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Abstract

The equations of MHD in curved space-time are presented in divergence
form for the purpose of numerical implementation. This result follows from
a covariant divergence form of the single fluid theory of electro-magneto-
hydrodynamics in curved space-time with general constitutive relations.

Some one- and two-dimensional shock computations are given. A pseudo-
spectral method with weak smoothing is used in all of our computations. The
pseudo-spectral method is constructed by consideration of Riemann problems
in one dimension. The power of MHD in divergence form is brought about by
using uniform grid-spacing and explicit time-stepping. The problems consid-
ered are shock-tube problems in transverse MHD with analytical comparison
solution and a coplanar Riemann problem as discussed for nonrelativistic
MHD in Brio and Wu [37]. In a limit of nonrelativistic velocities comparison
is made of the results of the latter with those in [37]. In two dimensions
cylindrically symmetric problems are considered for test of isotropy, inde-
pendence of coordinate system and convergence (using comparison results
in polar coordinates). We conclude with a computation of a shock induced
vortex in jet flow with I' & 2.35, a relativistic jet computation with I" ~ 3.25
and, finally, computations on magnetic pressure dominated stagnation points
in a 2D shock problem in nontransverse MHD.

This work is proposed for numerical study of astrophysical flows, and in
particular as a “vehicle” towards the origin of jets.
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Chapter 1

Introduction

Today’s radio astronomy has provided us with detailed images of jet flow near
active galactic nuclei (AGN). These images resolve jets on the kiloparsec scale
and less using aperture synthesis, e.g. Westerbork and Merlin, and very long
baseline interferometry (VLBI) techniques. The radio emission from these
flows is portrayed with remarkable detail. Jets appear to provide energy
transport from AGN to remote lobes and “hot spots” (see, e.g. [47]). The
observed synchrotron radiation is believed to come mainly from particles
accelerated in shocks in the jets. Furthermore, jets are subject to nonlinear
instabilities which tend to form shocks and eddies which are suggested by
their radio images.

AGN with dual opposing jets constitute the classical double radio sources.
Fanaroff and Riley classified these sources according to their intensity in
Class I and Class II sources, the second class containing the stronger sources
(> 10%W/Hz at 178 MHz) [14]. The source 3C273 forms an apparent ex-
ception with a single jet-lobe structure emanating from a bright quasar. Jets

propagate as a beam of high-energy particles through the interstellar or in-
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tergalactic medium over large distances (kiloparsecs). In FR II sources the
jets terminate largely by thermalization in the radio lobe, while jets in FR I
sources also appear to lose much of their energy in the propagation process.
In FR II sources, the jet is believed to terminate either through a strong shock
or dissipative magnetic reconnection (see, e.g., [39] and references therein).
The energy thus extracted from the nucleus may well exceed the luminosity
of the nucleus by one order of magnitude. Moreover, the energy carried away
by the jet may exceed the external energy obtained through accretion [21].
It follows that the energy transported away by jets is intrinsic energy of the
nucleus in some cases. This energy extraction problem and the collimation of
jets have become pressing issues in Astrophysics.

Numerical simulations have become a viable tool in understanding these
unsteady, nonlinear flows. Current large scale simulations are being per-
formed in the approximation of nonviscous and nonrelativistic fluids. The
presence of magnetic fields is accounted for by taking the limit of magneto-
hydrodynamics (MHD). These simulations have been highly successful in the
study of propagation of jets [39]. The origin is one of the most speculative
aspects of jets, as it lies below the resolution of current observations. It is
also of considerable interest, because generation of jets may actually be a
signature of general relativistic effects as can expected near very compact
objects such as black holes [21]. Most jets are believed to be relativistic to
ultra-relativistic near the origin on the parsec scale and less. This has made
quantitative simulations so far prohibitively difficult, as it requires numeri-

cal implementation of the equations of general relativistic MHD. Successful



CHAPTER 1. INTRODUCTION 3

numerical implementation of the equations of general relativistic MHD may
well be regarded as a “vehicle” towards the origin of jets.
The preceding discussion forms the motivation for the formulation of the

problem in this thesis as follows.

SEEK: A computational method for simulation of MHD flow in the pres-
ence of shocks and in the presence of a general background metric. The
method is to be consistent in the sense of extending nonrelativistic simula-

tions and preserving divergence free magnetic fields.

