen that this problem has a solution
if and only if

QO(O)+B1Y(1) Q,(0)+B; Y(1), ﬁ-ro(O)-—Blyp(l)

rk( = rk ( )

. /M /n H 'g
(3’1.5')

. and that this solution is unique if and only if this common rank is n.
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Using this information, it is easy to show that the regular problem
has a unique solution if and only if the original, singular problem has
a unique solution, which we have assumed. Since these solutions are
identical, we have the following:

Theorem 3.1. 6

The unique solution to the original problem (2.1.1), (2.1.4)
is identical on [6, 1] to the unique solution of (2.1.1), (3.1.4) and is
identical on (0, 6] to y(x) given by (2. 1.7) where c is given by (3. 1. 3).
Thus the original problem is equivalent to the new regular problem

on [§,1] and an "initial value" problem on (0, §].

Note that although there are (p+l) n equations in (3. 1. 4), there
are in fact only n independent ones. Thus when actually solving this
problem, we only use n independent equations from (3. 1. 4). If the
singularity index of the system is zero, the boundary conditions re-

duce to

[Q5(0Y ™1 (8)] ¥(8) + B, y(1) = B-x,(0)+Q, (0™ (8)y (5) .

Our numerical method is based on this equivalence theorem.,
We solve the regular problem (2.1.1), (3.1.4) on [6, 1] by a finite
difference scheme, thus giving a numerical approximation to y(§)
from which ¢ can be computed by (3. 1. 3) and then compute an approx-
imation to y(x) on (0, §] from (2.1.7),

The only difficulty with this method is that we do not know
Y(x) and yp(x) on {0, 6]. These are necessary not only to compute

y(x) on (O, 6] , but also for the computation of the boundary conditions
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. . N N
(3.1.4). However, we can compute approximations Y (x) and yp (x)

to them by truncating the series for P(x) in (2. 2. 23), giving

Wix)= PN)x® = % kaka, x€(0, 5]
) (3.1.7)
X
yllj(x)E ) [ [YN0]  bit)dt, xe(0,8].
: €

In reality, it does not matter whether we use these definitions of

YN(x) and YS(X) or some other, so long as YN(X)—’Y(X) and y]‘:(x)-——yp(x)
as N — oo uniformly for xe(0,8]. Using YN(X) and yg(x), we can
obtain a "truncated' regular problem with the same differential equa-

tion (2.1.1) and boundary conditions given by

Boys ¥(8) + By y(1) = By
N ‘Ql‘?(o) N, -1 N p_r°N(O) N N R

Z G

Note that we assume here that N is large enough that we have com-
puted the singularities in BOY(x) and Boyp(x) exactly, so that we have
M and G, rather than some MN ang QN.

The differential equation (2.1.1) and boundary conditions
(3.1.8) form a "truncated" regular problem. We will show in the
course of our error analysis in the next section that for large enough
N this problem has a unique solution; call it yN(x). We wish to com-
pute a numerical approximation to yN(x) on [5,1].

We impose a net of mesh points on [§, 1]. Let {xj}J 0 be the

j:

set of net points with x, =8, Xy = 1. (THe net may be allowed to
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"gpill over'" the ends of [6, 1]; that is, there may be some xj with j< 0
such that 0 < Xj < & and others with j > J such that xj > 1., All we are
interested in for the moment is those points in [6, 1] ). Let uj be the

approximation to yN(xj) computed by an unspecified scheme., We now

define -
N N, ..} N |
C, = [Y7(8)] (uo-Yp(ﬁ)) , (3.1.9)
and
u,, x=x.,j=0,1,...,7
N J J
¥, (%) = (3.1.10)

YN(X)CE*-}’E(X), 0<x <6

Then y}lf(x) is our computed approximation to the solution y(x) of our
original problem (2.1.1), (2.1.4).

