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Quasi-Optical Planar Grids for Microwave

and Millimeter-Wave Power Combining

Abstract

Solid-state devices that produce radiation in the microwave and millimeter-
wave region of the electromagnetic spectrum have relatively low power outputs
compared to their electron-tube counterparts. In an attempt to obtain more
power from solid-state sources, a number of power-combining schemes have been
developed through the years. One of the most promising techniques involves su-
perposing the outputs of many devices in free space. This quasi-optical approach
has several advantages: the losses associated with waveguides and feed networks
are eliminated, the power can be distributed over a large number of devices,
and an external phase-locking signal is unnecessary. In this work, a method for
quasi-optical power combining which is based on integrating devices into periodic
grids is discussed. The approach is relatively simple to implement because the
grid structures are planar. Thus they easily accommodate solid-state devices and
allow for the possibility of wafer-scale integration. A method for analyzing the
grids is presented and used to derive models for a variety of configurations. The
validity of these models is investigated using a quasi-optical reflectometer. De-
signs and experimental results for MESFET oscillator grids operating in X-band

and Ku-band are examined and discussed in detail.
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Chapter 1

Introduction

Millimeter and submillimeter-wave systems continue to be a subject of grow-
ing interest. The applications involving this portion of the electromagnetic spec-
trum cover a broad range of scientific disciplines, varying from the measurement
of electron densities in tokamak plasmas[1] to studying emission spectra of dis-
tant celestial bodies [2]. Millimeter waves correspond to the frequencies between
30 GHz and 300 GHz and the submillimeter-wave range is regarded as the region
between 300 GHz and 3000 GHz. The shorter wavelengths at these frequencies al-
low the use of smaller and lighter components than for microwave systems. This
is important in military and space-borne applications where size and weight are
a prime concern. In addition, the atmospheric attenuation of millimeter waves
is relatively low compared to infrared and optical wavelengths [3], particularly in
the transmission windows that lie between water vapor and oxygen absorption
peaks. This property can be exploited to build radars and cameras that pene-
trate clouds, smoke, and haze. Other commonly cited advantages of millimeter
and submillimeter wave components over their microwave counterparts include

broader bandwidths and higher resolution for radars and imaging systems.

1.1 Sources of Radiation

The lack of reliable, inexpensive high-power sources, however, has been a
persistent obstacle in the development of millimeter and submillimeter-wave sys-

tems. The first devices to produce radiation in this part of the spectrum were



2

electron tubes. Today, electron tube devices such as klystrons and crossed-
field amplifiers (CFA) are widely available and can produce several kilowatts
of power in the microwave and lower millimeter-wave range [4,5]. Traveling-wave
tubes are capable of better than 100 W at 100 GHz [6]. In the far infrared and
submillimeter-wave range, optically-pumped FIR lasers have achieved several
megawatts of pulsed power [7]. Nevertheless, in many circumstances, the size,
weight, and required high-voltage power supplies of these devices limit their use-
fulness.

For most low and medium power applications, electron tube sources have
been replaced by solid-state devices. Compared to tube sources, solid-state de-
vices are small, light-weight, inexpensive, and require small to moderate voltages.
At present, IMPATT’s — the most powerful millimeter-wave solid-state sources
— can produce several watts of power at 100 GHz. Silicon IMPATT’s have pro-
duced useful power up to 300 GHz [9]. A major drawback of IMPATT’s, however,
is the high noise level arising from the avalanche multiplication process. Gunn
diodes have better noise performance but only generate a few hundred milliwatts
at 100 GHz [10]. Other two-terminal solid-state devices used to produce millime-
ter and submillimeter wave radiation include quantum well oscillators[11] and
Josephson junctions [12], although the power levels are extremely small. An addi-
tional drawback of two-terminal solid-state sources is low DC-to-RF conversion
efficiency. Better efficiencies can be realized with transistors. Pseudomorphic
HEMT’s have demonstrated output powers near 60 mW at 94 GHz [13]. HEMT’s
with 0.15 ym gate lengths have shown cutoff frequencies of over 170 GHz with
fmax near 350 GHz [14]. Heterojunction bipolar transistors (HBT’s) also have the
potential to provide reasonable power levels at millimeter-wave frequencies with-
out the need for sub-micron lithography. An HBT with emitter area of 80 ym?
has shown 15 dB of gain with output power of 16 dBm at 35 GHz [15].
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In an attempt to overcome the limited power output of solid-state devices, a
variety of power-combining methods have been developed. A good review of these
methods has been given by Chang and Sun for millimeter-wave frequencies [16].
Many of these techniques are based on scaled-down microwave circuits and in-
volve resonant cavities [17] or hybrids. Resonant cavity combiners allow good
isolation between the active devices and have been used up to 300 GHz. Hybrid
power combiners, which often rely on external injection-locking to synchronize
the sources, have been used up to 140 GHz. These approaches have a number
of disadvantages. To prevent moding problems at higher frequencies, the size of
the waveguide cavities must be scaled down. This makes circuit fabrication more
difficult. Resistive losses in the waveguide walls, which reduce power-combining
efficiency, become more severe at millimeter and submillimeter frequencies. In
addition, combiners based on resonant cavities and hybrids can accommodate a

limited number of devices, making large-scale power-combining impractical.

1.2 Quasi-Optical Power Combining

An approach which overcomes the limitations of power combiners based on
scaled-down microwave systems involves combining the output powers of many
devices in free space. Mink suggested using an array of millimeter-wave devices
placed in an optical resonator as a means of large-scale power combining [18].
While it is unlikely that solid-state power-combiners will replace high-power elec-
tron tube sources, there is great potential for improvement in output power and
combining efficiency by using quasi-optical techniques. Because the power is
combined in free space, losses associated with waveguide walls and feed networks
are eliminated. The power can be distributed over a larger number of devices
than in a waveguide cavity because the quasi-optical resonator can be many
wavelengths across. An external injection-locking signal is unnecessary because
synchronization of the sources is accomplished by mutual coupling through the

modes of the resonator.
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Figure 1.1 Comparison of output power vs. frequency for various microwave and
millimeter-wave sources [8].
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Figure 1.2 Schematic of a patch antenna power-combining array. Each patch element
is excited with a Gunn diode and synchronization is achieved by adjusting the DC bias
and using a partially transmitting reflector [22].
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Several types of quasi-optical power combiners have been demonstrated over
the past few years. Wandinger and Nalbandian combined the outputs of two
Gunn diodes at 60 GHz using tapered dielectric rod antennas coupled to a Gaus-
sian resonator [19]. Many designs have used microstrip radiators which are syn-
chronized with feedback or an external signal. Stephan et al. investigated the
coupling between open resonators and microstrip circuits at 10 GHz[20]. The
microstrip ground plane and a spherical reflector formed the Gaussian cavity.
Using this configuration, the output powers of two Gunn diodes were combined
in free space[21]. A different approach, shown in Fig. 1.2, involves an array of
weakly coupled patch antenna elements [22]. This method is similar to classic an-
tenna arrays; each patch antenna is a free-running oscillator containing an active
device [23]. The patch elements, which may contain either Gunn diodes or MES-
FET’s, are synchronized using separate DC bias to each device. A dielectric slab
placed above the array also facilitates locking. With this scheme, a 16-element
MESFET array operating at 8 GHz produced 184 mW of power with a DC-to-
RF efficiency of 25%. Linear arrays of patch antennas have also been used to
combine the outputs of Gunn diodes at the second harmonic (18 GHz) [24]. More
recently, a two-sided microstrip configuration has been developed that permits
isolation between an external locking signal and the array output [25]. A differ-
ent approach to quasi-optical power combining is based on integrating solid-state

devices directly into a periodic grid.

1.3 Grid Oscillators

Grid oscillators are periodic arrays with embedded active solid-state devices.
The grid is placed in a Fabry-Perot resonator to provide the feedback necessary
for oscillation. This is illustrated in Fig. 1.3. Two important features distinguish
grid oscillators from most quasi-optical power combiners built from microstrip
circuits. First, grid oscillators do not necessarily have a ground plane and, as

a result, do not rely on the interaction of microstrip modes with free-space ra-
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Figure 1.3 Grid oscillator configuration. An array of active devices is placed in an
open resonator.
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Figure 1.4 Photograph of a 25-element oscillator grid. The devices are packaged
MESFET’s ( Fujitsu FSC11LF) and the substrate is a laminate ( Duroid) fabricated by
the Rogers Corporation.
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diation. Second, microstrip-based power-combiners tend to be a collection of
individual free-running oscillators that are weakly coupled. Thus, the operating
frequency depends primarily on the behavior of the individual oscillators. In con-
trast, the elements making up an oscillator grid are not themselves free-running
oscillators. Mutual interaction of all the devices in the grid is necessary for os-
cillation to occur. Consequently, the oscillation frequency and output power are
strongly affected by the device spacing and the grid configuration. Each device
in the array is presented with an embedding impedance which is a function of the
grid structure. This embedding impedance, together with the device impedance,
determines the grid’s overall behavior as an oscillator.

A variety of transistor power-combining grids have been investigated. The
first transistor oscillator grid, demonstrated by Popovié¢ et al. [26] in 1988, is
shown in Fig. 1.4. The array is built on a dielectric substrate 2.35 mm thick with
a dielectric constant 10.5. Packaged MESFET’s are soldered to the grid. The
metallized backside of the substrate and a planar dielectric slab placed in front of
the grid form a Fabry-Perot resonator. The grid oscillates at 9.7 GHz and gives
an output power of 464 mW with an efficiency of 15%.

1.4 Organization of the Thesis

This thesis consists of two main sections. Chapters 2 and 3, which constitute
the first section, present a simple theoretical framework for analyzing planar
quasi-optical grids. The analysis technique presented is used to derive models
for these grids. The second section, consisting of chapters 4 and 5, presents
experimental work involving the verification and application of these models.

Chapter 2 is an outline of the induced EMF method, a technique used to
analyze radiating structures. This method is applied to planar periodic grids to
find expressions for the grid driving-point impedance. Two simple structures, an
inductive and a capacitive grid, are analyzed to illustrate the application of the

method.
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In chapter 3, the transmission-line models for three different grid configu-
rations are derived. These derivations are based on the analysis presented in
chapter 2. Two of the grids, a rectangular slot array and a bow-tie array, are
suitable for two-terminal device integration. The third structure is compatible
with three-terminal devices and is used as the configuration for planar transistor
oscillator grids.

Chapter 4 describes a quasi-optical reflectometer that uses an HP 8510 vector
network analyzer. The reflectometer is used to measure the reflection coefficient
of the grids analyzed in chapters 2 and 3. These measurements allow us to
evaluate the validity of the grid models derived using the EMF method.

Quasi-optical power combining using planar MESFET grids is the subject
of chapter 5. The planar transistor array analyzed in chapter 3 is used to design
a number of oscillator grids. Two basic grid configurations are examined and a
design procedure is discussed. Experimental results for the oscillator grids are
also presented.

In chapter 6, suggestions for future research involving quasi-optical active

grids are discussed.



9

References

[1] N.C. Luhmann, Jr., “Intrumentation and Techniques for Plasma Diagnostics:
An Overview,” Infrared and Millimeter Waves, vol. 2, Chap. 1, K.J. Button,
ed., Academic Press, Inc., New York, 1979.

[2] T.G. Phillips, D.B. Rutledge, “Superconducting Tunnel Detectors in Radio
Astronomy,” Scientific American vol. 254, pp. 96-102, 1986.

[3] J.C. Wiltse, “Introduction and Overview of Millimeter Waves,” Infrared and
Millimeter Waves, vol. 4, Chap. 1, K.J. Button, ed., Academic Press, Inc.,

New York, 1981.

[4] G. Kantorowicz, P. Palluel, “Backward Wave Oscillators,” Infrared and Mil-
limeter Waves, vol. 1, Chap. 4, K.J. Button, ed., Academic Press, Inc., New

York, 1979.

[5] H. Bierman, “Microwave Tube Design Efforts Yield Steady Performance Im-
provements,” Microwave J., pp. 52-73, June 1988.

[6] J. W. Hansen, “US TWT’s from 1 to 100 GHz,” Microwave J., pp. 179-193,
1989 State of the Art Reference.

[7] T.A. DeTemple. “Pulsed Optically Pumped Far Infrared Lasers,” Infrared
and Millimeter Waves, vol. 1, Chap. 3, K.J. Button, ed., Academic Press,
Inc., New York, 1979.

[8] K.J. Sleger, R.H. Abrams, Jr., R.K. Parker, “Trends in Solid-State Microwave
and Millimeter-Wave Technology,” IEEE MTT-S Newsletter, no. 127, pp. 11-
14, Fall 1990.

[9] Y.C. Shih, H.J. Kuno, “Solid-State Sources from 1 to 100 GHz,” Microwave
J., pp. 145-161, 1989 State of the Art Reference.

[10] T.B. Ramachandran, “Gallium Arsenide Power Sources,” Microwave J., pp.

91-107, 1990 State of the Art Reference.



10

[11] E.R. Brown, T.C.L.G. Sollner, C.D. Parker, W.D. Goodhue, C.L. Chen,
“Oscillations up to 420 GHz in GaAs/AlAs Resonant-Tunneling Diodes,” Appl.
Phys. Lett., vol. 49, pp. 1777-1779, October 1989.

[12] S.P Benz, C.J. Burroughs, “Coherent Emission from Two-Dimensional Jo-

sephson Junction Arrays,” Appl. Phys. Lett., 58, pp. 2162-2164, May 1991.

[13] M.Y. Kao, P.M. Smith, P.Ho, P.C. Chao, K.H.G. Duh, A.A. Jabra, J.M.
Ballingall, “Very High Power-Added Efficiency and Low-Noise 0.15-um Gate-
Length Pseudomorphic HEMT’s,” IEEE Electron Dewvice Lett., EDL-10, pp.
580-582, December 1989.

- [14] C.A. Liechti, “High-Speed Transistors: Directions for the 1990’s,” Microwave
J. pp. 165-177, 1989 State of the Art Reference.