This thesis describes a formulation of the equations of fully relativistic
MHD which is amenable to numerical implementation. The theory of MHD
describes a hyperbolic system of equations. From classical computational
fluid dynamics we may learn that a divergence formulation constitutes a good
starting point for numerical implementation. Taking this strategy, we are led
to seek a divergence form of relativistic MHD. We begin by introducing a
formulation of electrodynamics of moving matter with general constitutive
equations on hyperbolic Riemannian manifolds in divergence form. This work
is based on the formulation of Lichnerowiz [6]. His formulaton of the initial
value problem for electrodynamics of moving matter in curved space-time
is a mixed partial differential-algebraic system of equations. The algebraic
equations form the well-known constraints on the electric and magnetic field.
These constraints impose the condition that in the rest frame of the fluid the
electromagnetic fields are purely spatial and contain no time component. We

will show

Theorem 1.0.1 Mazwell’s equations in general media can be reformulated
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in covariant form as a system of divergence equations without constraints.

This is the main result of Chapter 2. We use this theorem to formulate
MHD in divergence form. This formulation of Maxwell’s equations allows
for further analytical analysis of hyperbolicity for single fluid theories in
some generality. A covariant expression for the characteristic determinant,
whose roots are the characteristic eigenvalues, is derived. This expression is
of some interest in the analysis of discretized versions of these equations, as
they arise in numerical implementations. The special case of locally adiabatic
ideal magneto-hydrodynamics is of main interest in numerical applications.
A first numerical study of this divergence formulation of Maxwell’s equations
is performed in the problem of ultra-relativistic wave-breaking. An analytical
comparison solution for simple waves of one-dimensional transverse magneto-
hydrodynamics is derived for the purpose of an exact error analysis. The
results are presented with I' =~ 8. Using leapfrog time-stepping on a uniform
grid the results are obtained with second order accuracy.

MHD flows of astrophysical interest are especially those in which shocks
occur. Computation of the entropy change in shocks in a shock capturing

scheme requires a correct formulation of the energy equation. We will show

Theorem 1.0.2 The equations of locally adiabatic ideal magneto- hydrody-
namics including the fluz-freezing constraint (MHD) can be stated in diver-
gence form with the property that the standard jump conditions across sur-
faces of discontinuity for this system are the physical jump conditions of
conservation of energy-momentum, baryon number and those of Mazwell’s

equations.
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Together with the description of a pseudo- spectral method for its numerical
implementation, this is the main result of Chapter 3. We emphasize that
in the limit of zero magnetic field, this theorem yields a divergence formu-
lation of relativistic hydrodynamics which may be competitive with existing
formulations of relativistic hydrodynamics.

The evolution of MHD flow in the presence of shocks is considered first
in one-dimensional coplanar shock tube problems in flat space-time. The
computations are performed using a pseudo-spectral method. This pseudo-
spectral method is a weak smoothing method in that its smoothing operator
is effectively a small perturbation of the identity (its transfer function is real
and bounded below by 0.80). The method is studied in transverse MHD by
an exact error analysis. In transverse MHD we compare numerical to analyt-
ical results in a restricted class of shock-tube problems. The implementation
is then applied in various ways. The relativistic generalization of Brio and
Wu'’s coplanar Riemann problem of classical MHD is computed and in the
limit of nonrelativistic velocities the results are compared with those in [37].
This coplanar Riemann problem is studied also in the limit of a small and
vanishing longitudinal magnetic field. The results illustrate that strong trans-
verse flow may occur in the order of the strength of the transverse magnetic -
field, even when the longitudinal magnetic field becomes arbitrarily small
(the limit of small longitudinal magnetic field constitutes a singular limit of
coplanar MHD; see, e.g. [50] for a recent discussion in nonrelativistic MHD).
Furthermore, the stability of the shock in compound waves in the relativistic

version of Brio and Wu’s coplanar Riemann problem is studied. A perturbed
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coplanar Riemann problem is considered, and some tentative indications on
this shock being slow and no longer intermediate (as it is in the classical case)
are found. As this analysis takes us also to the limits of our implementation,
these conclusions are to be considered tentative and suggestive for further
study. Finally, some comments on numerical evaluation of the intermediate
shocks in classical MHD are made.