Any number of schemes may be used to compute the approxi-
mations uj on the net {Xj}j=0' Kreiss [6] has developed a complete
theory for a broad class of finite difference schemes, which Gustafsson
[2] uses. Keller [4] analyzes the centered Euler or '"box" scheme
with Richardson extrapolation for solving two-point boundary value
problems, White [9] studies a more general class of one step im-
plicit finite difference schemes. In section three of this cﬁapter, we
discuss a one step implicit scheme similar to those studied by White.
In Chapter 4, we apply that scheme and Keller's box scheme with and
without extrapolation to a specific problem.

In the problem with a singularity at each end of the interval,

we proceed simultaneously at both ends as we did here for one end.
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That is, we use truncated approximations to Y(x) and yp(x) near both
ends and formulate a regular boundary value problem on [60, 1-61].
Then compute a solution on this interval and use the computed solu-
tion to obtain two c¢'s, <o and ¢ thus _enabling the solution to be com-
puted on (0, 60] and [1-61, 1). The ané,lysis goes through in a similar
fashion to that done before.

For a singularity on the interior of the interval (2.4.11-12)
we can impose a mesh on [-1,-6]UJs, 1] and use a matching condition
derivable from the fact that y(x) = Y(x)c+yp(x) must have the same
constant ¢ on both sides of the singularity, Then we can compute
y(x) on [—6, 0)U(o, 6] from the knowledge of ¢, Another way is to write
the problem as a 2n component system on [6, 1] as follows: define

y(x)
(@)  Y(x)= [

] , x€[5,1] (3.1.11)
y(-x

Then /)\r(x) satisfies

B ¥x) = Aw)Pxbix),  xe[6,1]

(3.1.11)
A(x) 0 b(x)
() Aw)= , by =
0 -A(-x) L-b(-x)
with boundary conditions
A A A A A
(d) Bsv(8) = Bg s B,y(l) =8 (3.1.11)
A -1 - A - -
() Bg=[Y7er -Y-0)]s By= Y el (6)-¥ (-6)y (-6)

>

W
)
()

w
i
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The first of the boundary conditions is just the matching condition
alluded to before. Then (3.1.11) is just a two-point boundary value
problem to be solved in the usual way. It is easily shown that this
problem has a unique solution if and only if the original problem
(2,4.11-12) has a unique solution. Once the solution /}\r(x) has been
obtained, the constant vector ¢ can be calculated thus giving y(x) on
[-6,0)U(0, 8]. The idea of doubling the system order was discussed
in Keller [4] for solving multipoint boundary value problems.

The remaining question is: how close is our numerical solu-
tion to the exact solution? We answer this question in the next
section,

3.2 Error Analysis

In determining the accuracy of the numerical solution, we

must estimate
yleg)-ug, x=x, j=0,1,...,7

e(x) = (3.2.1)
y(x)-yllj(x) , x€(0, 6]

The error in estimating y(xj)-uj is composed of two par‘ts:
i) the error caused by approximating the boundary conditions (3. 1. 4)
of the exact problem by the "'truncated' conditions (3. 1. 8v), and
ii) the erxor caused by solving the truncated problem approximately
by a finite difference scheme. This second source of error is deter-
mined by the choice of § and the properties of the finite difference

scheme. We assume the finite difference scheme has accuracy

O(h”), so that
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max N r .
0<j<T Iy (x;)-u, | <K (6)h” as h — 0 for fixed N and 6. (3.2.2)

The first source of error, ” y(xj)-yN(xj) ” is more difficult, If we

define

— N N
Ay (8) = max] T (Y)Y [, B [y -y 60 |}

(3.2.3)

then AN(G) —+ 0 as N — o for fixed §. Using this and repeated appli-

cations of the triangle inequality, it can be shown that

N

”Boﬁ_

B ol < Ky(8)a(8)
(3.2.4)

I ‘314\5]“35” < K3(6)A(8) as N -

Since y(x)' and yN(x) satisfy the same differential equation (2.1.1), we

have

Y (x) = Y(x)cN+yp<x)
(3.2.5)

y(x) = Y(x) C+YP(X)

