MHD IN DIVERGENCE FORM: A
COMPUTATIONAL METHOD FOR
ASTROPHYSICAL FLOW

Thesis by
Maurice H.P.M. van Putten

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1992
(Defended May 18, 1992)



©1992
Maurice H.P.M. van Putten
All rights reserved

ii



i1

To my parents



v
Acknowledgement

It is a great pleasure to thank Professor E. Sterl Phinney for the opportunity
to work in Theoretical Astrophysics. The academic freedom granted under
his supervision allowed for the liberty to the pursuit of the ideas as outlined
in this thesis.

I am greatly indebted to Applied Mathematics for their computational
support and for their stimulating environment without which this work would
not have been possible. I also would like to express much gratitude to Profes-
sor S.-T Yau, Professor Kip S. Thorne and Professor A.T. de Hoop for their
interest and encouragement in my work. I would also like to give special
mention to Professor Tim de Zeeuw, Dr. Tasso J. Kaper and Professor John
Hawley for very stimulating discussions in the early stages of this work, and
to Professor Eusebius Doedel for his support in the very last stage of this
work.

I am delighted to thank my parents for all of their continued support.
Their optimistic views have always been very encouraging which contributed
much to this result. I am very greatful to my friend Linda Ji for all of her
encouragement and insight during many stages of this work. I have been
fortunate to have met Petr Pich who encouraged me wisely to engaging in
numerous activities which made my studies much more pleasant and fruitful.
Their input has been truly generous and left a clear mark on this thesis.

This research was supported through grants from NSF, AST 84-51725,
and NASA, NAGW-2394.



Abstract

The equations of MHD in curved space-time are presented in divergence
form for the purpose of numerical implementation. This result follows from
a covariant divergence form of the single fluid theory of electro-magneto-
hydrodynamics in curved space-time with general constitutive relations.

Some one- and two-dimensional shock computations are given. A pseudo-
spectral method with weak smoothing is used in all of our computations. The
pseudo-spectral method is constructed by consideration of Riemann problems
in one dimension. The power of MHD in divergence form is brought about by
using uniform grid-spacing and explicit time-stepping. The problems consid-
ered are shock-tube problems in transverse MHD with analytical comparison
solution and a coplanar Riemann problem as discussed for nonrelativistic
MHD in Brio and Wu [37]. In a limit of nonrelativistic velocities comparison
is made of the results of the latter with those in [37]. In two dimensions
cylindrically symmetric problems are considered for test of isotropy, inde-
pendence of coordinate system and convergence (using comparison results
in polar coordinates). We conclude with a computation of a shock induced
vortex in jet flow with I' & 2.35, a relativistic jet computation with I" ~ 3.25
and, finally, computations on magnetic pressure dominated stagnation points
in a 2D shock problem in nontransverse MHD.

This work is proposed for numerical study of astrophysical flows, and in
particular as a “vehicle” towards the origin of jets.
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Chapter 1

Introduction

Today’s radio astronomy has provided us with detailed images of jet flow near
active galactic nuclei (AGN). These images resolve jets on the kiloparsec scale
and less using aperture synthesis, e.g. Westerbork and Merlin, and very long
baseline interferometry (VLBI) techniques. The radio emission from these
flows is portrayed with remarkable detail. Jets appear to provide energy
transport from AGN to remote lobes and “hot spots” (see, e.g. [47]). The
observed synchrotron radiation is believed to come mainly from particles
accelerated in shocks in the jets. Furthermore, jets are subject to nonlinear
instabilities which tend to form shocks and eddies which are suggested by
their radio images.

AGN with dual opposing jets constitute the classical double radio sources.
Fanaroff and Riley classified these sources according to their intensity in
Class I and Class II sources, the second class containing the stronger sources
(> 10%W/Hz at 178 MHz) [14]. The source 3C273 forms an apparent ex-
ception with a single jet-lobe structure emanating from a bright quasar. Jets

propagate as a beam of high-energy particles through the interstellar or in-
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tergalactic medium over large distances (kiloparsecs). In FR II sources the
jets terminate largely by thermalization in the radio lobe, while jets in FR I
sources also appear to lose much of their energy in the propagation process.
In FR II sources, the jet is believed to terminate either through a strong shock
or dissipative magnetic reconnection (see, e.g., [39] and references therein).
The energy thus extracted from the nucleus may well exceed the luminosity
of the nucleus by one order of magnitude. Moreover, the energy carried away
by the jet may exceed the external energy obtained through accretion [21].
It follows that the energy transported away by jets is intrinsic energy of the
nucleus in some cases. This energy extraction problem and the collimation of
jets have become pressing issues in Astrophysics.

Numerical simulations have become a viable tool in understanding these
unsteady, nonlinear flows. Current large scale simulations are being per-
formed in the approximation of nonviscous and nonrelativistic fluids. The
presence of magnetic fields is accounted for by taking the limit of magneto-
hydrodynamics (MHD). These simulations have been highly successful in the
study of propagation of jets [39]. The origin is one of the most speculative
aspects of jets, as it lies below the resolution of current observations. It is
also of considerable interest, because generation of jets may actually be a
signature of general relativistic effects as can expected near very compact
objects such as black holes [21]. Most jets are believed to be relativistic to
ultra-relativistic near the origin on the parsec scale and less. This has made
quantitative simulations so far prohibitively difficult, as it requires numeri-

cal implementation of the equations of general relativistic MHD. Successful
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numerical implementation of the equations of general relativistic MHD may
well be regarded as a “vehicle” towards the origin of jets.
The preceding discussion forms the motivation for the formulation of the

problem in this thesis as follows.

SEEK: A computational method for simulation of MHD flow in the pres-
ence of shocks and in the presence of a general background metric. The
method is to be consistent in the sense of extending nonrelativistic simula-

tions and preserving divergence free magnetic fields.

This thesis describes a formulation of the equations of fully relativistic
MHD which is amenable to numerical implementation. The theory of MHD
describes a hyperbolic system of equations. From classical computational
fluid dynamics we may learn that a divergence formulation constitutes a good
starting point for numerical implementation. Taking this strategy, we are led
to seek a divergence form of relativistic MHD. We begin by introducing a
formulation of electrodynamics of moving matter with general constitutive
equations on hyperbolic Riemannian manifolds in divergence form. This work
is based on the formulation of Lichnerowiz [6]. His formulaton of the initial
value problem for electrodynamics of moving matter in curved space-time
is a mixed partial differential-algebraic system of equations. The algebraic
equations form the well-known constraints on the electric and magnetic field.
These constraints impose the condition that in the rest frame of the fluid the
electromagnetic fields are purely spatial and contain no time component. We

will show

Theorem 1.0.1 Mazwell’s equations in general media can be reformulated
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in covariant form as a system of divergence equations without constraints.

This is the main result of Chapter 2. We use this theorem to formulate
MHD in divergence form. This formulation of Maxwell’s equations allows
for further analytical analysis of hyperbolicity for single fluid theories in
some generality. A covariant expression for the characteristic determinant,
whose roots are the characteristic eigenvalues, is derived. This expression is
of some interest in the analysis of discretized versions of these equations, as
they arise in numerical implementations. The special case of locally adiabatic
ideal magneto-hydrodynamics is of main interest in numerical applications.
A first numerical study of this divergence formulation of Maxwell’s equations
is performed in the problem of ultra-relativistic wave-breaking. An analytical
comparison solution for simple waves of one-dimensional transverse magneto-
hydrodynamics is derived for the purpose of an exact error analysis. The
results are presented with I' =~ 8. Using leapfrog time-stepping on a uniform
grid the results are obtained with second order accuracy.

MHD flows of astrophysical interest are especially those in which shocks
occur. Computation of the entropy change in shocks in a shock capturing

scheme requires a correct formulation of the energy equation. We will show

Theorem 1.0.2 The equations of locally adiabatic ideal magneto- hydrody-
namics including the fluz-freezing constraint (MHD) can be stated in diver-
gence form with the property that the standard jump conditions across sur-
faces of discontinuity for this system are the physical jump conditions of
conservation of energy-momentum, baryon number and those of Mazwell’s

equations.
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Together with the description of a pseudo- spectral method for its numerical
implementation, this is the main result of Chapter 3. We emphasize that
in the limit of zero magnetic field, this theorem yields a divergence formu-
lation of relativistic hydrodynamics which may be competitive with existing
formulations of relativistic hydrodynamics.

