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Abstract

A combination of experimental and computer modeling techniques were used to investi-
gate the dynamics and computational functions of the rat olfactory (piriform) cortex. Ex-
perimental characterization of synaptic responses to afferent and associational fiber voltage
shocks were performed, in the presence and absence of the neuromodulator norepinephrine.
This data was used to generate computer models of synaptic transmission in piriform cor-
tex. Models of pyramidal neurons and feedback inhibitory interneurons were constructed
which accurately match intracellular experimental data in the presence and absence of
norepinephrine. In order to achieve this, parameter search tools for automatically match-
ing computer models of neurons to data were developed. Models of feedforward inhibitory
interneurons were also constructed. An abstract spike generating model of the olfactory
bulb was built. These components were combined to create a realistic computer model of
the piriform cortex. This model can accurately replicate the response of the real system
to a strong shock stimulus, as reflected in current source density plots. Two versions of
the model were created to model the oscillatory response of the system to weak shocks.
The first model replicates the surface field potential with considerable accuracy, but fails to
replicate the current source density data. The second model replicates the current source
density data and suggests a new organizing principle for the olfactory system based on

non-overlapping neuronal groups. This hypothesis is experimentally testable.
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Introduction

Listen to the technology and find out what it is telling us.

Carver Mead

1.1 Overview of the thesis

The past few years have seen a great increase in interest in olfactory neuroscience. Much
of this interest is attributable to the identification of putative olfactory receptors by molec-
ular biologists [11, 12, 52, 56], thus providing the vital link between odorants and the
responses of olfactory sensory neurons which was hitherto lacking. However, the nature of
the computations performed by the olfactory regions of the brain remain obscure. For the
past several years, we have been using a combination of electrophysiological experimental
techniques and computer modeling to help elucidate the function of the olfactory system
(2, 4, 5, 25, 26, 69, 71]. This work has focused largely on the piriform cortex (primary

olfactory cortex) [2, 25, 26, 69, 71] but also on the olfactory bulb [4, 5]. The construction

of realistic computer simulations of the olfactory system at both the neuronal and network



levels serves as a necessary bridge between experimental data and abstract theories of ol-
factory computation, and also provides many insights as to which experiments to perform
in order to gain the most information about the system.

This thesis describes the construction of a second-generation computer model of the
piriform cortex. The first generation model was created by Matthew Wilson [71]; this was
the first computer model of this brain region that attempted to simulate the entire system at
a reasonable level of detail and accurately replicate experimental data. The new model was
constructed in order to incorporate much more accurate models of the constituent neurons,
synapses, network connectivities, and olfactory bulb inputs to the system, all based on new
data acquired in the last few years. The goal of this work was to explore the oscillatory
dynamics of the piriform cortex, to investigate coding strategies in the olfactory system,
and to explore the effects of neuromodulation on the system dynamics.

In addition, this thesis includes experimental work which was necessary to constrain
critical parameters of the model, as well as simulation tools which were constructed in the
course of building the model. This introduction will provide an overview of the relevant

background material, focusing on the areas pursued in the thesis.



1.2 The mammalian olfactory system

1.2.1 The olfactory epithelium and olfactory bulb

Odorants first contact the nervous system in the olfactory epithelium, where they dissolve
in a thin sheet of mucus and eventually bind to olfactory receptor molecules located on cilia
of olfactory sensory neurons. There appear to be about 1000 distinct olfactory receptor
molecules, each of which is distributed quasi-randomly over a large group of sensory neurons
in the epithelium [11, 12]. A single sensory neuron appears to express only one of the
1000 receptor molecules [52], but can nevertheless respond to a wide range of odorants
[49]. Additionally, multiple olfactory receptors can respond to a given odor [49]. Olfactory
sensory neurons send their axons along the olfactory nerve into the olfactory bulb.

The anatomy of the olfactory bulb is shown in figures 1.1 and 1.2 [62]. Information from
the olfactory sensory neurons travels from the olfactory epithelium to the bulb along the
olfactory nerve, ending in dense dendritic bundles known as glomeruli. Within the glomeruli,
olfactory nerve axons make synapses with the primary output neurons of the olfactory bulb,
the mitral and tufted cells. In addition, small neurons known as periglomerular cells provide
intra- and interglomerular connections. Recent evidence suggests that olfactory sensory
neurons projecting to a single glomerulus all express a single receptor subtype [52]. Within
a glomerulus there are standard axo-dendritic connections involving sensory neurons, mitral

cells and periglomerular cells as well as dendrodendritic synapses between periglomerular
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Figure 1.1: Schematic diagram of the mammalian olfactory system. Abbrevia-
tions: OSN, olfactory sensory neuron; PG, periglomerular cell; M, mitral cell; T,
tufted cell, G'g, superficial granule cell; Gp, deep granule cell; r.c., recurrent axon

collateral; c.f., centrifugal fiber; P, pyramidal cell. From [62].

and mitral cells.

From here, information travels down the mitral/tufted cell primary dendrite. These
neurons also have secondary dendrites which form dendrodendritic synapses with the pri-
mary inhibitory neurons in the olfactory bulb, the granule cells [55, 62]. Granule cells
have no axons; thus their effects appear to be mediated entirely by dendrodendritic interac-
tions with mitral cells. Granule cells are excited by depolarization of mitral cell secondary

dendrites and inhibit these same dendrites, giving rise to self-inhibition onto mitral cells.



Furthermore, nearby or distant dendrodendritic synapses of the same granule cell may also
be activated, giving rise to lateral inhibitory interactions. Granule cells are also prominent
targets for centrifugal input to the olfactory bulb, both from the piriform cortex and from
neurons providing neuromodulatory input to the bulb [62]. Mitral cells integrate the affer-
ent and centrifugal inputs with the inhibitory granule cell inputs and send their outputs to

the piriform cortex (and other brain regions) through the lateral olfactory tract (LOT).

1.2.2 Primary olfactory (piriform) cortex

The piriform (literally, “pear-shaped”) cortex (also known as the pyriform or prepyriform
cortex), the subject of this thesis, is a phylogenetically old cortical structure which receives
the majority of its input from the olfactory bulb and is thus considered to be the primary
olfactory cortex. The piriform cortex can be divided into three layers based on connection
patterns (figures 1.3, 1.4 and 1.5) [22]. Layer 1 is mainly comprised of axons and axon col-
laterals and can be divided into two parts. Layer la consists of axons and axon collaterals
from the lateral olfactory tract; this provides direct input from olfactory bulb mitral cells
to the distalmost part of pyramidal neuron apical dendrites. Layer 1b consists mainly of
densely packed “association fibers” which interconnect different pyramidal neurons. Layer
1 also contains cell bodies of various types of feedforward inhibitory neurons. Layer 2 is a
densely packed band of cell bodies of superficial pyramidal neurons. Layer 3 consists of cell

bodies of deep pyramidal neurons, excitatory and inhibitory interneurons, and fibers medi-
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Figure 1.2: (Previous page) Anatomy of the olfactory bulb. Abbreviations as in
previous figure as well as: ON L, olfactory nerve layer; GL, glomerular layer; EPL,
external plexiform layer; M CL, mitral cell layer; IPL, internal plexiform layer;
GRL, granule cell layer; SA, short axon cells. Dashed lines represent glomeruli.

From [62].

ating local connections between pyramidal neurons and interneurons. Deep to layer 3 the
piriform cortex turns into the subjacent endopiriform nucleus, which, although extensively
connected to piriform cortex, is generally regarded as a separate region.

Piriform cortex pyramidal neurons consist of a cell body or soma, a long apical dendrite
or dendrites extending to the surface of the cortex (spanning layers 1b and la), and a
number of basal dendrites that receive local excitatory input in layer 3 [20, 22] (figures
1.5 and 1.6). These neurons make extensive connections with other pyramidal neurons in
piriform cortex, both locally (axon collaterals projecting onto synapses on basal dendrites
in layer 3) and more distantly (axon collaterals projecting onto synapses on apical dendrites
in layer 1b) (figure 1.4).

Piriform cortex interneurons fall into several classes [20, 22] (figures 1.5 and 1.7). In
layer 1 are found superficially located horizontal neurons and small globular-soma neurons
which are both believed to be inhibitory. These neurons provide synaptic input across
the length of the pyramidal neuron apical dendrite and mediate feedforward inhibition

onto these dendrites since they receive direct input from olfactory bulb mitral cells (figure
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Figure 1.3: Subdivisions of the piriform cortex showing both the layered structure
(layers la, 1b, 2 and 3) and the division into ventral anterior, dorsal anterior, and

posterior regions. Abbreviation: P, pyramidal neuron. From [37].
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1.7). In layer 3 are found multipolar neurons which either have spiny dendrites (excitatory
multipolar neurons) or aspiny dendrites (inhibitory multipolar neurons). Aspiny multipolar
neurons mediate feedback inhibition onto the cell bodies of pyramidal neurons (figure 1.7).
Little is known about spiny multipolar neurons, or about several even rarer neuron types
such as “semilunar” neurons, which resemble pyramidal neurons without basal dendrites;
thus, these neuron types were not included in the present model.

The physiology of pyramidal neurons in piriform cortex is similar to that of pyramidal
neurons found in other parts of the brain. These neurons display “regular spiking” behavior
[3, 51], featuring fairly broad spikes and significant spike frequency adaptation to a sustained
current stimulus. Although there is less physiological data for piriform cortex inhibitory
neurons, they clearly fall into the “fast-spiking” category [51, 54], with narrow spikes,
high excitability, and no spike frequency adaptation. A number of synaptic and voltage-
dependent ionic channels are known to exist in piriform cortex pyramidal neurons including

fast sodium channels, fast and slow potassium channels, calcium channels, AMPA and

NMDA excitatory synapses, and GABA-A and GABA-B inhibitory synapses [22, 33, 34, 35].

1.2.3 Oscillations in the olfactory system

Oscillatory activity is a prominent feature of all olfactory systems, from invertebrates to
mammals [1. 15, 18, 39, 42, 43]. Since one of the motivations of the model described in

this thesis is to reproduce and explore the oscillatory dynamics of piriform cortex, these
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Figure 1.4: Schematic diagram of excitatory connections between pyramidal neu-
rons (P) in the piriform cortex. Each pyramidal neuron schematic represents a
class of neurons in one of the three subdivisions of this brain region. The density
of connections between regions is represented by the width of lines connecting the
pyramidal neurons. Shading of pyramidal neurons and connections is just to dis-
tinguish between the three regions. Abbreviations: M /T, mitral/tufted cells of the

olfactory bulb; G, granule cells of the olfactory bulb; LOT, lateral olfactory tract.

From [22].
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Figure 1.5: The main classes of neurons in the piriform cortex, positioned in
the layers where they are most commonly found. Abbreviations: SP, superficial
pyramidal neurons; D P, deep pyramidal neurons; .S, semilunar cells; H, horizontal
neurons; (G, globular-soma neurons; AMS, spiny multipolar neurons; A, smooth
multipolar neurons. Classes H, G, and M are inhibitory; the rest are excitatory.

From [22].
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Figure 1.6: Morphology of a typical layer 2 superficial pyramidal neuron in pir-
iform cortex. Note that the apical dendrite bifurcates into several secondary den-
drites before leaving the cell body. Abbreviation: IS, initial segment of the axon.

Bar: 100 pm. From [20].
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dynamics are briefly discussed here.

Extracellular field potentials recorded in both the mammalian olfactory bulb and the
piriform cortex show oscillations in vivo in two primary frequency ranges: the theta range
(4-10 Hz), which is often entrained to the sniffing rhythm, and the gamma range (35-85 H z)
(figure 1.8) [9, 10, 16, 18, 36]. In fact, when field potentials are recorded simultaneously from
olfactory bulb and piriform cortex, in many cases the two field potentials exhibit a large
degree of coherence [9, 10]. Coherent oscillations in the two structures may be mediated in
part by the extensive back-projections from piriform cortex to the olfactory bulb. These
projections synapse primarily onto inhibitory granule cells in the olfactory bulb (figure
1.4) [45], and are thus well placed to mediate phase-locking between bulbar and cortical

oscillations.

1.3 Modeling the piriform cortex

1.3.1 Why build realistic models of piriform cortex?

Although mathematical and computational models are a central part of most scientific
and engineering disciplines, they are considerably less prominent in neuroscience. There
has been a steady growth in the number of realistic computer models of single neurons
constructed in the past few years [7, 41], but realistic models of networks of neurons are

still comparatively rare. This is largely because of the difficulties in acquiring the data and
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Figure 1.8: Oscillatory activity in the olfactory system as represented by surface
field potentials recorded in the olfactory bulb and piriform cortex. Note the high
frequency gamma-band oscillations modulated by lower frequency theta-band oscil-
lations, as well as the high degree of coherence in the theta modulation of bulb and

cortex. Abbreviation: PC, piriform cortex. From [9].
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building the simulation tools necessary to construct these models, but also because of a lack
of understanding of the purpose of model building.

Whenever a system to be modeled (such as a neuron or a network of neurons) consists
of a large number of interacting, nonlinear components, the behaviors of such a system can
be highly unpredictable and intuition is not a reliable guide [67]. Realistic computer models
can thus be very useful to an experimentalist in showing the range of possible behaviors that
can be obtained when known components at one level (e.g., synaptic and ionic channels,
dendritic segments) are assembled into larger entities (e.g., single neuron models, network
models). In addition, such models act as a consistency check between data at different
levels, thus highlighting which data is likely to be false or incomplete. When data is known
to be incomplete, models allow investigators to perform “what-if” numerical experiments
to test the plausibility of different theories, which can serve as a useful guide to further
experimentation.

Realistic models of neuronal networks can also aid investigators in understanding the
origins of network-level dynamical behaviors such as oscillations. Once a dynamical behavior
of interest can be replicated, model components can be modified or removed to determine
which aspects of the system are fundamental for achieving the correct behavior and which
are not. In this way, realistic network models can be abstracted in many different ways
corresponding to each type of behavior exhibited by the model. An example of this, based

on the work described here, is [14]. Network models are also useful for critically evaluating

18



theories of neural computation and coding [24, 26, 27, 71].

1.3.2 Realistic modeling

Since this thesis describes the construction of a realistic computer model of piriform cortex,

it is important to state precisely what is meant by “realistic”. The key criteria are:

1. The level of detail in the model must be a reasonable reflection of the current body

of experimental knowledge given the limits of modern computers.

2. The model must reproduce relevant experimental data to a high degree of accuracy.

3. The model should provide useful suggestions for further experimental work and useful

ideas about the dynamics and functions of the system being modeled.

These criteria have been met both for the previous model (at the time it was built) and
the model described here; this is discussed in greater detail in the following chapters. The
current model inevitably has limitations which will also be discussed in detail.

Clearly, building realistic models is critically dependent on the current state of the
experimental database; in fact, it may be argued that the most important contribution of
these models is to let experimentalists know which data needs to be collected to improve
the model. This feedback loop between models and experiments is the primary strength of

the realistic modeling approach.
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1.3.3 The previous piriform cortex model

The first realistic computer model of piriform cortex was that of Matthew Wilson [71]
which is the direct ancestor of the model described in this thesis. Wilson’s model was able
to replicate the surface field potential response of piriform cortex in response to weak and
strong shocks of the LOT, and also highlighted the importance of synaptic time constants
and axonal conduction velocities in generating field potentials which match experimental
data. However, Wilson’s model had many limitations: the simulated neurons were not
parameterized to fit experimental data, the inputs were not strongly based on experimen-
tal data, the connection patterns are no longer consistent with the most recently acquired
data [22, 37, 38], and many aspects of synaptic transmission were ignored (e.g., fast and
slow GABA-A subtypes, NMDA channels, neuromodulation, synaptic facilitation and de-

pression). T will briefly discuss new features of the present model below and give a more

detailed comparison between the two models in chapter 6.

1.3.4 New model features

A major goal of the work described in this thesis has been to incorporate accurate models of
single neurons in piriform cortex into a large-scale cortical model. The two primary classes
of neuron types in piriform cortex are pyramidal neurons and a number of inhibitory in-
terneuron types. In contrast to the previous model. the piriform cortex model described here

was constructed so as to accurately reproduce the input-output relations of both pyramidal
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and inhibitory interneurons as well as the synaptic dynamics of the system. The pyramidal
neuron model contains a variety of voltage- and calcium-dependent ionic channels, AMPA
and NMDA excitatory synaptic receptors, and fast and slow GABA-A and slow GABA-B
inhibitory synaptic receptors.

The synaptic connectivities of the piriform cortex model have been significantly changed
to reflect new experimental data. The previous model divided piriform cortex into anterior
(rostral) and posterior (caudal) subdivisions only. The modern view, reflected in the new
model, is that piriform cortex is divided into three broad regions on the anterior-posterior
and dorsoventral axes (figure 1.3) on the basis of external and internal synaptic connec-
tion patterns (figure 1.4) [22]. The majority of input from the olfactory bulb arrives on
pyramidal neuron dendrites in the ventral anterior piriform cortex (vAPC); these neurons
in turn project large numbers of long-range collaterals to the superficial layer 1b dendrites
of pyramidal neurons in the other two regions. Few local projections arise from vAPC
pyramidal neurons. Pyramidal neurons in the dorsal anterior piriform cortex (dAPC) and
the posterior piriform cortex (PPC) project to deep layer 1b pyramidal neuron dendrites
in the other regions and also give rise to significant numbers of local projections onto basal
dendrites of nearby pyramidal neurons.

The realism of modeled inputs to piriform cortex from the olfactory bulb have been
significantly improved with respect to the previous model. Outputs from olfactory bulb

mitral cells are represented by a spike-generating object that can generate a number of
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different patterns of activity across the ensemble of neurons. These patterns were derived
in part from single-unit recordings done by Upinder Bhalla [5]. Artificial inputs such as
weak or strong shock stimuli can also be simulated by the bulb object. as can a variety of
responses of mitral cells to odors based on several possible coding schemes. This is described

in more detail in chapter 6.

1.3.5 Tuning the model

The primary outputs used to constrain the piriform cortex network model were the se-
quence of synaptic events following brief electrical shocks to the LOT. These have recently
been described experimentally in much greater detail than the data that was available for
parameterizing the previous model [37, 38, 39]. Both surface field potential outputs and
current-source density (CSD) responses were computed. Both strong and weak shocks were
used, as they produce markedly different patterns of synaptic activation. Strong shocks
evoke a single wave of excitation that spreads across piriform cortex and is then damped
out, while weak shocks produce a characteristic damped oscillatory response in the field
potential and CSD responses. In addition, experimental data on mitral cell firing rates and
interspike interval distributions [5] were used to constrain spike inputs from the olfactory

bulb.
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1.4 Questions the model can help answer

1.4.1 Coding in the olfactory system

Despite decades of intensive research, there is no consensus as to how odors are encoded in
the outputs of olfactory bulb mitral cells. Some authors believe that odorants are encoded
by changes in mitral cell firing rate, either in a small localized group of neurons [61, 62] or
in a larger distributed group of neurons [46. 57]. Others believe that odorants are encoded
by synchronized firing of mitral cells (or their analogs in insects, the projection neurons of
the antennal lobe [42, 43]), while still others argue for more complex spatiotemporal codes
involving chaotic dynamics [19, 64].

The lack of consensus in this area causes difficulties in the construction of realistic
models of piriform cortex, since the model cannot be expected to reproduce the behavior
of the real system without being supplied with realistic inputs. As will be seen, this was
resolved by creating simulation objects that can mimic many of the proposed olfactory
coding strategies, as well as accurately replicating the first-order statistics of mitral cell
responses to background odors.

The question of how odors are encoded in piriform cortex, or even what roles the pir-
iform cortex may have in odor processing, has also not been resolved, primarily because
the relevant data is so limited. Much of the functional data relating to olfactory cortex

has been obtained from human studies. Lesions in piriform cortex in humans disrupt olfac-

23



tory perception in several ways, including odor identification and discrimination between
odors (31, 32, 72|, but without affecting odor intensity perception. Sobel et al. [65] have
established through functional MRI studies that the physical act of sniffing causes marked
changes in the local tissue oxygenation in piriform cortex. The presence of an odor also
causes changes in oxygenation, but these decay very rapidly (within 30-40 sec [66]). In
addition, studies have shown a remarkable similarity in the response patterns of neurons in
piriform cortex and those in orbitofrontal cortex, a region to which piriform cortex projects
[59, 60]. However, these studies still leave the question of how odors are encoded in the
firing patterns of piriform cortex pyramidal neurons unanswered.

From a systems perspective, the dominant paradigm of the computational role of the
piriform cortex has been that it functions as a biological autoassociative memory roughly
analogous to a Hopfield network [23, 28, 29]. In contrast, the modeling work described in
the last chapter suggests a completely different paradigm whereby separate nonoverlapping
neuronal groups are activated in each 50 Hz gamma cycle. Feedback connections from
posterior to anterior cortex, an essential component of all “associative memory” models of
piriform cortex [23, 24, 25] are in fact not essential to replicate experimental data, although
they are known to exist [21, 22]. The computational picture of the piriform cortex that
emerges from the modeling work in this thesis is of a largely feedforward system driven
by inputs to the olfactory bulb where feedback may have the role of assisting a pattern

shift on each gamma oscillation cycle. In this case, the output code of the piriform cortex
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is a complex spatiotemporal code, reminiscent in some ways of codes found in the insect
olfactory system [43, 42]. Oune of the most intriguing aspects of this work is the fact that
these computational ideas emerged as a direct consequence of the process of matching

experimental data to computer models.

1.4.2 Origin and functions of oscillations

The exact functions of oscillations in the olfactory bulb and cortex are unknown as in
the rest of the brain. Some investigators have postulated that the sequence of several
gamma oscillations occurring within a theta oscillation may serve as a computational unit
of processing [44]. The mechanism of the genesis of oscillations is also unclear in many brain
structures including the piriform cortex. Previous modeling work as well as experiments
involving weak afferent shocks suggested that piriform cortex oscillations can be generated
endogenously [17, 71]; however, it is also possible that in vivo such oscillations are driven
partly or even primarily by inputs from the olfactory bulb [39]. The modeling work described
in this thesis strongly supports the view that oscillations in the gamma band are driven
by olfactory bulb inputs. Additionally, the model also suggests a new paradigm for the
organization of these inputs which in turn suggests that each gamma cycle represents the

analysis of a different aspect of a single odor.
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1.4.3 Neuromodulation in the piriform cortex

Piriform cortex is innervated by a number of neuromodulatory nuclei in the brainstem
which supply cholinergic, noradrenergic, serotonergic, and dopaminergic inputs to the cortex
122, 63]. Some neuromodulators, predominantly acetylcholine (ACh) and norepinephrine
(NE) have been strongly associated with certain aspects of learning and memory [6, 13, 53,
58, 68, 70]. Work done by Michael Hasselmo [25, 26] showed that acetylcholine, when bath-
applied to a brain slice preparation in the cortex, caused a selective depression in layer 1b
synaptic transmission. Work included as part of this thesis extends this to norepinephrine.
However, NE also has a number of other effects, including changes in neuronal excitability
in both pyramidal neurons and interneurons [47, 50]. The network-level effects of NE are
not easily predictable from its cellular and synaptic effects; thus, one motivation for the
network modeling efforts included in this thesis was to incorporate all these effects to be

able to predict the overall effect of NE on the dynamics of the network.

1.4.4 Other issues

I used the model to explore several other aspects of the olfactory system, including the role
of background spiking inputs from the olfactory bulb, the roles of feedforward and feedback
inhibition onto pyramidal neurons, and the roles of various types of inhibitory synaptic

receptor subtypes on the dynamical behaviors of the model.
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1.5 Modeling methodologies

In the course of building models of single neurons in piriform cortex, a number of tools
were developed to facilitate certain aspects of the modeling process. A description of these
tools forms a major component of this thesis. These tools are briefly summarized here and

discussed in more detail in the relevant chapters.

1.5.1 Simulation environment

The computer models of piriform cortex described in this thesis were all simulated using
the simulation program GENESIS (GEneral NEural SImulation System) [7]. Single neu-
rons were simulated by dividing them into isopotential compartments and using standard
compartmental modeling techniques [41]; details of the models are to be found in the fol-
lowing chapters. Many extension libraries totalling approximately 60,000 lines of C code
were added to GENESIS specifically in order to build the piriform cortex model. These
libraries consisted of the olfactory bulb spike-generating objects, a variety of synaptic ob-
jects, objects controlling neuromodulation, and commands to establish groups of synaptic

connections, weights and delays.

1.5.2 Parameter searching

I have developed a group of parameter searching methods usable within GENESIS that

greatly simplify the process of assigning values to unknown parameters in single-neuron



models. Several methods have been used, including conjugate-gradient, simulated anneal-
ing, genetic algorithms, and stochastic search. The highly accurate match between the
pyramidal neuron model and the experimental data on which it was based is a direct con-
sequence of these methods. I believe that these methods will soon become an essential
component of the simulation toolkit of scientists building realistic single-neuron models,
since assigning parameters iteratively by hand is both much more tedious and gives much
poorer results than those obtained using these methods. At the same time, a certain amount
of expertise in using these methods is necessary in order to obtain the best results; this is

discussed at length in chapter 3.

1.5.3 Bayesian methods

Eventually, a large enough number of realistic single-neuron models will exist that it will be
possible to ask which one is the best model given some set of data to be matched. Although
most modelers would currently answer this question based on a visual inspection of the
results or on the basis of what aspects of the data they are most interested in, it is possible
to ask this question much more rigorously if the models generate output probabilistically.
I have shown that in this case one can use the Bayesian framework to compare individual
models and classes of models and assign relative probabilities to the models based on how
well they match the data. As models proliferate the Bayesian methodology will be essential

to allow the objective evaluation of different models.
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1.6 New work suggested by the model

1.6.1 Experimental work

The piriform cortex model has highlighted the importance of a more accurate understanding
of the connection patterns between the olfactory bulb and the piriform cortex. As will be
shown in the last chapter, simple random connectivity between the two structures results in
a model which can replicate the cortical surface EEG with reasonable accuracy but which
cannot replicate the CSD response to a weak shock stimulus. However, a model which
has highly structured connections between bulb and cortex can replicate the CSD response.
Detailed anatomical and physiological studies will be necessary to determine the true nature
of the connection patterns between bulb and cortex. These studies are crucially important
in that they will have a significant impact on our understanding of how computations are
performed in this system.

From the perspective of improving the model, a number of experiments need to be
performed. More data on pyramidal neuron responses to a variety of input stimuli will be
necessary for improving that model. In addition, little experimental data exists to constrain
the models of feedforward inhibitory neurons. These neurons appear to have a profound
effect on responses of the network to both weak and strong shock stimuli. Therefore,
experiments to better characterize these neurons are essential.

From the perspective of coding, a very important experimental study is for large-scale
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multiunit recordings to be obtained from arrays of olfactory bulb mitral cells in awake
behaving animals involved in odor detection tasks. This will allow us to improve the quality
of the inputs delivered to the model and also to refine our understanding of coding at the

level of the bulb and cortex.