[15] J.A. Higgins, “GaAs Heterojunction Bipolar Transistors: A Second Genera-
tion Microwave Power Amplifier Transistor,” Microwave J., pp. 176-194, May
1991.

[16] K. Chang, C. Sun, “Millimeter-Wave Power Combining Techniques,” IEEE
Trans. Microwave Theory Tech., MTT-31, pp. 91-107, February 1983.

[17] K. Kurokawa, “The Single-Cavity Multiple-Device Oscillator,” IEEE Trans.
Mzicrowave Theory Tech., MTT-19, pp. 793-801, October 1971.

[18] J.W. Mink, “Quasi-Optical Power Combining of Solid-State Millimeter-
Wave Sources,” IEEE Trans. Microwave Theory Tech., MTT-34, pp. 273-279,
February 1986.

[19] L. Wandinger, V. Nalbandian, “Millimeter-Wave Power Combiner Using
Quasi-Optical Techniques,” IEEE Trans. Microwave Theory Tech., MTT-31,
pp- 189-193, February 1983.



11

[20] K.D. Stephan, S.L. Young, S.C. Wong, “Microstrip Circuit Applications of
High-Q Open Microwave Resonators,” IEEE Trans. Microwave Theory Tech.,
MTT-36, pp. 1319-1327, Sept. 1988.

[21] S.L. Young, K.D. Stephan, “Stabilization and Power Combining of Planar
Microwave Oscillators with an Open Resonator,” 1987 IEEE MTT-S Interna-
tional Symposium Digest, vol. 1, pp. 185-188, Las Vegas, NV.

(22] R.A. York, R.C. Compton, “Quasi-Optical Power Combining Using Mutu-
ally Synchronized Oscillator Arrays,” IEEE Trans. Microwave Theory Tech.,
MTT-39, pp. 1000-1009, June 1991.

[23] K. Chang, K.A. Hummer, J.L. Klein, “Experiments on Injection Locking of
Active Antenna Elements for Active Phased Arrays and Spatial Power Com-
biners,” IEEE Trans. Microwave Theory Tech., MTT-37, pp. 1078-1084, July
1989.

[24] A. Mortazawi, T. Itoh, “A Periodic Second Harmonic Spatial Power Com-
bining Oscillator,” 1990 IEEE MTT-S International Symposium Digest, vol.
3, pp. 1213-1216, Dallas, TX.

[25] J. Birkeland and T. Itoh, “A 16-Element Quasi-Optical FET Oscillator
Power-Combining Array with External Injection Locking,” submitted to the

IEEE Trans. Microwave Theory Tech., June 1991.

[26] Z.B. Popovié, M. Kim, D.B. Rutledge, “Grid Oscillators,” Int. J. Infrared
and Millimeter Waves, vol. 9, no. 7, pp. 647-654, 1988.



12

Chapter 2

EMF Analysis for Planar Grids

Planar periodic structures have long been important components for in-
frared and millimeter-wave applications. A periodic array, or grid, of conductors
acts as a frequency selective reflector or transmitter for incident plane waves.
These grids are used in quasi-optical systems as filters[1], artificial dielectrics [2],
beam-splitters [3], and output couplers for lasers [4]. More recently, attention has
turned to structures based on integrating solid-state devices into periodic grids.
Rutledge and Schwarz developed a multi-mode detector array using a grid of
microbolometers[5]. Lam et al. built a monolithic Schottky diode-grid phase
shifter at 94 GHz [6]. Using packaged beam-lead diodes mounted in a bow-tie
grid, Hacker et al. demonstrated a quasi-optical mixer [7]. Grids containing
active solid-state devices have also been investigated for use as oscillators and

amplifiers [8-10].

To reliably design systems made of quasi-optical components, it is essential
to characterize the grids’ electromagnetic properties. Scattering from periodic
structures can be determined rigorously by invoking Floquet’s theorem and us-
ing the method of moments[11-14]. A drawback of this approach, however, is
that a relatively complicated set of equations is generated which must be solved
numerically. Other numerical techniques such as the finite element method [15]
or conjugate gradient method [16] use an iterative approach which may require
large amounts of computer time. The difficulties associated with these rigor-

ous analysis techniques when applied to periodic grids have made approximate
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methods based on equivalent circuit models a convenient alternative [17].

One analysis technique that is useful for determining the equivalent circuit
models for periodic grids is the induced EMF method. This method was first
introduced by Brillouin in 1922 [18] and later developed by Carter [19]. The EMF
method was originally used as a means for calculating the self-impedance of var-
ious antennas. It involves the use of Poynting’s Theorem to find an expression
for the driving-point impedance of a radiating structure. Tai applied the EMF
method to find the input impedance of a biconical antenna [20] and a nice treat-
ment applying the method to a center-fed dipole is given by Elliot [21]. Eisenhart
and Khan [22] later extended the technique to waveguides and used it to derive

the impedance of a waveguide mounting structure.

2.1 Outline of the Method

Application of the EMF method relies on knowing how the currents on
a given radiating structure are distributed. As a result, the EMF method is
primarily used for simple configurations on which the current distribution can be
assumed with reasonable accuracy. The relation between an impressed current,
J(r), and the resulting electric field, E(r), is given by the inhomogeneous wave
equation

V x V x E(r) — kE(r) = —jwud(r), (2.1)

where k = w,/pe. The solution of this equation determines the fields produced by
the currents on a radiating structure. Usually, this involves the dyadic Green’s

function, G(r|r'), for the structure. The solution is given by
E(r) = —jwu/@(r[r') -J(x') do', (2.2)
|4

where the primed coordinates denote the region containing the impressed current

distribution.
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Once a current distribution is assumed and the resulting fields found from
equation (2.2), Poynting’s Theorem is applied to determine the power radiated.

Poynting’s Theorem for phasors is normally stated as

j{ExH*-ds=—/E-J*dv—jw/(ﬂ*.B—E-D*)dV. (2.3)

S v v
In equation (2.3) all quantities are RMS values. The term on the left is inter-
preted as the average power carried by the fields across the closed surface S. The
first term on the right represents the power loss resulting from the flow of electric
currents. This is normally associated with the ohmic losses in the system. The
final term on the right involves the energy stored in the electric and magnetic
fields and can be thought of as the reactive power flowing back and forth between
the fields within the volume enclosed by S. When applying the EMF method,

equation (2.3) is usually rearranged and put in the following form :

-—/E-J*dV:fExH*-ds—l—jw/(H*-B—E-D*)dV. (2.4)
S Vv

The right side of this equation represents the total complex power radiated from
within volume V. This includes the reactive power stored in the fields as well as
that radiated across S. The total complex power can be determined by evaluating
the left side of equation (2.4). For the EMF method, the driving-point impedance,
Z, is calculated by equating the power delivered to Z with the total complex
power radiated. As a result, the impedance is given by
_ 1
| IJ?

/ E(r)- 3*(r) dV, (2.5)

1%

where | I | is the magnitude of the assumed current distribution at the feed point.

2.2 Equivalent Waveguide

Finding the embedding impedance for solid-state devices integrated into

a periodic grid is similar to determining the input impedance for an antenna
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or waveguide mounting structure. The general task of calculating the driving-
point impedance for devices in a finite grid is formidable. Complications arise
from the unknown behavior of the field at the grid edges. In addition, each
device in the array will couple to all other devices through the radiated fields.
Even grids of moderate size generate a large number of unknowns which can
make analysis exceedingly difficult. To make the problem more tractable, it is
usually assumed that the grid is infinite in extent. Under this approximation,
edge effects are ignored. The problem can be simplified further if the grid has

internal symmetries that can be exploited.

For many grid structures, it is common to find planes of symmetry which
leave the grid unchanged with respect to reflection. The simplification that re-
sults from this particular symmetry is illustrated in Fig.2.1. Each cell of the
grid in Fig.2.1 is assumed to contain an identical AC current source. Further-
more, it is assumed that these current sources are locked to a single phase. This
situation represents an array of phase-locked oscillators which is the basis for
a quasi-optical power-combining grid. Symmetry planes which run horizontally
can be replaced with electric walls. This results because identical currents flow
above and below these planes, causing cancellation of the tangential electric field.
Similarly, vertical symmetry planes can be replaced with magnetic walls. Once
again, these arise from image currents. In this way, an infinite grid of phase-
locked sources can be represented by an equivalent waveguide. The equivalent
waveguide has electric walls on the top and bottom and magnetic walls on the
sides. It should be noted that this equivalent waveguide representation is valid
whenever a TEM wave is radiated from or incident on the grid. A plane wave
incident from the z-direction with the electric field polarized along the y-axis will
induce currents on the grid surface. As before, these currents will be in phase

allowing the grid to be represented with an equivalent waveguide.

Planar periodic grids are well suited to the EMF method if the grid struc-
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Figure 2.1 Schematic of a planar grid with reflection symmetry. Two symmetry planes
are shown with dotted lines. If each cell is excited with an identical source, then
horizontal symmetry planes can be replaced with electric walls and vertical symmetry
planes with magnetic walls.
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Figure 2.2 The planar grid equivalent waveguide. The waveguide has electric walls on
top and bottom and magnetic walls on the sides.
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ture has a simple symmetric geometry and the periodicity is smaller than a
wavelength. An EMF analysis is applied to the equivalent waveguide to find the
grid embedding impedance. This embedding impedance may be represented as
a transmission-line circuit which describes the coupling between a device placed
in the grid and a TEM wave.

Given an impressed current, equation (2.2) can be used to determine the
electric field excited in the equivalent waveguide. A different approach is to
expand the field in terms of the waveguide modes. A current source placed at
a waveguide feed will, in general, excite all possible waveguide modes and the
total field will be a superposition of these modes. They are found by solving the

Helmholtz equation,

V2E(r) = k> E(r) (2.6)

subject to the waveguide boundary conditions. Consider the grid equivalent
waveguide shown in Fig. 2.2. Traveling waves propagate along the z-axis and are
characterized by a propagation vector k,. The waveguide modes are classified as
TEM, TM, or TE depending on which field components lie along the direction
of propagation. For a wave propagating in the +z direction, the TEM field

components are given by

E(r)=E g, H(r) = ——\/EE £ (2.7)
where E is a constant. The TM field components can be written as

E, = Ey cos(k,z) sin(kyy)

E, = j]lz_c; Eok, sin(kzz) sin(kyy)
E, = -j:—§ Eoky cos(kzz) cos(kyy) (2.8)
H, = %E Eoky cos(kgyz) cos(kyy)
H, = jwe Eok, sin(kyz) sin(kyy).

ke
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Similarly, the TE field components are given by

H, = Hy sin(k;z) cos(kyy)

k.,
H, = _]E Hok, cos(kzz) cos(kyy)
ks _ )
H, = i13 Hok, sin(k,z) sin(k,y) (2.9)

W ) .
E, = Jkgu Hok, sin(kzz) sin(kyy)

W
E, = ]kzu Hok, cos(kzz) cos(kyy),

[

where k, = mn/a, k, = nn/b, and k2 = k2 + kZ with m and n being integers.
Eo and Hy are constant amplitude factors and a propagation factor of e/(wt—k:%)
has been assumed.

The following sections present the EMF solution for the planar grid equiva-
lent waveguide. General expressions for the embedding impedance are derived in
terms of a waveguide modal expansion. The cases of waveguide excitation with

electric sources and magnetic sources are considered separately.

2.3 Electric Sources

In this section, we consider a planar grid equivalent waveguide which is
excited with an electric current. It is convenient to define a set of orthonormal
vectors which are used to expand the radiated field. This basis is constructed
from the transverse electric field components given in equations (2.7)-(2.9). A

unit TEM vector can be defined as

1
W= —={. 2.10
7Y (2.10)
Similarly, we define a unit TM vector :
iy = 4 [ 00 {k,sin(k,z)sin(kyy)E — kycos(kzx)cos(kyy)j} (2.11)

umn -
abk?
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and a unit TE vector :

~ em € n ] . A ~
Bon = 4/ at())k% {kysin(k,z)sin(kyy)E + kycos(k,z)cos(kyy)7}. (2.12)

The vectors are normalized so that the inner product of any two is given by

a b
(@l ik ) = / / (@) - ik, dedy = Smme Sun Ok, (2.13)
0

where [ and k denote the mode classification of TEM, TE, or TM and § is
the Kronecker delta. These vectors are used in an expansion to represent the

transverse electric field in the equivalent waveguide as
E;y = e + Z ex™ Gmn + Z erl Brn, (2.14)

™

™ ‘and eI® are unknown coefficients. The summations are carried

where eg, e -

out over all waveguide modes. In this expansion, the z-component of the electric
field has been neglected since we assume that currents flow only in the xy-plane.

The impressed electric current, J,,, may also be written as a sum over the basis

vectors

Joy = jotb + Z TM G + Z I8 Bram, (2.15)

where expansion coefficients jo, jAM, and jLE are determined by assuming a
current distribution and evaluating the inner product (Izy|tl,,). We can relate
the expressions for E,, and J,, by applying Maxwell’s boundary conditions. The
tangential components of H are discontinuous across a given boundary on which

a surface current J; flows. We can express this as
Aax (HY —H™) =17, (2.16)

where n represents a unit vector normal to the surface. The superscripts + and —

represent the H-field components above and below the given surface. For the
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equivalent waveguide of Fig.2.2, we assume that current flows only in the z =0

plane. As a result, equation (2.16) may be rewritten as
s + _ —
Joyx 2= (H* -H7)_ . (2.17)

The subscript zy denotes the component of H perpendicular to the z-axis. Equa-
tions (2.17) and (2.15) can be combined to find an expression for the discontinuity

in the H-field. This discontinuity is given by
(HY—H7), =jo (b x2)+ ) jonl (mn X 2)+ Y jor (¥mn X £). (2.18)
m,n m,n

We can relate the transverse components of the H-field with those of the E-field

by the characteristic mode admittances, Y :

HOF = —YOF (BEQF x 2) (2.19)
HO- =YV~ (BED- x 2). (2.20)

In equations (2.19) and (2.20), ! refers to the mode classification (TEM, TM, or
TE) and the superscripts + and — indicate waves propagating in the +2z and —z

directions, respectively. The characteristic admittances for the waveguide modes

YTEM _ /€
M

we

may be expressed as follows:

YoM = (2.21)
k.
k.