Subtracting the first from the second gives the estimate

Iyeo-yNeo ] < [xe ] fe-c™ [ < [ 222 [vea] ] fe-<N] -
(3.2.6)
Using the boundary conditions (3. 1. 4) and (3. 1.8) and the inequalities

(3.2.4), it can be shown that
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Je-c™|

< K4(6)AN(6) as N — oo for fixed §. (3.2.7)
Using (3. 2. 3), (3.2.6), and (3.2.7), we obtain
lye)-y™ (=) || < K, (6) Ay(6) as N — oo (3. 2. 8)

and thus

e || < K,(6)h"+K(8)A\(8) as h —~ 0, N — oo for fixed &.

(3.2.9)
To ;astimate e(x) for 0< x< §, we write
e(x) = y(x)—yg(x) = Y(x)c+yp(x) —YN(x)cll:I-yg(x)
and hence, using the triangle inequality and (3. 2. 3), we obtain
le) || < ||¥(x) (c-cN)” + K (8)A(8) (3.2 10)
h 6 N ' T

For sufficiently large N, the Banach lemma implies that YN(G) is

nonsingular and

-1
-1 N
[¥77(8) - Y7 ()] < K (8) Ap(8)

Then we can obtain the following estimate:
N T .
le-cy | < Kg(8)h™+Kq(6)Ay(8) as h — 0, N —~co, for fixed &.

(3.2.11)

From (3.2.10) we then have
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e || < [|Ye) || [K8(6)hr+K9(6)AN(6)] K 5(8)A(8)
as h—0, N — oo, (3.2.12)

for 0< x < §, with 6 fixed.

Since Y(x) may be unbounded as x — 0, this estimate states
that the error may also become unbounded. In general, this is all
that we can hope to achieve and (3. 2.12) is the best estimate that can
be given. But if we consider each component of the error, we find

that
le;) | < || ¥x) [ [Kg (8107 +Ko(8)AN(8)]+K; ((8)AN(8), i=1,...,n
as h—0, N —oo, § fixed. (3.2.13)

Here ei(x) is the il:h component of e(x) and Yi(x) is the iic—}-l- row of Y(x).
Hence if all components of any row of Y(x) are bounded as x — 0, the
error in the corresponding component of the solution will be
O(h"™+A(6)) for fixed & on [0,8]. This situation will occur if our
system is derived from a scalar equation all of whose homogeneous
. solutions are bounded. Then the error in computing the scalar equa-
tion's solution will be O(hrmN(a)) although the error in the deriva-
tives may blow up. We study such a case in our numerical examples
in Chapter 4.

We would like to obtain an a priori bound on AN(6). In Appen-
dix A we show that if b(x) has the form (2. 2. 28) where a is a scalar
constant, then we can construct a series representation of yp(x) which

can be truncated to give
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A (8) sKHaN‘A for a certain A. (3.2.14)

Combining (3.2.9) and (3.2.12), we have in general

r . s
Ky(8)AN(BHE (80, x =x;, §=0,1,2,...,7

e <

1 ¥Ge) || [Kq(8)h +Ko(8)A(5) ] +K, 1(6)An(5), x€(0, 8]
8 9'°'AN 10'%'4N

as h -0, N —+oo, for § fixed. (3.2.15)

Improvements on this can be made in specific cases as stated by
(3.2.13) and (3. 2. 14).

In actually performing computations, we first fix §, then
choose an N large enough so that AN(6) is of the same size as h' for
the range of h desired. In the numerical examples in Chapter 4, we
examine AN(G) for a specific problem. If we use Richardson extrapo-
lation with our finite difference scheme, we must take accéunt of

the increased O(th) accuracy in choosing N.
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3.3 Finite Difference Schemes

We now ldok at two one step implicit finite difference schemes
for solving the "truncated" regular problem (2.1.1), (3.1.8) on
[5,1].