1.6.2 Modeling work

The modeling work presented here has suggested a number of future paths for continued
work. The pyramidal neuron model can be extended in a number of ways. One approach
would be to increase the realism of the neuron morphology, which was heavily simplified in
the present model for computational reasons. One question of interest concerns the possible
roles of dendritic spines, which can isolate the conductance changes at synapses from the
main dendritic truck, thus effectively increasing the space constant of the neuron [40]. This
may have a significant effect on synaptic integration in pyramidal neurons. In addition,
the possible roles of active dendritic currents [30] and a somatic spike-initiating zone [48]
remain to be established for these neurons.

There are an enormous number of components of the present model which have not
been explored fully owing to time coustraints. The roles of synaptic facilitation, synap-
tic depression, and NMDA receptors in generating network-level phenomena are not clear.
Some network-level phenomena, such as the role of norepinephrine in the weak-shock re-

sponse, have not been fully characterized. Some work has also been done on modeling the
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surface EEG response to odors. but this work is far from complete and has therefore not

been included in this thesis.

1.7 Summary of thesis contributions

1.7.1 The new piriform cortex model

A realistic computer model of piriform cortex was constructed. This model is the most
accurate model of this brain structure that has been built to date. The goals motivating

the construction of the model were as follows:

1. The network model incorporates models of single neurons which were required to
match the input-output behavior of real neurons very accurately. In the case of pyra-
midal neurons, the morphology was systematically simplified from the morphology of

a real piriform cortex pyramidal neuron.

2. The neuron models contain synaptic receptor types known to exist in the piriform
cortex but not previously incorporated into network models of this system, includ-
ing NMDA receptors, fast and slow GABA-A receptors [33, 34, 35], and synaptic

facilitation and depression [8].

3. The model features more accurate inputs to the cortical model from olfactory bulb

mitral cells.
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4. The model includes neuromodulation with norepinephrine (NE) at both the cellular

and synaptic levels.

1.7.2 Lessons from the model

The piriform cortex model has emphasized the importance of the role of background spiking
input from the olfactory bulb in keeping pyramidal neurons in the ventral anterior piriform
cortex close to spiking threshold. Without these background inputs, the system becomes
largely unresponsive and cannot accurately replicate the strong shock response. The model
predicts that norepinephrine, which increases the excitability of pyramidal neurons, must
decrease the background firing rate of olfactory bulb mitral cells in order to prevent cortical
pyramidal neurons from spontaneously spiking at high rates. There is some experimental
support for this conclusion.

The model has also highlighted the importance of feedforward inhibition in the gener-
ation of the strong shock response, and suggested that feedback onto these neurons may
be involved in the damping of the surface EEG observed in the weak shock response. The
model shows that feedback inhibition alone is not sufficient to replicate the strong shock
respounse.

Most significantly, the attempt to accurately replicate the CSD response to weak shock
stimuli has suggested that mitral cells in the olfactory bulb and pyramidal neurons in

piriform cortex may be divided into nonoverlapping neuronal groups, such that mitral cells
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of a given group in the bulb project primarily or exclusively to pyramidal neurons of a
given group in the cortex, and similarly pyramidal neurons in the cortex project primarily
or exclusively to other neurons of the same group (with the possible exception of feedback
projections from posterior to anterior piriform cortex). This arrangement, if true, suggests
that the output code of piriform cortex will not resemble a static attractor but will be a
complex spatiotemporal pattern, and that each gamma oscillation cycle may be involved in

analyzing separate aspects of the same input stimulus.

1.7.3 Experimental work

In order to obtain parameters relating to the effects of norepinephrine on synaptic trans-
mission in piriform cortex, a number of brain-slice experiments were performed which are
described in chapter 2. NE was found to have profound effects on afferent synaptic trans-
mission in layers la and 1b of piriform cortex, as well as effects on synaptic facilitation and
depression and cellular excitability. These effects of NE were incorporated into the piriform

cortex network model.

1.7.4 Development of simulation tools

Simulation tools were developed as extension libraries for the neural simulation program
GENESIS to simulate synaptic, cellular, and network-level entities of the piriform cortex

model. An extension library consisting of the parameter searching code was developed
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and has been incorporated into recent releases of GENESIS. Simulation tools for Bayesian

analysis of compartmental models were also developed.
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Introduction

The work described in this section is part of an ongoing series of investigations into synaptic
transmission in piriform cortex originally begun by Michael Hasselmo [1]. Hasselmo’s work
involved the effects of the neuromodulator acetylcholine (ACh) on synaptic transmission in
piriform cortex. ACh was chosen because of its known relationship to learning and memory,
and because piriform cortex has been postulated to be the site of olfactory memory storage
by several groups. The neuromodulator norepinephrine (NE) also has a strong relationship
with learning and memory, so the work in this section was done to extend these studies to
NE. The results show that NE acts in a very similar way to ACh but has even stronger
effects on afferent synapses, leading to a network which is much more heavily driven by
afferent inputs than by associational (inter-network) connections.

In addition to its effects on synaptic transmission, NE has a variety of other effects in
piriform cortex, including modulation of membrane potential in pyramidal and inhibitory
cells, modulation of synaptic facilitation and depression, and modulation of the excitability

of pyramidal cells. All of these effects are included in the network model described later,
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but there are undoubtedly many more effects of NE which remain to be discovered.
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Chapter 2

Synaptic Effects of Norepinephrine in

Piriform Cortex

2.1 Abstract

We recorded from a brain slice preparation of rat piriform (olfactory) cortex using extra-
cellular techniques in order to characterize the effects of norepinephrine (NE) on synaptic
transmission in this brain region. 25 uM NE was shown to cause a large decrease in synaptic
field potentials in the association fiber layer of piriform cortex (layer 1b), whereas the same
dose of NE caused a significant increase in field potential heights in the afferent fiber layer
(layer 1a). The concentration dependences of the NE effects were determined in each case.
Pharmacological studies indicated that the NE effects in layer 1b are mediated primarily

through a presynaptic effect dependent on a-2 adrenergic receptors, while layer la effects are



dependent primarily on postsynaptic a-1 adrenergic receptors. NE was also shown to cause
an increase in paired-pulse facilitation in layer 1b but not in layer 1la. We consider possible
reasons for differences between these results and other investigations in the literature, and

discuss the possible functional significance of these modulatory effects.

2.2 Introduction

Norepinephrine (NE) is a monoaminergic neuromodulator/neurotransmitter with a wide
distribution throughout the CNS [15, 17]. NE can have a wide range of effects on cortical
neurons, including changing neuronal excitability [41], increasing the strength and duration
of LTP in the hippocampus [32, 33] and modulating ionic channels [19]. However, its
computational roles in the brain remain unclear. There is evidence for involvement of NE
in a variety of brain functions including memory [2, 14, 46, 51, 50, 60, 65], arousal [3, 44],
and possibly modulation of neuronal signal-to-noise ratios [31, 53].

For the last several years our laboratory has been studying the possible functional effects
of neuromodulators within the circuitry of the piriform (primary olfactory) cortex using
a combination of physiological [26] and modeling [29] techniques. Piriform cortex has a
characteristic three-layered structure that can be investigated directly using brain slice
techniques [20, 21, 22, 56] (figure 2.1). Layer 1 consists primarily of afferent fibers to
pyramidal neurons coming from olfactory bulb mitral cells via the lateral olfactory tract

(layer 1a) and association fibers connecting pyramidal neurons with each other (layer 1b).



Superficial pyramidal cells are located in layer 2, while deep pyramidal and excitatory
and inhibitory multipolar cells are located in layer 3. This laminar arrangement makes it
relatively easy to independently investigate the synaptic properties of the different fiber
systems, since stimulating electrodes placed in layer la or 1b selectively activate afferent
and association fiber synapses. respectively [26] (figure 2.1).

Both the circuitry of the olfactory cortex and the probable computational requirements
of olfactory processing suggest that this structure may implement some form of associative
memory [9, 20, 22, 29, 66]. We have previously reported [26] that the neuromodulator
acetylcholine (ACh) can transiently decrease the strength of association fiber synapses while
having no effect on afferent fiber synapses. In abstract models of piriform cortex [29], we
found that this effect could reduce interference between newly stored and old memories
during an associative learning process, thus preserving the fidelity of previously stored
memories. Since NE is also strongly implicated in at least some memory processes (e.g.,
[12, 46, 58, 60]) and since piriform cortex receives a significant noradrenergic projection
from forebrain neurons in the locus coeruleus (LC) [56, 57]. we decided to characterize the
effects of NE on synaptic transmission in piriform cortex.

In these studies we demonstrate a differential effect of NE on afferent and association
fiber synapses. In agreement with a previous report [31], NE transiently and substantially
decreased the size of field potentials in layer 1b, presumably reflecting a decrease in synap-

tic transmission. In contrast to previously published results, we found that NE caused a



1a stimulation
(afferent fibers)

\ 1b stimulation

(association fibers)

1a recording

1b recording

Figure 2.1: A schematic diagram of the piriform cortex and the setup of the

recording and stimulating electrodes. Pyramidal cells are shaded gray. Note that
the stimulating electrode in layer 1la is relatively far from the recording electrode
in layer la, while the stimulating electrode in layer 1b is close to the recording
electrode in layer 1b. Abbreviations: LOT, lateral olfactory tract. See text for

details.
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transient and significant increase in field potential amplitudes in layer la. Pharmacological
studies indicated that the effects on association fiber synapses in layer 1b were primarily
mediated by -2 adrenergic receptors while the effects on afferent fiber synapses in layer
la were primarily mediated by a-1 adrenergic receptors. In addition, application of NE
increased the amplitude of paired-pulse facilitation (PPF) in layer 1b but had no effect on
PPF in layer la, similar to the effects we previously observed for ACh [26]. In the discussion
we suggest possible reasons for the different results obtained here and in a previous investi-
gation [31], and suggest possible computational roles for these effects of NE. A preliminary

report on these results has appeared in abstract form [63].

2.3 Materials and Methods

2.3.1 Preparation of brain slices

All experiments were performed on brain slices prepared from female albino Sprague-Dawley
rats as described in previous publications [28, 26]. Slices with a thickness of 400 pm were
cut perpendicular to the laminar organization of piriform cortex in the coronal plane, using
an oscillating tissue slicer (Vibratome). The location of the piriform cortex was determined
visually using a rat brain atlas as a reference [47]. Slices for experiments in layer la were
taken from the most rostral part of piriform cortex where layer la is the thickest. Slices for

experiments in layer 1b were usually taken from rostral piriform cortex but occasionally from



more caudal regions of piriform cortex. 1b results from rostral and caudal piriform cortex
were essentially identical. Slices were maintained in an artificial cerebrospinal fluid (ACSF)
solution (NaHCOj3 26 mM; NaCl 124 mM; KC1 5 mM: KHyPOy4 1.2 mM; CaCl; 2.4 mM;
MgSOy4 1.3 mM; glucose 10 mM) at room temperature for approximately two hours before
beginning the experiments. Albumin (0.125 g/L) and kynurenic acid (0.66 mM ) were added
to the solution during this time but were not used in the solution bathing the slices during
experiments. Albumin was added to minimize protease damage to the slices while kynurenic
acid, a nonselective glutamate antagonist, was added to prevent excitotoxicity. We have
found that adding albumin and kynurenic acid to the ACSF solution results in healthier
and longer-lived brain slices.

Slices were placed in a submersion-type slice chamber on top of a small nylon mesh
which kept both sides of the slice exposed to ACSF. ACSF was kept oxygenated with a
95% O2/5% CO2 mixture bubbled through the solution. The flow rate was 4 ml/min. The
slice chamber included a heating element which kept ACSF maintained at a temperature of
33-35% C'. Slices were transilluminated, allowing visually guided placement of stimulating
and recording electrodes. Slices were left in the chamber for at least 15 minutes before com-
mencing recording in order to wash off all traces of kynurenic acid, which would otherwise

have interfered with the recordings due to its effects as a glutamate antagonist.
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2.3.2 Preparation and application of pharmaceuticals

All pharmaceuticals were obtained from Sigma Chemical Co. and were freshly prepared
before each experiment. Since norepinephrine and some other pharmaceuticals used are
light-sensitive, recordings were done in darkness and drug solutions were kept in bottles
covered with aluminum foil to block exposure to stray light. In addition, NE oxidizes
rapidly when exposed to air, so 25 pM ascorbate was added to the solutions as an antioxi-
dant. Ascorbate was also added to the regular ACSF (without added pharmaceuticals) as
a control. Ascorbate by itself had no noticeable effect on the slices except that they stayed

healthy for longer periods than slices without ascorbate.

2.3.3 Electrophysiology

Figure 2.1 shows the arrangement of stimulating and recording electrodes. On any given ex-
periment, stimulating electrodes were placed in either or both of layers 1a and 1b. Monopo-
lar or bipolar tungsten stimulating electrodes (Micro Probe Inc.) with an impedance of
1-2 M) were used. Stimuli were low-amplitude (2-10 V') short-duration (0.1 msec) voltage
shocks, with voltages greater than 5 V being used only in layer 1a. Extracellular field po-
tential recordings were obtained with glass electrodes filled with 3 M NaCl with impedances
of ~ 5 MQ. At the start of each experiment stimulating electrodes were placed either in
layer la or layer 1b or both as shown in figure 2.1.

For recordings in layer la, stimulating electrodes were placed close to the lateral olfactory



tract (LOT) and high in layer la (among the myelinated fibers of layer 1a [23]) to reduce
the chance of inadvertently stimulating layer 1b fibers. Recording electrodes were placed 1-
2 mm from the stimulating electrode to minimize the possibility of inadvertently recording
from the layer 1b region adjacent to the stimulating electrode, which, due to the relatively
high stimulation voltages necessary to elicit la field potentials (typically 5-10 V'), could
respond to some extent to stimulation in layer la. Field potentials in layer 1b decrement
rapidly with distance (data not shown) so placing the recording electrode some distance from
the stimulating electrode in layer 1a minimizes contamination of the layer la field potential
with layer 1b field potentials. This arrangement is feasible since the myelinated fibers at
the surface of layer la conduct the stimulus for relatively long distances. In addition, this
arrangement reduces the size of stimulation artifacts, which is helpful since layer la field
potentials are typically somewhat smaller than those in layer 1b.

For recordings in layer 1b, stimulating and recording electrodes were placed in the
deepest part of layer 1b to reduce the possibility of inadvertently stimulating and recording
from layer la as well as layer 1b. Stimulating electrodes in layer 1b were placed very close
to the recording electrodes (< 0.5 mm) to give the largest signal. Typical field potential
heights were 1 mV for layer 1b and 0.5 mV for layer la. The intertrial interval was 15
seconds.

Occasionally, simultaneous layer 1la/1b recordings were made. In order to ensure that

the recordings in one layer were not contaminated by artifacts from stimulation in the other
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layer, stimulations were staggered in time by 7.5 seconds with respect to each other. These
recordings gave identical results to recordings done only in layers la or 1b.

All field potentials were allowed to stabilize for at least 15 minutes before recording
began. Once field potentials had stabilized, a baseline of 10 minutes (40 trials) was recorded.
NE or NE agonists were then applied for 10 or 20 minutes and washed out for 30 minutes to
assess recovery from the effects of the treatment. For experiments involving NE antagonists
the sequence was: baseline, antagonist only (20 minutes), antagonist + NE (20 minutes).
This sequence was done to ensure that the antagonists alone had no effect on field potential
amplitudes, which was the case for all antagonists used. Occasionally at the end of an
experiment the chamber was perfused with a low-calcium solution (100 uM CaCl,, 8 mM
MgSOy4) to eliminate synaptic potentials. This verified that the field potential was in fact

due to synaptic transmission.

2.3.4 Data analysis

All data analysis was done using custom-written software. Field potential amplitude was
measured in terms of both peak height and initial slope. Since these gave essentially identical
results, peak heights were used exclusively in the data analysis. Results of a pharmacolog-
ical treatment were expressed as the ratio of the average of the final ten trials during the
treatment versus the average of the baseline trials. All pharmacological and dose-response

treatments were done on at least four slices from at least three different rats (usually con-
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siderably more). All results are expressed as the mean =+ the standard error of the mean
(SEM).

The dose-response curves were fitted to theoretical curves of the following form:

x

fiale) = (1+1z)— T4 o/,

(2.1)

fu(c) = x+-i-% , (2.2)

where c represents the concentration of NE and z represents either the maximal (asymptotic)
effect of NE expressed as a proportion of the total response (equation 1) or the proportion
of the response insensitive to NE (equation 2). Equation 2 represents a single antagonist
binding equation with a Hill coefficient of 1.0 [26], and was fit to the data from layer 1b.
Equation 1 is identical to equation 2 except that = has been replaced with 1+ z to give the
proper limiting behavior; this equation was used to fit the layer 1a data. Curves were fit to

the data using a nonlinear Levenburg-Marquardt algorithm [48].
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2.4 Results

2.4.1 Synaptic effects of norepinephrine

Figure 2.2 shows the effects of 25 pM NE on the height of field potentials recorded in
layers la and 1b of rat piriform cortex. NE causes a substantial decrease in the height of
field potentials in layer 1b (41.05 & 1.88% of baseline, n = 27, p < 0.001). NE also causes
a somewhat smaller increase in the height of field potentials in layer la (124.52 + 4.89%,
n =10, p < 0.001).

Figure 2.3 shows the time course of the effects for each layer. The NE-induced decrease
in synaptic transmission in layer 1b occurs very rapidly after NE is added to the superfusion
medium (figure 2.3). The slight delay seen (less then 3 minutes) is due to the time required
for the NE-containing ACSF to travel to the chamber. The NE effects in layer la have a
somewhat longer latency (up to 4 minutes) and the field potentials rise more slowly to their
maximum value. This difference may reflect a slower diffusion of NE to synapses in the

myelin-rich region in layer la.

2.4.2 Concentration-dependence of effects

The effects of norepinephrine on field potentials in layers la and 1b were tested at a wide
range of concentrations ranging from 0.2 pM to 500 M. The effects of NE were tested on
from 4-27 slices from at least three different rats per concentration. The results of these
experiments are summarized in figure 2.4. The upper curve represents the effects of NE
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Control NE 25 uM Washout

Layer 1a

)

Layer 1b

Figure 2.2: The effect of 25 uM NE on extracellular field potentials in layers 1a
and 1b of piriform cortex. Stimulation artifacts have been removed. NE causes a
pronounced depression in the magnitude of the field potential in layer 1b, and a
smaller but significant increase in the magnitude of the field potential in layer la.

Both effects are reversible. Horizontal bar: 5 msec. Vertical bar: 0.2 mV.
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baseline. Layer la data are displayed with open circles while layer 1b data are
displayed with filled circles. The dark bar shows the duration of NE application (10

minutes at 25 uM).



in layer la and the lower curve the effects of NE in layer 1b. The curves represent the
optimal fits to the binding equation described in the Methods section, as determined by
a nonlinear regression procedure. The asymptotically maximum increase in field potential
height in layer la due to NE was 23.47% with a dissociation constant Ky of 8.82 uM. The
concentration giving 50% of the maximum response according to this curve was 8.8 uM.
The asymptotically maximum decrease in field potential height in layer 1b due to NE was
34.02% (this is the component of the response resistant to NE) with a dissociation constant

Ky of 4.66 pM. The concentration giving 50% of the maximum response was 4.37 M.

2.4.3 Pharmacology of effects

We examined the effects of a number of noradrenergic agonists and antagonists in order to
determine the likely receptor type(s) responsible for the NE effects. The results, together
with the effects of NE alone, are shown in figure 2.5.

In layer la, the f-agonist isoproterenol at 25 pM caused a significant but very small
rise in field potential heights (105.22 & 1.42% of baseline, n = 6, p < 0.05). The «-1 agonist
phenylephrine (50 M) reproduced the NE effect on field potentials (122.83 + 5.31% of
baseline, n = 7, p < 0.01). The «-2 agonist clonidine (25 pM) also caused a smaller but
significant increase in layer la field potential heights (113.04 + 1.28% of baseline, n = 5,
p < 0.001). However, the a-1 antagonist prazosin (2 pM) completely blocked the effect of

25 pM NE in layer la, while the a-2 blocker yohimbine (5 pM) had virtually no effect,
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suggesting that the NE effect in layer 1a is primarily mediated by a-1 and not a-2 receptors.

In layer 1b, isoproterenol at 25 pM caused a significant increase in field potential heights
(113.14 £ 3.65% of baseline, n = 10, p < 0.01), in sharp contrast to the effects of NE. The
a-2 agonist clonidine (25 pM) caused a decrease in layer 1b field potential heights to
77.85 + 2.38% of baseline (n = 6, p < 0.001). In addition, the a-2 antagonist yohimbine
(5 pM) almost completely blocked the effects of 25 uM NE (95.15 £ 1.38% of baseline,
n = 5). Interestingly, the a-1 agonist phenylephrine (50 uM ) also caused a slight decrease
in layer 1b field potentials to 84.49 & 2.49% of baseline (n = 5, p < 0.001). However, the
a-1 receptor antagonist prazosin (2 M) was not able to block the NE effect in layer 1b at
all. This suggests that the NE effect on layer 1b field potentials is primarily mediated by

-2 receptors.

2.4.4 Effects of norepinephrine on paired-pulse facilitation

Figure 2.6 presents the effects of NE on paired-pulse facilitation (PPF) in piriform cortex.
Layer 1a field potentials typically exhibit a large degree of paired-pulse facilitation, whereas
layer 1b field potentials show much less PPF [11]. The effects of 25 pM NE on PPF are
shown in figure 2.6 for an interpulse interval of 50 psec. NE had virtually no effect on
PPF in layer la (PPF without NE: 1.487 £ 0.109; PPF with NE: 1.487 £ 0.055; n = 4),
but caused a significant increase in PPF in layer 1b (PPF without NE: 1.197 £ 0.055; PPF

with NE: 1.444 +0.042; n = 10, p < 0.05). As a result, the depression of field potential
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height with NE application is considerably reduced for the second pulse. Since PPF is a
presynaptic effect [24, 38] this strongly suggests that the effect of NE on association fiber
synapses in layer 1b is primarily presynaptic, since if NE was acting postsynaptically both
pulses should have been affected equally [24]. The lack of effect of NE on PPF in layer la
is completely consistent with the a-1 receptor-dependence of the effect, since a-1 receptors

are generally located postsynaptically [8, 17].

2.5 Discussion

2.5.1 Differential effects of NE on layer 1a and 1b field potentials

Our results show that norepinephrine causes a pronounced decrease in the height of synaptic
field potentials in layer 1b of piriform cortex (figures 2.2 and 2.3). NE decreases the height of
field potentials to about one-third of their original height at high doses with a half-maximal
effect at 4.4 pM (figure 2.4). This effect is consistent with previous results we [63, 64] and
others [31] have obtained. In contrast, norepinephrine causes a significant increase of about
25% in field potential heights in layer la of piriform cortex (figures 2.2 and 2.3). This effect
is concentration-dependent with a half-maximal effect at 8.8 M (figure 2.4), and has not

been previously reported in the literature.
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Control NE 25 uM

Layer 1a

—

Layer 1b

Figure 2.6: Effects of NE on paired-pulse facilitation (PPF) in layers la and 1b.
The traces have been normalized so that the first pulse is of a constant height for
comparison. The horizontal scale bar represents 20 msec while the vertical scale
bar represents 200 V. Pulses were 50 msec apart. Note that NE increases PPF in

layer 1b but not in layer la.
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2.5.2 Pharmacological basis for the NE effects in layer 1a and 1b

The results in figure 2.5 indicate that the effect of NE on layer 1b field potentials is primarily
due to NE acting on an @-2 adrenergic receptor subtype. The a-2 agonist clonidine (25 M)
caused a decrease in field potential height to 77% of baseline. This is considerably less than
the full NE effect; however, clonidine is very weakly water-soluble and thus it was difficult
to precisely control the concentration of drug delivered to the slice chamber. Therefore, we
may be overestimating the amount of clonidine that actually was in contact with the slices.
In addition, clonidine is known to be a partial agonist for a-2 receptors [16, 49]. Clonidine
at the concentration used (25 pM) also has some affinity for a-1 receptors [6, 34], which
leaves open the possibility of some contribution to the observed effect from «-1 receptors.
However, the a-1 agonist phenylephrine even at the relatively high concentration of 50 M
only caused a small decrease in 1b field potentials, to 84% of baseline. More significantly,
the -2 antagonist yohimbine (5 M) almost completely blocked the effects of 25 uM NE
(to 95% of baseline), whereas the a-1 receptor antagonist prazosin (2 M) was not able to
block the NE effect at all. Thus the contribution to this effect from a-1 receptors, if any,
appears to be small.

In contrast to layer 1b, the effect of NE on layer la field potentials is primarily due
to NE acting on an «a-1 receptor subtype. The a-1 agonist phenylephrine (50 pAf) fully
reproduced the NE effect (122% of baseline). Clonidine (25 M) also caused a smaller but

significant increase in layer la field potential heights (113% of baseline), which, however,
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may be due to cross-reaction with a-1 receptors. The a-1 antagonist prazosin (2 pM)
completely blocked the effect of 25 pM NE in layer la, while the -2 blocker yohimbine
(5 pM) had virtually no effect, suggesting that the NE effect is primarily mediated by «a-1
and not a-2 receptors.

There is no compelling evidence that the NE effects we observed in either layer la or
layer 1b are mediated to any significant degree by § adrenergic receptors. The £ agonist
isoproterenol caused a significant increase in field potential heights in layer 1b, which is the
exact opposite of the effects of NE. However, the size of the increase was fairly small (only
about 13% of baseline). It is thus quite possible that the a-2 receptor-mediated suppression
of field potentials we postulate are actually stronger than we observed, being masked to
some extent by the 5 receptor-mediated increase in field potential heights.

From the pharmacological data and the paired-pulse facilitation data we also conclude
that the NE effects on layer 1a neurons are most likely to be mediated postsynaptically,
while the effects in layer 1b are most likely to be presynaptic. The evidence we present
here for this conclusion is circumstantial, but plausible. First, -1 receptors, of the sort
implicated in the layer la responses, are generally found postsynaptically [52, 59]. «-2
receptors, which appear to mediate the layer 1b effects, are often found in the presynaptic
terminal [8, 17, 35, 61, 62] (although a-2 receptors have also been found postsynaptically
in some studies, e.g. [1, 39, 45]). Secondly, our experimental results from paired-pulse

facilitation (PPF) are consistent with this hypothesis. PPF is generally believed to rely

73



on a presynaptic mechanism [24, 38]. and NE has no effect on PPF in layer la (proposed
postsynaptic receptors) but does affect PPF in layer 1b (proposed presynaptic receptors).
Thus the pharmacology and the PPF data both suggest a second fundamental difference

between the effects of NE in these two populations of synapses.

2.5.3 Differences from previously reported results

In contrast to the results reported here, Hasselmo et al. [31] reported that application of NE
in layer la caused no effect on layer la field potentials for low concentrations and a slight
decrease for higher concentrations. Collins et al. [13] using transverse slices also suggested a
concentration-dependent effect of NE, but in their case low concentrations were reported to
result in an increase in evoked potentials, while higher concentrations produced a decrease.
It is difficult to directly relate the results from different slice preparations; we suspect that
the recordings of Collins et al. combined both la and 1b field potentials to varying extents,
making a direct comparison with our results impossible. The concentrations used in the
experiments described here bracketed those used in both of the previous studies.