YI‘EI? = ;;;’

where k, is the propagation constant and is given by :

k.= \/wzye - (?)2 — (%)2 (2.22)

Maxwell’s boundary conditions also require the tangential electric field be con-

tinuous. This means that the transverse E-field for waves propagating in the +z
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and —z directions must match at the z = 0 plane. Using the expression for the
electric field given in (2.14) and equations (2.19) and (2.20), we can find modal
expansions for HY and H™. For waves propagating in the +z direction, it is
necessary to use the mode admittances looking in that direction. Likewise, for
waves propagating in the —z direction, we use v~ Comparison with equation

(2.18) allows us to relate the electric field and current expansion coefficients :

Jo = _(Y;)TEM-'- + YE)TEM") €o
Jmn == (Y * + Yoa'") eq (2:23)
don =~ (Yo T+ Yar ) e

Equations (2.23) show that the expansion coefficients are related by the parallel
combination of the mode admittances looking in the +z and —z directions. Using
these relations in equation (2.14) and applying Poynting’s Theorem as stated in
equation (2.5), we find the driving-point impedance for the radiating structure.

This is given by

{(Ze™ 1 Z5™7) 1io P+ 1wt I (Zad || ZIM-). (2.24)

m,n

+ D limn P (Zax™ ) Zan7)}-
m,n

C=T1E

In equation (2.24), the || symbol indicates the impedances are to be combined in
parallel. To solve a specific problem, an electric current distribution is assumed.
From this current distribution, the expansion coefficients jp, jiM and JIE
are determined. Once this is done, equation (2.24) can be evaluated to find the
driving-point impedance.

An example to illustrate the application of the preceding analysis is given in
Fig.2.3(a). This grid consists of a series of equally spaced vertical metal strips.
The grid unit cell is shown in Fig.2.3(b). A current distribution is assumed on

the strip and then used to determine the expansion coefficients. If the unit cell
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dimensions are smaller than a wavelength, we may assume that the current is

uniform along and across the strip :

Jpy = 2 7. (2.25)

Iy/w, if2s¥ <g< 9—'!2'31; .
0, otherwise.

With this distribution, the current expansion coefficients become :

. b
Jo=\/:10
a

M9 (2.26)

Jmn

/2b
JIE 2; Io cos(%) sinc(ng;w),

where we define the sinc function as

sin(z) (2.27)

sinc(z) =
T

Inserting these expressions into equation (2.24) , we find a formula for the im-

pedance of the grid :

Z = 2 (gmoms ) grmney 4 (2.28)
a
2 S cosz(g) sinc2(———m7rw)(ZTE+ I ZTE_)
a — 2 28, mo mo0 ‘

The grid impedance consists of two distinct terms which are added in series. The
first term is a parallel combination of TEM mode impedances. TEM modes do
not have a cutoff frequency and thus represent power propagating from the grid.
These modes can be represented in the equivalent circuit model with a parallel
combination of transmission lines of characteristic impedance (b/a) Zg M+ and
(b/a) ZE EM= " respectively. The second term is a sum over the waveguide TE
modes. The TE mode impedances are given by wp/k,. In most applications, the
dimensions of the waveguide or unit cell are chosen so that all but the lowest order

(TEM) mode are cutoff. As a result, the TE modes are normally evanescent,
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equivalent waveguide

current source

N\

(a) (b)

Figure 2.3 (a) A grid of vertical metal strips and (b) the resulting equivalent wave-
guide.

Figure 2.4 Equivalent transmission-line model for the inductive grid. The inductance
is calculated by summing over the TE modes of the equivalent waveguide.
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giving a reactive impedance of jwu/|k,| . Evanescent TE modes are inductive
and thus the second term in equation (2.28) represents an inductance in series
with the current source excitation. The equivalent transmission-line model for
the grid is shown in Fig.2.4. In this model, the current source can be replaced

with a short to represent a passive grid of vertical metal strips.

2.4 Magnetic Sources

Often it is more convenient to formulate the EMF solution to a problem in
terms of a voltage excitation rather than a current excitation. An example of this
is the grid shown in Fig. 2.5. This grid consists of an array of horizontal metal
strips. It is the dual problem to the inductive grid and can be solved assuming
a voltage excitation in the gaps between the metal. This voltage excitation can
be represented as a magnetic current flowing between the strips.

Magnetic currents, M, are included in Maxwell’s equations by augmenting

Faraday’s law :

VXE=-M — jwpH (2.29)
subject to the boundary condition,
(E* —E7) x v = M, (2.30)

where Mj is the surface magnetic current and 7 is the unit vector normal to
the surface. As in the case of electric current excitation, it is convenient to
define a set of orthonormal vectors which are used to expand the radiated fields.
These vectors are constructed from the magnetic field components in equations
(2.7)-(2.9) and are given by :

1

W=—=2z

Vab

Gy = e:g;g“{ kycos(kyz)cos(kyy)d + kosin(kzz)sin(kyy)g}  (2.31)

~ €m0 €on ~ . . ~
Omn = abi2 { —kocos(kyz)cos(ky,y)z + kysin(k.z)sin(kyy)j}.
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equivalent waveguide

T

w' !b

.
////////////////////////////////////////

(a) (b)

Figure 2.5 (a) Schematic of a capacitive grid consisting of horizontal metal strips. (b)
The equivalent waveguide for the grid with a magnetic current excitation.

As before w denotes the unit TEM vector and @y, and 0, are the unit TM and
TE vectors, respectively. The magnetic field and magnetic current distribution

re expanded in terms of this basis with unknown expansion coeflicients
H, _hw+Zh£M m+Zh (2.32)
M,, = mew + Z miM G + Z myr (2.33)
For a magnetic current excitation, the tangenti l magnetic field at z = 0 is

continuous while the tangential electric field is discontinuous as given in equa-
tion (2.30). Applying the boundary condition (2.30), we find that the magnetic
current and field expansion coefficients related by :

mo = —(Zg "Mt 4+ ZTEM=) g,
mIM = _(ZTM+ 4 7TM=) ;TM (2.34)

m _(ZT + +ZT )hTE
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From equation (2.34) and Poynting’s Theorem, we find the driving-point admit-

tance for the grid :

1
Y=—— [ H-M*d
|V12/ v
Vv

1 e —_———
=N {(ZIEMF 4 Z20PM7) T mg P + > (ZENF + ZI ) T ma P (2.35)

m,n
+ Y (ZaEt 4+ 2o ) misl? )

An interesting feature of this equation is that the mode impedances add in series
rather than parallel. This is a consequence of using a magnetic current source
which requires the tangential electric field be discontinuous at z = 0. For a real
grid, the tangential electric field is continuous at z = 0, which means the mode
impedances should add in parallel. This can be understood by examining the re-
lationship between an antenna and its dual and complementary structures. Dual
and complimentary antennas are closely related by the Schelkunoff equivalence
principle. Consider the antennas shown in Fig.2.6. Each antenna is assumed
to lie in the z = 0 plane. Usually, this is at the interface between two different
dielectric media. For the dual antenna, magnetic current flows only on the mag-
netic conductor. An analogous situation exists for the complementary antenna
where electric fields vanish on the electric conductor’s surface. The admittance of
an antenna made of electric conductors can be calculated by finding the voltage

appearing across the antenna feed and dividing it into the input current:

Y = (2.36)

1
V
where,

V:—/E-dl, and I::f H-dlL (2.37)

The input voltage is determined by integrating the electric field across the an-

tenna feed. A dielectric interface presents no problem because the tangential
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Figure 2.7 Transmission-line model for the capacitive grid.

z < 0. As a result, the impedances looking in the two different directions add
in series. In an actual grid, there are no magnetic conductors. This means the
series connections for the mode impedances in equation (2.35) should be changed

to parallel connections. Hence, the admittance of the grid is given by :

1 - pu—
Y = W {(YOTEM+ + YOTEM )|m0|2 + Z (YI;TIIIVI+ + ygi\/l )ImElII\I/I 2 (2.39)

m,n

+) (Yt + Y Dlmanl® ).

We can apply this analysis to the equivalent waveguide of Fig.2.5. A mag-

netic surface current is assumed in the gap and is given by :

Vo/w, if BS® <gy < bdw. |
M:z: = ’ 2 - - 2 2.40
Y { 0, otherwise. ’ (2:40)

which results in the following expansion coefficients :

m0=\/—gV0

miE = () (2.41)

mn
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2a nnw nrw
™™ ]
My = ”_—b Vo cos( 5 ) sinc( % ).

Using these coefficients in equation (2.39) gives the following expression for the

grid admittance :

vy = _}a; (YOTEM++Y6TEM—) + (2.42)
25 cos%%) sinc? (nﬂw)(YTM+ Y, M-

n=1

Like the inductive grid, the input admittance consists of two terms. The first
is the propagating TEM mode which is represented with a transmission-line.
In parallel with this is a term consisting of a sum over the TM mode admit-
tances. Below cutoff, these modes are capacitive and are represented by a shunt
capacitor. The transmission-line model for the grid is shown in Fig.2.7. The
capacitance is calculated by adding the TM admittances looking in the forward
and backward directions and summing over the modes. It is interesting to note
that the capacitive grid of Fig.2.5 is the complement of the inductive grid in
Fig.2.3. The impedances of complementary structures are related by Booker’s
relation [23]. As a result, the expression for the admittance of the capacitive
grid can also be derived by using equation (2.28) and substituting directly into

Booker’s formula.

2.5 Stationary Character of the EMF Solution

The EMF method presented in this chapter is based on the principle of con-
servation of complex power. An expression for the driving-point impedance of a
radiating structure is found by equating the complex power in the electromag-
netic fields with the power delivered by a current or voltage source at the feed
point. It is also possible to formulate a solution based on the Lorentz Reciprocity
Theorem. The reciprocity theorem is conveniently expressed in terms reactions

[24]. The reaction of field a with source b is defined as

(a,b) = / J,-E, — M, - H, dV. (2.43)
Vv



30

Reaction is a complex quantity which has units of power. However, it is different
from complex power in two respects. First, the complex conjugate of the current
is used in the expression for power. Second, the reaction is defined for a source
with respect to the field produced by another source. Using equation (2.43), the

reciprocity theorem can be expressed as
(a,b) = (b, a). (2.44)

The input impedance at the feed of an antenna can be written in terms of the

self-reaction of a source placed at the feed [24] :

(a,a) 1
Z = — ——— | B,-3,ds, 2.45
B 7/, (2.45)

where I is the input current. Essentially, this expression is a statement that the
input impedance is the ratio of voltage and current at the feed point. This is in
contrast with the formulation based on Poynting’s Theorem where the impedance
is found from power considerations.

An intriguing feature of equation (2.45) is that the impedance calculated
with this formula is stationary with respect to small variations in the source
distribution, a. Harrington discusses this in detail [24]. The stationary character
of the solution is easily shown by assuming the source distribution can be written

in the following form :

a=c+ex (2.46)

where ¢ is the true source distribution, x is an arbitrary error function which
satisfies the boundary conditions of the problem, and € is a small real parameter.
The variation of the input impedance with the approximate source distribution is
found by substituting equation (2.46) into (2.45) and differentiating with respect

to e :
d7;

de __115_ {{e.x) + {(x,¢) +2¢(x, x) }- (2.47)
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The reactions in equation (2.47) are evaluated for the region containing the an-
tenna. For small variations about the true source distribution, we set ¢ = 0.

Using reciprocity, we find that

% _ —% (c,x) = 0. (2.48)
The second equality comes from the fact that the true electric field, ¢ is zero on
the antenna’s conducting surface. The only place where the electric field does
not vanish is at the feed point. However, the error function, x, is zero there. As
a result, the variation of the input impedance with current distribution is zero
to first order and equation (2.45) is a stationary formula. It therefore follows
that a first-order approximation for the source distribution yields a second-order
approximation to the input impedance.

Strictly speaking, the input impedance found from the induced EMF method
is not stationary. The difference in the impedance formula for the EMF method
is that the complex conjugate of the source current is used. However, if the
assumed current distribution is real, the EMF method leads to an impedance

identical to that found from equation (2.45) and thus gives a stationary solution.
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Chapter 3

Planar Grid Transmission-Line Models

An attractive feature of planar periodic grids is their capacity to accom-
modate solid-state devices. In addition, the performance of the grids can be
understood in terms of an equivalent circuit model. In the previous chapter, a
method for obtaining these models for geometrically simple grids was presented.
Inductive and capacitive grids were analyzed using the induced EMF method
and the corresponding transmission-line models derived. While these grids are
suitable as filters and polarizers, they are not very useful structures to integrate
with solid-state devices.