The evolution of MHD flow in the presence of shocks is considered first
in one-dimensional coplanar shock tube problems in flat space-time. The
computations are performed using a pseudo-spectral method. This pseudo-
spectral method is a weak smoothing method in that its smoothing operator
is effectively a small perturbation of the identity (its transfer function is real
and bounded below by 0.80). The method is studied in transverse MHD by
an exact error analysis. In transverse MHD we compare numerical to analyt-
ical results in a restricted class of shock-tube problems. The implementation
is then applied in various ways. The relativistic generalization of Brio and
Wu'’s coplanar Riemann problem of classical MHD is computed and in the
limit of nonrelativistic velocities the results are compared with those in [37].
This coplanar Riemann problem is studied also in the limit of a small and
vanishing longitudinal magnetic field. The results illustrate that strong trans-
verse flow may occur in the order of the strength of the transverse magnetic -
field, even when the longitudinal magnetic field becomes arbitrarily small
(the limit of small longitudinal magnetic field constitutes a singular limit of
coplanar MHD; see, e.g. [50] for a recent discussion in nonrelativistic MHD).
Furthermore, the stability of the shock in compound waves in the relativistic

version of Brio and Wu’s coplanar Riemann problem is studied. A perturbed
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coplanar Riemann problem is considered, and some tentative indications on
this shock being slow and no longer intermediate (as it is in the classical case)
are found. As this analysis takes us also to the limits of our implementation,
these conclusions are to be considered tentative and suggestive for further
study. Finally, some comments on numerical evaluation of the intermediate
shocks in classical MHD are made.

We continue to demonstrate MHD in divergence form in two spatial di-
mensions. An extension of the 1D numerical method mentioned above en-
ables us to compute 2D shock problems in relativistic MHD. Several problems
are considered. The purpose of these examples is two-fold: to test the 2D
implementation of the numerical scheme and to illustrate some aspects of jet
flow as these can be expected to arise in astrophysical applications. In cylin-
drically symmetric problems, tests of isotropy, independence of coordinate
system, and convergence are considered. We further present a calculation of
a shock induced vortex in flow with T' & 2.35, an ultra-relativistic jet simu-
lation in slab geometry with I" & 3.25 and calculations on magnetic pressure
dominated stagnation points in 2D shock problems in nontransverse MHD.
The latter problem further illustrates that the magnetic field is preserved
divergence free in higher dimensions.

We conclude this introduction with stating MHD in divergence form as

we propose this for numerical implementation:
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VT =0,

Va(uleh¥ 4 gobe)(U) = 0,
Va(ru®) =0,

Vo{(utu, + 1)é*} = 0.

Its meaning will become clear as the reader travels along his/her time-like

world-line through this thesis.



Chapter 2

MAXWELL’S EQUATIONS
IN DIVERGENCE FORM

(Appeared in Communications of Mathematical Pysics, 141:63-77, 1991, as
“Maxwell’s Equations in Divergence Form for General Media with Applica-

tions to MHD.”)

2.1 Introduction

Maxwell’s equations appear in a wide variety of problem settings in general
relativity. We will consider them as they appear in general relativistic for-
mulations of electro-magneto-fluid problems. They appear in their natural
form as an underdetermined system of divergence equations. Lichnerowicz [7]
showed that implementation of constitutive relations of a particular medium
yields a pair of scalar constraints. Thus, electromagnetic fields in general
media are determined completely by a mixed partial differential-algebraic
system of equations.

Numerical treatment of electro-magneto-fluid problems by standard meth-
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ods requires these problems to be formulated as a system consisting purely of
partial differential equations with no constraints. Of course, the constraints
as they appear in Lichnerowicz’s formulation are avoided when taking the
electromagnetic field variables as 3-vectors (cf. [16, 32]). The electromag-
netic fields in general media are then determined by a quasi-linear system of
differential equations in an explicit space-time split.

In this paper, we will show that the constraints from Lichnerowicz’s for-
mulation can become conserved quantities in a new system of partial differen-
tial equations in which the electrbma,ghetic field variables remain 4-vectors.
Thus, we will arrive at a system consisting purely of partial differential equa-

tions with no constraints. We will show

Theorem 1 Mazwell’s equations in general media can be reformulated in

covariant form as a system of divergence equations without constraints.

Theorem 1 enables us to formulate general electro-magneto-fluid problems as
hyperbolic systems in divergence form. The divergence form is well-known
to be a good starting point for numerical implementation. Advanced numer-
ical methods have been developed in classical fluid dynamics for hyperbolic
systems of this form. Theorem 1 thus allows general electro-magneto-fliid
problems to be approached numerically by existing numerical methods from
computational fluid dynamics (see, e.g., [48]). In divergence form, it now
also becomes possible to treat electro-magneto-fluid problems numerically in
the weak formulation. It is well-known that weak formulations of systems in
divergence form uniquely determine the jump conditions across shocks (cf.

[24]). The shock structure of Maxwell’s solutions in the new formulation will
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be discussed in detail.

To illustrate this theorem from an analytical perspective, we apply it to
the classical MHD problem and show that MHD can be reformulated as a
system of divergence equations without constraints. In this form, the MHD
problem can now be treated numerically by any of the standard numerical
methods from classical fluid dynamics.

The Theorem also allows for a general formulation of the problem of
characteristics for a large class of electro-magneto-fluid problems. The asso-
ciated questions of hyperbolicity and wave structure are central in relativistic
magneto-fluid dynamics [57, 58, 6, 7, 8] {2, 1, 31]. Our Theorem permits us to
formulate this problem of characteristics in terms of vector fields and scalars.
We derive a general expression for the characteristic form of the associated
system of partial differential equations.

To illustrate this approach, we show how the principle of covariance im-
poses the general structure on the infinitesimally small wave equations in
MHD.

In Section 2, we prove the Theorem, and in Section 3 we discuss the shock
structure of the new formulation. In Section 4, we reformulate MHD as a
system in divergence form. We present our general theory of characteristics in
Section 5. Our derivation of characteristics for MHD is discussed in Section
6, and our numerical study of ultra-relativistic wave breaking is presented in

Section 7.
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2.2 Maxwell’s equations in divergence form

In this section we prove our Theorem, showing that Maxwell’s equations
in general media can be written in divergence form without constraints.
Maxwell’s equations can be stated in terms of a pair of divergences of 2-
forms H, the electric field-magnetic induction tensor, and G, the electric

induction-magnetic field tensor, [7] as

Va*Hab =0
. 2.1
VoG = —ih, (2.1)

where j is the electric current 1-form. Here, * denotes the Hodge star op-

erator defining the dual *a of a p-form & on an n-dimensional Riemannian

manifold as

*all...tn_p —_— ‘a 6]1...]pz1...1n_.p)

p!

where € is the Levi -Civita tensor. Throughout this paper we use the con-
vention that roman indices run from 0 to 3. The constitutive relations for a
medium yield two scalar constraints. Before proceeding to prove the Theo-
rem, we show how these constraints arise.

In a medium with velocity four-vector u, we have }
(€a,bs) := (u’H,y, —ub*Hab), (2.2)
(day bo) = (ubGab, —u’*G ) (2.3)

for the electric field, e, magnetic induction, b, electric induction, d, and

magnetic field, h, respectively. We remark that as a consequence of the

1Egs. (2.2)-(2.3) and (2.6)-(2.7) contain sign corrections to those in Comm. Math.
Phys., 141, 63-77, 1991.
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antisymmetry of H and G, we have the algebraic identities

ubey, = ubhy = 0, (2.4)

'u,bdb = ubbb = 0. (2.5)
The 2-forms H and G can now be expressed as [7, 9]

H=uAe+x(uAb), (2.6)
G=uAd+*(uAh) (2.7

Here, the velocity four-vector u actually enters as its dual one-form, but we
will not make this explicit.

Thus, Maxwell’s equations are a set of evolution equations for the family
of tensor fields U = (e,d, h,b,u,g,q) with given g, where g is the metric.
The scalar variable g (which corresponds to the electric charge density) arises

as an extra degree of freedom so that the following familiar relationship holds:
0 = d*xG = d«j. (2.8)

Here, d denotes the exterior derivative. We remark that there can be no
confusion between the d for the exterior derivative and that for the electric
induction, because the latter always explicitly appears as a tensor.

In this form, Maxwell’s equations can be closed by local constitutive re-

lations of the form

d= (ev h, uang),
b= é(e7 h,u,g, Q), (29)
J=3j(e,h,u,g,9)
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with 87(U)/dq # 0 and such that the identities

utd,(U) = u®b,(U) = 0 (2.10)
hold as algebraic implications of (4). For example, in the familiar case of

linear, isotropic media this reduces to
d(U) = ce, b(U) = ph, (2.11)

where ¢ is the electric permittivity and p is the magnetic permeability. Fur-

thermore, using the fact that w is nowhere vanishing, it is consistent to take
3(U) = qu+ ge (2.12)

with o as the electric conductivity. In this case, ¢ is precisely the electric
charge density.

As a result, Maxwell’s equations are stated as a set of evolution equations
for V = (e, h,q) (and u) in the family variables U = (V,u,g) as a mixed
partial differential-algebraic system of equations as [7]

VexHo(U) = 0,
VeGa(U) = —p(U),

a(U) == uh, =0,
c2(U) := u®e, = 0.