The first scheme is the centered Euler or "box' scheme,
which has been thoroughly anaiyzed by Keller [4]. Here we will
only state the scheme and the results of Keller's error analysis.
We impose the mesh of net points {xj }J‘.T___O on [6,1] with X, = 5,

x- =1 and variable net spacing hj defined by

J

. E X.-X.
J ]

RORER TR (3.3.1)

The box scheme simply approximates the derivative by a centered

difference quotient so that the difference scheme is

Bog U, * Byg vy = By - o (3.3.3)

We can rewrite (3. 3. 2) as a linear system for the uj's as follows:
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-L.u, .+R.u, = h.b(x,
S R e (251
Ei .
L.=1+-d A(x, 3.3.4
; 3 Ax; 1) (3.3.4)

) .

i-z

This can be written as a large linear system

N A 0. 1 RN 7]
Bos Bis ]| % P
-L R u h,b(x
1 1 L I () (3.3.5)
-L, R, O i i
0 . . . - .
i -LJRJJ -uJ_J _th(xJ_%)J

which can be solved for the uj. Here again we assume that the bound-
ary conditions have been reduced so that they contain exactly n equa-
tions. If these boundary conditions are of separated endpoint type,
they can be written:

Douo =Yor DluJ =Y

where Do is a p x n matrix, Yo is a p component vector, D1 is an

(n-p) x n matrix, and Yy is an (n-p) component vector. Then the

linear system can be written



-102-

Do uo Yo T
..Ll R]. 111 hlb(x_;_)
_L R L ] *
2 2 . - . (3.3.6)
-LR; th(xJ_%)
D u
L N 0 I I T

and can be solved by direct factorization methods as Keller [4] points
out,
Keller proves that (for h = mjax h; sufficiently small) the fol-

lowing error expansion holds:
_.N 2 4 |
v =y (xj)+hj el(xj) +0O(h7) . (3.3.7)

This allows us to perform an extrapolation process by computing Hj
as the numerical approximation to yN(xj) using step sizes hj/Z.
Then (3. 3.7 ) implies
h, 2
- _ N A 4
uZJ =Yy (XZJ) + (2 ) el(XZJ)+O(h ) °

These two expansions can be combined to yield

4u._ . -u. 4 ‘
= Y(Xj) + O(h7)

as an O(h4) approximation to y(xj). In fact this extrapolation can be

continued to give an arbitrary order of accuracy, O(hzr).
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The second finite difference scheme is arrived at in a slightly
different way, First we integrate the differential equation (2.1.1) to

obtain

X,
J

y0e)-ylx; ) = [ [awym)+be)] at . (3. 3. 8)
X 1
We now approximate y(x) on [xj-l’xj] by a cubic polynomial Hj(x) 80
— t —_
y'(xj). The coefficients in Hj(x) depend on y(xj), Y(xj-l)’ Y'(xj), and
y'(xj_l). We use the original differential equation (2.1.1) as an ex-

pression for y'(x) to substitute for y'(xj) and y'(x in Hj(x) so that

-1
Hj(x) now depends only on A, b, y(xj), and y(xj_l) and depends on them
only linearly, When this approximation to y(t) on [xj-l’xj] is sub-
stituted into the integral above, we get a linear relation between

y(xj) and y(xj_l) and thus a one step implicit scheme which can be
written

_J'__.L_ -r, =
R N T A R H L B Rl

(3.3.9)

(b) BN6 u +B

1677 ~ ﬁ? :

This system can also be written as was the box scheme in (3. 3. 4) and
solved by the same methods as described before. Appendix B con-
tains the actual structure of the Lj and Rj in (3. 3. 4). Note that the
ﬂl,j’ ﬂz,j’ and rj involve integrals of A(t)t:k where k = 0,1,2, or 3
and of b(t). If these integrals can be performed symbolically then

there is no problem; if not, then the integrals themselves must be

evaluated by a method of the same order accuracy as this overall
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scheme.
The truncation error of a finite difference scheme is defined

to be

7, [y] = Ly yxy)-Ly' (ey)- Al )y (x)-b(x,) ] (3.3.10)