A variety of structures such as rectangular slot arrays and bow-tie grids are
amenable to two-terminal devices. Often, the analysis of these grid configura-
tions require the use of both electric and magnetic sources to find a complete
transmission-line model. This introduces an additional complication in the EMF
analysis. Furthermore, transistor arrays present the problem of how to deal with
the third device terminal. In the following sections, grid configurations which

are compatible with two- and three-terminal device integration are examined.
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3.1 Rectangular Slot Arrays

One grid configuration which readily permits integration of two-terminal
devices is the rectangular slot array. A schematic of the grid is shown in Fig. 3.1.
This structure has been the building block for several previous quasi-optical grids
including a multi-mode detector array [1], a Schottky diode grid phase-shifter [2],
and a diode-grid multiplier [3]. The equivalent waveguide for the grid, shown
in Fig.3.2, is closely related to the waveguide mounting structure investigated
by Eisenhart and Khan[4] and may be analyzed using the same method. The
main difference is the unit cell is a slot configuration which is most conveniently
analyzed using duality. For the analysis, we assume a current I, flows along the
vertical metal strips. We also assume this current is uniform and thus specifies
an “aperture” magnetic field, Hx. The “aperture” refers to the vertical metal
strip in the unit cell and is dual to the gap or aperture in Eisenhart and Khan’s
waveguide post. If the aperture field is uniform along the y-direction, it can be
written as :

(3.1)

I i <
Hy = -2 {1, if0<z<g s

g |0, otherwise.
The spatial dependence of Hy can be expressed in terms of a Fourier series

expansion :

Iy — . mm mnz., .
Ha(e,y) = =2 Y emo sinc( ag)cos( =) &. (3.2)
m=0

Ha serves as an excitation for the grid unit cell and is analogous to a uniform
electric field in a waveguide post feed. The aperture magnetic field gives rise
to a magnetic current, M, which flows in the z-direction as shown in Fig. 3.2.
Making the assumption that the magnetic current is uniform across the gap, we

may write M as :

M(z,y) = <2 u(z) u(y) &) 4, (3.3)

where the spatial dependence of M on z is described by u(z), é(2) is the Dirac
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device

equivalent
waveguide

Figure 3.1 Schematic of the rectangular slot array. Devices are embedded in the
vertical leads and DC bias is fed along the horizontal metal strips.

electric wall

" magnetic
wall

Figure 3.2 Equivalent waveguide for the slot array. An aperture magnetie field, Hp %,
assumed on the metal strip drives a magnetic current, M, as shown.
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delta function, and u(y) is given by :

_J1, for0<y<w
uly) = { otherwise. (34)

The power generated by the aperture field, Ha, is evaluated by using Poynting’s

Theorem :

a b
P = —// Ha - M* dzdy (3.5)

0 0

I (o o}
= 0Vo Z €mo smc(

a

iy / u(z) cos("T2) da.

m=0

From equation (3.5), we see that the total power generated is a summation of

individual power harmonic terms, Pp,, and may be expressed as:

P:ipmzloi Vm=102i) Zn. (3.6)

The last two equalities come from assuming that a constant current, Iy, is main-
tained on the vertical metal strip. Equation (3.6) shows that the impedance
harmonic terms, Zy,, add in series. As a result, the driving-point impedance for

a device in the grid can be calculated by summing over the impedance terms:
00 0 2
Vi
=Y Zm=) B (3.7)
m=0 m=0
The power delivered by the grid can also be determined by calculating the
total power in the radiated fields. This is done by applying equation (2.39) in

the preceding chapter. Evaluating the inner products for the TEM, TM and TE

mode expansion coeflicients, we find that the total power is given by:

V2 oo o0 k YnTM +k2YTE
P=- Z Z €mo0€on SINC> (nﬂw){ == 2 L (3.8)
m=0 n=0 ¢

a

x(/ u(a:)cos(

0

)dw) .
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In this expression, the admittances Y,'M and Y,IF are assumed to be parallel
combinations of the wave admittances looking in the +2z and —z directions. Also
note that the TEM mode is included with the m = 0, n = 0 term. From equation
(3.5) we find Vy, which is used with equations (3.7) and (3.8) to find the grid

driving-point impedance:

b €mo sinc?(BI8)
7 =— a
=D

= . (3.9)
o > @ sinc?(AP){k3YIM + 2VIE}
n=0 ¢

o
m==

In this expression for the grid embedding impedance, the spatial harmonics as-
sociated with the y-direction add in parallel while the harmonics associated with
the z-direction add in series. A circuit model representing this embedding im-
pedance is shown in Fig.3.3. The m = 0 term consists of a parallel combination
of TEM and TM modes. Because the TEM modes are propagating waves, they

are represented as a resistor. The TM and TE modes are indicated with capac-

I, Z[EM% —— ¢, m=0

m=1
m=2
I m
|

Figure 3.3 Lumped-element circuit model for the slot array embedding impedance.
The TEM mode is represented by a lumped resistor. TM and TE modes are shown as
capacitors and inductors, respectively.
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a

Figure 3.4 Transmission-line model for the rectangular slot array.

itors and inductors, respectively. Fig.3.3 is a lumped-element representation of
the grid as seen by devices embedded in the vertical metal leads. An equivalent
transmission-line model for this circuit is shown in Fig.3.4. The TEM mode is
represented with a transmission line. A gap capacitance appears in parallel with

the transmission line and is given by :

_ 1 2~ o7 yIM+ | 3 TM-
C_jw o nzz;cos(2)s1nc % )( + Y5 ') (3.10)

which is the same capacitance calculated in equation (2.42). The remaining terms
(m > 0) consist of both capacitive (TM) and inductive (TE) modes which appear
in series with the embedded device. In Fig. 3.4, these terms are represented with
a series impedance which is given by:
2b — sinc?(TIE)
m>0 - ; z=:

= (3.11)
2 % 2 sinc?(2E ) { kY IM + K2V IE

At low frequencies, the inductive modes dominate so that Z,,5¢ can be inter-

preted as the lead inductance of the vertical strip.
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3.2 Bow-tie Grids

The bow-tie antenna is a structure which is also attractive for integration
with two-terminal devices. One advantage of the bow-tie is that its input imped-
ance is not a strong function of frequency. In fact, the impedance of an infinite
bow-tie antenna is independent of frequency. As a result, this structure allows
for the possibility of constructing very broadband circuits. The quasi-static im-
pedance, Zy;, for the bow-tie on a semi-infinite dielectric substrate may be de-
termined from transmission-line theory [5,6]. In this analysis, the antenna input
impedance is calculated as the characteristic impedance of a radial transmission

line and is given by
2 K(k)
e +1 K'(k)’

where K (k) and K'(k) are elliptic integrals, €, is the substrate dielectric constant,

(3.12)

Zy = o

and k = tan?(45° — 6/4), where 0 is the bow-tie angle. A rigorous analysis of the
bow-tie antenna based on the method of moments was developed by Compton [7]
and gave good agreement with measured results.

An array of bow-tie antennas, shown in Fig. 3.5, may be analyzed using the
techniques outlined in chapter 2. To find the equivalent circuit for the bow-tie
unit cell, we assume an impressed electric current flows on the bow. In addition,
an electric field will exist between the bow and the electric wall of the equivalent
waveguide. We can account for this by assuming a magnetic current flows in the
gap. The charge distribution on the diagonal metal strip representing a bow-tie
in the unit cell can be determined by conformal mapping techniques. This charge
distribution will have a singularity along the edge of the bow. In the quasi-static
approximation, the current density will have the same edge singularity [8] and

may be expressed as

I0/7' o
J = .
(r,¥) sin?¢ — sin2y " (3.13)

where ¢ is the angle of the bow and 0 < 3 < ¢. This current distribution is used

in the EMF analysis of the previous chapter to find an expression for the bow-tie
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equivalent
waveguide

Figure 3.5 Schematic of a bow-tie grid. The equivalent waveguide is shown with solid
lines representing electric walls and dashed lines representing magnetic walls.

b TEM- b _TEM

,___
N
g
E

o

device

Figure 3.6 Transmission-line model for the bow-tie grid. The bow-tie antennas are rep-
resented as a shunt transmission line with characteristic impedance Zp,,, and electrical

length 0,-
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input impedance. Application of equation (2.28) gives us

oo

— 1 c 2 TE+ TE-
7= Z 20n ¢ A o (ZIE+ ) ZTE-), (3.14)

where

j‘f cos(k,y tany) cosk d'(/)d
00 \/sm"’qb—sm%b vy y

Apn = . (3.15)
f 4y
0 \/sin?¢—sinZy

In equation (3.14), the TEM mode is included when m = 0, n = 0. The electric

current couples to TE modes which gives rise to an inductance for the bow-tie
grid. This expression gives only part of the impedance because power stored
in the electric fields between the bow-ties has been neglected. We include this
contribution by assuming a magnetic current flows between the bow-tie antennas.
The magnetic current is assumed to have the same form as the electric current
in equation (3.13) and is given by

My /r A

M(r. &) = \/sin20 — sin2¢

where § = 90° — ¢ and 0 < £ < 6. Application of equation (2.39) gives us

(3.16)

1 k2
Y =— Z 2€mo k—; B2 (YVaM+ yyIM-) (3.17)
m=0 Y

where

a 6
[J cos(kyz tanf) cosk,r dfdz
00

\/s1n20-—s 2¢
B = 2 . (3.18)

f —de
0 \/sin28-sin?¢

The magnetic current couples only to the TM modes and leads to a bow-tie

capacitance. This capacitance may be considered as distributed along the length
of the bow-tie. Equation (3.17) gives an expression for the total capacitance of

a bow in the unit cell. Similarly, the inductance calculated in equation (3.14)
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is also distributed along the length of the bow. As a result, the bow-tie array
can be modeled as a section of transmission line with net inductance given by
equation (3.14) and net capacitance given in (3.17). It is straightforward to show
that these equations satisfy Babinet’s principle for a bow-tie flair angle of 45°.

The characteristic impedance, Z3,,, and electrical length, 8,4, of the bow-tie

Z
Zhow = A/ 7 (3.19)

Ohow = VZY. (3.20)

transmission line are given by

and

The bow-tie grid model is shown in Fig. 3.6. The transmission line representing
the bow-tie grid appears in shunt across a second transmission line which models
propagating TEM waves.

A device embedded in a bow-tie grid couples to an incident TEM wave
through a short section of transmission line. The characteristic impedance for a
45° bow-tie grid on a substrate of ¢, = 10 is about 78 2. This value can be made
larger or smaller by adjusting the aspect ratio of the unit cell. The electrical
length of the bow-tie is typically only a small fraction of a free-space wavelength.
With a backshort used for reactive tuning, the bow-tie structure can offer an
excellent means of matching solid-state devices to incident electromagnetic radi-

ation [9].

3.3 Planar Transistor Grids

The grid configurations discussed so far have been well-suited for integra-
tion with two-terminal solid-state devices. However, it is also possible to em-
bed three-terminal devices such as transistors and contiguous domain oscillators
(CDO’s)[10] into a periodic array. Transistors, for a variety of reasons, are at-

tractive devices for use in a quasi-optical grid. Two of the device terminals can



equivalent
waveguide

radiating

—— leads

Figure 3.7 Configuration of a planar transistor grid. Bias lines run horizontally across
the grid while the radiating leads run vertically as shown. Adjacent rows of devices
share bias lines. The equivalent waveguide is shown with solid lines for electric walls
and dashed lines for magnetic walls.

couple to an output wave leaving the third as a separate input terminal. By
attaching the terminals to antennas designed to receive and transmit orthogo-
nally polarized waves, it is possible to build a plane-wave amplifier [11]. The grid
embedding circuit can also be used to provide feedback between the device input
and output to create an oscillator [12]. Other applications have included using
the transistor as a tuning element to electronically vary the resonant length of
slot antennas[13]. One question that arises when using transistors as the active
element in a quasi-optical array involves how to accommodate the third device
terminal. The design must provide DC bias to the transistors as well as al-
low a means of coupling the devices to free-space radiation. In addition, a grid
configuration which is completely planar has certain advantages with respect to
monolithic integration. For the two-terminal device grids, DC bias is fed from

the sides of the grid on horizontal metal lines. These bias lines are perpendicular
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to the polarization of the incident and radiated electric fields. This suggests the
planar configuration of Fig. 3.7 is a suitable design for a quasi-optical transistor
grid. In this design, adjacent rows of transistors are oriented so they can share
bias lines. The devices themselves are placed on (or embedded into) a central
bias line which runs through the center of the unit cell. By orienting the devices
in this way, the mirror symmetry of the array is preserved and this allows a unit
cell equivalent waveguide to be defined. Currents on the vertical leads couple
directly to radiation polarized along the y-direction. However, from the grid
symmetry, currents on the bias lines cancel at the sides of the unit cell.

To apply the EMF method of the preceding chapter, we need to assume a
current distribution on the transistor leads. A schematic of the grid equivalent
waveguide is shown in Fig.3.8(a). Two of the transistor terminals are connected
to the vertical leads. We designate the currents on these leads as I; and I.
The third device lead is connected on both sides to a horizontal bias line and
carries a total current of I3. By symmetry, half of I3 will flow to the left of the
device and half to the right. In addition, these horizontal currents must vanish
at the sides of the unit cell where there is a magnetic wall. This leads us to
the distribution shown in Fig. 3.8(b) for the current on the horizontal lead. The
current is assumed to be piecewise continuous and varies linearly with distance.
We also assume that the current density is uniform across the lead. Thus we

write the horizontal current as :

I .
Ti(z,,2) = 5 h(@)h(y)o() & (3.21)
where
—2z/(a — w), for 0 <z < 25%;
h(z) =< (2z —a)/w, for 25% <z < gjzﬁ; (3.22)
—2(z —a)/(a—w), for 23X <z <a
and

1, forc— ¥ <y<c+ %,
— ’ 2 =YY= 2 1
h(y) = {0, otherwise. (3.23)
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Currents flowing in the vertical direction are also assumed to be uniform across
the leads. Furthermore, because they flow into and out of electric walls, we can
assume these currents are uniform along the leads. However, I; and I, may differ
in magnitude and phase because they connect to different leads of the transistor.

As a result, we assume the vertical currents can be written as :

To(@,9,2) = vz W)E) § (3.24)
where
_I2/W for 0 <y <c—%
wws (y —c+ws/2)+
v = ww, (Y —e—we/2), fore—"p Sy<cd P (3.25)
I /w, for c + % <y < b;
and
1, for 22¥ < g < atw.
= ? 2 >~ ~ O
o= { 0, otherwise. (3.26)

The vertical current distribution as a function of y is shown in Fig. 3.8(c). In
these formulas, Iy, I3, and I3 are assumed to be phasor amplitudes which may
have different magnitudes and phases. The only assumptions made about the
currents concern their spatial distribution along and across the leads. Using these

current distributions and evaluating the inner products, (Jxy|a!,,), we find:

) 1
Jo = ﬁ (Il(b - C) - CIz)
o™ _ [2€mo - mT @
Jon = abi2 cos( )sm( )smc( )smc( 2b )><
} (3.27)
JIB 2¢0n cos(————) sm(-————) smc( ) smc( )x
o abk? 2b
k ky
{—k: _E(IH_I?)}'
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transistor

(a)

gl 1)

(b) (¢)

Figure 3.8 (a) Schematic of an equivalent waveguide for the planar transistor grid.
The radiated field is assumed polarized in the y-direction. (b) Current distribution
along the horizontal lead and (c) vertical lead.
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In addition, the currents flowing into and out of the transistor must satisfy Kir-

choff’s Law
L +1,+1; =0. (3.28)

Applying Kirchoff’s Law to the current expansion coefficients given in equation

(8.27) and using the complex power expansion of equation (2.24), we obtain the

following expression:
P={1-r)?(Zo+Z1)+Zc+Z } L I}+ (3.29)
{r? (Zo+ Z1L)+ Zc+ Z YLIy —{r(1 = 1) (Zo + Z1L) — Z¢ — Z I
~{r(1=r)(Zo + Z1) — Z¢c — Z} 11 I3,

where the r = ¢/b and impedance terms are defined as:

Zy = 2 (25 BMt || ZBM) | (3.30)

2= 3 ol (5) i () (ZE* 1 285) 3)
Ze=2 i g () e () (8% 1 Z807) G
z- 2 f; & cost(B2) in (22 sinc? (2 sinc?(222)x  (3.)