We continue to demonstrate MHD in divergence form in two spatial di-
mensions. An extension of the 1D numerical method mentioned above en-
ables us to compute 2D shock problems in relativistic MHD. Several problems
are considered. The purpose of these examples is two-fold: to test the 2D
implementation of the numerical scheme and to illustrate some aspects of jet
flow as these can be expected to arise in astrophysical applications. In cylin-
drically symmetric problems, tests of isotropy, independence of coordinate
system, and convergence are considered. We further present a calculation of
a shock induced vortex in flow with T' & 2.35, an ultra-relativistic jet simu-
lation in slab geometry with I" & 3.25 and calculations on magnetic pressure
dominated stagnation points in 2D shock problems in nontransverse MHD.
The latter problem further illustrates that the magnetic field is preserved
divergence free in higher dimensions.

We conclude this introduction with stating MHD in divergence form as

we propose this for numerical implementation:
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VT =0,

Va(uleh¥ 4 gobe)(U) = 0,
Va(ru®) =0,

Vo{(utu, + 1)é*} = 0.

Its meaning will become clear as the reader travels along his/her time-like

world-line through this thesis.



Chapter 2

MAXWELL’S EQUATIONS
IN DIVERGENCE FORM

(Appeared in Communications of Mathematical Pysics, 141:63-77, 1991, as
“Maxwell’s Equations in Divergence Form for General Media with Applica-

tions to MHD.”)

2.1 Introduction

Maxwell’s equations appear in a wide variety of problem settings in general
relativity. We will consider them as they appear in general relativistic for-
mulations of electro-magneto-fluid problems. They appear in their natural
form as an underdetermined system of divergence equations. Lichnerowicz [7]
showed that implementation of constitutive relations of a particular medium
yields a pair of scalar constraints. Thus, electromagnetic fields in general
media are determined completely by a mixed partial differential-algebraic
system of equations.

Numerical treatment of electro-magneto-fluid problems by standard meth-
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ods requires these problems to be formulated as a system consisting purely of
partial differential equations with no constraints. Of course, the constraints
as they appear in Lichnerowicz’s formulation are avoided when taking the
electromagnetic field variables as 3-vectors (cf. [16, 32]). The electromag-
netic fields in general media are then determined by a quasi-linear system of
differential equations in an explicit space-time split.

In this paper, we will show that the constraints from Lichnerowicz’s for-
mulation can become conserved quantities in a new system of partial differen-
tial equations in which the electrbma,ghetic field variables remain 4-vectors.
Thus, we will arrive at a system consisting purely of partial differential equa-

tions with no constraints. We will show

Theorem 1 Mazwell’s equations in general media can be reformulated in

covariant form as a system of divergence equations without constraints.

Theorem 1 enables us to formulate general electro-magneto-fluid problems as
hyperbolic systems in divergence form. The divergence form is well-known
to be a good starting point for numerical implementation. Advanced numer-
ical methods have been developed in classical fluid dynamics for hyperbolic
systems of this form. Theorem 1 thus allows general electro-magneto-fliid
problems to be approached numerically by existing numerical methods from
computational fluid dynamics (see, e.g., [48]). In divergence form, it now
also becomes possible to treat electro-magneto-fluid problems numerically in
the weak formulation. It is well-known that weak formulations of systems in
divergence form uniquely determine the jump conditions across shocks (cf.

[24]). The shock structure of Maxwell’s solutions in the new formulation will
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be discussed in detail.

To illustrate this theorem from an analytical perspective, we apply it to
the classical MHD problem and show that MHD can be reformulated as a
system of divergence equations without constraints. In this form, the MHD
problem can now be treated numerically by any of the standard numerical
methods from classical fluid dynamics.

The Theorem also allows for a general formulation of the problem of
characteristics for a large class of electro-magneto-fluid problems. The asso-
ciated questions of hyperbolicity and wave structure are central in relativistic
magneto-fluid dynamics [57, 58, 6, 7, 8] {2, 1, 31]. Our Theorem permits us to
formulate this problem of characteristics in terms of vector fields and scalars.
We derive a general expression for the characteristic form of the associated
system of partial differential equations.

To illustrate this approach, we show how the principle of covariance im-
poses the general structure on the infinitesimally small wave equations in
MHD.