where y(x) has four continuous derivatives. For our case,
. N . . .
assuming y  has four continuous derivatives on [6, l] , a Taylor

series expansion gives for the truncation error

N, 1 3 (t-x, ) “(e-x,)? N(iv) 5
T [y'] = Hj',{ A(t) sT——L— vV UE(t))dt+O(h”)
i-1

ash—0, (3.3.11)

where §(t) is determined by t, x R

as a bound for the truncation error:

and xj. We can thus establish

4
”’T [Y ] ” ge[x x] ”YN W)(g)”xe[;na X ] ”A(x) ” 720+O(hs) .
(3.3.12)
White [9] proves that if the original problem has a unique
solution and the one step scheme is consistent, then it is stable.
(Consistency and stability are defined in Keller [5].) Since we have
assumed that our problem has a unique solution and since the scheme

is obviously consistent (since Th[yN] — 0 as h = 0), we have that
N 4
Iy (x;)-u, | =om™). (3.3.13)

Extrapolation is not really worthwhile here since the next term in the

truncation error is O(hs). Extrapolation here would only give an
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improvement of one in the order of accuracy, whereas for the box
scheme, it gives an improvement of two.
In the next chapter, both of these methods are used, and

extrapolation is used with the box scheme.



4, NUMERICAL EXAMPLES
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We now consider the equation studied in section 2. 3

o 1-
u'+ —u' = -x
x

® cosx-(2-0)x "sinx, xe(0,1]. (4.1)

We consider two values of 0 and one appropriate system of boundary

conditions for each value in accordance with section 2. 3 as follows:

(2)

(b)

for o

for o

0.5, w(0) =1, uwi)=2

1.5, u(0) =1, u(l) = cosl .

(4. 2)

From the analysis in section 2. 3, it can be shown that (4. 2) satisfies

the conditions of Theorem 2. 2. 30 for a unique solution in each case.

 We can rewrite the scalar equation as the following system:

y' = A(x)y+b(x) , xe€(0,1]

u(x)
y(x)=

u'(x)

o 1] 0
, b(x) =
0o -2 —xl‘
x | "

For boundary conditions, we have -

1 0

y(0) +
0 0
for 0 = 0.5,

0 0
1 0
1
ﬁ:
2

y{(1)

1]
w0

o -0 .
cosx-(2-0)x sinx

(4. 3-).

(4. 4)
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The series solution for Y(x) for (4. 3) gives

0 1/(1-o)\1 o 1 —l-f—a-xl'o
Y(x) = P(x)xR = {1+ ‘ | =
o o Jlo x°

0 xC
(4.5)
so that
1 0
0 N
Y (x) = , Y (x)=Y(x), forN=21, (4. 6)
-0
0 x
We also have
x
() Ny = - i‘ (1) 2k+2-0
p K=o (2k+2)!
2k+3-0
(4. 7)
xl-o(l—cosx)
b = -
(b) YP(X) .

x1 —Gsinx+(1 —G)X_G(I—COSX)

Since (4. 7a) is an alternating series, we have (without exact knowledge

of yp(x)):
Z2N+3-0
N Z2N+5-0)6
Orzi};o‘ “ Yp (x)-yp<x) ” s { +(21§-24)1»
1 l-o
5 , N=0 (o<1
and [ ¥N@)-ve)| < | 17° s

0 N=21

80 that
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A gl-° , N=0 (6< 1)
A (5) 1-o
N®) < (4. 8)
(@Nt5-0)6° N30
(2N+4)! TR