2 \2 ;TM+ || zTM- ke kya 2 TE+ || »TE-
1— Z Z — 4+ ——)" Z Z .
(- 2007 2B 2B+ (4 ) 2 1 23

There are four distinct impedance terms in equation (3.29). Z, is simply
the parallel combination of the TEM impedances looking in the +z and —=z
directions. Zp is a sum over TE mode impedances and appears in series with
Zy. It represents the inductance associated with the vertical leads. Similarly, Z¢

is a combination of TM mode impedances and gives rise to a capacitive term in



50

O— (1—=r)(Z0+21) r{(Zo+2r) [ °

]

Z+Z¢c
—r(1-r)(Zo+2;)

Zo+ 21,

3
(b)

Figure 3.9 (a) Two-port equivalent network for the planar transistor grid. (b) Tran-
sistor grid network model with the center-tapped transformer.
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the impedance expression. Finally, there is a term denoted as Z which is a series
combination of TM and TE modes. This represents capacitive and inductive
impedances connected in series. Equation (3.29) is somewhat different than the
previous formulas for the grid driving-point impedance because it involves two
current excitations, I; and I;. The form of equation (3.29) is reminiscent of
the expression for the complex power delivered to a two-port linear network.
Two-port linear networks are characterized by an impedance matrix relating the
voltages and currents at the network terminals. By inspection, we can write
the impedance matrix of the transistor grid directly from equation (3.29). This
two-port network is shown in Fig. 3.9 connected as a “T” equivalent model. The

terminal labels (1,2,3) correspond to the transistor currents (I, I3, I3).
H

In the “T” model for the grid, a common impedance term, Zg + Z,, appears
in all three branches. The arrangement of the impedances in this network can
be represented with a circuit containing a center-tapped transformer as shown

in Fig. 3.9(b). The impedance term, Zy 4 ZL, appears on one side of the trans-

01 L

~ TEM+
ZO

Figure 3.10 Equivalent transmission-line model for the planar transistor grid. Propa-
gating TEM modes are represented with transmission lines and evanescent modes with
reactive lumped elements. The transformer turns ratio is given by r = ¢/b.
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former, which has a total turns ratio of 1 : 1. On the side with the center
tap, the turns ratios are r and 1 — r, respectively with the impedance, Z¢ + Z,
appearing in the center lead. The two networks shown in Fig.3.9 are equiva-
lent. However, the circuit of Fig. 3.9(b) is more useful with regard to finding
the embedding impedance a transistor sees when placed in the grid. The grid
equivalent transmission-line model is shown in Fig. 3.10. In this model, the
TM and TE mode impedances are represented explicitly using capacitors and
inductors. Terminals 1 and 2 of the circuit represent connections to the vertical
leads of the grid. Currents in these leads couple to the radiated field through the
transformer. TEM waves propagating to and from the grid are represented with
transmission lines. In addition, there is a lead inductance, L, associated with TE
modes excited by currents flowing in the y-direction. The third terminal of the
transistor is connected to the horizontal lead running through the center of the
unit cell. Currents on this lead are perpendicular to the radiated field and thus
produce evanescent TE and TM modes which are modeled with reactive lumped
elements. It should be noted that the model neglects the capacitance between
the grid bias lines. This is justified if the bias lines are sufficiently thin and far
apart.

The planar grid transmission-line model shown in Fig. 3.10 is general in that
it makes no assumption as to how the transistor is connected to the grid. Two
transistor leads will radiate and the third will couple to this radiation through
the center lead reactive elements. In effect, the center lead is a path that provides
feedback at a frequency determined by the resonance of these reactive elements.
In choosing the dimensions for the unit cell, the reactance in the feedback path
can be adjusted to produce instability at a particular frequency. In this way, a

planar grid oscillator can be realized [12,14].
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Chapter 4

Quasi-Optical Reflectometer Measurements

In the previous chapters, we used the induced EMF method to derive trans-
mission line models for several different planar grids. These models are based on
the assumption that the grid is infinite in extent and the devices in the grid are
identical. Furthermore, in applying the EMF method we assumed the current
distribution on the grid was either uniform or could be represented with simple
piecewise linear functions. Transmission-line models are only approximate rep-
resentations for planar grids because they neglect edge effects and diffraction.
In addition, the embedding impedance calculated from the EMF method can be
inaccurate if the assumed current distribution is significantly different from the
true distribution. For these reasons, it is desirable to verify the grid transmission-
line models by measuring the driving-point impedance the grid presents to an
embedded device.

A transmission-line model for a grid of two-terminal devices is shown in
Fig.4.1. A device placed in the grid sees an impedance Z;, and a plane wave
incident on the grid sees a reflection coefficient I'. Ideally, we would like to
measure the input impedance Z;,. For a finite grid, this involves placing devices
(or equivalent loads) in each unit cell and measuring the impedance at one pair
of input terminals. A difficulty with this method is that an impedance probe
must be placed at the unit cell terminals without disturbing the fields around
the grid. Also, during the measurement, all the devices in the grid must be

locked in phase as they are when the grid is operating normally. As a result,
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Figure 4.1 A grid transmission-line model. The grid embedding circuit can be de-
termined by measuring the driving-point impedance Zj, or the reflection coefficient
presented to an incident plane wave I'.
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Figure 4.2 Schematic of the small aperture reflectometer used by Lam [6].
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many researchers have developed more practical techniques based on waveguide

simulators and quasi-optical reflectometers.

4.1 Grid Measurement Techniques

One method for measuring the driving-point impedance Z;, is to simulate
the grid in waveguide. This approach allows the entire grid to be represented
with only a few elements or a single unit cell. Hannan and Balfour developed a
technique for determining the impedance of phased-array antennas using a vari-
ety of apertures placed in metal waveguides[1]. In their experiment, radiation of
different polarizations and incident from various directions is simulated by excit-
ing different metal waveguide modes. The impedance of elements in the array is
determined by measuring the reflection coefficient with a slotted line. More re-
cently, Pance and Wengler modeled two-dimensional grids using a parallel-plate
waveguide and a rectangular dielectric rod [2]. Metal plates replace the electric
walls of the unit cell equivalent waveguide and the dielectric rod simulates the
grid substrate. A small hole in the metal plates allows access to the waveguide
feed input terminals. The grid driving-point impedance is then measured with a
microwave network analyzer.

Modeling of grid arrays in waveguide is convenient because the number of
grid elements needed is greatly reduced. There are, however, several drawbacks
to the method. Precision machining is required to reproduce the details of the
grid unit cell. Furthermore, there is no easy way to duplicate the magnetic
walls on the sides of the grid equivalent waveguide. Finally, array simulation
using waveguides becomes difficult at high frequencies thus making scaled mod-
els necessary. For these reasons, measurement methods based on quasi-optical
techniques are attractive, particularly at millimeter-wave frequencies.

If a known load is placed across the input terminals of Fig. 4.1, then the grid
embedding impedance can be deduced from the reflection coefficient I'. Several

different quasi-optical systems have been developed to measure the reflection
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coeflicients of planar structures. Many of these systems use beam splitters and
power sensors to sample the field intensity at various measurement planes and
are thus equivalent to the six-port reflectometer [3]. Using horn antennas and
dielectric lenses, the reflection coeflicient of dielectrics can be measured with great
precision. Stumper used a four-port quasi-optical reflectometer to measure the
complex dielectric constant of fused silica at 390 GHz with an uncertainty of 0.02
in magnitude and 2° in phase[4]. An alternative method is based on measuring
the interference of the reflected wave with a reference signal. With this scheme,
it is only necessary to use one power detector if the phase relationship between
the reflected and reference signals is variable and reproducible [5]. This approach
was used by Lam to measure the reflection coefficient of a monolithic Schottky
diode-grid phase shifter at 93 GHz [6]. A schematic of the reflectometer is shown
in Fig. 4.2. A horn antenna illuminates the grid which is surrounded by microwave
absorber. Reflection of the wave off the absorber provides a reference signal which
interferes with the wave reflected from the grid. By sampling the intensity of the
interfering waves at 90° intervals, the complex reflection coefficient of the grid
can be determined. These 90° phase shifts are introduced by translating the grid
relative to the absorber at intervals of one-eighth of a wavelength. Roberts and
Compton extended Lam’s method to obtain measurements over a continuum
of frequencies [7]. Their technique used a magic tee to split the signal from a
synthesized sweeper. Part of this signal was sent to a diode detector as the
reference and the remainder fed a horn antenna which illuminated the grid. The
advantage of this method is the reference and reflected waves are combined in

waveguide and thus only one horn antenna is needed for the measurement.

4.2 Reflectometer Model

For reflectometer measurements up to 40 GHz, it is convenient to use a
microwave network analyzer. Computer controlled network analyzers have a

variety of features such as automatic error correction and the ability to store,
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Figure 4.3 (a) Schematic of a quasi-optical reflectometer using a network analyzer. (b)

Network representing the reflectometer. Systematic errors are modeled with a two-port
error network.
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Figure 4.4 Signal flow graph for the reflectometer.
transform, and summarize measured data that facilitate s-parameter measure-
ment. Fig.4.3(a) shows a schematic of a quasi-optical reflectometer that uses a
microwave network analyzer. This experimental setup was used to measure the
reflection coefficients of the grids discussed in chapters 2 and 3. A standard gain
horn antenna with a bandwidth of 2 to 18 GHz is connected to one port of an HP
8510 network analyzer. The horn is placed at one end of an anechoic chamber
and the grid is placed at the other end, 50 cm away. The grid is attached to
an optical stage which is mounted on a micrometer. This allows the distance
between the horn and grid to be varied with precision. A model of the reflec-
tometer is shown in Fig. 4.3(b). Systematic errors that result from imperfections
in the network analyzer as well as reflections from the horn antenna and propa-
gation loss through the chamber are modeled with a two-port error network. A
signal flow graph representing this network is shown in Fig.4.4. Using Mason’s

Rule[8], we find the reflection coefficient of the grid, I', is related to the measured
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reflection coefficient, I, by :

ezrerel

— 4.1
1-— 622F ( )

IM=e;1 +

To find the reflection coefficient of the grid, the error network must be character-
ized by calibrating the reflectometer. Hence, it is necessary to find quasi-optical

calibration standards.

4.3 System Calibration

Equation (4.1), which relates the measured reflection coefficient to the actual
reflection coefficient of the load, contains four unknown parameters. To deter-
mine these unknowns, we need to measure the reflection coefficient of known
loads or “calibration standards.” Because the forward and reverse transmission
parameters, e3; and ey,, appear as a product, only three standards are required to
characterize the error network. In principle, we can choose any well-known load
as a calibration standard. However, if the reflection coefficients of the standards
are close enough that any two overlap due to measurement error, then equation
(4.1) will have no solution. Therefore it is desirable to choose standards with
well separated reflection coefficients.

Standard network analyzer calibration kits usually include a short, open,
and 502 load. These standards are well separated on the Smith Chart and
are suitable for coaxial media. For quasi-optical systems, we can use a planar
metal sheet to serve as a short and highly absorbing material for a matched load.
Because quasi-optical open circuits do not exist, we choose a delayed short as
the third calibration standard. The short defines the reference plane where the
measurements are taken. Due to the frequency dependence of the delayed short’s
reflection coefficient, care must be taken to ensure the calibration standards do
not overlap at any of the measurement frequencies. The reflectometer of Fig.4.3
makes measurements between 2 and 18 GHz. A 7.5mm delayed short presents

a normalized impedance that varies from +30.33 to —50.33 over this frequency
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range and, as a result, can be used as a calibration standard throughout the entire
band. For measurements over a broad range of frequencies, several delayed shorts
can be used for different frequency bands. In fact, by using a series of delayed
shorts for calibration standards, it is possible to avoid using a matched load

altogether. This technique is described in detail by Engen [9].

The quasi-optical reflectometer of Fig.4.3, was calibrated using a short,
matched load, and two delayed shorts. A square copper sheet 10cm on a side
was used as the short and a 25cm x 25cm sheet of Eccosorb ANT5 absorber
(manufactured by Emerson and Cuming) served as a matched load. For the
frequency range 2 to 6 GHz, the copper sheet was translated 19 mm from the
reference plane to provide the third standard. A 6.3 mm delay was used for fre-
quencies between 6 and 18 GHz. As a check on measurement repeatability, the
reflection coefficients of the short and match were remeasured after calibration.
These measurements are shown in Fig.4.5. The repeatability for the short is
quite good; the magnitude varies only a tenth of a decibel while the phase is
repeatable to 1°. Results are not as good for the absorber, particularly at the
lower frequencies. At 2 GHz, the Eccosorb has a measured return loss of 7dB.

As frequency increases, the return loss improves and remains better than 12 dB.