In our data it is quite clear that the effects of NE on field potentials in layer la are
more variable than in layer 1b, ranging from a very slight increase to increases of over 200%
in some slices. Nevertheless, our data show that the only effect of NE on layer la field
potentials is an increase in field potential amplitude regardless of the concentration. We

found, however, that extreme care must be taken to assure that layer la recording conditions
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are consistent and optimal. For example, because the size of layer 1a decreases substantially
in caudal piriform cortex it is almost impossible to correctly place stimulating and recording
electrodes in this region. Improper placement can easily lead to confusion between layer 1a
(enhanced) and layer 1b (suppressed) responses. Additionally, even with optimal placement
stimulation may spread from layer la to layer 1b, making it very difficult to interpret the
resulting field potential recordings. For this reason, in the current experiments, all the
layer la data reported was obtained from rostral slices where layer la is much thicker. In
addition, care was taken to place the stimulating and recording electrodes reasonably as far
apart as possible within layer la consistent with getting an adequate signal. In practice,
this meant a distance of at least 1 mm between these electrodes. Restriction to layer 1a was
also verified using paired-pulse facilitation which has previously been shown to be strong in
this layer [11]. Typically, when any of these recording conditions were not met, the effects

of NE on layer 1a field potentials were greatly diminished or absent.

2.5.4 Functional significance

Piriform cortex is a popular area for computational modeling and is considered by many to
be a good candidate for a biological model of associative memory [22, 26, 66]. Neuromod-
ulators such as NE and acetylcholine have long been linked to learning and memory effects
(e.g., [7, 14, 46, 50, 60, 65]) although it is still far from clear how these effects are mediated

at the level of single cell biophysics or network learning mechanisms. We and others have



demonstrated, however, that these modulators can have strong effects on the behavior of
synapses and cells in piriform cortex [4, 5, 18, 26, 30, 25, 27, 31, 40, 42, 43, 54, 55].

Taken in the context of our efforts to build realistic models of the olfactory cortex
[10, 36, 37, 66], the differential biophysical effects of both ACh and now NE on the two
principle sources of excitatory inputs on the apical dendrites of pyramidal cells can be
proposed to have a direct effect on the way in which this network processes incoming sensory
data [9]. Specifically, we have proposed that ACh, which suppresses layer 1b association
fiber synapses, may serve to make the piriform cortical network more responsive to olfactory
afferent sensory inputs than to internal dynamics. We show here that NE both suppresses
association fiber synaptic transmission and enhances afferent fiber synaptic transmission.
Thus it would appear that NE provides a more extreme form of regulation than ACh
although with effects in the same direction. Realistic modeling efforts currently underway
in our laboratory will use the data presented in this paper as well as previously published
results on ACh and NE to more directly contrast the consequences of these two important

neuromodulators on cortical function.
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Introduction

One problem faced by all those who build realistic models of single neurons is that of match-
ing the outputs of the model to experimental data for the same cell type. The reason for
this difficulty lies in the highly nonlinear nature of neural models and the relatively large
number of poorly constrained parameter values that these models generally possess. The
usual way modelers have dealt with this problem is by iteratively adjusting one parameter
at a time until the model reproduces the data set. However, because of the nonlinearities
inherent in the models, when one parameter is significantly changed many other parameters
will usually have to be changed as well. Since this process is tedious and time-consuming,
there is a need for automated methods that can do parameter-fitting with a minimum of
user intervention. The first of the papers in this section describes a group of such meth-
ods implemented by the author within the framework of the GENESIS neural simulator,
compares their advantages and disadvantages, and gives suggestions for the most effective
use of the methods. The methods developed for this work are now available in a GENESIS

library which will be included in the next version of the software. These methods make the
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process of fitting single-cell models to data dramatically easier.

One question regarding single-cell models is how to compare different models which
have been parameterized on the same data set. Such models might represent models from
different investigators or models at different levels of complexity from the same investigator.
What is needed is a rigorous quantitative framework for comparing models. The second
paper in this section (done in collaboration with Pierre Baldi) uses the Bayesian probabilistic
framework to compare models. Using this framework, one can compare individual models
to determine which is more probable given the known data. One can also compare entire
classes of models, so that one can ask more generic questions, e.g., “If I remove this ion
channel from this model. will the resulting class of models be more or less likely to match
this data set?” Bayesian methods can also provide a rigorous underpinning for designing
matching functions, which are traditionally done in an ad-hoc fashion. Therefore, the work
in this paper is complementary to the work in the previous one; the first paper addresses the
question: “How do I match a model to the data?”, while the second addresses the question
“How good are the models obtained by this process?” Together, the two papers are a first

step towards a more quantitative methodology of neuronal model building.
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Chapter 3

A Comparative Survey of Automated
Parameter Search Methods

for Compartmental Neural Models

3.1 Abstract

One of the most difficult and time-consuming aspects of building compartmental models of
single neurons is assigning values to free parameters in order to make models match experi-
mental data. Automated parameter search methods potentially represent a more rapid and
less labor-intensive alternative to choosing parameters manually. Here we compare the per-
formance of four different parameter search methods on several single neuron models. The

methods compared are conjugate-gradient descent, genetic algorithms, simulated anneal-



ing, and stochastic search. Each method has been tested on five different neuronal models
ranging from simple models with between 3 and 15 parameters to a realistic pyramidal cell
model with 23 parameters. The results demonstrate that genetic algorithms and simulated
annealing are generally the most effective methods. Simulated annealing was overwhelm-
ingly the most effective method for simple models with small numbers of parameters, but
the genetic algorithm method was equally effective for more complex models with larger
numbers of parameters. The discussion considers possible explanations for these results
and makes several specific recommendations for the use of parameter searches on neuronal

models.

3.2 Introduction

Compartmental neural models are being used increasingly in neuroscience to model struc-
tures ranging from single synapses and neurons to large networks of neurons [4, 24, 25].
Single neuron models are often required to reproduce very specific features of existing ex-
perimental data, such as transmembrane voltage trajectories and detailed neuronal spiking
patterns generated experimentally in response to complex stimuli. Typically, such models
include every voltage- and calcium-dependent ionic conductance known to exist in a par-
ticular neuron type, and their morphologies are based upon anatomical data collected from
real neurons.

Ideally, all the constituents of the modeled neuronal structures should be derived di-
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rectly from experimental data. In practice, this is usually not possible for several reasons.
It is often the case that the kinetics of many of the candidate ionic conductances have
not been adequately characterized experimentally. The spatial distribution and channel
densities of the included ionic conductances are often unknown, because these values are
relatively difficult to measure experimentally. Models may also incorporate intracellular
calcium and second-messenger dynamics [25], which may not be sufficiently well character-
ized to completely constrain the model. For these reasons, realistic neuronal modelers are
usually faced with the problem of constructing simulations containing a large number of
loosely constrained parameters under expectations that the models will replicate complex
experimental data with high accuracy.

Given the complexity of the models and the lack of sufficient experimental data, the
traditional way in which parameters are assigned to neural models involves varying param-
eters iteratively by hand based on a series of educated guesses. However, the large numbers
of parameters involved (which is steadily increasing as models become more sophisticated)
makes manually parameterizing a model a very time-consuming and tedious exercise. In
addition, ionic conductances in neural models often interact with one another in highly non-
linear ways [24. 36], making it impossible to accurately adjust parameters independently of
each other. Manual parameterization also does not provide any quantification of how closely
the model replicates physiological data. Instead, typically several figures showing similar

waveforms and spiking patterns has sufficed as proof of biological relevance. In practice,



this means that modelers are always tempted to stop when the model produces a barely
adequate fit to the data, instead of trying to determine the best possible match between
the model and the data.

For these reasons, we [1, 3, 40] and others [10, 11, 38] have experimented with the use
of automated parameter search methods for assigning parameters to neural models. This
approach requires the modeler to have a target data set that the model must match. A
simulation is run, a numerical match value is calculated, and the parameter search routine
automatically chooses the next set of parameters to evaluate based on the previous results
and the match value. While, in theory, such a procedure could be iterated over the entire
set of possible parameters (a so-called brute force search), in fact, even for simple models,
limitations in computer resources make it necessary for the parameter searching software
to make what are in effect its own educated guesses as to what parameters to use next.
Thus the design of the searching algorithm is critical to the success of the process. Several
different search algorithms exist which can in principle be applied to this problem. However,
an assessment of the value of one or another automated searching technique can only come
from a rigorous side-by-side comparison. In this paper, we specifically evaluate four common
searching algorithms which have been applied to neural models: conjugate gradient-descent
[3], stochastic search [11], genetic algorithms [1, 10, 40], and simulated annealing [1, 40].
We compare the effectiveness of these methods in obtaining good parameter sets given

the same amount of computer resources. Since it is often the case that the effectiveness
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of different searching algorithms depends on features of the models whose parameters are
being optimized, we compare the performance of these methods on five different single-
neuron models ranging from very simple to fairly complex, in order to see what general
conclusions can be drawn in order to guide modelers in their choice of parameter searching
methods. In the discussion we consider the benefits and limitations of these parameter
searching techniques as well as how these techniques can be used most effectively by neural

modelers.

3.3 Methods

3.3.1 Simulation environment and data analysis tools

The compartmental neural simulation program GENESIS [4], version 2.0, was used for
all of the simulations described here. Parameter search routines and various matching
functions were implemented as an extension library in GENESIS. Simulations were run
using the implicit Crank-Nicolson method [4, 24] with a time step of 20 psec. Outputs
were saved to disk every 0.1 msec. Simulations were run on a variety of workstations
running Linux or Solaris 2.3 (Sun Microsystems). Data analysis was done using Matlab
(The MathWorks, Inc.) and with a variety of scripts written in the Python computer

language (http://www.python.org).
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3.3.2 Models

Five models were used to evaluate different parameter search methods. For any given model,
the parameter search routines were run for a fixed number of simulations and the progress
of the search was recorded as the simulation progressed. The purpose of this was to see
which search methods gave the best results for a fixed number of simulations. Models 1-4
were used only to test the parameter search methods and are not realistic models of actual

neurons, whereas model 5 is based on real data.

Models 1 and 2: simple spiking cell with adaptation

The first two models (known as simplel and simple2 respectively) were derived from a
simple one-compartment neuron model with four voltage-dependent ionic conductances:
fast Na, delayed-rectifier K, inactivating K (A-current), and a slow non-inactivating K
conductance (M-current). The parameters for the first three channels were derived from a
model of the hippocampus by Roger Traub [39] while the last was derived from a model
of a bullfrog sympathetic ganglion cell [24]. The kinetics of the channels were modified
somewhat in order to produce a firing pattern similar to that of regular-spiking pyramidal
cells in cerebral cortex [30]. In the first model (simplel) the free parameters represented
the maximal conductances of the four ionic channels. The second version {simple2) also
contained four parameters that scaled the 7(V) curves (time constant as a function of

membrane potential) of the activation gating variable of each of the channels. The first
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model thus had four adjustable parameters while the second had eight.

Before the searches were started, the initial values of the parameters to be varied were
set to random values drawn from a log-uniform distribution centered around the correct
values of the parameters. A random value from this distribution is equal to the exponential
of a value drawn from a distribution uniformly distributed between the natural logarithms
of the endpoints. This distribution allows us to choose random values for parameters with
equal probabilities of choosing values of start/z and start = . This is a natural choice for
nonnegative scale-dependent parameters such as maximal conductances and scaling values
for 7(V) curves. The range of the distribution was from %1 to 4 times the correct value.
We generally chose the ranges for a given parameter by trial and error unless there was
experimental data to constrain the range. For models 1 and 2, a range of 4 was sufficient
because the initial parameter values were constrained to be no more than a factor of 4 from
the correct values. For these models, the goal of the parameter searches was to match the
spike timings of the target model’s outputs; the shape of the interspike interval waveform
was not considered. The inputs were somatic DC current injections (current-clamp) at six
different current levels. The reason for using multiple current levels is that in our experience
matching a model to data using only a single value of injected current is relatively easy,
while matching a model using a wide range of input currents is extremely difficult because
of the highly nonlinear behavior of neurons. Thus it is essential to use as much data to

constrain the model’s behavior as is feasible, and forcing the model to match the data over
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a wide range of input currents has proven to be an easy way to strongly constrain the

parameter values (see the Discussion).

Models 3 and 4: passive dendrite models

Models 3 and 4 (known as passivel and passive? respectively) were passive dendrite models,
i.e., they had no voltage- or calcium-dependent ionic conductances. Our approach was to
choose a fixed morphology for the model and consider the passive electrical properties of the
model (membrane axial resistivity (RA), specific membrane capacitance (C'M) and specific
membrane resistivity (RM)) to be unknown parameters. Since these models were passive
and hence linear, we used a single value of current injection (0.1 nA) at one location on the
cell as the input stimulus; using different values would have simply multiplied the response
by a constant and so would have been redundant. We started the searches at a random
point in parameter space and required the search to find the optimal match as with models
1 and 2.

Model 3 was a 100-compartment linear unbranched passive dendrite model. The three
parameters were RA, RM, and C'M, which were assumed to be constant for all compart-
ments in the cable. Current was injected at one end of the dendrite. We measured the
membrane potential at three points along the dendrite and used this as our output data set
to be matched to the target model.

Model 4 was a branched dendrite model; in addition to the soma there were four den-
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drites with 24 compartments each. We set the target values of the passive parameters RA,
RM. and C'M to be significantly different for each of the four dendrites and the soma
(but constant within a dendrite) in order to generate waveforms at the end of each branch
which differed substantially from each other. Input current was injected into the soma. The
outputs of the model consisted of the membrane potentials at the soma and those at the
distalmost compartments of all four branches. The 15 parameters for this model were RA,
RM, and C'M for each dendrite and for the soma.

It should be noted that for both passive models we measure the membrane potential at
multiple points in the dendrites, which is very difficult to do reliably in real experiments.
Similarly, in model 4 the passive parameters were not considered to be fixed over the
entire dendrite. Therefore, finding matches for these passive models is considerably more
difficult than if the membrane potential had only been measured at a single point (e.g., the
soma) and if the passive parameters were considered to be uniform over the entire dendrite.
The latter case is much more representative of currently existing passive neuron models
(e.g., [19, 20, 35, 41]); however, for this type of model excellent analytical techniques exist
to determine parameters [21, 24, 25, 34], and therefore parameter searches are generally
unnecessary. Our purpose in using the more complex models is to demonstrate the efficacy
of parameter searches on passive models for which no good analytical techniques exist. Even
though such models may be beyond the current experimental state of the art, advances in

multidendrite recordings (e.g., [6, 28]) will make such models more relevant in the future.
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Model 5: layer 2 superficial pyramidal cell in piriform cortex

This model was a simplification of a large model derived directly from an anatomical re-
construction of a layer 2 superficial pyramidal cell from piriform cortex [25]. The original
model consisted of 503 compartments and included several voltage- and calcium-dependent
ionic conductances. The active conductances of this model were restricted to the soma,
because there is currently little evidence for active dendrites in this cell type. We simplified
this model to a 5-compartment model using essentially the method of Bush and Sejnowski
[5], which involves collapsing branched cables into unbranched cables while preserving to-
tal axial resistance. We simplified the calcium dynamics of the original model by keeping
the calcium equilibrium (Nernst) potential constant instead of having it vary based on the
calcium concentration, and by modeling the intracellular calcium concentration as being
derived from a leaky integrator whose input is the current through the calcium channel
(suitably scaled to change current to calcium concentration).

The ionic conductances present in the cell included fast Na, delayed-rectifier K, inac-
tivating K (A-current), non-inactivating slow K (M-current), high-voltage-activated Ca,
non-inactivating (persistent) Na, and two distinct calcium-dependent K (AHP or after-
hyperpolarization) channels. One calcium-dependent K channel has a much smaller time
constant (tau([Ca])) than the other; we refer to this channel as the fast AHP channel. Al-
though there is no direct evidence demonstrating this channel’s presence in this cell type.

we found that including this channel improved the results of the parameter search signif-
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icantly (see below). Most of the kinetic parameters were taken either from existing data
for piriform cortex superficial pyramidal cells [2, 7, 13, 16], or, in cases where no such data
existed, from other cell types such as hippocampal pyramidal cells [12, 31, 39]. Further de-
tails on the model can be found in the appendix. The model thus contained eight voltage-
or calcium-dependent ionic conductances and a simple calcium buffer, with 23 parameters
chosen for fitting. In addition to the parameter types used for models 1-4, model 5 also

includes parameters of the following types:

1. voltage offsets for the activation (mo (V) or mo([Cal)) curve of an ionic channel

gating variable

2. parameters controlling the calcium buffer model

3. voltage offsets for resting membrane potential

4. somatic and dendritic membrane resistivities

Parameters that are offsets from a starting value (i.e., not scale parameters) are chosen
from a uniform distribution, as opposed to the log-uniform distribution chosen for the scale
parameters.

We added a separate parameter for the resting membrane potential because the values
obtained from our experiments included an unspecified junction potential which could be as
high as several millivolts [42]. We also considered the specific membrane resistivity of the
soma and dendritic regions as separate parameters. Since the reconstructed morphology
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we used did not correspond to the cell from which the data was taken, allowing membrane
resistivities to vary allows us to compensate for this to some extent.

It is important to note that good parameters for the simplified pyramidal cell model
cannot be obtained simply by using the corresponding parameters for the original model for
at least three reasons. First, the original model was parametrized using data from sharp-
electrode recordings whereas we used data from whole-cell patch-clamp recordings (see
below) to parametrize the simplified model. It is well known that passive properties mea-
sured in whole-cell recordings can be significantly different from those for sharp-electrode
recordings, primarily due to the relative leakiness of the soma membrane in the latter caused
by impalement damage [37]. Second, the firing pattern of the cells used to parametrize the
original model were quite different from the data used for this model. Finally, the passive
structure of the simplified model is clearly different from the original model. However, using
the parameters from a complex model as a starting point is a useful strategy to follow in

parametrizing a simpler model.

3.3.3 Target data sets

For models 1 to 4, we used artificial data sets generated from the models themselves, i.e..
we chose values of the parameters that would give desired behaviors, generated outputs as
membrane potential waveforms or lists of spike times given particular inputs, and used those

outputs as our data sets. For model 5, the data was derived from brain-slice experiments
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on rat piriform cortex. A layer 2 superficial pyramidal cell’s respounses to varying levels of
current injection were recorded with standard whole-cell intracellular recording techniques.
We took data from six different values of current injection (spanning the range from a level
at which the cell did not spike at all to a level at which the cell spiked fairly rapidly).
The data was processed to extract the spike times; this was the data set that our model
had to match. The original inputs consisted of one-second current pulses; to speed up our

simulations the simulated current injections were limited to 300 msec.

3.3.4 Computing the match between data and models

We used two different match functions to assess how well our models matched our data.
For models 1, 2, and 5 (spiking cell models) we processed the membrane potential traces to
generate lists of spike times, and then used a match function to compare the spike times of
the model with those of the data set. For models 3 and 4 (nonspiking dendritic models) the
match function computed the mean squared difference at each time point of the membrane
potentials of the model output vs. the target data. The match functions are error functions,

with 0 representing a perfect match.

Spike timing match function

This matching function computes a weighted average absolute difference in corresponding

spike times between the two models, with some extra penalty terms. The spike timing

107



match function is as follows:

1 . ‘ti,n - Oi,nl
match = N Z <Z {@(z? n)- T + By
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where t;,, is the time of the ¢th spike in trace n of the target data, o;, is the time of the
tth spike in trace n of the model data, N is the total number of spikes in all traces, the first
sum Is over the traces and the second sum is over the spike times in the individual traces.

©(i,n) equals 1 if both traces n have spike 7; otherwise it is 0. The other terms are:
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Term A weights spike mismatches more heavily the closer they are to the start of the
trace (0.010 is in seconds from the beginning of current injection). powl is a free parameter
which can control how strong the weighting is. We used a value of 0.4 for powl. Term B
penalizes missing or extra spikes in the simulated trace relative to the target trace. P is a
penalty parameter which we set to 0.5 sec. TC,, is the total count of spikes in target trace
n. pow?2 is a free parameter which we set to 0.6. For a pow?2 value of 0, all extra or missing
spikes are penalized the same in all cases; for a higher value of pow2 the penalty is reduced
when there are a large number of spikes in the target trace. This prevents a single extra
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spike near the end of a waveform from causing a large penalty when the trace has many
spikes already. Term C is a non-monotonicity penalty that penalizes consecutive interspike
intervals (ISIs) which are not monotonically increasing (as they are in the target data sets).
The function h(z) is zero if x < 0 and is z otherwise. The parameter () is a penalty value

for non-monotonically increasing ISIs which we set to 200.0 sec™!.

Waveform match function

The waveform match was calculated as:

1 M N
_ . 32
match = m 22: Z@:(t@ - O'g) )

where 0; and t; represent respectively the target and test waveforms sampled at 0.1 msec, N

was the total number of points in a each waveform, and M is the total number of waveforms

generated by the model.

3.3.5 Parameter search methods
Conjugate gradient

The conjugate-gradient (CG) method [33] is a type of gradient descent algorithm. In this
method the gradient of the match function at a given point in parameter space and the di-
rection of steepest descent with respect to this function are computed. A line minimization
in the direction of steepest descent is done to find the point on the line with the best match
value. Once this is done the procedure is iterated until the method converges to a local
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minimum of the matching function. Successive line minimizations are done in directions
which are conjugate to one another so that successive minimizations are as nearly indepen-
dent of each other as possible. In theory this will guarantee that the parameter search will
find a local minimum of the objective function. However, we found that when using the
spike timing-based match function there were large regions of parameter space which were
completely flat, i.e., where the gradient was zero. This generally occurred where no spikes
were produced by models whose parameters were in that region. Since no useful gradients
could be calculated in these regions, the CG method could not be used directly. In these
cases we began by running 100 random simulations before beginning the CG search and
using the best match as a starting point. This usually resulted in a point where a gradient

could be calculated.

Genetic algorithm

The genetic algorithm (GA) method [15, 18, 26, 32], treats each parameter set as an individ-
ual in a large breeding population. A new generation of the population is derived from the
preceding generation by reproduction, crossing-over and mutation. This was accomplished
by discretizing the parameter values into bit strings and crossing-over and mutating the
different bit strings. Parameters were represented as either 8-bit or 32-bit strings (8 bits for
models 1 to 4; 32 bits for model 5); we found that the bit resolution had a minimal effect

on the results. We took a population of parameter sets and evaluated the fitness of each
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one by computing the match as described above. Since the fitness function must increase
for better matches, we calculated it by taking either the inverse of the match function (for
model 5) or the square root of the inverse of the match function (for models 1-4). The
square root was used to reduce the difference in fitness between models and thus has the
effect of lowering the selection pressure. This was found to be useful in models 1-4 since
there was often a very wide range of match values, and if selection is too strong premature
convergence of the algorithm may occur. This was not found to be the case for model 5.
Once fitnesses were calculated, the next generation was determined by reproducing the
current generation, with each parameter set being chosen for reproduction in proportion
to its fitness (fitness-proportional reproduction). Then a fixed percentage of the resulting
parameter sets were crossed over by choosing pairs of parameter sets at random, choosing a
breakpoint within the bit string and exchanging the bit strings above the breakpoint (single-
point recombination). We crossed over % of the parameter strings per generation. Finally,
each parameter set was subjected to mutation with a low probability per bit. We used a
mutation probability of 0.02 per bit for models 1-4 and 0.01 for model 5. In this way, highly
fit parameter sets are selected for and less fit sets are eliminated from the population over
a series of generations. Furthermore, the processes of crossing-over and recombination can
generate new parameter combinations whose fitness is greater than that of its predecessors.
For models 1-4, we used a population size of 100 and ran the parameter search for

100 generations, giving a total of 10,000 simulations per round. For model 5, we used
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a population size of 300 and ran the search for 334 generations giving a total of about
100,000 simulations. These population sizes are quite small for GAs [15, 32]. but since the
total number of simulations was limited (intentionally) if a larger population size had been
used the simulation would have had to have been run for fewer generations. We found that
these population sizes gave reasonable results but we did not investigate the population-size
dependence of the GA systematically.

Our GA method had two nonstandard features: first, the best parameter set was always
preserved unaltered. This was to prevent genetic drift from eliminating good parameter sets
and was necessary since the small population sizes used meant that random fluctuations
could have an excessively large effect on which parameter sets were propagated into the next
generation. Second, if the method went a large number of generations without improving
on the best parameter set, the entire parameter table (aside from the best parameter set)
was reseeded by choosing random values for all parameter sets. This provided an additional

way to keep the method from getting stuck in a suboptimal region of parameter space.

Simulated annealing

We used a continuous version of simulated annealing (SA) [23] adapted from Press et al.
[33]. This algorithm constructs an N-dimensional figure known as a simplex out of N + 1
points in the parameter space. In the deterministic form of the algorithm, the simplex is

moved through the parameter space based on the calculated match values at the vertices of
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the simplex. Roughly speaking, successive points in the parameter space are evaluated and
accepted if their matches are better than that of the worst point on the simplex (in which
case the worst point is discarded and the new point joins the simplex) or rejected. This
process continues until a local minimum is reached. In the noisy version, the match values
for each point are modified with noise which varies linearly with a temperature parameter
which is set by an annealing schedule. The temperature parameter is a dimensionless
value which starts out very high (1.0) relative to typical match values and decreases to
zero; therefore, the amount of noise starts out large and gradually reduces to negligible
levels. Thus, parameter sets with high match values (poor matches) can be accepted into
the simplex with a nonzero probability which decreases to zero as the temperature falls,
allowing the algorithm to escape from local minima. The annealing schedule was a simple
proportional decrease in temperature every N simulation iterations, where N varied from
5 for the simple spiking models to 300 for the pyramidal cell model. We found the slower
annealing schedule necessary to give good matches for the pyramidal cell model. With large
amounts of noise, the simplex essentially performs a random walk in the parameter space,
and as the noise level decreases the simplex hones in on regions of the parameter space with
better match values. As noise is reduced to zero this method finds a local minimum in the
parameter space, a useful property not shared by the other methods (nor by all simulated
annealing algorithms).

The only difference between our procedure and that of [33] was that in the latter the
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parameter space was infinite whereas we enforced wraparound boundary conditions, so that
if the algorithm tried to use a parameter value that was beyond the assigned limits of the
parameter space, the value was adjusted to come in from the opposite side of the parameter
space by the amount of the overshoot. This was necessary since otherwise the algorithm
would often set parameters to extremely small or large (i.e., unphysiological) values in
order to achieve very small improvements in the match. This also allowed us to enforce our
constraint of keeping parameter values within specified limits without simply truncating
parameter values at the limits.

If the SA algorithm converged before the parameter search run had used up all of its
allocated simulations (which was always the case given the annealing schedules we used)
the best results of the search were saved and the search was restarted from scratch. When
plotting the results, we always give the best results of the run achieved up to that point,
even when there was more than one search in the run. This was also true for the conjugate-

gradient (CG) search method described above.