For o = 0.5, the boundary conditions for the regular problem

on [§,1] are

N _ N
_ k -
L .8 L g (-1)F (2k+3-0
l-0 l-o (2k+1).
Bos = » Big=Bp Ps=
0 0 2

(4.9)
since the singularity index of the system is zero. For ¢ = 1.5, the

boundary conditions for the regular problem are

N
Bog Y(8)+B ) ,y(1) = By

1 1o 0 0
0 0 1 0
N _ =
Bos= . 1 ' Big =
l-0 0
0 0 0
. - -
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F'l N (_1)k62k+3-0+ 5 (_1)k62k+2-0(2k+3_0)
= IO+ 1
N _ k=0 (2k+2). l-o k=0 (2k+2).
66 -

cos 1

1 N (-l)k62k+2"0(2k+3-o)

TTo [l (k2
0
b -

These four equations reduce easily to the equivalent system:
1 0 0 0 1- i:_l_.)lf_z_fk-‘_&o
1Zo (2k+2)!
y(8) + y(1) = B . (4.10)
0 0 1 0 cos 1

We employ three schemes to solve this regular problem:
I) Keller's box scheme - O(hz) accurate;
II) Keller's box scheme with Richardson extrapolation -
O(h4) accurate;
III) Hermite polynomial interpolation - O(h4) accurate.
In using the third scheme, we evaluate the integrals fA(t)tkdt in
closed form and evaluate fb(t)dt as an infinite series which we sum
to 10-12 accuracy. Our computations were performed on an IBM
370/158 using double precision which gives approximately sixteen
significant digits accuracy, so that round-off error was not a factor
in the computations.
Table (4.11) shows the error ”c—c]fl;I ” for ¢ = 0.5 for the three
schemes for various values of J. Here we have fixed 6§ = 0,1, N =6

so that AN(G) is much smaller than h4 so that the error in the '
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difference scheme is shown.

Je-ep |* (0 =0.5)

J ‘ I** II III

10 . 813(-2) .218(-3) .916(-4)

20 . 220(-2) .173(-4) . 808(-5)

40 .562(-3) .117(-5) . 565(-6)

60 . 251(-3) . 235(-6) .114(-6)

80 . 141(-3) . 748(-17) . 365(-7) (4.11)

"2l =max {]a) [, [ay |}

4

(. 123(-4) means . 123 x 107 %) .

Table (4. 12) shows the same data for ¢ = 1, 5.

le-ep || (0 =1.5)
J I 11 III
20 . 929(-4) . 785(-6) .577(-6)
40 | . 238(-4) .511(-7) . 374(-17)
60 .106(-4) .102(-7) . 744(-8)
80 . 599(-5) . 323(-8) . 236(-8) (4.12)

The error in ”c_Cll:I “ from using N =0, 1, 2, and 3 terms in
the truncated series is shown in Table (4.13) for ¢ = 0,5, § = 0.1,

= 80, and schemes II and III,
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le-cp | (o =0.5)
N I III
0 L 134(-4) . 134(-4)
1 .812(-7)  .489(-T)
2 L 748(-7) . 365(-7)
3 .748(-7) . 365(-T) (4.13)

The error incurred by varying § is reflected in the finite dif-
ference error and the error in truncating the series. Table (4. 14)
shows the error ”c-cllzI ” for various § foro =0.5, J =80, N =6 (for

which the effects of truncating the series are insignificant) for scheme

I.
= 0.05 5= 0.1 5=0.2 6 =0.4
le-cp || . 636(-3) .141(-3)  .258(-4)  .279(-5)
(4.14)

In section 3.2 we pointed out that for a system whose funda-
mental solution matrix has a bounded row as x— 0, the error in the
corresponding component of the solution will remain bounded (in fact,
will be O(hr+AN(6)). For our problem here with 0 < o < 1, we have
the first row of Y(x) bounded as x — 0 while the second row blows up
like x°%, For 1< o< 3, both rows blow up. Table (4.15) shows the
error in the solution, Iu(x)-yllf(l)(x) ,, and derivative, Iu' (x)-yE(Z)(x)]
asx =0 for 0 = 0,5, as computed by scheme Iwith N =6, J = 80,

and 6§ = 0.1. Table (4, 16) shows the same data as computed for ¢ =

1.5, The error in the solution remains bounded for o = 0.5, but
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blows up in the derivative (and for the solution and derivative for

o =1,5) as predicted.