(2.13)

This comprises a set of 10 equations for the 9 variables V. In the degenerate
case of MHD when the medium is linear, isotropic with o infinite, this reduces

to

{ Viuaby =0, (2.14)

u®b, = 0,
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in view of e = d = 0. This comprises a set of five equations for the four
unknowns b.

The sets of equations above evidently consist of systems of the type

K: { Vias = Jb, (2.15)

c=0,

where w is a 2-form, j is a 1-form, and ¢ = 0 forms a scalar constraint. Now
consider a Cauchy-problem for K on a smooth space-like hypersurface ¥ in
a hyperbolic Riemannian space (M, g) with given metric g. Cauchy-data
for K must satisfy a compatibility condition. This can be made precise as
follows. Let v be a unit vector field normal to ¥. Decomposing V on the

space-like ¥ orthogonally as
Vo= ~va(v°V.) + (Vzg)a,
where Vg is interior to X, we can rewrite K on X as
—v*(V°V )was + (V) wWab = Jb-
Next, we observe that
v (V°V )wa = 0,

because w is antisymmetric. Therefore, the Cauchy-data on ¥ must satisfy

the two compatibility conditions

{ Vb{(Vz)af-zaf_-—O'Vbjb} =0, (2.16)

We have, in the context of classical C?(M) solutions,



CHAPTER 2. MAXWELL’S EQUATIONS IN DIVERGENCE FORM 15

Lemma 2.2.1 A Cauchy- problem for K on ¥ can be reformulated as a
Cauchy-problem for
V(e + gavc) = Jy
7. a a ’
K': { Vej. =0 (2.17)
on ¥ with the same Cauchy-data in the sense that if a solution exists to one
then it exists to the other and the solutions agree in the future domain of

dependence of .

Proof: Clearly, we need only show that a classical solution to the new for-
mulation with Cauchy-data compatible with K yields a classical solution to
the original K-formulation. We will do so by showing that c satisfies the

canonical wave equation with vanishing Cauchy-data:

Oc=0 in D*(%),
c=0 on X%,
v*Vee=0 on X.

Here, O = ¢%V,V, is the Laplace-Beltrami wave operator [10], D*(X) de-
notes the future domain of dependence of ¥ (cf. [38, 10]), and ¥ is a vector
field normal to X. This can be derived in two steps.

Step (a): Recall that for p-forms a on Riemannian manifolds the following

identity holds [15]
(p — DI(=1)y"5dva = V“aailm,-p_ldwl A...A dzp_l.
Consequently, we have

VWVoWe = ¥ 1d? * w = 0.
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Therefore, V5, = 0 implies
0= V"{V“(wab + gabc) - jb} = g“bVaVbc = Oe.

Step(b): Now consider a classical solution to the new formulation with
Cauchy-data on ¥ which satisfy the compatibility conditions for K. Then

using
Va = _Va(chc) + (VE)a
as before, we have

0 = v{V*(wab + gabc) — Jo}
= —vaa(vcvc)wab + Vb{(Vz)“wab — bt + Ve

= I/bvbc,

because w is antisymmetric.
Together, Step (a) and Step (b) show that ¢ satisfies the wave equation
with vanishing Cauchy-data. This forces ¢ = 0 in D*(X) (cf. [38, 10]), and

the proof is complete. O

This allows us to obtain Maxwell’s equations in precisely the number of

variables in V, because the Lemma directly yields:

Theorem 2.2.1 The equations of Mazwell can be reformulated as a system

of divergence equations as

Va("‘-[{ctb + gabcl)(U) :: Oa
{ V(Gab + gasc2)(U) = —34(U), (2.18)
Ve3a(U) =0

in the sense as described in the Lemma.
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The constraints in Maxwell’s equations have thus been given a conserva-
tive implementation. We emphasize that the new formulation imposes no
compatibility conditions on the Cauchy-data on ¥.. With arbitrary Cauchy-
data we may construct solutions to the new formulation in which ¢ is no
longer vanishing. It is only when the compatibility conditions for K are
satisfied that, as we have shown above, ¢ will remain zero, and the solution
will be a Maxwell’s solution. In the case of a charged fluid a solution with
c2(U) = u®e, # 0 leads to forces along world lines. For this reason, solutions
with ¢, ¢; # 0 will be regarded as nonphysical. |

In this sense the new formulation features a larger class of solutions than
the original formulation of Maxwell’s equations. Therefore, a detailed discus-

sion of Maxwell’s solutions with shocks in the new formulation is required.

2.3 Shock structure

We will discuss the shock structure of the new formulation of Maxwell’s
equations in terms of K’. Consider a solution to K’ which possesses a smooth,
time-like shock surface S. Let v denote a vector field normal to S. Then the

following jump conditions must hold

0 = v*[wap + gabc| = v*{wa] + w[c],
(oo (219
Here, [f] = (f)* — (f)~ denotes the jump across S. Consequently,
0 = vu,]c], (2.20)

by antisymmetry of w, and hence of [w]. Since S is not null, it follows that

[¢] = 0. (2.21)
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Thus, we obtain

Lemma 2.3.1 The jump conditions for K across a smooth shock surface S,

(o e

are preserved in the new formulation K'.

Now consider an open neighborhood 2 of S. Let @~ and Q* denote the
subregions of (2 lying at either side of S. Let I=(.S) denote the chronological
past of S (cf. [38]). We have

Lemma 2.3.2 A solution to K' in Q) which satisfies K in Q™ is a solution

to K in QN I(S).

Proof: We consider a solution to K’ which is C? in each of Q% and Q~, and

which is C! in each of Ot |J.S and 2~ U S. Notice that this forces
c=0in Q.

We will show that ¢ satisfies the canonical wave equation with vanishing

Cauchy-data in Q*:

Oc=0in Q*F,
()t =0on S,
v*(Vee)t =0on S.
Of course, we have already demonstrated in the proof of Lemma 2.3.1 that ¢
satisfies the wave equation in Q*. It remains to derive the Cauchy-data. We
will do so in two steps.

Step (a): From the discussion preceding Lemma 2.3.1, we have

0=[d=(g)" - (o) = (o7,
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since ¢ =0 in .
Step (b): Decompose V on S as
Vo =v(vV:) + (Vs)a.

By Lemma 2.3.1 and smoothness of S, we have

0 = (Vs)*v’[was] = v*(V5)*[was] + [war] (V5)*0*.

a=1

2.3.1, v*[wg] = 0 so that

Let {z*}3_, denote a coordinate system for ¥, and e(,) = 8/8z*. By Lemma

[was](V5)*0® = [wap] Vo0
The symmetry of the extrinsic curvature tensor, K, [15] in
—Var’ = K(e(), eV
further implies
[wap] VoV* = 0.
We, therefore, have
2 (V5)*[was) = 0.
This and the second jump condition from Lemma 2.3.1 together imply

0 = v¥(Vs)was) — v*[3]
= H{(Vs)* (wan)t = (o)} — v*{(Vs)*(was)™ — (o)}
= I/b{(vs)a(wab)+ - (jb)+}’
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since the solution to K’ is assumed to be a smooth solution to K in Q= {J S.

Therefore, the solution to K’ satisfies

0 = Vb{va(wab + gabc) - jb}+
= {(Vs)"(was)t — (o) T} + (Vi) *
= I/b(vbc)+,

using the assumption that the solution to K’ is C' in Q*tJS. We remark
that a proof for this result in a weak formulation can also be given.

Together, Step (a) and Step (b) show that ¢ satisfies the canonical wave
equation in Q* with vanishing Cauchy-data. This forces ¢ = 0in QN I7(S)
by Holmgren’s Uniqueness Theorem (cf. [44]). O

We have therefore demonstrated

Proposition 2.3.1 Mazwell’s solutions are preserved across smooth shock
surfaces in the divergence formulation of Theorem 2.1 in the sense as de-

scribed in Lemma 2.5.2.

2.4 MHD in divergence form

In this section, ideal MHD is formulated as a system of divergence equations
with no constraints. Consider a perfectly conducting fluid with unit velocity
four-vector # in a background with metric g. The fluid is described by a

stress-energy tensor [12]

T = rfu ® u + Pg, (2.23)
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where r is the proper restmass density, f is the specific enthalpy and P is the
fluid pressure. Physically, f appears as f = f(r,S) with entropy S. However,

one usually takes r = r(f,S) in view of
dP = rdf —rTdS (2.24)

as the implicit definition of the temperature T'. The electromagnetic field is

described by
T°M = p*(u@u+g/2)-b®b, - (2.29)
where b is the magnetic induction. Write
T =T +T"M (2.26)

for the total stress energy tensor. The standard governing equations for
MHD comprise a mixed partial differential-algebraic system of equations of

the form [57, 7, 8, 36]

( VT =0,
Veu by = 0,
J Ve(ru,) = 0,
u*V,S =0,
ub, =0,
| vy, = —1.
It is well known that u®u, = —1 is conserved along streamlines, so that MHD

is a problem with essentially one constraint: u®b, = 0. Anile and Pennisi [36]
reformulated this standard form of MHD as a quasi-linear system of partial
differential equations. They obtained their result by a detailed study of the
equations. However, their final system is not in divergence form.

