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ABSTRACT

An experimental investigation was made in the GALCIT hyper-
sonic wind tunnel, leg number 1, at a nominal Mach number of 5.8
to determine the heat transfer rate and temperature distributions on
a water-cooled, ellipsoid-cone at angles of yaw of 0, 4 and 8 degrees,
respectively. The Reynolds number per inch based on free stream
conditions was 2,03 x 105.

The experimental means employed was a steady-state technique
developed by Mr. F. w. Hartwig at GALCIT during the past several
years., This technique utilizes a heat transducer or heat meter of
very small size., The primary advantage of this method is that it
obviates the necessity of correcting for axial temperature gradients
in the model.

Surface pressure distributions were also studied on a model
of identical geometry for angles of yaw of 0, 4, 8 and 12 degrees,
respectively. The primary interest here was to obtain data necessary
for the theoretical calculation of the heat transfer rate distributions
using laminar flow theory.

The investigation showed that the heat meters were very
reliable. The data obtained from independent wind tunnel runs were
repeatable within b 1.5 per cent. It was found that the local heat
transfer rate and the local pressure coefficient vary linearly with
angle of yaw. The égreement of the experimentally determined stag-
nation heat transfer rate and the theoretically calculated one was good.
Further refinement of the calibration technique appears to be the
logical direction of effort for subsequent investigators.
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I. INTRODUCTION

The problem of heat transfer and its experimental determin-
ation in hypersonic flow has become an increasingly important one
in the past several years, as flight speeds have steadily increased.

| Many problems have arisen in the experimental techniques
employed. Aﬁy attempt at steady-state heat transfer measurements
has been plagued by the necessity of correcting for axial temperature
gradients in the material used. These corrections are often of the
same order as the measured values, with a subsequent excellent
possibility of large experimental errors and poor repeatability.

To alleviate this problem, Mr. ¥. W. Hartwig (Ref, 1) has
developed a steady-state technique utilizing a heat transducer or
heat meter of very small size. His results have been very encouraging
and further use of the method was definitely indicated.

* The model configuration studied in this investigation was a
body of revolution with ellipsoidal nose and conical afterbody. The
two portions were joined by a fairing so that no discontinuity in the
radius of curvature existed. Two models of identical geometry were
used, one for the determination of surface pressure distributions,
the other for determining heat transfer rates and temperature dis-
tributions.. The pressure model was studied at angles of yaw of
0°, 4°, 8°and 12°. The heat model investigation was limited to
angles of yaw of 00,. 4° and 8°,

The work was performed in the GALCIT 5 x 5 inch hypersonic

wind tunnel at a nominal Mach number of 5.8 and at a Re/in. of

2.03 x 105 based on reservoir conditions.



II. EXPERIMENTAL EQUIPMENT AND PROCEDURE

A. Description of the Wind Tunnel and Instrumentation

The experimental testing was performed in the GALCIT 5" x 5"
hypersonic wind tunnel (leg no. 1), which is a continuous flow, closed-
return type. The compression ratios required were obtained with
five stages of Fuller rotary compressors, (Fig l). All controls were
operated from a master control panel adjacent to the test section.

The air heating system consisted of a multiple-pass heat exchanger
with superheated steam as the heating medium. Limits of system
capacity were 275°F. ata stagnation pressure of 74 psig.

The air was dried by a 2200 pound bed of silica gel in the main
air circuit. The silica gel was reactivated by an integral blower-
heater-condenser.

The nominal Mach number in the test section was 5.8, The
Foelsch method was used to design the nozzle blocks. Corrections
were made to account for estimated boundary layer displacement
thickness. Nozzle calibration was checked by static orifices in both
the top and bottom nozzle blocks. The test section with model mounting
is shown in Fig. 2.

Two vacuum-references manometers were used to measure
model static pressures, one using DC-200 silicone fluid and the other
using mercury. Tunnel stagnation pressure was measured with a
Tate-Emery, nitrogen-balanced gage and this pressure was controlled
within t . 04 psi by means of a Minneapolis-Honeywell-Brown circular
chart controller.