c=0.5
x g o) | w-yN |
.1 . 894(-4) . 447(-3)
. 075 775(-4) . 515(-3)
. 051 635(-4) .629(-3)
. 016 . 356(-4) L112(-2)
. 006 . 218(-4) .183(-2)
. 001 . 894(-5) . 447(-2)
(4. 15)
c=1.5
x lu<x)-yf(l )] lu'<x)-y§(2)(x) |
.1 .139(-15) . 300(-4)
. 075 . 915(-6) . 459(-4)
. 051 . 244(-5) . 835(-4)
.01f_> . 906(-5) . 475(-3)
. 006 .186(-4) .206(-2)
. 001 . 539(-4) . 300(-1)
(4.16)

Provided N is sufficiently large, the error on [6, 1] decreases

as & increases. But as § is increased, N must also be increased to

N

retain the same accuracy in YN(6) and yp (6). Hence, in order to

- achieve maximum efficiency, we must balance our choices of 6, N,



-113-
and h in keeping with the order of accuracy of our finite difference
scheme. For our sample problem here, this was not difficult, but
for harder problems, it would be of more concern.

The computations were timed to get a measure of the relative
efficiency of the two O(h4) schemes (II and III). Table (4.17) shows
these times for various values of J, The box scheme with Richard-
son extrapolation is more efficient for our current problem. It was
also much easier to analyze and program., Also the box scheme per-
mits going to higher order accuracy very easily and efficiently

whereas the Hermite scheme does not.

scheme scheme
J I IT1
time* time*
20 131 167
40 242 336
60 350 483
80 476 633
*all times given in milliseconds (10-3 seconds) o (4.17)

In conclusion, we have developed a theory to tell us when a
singular ehdpoint boundary value problem has a unique solution. We
have alsoc developed a method of arbitrarily high order of accuracy.
We haye found this method to be efficient and accurate and easily

implemented.
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APPENDIX A
In obtaining an a priori bound on AN(S), we must estimate
“Y_(x)-YN(x) ” and ”yp(x)-y"g(x) ” The first of these is easily esti-
mated since the definitions of Y(x) and YN(x) (2. 2.26), (3.1.7) give

’ o0 fo'e]
N k|l R ki (N+1)I+R
Y(x)-Y (x):[ P x ]x =[ P x]x

K:ENH k kZ=:0 k+N+1

so that

max
xe [0, 8]

N+1-y

Y e)-YN (x) | < x;8 (A.1)

for fixed & and N sufficiently large. Here y = -Re(A) > 0 where A is
the eigenvalue of R with most negative real part. (If all eigenvalues
of R are nonnegative, we take y = 0.)

The estimation of ” yp(x)-yg(x) ” is more difficult. We assume

that b(x) in (2. 1. 1) has the form
b(x) = x¥ OZO x*b (A.2)
k=0 k
where a is a scalar constant. We take yp(x) to be the following:
x
yx) = ¥(x) [ vl tb(t)at . (A. 3)

The indefinite integral is not useful unless it can be computed in
""closed form.'" But for our case, it can be evaluated in the following
manner. Suppose a + k is not an eigenvalue of R for any integer
k=21, (We will show how this restriction may be removed later. )

Then we have
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X -1

(a) v (x) = Y(x) Z [(k+a+1)I-R] x(k+0.+1)1..RCk

P K=o

k
(b) ¢, = IZO Qﬂbk ’ A1)
ES)

T(x) = Q x*

' K20 ©

We now take (A. 4) as our definition of yp(x) and define

N “1
yg(x) = YNx) kz—'o [(ktatl)I-R] x{SFOtDIRe (A. 5)

For k< N, the ¢, involve only b and Ql for 0 < ¢ < N. Then it is

k £

easy to show that

N+2+
el 0 5] ”y (x) - (x) | < k,8 @ (A. 6)