To investigate the accuracy of the calibration, the copper sheet was trans-
lated 5 mm from the reference plane. Fig. 4.6 shows the measured reflection coeffi-
cient. Generally, the reflection coefficient behaves as expected. The measurement
indicates that the magnitude of the reflection coefficient can be determined to
about 1dB and the phase to within a few degrees. Although these deviations are
unacceptable for many applications, they are sufficient for determining the va-
lidity of the grid EMF models. Fig. 4.8 shows the reflection coefficient measured
from a square 2.5mm thick dielectric slab, 10cm on a side. The dielectric is
a ceramic polytetrafluoroethylene composite called Duroid manufactured by the

Rogers Corporation [10]. It has a dielectric constant of 10.8 (£0.25) and copper
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(b)

Figure 4.5 (a) Measured reflection coefficient of the short after calibration. (b) Re-.
flection coefficient of the Eccosorb sheet. The frequency is swept from 2 to 18 GHz.
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Figure 4.6 Measured reflection coefhcient of a 5 mm delayed short.

Dielectric Substrate

a
Free Space
b
s \
Short 2> mm Measurement Plane

Figure 4.7 Transmission-line model for a 2.5 mm thick dielectric (¢, = 10.8) backed
with copper cladding.
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cladding on the back. A transmission-line model for the slab is shown in Fig. 4.7.
The measurements in Fig.4.8(a) and Fig.4.8(b) indicate the transmission-line
circuit is a valid model for the dielectric. As with the delayed short, there is con-
siderable scatter in the measured data showing an uncertainty in the magnitude
of the reflection coefficient of about 1.5dB.

With some modifications, more accurate measurements can be made with
the quasi-optical reflectometer. One source of error is wave diffraction. Waves
incident on the grid surface do not have planar phase fronts, thus there is a phase
difference between the wavefronts reflected from the center and edge of the grid.
If the wave radiated from the horn is assumed to have a spherical phase front,
this phase difference can be approximated by
D2

Ad =~ W3

(radians), (4.2)

N

where R is the wave radius of curvature and D is the diameter of the grid. From
equation (4.2), we see that phase errors are less severe for longer wavelengths,
smaller grids, and a large wave radius of curvature. To improve measurements,
microwave dielectric lenses can be used to generate planar phase fronts. Using
a biconvex lens and an X-band horn, Gagnon made very sensitive reflectometer
measurements with essentially the same setup as shown in Fig.4.3 [11].
Diffraction losses can lead to additional inaccuracies in quasi-optical reflec-
tion measurements. The free-space path loss from the horn to the measurement
plane is included in the two-port error network. However, there is additional path
loss associated with the delayed shorts. We can account for this by adding loss
terms to the delays. Using this method, diffraction loss is included for the cali-
bration standards, but loss for intermediate delays (i.e., measurements at planes
not corresponding to a calibration standard) is not adequately modeled. Again,
a focussing lens seems to be the most direct solution, as evidenced by the results

of others|[4,11].
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Figure 4.8(a) Magnitude of the reflection coefficient for the 2.5 mm thick dielectric
slab. The dielectric constant of the slab is 10.8 and the loss tangent (tan § = 0.002) is
neglected. ’
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Measurement inaccuracy also arises from extraneous reflections within the
anechoic chamber and misalignment of the horn antenna and grid. Elimination

of these sources of error also permits more precise measurements.

4.4 Measurements on Planar Grids

In this section, we will present and discuss magnitude and phase reflection
measurements for the planar grid configurations analyzed in chapters 2 and 3.
These measurements are done with the quasi-optical reflectometer illustrated in
Fig.4.3. The grids are fabricated on 10 cm x 10 cm sheets of Duroid with copper
cladding on the back [10]. To ensure the grids and calibration loads are the same
size, the metallized back of the grids is used for the short and delayed short

standards.

4.4.1 Inductive and Capacitive Grids

The inductive grid illustrated in Fig. 4.9(a) was fabricated on a 2.5 mm thick
Duroid slab with e, = 10.5. The vertical copper lines are 1 mm wide and sepa-
rated by 7Tmm. Equation (2.28) was used to calculate the reflection coefficient
of the grid, which is modeled by the circuit in Fig.4.9(b). Although the grid
impedance is dispersive, at low frequencies it can be approximated with a (lin-
ear) lumped inductor. At 5 GHz, the grid has an inductance of 3.4nH. Fig.4.10
shows the measured and theoretical reflection coefficient. Both magnitude and
phase response show reasonably good agreement with theory. As expected from
the calibration check in section 4.3, there is an uncertainty in the magnitude
response of about 1.5dB. Fig.4.11(a) shows a capacitive grid fabricated on a
1.27mm thick Duroid substrate (also with ¢, = 10.5). The gaps between the
metal strips are 1 mm wide and spaced 5mm apart. From equation (2.42), we
calculate a grid capacitance of 320fF at 5 GHz. The measured grid reflection
coefficient is shown in Fig.4.12(a) and Fig.4.12(b).
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Substrate a

L=34nH

2.5 mm

(b)

Figure 4.9 (a) Schematic of the inductive grid fabricated on Duroid. The dielectric
constant is 10.5 and the back of the substrate is metallized. (b) Equivalent transmission-
line model for the inductive grid.
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Figure 4.10(a) Magnitude response of the inductive grid.
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Figure 4.10(b) Phase response of the inductive grid.
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(2)

Substrate

C =320fF

(b)

Figure 4.11 (a) Schematic of the capacitive grid fabricated on Duroid. The dielectric
constant is 10.5 and the back of the substrate is metallized. (b) Equivalent transmission-
line model for the capacitive grid.
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Figure 4.12(a) Magnitude response of the capacitive grid.
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The measured phase of the grid reflection coefficient agrees quite well with the
predicted phase. The magnitude response, however, shows 3 dB of loss near the
grid resonance frequency (6.5 GHz). This variation in magnitude of the reflection
coeflicient is significantly larger than the expected scatter due to calibration error.
It suggests there may be substantial loss in the grid. Investigation of the other
grid configurations show there are indeed measurable loss mechanisms present in

the grids.

4.4.2 Slot Grid

Fig.4.13(a) shows the rectangular slot array. This grid, which was fabri-
cated on a 2.5mm thick Duroid substrate with ¢, = 10.5, is modeled with the
parallel resonant circuit of Fig.4.13(b). The slots are 3mm wide, 5mm long
and are separated in the z-direction by 1 mm and in the y-direction by 3 mm.
Equations (3.10) and (3.11) are used to compute values for the reactive elements
in the transmission-line model. Measured and theoretical responses for the grid
reflection coefficient are shown Fig.4.14(a) and 4.14(b). Examining the phase re-
sponse in Fig.4.14(a), we note the transmission-line model predicts a resonance
where the phase changes by 360° at 11 GHz and 16.5 GHz. The model, which
assumes the grid is lossless, is in good agreement up to the second resonance, but
fails to predict the phase response at 16 GHz. The magnitude of the measured
reflection coefficient, shown in Fig. 4.14(b), shows 7 dB of loss at the second reso-
nance. These measurements clearly indicates that the loss is real and not merely
a result of calibration error. The loss is large enough to prevent the phase from
making a full 360° swing at 16 GHz. This is illustrated on the Smith Chart plot
of Fig.4.15(a). We can model the loss by placing a resistor in the transmission-
line circuit as shown in Fig.4.15(b). By choosing an approriate value for the
resistor, we get good agreement between the measured reflection coefficient and

the “lossy” circuit model. In section 4.5, grid losses will be examined in more

detail.
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(a)

Substrate

Mirror

(b)

Figure 4.13 (a) Schematic of the slot grid. The substrate is Duroid and has a dielectric
constant of 10.5. (b) Transmission-line model for the slot grid.
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(b)

Figure 4.15 (a) Reflection coefficient of the slot grid. (b) Lossy model of the slot grid.
An 8 resistor is added to the circuit to model the loss at 16.5 GHz.
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4.4.3 Bow-tie Grid

In chapter 3, we found that a bow-tie grid could be modeled with a section of
transmission line. To check the validity of this model, the grid shown in Fig.4.16
was built and its reflection coeflicient measured. A shorting strip appears across
the apex of the bow-ties, which have a flair angle of 45° and a diagonal length
of 5mm (corresponding to a 3.5mm X 3.5mm unit cell). With these dimensions
and a 2.5mm thick substrate (e, = 10.5), the EMF analysis gives a bow-tie
characteristic impedance of 782 and an electrical length of 65° at 10 GHz. The
measured and theoretical reflection coefficients for the grid are shown in Fig. 4.17.
As with the slot grid, there are two resonances predicted by the EMF model.
There is good agreement between the model and measured data up to 13 GHz, but
the EMF method fails to correctly predict the second resonance. For comparison,
the bow-tie unit cell was also analyzed using Hewlett Packard’s High-Frequency
Structure Simulator (HFSS)[12]. The structure simulator correctly predicts the
measured response over the whole frequency range, indicating that the EMF
model breaks down above 13 GHz.

It is interesting to note that the lowest order TM and TE modes for the bow-
tie unit cell equivalent waveguide begin to propagate in the dielectric at 13.2 GHz.
Above this frequency, the bow-tie inductance and capacitance start to change
rapidly and this may be responsible for the discrepancy between measurement
and the EMF model. As a check, a square bow-tie grid with a smaller unit cell
dimension (a = b = 1.5mm) was analyzed using the HFSS and compared to
the EMF model. For this grid structure, the lowest order TE and TM modes
have a cut-on frequency of 30 GHz. The results, shown in Fig.4.18, are in good
agreement and indicate that the EMF transmission-line model is valid as long as

the high-order TE and TM modes are evanescent.
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(a)

Zo=371Q

(b)

Figure 4.16. (a) Schematic of the bow-tie grid. (b) Bow-tie grid transmission-line
model. The electrical length of the transmission lines are specified at 10 GHz.
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Figure 4.17 (a) Magnitude of the bow-tie grid reflection coefficient. The measurement
shows loss at the grid resonant frequencies. The transmission-line model assumes no
losses. (b) Phase of the bow-tie grid reflection coefficient. Theoretical curves obtained
from the EMF model and High-Frequency Structure Simulator (HFSS) are shown for
comparison.
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Flgure 4.18 Predicted phase response for a shorted bow-tie grid with bow flair angle of
45° and unit cell dimension of 1.5 mm. The substrate is 2.5 mm thick and has er = 10.5.

4.4.4 Planar Transistor Grid Configuration

Compared to the grids discussed thus far, the planar transistor grid con-
figuration, shown in Fig. 3.7, has a slightly more complicated transmission-line
model. The major features of the model (shown in Fig.3.10) are the three in-
put terminals and a center-tapped transformer. To experimentally investigate
the equivalent circuit models for the rectangular slot and bow-tie grids, shorts

are placed across the grid input terminals and the grid reflection coefficient is
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measured. This can also be done with the transistor grid, but, because there
are three terminals, two different grid measurements are required. The idea is
illustrated in Fig.4.19 and 4.21.

Fig.4.19(a) shows a planar transistor grid in which the devices are replaced
with shorting strips. It is similar to the slot grid of Fig.4.13, except that the slots
are much wider than the horizontal metal strips. As a result, the capacitance
between the metal strips (bias lines) is neglected. The grid equivalent circuit is
given in Fig. 4.19(b). An electric field polarized in the y-direction induces current
on the vertical metal strips and allows us to measure the grid’s lead inductance,
L. This grid, however, does not permit measurement of the reactive elements,
L,, and C),, in the center lead. The measured and theoretical phase of the grid
reflection coefficient, shown in Fig.4.20, are in good agreement.

To measure the reactive elements L,, and C,,, it is necessary to prevent the
currents induced on the grid from flowing along the vertical leads. In other words,
we can measure L,, and C, by open-circuiting one of the terminals and shorting
the other. The grid illustrated in Fig. 4.21(a) accomplishes this by eliminating one
of the vertical leads in the equivalent waveguide. The center-tapped transformer
then becomes the 1 : 2 transformer shown in Fig.4.21(b). Because the model
has an inductor and capacitor connected in series, we refer to this as a “series-
resonant” grid. With this grid, a vertically polarized wave induces currents on
the vertical strips which also flow along the horizontal strips. As a result, this
configuration permits measurement of the reactive elements in the center lead.
The measured phase of the reflection coefficient for this grid, shown in Fig. 4.22,
is in good agreement with theory. As a result, the transmission-line circuit of

Fig.3.10 is a valid model for the planar transistor grid.
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Figure 4.19 (a) Configuration used to measure the lead inductance of the transistor
grid. The substrate is 2.5mm thick and has a dielectric constant of 10.5. The grid
dimensions are indicated on the diagram. (b) Transmission-line model for the grid in
Fig.4.19(a). Values for the circuit elements are specified for 5 GHz.
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Figure 4.20 Phase of the reflection coefficient for the inductive grid of Fig.4.19.
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Figure 4.21 (a) Configuration used to measure the center-lead impedance of the tran-
sistor grid. (b) Transmission-line model for the grid in Fig.4.21(a). Values for the
circuit elements are specified at 5 GHz.
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4.5 Losses

Reflection measurements for several of the passive grids show that at certain
frequencies a substantial amount of power is lost. The frequencies where this loss
occurs corresponds to the resonant frequencies of the grids. Furthermore, we
found that this loss can be taken into account by including a resistor in the grid
equivalent circuit model. Fig.4.23(a) shows a modified transmission-line model
for the series-resonant grid of Fig.4.21(a). A 102 resistor is added to model the
losses. The resulting response is compared to measurement in Fig. 4.23(b).

The magnitude of the measured losses is somewhat unexpected. The sub-
strate material has a very low loss tangent (the manufacturer specifies § ~ 0.0028
up to 10 GHz) and the dielectric slab reflection measurement of section 4.3 shows
no discernible loss. Dissipation due to the finite conductivity of copper is another

possibility. Copper’s surface resistivity is given by [13]:
R, =261 x 1077\/f Q (4.3)

where f is frequency measured in Hertz. The metal strips in the unit cell have
an aspect ratio of 8:1, giving a resistance of about 0.2 at 10 GHz. This is also
too small to account for the measured losses. A third possibility is that power is
being coupled into surface waves. Lam [14] argued that surface wave excitation
can be avoided if the grid period, a, is chosen such that:

Ao
(n+1)

a < (4.4)

where )y is the free-space wavelength and n is the substrate’s refractive index.
From this criterion, we expect grids fabricated on substrates with ¢, = 10.5 to
excite substrate modes only at frequencies above 8.8 GHz. Pursuing this idea, a
series-resonant grid was fabricated on a substrate of dielectric constant 2.2. Be-
cause of the low dielectric constant, substrate modes should be excited at higher

frequencies (greater than 15 GHz). The magnitude and phase of the reflection
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coefficient (Fig.4.24) show the grid to have 10dB of loss at 6 GHz. There is
also substantial loss at 3 GHz for the grid built on Duroid with ¢, = 10.5. As
an additional check, a horn antenna was positioned to measure any radiation
leaking out the sides of the grid. None was detected, indicating that the power
is dissipated in the grid itself.