Tunnel stagnation temperature was controlled by means of a



Minneapolis-Honeywell- Brown circular chart controller within 1 2°F.
The referenée stagnation temperature was obtained by a thermocouple
probe located one inch upstream from the nozzle throat.

A 24 channel Minneapolis-Honeywell- Brown potentiometer
pyrometer was used to obtain thermocouple and ""heat meter' outputs
from the heat model.

Schlier.en photographs of the flow were made by using an

optical system using a BH-6 steady source.

B. Description of the Models

Two models of identical geometry were used during this
investigation. The configuration was an ellipsoid-cone with a fairing
between the two portions so that no discontinuities in the radius of
curvature existed. One model was used to obtain pressure distributions
and the other to obtain heat transfer and temperature distributions
for the various angles of yaw. Fig. 3 is a photograph of the heat model
showing the heat meters and associated painted circuitry.

The pressure model was constructed of brass with twelve
conventional static pressure orifices of .016 inch diameter. Fig. 4
shows the internal construction of the model. The orifices were
located on four radials and are identified by number as indicated in
Fig. 7. The semi-vertex angle of the conical portion was 10° and the
base diameter was 1.5 inches.

The equation of the ellipsoidal nose portion of the model is

2 2

2
(X( -3:72;25) + ( 53;82 + -(-_E,ZW = 1 , where the coordinate system

origin is taken as the apex of the nose., The major axis is perpendicular



to the longitudinal axis of the model.

The héat model was constructed of rolled steel with a wall
thickness of . 050 inches, The model was coated with a . 020" porcelain
layer which served a dual purpose. It provided an insulator for the
heat meters and the painted circuits and it increased meter sensitivity
as compared to meter installations in the steel wall itself, because
of the low therﬁal conductivity of the procelain.

The model was cooled by water conveyed through coaxial tubing,
which also served as the sting support when the model was installed
in the wind tunnel. Fig. 5 illustrates the internal construction of the
heat model. The water flow was approximately fifteen gallons per hour.
This flow rate provided sufficient cooling to maintain the temperature
differential between the incoming and outgoing coolant at less than
1°F. under tunnel conditions and less than 2°F. when calibrating.

The heat meter is essentially a thermopile on a miniature scale.
Fifty turns of one mil constantan wire spaced . 001" apart were wound
on a glass core .007" x 1/16" x 1/8", One-half of each loop was then
silver-plated, resulting in silver-constantan junctions with a thermo-
couple spacing of .007'". For protection and to prevent shorting, a
thin coat of Adweld was applied to the finished meter. Refs. 1 and 2
are a source of more information on their construction and appearance.

Installation of the heat meter in the model surface was
accomplished by grinding a small indentation in the ceramic coating
and cementing the meter in place. The meter was connected to silver-
plated turret posts cemented in a micarta insulation ring on the base
of the model by means of painted silver circuits. Nine heat meters,

were installed in the model used in this experiment (Fig. 7).



Surface temperature distributions were obtained from a line
of ten thermécouples installed on the surface of the model. The
thermocouples were formed by cementing a one mil constantan wire on
the model and making contact with this wire at ten points with silver
paint. As in the case of the heat meters, the painted portion of the
circuit terminated at turret posts on the base of the model.

One coﬁstantan and twenty-two silver leads were soldered to
the turret posts at the base of the model to provide connections to the
Minneapolis-Honeywell- Brown potentiometer pyrometer. Silver leads
were used to eliminate the possibility of erroneous thermoelectric

effects induced due to temperature differences at the turret posts.

C. Model Mounting

The models were mounted in the portion of the test section with
most uniform flow conditions as determined by earlier static pressure
calibration surveys.

Both models were sting supported and the sting was mounted
on two vertically actuated struts, 3.825 inches apart. These struts
were driven by a small electric motor and their vertical position
could be determined to within , 001 inch accuracy. Differential
movement of the struts provided for the setting of desired angles of
yaw.

Two methods of obtaining the desired rotational positions were
used, one for the pressure model and a second for the heat model.