Stochastic search

The stochastic-search (SS) method [11] works as follows. A random starting point in param-
eter space is chosen. New points are selected from a multidimensional Gaussian distribution
centered on the starting point with a given (initially large) variance. These new points are

evaluated, and if one is found that is a better match than the previous best match, the
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Gaussian distribution is moved so that it is centered on the new (best) point. In addition,
the variance of the distribution decreases linearly each simulation until it reaches some
minimum value, at which time it is increased to the original value. The variance value
represents a proportion of the range of the parameter. We used an initial variance of 0.5,
a final variance of 0.05, and a variance-contraction of 0.95 per simulation for all models
except the pyramidal cell model, where we used a variance-contraction of 0.98 in order to
search parameter space more thoroughly. The variance is thus analogous to the temperature
parameter in the SA method, except that it goes through successive contraction/expansion
cycles instead of a single contraction to zero. In principle, choosing points from a distribu-
tion with a large variance will allow the modeler to search over large regions of parameter
space, while choosing points from a distribution with a much smaller variance will allow the
modeler to find locally optimal points in small regions of parameter space. Unlike our SA

algorithm, however, the SS algorithm does not do a systematic search for local minima.

Random search

As a control on the performance of the other parameter search methods, we used a simple
random search method as follows. For each simulation a new parameter set was chosen at
random from the parameter space being searched (which always had a finite volume). The
best parameter set was always saved, and the performance of the random search method

equaled the best match obtained after a given number of simulations.
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3.3.6 Statistical analyses

For each pair of parameter search method and model, we performed 10 separate parameter
searches and recorded the best match values for each search. To compare the different
methods, we computed the mean and 95% confidence intervals of the log transform of
the best match values. The effect of the log transformation was to change the range of
the matches from [0, 00] to [—oc,00]. This was necessary since otherwise the confidence
intervals would have in some cases included negative match values, which are inadmissible.
For the time-course plots we plotted the arithmetic mean of the match values at each time
point without log transformation. We separately calculated the geometric mean of the
match values, which are equivalent to the exponential of the arithmetic mean of the log-
transformed data. The results were qualitatively identical, with one exception: for the CG
method in model 3 the geometric mean is lower than that of the GA method, while the
arithmetic mean is higher: the difference is not significant in either case.

In two cases (the simulated annealing results of models 1 and 2) matches of zero were
sometimes obtained, which made it impossible to log transform the matches. In these cases
we separately calculated the significance of the difference between the simulated annealing
results and those of the other methods using the nonparametric Mann-Whitney one-tailed
U test [22]. For plotting purposes we replaced the zero match values by 107%, which gave

relatively large confidence limits.
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3.3.7 Resource requirements

For each of the parameter search methods, the computational overhead (in both space and
time) of the search algorithm was negligible in comparison to that of the neural simula-
tion itself. Therefore, we can compare the performance of the different methods solely
by how good a match is obtained with a fixed number of simulation iterations. Thus,
each run of each search method consisted of the same number of simulations for a given
model. The time needed for individual simulations for all the parameter searches ranged
from about five seconds per simulation for the simpler models to about 30 seconds per sim-
ulation for the more complex models (this was also highly dependent on the speed of the
processor used). For models 1-4, each run of a parameter search comprised 10,000 simula-
tions; 10 parameter search runs were performed for each model and each method in order
to generate statistics. Thus we performed 4 (models) * 5 (methods) * 10 (repeats)
10000 (simulations per search) = 2,000,000 simulations in all for these four models. For
model & we found that we could not obtain reasonable results with 10,000 simulations per
run, so we used 100,000 simulations per run instead. For this model we thus performed

5% 10 % 100000 or 5 million simulations in all.
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3.4 Results

3.4.1 Simple spiking models

A typical result of a parameter search on model 2 (eight parameters) is shown in figure 3.2.
This model was discovered by the genetic algorithm method. In the figure the target data
is the bottom trace on each graph and has been offset to facilitate visual comparison. Note
that the membrane potential trace of the model found by the search is nearly identical to
that of the target model. The parameters of the model are listed in table 3.1 along with the
best parameter sets found by the other search algorithms. The best parameters for the SA
and GA methods are very close to the (known) parameters of the target model, while those
of the other methods in some cases diverge considerably from the correct values. Even
though the simulated annealing method gave better matches than the genetic algorithm
method for model 2, the matches from both methods are sufficiently good that they would
be difficult to distinguish by eye.

Figures 3.1 and 3.3 show how the searching methods compare for models 1 and 2. Each
round consisted of 10,000 searches and each line in figure 3.3 is the average of ten rounds.
For both models the simulated annealing method was superior to the other methods both in
terms of how good a match was finally achieved and how quickly this match was achieved.
Random search was predictably the poorest method with the other three methods ranking

in between. The best (i.e., lowest) match obtained for the SA method for both models was
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Figure 3.1: Bar graph of the results of the parameter searching methods on all
five models. The y-axis represents the match values in log units (base 10). Error
bars represent 95% confidence intervals. Meaus are of the best matches after 10,000
simulations (models 1-4) or 100,000 simulations (model 5). The large error bars on
the SA results for models 1 and 2 are due to the presence of several match values
of zero in the final results; however, a one-tailed Mann-Whitney U test confirmed
that the SA match values are significantly smaller than those of the other methods

in both cases (p < 0.01). Note the different y-axis scales for the different graphs.
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parameter | description | target | SA GA SS CG | random
1 GNa 800 | 805 829 837 505 717

2 (V) ng 111.02 0.83 0.89 0.27 1.16

3 ~G~K(DR) 100 | 100 99.1 92.8 106 67.6

4 7(V)k(DR) 11099 1.07 0.97 1.50 1.36

) @K(A) 50 | 49.8 50 53.1 26.4 39.9

6 (V) k(a) 11099 1.37 1.23 0.84 0.91

7 Grm) 100 | 100 95.4 93.8 99.4 90.8

8 (V) ke (ar) 1 1 1.08 1.01 1.05 1.21
match 0 0| 8.88e-04 | 2.46e-03 | 3.21e-03 | 6.51e-03

Table 3.1: The target parameters for model 2 (simple spiking model) compared

with the best parameters found by all search methods used. Maximal conductances

are in S/m? and scaling factors for time constants (7 values) are dimensionless. All

time constants refer to voltage-dependent activation gates. Na is a fast inactivating

sodium channel; K(DR) is a delayed-rectifier potassium current; K (A) is an inacti-

vating potassium current; K (M) is a slow non-inactivating potassium current. Note

that the matches found by the SA and GA methods are very close to the correct

parameter values.
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0.0 (a perfect match). This means that each spike in the model found by the search matched
the time of the target model within the resolution of the simulation output, which was 0.1
msec. Searches on the eight-parameter model generally resulted in higher match values
than those for the four-parameter model. This reflects the larger size of the parameter
space and thus the greater difficulty of the search task. Interestingly, the GA method gave
similar match values for both models; this may reflect the fact that GA methods are less
sensitive to the dimensionality of the problem (see Discussion).

The statistical distribution of the best match results is displayed graphically in figure
3.1. For model 1, the difference between the non-SA methods is not significant; furthermore,
all methods (even random search) were able to find reasonably good matches after 10,000
simulations. For model 2, simulated annealing is again the most effective method, but the
SA results have a wide confidence interval because of a single round where a zero match
was achieved. We used the Mann-Whitney one-tailed U test to confirm that the SA results

are in fact significantly smaller than those of the other methods (p < 0.01).

3.4.2 Passive cable models

See figure 3.4 for typical outputs of model 4, with 15 parameters. In this figure the target
data is plotted using dashed lines while the model found by the parameter search is plotted
using solid lines. The target data has been offset by —2 mV for clarity; if this had not

been done the models would overlap completely. The outputs from model 3 were equally
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Figure 3.2: Target outputs of the simplified one-compartment spiking model. The
graphs show the membrane potential changes in response to current steps of various
amplitudes, from 0.1 nA to 1.0 nA. The lower traces represent the target data, while
the upper traces represent the results of a genetic-algorithm parameter search using

8 parameters {model 2). The lower traces have been offset by -150 mV for clarity.
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Figure 3.3: Left graph: comparison of the performance of the parameter searching

methods on the simple spiking model with four parameters (model 1) as a function

of simulation number. Right graph: the same comparison for the eight-parameter

version of the simple spiking model {model 2). All traces are the averages of 10

runs of 10,000 simulations each.
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impressive. In table 3.2 we show the parameters of the target model versus those of the
model found by the parameter search for model 4. It is extremely interesting that, unlike
the case with the simple spiking model, the parameter values found for this model were
in many cases quite different from the correct parameters even for models which match
the data very closely. This indicates that in this model there can be many optimal models
based on our criteria. The capacitance values in the best parameter set (found using the SA
method) were generally quite close to the correct values, whereas the resistance parameters
often varied considerably from the corresponding correct values. This is not surprising since
the time course of the voltage waveforms is critically dependent on the capacitance values,
whereas the various resistance values can compensate for each other to some extent (e.g., if
one dendrite has a higher-than-average input resistance, the other can have a lower-than-
average one).

Figure 3.5 demonstrates how well the different search methods work as a function of
simulation number for the passive models, while figure 3.1 shows the final results of the
parameter search methods along with the range of the results. Simulated annealing still
outperformed the other methods, with genetic algorithms second as before. However, for
model 3 the conjugate gradient (CG) method significantly out-performed the stochastic
search (SS) method (p < 0.05) and performed as well as the genetic algorithm method.
This presumably reflects the fact that for passive models with small numbers of parameters

(such as model 3) the parameter space is relatively smooth, so a gradient-descent method
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parameter | description target SA GA SS CG | random
1 soma RM 0.2 0.241 0.778 0.458 0.309 1.34
2 soma RA 6.0 0.382 5.47 1.76 0.337 5.51
3 soma CM 0.008 0.0174 | 0.00998 | 0.00078 0.0137 0.0186
4 dendrite 1 RM 2.0 1.02 1.12 2.05 20.9 1.06
5 dendrite 1 RA 6.0 3.01 3.06 4.14 10.9 0.679
6 dendrite 1 CM | 0.008 0.0101 0.016 0.0123 | 0.00634 0.0152
7 dendrite 2 RM 0.2 0.169 0.0977 0.225 0.146 0.142
8 dendrite 2 RA 6.0 5.04 2.9 6.00 4.36 3.87
9 dendrite 2 CM | 0.008 0.0103 0.0185 0.0266 0.0233 | 0.00683
10 dendrite 3 RM 2.0 3.56 13.8 0.25 2.12 0.371
11 dendrite 3 RA 0.6 0.915 0.188 0.016 0.791 0.0952
12 dendrite 3 CM | 0.008 0.0057 | 0.00323 0.004 | 0.00363 0.0255
13 dendrite 4 RM 2.0 2.54 4.73 2.47 0.729 1.08
14 dendrite 4 RA 6.0 7.08 7.98 6.23 5.46 5.35
15 dendrite 4 CM 0.08 0.0684 0.0654 0.0718 0.0757 0.0525
match 0.0 | 2.14e-05 | 3.23e-05 | 7.38¢-05 | 1.34e-04 | 1.80e-04

Table 3.2: The target parameters for model 4 {passive dendritic model with four

branches) compared with the best parameters found by all search methods used.

RM values are in units of Q- m?; RA values are in units of Q- m, and CM values

are in units of F/m?. Note the relatively large spread of parameter values around

the correct values.
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like the CG method can be reasonably effective. Interestingly. when we look at model 4,
which is more complex, the CG method gives slightly worse results than the SS method
(although this is not statistically significant). This may reflect the larger number of models
with equivalent match values for this model, i.e., the larger number of local minima for the

CG method (but not the SS method) to get trapped in.

3.4.3 Pyramidal cell model

Figure 3.6 shows the outputs of a parameter searching method for the pyramidal cell model.
This model was discovered by the SA method after about 48,000 simulations. After this
the parameter search converged and subsequent searches in this run were completely new
parameter searches which converged to higher match values; in fact, this represents the
best SA result we achieved. The parameter values for this model are listed in table 3.3. In
this case we do not know what the correct parameter values are so we cannot assess the
performance of the methods on this criteria. However, figure 3.6 shows that the methods
can achieve extremely good matches to the data over a wide range of input currents, at least
with respect to the spike timings. The major difference between the model and the data is in
the spike pre- and afterpotential, suggesting that other conductances or features need to be
added to the model if greater accuracy is needed or if the spike afterpotential is of interest
to the modeler. One interesting possibility would be to add a separate spike-initiation zone

to the model [29]. An interesting feature of this model is that we added a fast calcium-
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Figure 3.5: Left graph: comparison of the performance of the parameter searching

methods on the linear dendritic model with three parameters (model 3) as a function

of simulation number. Note the relatively good performance of the CG method.

Right graph: comparison of the performance of the parameter searching methods on

the linear dendritic model with 15 parameters {model 4) as a function of simulation

number. All traces are the averages of 10 runs of 10,000 simulations each.
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dependent potassium channel to the model, even though there is no experimental evidence
for such a channel, because we found that adding this channel substantially improved the
matches we obtained (see below and Discussion). Figure 3.7 shows a graph of the results
of the different methods as a function of simulation number, while figure 3.1 shows the
statistical distribution of the best match results. Note that for this model the genetic
algorithm method was almost exactly as effective as the simulated annealing method. The
CG and SS method are roughly equivalent, while (as expected) the random search method

is the least effective.
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Figure 3.6: Outputs of a layer 2 pyramidal cell from piriform cortex at six different
levels of current injection at the soma compared with the outputs of a simulated-
annealing parameter search. The experimental data is shown below the model data
in each trace and is offset by -150 mV for display purposes. Although the model did
not precisely reproduce every aspect of the interspike interval waveforms the match

between the spike times of the model compared to the data is extremely good.
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Figure 3.7: Comparison of the performance of the parameter searching methods
on a model of a layer 2 pyramidal cell from piriform cortex with 23 parameters
(model 5) as a function of simulation number. All traces are the averages of 10 runs

of 100,000 simulations each.
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parameter | description range | original SA GA SS CG | random
1 Gra 4 2800 | 3400 1400 | 1240 | 10600 718
2 G Napers) 4 65 129 160 153 125 64.4
3 (V) Na(pers) 4 1 1.09 1.29 | 1.65 1.74 0.421
4 Gk (pr) 4 270 444 799 | 1080 917 168
5 Gria 4 200 798 107 800 | 52.3 54.8
6 (V) k(a) 4 1 1.61 | 0310 | 3.86 | 0.540 | 0.597
7 (V) kca) 4 1 2.06 1.58 | 0.324 | 1.96 2.20
8 Grin 10 100 112 144 22.3 59.1 106
9 Moo K(M) 10.0 0 9.0 6.0 | -3.67| -6.84 7.0
10 (V) an 10 1| 0414 0575 0422 0.750 0.739
11 Gr(Cas) 10 4 20.9 1721 220| 775 9.02
12 7(Ca)k(ca.s) 10 1 238 | 0994 | 449 | 331 5.46
13 Gr(car) 10 20 20.9 164 | 6.55 | 47.2 70.2
14 Moo K(Ca.f) 3.0 0 227 0774 298| 225 1.44
15 T(Ca)k(Ca.f) 10 1, 0.892 1.00 | 0.681 | 6.150 4.18
16 Gea 10 10 6.63 1.86 | 9.16 24.5 1.32
17 (Ve 4 1 0.285 | 0.334 1.43 3.11 2.21
18 (V) ca 4 1] 0.781 1.24 | 0480 | 1.07 | 0.434
19 Ca buffer B 4 1.83 1.21 112 | 0955 | 0.527 2.78
20 Ca buffer v 4 25.0 53.3 75.8 69.5 25.3 44.0

continued on next page
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continued from previous page

parameter | description range | original SA GA SS CG | random
21 soma R. P. 5.0 -73.0 -74.0 -76.3 1 -70.2 | -749 -70.4

22 soma RM 2.0 0.50 0.411 0.707 | 0.676 | 0.462 0.259

23 dend RM 2.0 0.50 0.440 0.540 | 0.255 | 0.519 0.502
match 6.15e-3 | 9.04e-3 | 0.0238 | 0.0281 | 0.0458

Table 3.3: The target parameters for model 5 (pyramidal cell model) compared with

the best parameters found by the different search methods. Maximal conductances

(G) are in S/m?. Scaling factors for time constants 7 are dimensionless. Offsets of

Moo curves are in mV" (for K (M) channel) or uM (for K(Ca) channels). 7; values

refer to the time constant of inactivation gates for a channel; all other 7 or m

values refer to activation gates. Abbreviations for channels are as follows: Na: fast

sodium; Na(pers): persistent sodium; K(DR): delayed-rectifier potassium; K(A):

inactivating potassium; K(M): slow noninactivating potassium; K(Ca,s): slow

Ca-dependent potassium; K (Ca, f): fast Ca-dependent potassium; Ca: voltage-

dependent calcium. Ca buffer B values are in units of M/(A4 usec). Ca buffer

7 values are in values of msec. Soma R. P. = somatic resting potential (in mV).

Soma/dend RM: specific membrane resistivity value for the soma or the dendrites,

respectively.
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As mentioned above, we added a hypothetical fast AHP channel to give better matches
between the data and the model. As a control, we also ran a series of parameter searches
without the fast AHP channel using the genetic algorithm method (the SA method could
also have been used but was not). Figure 3.8 compares the results of the GA simulations with
and without the fast AHP channel. As can be seen, the addition of the fast AHP channel
improved the match value considerably. The best model we obtained using a parameter
search without a fast AHP channel is shown in figure 3.8. Although this model matches the
data fairly well, it is markedly inferior to the model in figure 3.6, which did include the fast
AHP channel. The difference between the results of the GA searches for the model without
the fast AHP channel and the model with the fast AHP channel is statistically significant

(p < 0.05, two-tailed t-test).

3.5 Discussion

3.5.1 Method comparisons

There are two major conclusions that can be drawn from the results presented. First,
parameter search methods can be extremely effective in finding very good matches between
single-neuron models and a target data set in a wide variety of cases. Second, not all
parameter search methods perform equally well, and the relative performance of the different

methods depends on the model being optimized. In general. the simulated annealing method
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Figure 3.8: Results of genetic-algorithm parameter searches on the pyramidal cell
model with and without the addition of a hypothetical fast AHP channel. The
addition of the fast AHP channel allowed the parameter search to find significantly

better matches.
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Figure 3.9: Outputs of a layer 2 pyramidal cell from piriform cortex at six different
levels of current injection at the soma compared with the outputs of a genetic-
algorithm parameter search. This model did not contain a fast AHP channel. Note
that the model outputs do not match the spike times of the real data as well as
the model outputs shown in figure 3.6, which are derived from a model containing

a fast AHP channel.

136

0.4



and the genetic algorithm method were superior to the other methods we investigated
(stochastic search and conjugate gradient) on all of our models (except for model 3, the
linear passive dendrite model, for which the conjugate gradient method was as good as
the genetic algorithm method). The reader should be aware, however, that all of our
parameter searching methods have parameters of their own which we have determined by
experimentation (see below). Therefore, it is possible that different choices of these meta-
parameters could have resulted in somewhat different results. In addition, variations of each
of these methods exist, especially for genetic algorithms [32]. More sophisticated algorithms
in each class may very well improve on the performance of our searches. For this reason the
reader should consider the data presented as a general guide providing an upper bound on

the performance of these methods on the models examined.

3.5.2 Differences between the search algorithms

While it is useful to know which parameter searching algorithms are most appropriate for
single-neuron compartmental models of different complexity, it would also be useful to know
why one algorithm was more effective than another for a given model. Unfortunately, under-
standing these relationships rigorously is very difficult as it involves an interaction between
the searching algorithm and the structure of the model’s parameter space. However, based
on previous analyses of this type [3, 11}, it is possible to speculate on several possibilities

for the results we obtained.
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In general, it is likely that stochastic methods rather than those based on gradient-
descent will be more successful for parameterizing single-neuron compartmental models.
The reason for this is that simple gradient-descent methods such as conjugate gradients
are greedy, i.e., they move to the nearest local minimumn in parameter space and stay
there. This can be adequate if the space is relatively smooth and has few local minima,
but it is ineffective for more ragged parameter spaces with many local minima. In fact,
parameter spaces of neural models can be very ragged with sharp discontinuities separating
otherwise smooth sections [3, 11]. Consistent with this analysis, the one model for which the
conjugate-gradient method proved highly effective was the three-parameter passive model
(model 3) which, due to its linearity and the small number of parameters, is more likely to
have a smoothly varying parameter space.

Within the class of stochastic models, our results clearly demonstrate differences be-
tween genetic algorithms (GA), stochastic search (SS) and simulated annealing (SA). The
SS method was markedly inferior overall to both the SA and the GA method, which is al-
most certainly due to the extremely unsophisticated search strategy this method employs.
In general, we obtained better results with the SA method than the GA method. The SA
method we used also possesses most of the advantages of gradient-descent methods without
their disadvantages. At high temperatures the method can explore large expanses of param-
eter space, and as the temperature is lowered, the search narrows in on specific regions with

better match values. The temperature-dependent noise in the method prevents the search
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from getting stuck in local minima. When the temperature approaches zero the SA method
converges to the closest local minimum as does a gradient-descent search. In contrast, the
GA method never converges to a local minimum of the match function. However, our SA
method can be expected to give poorer results with larger models, as this method can only
keep a record of a small number of points at a time (the points on the simplex, which number
one more than the number of parameters). For a search with a large enough number of pa-
rameters the GA method, which can simultaneously search many points in parameter space,
may well overtake the SA method in performance. For our models the GA method was as
effective as the SA method for the largest model (model 5). It is likely that for an even
larger model GAs would have been superior. Work on GAs [15, 18, 26, 32] has suggested
that this method is often optimal for problems when a large number of largely independent
factors must be combined to create the best results. In contrast, in compartmental neural
models optimal parameter values are typically highly dependent on each other, especially
within a compartment, so that changing the value of one parameter will require changes
in the values of all other parameters as well to optimize the match. This would suggest
that GAs are poorly suited for compartmental models. However, while GAs are less ef-
fective for problems containing large numbers of strongly interacting parameters, they are
capable of independently exploring large segments of parameter space simultaneously and
in parallel, which may account for their greater relative usefulness with larger models. The

intrinsic parallelism of GAs also makes them very well suited for implementation on parallel
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computers [10, 14].

3.5.3 Matching functions

The choice of matching function used can have a large influence on the search process.
Parameter searches can only match according to the specific criteria they are given. In
our case, for our spiking models we originally tried using simple spike-matching functions
which computed the RMS error between two lists of spike times. However, we found that
this approach did not sufficiently penalize models whose behaviors were clearly qualitatively
incorrect. For example, some models with particular parameter settings generated small
bursts of spikes (e.g., pairs of spikes separated by a small ISI) separated by a much larger
interburst interval, in contrast to the more uniform spiking pattern we were trying to
replicate. While this behavior would eventually have been selected against even using an
RMS error function, we found it more efficient to put a factor into our matching function
to directly penalize bursting. This allowed us to narrow down the effective search space
enormously and thus sped up the searches. To be most effective, considerable thought must
be applied to the selection of matching functions to achieve optimal performance. Often,
initial experience with a matching function reveals that some important aspect of the data
was overlooked. Therefore it is often useful to examine how well the matching function
distinguishes good from bad models before committing large amounts of computer time to

an extensive parameter search.
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The choice of matching function can also contribute significantly to the computational
cost of the parameter search, because a match must be computed for each simulation run.
For this reason we chose to use spike times exclusively as the criteria for matching models
1, 2, and 5. If computational costs were not an issue, it would have been preferable to
use a combination of spike timings and interspike interval (ISI) waveforms to match these
models. However, since most models generate relatively few spikes, a spike timing based
match function is much more efficient to calculate than a match function which also includes
ISI waveforms, because for the latter the membrane potential value at each time point must
be used in the computation. For some models, however, the duration of the individual
simulations will still be much larger than the time needed to compute a match even if ISI
waveforms are used in the match function. In such cases, one should use ISI waveforms as
well as spike timings in the match function. For the passive models we had no choice but

to use membrane potential waveforms, since the models do not generate spikes.

3.5.4 Variation in the parameter sets

Depending on the goals of the modeler, he or she may or may not be interested in the
question of whether different runs of a parameter search result in the same set of parameter
values. On one extreme, the model may be used as a phenomenological model which is a
considerable abstraction of the real system, and the modeler may only wish to have a set of

parameters that produces behavior similar to that seen in the real system. In this case the
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uniqueness of the parameter set is of little interest. At the other extreme, a modeler may
aspire to build a very detailed model whose parameters (some measured, some estimated)
accurately represent the corresponding real parameters of the system. In this case the
modeler is very interested in whether different parameter sets can give rise to similarly
good match values, as this may indicate that the model is insufficiently constrained to
accurately characterize the real system. In addition, the degree of variation of the best
parameter sets gives clues to the nature of the parameter spaces being searched through.
We examined the question of non-uniqueness of the parameter sets found by our search
methods by calculating statistics on a parameter-by-parameter basis for the best matches
found by all the methods (data not shown). The best parameter sets found by the different
methods in models 1, 2 and 3 matched the correct parameter sets very closely, with little
variation in the parameter values. This suggests that the parameter spaces for these models
are dominated by a single deep minimum which was reliably found by many of the searches
(in particular the SA and GA searches). Models 4 and 5, however, showed a considerable
degree of variation in the parameter values obtained between different successful matches,
even for different parameter sets with comparable match values discovered by the same
search algorithm. This suggests that parameter spaces of models with larger numbers of
parameters show more degeneracy in their match values, i.e., there is more than one equally
good location in parameter space which can be discovered by the search algorithms. The

best way to deal with this phenomenon, short of thoroughly searching parameter spaces
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using brute-force methods, is to run several parameter searches with the same method on
the same model and compute the variance of the parameters obtained. Typically, some
parameters are highly constrained while others show a range of possible values; this in turn

suggests which parameters are more or less important in determining the observed behavior.

3.5.5 Robustness of the parameter sets

Another question of interest to modelers using parameter searching techniques is the degree
to which parameter sets are robust to small perturbations in the parameter values. For
instance, if parameter values need to be specified with great precision in order for a good
match to be achieved, the parameter set is not robust and therefore is unlikely to be physi-
ologically relevant. In practice, estimating robustness of parameter sets is difficult because
one would ideally like to vary all possible combinations of parameters. However, some in-
sight into robustness can be achieved by varying each parameter individually (or pairs of
parameters [3, 11]) around its initial value while keeping the other parameters fixed and
measuring the change in the match value. Robustness estimated in this way can suggest
which parameters need to be precisely set, and which can vary over a wide range. This in
turn can suggest possibilities for the cellular regulation of parameter values in the real sys-
tem [27]. It is also possible to build in such “robustness checks” into the matching function
directly by testing robustness for each parameter set and rejecting sets that are below some

threshold of robustness; however, this will dramatically increase the computational cost of
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the parameter search. A better alternative is to test the robustness of the best parameter
sets from a search and to reject those which are not sufficiently robust.