One grid configuration which exhibits no measurable loss is the inductive
grid discussed in section 4.4.1 and illustrated in Fig.4.9. This grid, like the
others, lies on a Duroid substrate with dielectric constant of 10.5. Therefore, it
seems reasonable to postulate that the loss mechanism depends primarily on the
grid structure. The inductive grid differs from the other configurations in that
there are no horizontal metal lines running across the substrate. If these lines are
indeed responsible for the measured losses, then it seems plausible that placing
gaps along them should decrease these losses. This idea is illustrated in Fig. 4.25.
Gaps 1mm wide are placed along the horizontal lines at the edges of the grid
equivalent waveguide. Because magnetic walls are supposed to exist along these
unit cell boundaries, the gaps should not effect the grid reflection coefficient.
The measured response for this grid is shown in Fig.4.26. The loss at 6 GHz
has decreased by more than 7dB and the phase response is much smoother than
before. These measurements indicate that the losses probably arise from power

coupling into transverse modes which propagate along the horizontal metal lines.
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Figure 4.23 (a) Transmission-line model for the series-resonant grid with a resistor
included to model losses. (b) Magnitude of the reflection coefficient for the series-
resonant grid.
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Figure 4.24 (a) Reflection coefficient magnitude for a series-resonant grid fabricated
on Duroid with ¢, = 2.2. (b) Phase response of the series-resonant grid.
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8mm

Figure 4.25 Schematic of a series-resonant grid with 1 mm gaps placed in the horizontal
lines. The gaps are placed at the unit cell edges where a magnetic wall is assumed to
exist. As a result, they are not expected to affect the grid embedding impedance.
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Figure 4.26 (a) Magnitude response of the series-resonant grid in Fig.4.25. (b) Phase
response of the series-resonant grid in Fig. 4.25.
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Chapter 5

Planar MESFET Oscillator Grids

A limitation in the development of millimeter and submillimeter-wave sys-
tems has been the lack of reliable and inexpensive high-power solid-state sources.
Power combining has thus become a subject of much interest. Microwave power
combining techniques based on resonant cavities and hybrids can be scaled for
use in the millimeter and submillimeter-wave range[1], but waveguide wall losses
become more severe at high frequencies and the smaller waveguide dimensions
make circuit fabrication difficult. Quasi-optical power combining techniques
avoid these problems because the signal propagation occurs in free space and
the array of active devices can be many wavelengths across [2].

A variety of quasi-optical power-combining arrays have been investigated
over the past few years[3-7]. Several of these involve arrays of microstrip radia-
tors [4,5] which are coupled by either mutual or external injection-locking. In this
chapter, we will discuss a different approach based on integrating active devices
directly into periodic planar grids. The planar configuration is advantageous be-
cause it is compatible with monolithic fabrication techniques. In addition, we can
represent the grid with a simple transmission-line circuit into which the device

is readily included.

5.1 Grid Configurations

There are two important factors which determine the behavior of a quasi-

optical array. The first is the choice of devices used in the grid. Gunn diodes
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and IMPATT’s are two-terminal devices and thus easily incorporated into a grid
array. The low DC-to-RF efficiency, however, is a major drawback. In addition,
Gunn diodes are inherently unstable and synchronization can prove difficult.
Others have found it necessary to individually bias each device in the array to
facilitate locking [4]. In contrast, transistors have a separate control terminal.
This allows the devices in the grid to be more easily stabilized, thus permitting

oscillation to be controlled through an appropriately designed feedback network.

The second major factor determining the behavior of a quasi-optical array
is the grid’s physical configuration. The grid structure, together with the op-
tical resonator, provides an embedding circuit in which the solid-state devices
are placed. The oscillation frequency, output power, and efficiency of the grid
depend on the impedances this embedding circuit presents at the device termi-
nals. A planar transistor grid configuration was discussed in section 3.3 and is

shown again in Fig. 5.1. Transistors are placed at each node in the grid and are

MESFET

Bias
Lines

Radiating

/ Leads

Figure 5.1 Schematic of the planar transistor grid. Bias lines run horizontally across
the grid while the radiating leads run vertically as shown. Adjacent rows of devices
share bias lines.
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Figure 5.2 Transmission-line model for the planar transistor grid. Terminals 1 and 2
represent connections to the grid vertical leads while terminal 3 represents a connection
to the horizontal lead. The transformer turns ratio r is defined as r = ¢/b.

Drain Leads

Packaged
MESFET

Gate Lead

T

Source Leads
Chip MESFET

E - Field

(a) (b)

Figure 5.3 (a) Unit cell for a source-feedback grid oscillator which uses packaged
MESFET’s. The drain and gate leads are parallel to the incident electric field. (b)
Unit cell configuration for a gate-feedback grid. A chip MESFET is wire bonded to the
grid allowing the drain and source to couple to incident radiation.
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represented by circles. The details of how the transistor is connected to the grid
depends on the physical layout of the device and several options are possible.
The DC bias is fed along horizontal leads which extend across the grid in the
z-direction. Adjacent rows of devices share bias lines. The radiating leads run in
the y-direction and are connected to two terminals of the transistor. The third
transistor terminal is connected to the center bias line which runs along the row
of devices.

In chapter 3, we derived an equivalent circuit model for the planar transistor
grid. This model is shown in Fig.5.2. In addition to the dimensions of the unit
cell and the substrate thickness and dielectric constant, we are free to vary the
orientation of the device in the grid. Two examples are shown in Fig. 5.3. With a
“vertical drain-gate” or “source-feedback” grid, an incident electric field couples
to the MESFET drain and gate leads. As a result, the source lead does not
radiate. It does, however, couple indirectly to the radiated field through the
grid embedding circuit. Due to the device layout, the source-feedback grid is a
natural configuration for packaged microwave transistors like Fujitsu’s FSC11LF.
Using chip devices, as shown in Fig.5.3(b), a “vertical drain-source” or “gate-
feedback” configuration is possible. A gate-feedback grid allows the drain and
source currents to radiate. In the following sections, experimental results for

source-feedback and gate-feedback grids are discussed in detail.

5.2 Source-Feedback MESFET Grids

Figure 5.4 shows a photograph of a 100-element source-feedback oscillator
grid [8]. Packaged MESFET’s ( Fujitsu FSC11LF) are soldered to the grid which
is fabricated on a Duroid substrate with ¢, = 2.2. This substrate, which is 0.5 mm
thick, is mounted on a second substrate 2.5 mm thick with dielectric constant of
10.5. The design of the grid was determined by the size and layout of the device
packages. A source-feedback configuration is necessary because of the package

layout. Devices in the grid are spaced 8 mm apart in both the z and y-directions
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Figure 5.4 Photograph of the 100-element source-feedback MESFET grid. Horizontal
metal lines are used for bias and the vertical leads radiate. The devices are FSC11LF
packaged MESFET’s manufactured by Fujitsu. Ferrite beads are added to the bias lines
to suppress low-frequency oscillations.

FSC11LF

3.4nH
\ Drain 1:1 W
(

g

Source 1D
320fF 2 —

Gate r

Figure 5.5 Equivalent circuit model for the source-feedback MESFET grid of Fig.
5.4. The values for the lumped elements are specified for 5 GHz. The grid reflection

coefficient is given by T'.
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due to the length of the package leads.

By adding the MESFET to the transmission-line model for the grid, we
obtain the circuit shown in Fig. 5.5. Equations (3.30)—(3.33) are used to calculate
values for the lumped elements in the model. We can predict the oscillation
frequency of the grid by computing the reflection coefficient the grid presents
to an incident plane wave. This approach is different from traditional oscillator
design methods in that the circuit is analyzed from an external port rather than
internally. For oscillation to occur, the grid reflection coefficient, I', must satisfy

the relation:

r=— (5.1)

Si

where s; is the load reflection coefficient. For oscillation into a matched load,
the grid reflection coefficient must become infinite. This can be realized if the
grid reflection coefficient traces out a counterclockwise loop in the complex plane
as shown in Fig.5.6. As the oscillation in the resonator grows, the MESFET
gain decreases until the roundtrip gain balances the roundtrip loss. Measure-
ments done by Johnson [9] suggest that transistor saturation can be simulated
by decreasing |s21| of the MESFET. The effect of decreasing |s,; ]|, also shown in
Fig.5.6, is that the counterclockwise loop expands until the oscillation condition
(T' = 00) is met.

The oscillation frequency of the grid also depends on reactive tuning pro-
vided by the Fabry-Perot cavity. A mirror is placed behind the grid to syn-
chronize the devices and its position influences the oscillation frequency. Fre-
quency tuning versus mirror position as predicted by the transmission-line model
is shown in Fig. 5.7 and is in good agreement with measurement. The theoretical
curve is obtained by finding the frequency corresponding to the maximum value
of the reflection coefficient for each mirror position. The tuning range is about
10% at 5 GHz. From the far-field radiation pattern, the directivity is measured to

be 16 dB. This gives a maximum radiated power of 600 mW and corresponds to



103

Unsaturated
MESF ET

Saturat;ed ‘
“-.... JMESFET --. .1 .-~

0.5

Figure 5.6 Smith chart plot of the source-feedback grid reflection coefficient. The
MESFET is modeled using its small-signal s-parameters. Transistor saturation is sim-
ulated by decreasing the magnitude of sg; until the counterclockwise loop sweeps out
to infinity.
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Figure 5.7 Measured and predicted frequency tuning curves for the source-feedback .
oscillator grid.
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a DC-to-RF conversion efficiency of 20%. Details of the measurements and other

results pertaining to external injection locking are discussed in reference [8].

5.3 Gate-Feedback MESFET Grids

A disadvantage of the source-feedback oscillator grid is the MESFET gate
lead is parallel to the radiated electric field. Because the gate and radiated field
are strongly coupled, the grid tends to oscillate at lower frequencies where the
MESFET has high gain. A variety of simulations were performed using the grid
transmission-line model and the FSC11LF in the source-feedback configuration.
In these studies, the 5 GHz oscillation could not be suppressed, suggesting that a
different configuration be investigated to increase the grid operating frequency.

The gate-feedback configuration shown in Fig.5.3(b) permits the drain and
source leads of the MESFET to radiate. Because the gate leads are perpendic-
ular to the electric field, they now couple to incident plane waves through the
reactive elements in the grid model. Consequently, the signal fed back to the
MESFET gate is strongly dependent on frequency. This makes it possible for an
appropriately designed gate-feedback grid to meet the conditions necessary for
oscillation at higher frequencies. To demonstrate the feasibility of high-frequency
oscillations with the gate-feedback configuration, a number of grid designs using

FSC11X chip MESFET’s were studied.

5.3.1 Grid Design

An alternative method for designing oscillator grids is based on calculat-
ing the loop gain for the MESFET grid circuit model. This technique, which
is essentially an application of Nyquist’s criterion for finding instabilities in a
system, has been used to design several gate-feedback grids. To determine the
system loop gain, it is necessary to use the lumped element circuit model for the
MESFET. Figure 5.8 shows the small-signal circuit model and chip layout for
the FSC11X. Values for the lumped elements, which are dependent on DC bias,
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Figure 5.8 (a) Lumped element circuit model for the Fujitsu FSC11X. The values for

the circuit elements are obtained from the manufacturer’s data sheet. (b) Chip layout
for the FSC11X [10].
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are given in Table 5.1. The transconductance current is controlled by the voltage
appearing across the gate-source capacitor, Cy,. Adding the MESFET to the
grid transmission-line model gives us the gate-feedback circuit shown in Fig. 5.9.
The grid transmission-line model provides a path between the drain-source port

of the MESFET and the gate, hence the terminology “gate-feedback.”

The system loop gain is calculated by assuming the MESFET current source
excites the circuit with a current I = ¢,,v;,. This excitation results in a voltage
across the gate-source capacitor, v,,¢. Loop gain is given by v,y:/v;in. Because
Vout controls the current source, a loop gain with magnitude greater than unity
and zero phase shift indicates instability and, as a result, oscillation. By adjusting
the dimensions of the grid and choosing an appropriate dielectric substrate, the
circuit of Fig. 5.9 can be used to design a grid that will oscillate at a particular

frequency.

Ips (mA) 10 30
gmo (mS) 40 65
T (psec) 2.5 2.5
Cys (pF) 0.38 0.54
Coq (PF) | 0059 | 0.044
Cas (pF) 0.12 0.12
R; () 4.0 5.5
Ry () 220 180
Ry (9) 2.0 2.0
Rs (Q) 2.2 1.5
Ryq () 2.2 1.5
L, (nH) 0.2 0.2
Ls (nH) 0.055 0.055
Ly (nH) 0.2 0.2

Table 5.1 Component values for the lumped elements in the FSC11X MESFET model
of Fig.5.8. The transconductance has an associated transit time delay, 7, such that

gm = gmoe 7“7. The parameters are specified for a drain voltage of 3V.
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Thus far, we have discussed two techniques for oscillator grid analysis: a
counterclockwise loop method based on examining the grid from an external port,
and a loop gain method in which the circuit is examined internally. Both can be
used to design grid oscillators. Which method to choose depends on the particular
situation. If a device model is not available, then the counterclockwise loop
method can be applied using the device’s small-signal s-parameters. A drawback
to this technique, however, is that some instabilities may not be found by looking
for counterclockwise loops. In addition, it may be difficult to determine an exact
frequency of oscillation because the MESFET s-parameters may experience phase
shifts as the device gain saturates. If the device circuit model is known, then the
loop gain method is readily applied. An oscillation frequency is easily determined
from the loop gain by finding the zero-phase crossing. In addition, a polar plot

of the loop gain clearly shows if the oscillation condition is met.