In Section 2, we prove the Theorem, and in Section 3 we discuss the shock
structure of the new formulation. In Section 4, we reformulate MHD as a
system in divergence form. We present our general theory of characteristics in
Section 5. Our derivation of characteristics for MHD is discussed in Section
6, and our numerical study of ultra-relativistic wave breaking is presented in

Section 7.
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2.2 Maxwell’s equations in divergence form

In this section we prove our Theorem, showing that Maxwell’s equations
in general media can be written in divergence form without constraints.
Maxwell’s equations can be stated in terms of a pair of divergences of 2-
forms H, the electric field-magnetic induction tensor, and G, the electric

induction-magnetic field tensor, [7] as

Va*Hab =0
. 2.1
VoG = —ih, (2.1)

where j is the electric current 1-form. Here, * denotes the Hodge star op-

erator defining the dual *a of a p-form & on an n-dimensional Riemannian

manifold as

*all...tn_p —_— ‘a 6]1...]pz1...1n_.p)

p!

where € is the Levi -Civita tensor. Throughout this paper we use the con-
vention that roman indices run from 0 to 3. The constitutive relations for a
medium yield two scalar constraints. Before proceeding to prove the Theo-
rem, we show how these constraints arise.

In a medium with velocity four-vector u, we have }
(€a,bs) := (u’H,y, —ub*Hab), (2.2)
(day bo) = (ubGab, —u’*G ) (2.3)

for the electric field, e, magnetic induction, b, electric induction, d, and

magnetic field, h, respectively. We remark that as a consequence of the

1Egs. (2.2)-(2.3) and (2.6)-(2.7) contain sign corrections to those in Comm. Math.
Phys., 141, 63-77, 1991.
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antisymmetry of H and G, we have the algebraic identities

ubey, = ubhy = 0, (2.4)

'u,bdb = ubbb = 0. (2.5)
The 2-forms H and G can now be expressed as [7, 9]

H=uAe+x(uAb), (2.6)
G=uAd+*(uAh) (2.7

Here, the velocity four-vector u actually enters as its dual one-form, but we
will not make this explicit.

Thus, Maxwell’s equations are a set of evolution equations for the family
of tensor fields U = (e,d, h,b,u,g,q) with given g, where g is the metric.
The scalar variable g (which corresponds to the electric charge density) arises

as an extra degree of freedom so that the following familiar relationship holds:
0 = d*xG = d«j. (2.8)

Here, d denotes the exterior derivative. We remark that there can be no
confusion between the d for the exterior derivative and that for the electric
induction, because the latter always explicitly appears as a tensor.

In this form, Maxwell’s equations can be closed by local constitutive re-

lations of the form

d= (ev h, uang),
b= é(e7 h,u,g, Q), (29)
J=3j(e,h,u,g,9)
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with 87(U)/dq # 0 and such that the identities

utd,(U) = u®b,(U) = 0 (2.10)
hold as algebraic implications of (4). For example, in the familiar case of

linear, isotropic media this reduces to
d(U) = ce, b(U) = ph, (2.11)

where ¢ is the electric permittivity and p is the magnetic permeability. Fur-

thermore, using the fact that w is nowhere vanishing, it is consistent to take
3(U) = qu+ ge (2.12)

with o as the electric conductivity. In this case, ¢ is precisely the electric
charge density.

As a result, Maxwell’s equations are stated as a set of evolution equations
for V = (e, h,q) (and u) in the family variables U = (V,u,g) as a mixed
partial differential-algebraic system of equations as [7]

VexHo(U) = 0,
VeGa(U) = —p(U),

a(U) == uh, =0,
c2(U) := u®e, = 0.

(2.13)

This comprises a set of 10 equations for the 9 variables V. In the degenerate
case of MHD when the medium is linear, isotropic with o infinite, this reduces

to

{ Viuaby =0, (2.14)

u®b, = 0,
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in view of e = d = 0. This comprises a set of five equations for the four
unknowns b.

The sets of equations above evidently consist of systems of the type

K: { Vias = Jb, (2.15)

c=0,

where w is a 2-form, j is a 1-form, and ¢ = 0 forms a scalar constraint. Now
consider a Cauchy-problem for K on a smooth space-like hypersurface ¥ in
a hyperbolic Riemannian space (M, g) with given metric g. Cauchy-data
for K must satisfy a compatibility condition. This can be made precise as
follows. Let v be a unit vector field normal to ¥. Decomposing V on the

space-like ¥ orthogonally as
Vo= ~va(v°V.) + (Vzg)a,
where Vg is interior to X, we can rewrite K on X as
—v*(V°V )was + (V) wWab = Jb-
Next, we observe that
v (V°V )wa = 0,

because w is antisymmetric. Therefore, the Cauchy-data on ¥ must satisfy

the two compatibility conditions

{ Vb{(Vz)af-zaf_-—O'Vbjb} =0, (2.16)

We have, in the context of classical C?(M) solutions,



CHAPTER 2. MAXWELL’S EQUATIONS IN DIVERGENCE FORM 15

Lemma 2.2.1 A Cauchy- problem for K on ¥ can be reformulated as a
Cauchy-problem for
V(e + gavc) = Jy
7. a a ’
K': { Vej. =0 (2.17)
on ¥ with the same Cauchy-data in the sense that if a solution exists to one
then it exists to the other and the solutions agree in the future domain of

dependence of .