The sting support for the pressure model had a machined collar
and shaft arrangement that permitted rotation to any position about the

longitudinal axis. A set screw in the collar.locked the model at the



desired setting.

The héat model was positioned by means of external collars
fitting over the sting. These collars had threaded holes on 45° centers.
Thus, eight rotational positions were provided for and were determined
very accurately by the machining of the collar. Allen-head screws
were used to attach these collars to special supports in such a way
that the sting §vas free to rotate about an axis perpendicular to the plane
of the supports. The supports were in turn attached to the vertical
struts. One collar was fixed to the sting and the other was free to
slide so that the angle of yaw could be changed at will.

Saran tubing was used to connect the steel tubes at the base of
the pressure model to external leads going to the manometer boards.
Tygon tubing conveyed the coolant to the base of the coaxial sting in

the case of the heat model.

D. Heat Meter Calibration

The calibration technique was one of exposing the model to a
known input of power and recording the electrical output of the heat
meters. This output was then converted to terms of heat flow
(BTU/ftZ/hr). It is of the utmost importance that the model be exposed
to a uniform heat source and that the surface temperature distribution
be uniform. Only if these two conditions are essentially met, can any
accurate calibration be accomplished.

It was also apparent that heat losses in the calibrating heater
would have to either be accounted for or virtually eliminated. At
first, attempts were made to measure the losses accurately by the

use of commercial heat meters., These early tests indicated that for



a given heat input the losses were of the same order as the heat
passing throﬁgh the model. Any error in the loss measurement would
be reflected as an error of the same magnitude when considering
heat input through the model. This author felt that sufficient accuracy
under the early experimental set-ups was not attainable. Another
disadvantage of this first system was the long periods of time required
before equilibfium was reached because of the heavy insulation used
to reduce external heat losses.

The second method, that of virtually eliminating losses, was
accomplished in the following manner (Fig. 6): A heater was built
that conformed to the model shape and allowed a uniform 3/16'" air gap
between the model and the heater elements. A long, flexible heat
meter was constructed of . 008 constantan wire wrapped on a thin strip
of mica, then silver-plated in the usual manner. This heat mefer was
wrapped around the calibration heater. A second heater was built
around the first with a spacing of approximately 1/8 inch. Its function
was to act as a bucking heater. During calibration runs when the
heat meter was '""nulled' there was no heat flow outward from the
model heater element and, therefore, no heat losses. It is estimated
that the losses were held to A 2 per éent of the heat input to the model.
This estimate is based on the sensitivity of the null heat meter and the
magnitude of the changes in power to the bucking heater required for
""nulling"., A further advantage of this system was the marked shortening
of the time required for equilibrium because the need for external
insulation no longer existed. To prevent losses out of the base of
the model, a circular heat meter and bucking heater were used in an

analogous manner.



Readings were taken in several rotational positions to reduce
errors introduced by positioning and non-uniform heat source. The
maximum spread in calibration data from this source was t 7 per cent,

The calibration curve for a typical heat meter is presented in Fig. 8.

E. Thermocouple Calibration

The calibration for a silver-constantan thermocouple is pre-
sented in Fig. 9. This calibration was previously performed in

connection with the investigation of Ref. 1.

F¥. Test Procedure

‘1. Surface Pressure Data

Upon installation in the test section, the system was thoroughly
leak-checked. Ample time was allowed for temperature stabilization
of the test section, etc., before any data were taken.

To minimize flow irregularities across the test section, the
model was rotated about its longitudinal axis in five different positions
45 degrees apart. In each rotational position, the model was yawed
twelve degrees above and below the horizontal in 4 degree increments.
This procedure yielded complete pressure surveys for the vertical,
horizontal and two diagonal meridian planes.

All tests were made at a reservoir stagnation temperature and
pressure equal to 2"700F. and 88.5 psia, respectively. The Reynolds
number per inch based on free stream conditions was 203, 000, At
this Re it was assured that the experiment was carried out in the lam-

inar boundary layer regime.