Another kind of robustness is robustness to small changes of the inputs. For example,
one can make multiple measurements of the outputs of neurons to quantify the variability of
the data source, introduce variability into the model in any of a number of different ways,
and use Bayesian methods to determine the probability of the model given the data [1].
This allows modelers to test the robustness of their models to small perturbations of the

inputs in a rigorous way.

3.5.6 Recommendations for effective parameter searching

While we have compared the general usefulness of different parameter searching algorithms
and discussed matching functions, the process of parameter searching and the interpretation
of the results can be severely hindered or improved by other factors which we discuss here.

An important issue in setting up a parameter search concerns the process of setting the
parameters of the search algorithm itself. The allowable ranges of the parameter values are
important parameters for search methods; ideally they should be set to physiological ranges
but in many cases not enough is known to constrain these ranges. If the true parameters
lie outside the initially established range, then the searching algorithm will not be able to
find them. Additionally, all search algorithms have parameters of their own, such as the

annealing rate for the SA method and the population size, mutation rate and recombination
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rate for the GA method. Unfortunately, currently there is little analytical work which can
guide the choice of these parameters, so they tend to be selected by experience and ad hoc
rules of thumb [15, 32].

It is also necessary that the components of the model be carefully selected. A great deal
of wasted time can be avoided, for example, if the initial model (before parameter searching
is done) at least qualitatively matches the gross features of the target data set. Parameter
searches do not remove the need for good judgment on the part of the modeler, and cannot
make a bad model good. As a corollary, however, we have often found that parameter
searches are often more useful when they fail than when they are successful. A failure in
a well-executed parameter search suggests that a model may be incapable of reproducing
the specified behavior (at least within the allowed parameter ranges). This failure naturally
leads to further experimentation with either the model or the real system. For example,
one can explore whether adding a new ionic channel to the model would make the model
match the experimental data much more closely (e.g., figures 3.6 and 3.8). If so, this can

suggest new ideas for experiments.

3.5.7 Limitations of parameter searching techniques

While parameter searching techniques properly applied will add significantly to the qual-
ity and rigor of modeling efforts, several factors can limit the applicability of parameter

searching methods.
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Since parameter searches require a large number of evaluations of the model (tens to
hundreds of thousands for the models we investigated), the time required to simulate a single
iteration of a model must be relatively small. For instance, a model which requires one hour
or more to go through one iteration (e.g.. [8, 9]) will take over a year of workstation time
to run through 10,000 simulations. Obviously, unless the simulation time can be reduced
significantly by running on faster computers (e.g., parallel supercomputers [14]), such a
model is currently not a good candidate for automated parameter searches. Under these
conditions parameter searches can sometimes still be run on simplified versions of a large
model with the hope that the results can then be applied to the larger model.

At the present time it does not appear that the parameter search methods we describe
will be useful on models with huge numbers (e.g., hundreds) of parameters. We note that
moving from a model with eight parameters to one with 23 parameters required a scale-
up of 10 in the number of iterations per parameter search needed to get good results. It
is likely that models with very large numbers of parameters (> 100) can easily outrun the
capabilities of the current generation of workstations. This is a key argument for developing
parameter search methods to work on parallel supercomputers, as we have begun doing
[14]. In addition, it is desirable for modelers to investigate ways of reducing the size of
the parameter spaces of their models, for instance by forcing some parameters in different
compartments to have the same values (e.g., [8]).

Another potential difficulty with parameter searches concerns overfitting of the data.
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When a model is carefully tuned to match a specific data set, it may not generalize well to
similar data sets not used in the tuning. For instance, if a model is tuned to match spike
times very precisely at a given value of current injection it may fail to match spike times
at other current levels. For this reason, our own studies employ a wide range of inputs
to provide an appropriate breadth of constraints on model behaviors. Such models are far
more likely to be underfit than overfit. If overfitting is suspected, it is a simple matter to
parameterize one’s model on a subset of the data set (the training set) and once the model
is parameterized check how well it matches the rest of the data (the test set).

It is also critical not to place too much weight on the results of a parameter search
in a weakly constrained or highly simplified model. In our pyramidal cell model, many of
the kinetic parameters were only approximately known, those relating to calcium buffering
were only guesses, and we added a hypothetical fast AHP current. However, it is entirely
possible that a combination of different calcium buffering schemes, dendritic active currents,
or other channels we did not include could have given equally good or better results. For
this reason, our modeling results allow us to speculate about the possible significance of
the hypothetical fast AHP channel, but it would be inappropriate to make any strong
statements in the absence of more definitive experimental data. Of course, one of the more
useful consequences of realistic modeling is to motivate and provide context for further
experimental studies.

Finally, as models proliferate it will become more important to have rigorous criteria
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for comparing the quality of different models which are intended to match the same data
set. We have recently begun exploring this issue, using Bayesian methods to compare
neural models quantitatively [1]. As neural models become more complex, the subject of
parameter searching in these models will continue to develop and will be critical to progress

in computational neuroscience.
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3.7 Appendix: Model descriptions

GENESIS scripts containing detailed descriptions of ionic channels and cell morphologies
for all models can be downloaded from

http://www.bbb.caltech.edu/USERS /mvanier /parampaper/param.html. Tonic channels were
modeled as generalizations of the Hodgkin-Huxley model [17], in some cases adapted to use
calcium concentration rather than membrane potential as the independent variable for the
activation and inactivation curves. The equation we used for calcium buffering in the pyra-

midal cell model is the following:
d[Cal/dt = B - Ic, — [Cal/T

where [Ca] is the calcium ion concentration, 7 is the buffer time constant, and B is a scaling
factor which converts calcium current influx into changes in calcium concentration. B and

7 were both parameters of the model; their initial values and ranges are in table 3.3.
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Chapter 4

On the Use of Bayesian Methods for
Evaluating Compartmental

Neural Models

“A model should be as simple as possible, but no simpler.”

(attributed to Einstein)

4.1 Abstract

Computational modeling is being increasingly used in neuroscience. In deriving such mod-

els, inference issues such as model selection, model complexity. and model comparison must
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constantly be addressed. In this paper we briefly present the Bayesian approach to inference.
Under a simple set of common sense axioms, there exists essentially a unique way of reason-
ing under uncertainty by assigning a degree of confidence to any hypothesis or model, given
the available data and prior information. Such degrees of confidence must obey all the rules
governing probabilities, and can be updated accordingly as more data becomes available.
While the Bayesian methodology can be applied to any type of model, as an example we
outline its use for an important, and increasingly standard, class of models in computational
neuroscience: compartmental models of single neurons. Inference issues are particularly rel-
evant for these models: their parameter spaces are typically very large, neurophysiological
and neuroanatomical data is still sparse, and probabilistic aspects are often ignored. As a
tutorial, we demonstrate the Bayesian approach on a class of one-compartment models with
varying numbers of conductances. We then apply Bayesian methods on a compartmental
model of a real neuron to determine the optimal amount of noise to add to the model to

give it a level of spike-time variability comparable to that found in the real cell.

4.2 Introduction

Computational modeling is being increasingly used in neuroscience, over vastly different
spatio-temporal scales, from molecules to entire brain areas, and at different levels of com-
plexity [9]. While available neurophysiological and neuroanatomical data is also rapidly

increasing, what is known today constitutes only a tiny fraction of what remains to be
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known. Thus in computational neuroscience in particular, and more generally in biology
and all other information-rich sciences, scientists must reason in the presence of a high
degree of uncertainty: many facts are missing, and some of the facts are wrong. Computa-
tional neuroscientists are thus constantly faced with inference problems related to building
models from available data. For instance, it is not necessarily obvious which class of models
should be used and what level of complexity is appropriate for a particular investigation. It
is also not obvious which details are important and which should be ignored or discarded.
Finally, it is often difficult to compare different models and to determine which model is
the best, given the data available. In fact, it is relatively rare in the modeling literature to
see any rigorous comparison between new and previously published models. Each of these
issues is critical to determining if any particular model is a good model for a particular
purpose, or constitutes an advance in our understanding.

Over the last several years there has been a dramatic growth in the number of compu-
tational neurobiologists constructing “realistic” neural models. We have previously defined
these models as those that are based on the actual anatomy and physiology of the ner-
vous system, and which generate outputs which can be directly compared to physiologically
measurable outputs [6, 7]. At present the most common type of realistic neural models are
compartmental models in which the structure being modeled is broken into a smaller num-
ber of interconnected compartments [26]. In the case of single neuron models, this means

that the dendrites are broken up into a series of individual compartments each of which is
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assumed to be isopotential [26]. The precise number of these compartments depends on the
degree of anatomical detail available or desired.

As computer resources and the sophistication of both the data available and the ques-
tions being asked has increased, so has the complexity of single neuron models. In our own
laboratory, for example, we have constructed and are currently studying a cerebellar Purk-
inje cell model containing a total of 4550 compartments and 8021 ionic channels [14, 15, 21].
This model and other complex models with large numbers of parameters are often criticized
on the grounds that, with so many parameters, the model should be able to reproduce
any kind of neuronal behavior. In fact, there exist many implicit constraints that emerge
from the structure of the models and which render arbitrary behavior very difficult, if not
impossible, to reproduce. However, it remains an open question whether a simpler model
with fewer parameters could match a given data set as well as a more complex model. This
issue becomes especially important when there is little experimental data to constrain the
model. In these cases inference issues become fundamental.

In addition, as pointed out in [33], choosing simpler models simply because little data
is available does not make much sense. This is particularly clear in the case of the nervous
system, where it is obvious that the amount of data collected so far and the complexity of
the nervous system itself are two completely different things. Therefore, the appropriate
complexity of the model, how well it replicates the data, and whether it can be simplified

without losing any essential behaviors are important questions each involving inference. In
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this paper we present the Bayesian approach to inference. Our purpose is to introduce
the Bayesian point of view and the advantages that may derive from it to computational
neuroscientists, especially those involved in building compartmental models.

When reasoning in the presence of certainty, one uses deduction. This is how the
most advanced theories in information-poor sciences, such as physics or mathematics, are
presented in an axiomatic fashion. Deduction is not controversial. The overwhelming
majority of people agree on how to perform deductions in a unique way: if A implies B,
and A is true, then B must be true. This is the essence of Boolean algebra, and is the
basis for all digital computers. When reasoning in the presence of uncertainty, one uses
induction and inference: if A implies B, and B is true, then A is more plausible. An
amazing and still poorly known fact is that there exists a simple and unique consistent
set of rules for induction, model selection and comparison: it is called Bayesian induction.
The Bayesian approach has been known for quite some time, but only recently has it
started to infiltrate different areas of science and technology systematically with useful
results [2, 16, 17, 29, 28]. To our knowledge, however, it has not previously been applied
systematically to neurobiological modeling. Our purpose here is to introduce the Bayesian
point of view and the advantages that may derive from it to those involved in building
compartmental models. In a companion paper [1], we use a Bayesian framework to derive
new algorithms for the analysis of neuronal multi-unit recordings.

The Bayesian point of view has a simple intuitive description: a degree of plausibility
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is assigned to any proposition, hypothesis or model (throughout the paper, hypotheses
or models are essentially synonymous: models tend to be complex hypotheses with many
parameters). More precisely, in order to properly carry out the induction process, one

should proceed in three steps:

1. Clearly state what the hypotheses or models are, along with all the background in-

formation and the data.

2. Use the language of probability theory to assign prior probabilities to the hypotheses.

3. Use probability calculus for the inference process, in particular to evaluate posterior
probabilities (or degrees of belief) for the hypotheses in light of the available data,

and derive unique answers.

Such an approach certainly seems a reasonable one '. But why should it be so com-
pelling? Why use the language of probability theory, as opposed to any other method? The
surprising answer is that it can be mathematically proven that this is the only consistent
way of reasoning in the presence of uncertainty. Specifically, there exists a small set of very

simple common-sense axioms, the Cox-Jaynes axioms, under which it can be shown that

the Bayesian approach is the unique consistent approach to inference and induction. Under

"Notice that the Bayesian approach is not directly concerned with the creative process, i.e., how to
generate new hypotheses or models. It is only concerned with assessing the value of models with respect
to the available knowledge and data. This assessment procedure, however, may turn out to be helpful in

generating new ideas.
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the Cox-Jaynes axioms, degrees of plausibility satisfy exactly all the rules of probabilities.
Probability calculus is then all the machinery that is required for inference, model selection
and model comparison.

The axiomatic presentation of the Bayesian approach is given in appendix A for com-
pleteness. For brevity, we do not present any proofs or any historical background for the
Bayesian approach, nor do we discuss any controversial issues regarding the foundations of
probability theory, such as the frequentist versus Bayesian point of view 2. All of these can
be found in various books and articles (such as [3, 4, 12, 23, 34], and references therein).

While the Bayesian approach is universal and applies to any problem or model, our
focus here is on compartmental neural models. In section 2, we briefly review Bayesian
inference. In section 3, we analyze the steps compartmental modelers need to take for a
proper Bayesian treatment of their models. In particular, we provide specific suggestions
for the computation of priors and likelihoods for compartmental models. In section 4, we

apply the methodology in detail to specific compartment models of single neurons. We

*In the frequentist approach, probabilities can be introduced only in the context of repeatable events or
experiments. The probability of an event is defined as the limit of the corresponding empirical frequency
(the ratio of the number of successful results Ng to the total number of experiments N) as the number of
experiments goes to infinity:

p= lim Ng/N

N—=oo

Thus the notion of a probability as a number quantifving the degree of belief in a proposition has no

meaning in the frequentist view.



sumimarize the benefits and drawbacks of the method in the discussion session, and discuss

some possible extensions.

4.3 Bayesian inference

As described in appendix A, the immediate consequence of the Cox-Jaynes axioms is Bayes’

theorem:

p(Y

X, Dp(X[1)
p(Y[I)

p(Y|X. 1)
p(Y|I)

(XY 1) = = p(X|1) (4.1)

where X and Y are propositions and I represents background information. p(X|Y,I) de-
notes the conditional probability of X knowing ¥ and 1. We will apply this equation to a
parametrized model M = M (6) and a data set D. For simplicity, we will drop the back-
ground information I from the following equations, or equivalently incorporate it into the

data. From Bayes’ theorem we have immediately,

p(DIM)p(M)
p(D)

p(D|M)

p(M|D) = (D)

p(M) (4.2)

The term P (M) is referred to as the prior probability or simply the prior. The term P(M|D)
is referred to as the posterior probability or posterior. The term P(D|M ) is usually referred
to as the likelihood (but occasionally as the evidence). The prior represents our estimate

of the probability that model M is correct before one has obtained any data, while the
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posterior represents our updated belief in the probability that model M is correct given
that we have observed the data set D. For technical reasons, it is often easier to work with

the corresponding logarithms, so that:

logp(M|D) = logp(D|M) + log p(M) — log p(D) (4.3)

For data obtained sequentially, one has

p(Dp|M,Dy,....Dyp_1)

M\Dy,....D,) =p(M|\Dy....., Dy
p(M|Dy, ) = p(M|Dy 1) p(Dnle,..',anl)

(4.4)

In other words the old posterior p(M|D1, ..., D,,_1) plays the role of the new prior. Bayesian
modeling is entirely open to both new data and new models. Bayesian modeling is iterative
by nature, as both data and models evolve.

To apply equation (4.3) to compartmental models, or to any other class of models, one
must specify the prior p(M) and the likelihood p(D|M). Once the prior and likelihood
terms are made explicit, the initial modeling effort is completed. All that remains is to
apply probability theory to obtain the results. Two specific compartmental models M,
and Ms can be compared by comparing their probabilities p(M;|D) and p(M2|D). More
generally, one objective is often to find or approximate the “best” model within a class,
i.e., to find the set of parameters # maximizing the posterior p(M|D) (or log p(M|D)), and
the corresponding error bars (see appendix B). This is called MAP (maximum a-posteriori)
estimation. In order to deal with positive quantities, this is also equivalent to minimizing

167



—logp(M|D). Notice that the term p(D) in (4.3) plays the role of a normalizing constant
that does not depend on the parameters €, and is therefore irrelevant for this optimization.
If the prior p(M) is uniform, then the problem reduces to finding the maximum of p(D|M)
(or logp(D|M)). This is just maximum likelihood (ML) estimation. In most interesting
models, the function being optimized is complex and its extrema cannot be solved for
analytically. Thus one must resort to iterative and possibly stochastic methods such as
gradient descent or simulated annealing. A comparative study of such algorithms in the
case of compartmental models can be found in [42, 43].

Whereas finding the optimal model, the first level of Bayesian inference, is common
practice, it is essential to notice that this is really useful only if the distribution p(M|D)
is sharply peaked around a unique optimum. In situations characterized by a high degree
of uncertainty and relatively small amounts of available data, this is often not the case.
Thus in Bayesian inference we are interested in the function p(M|D) over the entire space
of models, and more precisely in evaluating expectations with respect to p(M|D). This is
the case in higher levels of Bayesian inference, such as prediction problems, marginalization
of nuisance parameters, and model class comparisons.

Consider, for instance, a prediction problem, where we are trying to predict the output
value y of an unknown parametrized function fg, given an input z. It is easy to show that

the optimal prediction is given by the expectation
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E(y) = /g Fol2)p(0]D)do (4.5)

This integral is just the average of the predictions made by each possible model fy, weighted
by the plausibility p(6|D) of each model. Another example is the process of marginalization,
where integration of the posterior parameter distribution is carried only with respect to a
subset of the parameters, the so-called nuisance parameters [16]. In a frequentist frame-
work, the notion of distribution over the parameters is not defined and therefore nuisance
parameters cannot be integrated out easily. In compartmental models, one is also often
lead to the problem of comparing two model classes €] and (5. As an example, these
could be compartmental models with two very different numbers of compartments, possibly
representing a highly anatomically detailed model with a large number of compartments
versus a simplified model with a small number of compartments. To compare Cy and C5 in
the Bayesian framework, one must compute p(C1|D) and p(Cs|D). Using Bayes’ theorem
again: p(C|D) = p(D|C)p(C)/p(D). In addition to the prior p(C), one must calculate the

likelihood p(D|C'), and this is obtained by averaging over the entire model class:

poiC) = [ pD.0iC)s = [ p(Dp.Copio1C)de (46)

Naturally, in cases where the likelihood p(D|6,C) is very peaked around its maximum,
such expectations can be approximated using the mode (i.e., the value with the highest
probability). But in general, such integrals require better approximations, for instance using
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Monte Carlo sampling methods [5, 32, 39]. Available computer power and its progress are
of course important issues to be considered in this context.

As mentioned previously, it does not make sense to choose a simple model simply because
available data is scarce. Everything else being equal, however, it is true that one should prefer
a simple hypothesis to a complex one. This is Ockham’s razor. As pointed out by several
authors, Ockham’s razor is automatically embodied in the Bayesian framework [24, 28] in
at least two different ways. In the first (trivial) way, one can introduce priors that penalize
complex models. But even without such priors, parametrized complex models will tend to
be consistent with a larger volume of data space. Since a likelihood p(D|M) must sum to
1 over the space of data, if p(D|M) covers a larger expanse of data space the likelihood
values for given data sets will be smaller on average. Therefore. everything else being equal,
complex models will tend to assign a correspondingly smaller likelihood to the observed
data.

In summary, Bayesian methods provide a rigorous and provably unique framework for
inference. The basic step is to compute model plausibilities with respect to the available
data, and the associated expectations, using the rules of probability theory and possibly
numerical approximations. We can now turn to the specific application of the general

Bayesian framework to compartmental models.
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4.4 Bayesian compartmental modeling in neuroscience

We now describe how to apply a Bayesian approach to compartmental modeling in neuro-
science. For any type of model class, it is clear from equation (4.2) that in order to evaluate

p(M|D) the first step consists in making the prior p(M) and the likelihood p(D|M) explicit.

4.4.1 Prior probabilities for compartmental models

A typical compartmental model M (#) has a large number of parameters . Different types
of parameters can be used, but for single-cell models the majority of these parameters cor-
respond to the conductances, and possibly the kinetic time constants, of ionic channels in
the different compartments. Both conductance values and time constants are scale param-
eters. Thus, unless any additional information is available, a reasonable prior is a uniform
logarithmic prior [29]. That is, if a conductance, or a time constant, ¢ occupies some value
in an interval [a, b] and we do not have any additional specific information, it is reasonable
to define the prior density
Ak

k 1 . L. AR = —m —— 4.7
plk <loge < k+ Ak) logb —loga (4.7)

for any [k, k + Ak} in [loga,logb], and 0 otherwise. So, if ¢ is equally likely to be 1, 10
or 100, log,, ¢ will have a flat distribution between 0 and 2. Starting from equation (4.3),
we can calculate the prior term logp(M) by assuming that all the basic parameters are
independent. That is, if a model is characterized by a set of conductances ¢; satisfying

171



equation (4.7) over an interval [a;, b;], then

AF;

log(p(M)AE) =S 1 4.8
where Ak = Ak1Aks.... In terms of probability densities, this becomes
log(p(M)) = Z log L (4.9)
— logh; —loga;

Another useful prior for conductances, or their logarithms, is a gamma prior. The
gamma density [20] with parameters a and A, is given by
)\O&

C(z;a,\) = mmafle“’\:c (4.10)

for z > 0, and 0 otherwise. By varying « and X and translating x, the gamma density allows
for a wide range of priors, with more mass concentrated in one specific region of parameter
space.

It is also possible in Bayesian modeling to tie together different sets of parameters. For
instance, one could assume that conductances are linked, or have the same values or ranges,
in different regions of a large dendritic tree. An example of this in a compartmental model
with four types of regions can be found in [14]. This approach is a form of hierarchical
modeling, where hyperparameters are used to control the priors on the model parameters.
A typical example is when there are many parameters with the same prior Gaussian distri-
bution. In this case. the mean and standard deviation of the common Gaussian can be used
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invariance, can be used to determine non-informative priors (for instance, [17]).

4. Finally, and most importantly, the effects of different priors, as well as different models
and model classes, can be assessed within the Bayesian framework by comparing the

corresponding probabilities.

4.4.2 Likelihoods for compartmental models

In order to define p(D|M ), one must consider how a model M could also give rise to a
different observation set D': in a Bayesian framework, compartmental models must be
probabilistic. In contrast, with the exception of models that use random stimuli, such as
input synapses that are activated randomly (e.g., [14, 40]), most current compartmental
models are deterministic. A deterministic model assigns a probability zero to all the data,
except the one it can produce exactly. This is clearly inadequate for biological models.
In fact, recently many experimentalists and theorists have been investigating the nature,
sources, and functions of noise in real neurons (see, for instance, [30, 37, 40]). However,
because of the complexity inherent to compartmental models, when constructing a model
most of the effort is generally focussed on the structural and deterministic components of
the model (e.g., the number, morphology and conductances of the compartments) whereas
the equally important probabilistic aspects are often ignored. However, a scientific discourse
on compartmental models, how well they fit the data, and how they can be compared to

each other, is impossible unless models are probabilistic.
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It is also important to notice that results from very different sources and experiments
(e.g., different cells, different organisms, different experimental preparations) are routinely
combined in compartmental models. For instance, channel kinetic data obtained from patch-
clamp analyses performed at room temperature may be combined with intracellular current-
or voltage-clamp data performed in a brain-slice preparation at a different temperature in
a different lab. and with anatomical data from yet another lab. Current compartmental
models in general attempt to capture the behavior of an “average” cell, or piece of circuitry.
Thus mismatches between the behavior of specific cells and “average” models are bound to
occur, and the probabilistic connection between compartmental models and the underlying
neurobiological system being modeled is even stronger.

Since compartmental models of different types are used to study an array of very dif-
ferent phenomena, it is impossible to give a completely general prescription for computing
likelihoods. At one extreme, we may be interested in the particular shape of an action
potential or an interspike interval waveform (see [27] for a related Bayesian treatment of
spike classification). Here, however, we shall concentrate on the case where we are attempt-
ing to reproduce the timing characteristics of an entire spike train while injecting constant
currents of different amplitudes into the soma of the model cell. Thus in our case the data
consist of a series of numbers representing spike times.

Several ad hoc criteria have been used to compare spike trains, but whatever criterion

is used, it comes with an underlying probabilistic model that can be clarified and made



amenable to Bayesian analysis. Indeed, if the fit of a model M = M (#) with parameters 6
is measured by some error function f(#, D) > 0 to be minimized, one can always define the

associated likelihoods to be

e‘f{eaD)

p(DIM(0) = —F— (4.12)

where Z = |, e~ 70:D) is a normalizing factor (the “partition function” in statistical me-
chanics) which makes the probabilities integrate to 1. As a result, minimizing the error
function is equivalent to maximum likelihood estimation. In particular, when the sum of
squared differences in spike timings (or interspike interval timings), is used to compare two
spike trains or two other data sets D and D', a rather common practice, this implies an
underlying Gaussian model (see below). Thus the Bayesian point of view clarifies the prob-
abilistic assumptions that must underly any criteria for comparing two data sets D and
D'

We shall now consider three possible directions for building a truly probabilistic model of
spike trains, using an underlying deterministic compartmental model, for the computation
of likelihoods. The underlying deterministic model will be referred to as the “deterministic

component” of the model.

176



Simple noise model

Real neurons have a number of sources of noise, such as stochastic transitions of ion channels
between open and closed states, stochastic release of neurotransmitter vesicles from presy-
naptic terminals etc. [19]. A natural and simple way to model this noise is by incorporating
Gaussian white noise in the amplitudes of injected currents, at least in the compartment(s)
associated with the soma. Adding Gaussian noise to the current input to the model is
appropriate since the sum of a large number of independent stochastic processes tends to
a Gaussian distribution by the central limit theorem. This gives us a model capable of
producing stochastic outputs which can be compared to the data. We refer to this as the
“simple noise model”. While this is perhaps the most simple model, it does not by itself
provide a computationally efficient way of estimating likelihoods. Likelihoods can in prin-
ciple be estimated by running the simple noise model a very large number of times with
different noise instantiations, collecting the spike timings of the model, and computing how
often any given data set D was generated by the model. This, however, is usually impracti-
cal because any given data set has an extremely small probability of being matched exactly
(where exactly means that each spike produced by the model must occur at exactly the
same time as the corresponding spike in the data within the temporal resolution of the data
acquisition setup and the simulation). Thus we next consider probabilistic models directly
at the level of the spike trains themselves, and ways in which they can be superimposed

on standard compartmental models. Such models are used extensively in the simulations
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described below.

Variable-rate Poisson models

One of the most basic models for point processes, such as spike trains, is a Poisson process
with rate A. If we subdivide time into very small intervals At (the “bin size”), a Poisson pro-
cess can be seen as a sequence of independent Bernoulli trials (7.e., trials with two possible
outcomes, one of which has a small constant probability A, and the other probability 1 — ).
Over a period of time T, the number of successes, or spikes, has a binomial distribution
which can be approximated by a Poisson distribution with average A7T. The main problem
with such a model is that spike train rates are usually not stationary. Thus the natural
generalization is a Poisson model with variable rate A(¢). To generate such a process, we
can imagine a large sequence of Bernouilli trials, where the probability of success in the
trial indexed by time ¢ is given by A(#). Clearly the rate function must satisfy 0 < A(¢) < 1.