Our Theorem allows us to obtain:
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Corollary 2.4.1 The equations of ideal MHD can be reformulated as a sys-

tem of divergence equations without constraints as

Vel =0,

Va(u[abb] + gabucbc) =0,
Ve(ru,) =0,

Ve(rSu,) =0

(2.27)

in the sense as described in the Lemma.

In this form, MHD may now be treated numerically by any of the standard
numerical methods for hyperbolic systems in divergence form. To illustrate
one of its analytical aspects, we will show that this formulation will naturally
yield the well-known characteristics for MHD. To this end, we first put the

problem of characteristics in a more general setting.

2.5 A covariant formulation of characteris-
tics

A large class of electro-magneto-fluid problems in general relativity can be
formulated in terms of a family of tensor fields U = (a',---,a?,ut,---,u%,g)
which consists entirely of scalars a' € T9(M), vector fields u/ € T§(M)
and a hyperbolic metric g € 75(M). Here, 77{(M) are the tensor fields of
type (ri,s;) on a four-dimensional manifold M. (jur Theorem enables us to
formulate Maxwell’s equations as a system consisting only of partial differ-
ential equations with no constraints. For this reason, the class of problems
that we will discuss are those for which the evolution equations for a subset

V =(al, --,a”,ul,---,u?) (p < p,¢ < q)of U can be expressed in the
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A(U; VYV = f(U). (2.28)

Here, A(U; V) : Y(M) := (TJ(M))* x (T{M))? — Y(M) is a local, first
order quasi-linear differential operator and f(U) is local in V.

The problem of characteristics can be stated in terms of a Cauchy-problem
in an open neighborhood NV (X) of a 3-dimensional initial manifold ¥ with
prescribed Cauchy-data U° as

c { AU V)V = f(U) in N(Z),

U="0U0° on X. (2.29)

The initial hypersurface ¥ is now said to be characteris’éic whenever U° on
¥ and U’ = (u¥t,--- u¢, g) in N(X) do not suffice to obtain V away from
¥ into A (X). We will study this problem pointwise in M as a function of
the orientation of nonnull ¥ in (M,g). The case when ¥ is null is excluded
specifically. Null-characteristic hypersurfaces form an intricate problem that
we will not touch upon here. For this problem we refer to Muller zum Hagen
and Seifert [59] and references therein.

Nonnull characteristics can be defined as follows. We first decompose V
as V, = £1,(v°V,) 4+ (Vg), on X, depending on whether ¥ is time-like (+)

or space-like (-). We obtain C in “Cauchy-Kowalewski” form on ¥ as:
T+A(U%v)(v°V,)V + A(U% V)V = f(U). (2.30)

The characteristic hypersurfaces are then defined by nonnull » such that

A(U;v)(p) is not invertible as a map from the bundle Y (p) := (T2(p))*' x
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(T(p))? into itself (p € X). Let us use the standard covariant definition of
the determinant of A(U%;v)(p) ([42], p- 79), det A(U®% v)(p), to define

(det A(U%v))(p) = det AU v)(p) (p € M). (2.31)

Thus, there exists a natural, covariant definition for the determinant of
A(U%v) as a scalar field on ¥. The condition for ¥ to be characteristic

therefore becomes
det A(U%wv) =0. (2.32)

Such a scalar field possesses a very rigid dependence on its arguments.
We have the following general representation for the characteristic form of

(2.28)

Proposition 2.5.1 Let U be as above. If V = (a,...,a” , u',...,u?) (p' <

p,q' < q) then

det AU;0) = 3ty (U) bt . (w0 (), (2.33)

where p1 +...+pg +27 = p' +4¢' and the ay, ., 4(U) are local scalars in
U.

A formal proof of this fact is not difficult but somewhat lengthy. We will
merely remark that the basic mathematical ingredients are locality and the
theorems of Stone-Weierstrass and Riesz. Using these, the proposition follows

from invariance of the physics under diffeomorphisms ¢ : M — M. If ¢*
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denotes the pull forward map associated with such ¢, it suffices to consider

the invariances

(2) det A(U;v)(p) = det Ao ¢*(U;v)(p), ¢(p) = p,
(¢¢) det A(U;v)(p) = det Ao ¢*(U;v)(¢7(p)), Vdé(p)=id.

The first invariance is known as scalar invariance and isotropy, and the second
invariance is known as homogeneity.

We wish to emphasize the following. The set of zeros v, € Ty(p) for
which A(U% v)(p) is singular is called the normal cone at p € M [18]. This
normal cone contains the normals to the characteristic hypersurfaces. These
characteristic hypersurfaces carry the infinitesimally small amplitude waves.
As such, these zeros must be invariant by the principle of covariance. Thus,
if we somehow knew that the normal cone possesses a full set of N real
sheets of zeros we could say that this suffices to establish the covariant ex-
pression (2.33), up to a nonzero factor. However, in the general case or, more
importantly, in proving that the system possesses a full set of N real, space-
like sheets (algebraic hyperbolicity), we need to go through the full formal
arguments above.

A system of partial differential equations is regular in the sense of Cauchy-
Kowalewski if its characteristic form is not identically zero [15]. Systems
involving Maxwell’s equations (2.13) without incorporation of the constraints
are not regular in this sense. Systems impose uniqueness, and, therefore, may
be given a direct numerical implementation, only when regular in the sense of
Cauchy -Kowalewski. It is easy to see that the divergence formulation (2.18)

regularizes Maxwell’s equations (2.13). This is also exemplified in Section

2.6.
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The usefulness of such a general form lies in the possibility of a prior: par-
tial factorization by using elementary facts about the problem at hand. The
problem can be considered in terms of blocks A®)(U; V) each corresponding
to a specific subset of tensors from V. Considering these blocks individually,
we can consider the rank of each of them. Usually, there will be one or more
blocks with known degeneracies, i.e., simple scalar conditions which imply
a change in the rank of A®(U% v), and a vanishing of det A(U%wv). By
Proposition 5.1, we can then arrive at a partial factorization of det A(U?; v).
This will be illustrated in our treatment of ideal MHD. We will call this the
method of uncoupled factors. This can result in a dramatic reduction of the
characteristic determinant. This completes our covariant formulation of the

problem of characteristics for problems of type C.

2.6 Infinitesimally small amplitude waves in
MHD

The structure of the infinitesimally small amplitude waves will follow from
the equations of the characteristics. The characteristics for MHD in Corollary
4.1 as given by Proposition 5.1 are in V = (u, b, f,5) and U = (V,g). The

evolution of the metric g is described by Einstein’s equations
G = 8»T, (2.34)

where the Einstein tensor G depends on g (up to its second derivatives)
only, while T is a function of all the tensor fields but none of its derivatives.

Furthermore, in MHD only g and none of its derivatives appear. Thus, the
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problem of characteristics for Einstein’s equations is independent of that of
MHD. We will consider the problem of characteristics of MHD only. Alter-
natively, we could say that we consider MHD in the background of a given,
fixed metric.

By Proposition 5.1, we have in this case
det A(U;v) = Dn(U;v) = o (U)(u®va)* (6700 ) (v2va)™,  (2.35)

where v+ pr+2v, = N with N = 10. Let us apply the method of uncoupled
factors to partially factorize this polynomial in ». Write u®V,S in Cauchy-

Kowalewski form on a time-like hypersurface ¥ as
u*ve(V°Ve)S + u*(Vy)aS = 0. (2.36)

Thus, (0,0,0,u%v,) implements u°V.S in A(U;v). Clearly, its rank is zero
whenever u®y, = 0. Notice that det A(U;v) is even in b, and hence also in
u, by invariance under rotation about u (b is space-like, u is time-like and
u®b, = 0). Indeed, if det A(u;v) were odd in b, then in going from & to
-b by rotation about u det A(U;w) would always have a zero, forcing this
to be zero for all b. But then det A(U;v) is also even in b. From this we
have (u®v,)? as a factor. Another uncoupled factor is v*v, due to Maxwell’s

equations (see the proof of the Lemma). Thus, it must be that
det A(U;v) = (u®v,)*(v*va) Ds(U; v). (2.37)
By the evenness of Dg in « and b we have

De(U;v) = R((u®vs)?, (8°va)?, v®v,; U). (2.38)
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But then R is a homogeneous cubic (in its first three arguments), so that
R = PQ, (2.39)

where P is linear and ) is homogeneous quadratic. Clearly, each term in
det A(U;v) contains (u?v, ) (b%v,)? with i + j > 4, as follows by inspection

of Maxwell’s equations. We have, therefore,

P = p1(u‘11/a)2 + pz(b”l/a)2, (2.40)
Q = q(uv)* + @(u.)?(0%)? + g3(bv,)*
+qa(uv, )2 (v*v,) + q5(baua)2(vdva). (2.41)

A mere inspection of the equations now yields the full expressions for the co-
efficients p;. It is easy to see that the block AM2(U; v) in A(U;v) associated
with (u,b) is of the form

(rf?2 + 6%)utv, —bv,+w * x
buv -0y, urv,—u@V x *

AU v) = [ : (2.42)

where w is a linear combination of tensor products from u, b and ». Let
e # 0 such that eu, = €*b, = e®v, = 0. Then e*w,, = 0. Consideration of

(e, ne,0,0) as a nullvector of AM2(U;v) yields immediately
P(U;v) = (u®va)*(rf + b)) — (6°v,)%. (2.43)

The expression for () is now obtained by straightforward identification, for
example by using a symbolic manipulator. It is precisely here where Cauchy-
Kowalewski regularity is essential and, also, proved. We have used Macsyma

for this purpose and thus rederived the well-known result

Q(U;v) = (for/0f — r)(u®ve)* — (r + 80r[0fr™ ) (v*vs)
(u®)? + £ (v va) (8%va). (2.44)
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We should mention in this context that Macsyma is actually able to give the
full factorization at once, when the problem is stated in a specific frame of
reference with ¥ variable. This is quite suprising, considering the fact that
we are dealing here with a tenth order polynomial.