2. Heat Transfer Data

Tunnel conditions were identical to those used in the pressure
tests, The maximum angle of yaw attainable was reduced to 8 degrees.
This limitation was caused by a protrusion of the sting downstream of
the rear support of about one inch, which served as a connecting link
to the coaxial tubing. .When angles of yaw were introduced, this
protrusion made contact with the tunnel walls and limited the angle
of yaw., The rotational procedures were repeated as before and heat
transfer data in four meridian planes was recorded.

Three complete sets of data were taken in this case to check
the repeatability of the heat meters. Each set of data was evaluated
and then compared, meter by meter. The maximum cieviation from
the mean of the three values at each meter was - 1.5 per cent. In
most cases it was less than t .5 per cent. In view of this fact, these
three sets of values were averaged and plotted as single experimental

points when the data were presented in graphical form,

3. Temperature Data

The temperature distributions were obtained in a completely
analogous manner. Because of model construction difficulties, the
line of thermocouples was not aligned with any given plane of heat

meters and a completely separate set of runs was required.
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III. DISCUSSION OF RESULTS

A, Schlieren Observations

Figures 10 through 13 are schlieren photographs of the pressure
model at angles of yaw of 0, 4, 8 and 12 degrees. Schlierens of the
heat model were omitted since there was nothing of interest to be
noted. |

It is evident that the shape of the bow shock wave is dominated
by the geometry of the elliptical portion of the model. This phenomenon
is discussed by Lees and Kubota (Ref. 3) and is caused by the fact
that in hypersonic flow, the drag/area of the blunt-nose is much
greater than the drag/area of an afterbody with a uniformly small
slope. It is interesting to note that the distortion to the shock wave,
caused by the angle of yaw of the model, is small in relation to the fixed
tunnel coordinates.

The ratio of the detachment distance, §, between the bow shock
wave and body surface on the longitudinal axis at zero angle of yaw,
to the nose radius, Ro’ at this point was found to be , 127, This
compares to theoretically predicted values of 0.118 by Hayes (Ref. 4)
and 0. 137 by Ting-Yi Li (Ref. 5) for spherical-nosed bodies of

revolution at M = 5. 8.

B. Surface Pressure Distributions

The experimental surface pressure distributions are presented

versus S/D, where S
Pmax
is measured along the body surface from the apex and D is the base

in Figs, 14 through 17, in terms of CP/C

diameter.
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For comparison, theoretical distributions based on the modi-~
fied Newtonia;n approximation are also plotted on Figs. 14 and 17.

The experimental val ues fall somewhat below those predicted in the
region of most rapidly changing pressure. On the conical portion

C p/ Cpmax is somewhat higher than the Newtonian. This behavior is
anticipated because for small cone half angles, the nose drag dominates
the flow patterﬁ several nose diameters downstream on the conical
skirt. This effect has been noted experimentally many times, see

for example O'Bryant (‘Ref. 6).

The angle of yaw data is presented for two meridian planes,
the vertical plane and the diagonal inclined 45 degrees to the vertical.
The diagonal plane values represent an average of the two diagonal
planes since data differed by less than 2 per cent.

Data were also taken in the horizontal plane, but they were not
presented graphically, because the change in C /C from the zero
angle of yaw case for any given surface position wasrriz};s than four
per cent for the extreme cases of 12 degree yaw angle. This behavior
is explained by the fact that the effective change in the angle of yaw
of the horizontal plane is much less than that experienced by the
vertical and diagonal planes.

As has been pointed out in Ref, 6, it appears that the change
in the ratio CP/CP with angle of yaw for a given position on the

max
model is essentially linear over the range of yaw angles studied ( t 120).

C. Heat Transfer Rate Distribution

The experimental heat transfer rate distributions are presented

in Figs. 18 and 19. They are plotted in terms of non-dimensional
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quantities qw/qw versus S/D where qw is the local heat transfer
rate and ilw is t]c:;e heat transfer rate at the stagnation point.

As ig the case of the pressure distribution curves, the results
are presented in the verticai and diagonal meridian planes. The
horizontal plane was again omitted because the changes in the heat
transfer rates from the zero angle of yaw case were less than four
per cent for réasons previously stated.