Under a variable-rate Poisson model M, the likelihood of any spike train, with spiking
times (t1,...,tx ), is easily computed by

(.

plti, e tg|M) = H At H (L=A®) = H 1-

=1 t#£t; i=1

(1= A(t)) 4.13,
A( oy =213
Notice that @@ = [],(1— A(t)) is the probability of having no spikes at all. The log-likelihood

is given by
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K K
log p(ti, ...tk | M) =Y log A(t:) = > _log(1 = A(t;)) + log Q (4.14)
1=1 i=1

As it stands, the variable-rate model is a generative model which has nothing to do with
compartmental models. However, it is easy to couple such a model with an underlying
deterministic compartmental model component by the way in which the rate function A(#)
is computed. A first possibility is to run the simple noise model many times and collect
spike histograms to estimate A(¢), for each ¢. In general it would be unrealistic to set
A(t) to 0 in a bin without spikes, since the lack of spikes may well be due to the small
sample size. This issue can be easily addressed by regularizing the spike counts, which in
the Bayesian framework is done by using a Dirichlet prior on A(¢) ([2] and appendix C).
A second possibility is to decompose A(t) has a sum of bell-shaped functions, for instance
using Gaussians
K ,
A(t) = Nje(tmm)*/207 (4.15)

i=1

-

We denote such a model by M = M(ji, &, 7\7) When A(t) results from a single Gaussian
curve around an isolated spike, the term log A(¢;) gives rise to the usual quadratic error
term. The model can be coupled to a deterministic compartmental model component by
the way in which the parameters p, o and N are determined. In the case of /i, one approach
is to run the associated deterministic component, and then superimpose a Gaussian model
on each of the spike times. If the deterministic component of the model produces spikes at
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times 7y, ..., 77, then we set p; = 7;. This sort of technique is also known by the name of
“Parzen windows”. Another approach is to run the corresponding simple noise model many
times and use the mean spike times for each spike 7; to set ;. In the case of o, we can
again run the corresponding simple noise model many times and use the standard deviation
of the spike corresponding to 7; to set o;. A faster method that may be sufficient in some
cases is to use a fixed value for o. For this, o should not be too small (i.e., below 1 ms) in
order to avoid overfitting single isolated spikes, and for similar reasons it should not be too
large either. A reasonable range for o is 1 to 10 ms. In the following simulations, whenever
we have used a fixed o, we have used the value 0 = 2 ms. Likewise, NV cannot be too large
if we do not want to replace an isolated spike with a burst. It can be shown [1] that if o > 1
and N ~ 1/v2r0, then the number of spikes generated by a variable-rate model associated
with a single Gaussian has essentially a Poisson distribution with mean 1. For simplicity,
in the following simulations, we have always used N; = 1/v/270,. Ultimately, models with
variable N's and ¢’s can be expected to be more flexible and suitable for complex spike
trains.

In section 4, we illustrate several variants of the variable-rate Poisson model in the

following forms (see table 4.6):

o M(ji,6,(N; = 1/3/2wo;), with i and & estimated from running the corresponding

simple noise model 1000 times (used in the individual model comparisons).

o M(ji,2,1/2V/2m), with i determined by the times of the spikes in the underlying
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deterministic component of the model and & set to be 2 msec for all spikes (used in

the whole-class comparisons).

e All probabilities for all bins determined directly by running the simple noise model
1000 times (used to determine the optimal noise level for the pyramidal cell model,

section 4.5.8).

The variable-rate model is also just a first-order Markov model without hidden states,
with the well-known advantages and limitations of such models. It has no “memory”, thus
(for instance) no built-in explicit refractory period. It is clear, however, that when N is
small, extremely close spikes are in any case a rare event. For instance, in the case of a single
Gaussian with N = 0.04, the probability of observing two spikes separated by less than 5
milliseconds is less than 0.157. More complex probabilistic models of discrete time series,
such as higher-order Markov models, hidden Markov models, and artificial-neural-network

hybrid models could be used [1], but will not be considered here.

Gaussian IST model

In this model, the spiking times of the neurons are treated as Gaussian random variables.
For the sake of argument, assume both the data traces and the deterministic compartmental
model traces have the same number L of spikes, for a given level of current injection. The
first assumption is that all interspike intervals (ISIs) are independent, and each ISI I; has
a Gaussian distribution with a mean p;. and a standard deviation o;. The model then
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generates spikes at times t1,....17. and the corresponding ISIs I, ..., I} with probability:

L 1 Ui
DIM) = p(ty,...tp) =pll,...I1) = e 7 4.16
p(DIM) =p(ty,....t1) = p(Iy L) E Vo, (4.16)

The only problem now is to estimate the parameters of the model (i.e., the p;’s and the

0;’s), which again can be done from the data. or by running the simple noise model a large
number of times.

The difficulty with the above method is that in many cases real neurons (and also model
neurons with noise sources) will not always generate the same numbers of spikes for a given
level of stimulation. Therefore we must modify the above equation for the likelihood to take
into account extra/missing spikes. Thus the second assumption is as follows. Suppose that
under a fixed set of conditions, a deterministic compartmental model yields a spike train
with L spikes at times 71,...,7,. We can imagine that with added noise the probability of
observing L spikes has a probability « (0 < z < 1), possibly close to 1. It is reasonable to
assume that the probability of the number of spikes has a maximum at L. We can further
model this distribution with a second parameter 0 < y < 1, by setting p(L + k) = ¢* for
k=1,2,3..., and likewise p(L — k) = y* for k = 1,2, ..., L (where p(i) denotes the probability
of observing a total of ¢ spikes in a given trace). This simple model assumes a symmetric
fall-off from the mode. according to a geometric progression with rate y. Obviously, more
complex profiles for p(7) could be selected if necessary. Since 3, p(i) = 1, z and y must be

related by
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-y ) =1 (4.17)
where the second term on the left-hand side represents the probability of getting less than L
spikes, while the third term represents the probability of getting more than L spikes. This

simplifies to

2y . yL+l

This relation can be solved exactly, at least for small values of L. For instance, when L = 0,

y=(l-xz)/(2—x). When z is close to 1, we have the approximations (these are also upper

bounds)

-z
y~1-z for L=0 and yﬁs~—2—w{ for L >0 (4.19)
We can now adapt equation (4.16) to the case where the number of spikes K is not neces-

sarily equal to L, by multiplying the right-hand side by a term ¢(J) as follows:

)2

(Iz;u
p(tlv'“tt.]) :p(Ila"': H \/‘9—7?0 Vj s (420)
J

where J = inf(K, L), i.e., .J is the smaller of K and L. If K < L, the data is missing spikes

which are normally present in the model, and we use

a(J) = p(K) =y F (4.21)
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If K > L (K =L+kk >0, the data contains extra spikes not normally present in the

model. We then use

(KL _ g (K-L)

Tt TRt 22

q(J) = p(K)

The extra factor (K — L)!/(T —t7)* =" corresponds to the assumption that the extra k
spikes are selected uniformly at random over the time interval [¢7, T'], where T" is some fixed
horizon. This term is needed to ensure proper normalization, that is p(K) is the probability

of observing K > L spikes, or

T rT T _ (T_th)KvL )
/0 / f dlpgy..dlg = KD (4.23)

Sl (TR PO 25

Finally, if K = L

p(J)=p(K)=2z , (4.24)

which is not very different from the original equation 4.16. since z is normally close to 1.
We shall denote such type of model by L = L{j,7. ., y).

The corresponding log-likelihoods are given by the following equations:

IftK <L,

1 & - wy)? -
logp(I1, ... Ix) = (L — K)logy+21og Torr, ; 207 (4.25)
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if K = L,

L L 9
1 (Ij = p1y)
1 I, ... 1) =logz log -y L 4.26
ng( 1 s L) og + E_:i og \/’2*7(0_] ; 202 ( )
Je= j= J
and if K > L,
L L
, 1 (I; — p;)?
logp(ly,...I1) = (K—L)logy+210g _Z_L._ZJ__
- V2mogp D 20]
+log(K — L)l — (K — L) log(T — t1) (4.27)

In the case of missing spikes (K < L), a fixed penalty equal to logy is added for each missing
spike. In the case of extra spikes (K > L), the penalty for each extra spike is slightly more
complex. It consists of a penalty term of logy — log(T — ) for each additional spike, and
an additional log(K — L)! for (K — L) extra spikes. In the following experiments, (K — L)
is usually very small, typically one or two spikes at most, and the log(K — L)! term can
be ignored. Likewise a time horizon 7' can be selected so that the terms log(T — ¢;) can
be neglected. As a result, for most of the following, we use a fixed penalty logy for each
additional or missing spike. Alternatively, one could use a more complex parametrization
of the density p(K) to achieve a similar effect. One exception is with the class comparisons
in the next section, where integrals over the entire space of parameters lead to parameter
regions with large numbers of missing or extra spikes. In this case we use the above equations

without modification.



In summary, if the compartmental model generates L spikes and a data trace contains
K spikes, to compute the likelihood we let .J = inf(L, K). We then pair the first J spikes
of each trace to each other using a linear ordering without gaps. The corresponding J
ISIs are compared using quadratic penalties. Finally, a fixed penalty is used for each extra
or missing spike. This is obviously not always optimal. In particular, optimal pairing of
ISIs between traces could have a more complex structure. As in the case of the previous
variable-rate Poisson model, such a generative model can be coupled to a compartmental
model by the way in which the parameters are determined. Again these parameters can be
estimated by running the corresponding simple noise model many times. Another possi-
bility is to determine the p; by taking the ISI observed in the corresponding deterministic
compartmental model trace (we discuss the validity of this last approximation in the next
section). In the following simulations, we use the Gaussian ISI model in two forms (see

table 4.6):

e M(ji,d,x,y) where all the parameters are estimated from the corresponding simple

noise model (used in the individual model comparisons; see below);

e M(ji,1.z = 0.968 or 0.921, y = (1 —z)/2 or y = (1 — z) for L = 0) (used in the

whole-class comparisons). See below for the derivation of the estimates of z.
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4.5 Examples

4.5.1 Objectives and methods

We now demonstrate the Bayesian approach on actual compartmental models, using both
synthetic and natural data. The first question we ask is, given a data set and two candidate
models, which model is more probable? We do this in two different cases, with models in
the same class (which we refer to as the “within-class” case) and in different classes (the
“between-class” case). The classes are distinguished by the fact that one class of model
has an extra voltage-dependent ionic channel type not present in the other class. This
corresponds to the case, frequently seen in practice, where the evidence for the existence of
a particular channel type is inconclusive.

The second question we ask is, which of the two classes is more probable given the
available data? This is the “whole-class” case. It serves to demonstrate that Bayesian
methods are not limited to comparing individual models, but can be used to address any
inference question.

We use both variable-rate Poisson models M = M {ji, 7, N ), and Gaussian ISI models
M = M(ji,d,x,y) to calculate the likelihoods for the above two questions. Whenever
feasible, we have estimated these parameters from runs of the corresponding simple noise
model. We have resorted to fixed values only in the most computationally intensive class

comparison tasks. The resulting inhomogeneity of models is not a problem as long as



the rules are clear within a comparison task, and that likelihoods obtained with different
methods are not compared directly.

For both of the previous cases, noise was added to the model by adding Gaussian noise
with zero mean and a fixed standard deviation to the injected current. Although the zero
mean entails no loss of generality (if the mean were nonzero this would have been equivalent
to the zero-mean case with a different level of DC current injection) the standard deviation
of the noise was chosen arbitrarily, which is clearly suboptimal. Also, the data sets used
for the previous cases were artificial data sets; it is of interest to see how Bayesian methods
perform on real biological data sets. Therefore the third question was, given a biological
data set and a realistic model which has been tuned to match the “average” behaviors of
this data set (i.e., the average spike times of the data), how can we use Bayesian methods to
assign the most probable level of noise so that the variability in spike timing in the model
accurately reflects the variability present in the data? In this case we use the simplest
form of the variable-rate Poisson model as a contrast with the previous cases and also to
show that this method can be used directly with a minimum of assumptions (i.e., without
assuming that spike timings are distributed as Gaussians).

The simulations in this section were carried out on Unix workstations running Linux
and Solaris 2.3, using the neural simulation program GENESIS version 2.0 [10]. with an
extension library to implement the parameter search methods. Data analysis was performed

using Matlab (The Mathworks Inc.).
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4.5.2 The data

Synthetic data sets

We first use an artificial data set generated using a simple one-compartment model. The
model contains four voltage-dependent ionic conductances: fast Na, delayed rectifier K
(Kpgr), inactivating K or “A-current” (K 4), and slow non-inactivating K or “M-current”
(K 37). The kinetics of the channels are adapted from models of hippocampal conductances
for the first three channels [41], and from a model of a bullfrog sympathetic ganglion cell
in the case of Kj; [25]. These particular conductances can reproduce a number of realistic
behaviors. In particular, they can produce spiking outputs reasonably similar to those of
regular-spiking cortical pyramidal cells [31]. Furthermore, with the inputs we used (see be-
low) a range of behaviors, from not spiking to rapidly spiking with significant spike frequency
adaptation, can be observed, as is seen in real pyramidal cells. Nevertheless, this model is
essentially a simple “toy” model used only to demonstrate the Bayesian methodology.

The mathematical details of the model are given in appendices D and E. We refer to this
model as the “target” since we seek to generate a model that replicates the data produced
by this model. The inputs to the target model are a series of six constant current injections,
with intensities ranging from 0.1 nA to 1.0 nA. The duration of the input stimuli is 200 m.s,
and the stimuli start 50 ms after the beginning of the simulation. The 50 ms prestimulus
period was sufficient to cause the target model without noise to settle into a steady state,
where “steady state” is defined as being the state where all variables (e.g. membrane
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potential, channel conductances) are constant. Variability in the data is simulated by
adding a certain amount of independent Gaussian noise to the injected current at each time
step. The mean amplitude of the injected noise is 0 nA, with standard deviation 0.1 nA.
Note that this represents a fairly large amount of added noise: the standard deviation of
the noise ranges from 10% to 100% of the base current. The simulation were performed
using the Crank-Nicolson implicit integration method [25], with time steps of 20 ps.
While the data itself is generated here by a simple noise model, from now on this fact
will be entirely forgotten, and the data studied as if it had originated in a true recording
session. The data consists of a sequence of interspike intervals. The first interspike interval
is operationally defined as the time between current onset and the first spike. For speed
purposes, we chose to use spike times or interspike intervals (1S57s) as the basis for our
model comparisons, rather than directly comparing membrane potential (V,,,) traces. The
Bayesian framework could also be applied directly to V,, traces (this would be necessary,
for instance, if the data consisted of voltage recordings from a non-spiking cell). Figure
4.1a shows the voltage output of the target model without noise for the six currents used,

while figure 4.1b shows the output of the same model with noise for five different current

injections of 0.8 nA.
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Figure 4.1: (a): The output of the target model without noise. Input currents
are 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 n4, from bottom trace to top respectively. Traces
represent membrane potential of the cell (17,,) and are offset on the y-axis for clarity.
The current injection begins at 50 msec and continues to the end of the trace (at
250 msec). (b): The output of the same model with noise, for five different current

injections of 0.8 nA. To facilitate comparison, traces were overlaid.
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Neurobiological data set

For the neurobiological data set we obtained a series of current-clamp recordings from a layer
2 superficial pyramidal cell in rat olfactory (piriform) cortex in a brain-slice preparation.
Details on the brain-slice preparation can be found in [18, 36]. The slices were perfused with
a solution to which the compounds CNQX (30 M), APV (100 M) and picrotoxin (50 M)
were added to block synaptic transmission without altering the spiking characteristics of
the cell. Seven levels of current injection were used, and each current was injected six
times, with a 20-second delay between injections. The delay was necessary to allow slow
conductances to return to their baseline values between current injections. Although the
spiking patterns were quite reproducible, variability between traces did exist (see figure 4.7,

lower half).

4.5.3 The models

Deterministic component

We used two different compartmental models in the following sections: a simple one-
compartment “toy” model (which was a variation of the simple target model described
above) and a much more complex 15-compartment pyramidal cell model which was tuned
to match the average spike times of the pyramidal cell data.

For the simple one-compartment model, two candidate model classes are used to illus-

trate the Bayesian approach to model comparison. The first model class is identical to the
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target model. except that the maximal conductances of the four ionic conductances are not
known. This corresponds to the case where the electrotonic structure of a cell, and the
identity and kinetics of all voltage-dependent ionic channels, has been established, but the
maximal conductance values of these channels are unknown. Thus the deterministic com-
ponent of each model in the first class (Cy) is characterized by four parameters. We will use
subscripts to refer to the number of parameters of the deterministic component of a model
or a class. Thus, for instance, Cy(ji,2.1/(2v/27)) denotes the sub-class of variable-rate
Poisson models, with four variable conductance parameters in the underlying deterministic
component, ji determined by the deterministic component, o = 2 msec, and N = 1/(2v/27).
In what follows, we do not distinguish between classes and subclasses, as things should be
clear from the context.

The second model class (C3) is identical to the first one, except that we remove the K4
conductance from the model. This represents the case where the evidence for the presence of
this conductance in the real cell is inconclusive. We remove the K 4 conductance specifically
because of our intuition that this conductance has a very small effect on the ability of the
model to generate outputs that match the target data set. The Bayesian methods allow us
to test this intuition in a quantitative and precise manner. Thus each model in the second
class is characterized by three parameters.

For the analysis of the pyramidal cell data a separate model with 15 compartments,

seven voltage- or calcium-dependent ionic conductances and a simple model for calcium
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buffering was constructed. Details on this model are included in appendix F. All pyramidal

cell models used had exactly the same deterministic component.

Probabilistic component

As discussed in the previous section, we use both the variable-rate Poisson model and the
Gaussian ISI model to estimate likelihoods. In most cases, we determined the parameters
of these models from the corresponding simple noise model (i.e., the deterministic com-
partmental model with a noise source). Noise was added to the compartmental models as
zero-mean Gaussian noise with a fixed amplitude. The amplitude of this noise was 0.1 nA
for all models except for the pyramidal cell model, where a range of noise amplitudes from
0.025 nA to 1.6 nA were used.

For the variable-rate Poisson model, we used a bin size of 1 msec throughout, on the
assumption that there is a vanishingly low probability of having more than one spike in the
bin. In cases where Gaussian distributions were superimposed on spike times to generate
probability profiles, the height of the Gaussian centered on each spike was set to be equal
to 1/(v/2n0o), as described above. The only other parameters needed are the means and
standard deviations of the Gaussian distributions centered at each spike. For the compar-
isons of individual models, we ran the models with noise 1000 times and calculated the
means and standard deviations of all spikes. We used the means and standard deviation

of each particular spike (e.g., the second spike at current level 3) to set these parameters.
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For the class comparison (section 4.5.7) this was not computationally feasible, so we ran
the corresponding deterministic component and used the spike times to determine the u’s,
with a standard deviation of 2 msec. We used a slightly larger standard deviation than
for the Gaussian ISI model (see below) because we observed that the standard deviations
of the spike times were typically somewhat larger than those for the ISIs (data not shown)
(see table 4.6). For the pyramidal cell model we did not use superimposed Gaussian dis-
tributions centered on the spike times; instead we merely ran simulations with noise 1000
times, collected the spike counts in each bin and used this count to directly estimate the
probability of having a spike in each bin. This has the advantage of being extremely simple
in practice and free from any assumptions about the distributions of spike timings; however,
there remains the problem of what probability to choose when no spikes fall in a bin (see
below and appendix C).

For the Gaussian ISI model, we picked several models from both the three- and four-
parameter classes with conductance parameters randomly chosen within the prior range
and ran each of them 1000 times with noise. For each model, we computed the covariance
matrices of the ISIs across runs and across different current injections. Several sample 1S
histograms are shown in figure 4.2. The line through the distributions represent the ISI
of the deterministic component of the model. Notice that this line is very close to the
mean. A sample (normalized) covariance matrix is shown using a grayscale colormap in

figure 4.3, with white representing high covariance, black representing anticovariance, and
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gray representing no covariance. The covariance is very close to zero away from the main
diagonal. Some anticorrelation exists between adjacent spikes in many cases. Additionally,
the last current injection (spikes 65-106) shows a positive correlation between IST times
for the earlier spikes; in this case the amplitude of the input current was sufficiently large
relative to the amount of current noise that the cell’s firing pattern before spike frequency
adaptation set in is quite regular, leading to high covariances. Similar results were obtained
for other four-conductance models with different parameters and with three-conductance
models with random parameter values from within the allowed range (not shown). In figure
4.4, we show a histogram of standard deviations for the ISIs of a typical model. Most of the
standard deviations (over 60%) cluster in a single bin, corresponding to standard deviations

ranging from 0 to 0.55 ms. Thus, to a first approximation, we see that

1. The various ISIs have a Gaussian distribution and are independent (the covariance

matrix terms are typically close to 0 away from the main diagonal).

2. The mean of each Gaussian can be approximated by using the corresponding value in

the same model run deterministically, 7.e., without any noise.

3. The standard deviations of the Gaussians are typically in the [0,5] ms range. Most
often they are close to 1 ms, so that whenever necessary we can reasonably use

o, =1 ms.

The procedure to obtain the parameters x and y varied depending on the comparison
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Figure 4.2: A group of ISI distribution histograms from a four-conductance model
with noise and a range of input currents. The parameter settings were chosen
randomly from within the allowed range. Each distribution represents a particular
spike which occurred in most or all of 1000 runs of the model; nine spikes were
chosen at random for display in this fashion. The x-axis is in units of seconds while
the y-axis represents number per bin. The vertical line represents the position of
the IST for the model without noise. Note that the means of the distributions closely

approximate the positions of the deterministic ISIs.
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Figure 4.3: The normalized covariance matrix of a sample four-conductance model.
The parameter settings were chosen randomly from within the allowed range. The
model was run 1000 times with noise, and the standard deviations of the resulting
ISI distributions were calculated for each spike. The x and y axes represent the spike
number; the higher the spike number the later the spike in the trace. Spikes from
different currents are given different spike numbers; thus spikes 1-2 are from current
1, spikes 3-7 are from current 2, etc. The covariance matrix has been normalized so

that all diagonal entries are equal to 1.
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Figure 4.4: The histogram of ISI standard deviation values for a four-conductance
model with noise. The parameters of this model were chosen randomly from within
the parameter ranges. Note that the majority of the values cluster in the range
(0,1) msec. This was analysis was repeated for five randomly chosen models in each
of the two model classes (model 1 and model 2) and similar results were obtained
in all cases. Absolute spike time standard deviation values were somewhat larger

(not shown) but were mainly concentrated in the (0,2) msec range.
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being performed. In sections 4.5.5 and 4.5.6. we ran the corresponding simple noise models
1000 times and used the incidence of missing/extra spikes to determine x and y separately
for each level of current injection. In the case of the class comparison (section 4.5.7), this was
not feasible. so we chose several models in each class with parameters randomly distributed
in the allowable range. We used these to generate fixed estimates for x and y, which we
then used for all models and all currents. The estimates were z = 0.968 (resp. z = 0.921)
for the four-conductance (resp. three-conductance) class, with y = (1 —z)/2 (y = (1 — x)
when L = 0) (table 4.6), as described above. We also used a fixed value of T' = 400 msec,
twice the length of the current stimulus.

While the general question of the approximation of the simple noise models by the
corresponding variable-rate Poisson models or Gaussian IST models could receive a detailed
Bayesian treatment, it is not the focus of the present study. From now on, the focus is
on how well these models fit the given data sets. Finally, notice that another underlying
assumption we use in the comparisons is that the level of the current injection in each trace

is known. This is a standard assumption in real life situations, related to how the data is

acquired under experimental control conditions.

4.5.4 Parameter estimation: determining optimal parameter values

For the “within-class” and “between-class” comparisons, we would like to choose reasonably

optimal parameter sets for models in one or both classes. In this case, we use an automated
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parameter search procedure to find a good match between the candidate models and the
target model. The details of the search procedure itself are irrelevant to the Bayesian com-
parison, but are briefly described here for completeness. To speed up parameter searches,
a modified target data set is taken by running the target model without noise. We use
simulated annealing, with a modified simplex gradient-descent procedure [35], for the opti-
mization itself. We have previously compared a number of parameter searching algorithins
for neural models [42, 43], and found this one to be highly efficient. The optimization al-
gorithm systematically varies the values of the adjustable parameters (four parameters for
class 1, three parameters for class 2) until a best match is found. The matching function
used is related to the likelihood of the corresponding Gaussian I1SI model. M{” “7 MiP =
denote different four-compartment models derived by this procedure on different runs (table
4.6).

For the pyramidal cell model, a similar procedure was followed. A deterministic target
data set was chosen by calculating the mean spike time for each spike in the real data. A
parameter search method based on the genetic algorithm method [42, 43] was used to assign
values to free parameters. Although we could have used simulated annealing as was done
with the simpler models, we have found that genetic algorithms are often more suitable for
models with larger numbers of parameters (in this case the pyramidal cell model had 24

parameters).



4.5.5 Comparing individual models from the same class

As the most basic test of the Bayesian method, we chose two independent models from
the class of four-conductance models by running two separate parameter searches. Since
the parameter search algorithm is stochastic, this produced two different candidate models
M and M both of which matched the spike timings of the data set within a fairly
small error. The spike outputs of the deterministic component of the candidate models are
shown as raster plots in figure 4.5(a). Each raster represents one spike. The respounse for
different levels of current injection are offset on the y-axis, with the lowest level displayed as
current 1 and the highest as current 6. The blue (middle) rasters represent the target model.
the green (upper) rasters represent the first four-parameter model and the red (lower) rasters
represent the second four-parameter model. The time axis begins at the beginning of the
current injection, i.e., at b0 msec after the beginning of the simulation. In this case, the
two corresponding simple noise models almost always produced the same number of spikes
per trace, so no penalty for missing/extra spikes had to be imposed. Specifically, in the
Gaussian ISI model, the parameter x is always very close to 1 and is estimated by running
the corresponding simple noise model 1000 times. The parameter y can be estimated using
(4.19), but is not needed because L = K and only (4.26) is used for the likelihoods.

The parameters of the resulting models are shown in table 4.1, along with the original
parameters of the target model. Tt is important to notice that because of the approximations

we make and the search procedure, the two models derived have good likelihoods, but do
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parameter | target | model 1 | model 2

G(Na) 800.000 |  530.37 | 2546.44

G(K) 100.000 | 119.74 | 135.07
G(K ) 50.000 25.51 31.64
G(K) 100.000 93.40 37.38

Table 4.1: The final parameter values for two models from the same class, com-
pared with the parameter values for the target model. The parameters were deter-
mined by a parameter search algorithm and represent maximal conductances of the

ionic channel types (in S/m?).

not necessarily correspond to a global maximum of the likelihood.
To compare two models, one needs to compare their posterior probabilities probabilities

p(M

D), using (4.3). Using (4.9) for the priors, and (4.14) or (4.20) for the likelihood, it
is easy to compute the log-posterior probabilities of each model to within a normalizing
factor. Notice that the term associated with the probability of the data (P(D)) is the same
for both models, and therefore can be ignored in the comparison. The prior term could also
have been ignored, since the prior used is uniform over the class. The results of the Bayesian
analysis are shown in table 4.2, using both the variable-rate Poisson model (My(fi, 7, N ))
and the Gaussian IS model (M, (ji.5, z.y)) to estimate the likelihoods. with parameters
determined as described above (see also table 4.6).