5.3.2 X-Band MESFET Grid

A gate-feedback grid oscillator, designed using the circuit of Fig. 5.9, is shown
in Fig.5.10. The grid contains 16 MESFET chips ( Fujitsu FSC11X) spaced 9mm
apart in both the 2 and y-directions. The substrate is 2.5 mm thick Duroid with
a dielectric constant of 2.2. Copper lines etched on the substrate surface are
1mm wide. The MESFET chips are soldered to the horizontal (gate) leads
and connected to the grid using 1mil diameter gold bond wire. From these
dimensions, the radiating lead inductance, L, is calculated to be 3.4 nH at 5 GHz.
Ly and C,, are 0.94nH and 304 fF at 5 GHz, respectively. Because the reactive
components in the grid model are dispersive, these values are specified at a
particular frequency. To preserve the symmetries assumed in the grid model, the
vertical leads extend a quarter wavelength above and below the top and bottom
rows. In choosing the lengths of these quarter-wave stubs, we use the mean
dielectric constant for the substrate and free space. Bond wires are used to bring

the DC bias in from the sides.
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(b)

Figure 5.10 (a) Photograph of the X-band grid oscillator. The substrate is 2.5mm
thick Duroid with ¢, = 2.2. The grid is placed between a mirror and dielectric slab which
form the Fabry-Perot cavity. Ferrite beads in the bias lines suppress low-frequency
oscillations. (b) Photograph of a FSC11X chip in the unit cell.
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Figure 5.11 Calculated loop gain of the X-band MESFET grid as frequency is swept
from DC to 15GHz. The locus crosses the zero-phase point at 11.67 GHz indicating
oscillation at that frequency.
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Figure 5.12 Spectrum of the X-band MESFET grid. The center frequency is 11.58 GHz
and the resolution bandwidth is 10 kHz.
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a function of mirror position for various drain bias voltages. For these measurements a
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A polar plot of the loop gain, vyy:/vin, for the grin‘ is shown in Fig. 5.11.
The loop gain has a magnitude of 2.7 and zero phase at 11.67 GHz, indicating
an oscillation at that frequency. Fig.5.12 shows the measured spectrum when
the grid is biased with a drain voltage of 3V and total current of 200mA. The
maximum effective radiated power (ERP) of the grid is 15 W. For this measure-
ment, a planar mirror is placed 14 mm behind the grid and a dielectric tuning
slab is placed 2cm in front of the grid. The dielectric slab (1.25 mm thick with
e = 10.2) was found to be helpful in locking the grid to a single frequency, but
not necessary. The mirror and dielectric slab can be used to tune the frequency
and power of the oscillation. These tuning curves are shown in Fig.5.13 for
three different bias points. A theoretical frequency tuning curve obtained from

the equivalent circuit model is shown for comparison and is within 2% of the
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Figure 5.16 Far-field H-plane pattern of the X-band grid as a function of mirror
position. As the mirror is moved towards the grid, directivity and radiated power

decrease.

measured curve. Gate bias voltage can also be used to tune the frequency but
has little effect on the output power (Fig.5.14). The far-field radiation pattern
measured with a standard-gain pyramidal horn at a distance of 160 cm gives a
maximum directivity of 16.5dB (Fig. 5.15). The antenna pattern is also a strong
function of mirror position as shown in Fig. 5.16. Maximum power radiated from
the grid is measured to be 335 mW, or 20mW per device. This corresponds to

peak directivity and gives a DC-to-RF conversion efficiency of 20%.



115
5.3.3 Ku-Band MESFET Grid

One advantage of planar transistor grids is that they can be scaled for op-
eration at higher frequencies. Simulations with the grid equivalent circuit model
indicate that oscillation near the fr of the transistor is quite reasonable to ob-
tain. To investigate the practicality of scaling grids and as a further check on
the grid transmission-line model, a Ku-band grid was designed, built and tested.
The Ku-band design uses the same devices as the X-band oscillator (FSC11X
MESFET’s) and is connected in a gate-feedback configuration. A 36-element
grid fabricated on Duroid, 2.5 mm thick with €, = 2.2, is shown in Fig.5.17. The
unit cell is square and the devices are spaced 5 mm apart. The leads are 0.5mm
wide and, as with the X-band grid, extended a quarter wavelength above the top
row and below the bottom row of the grid.

Simulations performed with the equivalent circuit model indicated the grid
would oscillate at 17GHz . A polar plot of the system loop gain is shown in
Fig.5.18. Single frequency operation of the Ku-band grid was verified with a
spectrum analyzer. Again, power and frequency can be tuned using the mirror
(Fig.5.19). The grid produces an effective radiated power (ERP) of 3.3 W, cor-
responding to a total radiated power of 235 mW. This is equivalent to 6.5mW
per device and gives a DC-to-RF conversion efficiency of 7%. Measurement of
the grid radiation pattern, shown in Fig5.20, gives a directivity of 11.5dB.

The observed reduction in output power and efficiency compared to the X-
band grid is expected due to the higher operating frequency. Evans has given

an expression for the maximum efficiency that can be obtained from a transistor

oscillator [11] :
._1_ _ ln(Go)

G o } x 100%, (5.2)

1
7725{1—

where Gy is the small-signal maximum available gain of the device and is given by
Go = (fmax/f)?. Equation (5.2) assumes the transistor circuit operates in class A

and that the power saturation characteristic of the device can be represented with
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Figure 5.17 Photograph of the Ku-band MESFET oscillator grid. The devices are
Fujitsu FSC11X MESFET chips.
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Figure 5.18 Loop gain of the Ku-band MESFET oscillator grid. The frequency is
swept from 5 to 20 GHz. The locus crosses the zero-phase point at 17 GHz. indicating

oscillation at that frequency.
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Figure 5.19 (a) Frequency and (b) ERP tuning curves for the Ku-band MESFET grid
at three different bias points. These measurements were taken without a front dielectric
reflector.



—10

Relative Power, dB
N
(@)

—20

~90  -60  -30 0
Angle, Degrees

Figure 5.20 Measured far-field radiation pattern for Ku-band grid on the (—) H-plane
and (— — —) E-plane.

an exponential formula[9]. The fnax of the FSC11X is approximately 33 GHz.
From equation (5.2) we can expect a maximum DC-to-RF conversion efficiency of
30% at 11.5 GHz and 19% at 17 GHz. Clearly, by optimizing the design, it should

be possible to improve the efficiency and power output of the gate-feedback grids
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Chapter 6

Discussion and Suggestions for Future Work

In this work, we have examined several different planar grid structures that
are suitable for solid-state device integration. Two of these grids, the rectangular
slot array and the bow-tie array, can be used with two-terminal devices. A third
configuration consisting of an array of vertical and horizontal strips is amenable to
three-terminal devices. We also found that these grids could be represented with
simple transmission-line models. This feature is advantageous because it greatly
facilitates the grid design procedure. The grid transmission-line models were
derived using the induced EMF method — a technique readily applied when the
structure is geometrically simple. Furthermore, we found, using a quasi-optical
reflectometer, that the EMF transmission-line models were quite good as long as
the grid period is small enough to prevent multimode propagation in the grid’s
dielectric substrate.

Although the EMF method is convenient in many circumstances, it is not
well-suited for analyzing structures of arbitrary shape. Investigation of new grid
configurations will be important and electromagnetic solvers such as Hewlett
Packard’s High-Frequency Structure Simulator will be of great use in such stud-
ies. By better understanding the electromagnetic properties of different grid
configurations, the designer can optimize the grid structure for a particular de-
vice.

One of the main goals of quasi-optical grid research is the design and fab-

rication of high-power solid-state sources. The results presented in chapter 5



Figure 6.1 Photograph of a monolithic HEMT grid for operation at 94 GHz. The grid
was designed by Michael De Lisio at Caltech and fabricated at Martin Marietta. The
devices are spaced 440 um apart and the substrate is GaAs.

have shown this to be feasible and much of the initial groundwork has been laid.
Demonstration of a high-power oscillator is the next logical step. Two obvious
ways of obtaining more power from grids are to build larger arrays and to use
higher-power devices. It will also be necessary to find what impedances to present
the devices for maximum efficiency and power output. With the fabrication of
high-power oscillator grids, designers will need to consider the thermal properties

of the arrays and provide a suitable means for heat removal.

In addition to attaining higher power levels, future grids will need to operate
at millimeter-wave frequencies. As a result, high-frequency transistors such as
pseudomorphic HEMT’s and heterojunction bipolar transistors (HBT’s) will need
to be monolithically integrated into grid arrays. Figure 6.1 shows a photograph
of the first monolithic HEMT grid. The grid was designed at Caltech by Michael
De Lisio and fabricated at Martin Marietta in Baltimore, Maryland. It is designed
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for oscillation at 94 GHz and testing is scheduled to begin soon. Working with the
Rockwell Science Center in Thousand Oaks, California, we have also designed a
number of HBT grids for operation at 44 and 60 GHz. These grids, which are to
be fabricated on 150 ym thick GaAs, are scheduled to be completed in November
1991. For submillimeter-wave applications, grids containing resonant tunneling
diodes and Josephson junctions bear consideration. Also, with the advent of
monolithically integrated oscillator arrays, issues involving the grids’ tolerance

to device failure will need to be investigated.

Although important for many microwave and millimeter-wave systems, os-
cillators are only one possible use for active quasi-optical arrays. Amplifiers are
necessary in most applications. Grid amplifiers, structures which amplify and re-
radiate incident radiation, should offer the same advantages as grid oscillators:
increased power-handling capability and elimination of the losses associated with
waveguides and feed networks. A grid amplifier was recently reported in the lit-
erature, and the results are encouraging[l]. A gain of 11 dB was obtained at
3.3 GHz. Future work with active quasi-optical grids will certainly involve am-
plifiers and may lead to better designs for amplifying signals without need for

receiving and transmitting antennas.

In addition to oscillators and amplifiers, quasi-optical grids have been used
for mixing [2], filtering, phase-shifting [3], and frequency multiplication [4]. All of
the components needed for a basic heterodyne receiver have been demonstrated
as quasi-optical elements. In principal, a complete quasi-optical system can be
built by cascading grids one after another. Figure 6.2 shows how this might
be done to build a receiver. An oscillator grid illuminates a mixer grid to pro-
vide an LO. A grid amplifier, followed by a quasi-optical filter, is placed at the
receiver input. Dielectric slabs can be added to provide matching. Such a sys-
tem is straightforward to build and does not require separate antennas that feed

waveguides or transmission-line circuits; all signals propagate in free space.
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Figure 6.2 Schematic of a quasi-optical heterodyne receiver. A grid oscillator provides
the LO and a grid amplifier followed by a filter constitutes the receiver’s front-end. The
IF is removed from the mixer with a coaxial cable.
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Appendix :
Center-Tapped Transformer Scattering Matrix

One of the important features of the transistor grid equivalent circuit derived
in chapter 3 is the center-tapped transformer. To use this equivalent circuit, it
is helpful to know the center-tapped transformer scattering parameters. These
can be derived directly using the transformer circuit relations. Figure 1 shows
the center-tapped transformer and defines the ports. We assume that port 1
is terminated with a characteristic impedance Z; and the remaining ports have
characteristic impedance Z,. The turns ratios for the transformer branches are
m and n, with m + n = 1. The currents and voltages at the transformer ports

are related by:

i—-Va+Vy=0 (1)
nVo—Vas+mVy =0 (2)
11 —miz +niy =0 (3)
tg+ 23 +14 =0. (4)

If a wave is incident on port 1, then we can use equations (1—4) to write expres-

sions for the s-parameters describing the waves scattered to the other ports:

S21 841
S N Et A A | 5
511 \/z + \/E ( )
s11 + my/zs21 — nv/zsg =1 (6)
nsa1 — 831 + msa; =0 (7)

$21 + 831 + 541 =0, (8)
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where z = Z1/Zy. These equations can be solved using Gaussian elimination
or Kramer’s rule to find the scattering parameters, sy, 821,531, and sq4y. This
method can also be carried out with waves incident on the other ports. For a

wave incident on port 2, the s-parameter equations become:

V2812 — S22 + 842 = 1 9)

s12 + Mm\/z822 — n\/zs42 = m/z (10)
NSgp + MSyg — 832 = —N (11)

S22 + 832 + 842 = L. (12)

Similar sets of equations are generated by assuming waves are incident on ports
3 and 4. Solving these sets of equations, we find the four-port s-parameters for

the center-tapped transformer are given by:

(3 ~22(1—=mn) 2y/z(14+m) 2vz(n—m) —-2/z(1+ n)\

1 2\/z(1+ m) 2zm —1 2(1 + zn) 2(1 — zmn)
2 (13)
A 2\/z(n — m) 2(14+2zn) —(142zmn) 2(1+42zm)

\ —2y/z(14+n) 2(1—-zmn)  2(1+ 2m) 2zn —1 )

where A = (14 n)(1 + 2n) + (1 + m)(1 + zm). As expected, the s-parameter
matrix is reciprocal and, because the circuit is frequency-independent, real. It
can also be shown, with some work, that the scattering matrix is lossless. It
should be further noted that this scattering matrix assumes that the left side of
the transformer of Fig. 1 is port 1. Ports 2, 3, and 4, however, are defined with

respect to a floating ground terminal.
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Figure 1 Schematic of a center-tapped transformer. All ports are assumed to be
matched. Port 1 has a characteristic impedance of Z; and the other ports are terminated
with impedance Zp. Also, ports 2, 3, and 4 are defined with respect to a floating
grounded terminal

For a symmetric (m = n = %) center-tapped transformer with port 1 rep-

resenting free-space (Z; = 3772) and the other ports terminated with 50 Q, the

scattering matrix is:

(—0.581 0.576 0 —0.576\

0.576 0.457 0.667 —0.124
S = . (14)
0 0.667 —0.333 0.667

\——0.576 —-0.124  0.667 0.457/