The characteristic condition (2.32) thus yields

Proposition 2.6.1 (Bruhat) MHD possesses two kinds of waves,

(i) Alfven waves : P=0,
(ii) hydrodynamical waves: @ =0.

It should be mentioned that Bruhat [57, 58] gave the general result with
variable metric which includes gravitational waves. This result was derived
from a detailed study of the differential equations. We wish to.emphasize
that the result is largely determined by the principle of covariance. This

completes our discussion of waves in ideal MHD.

2.7 On the numerical implementation

An electro-magneto-hydrodynamic (EMHD) problem in a given background
metric is completely described by Maxwell’s equations and the equations of

motion,
VaTab — fb-

Here, T'** is the stress-energy tensor and f° is the force density four-vector.
The divergence formulation of Maxwell’s equations given in Theorem 1 thus
enables us to formulate general EMHD problems as hyperbolic systems in

divergence form.
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A large class of numerical methods exists to treat problems in classical
fluid dynamics for such systems in divergence form (see, e.g., [48]). Highly
sophisticated schemes have been designed for the computation of solutions of
problems in 1D and higher dimensions with shocks (see, e.g., [46, 43, 4, 19]).
Our reformulation of EMHD problems to systems in standard form thus
allows us to exploit existing numerical methods.

We will give a preliminary demonstration of this advantage below. We
will discuss a 1D ultra-relativistic MHD problem until shocks form. We are
currently working on a 2D EMHD problem, on which we expect to report in

a subsequent paper.

2.7.1 An ultra-relativistic example

We have computed the wave breaking problem for isentropic, transverse MHD
in flat space-time. Consideration of simple waves allows for an exact error
analysis, since one can compare with an exact, analytical solution. It can eas-
ily be shown that the equations for simple waves may be cast in characteristic

form as
(u® £ a1 Bu*)V,u(d £ A\) =0,

where u® = (cosh A,sinh A,0), v* = du®/d\, & = r1fdr/df, % = (1 +
k*dr/df)/(1 + k*r/f), ¢(r) = [T 'fr~! and k = h/r, which is constant
throughout the fluid. Recall that a monatomic relativistic gas is described

by a polytropic equation of state,

P=Kr,
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with polytropic index v between 4/3 (ultra- relativistic limit) and 5/3 (New-
tonian limit). In the intermediate case of v = 3/2, we find a7 'f(r) =
tanh ¢/4 when k£ = 1 and K = 2/3.

Our numerical example concerns a fluid of this type with the Riemann
invariant J = X + ¢ constant throughout the fluid, and v = 3/2. The
characteristics along which the solution remains constant are then given by
dz/dt = A = tanh(5)\/4 — J/4). With initial data A(z) = Ao + Ay sin 27z,
the breaking time is: tg = inf(—dA/dz)~! (see [41] for a general discussion
on breaking times).

The divergence formulation of MHD can be implemented directly using
the leapfrog Crank-Nicholson method, until the shock forms. This scheme
has second order accuracy, provided that the solution remains smooth. Since
the problem has been reformulated in standard form, we expect that the more
advanced methods cited before will allow for the computation of solutions in
the presence of shocks.

We have computed wave breaking problems in the Newtonian limit, in
the relativistic case and in the ultra-relativistic case. We give here results
only on the traditionally most difficult case, the ultra-relativistic wave break-
ing. Figure 2.1 shows the density and velocity distributions at the moment
of breaking in a case when the Lorentz factor I' ~ 8. Here, I' = 1/(1 —v?)!/2,
where v is the maximum velocity. In Figure 2.1 the velocity of light is nor-
malized to unity. These results have been obtained without any stabilization
process. The numerical and analytical solutions agree to within less than the

width of the lines in the figure. The performance of our numerical implemen-
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tation is studied by the dependence of the results on the grid size At in time
and the grid size Az in space. The numerical solution is compared with the
analytical solution in the supremum norm.

Our numerical results show that

(a) the scalar field ¢; = uh, remains identically equal to zero (there is
not even a round-off error);

(b) the error in the conserved quantity h/r is in the order of machine
round-off error (< 107%);

(c) the maximum error between the numerical solution and the analyti-
cal solution decays quadratically with grid size, in agreement with the
second order accuracy of the numerical scheme. This is shown in Fig-
ure 2.2, where the evolution of the error is given for different numbers
of grid points, n. This result holds true as long as the wave remains
away from breaking. This error is also remarkably independent of
n = At/Az, n < 1, for velocities, v, satisfying I' < 10. Significantly
smaller timesteps are required for velocities with larger T'.

In computations of Newtonian and relativistic wave breaking, the numer-
ical results have been the same or better than as given in the observations
(a)-(c) above.

Figure 2.2 also shows that for the leapfrog Crank-Nicholson method the
error exhibits an exponential growth as a shock develops. The method of
Orszag and Tang [48, 13] restores linear error growth away from the moment
of breaking. However, this introduces initial errors and fails to reduce the

error. It should be mentioned that in these computations the error in the
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Figure 2.1: The velocity distribution, v, and density distribution, r, at the
moment of breaking ¢t = ¢p. In this example, Ao = A\; = 7/5, J = 4.5 and
tg = 0.0963.
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Figure 2.2: The evolution of the error in the example shown in Figure 2.1
for different discretizations. The error is the maximum of the relative error
in r and in each of the components u* and h®.
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Riemann invariant J = A + ¢ shows a linear growth in time, and, therefore,
remains orders of magnitude smaller than the total error given in Figure 2.2.
Advanced numerical schemes should be used for solutions with shocks, as

mentioned before.
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Chapter 3

MHD IN DIVERGENCE
FORM

(Submitted to The Journal of Computational Physics)

3.1 Introduction

Numerical simulation of hydrodynamics and magneto-hydrodynamics has be-
come increasingly important in the field of astrophysics. Interpretation of the
structure, origin and long time evolution of astrophysical flow is approached
today succesfully by large scale numerical simulations using nonrelativistic
codes [39]. Much of these numerical studies is on the morphology of jets,
which show intricate patterns of shocks. Radio-astronomy has provided us
with detailed images of these flows on the kiloparsec scale. Lind [29] em-
phasizes that these simulations are to be regarded as qualitative investiga-
tions. In particular, he expresses caution in the interpretation of numerical
simulations of jets on the parsec scale, as they are believed to be highly

relativistic. Extension of numerical simulations to relativistic hydrodynam-
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ics has received much attention by many authors (see, e.g.,[34, 35, 39, 30]).
Furthermore, magnetic fields are believed to be present in these flows. Mag-
netic fields are important in radiative phenomena (Phinney [21]) and in the
structure of astrophysical flow [21, 39]. Numerical simulation of relativistic
MHD has been considered most notably by Evans and Hawley [16], and most
recently by Dubal [40].
In [56] we presented a divergence formulation of locally adiabatic rel-
ativistic MHD for the purpose of numerical simulation. We showed that
MHD in divergence form allows for numerical simulation of the problem of
wave breaking in one dimension up to the moment of breaking. The purpose
of this paper is to demonstrate that MHD in divergence form also allows for
numerical simulation of more complicated MHD flow with shocks. To this
end we seek
(a) MHD in divergence form whose standard jump conditions across sur-
faces of discontinuity are the physical, enthalpy preserving jump con-
ditions across shocks;

(b) A numerical method for MHD in divergence form for the purpose of
shock computations;

(c) A one-dimensional shock-tube problem which features many of the

possible MHD shocks.

The first item will be obtained by a rewriting of the result from [56]. The
resulting system is equivalent to the former whenever the flow is continuously
differentiable.