Proof: Clearly, we need only show that a classical solution to the new for-
mulation with Cauchy-data compatible with K yields a classical solution to
the original K-formulation. We will do so by showing that c satisfies the

canonical wave equation with vanishing Cauchy-data:

Oc=0 in D*(%),
c=0 on X%,
v*Vee=0 on X.

Here, O = ¢%V,V, is the Laplace-Beltrami wave operator [10], D*(X) de-
notes the future domain of dependence of ¥ (cf. [38, 10]), and ¥ is a vector
field normal to X. This can be derived in two steps.

Step (a): Recall that for p-forms a on Riemannian manifolds the following

identity holds [15]
(p — DI(=1)y"5dva = V“aailm,-p_ldwl A...A dzp_l.
Consequently, we have

VWVoWe = ¥ 1d? * w = 0.
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Therefore, V5, = 0 implies
0= V"{V“(wab + gabc) - jb} = g“bVaVbc = Oe.

Step(b): Now consider a classical solution to the new formulation with
Cauchy-data on ¥ which satisfy the compatibility conditions for K. Then

using
Va = _Va(chc) + (VE)a
as before, we have

0 = v{V*(wab + gabc) — Jo}
= —vaa(vcvc)wab + Vb{(Vz)“wab — bt + Ve

= I/bvbc,

because w is antisymmetric.
Together, Step (a) and Step (b) show that ¢ satisfies the wave equation
with vanishing Cauchy-data. This forces ¢ = 0 in D*(X) (cf. [38, 10]), and

the proof is complete. O

This allows us to obtain Maxwell’s equations in precisely the number of

variables in V, because the Lemma directly yields:

Theorem 2.2.1 The equations of Mazwell can be reformulated as a system

of divergence equations as

Va("‘-[{ctb + gabcl)(U) :: Oa
{ V(Gab + gasc2)(U) = —34(U), (2.18)
Ve3a(U) =0

in the sense as described in the Lemma.
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The constraints in Maxwell’s equations have thus been given a conserva-
tive implementation. We emphasize that the new formulation imposes no
compatibility conditions on the Cauchy-data on ¥.. With arbitrary Cauchy-
data we may construct solutions to the new formulation in which ¢ is no
longer vanishing. It is only when the compatibility conditions for K are
satisfied that, as we have shown above, ¢ will remain zero, and the solution
will be a Maxwell’s solution. In the case of a charged fluid a solution with
c2(U) = u®e, # 0 leads to forces along world lines. For this reason, solutions
with ¢, ¢; # 0 will be regarded as nonphysical. |

In this sense the new formulation features a larger class of solutions than
the original formulation of Maxwell’s equations. Therefore, a detailed discus-

sion of Maxwell’s solutions with shocks in the new formulation is required.

2.3 Shock structure

We will discuss the shock structure of the new formulation of Maxwell’s
equations in terms of K’. Consider a solution to K’ which possesses a smooth,
time-like shock surface S. Let v denote a vector field normal to S. Then the

following jump conditions must hold

0 = v*[wap + gabc| = v*{wa] + w[c],
(oo (219
Here, [f] = (f)* — (f)~ denotes the jump across S. Consequently,
0 = vu,]c], (2.20)

by antisymmetry of w, and hence of [w]. Since S is not null, it follows that

[¢] = 0. (2.21)
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Thus, we obtain

Lemma 2.3.1 The jump conditions for K across a smooth shock surface S,

(o e

are preserved in the new formulation K'.

Now consider an open neighborhood 2 of S. Let @~ and Q* denote the
subregions of (2 lying at either side of S. Let I=(.S) denote the chronological
past of S (cf. [38]). We have

Lemma 2.3.2 A solution to K' in Q) which satisfies K in Q™ is a solution

to K in QN I(S).

Proof: We consider a solution to K’ which is C? in each of Q% and Q~, and

which is C! in each of Ot |J.S and 2~ U S. Notice that this forces
c=0in Q.