Experimentally, the stagnation heat transfer rate was determined

to be 8560 BTU/hr/ftZ. Theoretical calculations for the stagnation
point heat transfer rate, according to Lees (Ref. 7), yielded a stag-
nation value of 8460 BTU/hr/ftZ. Calculation according to Reshotko
and Cohen (Ref. 8) yielded a stagnation value of 8760 BTU/hr/ftZ.
The experimental value found is 2.3 per cent lower than the latter
value and 1. 2 per cent higher than that predicted by the use of the
Lees paper. This result is considered by the author to represent
excellent agreement for heat transfer work.

Figs. 18 and 19 show that apparently the local heat transfer
rates vary linearly with angle of yaw for the angles used in this
experiment. This observation applies not only to the vertical meridian
plane, but also to the diagonal meridian plane, where the heat transfer
rates are influenced by many different streamlines.

Fig. 18 indicates that the stagnation heat transfer rate was
not reached at any point in the vertical plane for the 8° angle of yaw
case., It is a matter of only 2 per cent but some comment on this
point is warranted. This apparent inconsistency could be caused
either by experimental errors, or by a change in the stagnation heat

transfer rate. The latter possibility cannot be discounted since the
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velocity gradient, (du/ds)o, depends on the body radius of curvature
and changes ;Nith yaw angle. A further point to consider is that the
pressure distribution, near the stagnation point, at 8° angle of yaw
lies somewhat above that predicted by modified Newtonian theory

(Fig. 16).

D. Surface Temperature Distributions

Figs. 20 and 21 contain the experimental surface temperature
distributions for the vertical and diagonal meridian planes at angles
of yaw of 0, 4 and 8 degrees respectively.

The inflection point in each of the temperature curves near the
ellipse-cone junction has moved back on the model to a position where
the value of S/D is approximately .52 as compared to .42 for the
pressure or the heat case. This effect is attributed to the presence
of axial heat conduction in the metal shell of the model. This shift
would cause no difficulty when theoretical and experimental heat
transfer distributions are compared since the empirical temperature

distributions are used to calculate the theoretical heat transfer rates.
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IV. CONCLUSIONS

The following conclusions can be drawn from this investigation
in the GALCIT 5" x 5'" hypersonic wind tunnel (leg no. 1):

1. The steady-state technique used in this investigation
yielded excelleﬁt results under the present test conditions.

2. The maximum deviation of a given heat meter output for
three separate sets of wind tunnel data was 1.5 per cent.

3, The maximum scatter in calibration data points because
of positioning or uneven heat sources was t 7 per cent.

4., The agreement of the experimentally determined stagnation
heat transfer rate and the theoretically calculated one was good.

5. The local heat transfer varies linearly with angle of yaw
over the range tested.

6. The surface pressure distribution over the elliptical-nose
agrees very closely to that predicted by the modified Newtonian theory.

7. The local pressure coefficient varies linearly with angle
of yaw up to 12 degrees.

8. Subsequent investigators should concentrate their attention
to refining the calibration technique in an effort to reduce the o per
cent spread in this data.

9. The heat meters themselves need no refinement and meter
configuration changes should be attempted only if application demands

it.
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FiG. 2

TEST SECTION OF HY PERSONIC TUNNEL

SHOWING METHOD OF MOUNTING MODEL

FlG. 3

HEAT MODEL SHOWING HEAT METERS AND PAINTED CIRCUITS
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SCHLIEREN PHOTOGRAPH OF PRESSURE MODEL

ANGLE OF YAW 0°, M = 5.8

SCHLIEREN PHOTOGRAPH OF PRESSURE MODEL

ANGLE OF YAW 4°, M = 5.8




SCHLIEREN PHOTOGRAPH OF PRESSURE MODEL

ANGLE OF YAW 8°, M= 5.8

FlG: 13

SCHLIEREN PHOTOGRAPH OF PRESSURE MODEL

ANGLE OF YAW 12°, M = 5.8
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