The analysis shows that model 1 is significantly more probable than model 2 given the
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Figure 4.5: (a) A raster plot of the target model without noise versus the best-
matching model for two four-compartment models (the “within-class” model com-
parison) without noise. (b) Raster plots for the “between-class” model comparison,

also without added noise.
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variable-rate Poisson model Gaussian ISI model

ﬂ/j;)pt 1 1 prtz 1 ;{é}pé 1 ]V[:Z»;;fz
log P(D|M) -73.83 -90.38 -8.81 -18.84
log P(M) -4.08 -4.08 -4.08 -4.08
log P(M|D) -77.91 -94.46 -12.89 -22.92

Table 4.2: The likelihoods (log P(D|AM)), priors (log P(M), and posteriors

(log P(M|D)) (up to a constant) of the within-class comparison, using both the

variable-rate Poisson model and the Gaussian IST model.
data set, regardless of which statistical model is used. This is not surprising since the
parameter values in model 1 are closer to the “target” parameters than those of model 2
(with the exception of parameter 3, corresponding to the K 4 conductance, which is slightly
closer to the correct value in model 2). Looking at the spike outputs of the corresponding
deterministic components of the models in figure 4.5(a). we would agree that model 1
matches the data better than model 2, particularly at the highest current level. Bayesian

methods have allowed us to determine this in a precise quantitative manner.

4.5.6 Comparing individual models from different classes

When comparing models from different classes, one may take the likelihood of the classes

into account, so that Bayes™ theorem can be written as:



p(D

M, Cyp(M|C)p(C)
p(D)

p(M.C|D) = (4.28)

In the present example, we will assume a uniform prior over the two model classes
p(C3) = p(Cy) = 1/2, so that in fact we can ignore the term p(C). The term p(M|C') is the
prior on the model given the class and is calculated as in section 4.4.1. Thus the equation
is the same as that used in the previous section, except for a multiplicative constant which
is irrelevant to model comparison.

We again ran two parameter searches (one for each class) to determine optimal models
in each class. In table 4.3, we show the parameters describing the target model as well as
those of the two models found by the parameter search. Note that the final conductance
values obtained by the parameter search method are extremely close to the “correct” values.
Note also that even though the three-conductance model has no K 4 conductance, the other
parameter values are very close to the original values as well. In figure 4.5(b), we show the
spike outputs of the two final models without noise as raster plots, compared to the original
target model without noise. Here the blue (middle) rasters represent the target model. the
green (upper) rasters represent the best matching four-parameter model and the red (lower)
rasters represent the best matching three-parameter model.

The four-parameter model matches the spike times (and hence the ISIs) of the tar-
get data set almost perfectly, while the three-parameter model also generates an excellent

match, with the exception of a spurious spike at the lowest level of current injection. In
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parameter | target | four-conductance | three-conductance
G(Na) 800.000 776.247 755.462
G(K) 100.000 100.168 101.522
G(K4) 50.000 38.116 not applicable
G(Ku) 100.000 102.119 104.974

Table 4.3: The final parameter values for a four-conductance and a three-
conductance model, compared with the parameter values for the target model.
The parameters were determined by a parameter search algorithm and represent
maximal conductances of the ionic channel types (in S/m?). Note that the four-

parameter model is different from the two four-parameter models used in the within-

class comparison.

207




order to calculate likelihoods, we ran the simple noise version of both models 1000 times
and estimated the means and standard deviations of each spike time and ISI. The three-
parameter model with noise generated a spurious spike in each of the 1000 runs. so we can
only estimate an upper bound 0.001 for the parameter y in the Gaussian ISI model (i.e.,
no spike will occur in less than one in a thousand trials). A further step could consist in
putting a prior on y also, and estimating its posterior. The results of the Bayesian analysis
are shown in table 4.4.

Note that the log probability for the three-conductance model is much smaller than
that for the four-conductance model, both for the variable-rate and Gaussian ISI models.
The magnitude of the difference is much larger for the Gaussian ISI model than for the
variable-rate Poisson model, since, as discussed below, the Poisson model does not penalize
missing/extra spikes as harshly as does the Gaussian ISI model (here we have a spike in the
model which is missing from the data). These results are interesting in that our intuition
was shown to be wrong; the K4 current appears to make a significant contribution to the
spiking properties of this model. Note also that even though the prior for the M3 model
gives a smaller penalty than for the M model (penalizing a more complex model), this
has little effect on the final results, since the likelihood terms are much larger. The results
of the Bayesian analysis are shown in table 4.4. both for the variable-rate Poisson model
(M; (i, 7 N )) and the Gaussian IST model (M;(/.5.x,y)) (i = 3 or 4), with parameters

determined as described above (see also table 4.6).
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variable-rate Poisson model | Gaussian ISI model

" oMyt | g
log P(D|M) -69.31 -77.15 -3.24 | < -81.45
log P(M) -4.08 -3.06 -4.08 -3.06
log P(M|D) -73.39 -80.21 -7.32 | < -84.51

Table 4.4: The likelihoods (log P(D|M)), priors (log P(AM), and posteriors
(log P(M|D)) {up to a constant) of the between-class comparison using both the
variable-rate Poisson model and the Gaussian ISI model to determine the likeli-

hoods.

4.5.7 Comparing entire model classes

Here we use equation (4.11) to calculate the likelihood values in order to compare the Cj
and Cy model classes. To approximate the integral (4.11). we sample the entire parameter
space by dividing the range of each parameter into 16 segments, running a model for each
parameter set, and calculating the likelihood for each model. Since this requires 16?7 = 65536
simulations for the four-parameter case and 16® = 4096 simulations for the three-parameter
case. we cannot run each one of the corresponding simple noise models 1000 times to estimate
the means and standard deviations of the spike timings or the ISIs. Therefore we choose
ji = [i{6) to be the position of the spike in the corresponding deterministic component with
parameters #, both for the variable-rate Poisson and the Gaussian [SI models. The o values

used in the whole-class comparisons were fixed and estimated by running five models from
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each class (with parameters randomly chosen from within the allowable range) 1000 times
with noise. Although the value of o differs between models and between currents in the same
model, in general the o for the ISIs is roughly 1 msec while that for the actual spike times is
roughly 2 msec. The spike times have a larger o since the variation in the timing of a current
spike is not only due to the variation in the last interspike interval but also to the variation
in all previous interspike intervals for that trace. Since we are sampling the entire parameter
space, regimes where the candidate models produce extra or missing spikes are very common.
This poses a problem for the Gaussian ISI model because we cannot estimate the z or y
parameters directly for each model, since that would require running each of the thousands
of models with noise a large number of times. Instead we used the 5 random models for each
class, ran each of them 1000 times with noise, calculated an average value of z for each class
and estimated y using equation (4.19). The average found was = = 0.968 (resp. 0.921) for
the four-conductance case (resp. three-conductance). So, in the variable-rate Poisson case,
we are comparing the classes C;(ji(#), 0 = 2, N = 1/2v/27) for i = 3 or 4. In the Gaussian
IST case, the classes are Cy(fi(6),0 = 1,2 = 0.968,y = (1 —x)/2) [(1 — z) when L = 0]) and
Cs(fi(0).0 = 1,2 =0.921,y = (1 —x)/2)) [(1 —z) when L = 0]).

We approximate the likelihoods using our samples by

/ p(Dllog(8), C)dlog(0) =~ Z p(Dlog(8), C)Alog() (4.29)
e
and (after each parameter range has been divided into 16 increments):
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Alog(f) = (1/16 * 2 log(4))" (4.30)

(or (1/16 % 2 log(4))* for the three-parameter case) which gives:

p(DIC) = 1/(2log(4)))" * (1/16 + 2 log(4))" + Y_ (p(D]log(6))) (4.31)

2

1/(16") + > (p(D]log(6)))

with 4 = 3 for the three-conductance class and i = 4 for the four-conductance class (this
is just the average of the likelihood over the class). The results are shown in table 4.5.
It can be seen that the class of three-conductance models is quite inferior to the class of
four-conductance models, regardless of which statistical model (variable-rate Poisson or
Gaussian IST) was used. Note also that with the Gaussian ISI model the class likelihood for
the three-conductance class is of the same order as the likelihood of the “optimal” model in
this class shown in table 4.4 (in fact, since the likelihood of the optimal model is an upper
bound. the class likelihood is most likely greater than that of the optimal model). This is a
consequence of the fact that the estimate of y for the class likelihood was much less accurate
than for the optimal model (where it came from running the model with noise 1000 times)
and therefore may have underestimated the penalty for missing/extra spikes for the most
probable models.

Having a mapping of the space of likelihoods can be useful for other purposes as well.
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variable-rate Poisson model | Gaussian ISI model

Cy C3 Cy Cy
log P(D|M) -86.04 -136.86 -41.02 -81.45
log P(M) -0.69 -0.69 -0.69 -0.69
log P(M|D) -86.73 -137.55 -41.71 -82.14

Table 4.5: The likelihoods (log P(D|M)), priors (log P(M), and posteriors

(log P(M|D)) (up to constants) of the whole-class comparison using both the

variable-rate Poisson model and the Gaussian ISI model to determine the likeli-

hoods.
For instance, one could determine whether there is one bunique maximum in the likelihood
function or several, and how peaked the likelihoods are around each local maximum. One
can also use this data for prediction problems, such as the problem of predicting when the
first spike is most likely to occur given the class. Note also that if one has the resources
to do a brute-force mapping of the parameter-space, using an optimization method for a
parameter search is unnecessary. In general, this will not be possible, but Markov chain
Monte Carlo methods are being developed for more efficient sampling of high-dimensional

distributions [5, 38, 39].



4.5.8 Estimating the optimal amount of noise for a noisy pyramidal cell

model

As a final illustration of Bayesian methods in compartmental neural modeling, we present
here an application of these methods to a modeling problem involving real biological data.
As we have noted, at present most compartmental models are deterministic, i.e., for a given
input they will produce spikes at exactly the same times. There are several reasons for this

situation:

1. Most experimentalists do not systematically try to quantify the variability in their
data, being more concerned with the mean responses (although this is changing; for

instance see [30]).

2. It is not trivial to incorporate noise sources into a compartmental model in a way which
reflects the biological processes of noise-generation. Furthermore, many possible noise

sources (e.g., channel noise) would be computationally expensive to model explicitly.

3. There has been no systematic procedure for comparing the outputs of a noisy com-
partmental model to the corresponding real data traces in order to find out how much
noise needs to be added to the model in order to optimally match the variability in

the data.

In this section we demonstrate how the Bayesian approach can solve problem 3. In
order to do this we obtained recordings from a layer 2 superficial pyramidal cell in olfactory
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(piriform) cortex in a brain-slice preparation (see [18, 36] for details on the experimental
procedures). The recordings consist of seven different levels of DC current injection (total
stimulation duration 1 sec), each repeated six times. Synaptic blockers (CNQX 30 uM,
APV 100 pM and picrotoxin 50 pM) were added to the slice medium to eliminate back-
ground synaptic inputs and hence minimize externally derived noise sources. Despite this,
the timing of the spikes was not identical from trial to trial, i.e., there was a finite amount of
variability in the spike timings (see figure 4.7, lower half for spike raster plots of the data).
From the spike timing data we generated a set of mean firing times for each spike. We then
built a compartmental model of this cell with 15 compartments, seven active channels and
a simple model for calcium buffering (see appendix F for details). Parameters for the model
were obtained using parameter search algorithms as described above. DC currents were
injected into the model at the same level as in the real experiment (ranging from 0.08 to
0.2 nA), beginning 50 msec after the start of the simulation. Noise was added as zero-mean
Gaussian-amplitude white noise as in previous sections. Several levels of noise differing only
in the amplitude of the standard deviations were added, and for each level the model was
run 1000 times for a total of 1.2 sec to collect spike statistics. To assess the probability of

each level of noise. we used the variable-rate Poisson model as follows:

1. The spike times were collected into histograms of width 1 msec.

2. The probability of a spike occurring in any given bin was calculated as the total
number of spikes in the bin divided by the number of runs (nruns; in this case 1000).
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In the event that no spikes ever occurred in the bin, a probability of 0.5/nruns was
used. This was done to prevent data traces which had spikes in these bins from being
assigned a probability of zero. Similarly, bins in which spikes always occurred were
assigned probabilities of 1 — 0.5/nruns, to prevent data traces which did not have
spikes in these bins from being assigned a probability of zero. In practice, the first
case was fairly common but the second case never occurred with the noise amplitudes
we used. Zero probabilities are avoided in this way because they would primarily be
an artifact of the small sample size (see appendix C for a theoretical justification of

this step).

3. Each data trace was compared to each probability profile, and the spike times in
the data traces were assigned probability values. The negative log probabilities were

calculated and summed for all data trace (six repeats for seven different currents).

4. This procedure was repeated for all noise levels tested.

As described above, this method gives an estimate of the negative log likelihood value
for each level of noise. We ignore P(D) as usual since it is irrelevant to model comparison.
In this case, we also assume that all noise values have equal prior probabilities. Thus our
procedure is simply a maximume-likelihood estimation of the optimal noise value.

The results of this analysis are shown in figure 4.6. The x-axis is the percent noise, which

is the percentage of the energy in the noise relative to that in the DC current injection.
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This was used because most of the effect of a white-noise stimulus is filtered out by the
low-pass characteristics of the cell membrane, and therefore it is meaningless to compare
white-noise amplitudes directly with DC current amplitudes. We performed an AC analysis
of our simulated cell (not shown) and calculated that the signal attenuation with increasing
frequency was such that white-noise stimulus would be only about 1.4% as effective as an

equivalent DC stimulus of the same magnitude. The percent noise was calculated as follows:

(noise amplitude) * (noise attenuation factor) (4.32)

% moise = . :
! DC input current amplitude

where the noise amplitude is the standard deviation of the amplitude distribution of the
noise (the mean is zero) and the noise attenuation factor is about 1.4% as described above.
Figure 4.6 clearly shows that there is an optimal level of noise at about 10% noise. This
is shown graphically in figure 4.7, where we contrast the probability profiles of our model
at three different noise levels with the same DC current level with raster plots of the spike
times from the real data for one DC current level (which was the same as that used in the
model). The raster plots are in the lower portion of the figure while the probability profiles
are in the upper part of the figure. The lowest probability profile represents a very low level
of noise. the middle profile represents a medium level, and the upper profile represents a
very high level of noise. All profiles were computed using the variable-rate Poisson method.
The extent of the profiles in the y direction has been scaled differently (1:2:4 ratio for low,

medium and high noise, respectively) for each trace to facilitate comparison. The likelihood
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of the spike data given the middle profile is significantly greater than the likelihood given
either of the other profiles (it is more than 100 log units more probable than the upper
profile and more than 1000 log units more probable than the lower profile). The reasons
for this are clear. The low-noise profile represents a model which puts spikes very precisely
at certain times; the real data has a finite amount of scatter around the mean spike times,
and thus many of the spikes in the data will fall outside the distribution of the spikes in
the model and will thus be assigned a very low probability value. The high-noise profile is
almost a flat equiprobability distribution across the duration of the current injection. This
means that while no data spike will be assigned a very low probability, neither will any of
them be assigned very high probabilities. The medium-noise case is the best compromise
between these extremes; the widths of the peaks for individual spikes can be seen to increase
in accord with the spread of the data. Note also that models with noise are capable of
producing spikes before or after the DC current was applied, since the noise current was
applied for the entire duration of the simulation.

The significance of this procedure is that Bayesian methods have given us the ability
to choose an important parameter for a model which is otherwise very difficult to choose
in a rigorous manner. These methods can also quantify how good the choice is relative
to other possible choices. This is not to say that the simple method we have used here is
without its limitations. Most obviously, the variable-rate Poisson model treats all spikes as

independent entities and thus misses the correlations between successive spikes in a trace.
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Figure 4.6: A plot of the sum of the negative log likelihoods versus the percent
noise added to the model. The negative log likelihoods consist of the sum of negative
log likelihood values for all seven levels of DC current injection. The lowest value
of the negative log likelihood occurs around the 10% noise level; this corresponds
to the noise level with the highest likelihood {(and therefore, given our assumptions,

the highest probability).
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Figure 4.7: Lower half: raster plots of spiking times for a layer 2 pyramidal cell
with a constant DC current input of 0.1997 nA repeated six times. Current onset
was at 50 msec and current duration was 1 sec. Each trial was separated by 20 sec
intertrial intervals. Although the spiking pattern is fairly repeatable, the precise
timing of the spikes varies from trial to trial. Upper half: three probability profiles

for the pyramidal cell model using different noise levels. See text for details.
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Further development of the Bayesian methodology in the context of compartmental neural
models will have to address this question. Once better Bayesian methods are available, we
will be able to make even stronger statements about which models are more probable than

others.
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Method:

Within-class

L1 ropt2
MLP MEP

Between-class

AP My

Whole-class

Cy Cl

Variable-rate Poisson

models run:

Parameters:

bin size:

1000x with noise

estimated from
outputs of simple noise

model runs

estimated from

outputs of simple noise

model runs

1/(V2r0)

1 msec

1000x with noise

estimated from
outputs of simple noise

model runs

estimated from

outputs of simple noise

model runs

1/{V2%0)

1 msec

1x without noise

estimated as
time of spikes in
deterministic

component

2 msec

1/(V270)

1 msec

continued on next page
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continued from previous page

Method:

Within-class

M M

Between-class

opt3
M

A ropt
3'[3

Whole-class

o Cy

Gaussian ISI
models run:

Parameters:

W

1000x with noise

estimated from
outputs of simple noise

model runs

estimated from
outputs of simple noise

model runs

estimated separately
for each current from
outputs of simple noise

model runs

1000x with noise

estimated from
outputs of simple noise

model runs

estimated from
outputs of simple noise

model runs

estimated separately
for each current from
outputs of simple noise

model runs

1x without noise

estimated as
time of spikes in
deterministic

component,

1 msec

0.968 0.921

continued on next page
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continued from previous page

Within-class Between-class Whole-class
Method: AP M AL g Cy Cy
y: not needed not needed for Aly; (1 =) for M = O;
see note for Als else (1 —x)/2
T: 400 msec 400 msec 400 msec

Table 4.6: Parameter estimation methods used for the variable-rate Poisson model
and for the Gaussian ISI model in the within-class, between-class and whole-class

comparisons.

4.6 Discussion

We have briefly presented the Bayesian approach to modeling, and how it could be applied
to computational neuroscience in general, and to single neuron compartmental models in
particular. The main advantage of a Bayesian approach is obvious: it provides a principled
approach to inference, with a strong foundation in probability theory. In fact one of the
most compelling reasons in favor of Bayesian induction is its unicity, under a very small set
of common sense axioms.

We have also shown that it would not be too difficult to make current compartimental
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models more Bayesian. at least at the most basic level. The main advantage of Bayesian
methods for compartmental modeling is the clarification of a number of modeling issues,
at three different levels at least. First, a Bayesian approach forces one to clarify the prior
knowledge going into the model, the data. and the hypotheses. Second, the Bayesian ap-
proach clarifies how to proceed with inference, i.e¢., how to compare models with each other
and with the data objectively, providing unambiguous unique answers to well-posed ques-
tions. In this way it establishes a formal basis for model comparisons. Finally, Bayesian
methods require us to consider quantitatively issues of noise and variability in the data
used to construct and test a model. This is a critical (and underconsidered) issue in com-
putational neuroscience. Without this step, it is impossible to have a rigorous scientific
discourse on models, to determine how well they fit the data, and ultimately to compare
models and hypotheses. In this paper, we have demonstrated several ways to construct a
probabilistic compartmental model out of its deterministic components.

The Bayesian framework is entirely open to, and actually encourages, questioning of
any piece of information. It deals with the subjectivity inherent in the modeling process
not by ignoring it but rather by incorporating it up front in the modeling process. It
is fundamentally an iterative process in which models are progressively refined, and thus
reflects and supports the nature of realistic neuronal modeling [8]. As Bayesian methods
are applied to computational neuroscience, it is also likely that new computational ideas

will emerge as has been the case in other fields ([29, 28, 33}, and references therein). For
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instance, the variable-rate Poisson model was in part suggested by the Bayesian approach,
and the difficulties encountered with the Gaussian ISI model. The Bayesian approach
can lead to a better understanding of the weaknesses of a model, and thereby help to
generate better models. In addition, having an objective way of comparing models, and
making predictions based on models, will become more important as the number, scope
and complexity of compartmental models representing the same brain structures increases.
It is our belief that compartmental models are still at a very early stage of development:
for instance, there are not many Purkinje cell compartmental models in the world. Thus
issues of model comparison and prediction are still somewhat hidden in the background,
but will progressively become more central as neurobiological databases grow in size and
complexity.

In the present case, the two main statistical models for the spike timings we used have
complementary advantages and disadvantages. The variable-rate Poisson model handles
extra or missing spikes more gracefully than the Gaussian ISI model, since it independently
computes the probability of getting a spike in every time interval. The Gaussian ISI has a
very ad-hoc and inelegant procedure for dealing with missing or extra spikes which requires
the estimation of (at least) two new parameters. However, the Poisson model underpenalizes
missing spikes (it can be shown that the penalty for a missing spike is roughly 1 log unit, in
contrast to much higher values for the Gaussian ISI model on average). Thus neither model

is an ideal model of the spike-generating process in this particular data set, and therefore
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more such models need to be developed in the future. The variable-rate Poisson model,
however, is extremely simple and flexible and can provide at least a first approximation in
a wide range of situations. This was illustrated in the last section, where the variable-rate
Poisson model was used to derive an estimate of the noise input needed for a compartmental
model to optimally match a biological data set.

The main drawback of the Bayesian approach is that it can be computationally intensive,
especially when averages need to be computed over high-dimensional distributions. For the
largest compartmental models, it is unlikely that one will be able to carry out a complete
Bayesian analysis on currently available computers. But continuing progress in Monte Carlo
[5, 39] and other approximation techniques, as well as steady increases in raw computing
power in workstations and parallel computers, is likely to make these methods feasible for
compartmental neural models at a reasonable level of complexity in the near future. In ad-
dition, it should be clear that a simple method such as the variable-rate Poisson method can
already be used immediately, in conjunction with the most complex existing compartmental
models, to estimate likelihoods of large data sets and compare models pairwise.

Given the computational demands of the Bayesian approach, however, some modelers
might wonder what these methods provide that cannot be obtained merely by comparing
deterministic models according to some error criterion. First of all, one of our goals here
has been to generate generic probabilistic models of spiking processes which can be overlaid

on compartmental models, in contrast to error functions in parameter searches, which are
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typically constructed to strongly select for particular features of the data. Secondly, error
functions are not probabilities. Showing that a particular model matches a data set given
a particular error criterion better than another model says nothing about how much more
probable one model is relative to the other. For this a probabilistic model is clearly essential.
It is not difficult to imagine an error function which overwhelmingly favors one model over
another (for instance, if the error function gives an enormous weight to the first spike in the
data and virtually ignores the rest) even though the two models are almost equally probable
given a reasonable probabilistic spike-generation model. Thus, establishing a probabilistic
model and, especially, showing that it is reasonable given the degree of variability in the
data (section 4.5.8) are essential for proper model comparison.

As the scope and complexity of compartmental modeling in neuroscience continues to
increase, it will become increasingly important to have an objective way of comparing mod-
els, and making predictions based on those models. Because computational neuroscience
and compartmental modeling are still at an early stage of development, issues of rigorous
model comparison and prediction have not yet been considered seriously by most investi-
gators. However, as neurobiological databases grow in size and complexity, our standards
for model comparison will also have to be raised in order for progress to be made [8]. We

believe that Bayesian methods will provide a solid foundation for these efforts.
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Appendix A: The Cox-Jaynes axioms

The objects we deal with in inference are propositions about the world. For instance, a
typical proposition X is “neuron A is firing an action potential at time t”. A proposition is
either true or false, and we denote by X the complement of a proposition X. A hypothesis H
about the world is a proposition. albeit a possibly complex one composed of the conjunction
of many more elementary propositions. A model M can also be viewed as an hypothesis.
The difference is that models tend to be very complex hypotheses involving a large number
of parameters. In discussions where parameters are important, we will consider that M =
M (8) where 6 is the vector of all parameters. A complex model M can easily be reduced to
a binary proposition in the form: “model M accounts for data D with an error level €” (this
is a vague statement that will be made more precise in the following discussion). But for
any purpose, in what follows there is no real distinction between models and hypotheses.
Whereas propositions are either true or false, we wish to reason in the presence of un-
certainty. Therefore the next step is to consider that, given a certain amount of information
I, we can associate with each hypothesis a degree of plausibility or confidence (also called
in the literature degree or strength of belief). Let us represent it by the symbol w(X|I).
While 7(X|7) is just a symbol for now, it is clear that in order to have a scientific discourse
one should be able to compare degrees of confidence. That is, for any two propositions X
and Y, either we believe in X more than in Y, or we believe in ¥ more than in X, or we

believe in both equally. Let us use the symbol “>" to denote this relationship. so that we
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write m(X|I) > #(Y|I) if and only if X is more plausible than Y. It would be very hard not
to agree that in order for things to be sensible, the relationship “>" should be transitive.
That is if X is more plausible than Y, and Y is more plausible than Z, then X must also

be more plausible than Z. More formally this is the first axiom:

(X)) >n(Y|I) and #(Y|I)>n(Z|])= n(X|I)>n(Z]]) (4.33)

This axiom is trivial; it has, however, an important consequence: “>" is an ordering rela-
tionship, and therefore degrees of belief can be expressed by real numbers. That is, from
now on 7w(X|I) represents a number. This does not mean that such a number is easy
to calculate, but merely that such a number exists, and the ordering among hypotheses
is reflected in the ordering of real numbers. To proceed any further and stand a chance
of calculating degrees of beliefs we need additional axioms or rules for relating numbers
representing strengths of belief. The amazing fact is that only two additional axioms are
needed to constrain the theory entirely. This axiomatic presentation is usually attributed
to Cox and Jaynes [13. 22]. To better understand these two remaining axioms, the reader
may imagine a world of very simple neurons, where at each instant in time a given neuron
can either be on or off. Thus, all the elementary hypotheses or propositions in this world,
at a given time, have the simple form: “neuron A is on” or “neuron A is off”. Clearly,
the more confident we are that neuron A is on, the less confident we are that neuron A is

off. So, for any given proposition X, there should be a relationship between 7(X|/) and
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7(X|1). Without assuming anything about this relationship, it is sensible to consider that,
everything else being equal, the relationship should be the same for all neurons and for all
types of background information, i.e., for all propositions X and I. Thus. in mathematical

terms, the second axiom states that there exists a function F such that

m(X|I) = F[r(X|I)] (4.34)

The third axiom is only slightly more complex. Consider this time two neurons A and
B and the corresponding 4 possible joint states. Then our degree of belief that A is on
and B is off, for instance, naturally depends on our degree of belief that neuron A is on.
and our degree of belief that neuron B is off, knowing that A is on. Again, it is sensible
that this relationship be independent of the neurons considered and the type of background
information I. Thus, in mathematical terms, the third axiom states that there exists a

function G such that

(X, Y|I) = Gr(X

0, 7(Y|X.1)] (4.35)

So far, we have not said much about the information 7. [ is a proposition corresponding
to the conjunction of all the available pieces of information. I can represent background
knowledge, such as general anatomical or physiological information in neuroscience. I can
also include specific experimental or other data. When it is necessary to focus on a particular
corpus of data D, we can write [ = (I, D). In any case, I is not necessarily fixed and can
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be augmented with, or replaced by, any number of symbols representing propositions, as
already seen in the right hand side of equation (4.35). When data is acquired sequentially,
for instance, we may write I = (I, Dy,..., D,,). Inside a discussion where I is well defined
and fixed, it can be dropped altogether from the equations.