Several illustrative examples will be computed. Using a pseudo-spectral
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method with explicit time-stepping on a uniform grid we further show the
effectiveness of the divergence formulation of MHD. Brio and Wu [37] com-
puted the coplanar Riemann problem in classical, nonrelativistic MHD. In
this paper, we will study the same problem for relativistic MHD. A pseudo-
spectral method is employed which is tested against an analytical solution in
a Riemann shock-tube problem in the singular limit of a purely transverse
magnetic field. In [37] Brio and Wu showed the existence of a compound
wave (a shock wave with attached to it a rarefaction wave of the same fam-
ily) in nonrelativistic MHD. These results have recently also been computed
by Stone et al. [51]. We will find that compound waves persist in relativistic
‘MHD as a natural continuation of Brio and Wu’s classical, nonrelativistic
result.

We remark that our method of taking constraints as conserved quantities
may have applications outside the field of MHD. The results in this paper can
be taken as demonstration of this method an sich in the particular context
of MHD.

In Section 2, MHD is formulated in divergence form which allows for the
computation of shocks. Our pseudo-spectral method is outlined in Section
3, together with a test on the Riemann shock-tube problem with transverse
magnetic field. The relativistic generalization of Brio and Wu’s coplanar

Riemann problem is presented in Section 4.
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3.2 Formulation of the problem

The equations of locally adiabatic ideal magneto-hydrodynamics including
the flux-freezing constraint (MHD) can be written in the completely covariant

form [56]

VT =0,
Vo (uleh® + g%uch,) = 0,
Va(ru®) =0,
Va(rSu®) = 0.

(3.1)

Here, T is the total stress-energy tensor. For a fluid with velocity four-
vector u®, uu, = —1, magnetic field h* (magnetic permeability p = 1) we

have
Tab — puaub + P*gab _ hahb, (32)

where p = rf + h?, P* = P + h?/2, r is the proper restmass density of the
fluid, f is the specific enthalpy, P is the pressure. The quantities r, P and f
are related to the entropy, S, and the temperature, T', by dP = rdf — rTdS.
Systems in divergence form uniquely induced jump conditions across surfaces
of discontinuity (following a weak formulation, see e.g., [24]). It is these jump
conditions that are approximated in simulations by shock-capturing schemes.
In the case of (3.1) these jump conditions yield strict adiabaticity, because of
the last equation. For this reason, we first rewrite this system so as to obtain
a system in divergence form for which these standard jump conditions are
the physically correct jump conditions for shocks.

In regions where the flow is smooth, we have
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Theorem 3.2.1 The equations of locally adiabatic MHD can be stated as

V,Tab =0,
\v4 (u[ahb] + gabuch ) =0
aA — a c )
V. F*A = V. (rus) = 0, (3.3)

Vea{(uuc +1)£7} =0,
where £* is any prescribed time-like vector field. This system is equivalent to
(3.1) in regions where the flow is continuously differentiable. The standard
Jjump conditions across surfaces of discontinuity for this system are those of

conservation of energy-momentum, baryon number and Mazwell’s equations.

Note that Maxwell’s equations imply the identity
wpV,T% = wp, Vo (rfuu® + Pg®). (3.4)

Consequently, the equation of continuity and the thermodynamic relation

dP = rdf — rT'dS yield
wVoT® = f(ru®)Vau?/2 + (u? + 1)(u*V,)P + Tul(ru®)V,S.  (3.5)

It follows that conservation of either one of the relations

u?4+1=0,
utV,S =0

(3.6)
implies the other. Thus, for smooth flow the two systems (3.1) and (3.3) are
equivalent. The jump conditions across time-like shock surfaces (to which
£* is not tangential) as they follow from the second system are evidently
those of conservation of energy-momentum and baryon number. The formu-
lation of Maxwell’s equations in (3.3) is the same as in (3.1), which yields

Maxwell’s jump conditions as shown in [56]. We will use this system for our

computations of shocks.
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We remark that £* = const. yields a quadratically nonlinear system in the
hydrodynamical limit to which Roe’s linearization (see [52]) can be applied

in a straightforward manner. When A% = 0, we obtain

Va(w®w® + sp) = 0,
{ Va{(s — Z5p)w*} =0, (3.7)

v

Va{(ww, +5%)¢*} =0,

with characteristic determinant (cf. Proposition 5.1 [56])
D = (é*va)(w*va)(a1(w*va)? — aa(v*va)), (3.8)

where a1 = 27 (yp—s) and a; = (23p + s)w'w. + (s — ;23 p)s®. Here, w =
Vrfut,s = \/rf,p = P/+/rf and v, is a 1-form. Thus, Roe’s linearization
yields a linear Riemann solver in terms of six null vectors which we have
found can readily be implemented. This solver is similar to but not the same
as Eulderink’s Roe solver [23, 54] which involves five eigenvectors for the
Riemann solver. However, a Roe solver for MHD is expected to be rather
complex and, by similar arguments, possible in analytic form only when v = 2
as in [37]. Therefore, we will not elaborate on this further here.

A pseudo-spectral method is used for all our computations. This method
is first applied in a Riemann shock-tube problem with zero longitudinal mag-
netic field for a fluid with ¥ = 3/2 in view of an analytical solution in this
case. We will also apply this method to Brio and Wu’s coplanar Riemann

problem in classical MHD.
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3.3 Description of the method

In astrophysical flow, one of the most prominent features of shocks is heat-
ing. Shock heating is responsible for emission in violent phenomena such as
supernovae [25, 33], accretion flow [45] and jets [39, 29]. In shocks relativistic
effects can be significant. Mathematically, relativistic effects appear in the
relativistic Rankine-Hugoniot relations for relativistic hydrodynamics (Taub
[20]) and relativistic MHD (Lichnerowicz [8]) as singular perturbations of
their nonrelativistic counterparts. This is exemplified by the absence of a
bound on the ratio on the proper restmass densities (restmass densities in
fluid restframe) across shocks, as opposed to the familiar bound z—f} (Bazer
and Ericson [27]) for polytropic fluids in the nonrelativistic case. This will
be illustrated below. In relation to the change of entropy across shocks this
indicates that relativistic effects can be dramatic in the emissivity by shocks
in astrophysical flows.

In this Section, we describe a pseudo-spectral method which enables us
to study shock computations in our formulation of MHD (3.3) with explicit
time-stepping on a uniform grid. In a specific space-time split, (z*) = (¢, z?),

(3.3) may be written as
O FA(t,2%) 4 0. F*4(t,2%) = 0. (3.9)

In all our computations £* = (8;)*. Our pseudo-spectral method is a smooth-

ing method with leapfrog time-stepping of the form

(FHAY=1 = S, {(F™A4Y™ 1} — 2Ats, (F=4)™. (3.10)
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Here, S, is a smoothing operator and 4, an associated spatial derivative
operator. Thus, the same smoothing, S,, is applied to each equation in

(3.3).

3.3.1 The operators S, and 4,

The smoothing operator S,, will apply to functions feVx on a fixed grid 0 =
Ty,...,2n41 = 1, N = 2™ with uniform grid spacing. Consider smoothing

of an element feVy defined by

~sm27rkh
f fk 2 kh )] (3']‘1)

where {f;} k_/z']'vﬁ +1 denotes the discrete Fourier transform. We thus obtain
a smoothed function f' = Lyx(f) in Vy. Notice that Ly /v is Lanczos
smoothing [48, 3]. Consider also differentiation with Richardson extrapola-
tion, 68, on Vi given by

dfintfian  1fua—fia

N(F)i =37 s (3.12)

The operators S, and &, will now be derived as follows. An element feVy

can be taken into Vo by an interpolation, ¢,,, of the form

Lw(f)2i—1 = fi,
tw(f)2i = ﬂ;ul_T){w(fiH + fi) — fiva — fir }-

Let w : Van — Vi, m(fen)i = fai-1, be the inverse of ¢, Then 7 Loy ptw

(3.13)

maps Vi into Viy. Smoothing S,, on Vy is now defined as

4 1
Sy = ”(ngN,g - §L2N,h)bw, (3.14)
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where h = 1/N. Commensurate with S,,, we take 6, : Vy — Vn as

6u(f) =76ty
— (1 + n)fi+l'2‘fi—1 - nf;’+2';fi-—2’

where n = %

Smoothing with S,, is a weak smoothing in the sense that the transfer
function S, of S,, in the spectral domain satisfies 0.80 < S, < 1. Because the
transfer function is relatively flat and does not vanish at the high frequency
ends k = £N/2, S, represents significantly weaker smoothing than that
obtained by Lanczos smoothing. It allows for comparetively smaller and,
therefore, more accurate time-stepping.

Finally, we remark that S, can be easily implemented numerically by

integration of 4, { F*4} using the discrete Fourier transform followed by w6%,.