If a + k' is an eigenvalue of R then the k'-1 term of the series (A. 4a)
will not just be a simple matrix power of x but will also involve log
terms. (In Appendix C we show the general form of fxtAdt where A
is a constant matrix. ) Hence in order to compute these singular
terms exactly, we must have N = k', " In section 2.2 we assumed
that R has no eigenvalues separated by a positive integer so that
there is only one k' for which a + k' is an eigenvalue of R. Hence

for N sufficiently large, we have
AN(6) < K max {6N+1-Y, 6N+2+(1} ’

6N-ﬂ-k

AN(8) S K , * =min {l-vy, at2}. (A.7)
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APPENDIX B
In the interpolation method of section 3, 3, we approximate
the function y(x) on [Xj-l’xj] by a cubic polynomial Hj(x) so that

H.(x.) = y(x.), H'(x.) = y'(x.

J( J) y( J) J( J) Y(J)
H.(x. = y(x. , H'(x. = y'(x. . B.1

J( J_1) y( J_1) J( J_1) v'( 3-1) (B.1)

To do this, we define four cubic polynomials hi(x) on [Xj-l’xj] so

that
- 1 - - ! -
hl(xj—l) =1, hl(xj_l) = hl(xj) —hl(xj) =0

h'z(xj_l) = l’hZ(Xj-l) = hZ(Xj) = h'z(xj) =0

(B. 2)
i — —_ ] —_ _
h3(xj) = l,h3(xj_1) = h3(xj_1) = h3(xj) =0
h4(xJ) = 1’h4(Xj-l) = h'4(XJ_1) = hl]:(x_]) =0 .
These polynomials turn out to be
3 2 2 3
hl(x) =1 - - (x-x._l) +;1~3— (x—xJ 1)
2 2 3
hz(x) = (x-xj) -5 (x-x._l) + = (x-x._l)
(B. 3)
1 2 1 3
h3(x) =-q (X_x_}-l) +'}'17 (X-X]_l)
_ 3 2 2 3
h4(x) = ;;2— (x-xj_l) - F (x-xj_l) .

The scheme is then
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-L. u. + R.u. =h, r.
ji-1 R N

X.

LjEI+fJ A(t)h,(t)dt A(x +f3 () (£)dt
X.
j-1 -1 (B. 4)
XJ Xj

R;=1- !{ 1 A(t)h,()at Afx) - !{ lA(t)h4(t)dt
J- j-

hr_fJ A(t)h,(t)dt b(x )+fJA J(B)dt bix) fJb(t .
J-l
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APPENDIX C
We wish to evaluate the indefinite integral ftAdt for A an

n x n constant matrix, We define

09) k
tA-—‘- exp{Alnt}E Z _(_é_%’l__t_)_ (C. 1)

From this we can show easily that

EdE ™) = AT, (C.2)

Here I is the n x n identity matrix. Hence, if I + A is nonsingular,

we have

-1
ftA dt = [A+I] AT (C. 3)

If I + A is singular, then -1 is an eigenvalue of A, and there is a

matrix T such that T AT—1 is in Jordan normal form:

J 0
-1 5
(a) TAT " =J=
0 J
n-8 (C. 4)
-1 1 0
(b) JS= ° »
|
0 -1

Here s is the multiplicity of the eigenvalue -1, JS is an s x 8 matrix,

and Jn—s is an (n-s) x (n-s) matrix, Then it is obvious that

A -1.,7J -1 (C.5)
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ft Sat
R |
[ehat =T T . (C. 6)
-1 I+Jn_
: [I+Jn_ "t
- -
It is well known that
r 2 7]
1 Int (1;;‘) ..
Js 1
t ® =t 1 Int (C.7)
0 L ]

! L )

< J 1 int Inx {1 ' u lél—,-

80 ftsdt= A I _dt=f . "]du
1
rl (lnt)2 (lnt)3 ]
nt 7! B
5 .
ft%at= Int - - . (C. 8)

_ 1ntJ

Combining (C. 3), (C. 6), and (C. 8) we have [t* at.
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