The three axioms above determine entirely, up to scaling, how to calculate degrees of
belief. In particular, one can prove that there is always a rescaling w of degrees of beliefs
such that p(X|I) = w(n(X]I)) is in [0,1]. Furthermore, p is unique and satisfies all the
rules of probability. Specifically, if degrees of belief are restricted to the [0, 1] interval, then
the function F' and G must be given by: F(z) = 1 —2z and G(z,y) = xy. The corresponding
proof will not be given heré and can be found. for instance, in [13, 23]. As a result, the
second axiom can be rewritten as the Sum Rule of probability:

p(X|I) +p(X|I) =1 (4.36)

And the third axiom as the Product Rule:

p(X. Y1) = p(X|1)p(Y|X. ) (4.37)

From here on, we can replace degrees of confidence by probabilities. Notice that if uncer-
tainties are removed, that is if p(X|I) is 0 or 1, then equation (4.36) and equation (4.37)
vield, as a special case, the two basic rules of deduction or Boolean algebra, for the negation

and conjunction of propositions [(1) “X or X "is always true; (2) “X and Y7 is true if and
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only if both X and Y are truel.
The immediate consequence of equation (4.36) and equation (4.37) is the so-called Bayes’

theorem:

p(Y X, I)p(X|I)
p(Y|I)

p(YIX.D)

= p(X|I) (4.38)

Bayes’ theorem is fundamental because it allows inversion: interchanging conditioning and
non-conditioning propositions. In a sense, it embodies learning since it describes exactly
how to update our degree of belief p(X|I) in X, in light of the new piece of information
provided by Y to obtain the new p(X|Y,I). p(X|I) is also called the prior probability (or
“prior” for short) and p(X|Y, I) the posterior probability with respect to Y (or “posterior”

for short). This rule can also be iterated as more information becomes available.

Appendix B: Error bars

For illustration purposes, consider a modeling situation with one parameter 6, and a uni-
form prior. Let f(#) = —logp(D|#) be the negative log-likelihood of the data. Under
mild differentiability conditions, a maximum likelihood estimator #y satisfies f'(6p) = 0.

Therefore in the neighborhood of €, we can expand f(6) in a Taylor’s series:

£10) = J(00) + 31"(600)(60 — 00)? (439



or

p(DIf) = 1O x5 Cem 2l (B0 (0=00)" (4.40)

where C' = /(%) So the likelihood, as well as the posterior p(f|D), locally behave like a

Gaussian, with a standard deviation 1//f"(6). associated with the curvature of f.

Appendix C: Dirichlet distributions

Let A = A(#) be the probability of firing in a given time bin ¢ in a variable-rate model. A
natural prior on A is the Dirichlet distribution with parameters
['{a)

A) = AN (L = N0 = Za (] - et 441
PO = FaaToan) (1-=A) ZXTT1 =N : (4.41)

also called a Beta distribution in the two-dimensional case. The parameters o and ¢ =
(¢q1,q2) of the distribution must satisfy «,¢; > 0 and }_ ¢; = 1. The parameter o determines
how peaked the distribution is around its mean associated with £(A) = ¢;. Assume now that
the data D for the same time bin consists of a total of n observations, f of which correspond
to a firing event. The likelihood associated with this observation is p(D|A) = Ma-xn-f).
A maximum likelihood estimation of A yields (not surprisingly) A = f/n. with the problem
that this estimate is 0 if f = 0. A simple calculation shows that the MAP estimate for A

with the Dirichlet prior is given instead by



_Sraqg -1
it a-—2

A (4.42)

The effect of the prior amounts to adding pseudo-counts to the observed data. With a
symmetric Dirichlet prior (for instance, ¢ = ¢o = 0.5), as long as we choose « > 2. the
MAP estimate can never be zero. The posterior distribution p(A|D) is also a Dirichlet
distribution. For this reason, the Dirichlet distribution is said to be conjugate for the
corresponding binomial/multinomial model. The Bayesian analysis of the pyramidal cell
model using the variable-rate Poisson model in section 4.5.8 is essentially equivalent to using

a Dirichlet prior with ¢; = ¢o = 0.5 and « = 3.001 for n = 1000.

Appendix D: Model equations for the one-compartment model

The basic equation for the compartmental models is the current-balance equation:

dVvy, ) Vo — B,
-+

C
dt R,

+ Lionic = Lstim 5 (443)

where C' is the membrane capacitance, V,, is the membrane potential, R, is the membrane
resistance, E,, is the “leak current” reversal potential (a poorly defined and yet nearly
universal convention among compartmental modelers [10, 25)), Lionic is the sum of currents
through voltage-dependent ionic conductances. and 4y, 1s the input current. [;,,; can be

further subdivided as follows:
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Lionic = Ina+ Ik, + 1k, + 1, (4.44)
= G]Va,(‘/m - E!\"a) + GKDR{LZm - EK)
+ GKA (V;n - EI\') + GKM (Vm - EK)
where Gy is the conductance value for channel X, Fy, is the reversal potential for Na,

and Ey is the reversal potential for K. These conductance values are time- and voltage-

dependent according to the following equations:

Grna =Gnam® h (4.45)
Grpp=Grpp (4.46)
Gr,=Ggr,zy (4.47)
Gry =Gk, 2 (4.48)

The parameters G¢-, where C represents an ionic channel species. are the variable parameters
of the models. The gating variables m, h, n, =, y, and z all can be described by the Hodgkin-

Huxley formalism [10. 19] as:
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TX _(if— — )&roc - X (449)
1 ;
=— 4.5
g ax + Px (4.50)
- ax
XN = —mt—e 4.51
0 ax + By ( 51)

for a given gating variable X, where 7y, X, ax, and By are all functions of membrane
potential V,,. ax is the forward rate constant and Sy is the reverse rate constant for the
channel opening reaction [19]. These functions are listed below. In some cases « and f
constants were used to compute X, and 7 values, while in other cases the latter values
were calculated directly. Note that V), is in volts. The channel models are adapted from
those in [41] except for the K, channel which is adapted from [25]. To get the cells to
spike in a manner similar to that of regular-spiking cortical pyramidal cells the kinetics of

the potassium channels were altered relative to those in the references.

Na channel:

—15008 — 32000 V,,

- : : | 4.52)

T erp(— (Vi + 0.0469)/0.004) 14:52)
5572 + 280000 V,,

.Bm = - il - (453)

—1 + exp((V,, +0.0199)/0.005)
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128
exp((V,, — 0.043)/0.018)

Xp =

B 4000
1+ exp(—(Vy, — 0.020)/0.005)

,Bh

delayed-rectifier K channel:

—398.4 — 16000 V,,,

T T eap(— (Vi + 0.0249)/0.005)
. 250
P eap((Vi + 0.040)/0.040
K 4 channel:
- —938 — 20000 V;,
T 1+ exp(— (Vi + 0.0469)/0.01
348.25 + 17500 Vi,
fr = NTET
—1 + exp((V,, + 0.0199)/0.01)
1.6
oy, = ~
Y eap((Vy, +0.073)/0.018)
4 = 50

—1 + exp(—(V,, + 0.0499)/0.005
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K 3; channel:

1.
= v ‘ (4.62)
1.0 + exp(—(Vy, + 0.035)/0.01)
1.0 ,
= (4.63)

6.6 % exp((Vin 4+ 0.035)/0.02) + exp(—(V;, + 0.035)/0.02)

Appendix E: Fixed parameters of the one-compartment model

cell area = 4 + (10 pm)* = 1.2566 « 1077 m? (4.64)

, . F 9 2 . 11 1 ar

C =CM *area = (0.008 —5) * (1.2566 * 10~ m~) = 1.00531 + 107" F (4.65)
m?

, ohm ) L g 9 g9 .

R, = RM % area = (2.0 —~) # (1.2566 + 107" m~) = 1.59155 * 10" ohmn (4.66)
m?

E, =-0077V (4.67)

Exn, =0.055 V (4.68)

Er = —-0.090 V (4.69)
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Appendix F: The pyramidal cell model

The pyramidal cell model was based on an anatomical reconstruction of a layer 2 superficial
pyramidal cell in olfactory (piriform) cortex; this reconstruction had 2670 compartments.
We simplified the morphology of this model down to a 15-compartment model using es-
sentially the method of Bush and Sejnowski [11]. Our model also included several active
ionic conductances located in the soma. No active conductances were placed in the den-
drites, because there is little evidence for such channels in this cell type at this time. The
conductances included fast inactivating Na, fast persistent Na, delayed-rectifier K, slow
non-inactivating K (“M-current”), fast and slow calcium-activated K, and high voltage-
activated C'a. The model also contained a simple model of calcium buffering. Space does
not permit a full description of the model here, but details on the model and full parameter

sets can be obtained by contacting the authors.
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Modeling the piriform cortex
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Introduction

The remaining chapters describe work done building a realistic model of mammalian ol-
factory (piriform) cortex and some of the scientific explorations 1 have performed on this
model. This work is a continuation of Matthew Wilson’s modeling work in this system
[1]. However, the model described in these chapters bears almost no resemblance to the
earlier model. The new model was constructed from the ground up based on new data, and
incorporates major improvements in the accuracy of the component cell models, the inputs
to the model from olfactory bulb mitral cells, and the network connectivities. The model
also incorporates a number of entirely new neuronal features including neuromodulation at
several levels, synaptic facilitation and depression, NMDA synapses and multiple types of
inhibitory synapses onto apical dendrites. The resulting model is the most complex realistic
network models of this brain region ever constructed and will serve as a valuable platform
for exploring this system for years to come. In these chapters I will describe in some detail
the process by which the model was constructed and validated, what has been learned from

the model, as well as a number of areas where the model can be improved and/or extended
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in the future.
The material on simplifying cell morphologies in the next chapter is adapted from chap-

ter 12 of [2].
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Chapter 5

Building Models of Single Neurons in

Piriform Cortex

One feature of the piriform cortex model described in this thesis which departs significantly
from the previous version of the model [48] is that the individual neuron models were built to
replicate experimental data very accurately. In this chapter, I will describe the construction

of these models in some detail.

5.1 Piriform cortex neurons

In the mammalian brain, piriform cortex pyramidal neurons consist of a cell body (soma). a
long apical dendrite extending to the surface of the cortex (spanning layers 1b and la), and

a number of basal dendrites that receive local excitatory input in layer 3 [16, 39]. The most

b
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numerous type of pyramidal neurons are superficial pyramidal neurons, whose cell bodies
are densely packed into layer 2 (figure 5.1, left). In addition, some pyramidal neurons are
located deeper in layer 3; these deep pyramidal neurons have longer apical dendrites than
superficial pyramidal neurons. There are also a small population of “semilunar” neurons in
layer 2 which are similar to pyramidal neurons, but without basal dendrites.

In addition to the pyramidal neurons, which bear a close resemblance to pyramidal
neurons found in other areas of the neocortex and the hippocampus, there are a variety of
interneuron types found in piriform cortex [16, 39] (figure 5.1, right). In layer 1 are found
superficially located inhibitory horizontal and globular-soma neurons. These neurons receive
direct input from olfactory bulb mitral cells and mediate feedforward inhibition across the
length of the pyramidal neuron apical dendrite. There is also speculation that they may
receive feedback excitation from pyramidal neurons [18]. In layer 3 are found multipolar
neurons which can be spiny or aspiny. Spiny multipolar neurons are excitatory, but little
data exists on their physiology. Aspiny multipolar neurons mediate feedback inhibition onto
the cell bodies of pyramidal neurons [17, 36].

The physiology of pyramidal neurons in piriform cortex is similar to that of pyramidal
neurons found in other parts of the brain [39]. These neurons display “regular spiking”
behavior [34], featuring fairly broad spikes and significant spike frequency adaptation to a
sustained current stimulus. Although little physiclogy has been performed on inhibitory

interneurons, they clearly fall into the “fast-spiking” category [15, 34, 38]. with narrow
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Figure 5.1: The main classes of neurons in the piriform cortex, positioned in
the layers where they are most commonly found. Abbreviations: SP, superficial
pyramidal neurons; DP, deep pyramidal neurons; S, semilunar cells; H, horizon-
tal neurons; G, globular-soma neurons; M S, spiny multipolar neurons; M, smooth
multipolar neurons. I, IT, III: layers of piriform cortex. EN: endopiriform nu-
cleus. Neuron classes H, G, and M are inhibitory; the rest are excitatory. From

[17).



spikes, high excitability, and little or no spike frequency adaptation. A number of synaptic
and voltage-dependent ionic channels are known to exist in piriform cortex pyramidal neu-
rons including fast sodium channels, fast and slow potassium channels, calcium channels,
AMPA and NMDA excitatory synapses, fast and slow GABA-A inhibitory synapses, and
slow GABA-B inhibitory synapses [2, 9, 10, 11, 12. 17, 25, 45].

For the purposes of the network modeling described in the following chapters, 1 have
constructed models of superficial pyramidal neurons, layer 1 feedforward inhibitory interneu-
rons (horizontal and globular-soma neurons), and layer 3 feedback inhibitory interneurons
(aspiny multipolar neurons). The present network model does not contain deep pyramidal
neurons, semilunar neurons, or spiny multipolar neurons, because these neurons are much
less numerous than the neurons included in the model, and because very little physiological
data is available on them. Nevertheless, incorporating models of these neuron types into
the framework of the network model will be an important area for future development of
the model.

Another feature of piriform cortex neurons is that a number of cellular and synaptic
properties can be modulated by norepinephrine (NE) (see chapter 2 and [8, 14. 21, 33]).
NE transiently modulates the strength of synaptic and voltage-dependent ionic channels
and alters the resting membrane potential in both pyramidal cells and interneurons. These

effects of NE have been incorporated into the neuron models.



5.2 Computer simulation environment

Simulations and data analysis presented in this chapter and chapters 6 and 7 were performed
on a variety of Unix workstations running Linux or Solaris. All neuronal simulations were
performed using the neural simulation program GENESIS [5]. Many extension libraries
were constructed as C extensions to GENESIS in order to model the variety of synaptic,
neuron and network features that are specific to the model. In addition, a parameter
searching library was built and used to match the parameters of the single neuron models
to experimental data (chapter 3; see also [47] and below). Data analysis was performed
using MATLAB (the Mathworks Inc.) and by a variety of custom-written programs in C

and python (http://www.python.org).

5.3 Modeling layer 2 pyramidal neurons

5.3.1 Data set

Layer 2 (superficial) pyramidal neurons in piriform cortex are the primary excitatory neuron
type in the piriform cortex [16, 39]. They have characteristic spiking patterns, corresponding
closely to the “regular-spiking” pattern described for neocortical neurons [34]. They are
characterized by moderate spiking rates with spike frequency adaptation after a current
step. For the purpose of tuning this model T used a data set consisting of membrane

potential traces from experiments in a brain-slice preparation [35]. A series of constant-
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current pulses at a variety of current levels were used. Depolarizing current injections were
used to characterize the spiking behaviors of the neurons, while weak hyperpolarizing inputs
were used to compute the input resistance and primary input time constant (faug) [27] of
the neurons. Synaptic blockers were added to the bathing medium (CNQX (30 pd) to
block AMPA glutamate receptors, APV (100 pM) to block NMDA glutamate receptors,
and picrotoxin (50 pM) to block fast GABA-A receptors) in order to prevent random
synaptic inputs from altering the response to the current inputs. A typical data set is
shown in figure 5.2 (bottom traces of each graph). Current-clamp experiments were also
performed in the presence of 10 pM norepinephrine (NE) in order to characterize the effects
of neuromodulation on the behavior of pyramidal neurons. A typical data set from the NE-
treated neurons is shown in figure 5.2 (top traces of each graph). Note the large increase in

neuronal excitability after NE treatment.

5.3.2 Simplifying the neuron morphology

At the time of this writing, it is unfeasible to build computer simulations of very large
realistic neuronal networks (comprising e.g., hundreds to thousands of neurons) where each
neuron has extremely detailed morphologies (hundreds to thousands of compartments) on
available computers. Thus, an essential part of building a realistic network simulation
is to simplify the morphologies of the constituent neurons, while keeping as many of the

physiological properties of the model intact as possible.
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Figure 5.2: Response of pyramidal neuron membrane potentials to currents in-

jected at the soma. Listed above each graph is the level of current injection. The

top trace corresponds to neurons treated with 10 M NE, while the bottom trace

(offset by —150 mV for clarity) represents neurons not treated with NE. Current
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The morphology of the model neuron was simplified from a 2670-compartment model
developed by Alex Protopapas, which in turn was an anatomical reconstruction of a pir-
iform cortex layer 2 pyramidal neuron kindly supplied by Mark Domroese of the Uni-
versity of Wisconsin. The reconstruction was performed using the NeuroLucida software
(http://www.microbrightfield.com/prod-nl.htm) (figure 5.3).

In simplifying the detailed pyramidal neuron model, we wanted to preserve as many
of the physiological properties of the original full-scale single-neuron model as possible,
particularly the response at the soma to synaptic inputs on distal dendrites. To accomplish
this task. we chose to reduce the full model using a method that conserves axial resistance
but treats unit membrane resistance and capacitance as free parameters [7]. This method
reduces two cylinders located at the end of a dendritic tree to a single equivalent cylinder
whose radius is the geometric mean of the radii of the two original cylinders and whose

length is the average of the lengths of the two cylinders:

R= Z?f (5.1)
L-—1 Y l; 5.2)
”EZ% (5.2)

where R is the radius of the reduced equivalent cylinder, r; is the radius of dendrite 7, L
is the length of the reduced equivalent cylinder, [; is the length of dendrite ¢, and n is the

number of cylinders being combined into one. This method can be applied iteratively to
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Figure 5.3: Digitized reconstruction of the layer 2 pyramidal neuron used to gen-

erate the simplified morphology.
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reduce the original model as much as desired. When any two cylinders had widely differing
lengths, we removed the smaller dendrite to avoid distorting the geometry of the neuron.
Because this method does not conserve total cell area, the specific membrane resistance
and capacitance of the model were rescaled until the input resistance R;, and input time
constant 7y are roughly the same in both models. To ensure accurate simulation results,
it is also necessary that each compartment have an electrotonic length of less than 0.1 X
(see chapter I and [27]). Note that the standard method for reducing complex dendritic
trees (the “3/2 power-law” or equivalent cylinder method of Rall [27, 37]) was not used
since the dendritic diameters at branch points on the cell reconstruction did not conform
to the 3/2 power law. The methods used also assume a passive dendritic tree. This is valid
in the context of our model since all the active conductances are located in the soma. In
addition, there is at present no strong evidence for active conductances on the dendrites of
piriform cortex pyramidal neurons (Lewis Haberly, personal communication), in contrast to
neocortical and hippocampal pyramidal cells [24, 42, 43].

The neuron model simplification algorithm is described in detail in Appendix A. The
resulting model is shown in figure 5.4. Table 5.1 compares the passive parameters, input
resistances, and input time constants of the original and simplified neuron models. The
specific resistivity and capacitance parameters were adjusted by hand to produce a good
match between the full and reduced models. Figure 5.5 shows the response of both models

to a weak synaptic input on the distal apical dendrite. The response of the simplified model
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is very similar to that of the full model based on either set of criteria. Note that the specific
values of the membrane and axial resistivities and specific membrane capacitances are quite

different; as described above, this is a feature of the simplification algorithm.

Full model | Reduced model

Number of compartments 2670 15
R, (M) 71.1 73.9

Tin (Msec) 19.6 18.9

R,, (EQ-cm?) 30.0 5.03

Ry (2-cm) 350.0 58.3

Cp (nF/em?) 0.8 4.36

Table 5.1: Passive parameter values for the full and simplified pyramidal neuron

model.
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Figure 5.4: (Previous page) Schematic structure of the simplified 15-compartment
pyramidal neuron model. Layers of the piriform cortex in which the neuron compart-
ments are located are listed on the left side of the neuron. Each segment represents
a single compartment. Voltage- and calcium-dependent ionic channels are listed on
the right. Note that ionic channels are found only in the soma. Abbreviations:
sup 1b, superficial layer 1b; deep 1b, deep layer 1b, soma(II), somatic region in
layer 2; I'1], basal dendritic region in layer 3; Na, fast inactivating sodium channel;
Na pers, persistent sodium channel; Kdr, delayed-rectifier potassium channel, Ka,
fast inactivating potassium channel; K M, slow, non-inactivating voltage-dependent
potassium channel (M-current); Kahp, slow calcium-dependent potassium channel;
C'a, high voltage activated calcium channel. The soma of the neuron model also

contains a calcium buffer.
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5.3.3 Building the model

In order to allow the pyramidal neuron model to respond in a realistic manner to current-
clamp inputs, voltage- and calcium-dependent ionic channels were added to the soma (table
5.4). Kinetic parameters for these channels were derived either from the piriform cortex
literature [2, 9, 11, 10, 12], or, where there was no such data, from models of hippocampal
pyramidal neuron channels (e.g., [44]). There is direct evidence for all of these channels in
piriform cortex pyramidal neurons, with the exception of the persistent fast sodium channel,
which has been characterized in pyramidal neurons in the hippocampus [13]. In addition,
various types of excitatory and inhibitory synaptic channels were added to the model (see
below and in Appendix B). Parameters for synaptic channels were also derived from exper-
imental data in piriform cortex brain slices (chapter 2 and [25]). Specific parameter values

and activation curves for all channels are listed in Appendix B.

5.3.4 Tuning the model

Once a data set for a canonical pyramidal neuron was chosen (figure 5.2), we used the
automated parameter search methods described in chapter 3 to match the behavior of the

model to the data. The model had 23 adjustable parameters of the following types:

1. Maximal conductance values of voltage- or calcium-dependent ionic channels.

2. Scaling factors for the activation curves of voltage- or calcium-dependent ionic chan-
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nels.

3. Soma resting potential.

4. Somatic and dendritic membrane resistivities.

Since the experimental data was obtained in the presence of synaptic blockers, the pa-
rameters of the synaptic channels were not varied when tuning the neuron models. Maximal
conductances of the channels were varied because these values are not available in the litera-
ture. Kinetic parameters were varied for some channels because the data sources were either
not derived from experiments on piriform cortex pyramidal neurons or because the available
data was not of high quality. The shape of the kinetic activation curves and time constant
curves was never altered; instead, the midpoints of some of the activation curves and/or
the overall time scale of the time constant curves could vary over a narrow range. The
resting potential was also allowed to vary over a narrow range to compensate for unknown
junction potentials, which can alter the apparent membrane potential by several millivolts
[49]. Since the neuron morphology was obtained from a different cell than the physiological
data, we also included the somatic and dendritic membrane resistivities as parameters, in
case the morphology represented a somewhat larger or smaller cell than the physiological
data. Full details on the resulting channel parameters can be found in Appendix B. This
approach is reasonable given that the objective of the parameter search was to generate

a phenomenologically correct model for the purposes of network modeling, rather than to
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find a unique correct set of parameters.

The result of the parameter search is shown in figure 5.6. As can be seen, the resulting
model replicates the intracellular current clamp data to high accuracy. The input resistance
of the pyramidal neuron model was 98 MQ and the input time constant (taug [27]) was

20.2 msec, which is well within the typical range for these neurons [35].

5.3.5 Neuromodulation

One of the objectives of the work described in this thesis was to examine the effect of neu-
romodulators on the dynamical behavior of the piriform cortex. The implementation of
synaptic neuromodulation is described below. Here, we describe the modifications of the
pyramidal neuron model needed to incorporate neuromodulation by norepinephrine (NE).
Our experiments have shown that NE increases the resting potential and the excitability
of pyramidal neurons, as well as reducing spike frequency adaptation (figure 5.2). Ex-
periments in other systems suggest that these effects are mediated in part by suppression
of slow potassium conductances [29, 30]. In order to incorporate these effects into our
pyramidal neuron model, we took the model discovered by the parameter search methods
and allowed several parameters to vary (see table 5.6). These parameters represented the
resting membrane potential of the neuron and the maximal conductances of four voltage-
and calcium-dependent potassium channels (fast delayed-rectifier channel, inactivating A-

current, slow non-inactivating M-current. and calcium-dependent potassium current). All
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Figure 5.6: Soma membrane potential traces in pyramidal neurons in response to

current steps. The current level is listed at the top of each graph. The lower trace

in each graph is experimental data derived from brain-slice experiments, while the

upper trace is simulated data from the pyramidal neuron model. The lower traces

have been offset in the y direction for comparison purposes, and offset in the x

direction to line up the time of current onset. Current injection starts at 100 msec

after the start of the simulation and lasts for 1 sec.

270



other parameters were kept at the same values as those in the unmodulated neuron.

The response of the neuromodulated neuron to current-clamp inputs is shown in figure
5.7. The parameter changes required to turn the unmodulated neuron into a neuromodu-
lated neuron are listed in Appendix B. As can be seen, the neuromodulated neuron matches
the spiking behavior of the real neuron quite closely, although not as closely as for the un-
modulated neuron. This is to be expected, since fewer parameters were allowed to vary in

the neuromodulated case.

5.4 Modeling inhibitory neurons

5.4.1 Data set

Various types of inhibitory neurons are found in piriform cortex (chapters I and [16, 39]).
Unfortunately, very little intracellular data is available for these cell types, with the ex-
ception of layer 3 inhibitory interneurons (putative aspiny multipolar neurons [15, 36, 38]).
The spiking behavior of these inhibitory interneurons is very simple, corresponding to the
“fast-spiking” class of neurons described for neocortical neurons [34]. These neurons are
highly excitable, have a low spiking threshold, and show little to no spike frequency adap-
tation. In addition, some experiments on the effects of norepinephrine have been performed
on this neuron type [14. 33]. Typical spiking behaviors of this neuron type are shown in

figure 5.8, and the spiking frequencies as a function of current (f/I curve) is shown in figure
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Figure 5.7: Soma membrane potential traces in pyramidal neurons in response to

current steps in the presence <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>