3.3.2 A test problem

We will compute a 1D relativistic Riemann shock-tube problem with purely
transverse magnetic field in flat space-time. The problem setting will be
in the context of the coplanar Riemann problem for classical MHD by Brio
and Wu [37]. The fluid is assumed to be a monatomic gas with polytropic

equation of state,
P=Kr", (3.15)

relating the pressure, P, and the restmass density, r, with adiabatic constant
K and polytropic constant y. We have taken v = 3/2, in between its ultra-

relativistic limit, 4/3, and Newtonian limit, 5/3. Notice that this lies below
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the limit established by Taub: 4 < 5/3 [20]. The adiabatic constant, K,
is taken to be 2/3, uniformly throughout the fluid. We compute the time
evolution of fluid on the unit interval, 0 < z < 1, which is initially at rest
and possesses an initial jump discontinuity, [r] = 7Tright — Tiest, at T = %
Furthermore, the magnetic flux density, £ = h/r, where h is the magnetic
field strength, also suffers an initial jump at ¢ = % In the examples presented
below we have taken k = 1 for # < 1, and k = kg for z > % Numerically,
the initial conditions at = % are chosen to be the mean of the left- and
right-states. |
A detailed error analysis can be given using a comparison solution ob-
tained by the method of characteristics. Recall that a solution to a Riemann
shock-tube problem can be described in three parts: increasing with = we
find
(1) A simple wave moving into the uniform state at the left. When K =
2/3,7 = 3/2 and k = 1, and using u* = (cosh(}),sinh()),0,0) the
state of the fluid can be expressed analytically as [56]
At ¢(r) =J,

#(r) = 4sinh~(r?), (3.16)
A = tanh(5)\/4 — J/4),

where 0 < A < ), the value of the Riemann invariant J is given by
@(7iest), and A denotes the characteristic velocity;

(2) A uniform state connecting the region with the simple wave solution
and the contact discontinuity. Here, the fluid is described simply by

A =X, r=ryand h = kyry = ry with the continuity condition

/\2 + ¢(r2) = J;



CHAPTER 3. MHD IN DIVERGENCE FORM 46

(3) A uniform post-shock state in between the contact discontinuity and
the shock. Here, the state of the fluid is described by A = A, r = r3,
P = P; and h = kgrs with the jump condition [F24(U)]v,() = 0 at
the shock, where v*(u) = (sinh g, cosh g, 0).

For any initial jump [r] this nonlinear problem in ()g,rs, Ps,p) can be
solved by Newton’s method.

A test case is considered with zero initial velocity and longitudinal mag-
netic field A”, left state r, = 1, P, = 2/3,(h¥)r = 1 and right state rgp =
0.125, Pr = 0.1, (h¥)g = 0.0625. The initial hydrodynamical data are those
in Sod’s shock-tube problem [11] (except for Pr, = 2/3, which is 1 in Sod’s
data), following Roe [52] and Brio and Wu [37]. The solution is shown in
Fig. 3.1 for n = 256. The exact solution of this problem is given by the curve
with sharp corners in each of the solution panels. Here, the smoothing by S,,
was done with w = 12. The evolution of the error with time-step m is shown
for the velocity (curve A) and the proper restmass density (curve B) in the
postshock region. Averages over the mid one-third of the uniform postshock
region are compared with the exact solution. At m = 516 the average is over
grid points 159-164.

We have also studied the effect of smoothing on the quantities in the
postshock region. Various values of w, n = At/Az and leapfrog versus
upwind time-stepping have been considered. Generally, smoothing increases
with w and decreases with 7. Smoothing by w reaches its maximum at
w = 20 and minimum at w = 8. Table 3.1 shows results for various w in

the case n = 512 at 1032 time-steps with 5 = 0.10. Oscillations appear
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Quantity pseudo-spectral exact
w=8 w=10 w=12

0.2695 0.2692 0.2687 0.2693
0.4574 0.4562 0.4559 0.4566
0.1511 0.1513 0.1511 0.1513
0.3299 0.3288 0.3284 0.3292
2.3587 2.3534 2.3574 2.3554

SEVIRS T

Table 3.1: Comparison of numerical results by pseudo-spectral method for
various smoothing values of w with the exact solution for the Riemann prob-
lem shown in Fig.3.1 with discretization n = 512. The number of time-steps
is m = 1032 with time-stepping At/Az = 0.10.

with w = 8, a small overshoot remains at the shock when w = 10 and
no spurious phenomena are present when w = 12. Clearly, the results in
Table 1 are remarkably independent of w. Smaller time-step sizes n < 0.05
give additional smoothing, while 0.10 < 5 < 0.15 yields essentially spurious
free results and larger 7 yield overshoot at the shock. Interestingly, upwind
differencing versus leapfrog shows no appreciable change in the results when
w assumes intermediate values, 10 <w< 12, except for a slight increase in
smoothing at the contact discontinuity.

A strong shock computation is shown in Fig. 3.2. The initial data are
again with zero initial velocity and longitudinal magnetic field ~%, but now
with left state r, = 10, Py, = 2/3r%/? =~ 21.08, (h¥); = 10 and right state
rr = 1, Pp = 0.25, (h¥)r = 0.25. Stabilization has been obtained by w =
12. Notice that the jump in the restmass density across the shock, 5.125

(numerically; 5.140 exact), exceeds the classical bound ';—f} = 5. Thus, this
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Index Time-step

Figure 3.1: Numerical solution to shock-tube problem with purely transverse
magnetic field in the pseudo-spectral method with w = 12. The discretization
1s 256 points and 512 time-steps with At/Az = 0.10.

shock 1s genuinely relativistic.

We conclude that for modest shock strengths suitable choices of the pa-
rameters w and n are 10 < w < 12 and 0.10 < n < 0.15 with leapfrog
time-stepping. Strong shock computations can be performed taking w large,
w 2> 12. In all our computations, the approximation of the jump conditions

across shocks shows proper convergence.
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Figure 3.2: Numerical solution to shock-tube problem with relativistic shock
strength in the pseudo-spectral method with w = 12. The discretization is
2048 points and 4000 time-steps with At/Az = 0.10.
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3.4 A coplanar MHD Riemann problem

We have computed the coplanar Riemann problem for relativistic MHD by
application of the pseudo-spectral method to (3.3). In each computation,
initially the velocity u® and the transverse component h* are zero throughout
and h, = h{®¢, while r = 1/8, P = 0.1€?,h, = —e at the right side of the
discontinuity at # = 1 and r = 1,P = 1€, hy, = € at the left side of the
discontinuity. We will consider two limiting cases of this Riemann problem.
For € > 1 the resulting fluid flow has velocities approaching the speed of
light, while for ¢ < 1 the flow has low velocities, and the solutions should
approach those of the nonrelativistic equations. Qur choice of scaling keeps
f = P/h* = const. as € is varied. As a check of our pseudo-spectral method
(as opposed to the divergence formulation) we have also used it to solve the
classical, nonrelativistic equations solved by Brio and Wu (Egs. (16)-(22)
in [37]). Our low € and classical results are compared with those of [37] in
Table 3.2. For this reason, we have chosen v = 2 to facilitate comparison with
results from Brio and Wu. In the coplanar Riemann problem, the magnetic
field and the velocity are continuous across contact discontinuities whenever
the longitudinal magnetic field, h,, is nonzero. In contrast, A{®) = 0 does
allow these quantities to be discontinuous across contact discontinuities (as
in Fig. 3.1). Thus, h, = 0 with discontinuous magnetic field across a contact
discontinuity is a singular limit in MHD. We will illustrate this numerically
by consideration of A{® = 1/10 and A{®) = 0.

Figs. 3.3-3.4 show the result for € = 1, h{®) = 3/4 and A{® = 1/2, respec-
tively, and Fig. 3.5 shows the result for € = 0.05, A{®) = 3/4. Velocities
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Figure 3.3: The pseudo-spectral method on the coplanar Riemann problem
for relativistic MHD with € = 1 and ~{® = 3/4. A small amplitude rarefac-
tion wave is attached to the slow shock traveling to the left, constituting a
slow compound wave. The number of time-steps is 1000 with 1024 points on
the unit interval with At/Az = 0.15. Here, smoothing is with w = 10.
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Figure 3.4: The pseudo-spectral method on the coplanar Riemann problem
for relativistic MHD with € = 1 and A{®) = 1/2. The rarefaction wave in the
compound wave is now more pronounced than in Fig. 3.3. The numerical