We will show that ¢ satisfies the canonical wave equation with vanishing

Cauchy-data in Q*:

Oc=0in Q*F,
()t =0on S,
v*(Vee)t =0on S.
Of course, we have already demonstrated in the proof of Lemma 2.3.1 that ¢
satisfies the wave equation in Q*. It remains to derive the Cauchy-data. We
will do so in two steps.

Step (a): From the discussion preceding Lemma 2.3.1, we have

0=[d=(g)" - (o) = (o7,
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since ¢ =0 in .
Step (b): Decompose V on S as
Vo =v(vV:) + (Vs)a.

By Lemma 2.3.1 and smoothness of S, we have

0 = (Vs)*v’[was] = v*(V5)*[was] + [war] (V5)*0*.

a=1

2.3.1, v*[wg] = 0 so that

Let {z*}3_, denote a coordinate system for ¥, and e(,) = 8/8z*. By Lemma

[was](V5)*0® = [wap] Vo0
The symmetry of the extrinsic curvature tensor, K, [15] in
—Var’ = K(e(), eV
further implies
[wap] VoV* = 0.
We, therefore, have
2 (V5)*[was) = 0.
This and the second jump condition from Lemma 2.3.1 together imply

0 = v¥(Vs)was) — v*[3]
= H{(Vs)* (wan)t = (o)} — v*{(Vs)*(was)™ — (o)}
= I/b{(vs)a(wab)+ - (jb)+}’
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since the solution to K’ is assumed to be a smooth solution to K in Q= {J S.

Therefore, the solution to K’ satisfies

0 = Vb{va(wab + gabc) - jb}+
= {(Vs)"(was)t — (o) T} + (Vi) *
= I/b(vbc)+,

using the assumption that the solution to K’ is C' in Q*tJS. We remark
that a proof for this result in a weak formulation can also be given.

Together, Step (a) and Step (b) show that ¢ satisfies the canonical wave
equation in Q* with vanishing Cauchy-data. This forces ¢ = 0in QN I7(S)
by Holmgren’s Uniqueness Theorem (cf. [44]). O

We have therefore demonstrated

Proposition 2.3.1 Mazwell’s solutions are preserved across smooth shock
surfaces in the divergence formulation of Theorem 2.1 in the sense as de-

scribed in Lemma 2.5.2.

2.4 MHD in divergence form

In this section, ideal MHD is formulated as a system of divergence equations
with no constraints. Consider a perfectly conducting fluid with unit velocity
four-vector # in a background with metric g. The fluid is described by a

stress-energy tensor [12]

T = rfu ® u + Pg, (2.23)
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where r is the proper restmass density, f is the specific enthalpy and P is the
fluid pressure. Physically, f appears as f = f(r,S) with entropy S. However,

one usually takes r = r(f,S) in view of
dP = rdf —rTdS (2.24)

as the implicit definition of the temperature T'. The electromagnetic field is

described by
T°M = p*(u@u+g/2)-b®b, - (2.29)
where b is the magnetic induction. Write
T =T +T"M (2.26)

for the total stress energy tensor. The standard governing equations for
MHD comprise a mixed partial differential-algebraic system of equations of

the form [57, 7, 8, 36]

( VT =0,
Veu by = 0,
J Ve(ru,) = 0,
u*V,S =0,
ub, =0,
| vy, = —1.
It is well known that u®u, = —1 is conserved along streamlines, so that MHD

is a problem with essentially one constraint: u®b, = 0. Anile and Pennisi [36]
reformulated this standard form of MHD as a quasi-linear system of partial
differential equations. They obtained their result by a detailed study of the
equations. However, their final system is not in divergence form.

Our Theorem allows us to obtain:
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Corollary 2.4.1 The equations of ideal MHD can be reformulated as a sys-

tem of divergence equations without constraints as

Vel =0,

Va(u[abb] + gabucbc) =0,
Ve(ru,) =0,

Ve(rSu,) =0

(2.27)

in the sense as described in the Lemma.

In this form, MHD may now be treated numerically by any of the standard
numerical methods for hyperbolic systems in divergence form. To illustrate
one of its analytical aspects, we will show that this formulation will naturally
yield the well-known characteristics for MHD. To this end, we first put the

problem of characteristics in a more general setting.

2.5 A covariant formulation of characteris-
tics

A large class of electro-magneto-fluid problems in general relativity can be
formulated in terms of a family of tensor fields U = (a',---,a?,ut,---,u%,g)
which consists entirely of scalars a' € T9(M), vector fields u/ € T§(M)
and a hyperbolic metric g € 75(M). Here, 77{(M) are the tensor field