parameters are the same as in Fig. 3.3.
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Figure 3.5: The pseudo-spectral method on the coplanar Riemann problem
for relativistic MHD in the low velocity limit as with € = 0.05, keeping
h{) = 3/4. The number of time-steps is 2400 with 1024 points on the unit
interval and At/Az = 0.5. Smoothing is obtained with w = 10.
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and the transverse magnetic field are depicted twice in Fig. 3.3-3.4, once as
physical quantities U = u®/ut,V = w¥/ul, HY = u’h¥Y — u¥h® in the labo-
ratory frame and once as tensor components u”,u?¥ and hY. The curves of
the physical quantities U, V, HY and the tensor components u®, u¥, h¥, respec-
tively, coincide to within 0.5% (in the order of the thickness of the lines of
the figure) when € = 0.05. This is the nonrelativistic result of Brio and Wu
and a comparison follows below. In each case, the solution consists of a fast
rarefaction wave moving to the left, a slow compound wave, a contact discon-
tinuity, and a slow shock and fast rarefaction wave moving to the right (see
[37] for the discussion in nonrelativistic MHD). In Fig. 3.3 the compound
wave appears most clearly in the restmass density and the tensor component
u®. Figs. 3.3-3.4 show a pronounced difference between the physical and 4-
vector components of the tensors. This is due to a jump in the Lorenz factor,
[, to ' = 1.428 in Fig. 3.3 and to I' = 1.458 in Fig. 3.4. This jump in T’
attenuates the jump in the physical quantities. Furthermore, the rarefaction
wave in the compound wave in Fig. 3.3 is of much smaller amplitude than in
Figs. 3.4-3.5; this rarefaction wave decreases in amplitude with A, and with
velocity. Finally, notice that the heating in the compound wave is negligible
compared to the heating in the shock traveling to the right. This follows from
the minute jump in K at = = 0.49,z = 0.50,z = 0.48 and the O(1) jump in
K at £ = 0.525,z = 0.515,z = 0.535 in Figs. 3.3, 3.4 and 3.5, respectively.
This suggests that compound waves should they occur in astrophysical flow
are not likely to contribute to detectable radiation. We remark that for fluids

with v = 3/2 the numerical results show the same behavior.
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3.4.1 Limit of small (¥

The problem in the limit of small (%) is shown in Figs. 3.6-3.7 for A{®) = 1/10
and h(®) = 0, respectively. The other parameters are as in Section 3.4 with
€ = 1. Notice that as h{®) — 0 the transverse velocity has constant magni-
tude, but is captured in an ever thinner sheet bounded by two slow shocks.
When A{®) = 0, the sheet vanishes, but the spike in P remains. The trans-
verse flux therefore becomes proportional to A, in this limit, as the jump in
h, approaches finite limits across each of the two shocks. Notice that total
pressure P* = P 4 h?/2 becomes continuous as h{®) vanishes. Next consider
the limit A{ = 0. Since there is a change of sign in h, across a contact dis-
continuity approximation of all quantities by smooth functions while keeping
the total pressure P* continuous necessarily requires a large spike in P at
the point where h, changes sign, i.e. goes through zero. Thus, transverse
MHD is a singular limit when k, changes sign across a contact discontinuity.
As h{®) becomes finite two waves bifurcate from the contact discontinuity.
In this problem these waves are slow shock waves. We remark that when
v = 3/2 the singular nature of this problem is also reflected numerically in a
small, erroneous jump in the velocity across the contact discontinuity. The
continuity of the total pressure, however, is strictly maintained. We have
also considered the small ~() limit on the test problem in Section 3.1. This
yields a bifurcation of the solution near the contact diséontinuity into a slow
shock and a slow rarefaction wave. The result is a fast rarefaction wave fol-
lowed by a slow shock traveling to the left and a fast shock followed by a

slow rarefaction wave traveling to the right.
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Figure 3.6: The low h.(0) limit showing a bifurcation of two slow shocks
from the contact discontinuity. Here, € = 1 and A{®) = 0.10. The number of
time-steps is 3006 with 2048 points on the unit interval, At/Az = 0.15 and

w = 10.
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3.4.2 Classical limit

With nonrelativistic velocities, the system (3.4) yields the classical results.
To see this, computations have been repeated with the equations of non-
relativistic MHD. The difference between the 4-vector quantities u, v, hY and
physical quantities U,V and HY, respectively, is less than 0.5% when € = 0.05,
as mentioned before, while about 2% when € = 0.10 (in particular in U, v and
V,v at the right side of the compound wave, where u* is largest). As e — 0,
the equations of relativistic MHD reduce to their non-relativistic form [37]

which for the coplanar problem amounts to:

e + (TU)z = 0,
(rU): + (rU? + P*), =0,
(rV)e+ (rUV — H H,), =0, (3.17)

(Hy): + (H,U — H, V), =0,

E.+ {(E + PU — H,(H,U + H,V)}, = 0,
where P* = P 4 (H? + H?)/2 and H, is constant. The solution to these
equations obtained using our pseudo-spectral is shown in Fig. 3.8. We have
estimated the left state before the shock, denoted by subscript L, and the
right state at the tail of the rarefaction wave, denoted by subscript R, of the
compound wave by taking averages over five points and compared these with
data from Brio and Wu [37] and from Stone et al. [51]. This is listed in Ta-
ble 3.2. Notice agreement typically better than 0.5%, but a 1% discrepancy
in the proper restmass density on the right side, rg. We find that this is
very sensitive to to smoothing (by taking w — 20 and/or smaller time-steps
At/Az < 0.05). This may be due to the smoothing at contact discontinuity,

which our method spreads out over about 10 grid points. Interestingly, the
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Quantity e=1 e€=.10 e=0.05 €e¢=0 Ref[37] Ref.[51]
rL 0.5417 0.6674  0.6722 0.6762 0.6763 0.664
TR 0.6503 0.6862  0.6844 0.6919  0.6963 0.701
U/e 0.4680 0.6457  0.6427 0.6369  0.6366 0.662
Ur/e 0.2839 0.5920  0.6002 0.6007  0.5997 0.597
Vi/e -8.318E-02 -0.2357 -0.2370 -0.2351 -0.2333  -0.248
Vr/e€ -0.6550  -1.545 -1.576  -1.585  -1.578 -1.58
Hyp/e 0.5619 0.5756 0.5791 0.5835  0.5849 0.576
Hg/e -0.3414 -0.5234 -0.5316 -0.5344 -0.5341 -0.536
Pp/é? 0.2939 0.4461 0.4528 0.4580  0.4574 0.443
Pgr/é? 0.4437 0.5115 0.5152 0.5156  0.5133 0.509

Table 3.2: The low ¢ limit of the relativistic coplanar Riemann problem for
MHD. Averages of the left and right constant states across the compound
wave for various € and the classical case.  Data from Brio and Wu and from
Stone et al. are listed here for comparison.

appearance of some oscillatory behavior at the shock shows that the classi-
cal formulation is more difficult to handle with our pseudo-spectral method
than the relativistic formulation. This is probably due to a difference in the
way conservation of energy is formulated. We have taken At/Az = 0.5 in
the low e relativistic computations and At/Az = 0.15 in the computation
on (3.17). The spurious oscillations in classical MHD disappear when tak-
ing smaller time steps (At/Az < 0.05); however, this introduces smoothing
which increases the discrepancy in rg, as mentioned before. We conclude
that our implementation of MHD shows proper limiting behavior towards

nonrelativistic MHD as the velocities become small.
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Figure 3.8: The pseudo-spectral method on classical MHD. The number of
time-steps is 360 with 1024 points on the unit interval with At/Az = 0.15.
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3.5 Discussion

The shock computations in this paper show that MHD formulated in di-
vergence form allows stable and accurate numerical simulations. In view
of astrophysical applications, emphasis has been given to the computation
of the shock heating. With low discretizations the results are particularly
accurate for shocks of intermediate strength. The power of the divergence
formulation of MHD is brought about by

(c1) convergence of the approximations of the shock jump relations;

(c2) obtaining both relativistic and classical results in the same numerical

implementation;

(c2) obtaining the above with explicit time-stepping on a uniform grid.

We wish to emphasize that the divergence form of MHD in the limit of
zero magnetic field yields a divergence form of relativistic hydrodynamics.
In view of the results above, this formulation may be competitive with other
formulations for relativistic hydrodynamics for the purpose of numerical sim-
ulation.

Our computations show that compound waves persist in relativistic MHD.
Brio and Wu [37] expressed concern as to whether the compound wave in their
computations is physical or a mere artifact of numerical simulation. They
do so in view of the slow shock involved being an intermediate shock. We
wish to express that in the context of the coplanar Riemann problem, the
results of Wu [17], Brio and Wu [37], Stone et al. and those contained in
this paper lead us to believe that intermediate shocks should be considered

natural features in numerical simulations.
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Chapter 4

2D SHOCK
COMPUTATIONS IN MHD

(Some of this material has been presented at the “XV**. Annual Texas Partial

Differential Equations Conference,” Denton, Texas, 1992.)

4.1 Introducﬁon

Numerical study of large scale astrophysical flows requires simulations in two
or three dimensions. In the previous chapter we found that MHD in diver-
gence form allows for accurate and stable numerical computations in one
dimension. We will now turn to study MHD in divergence form in numer-
ical applications in two dimensions. A two-dimensional numerical scheme
is used based on the one-dimensional pseudo-spectral method from [55]. A
sample of various problems tests the scheme on isotropy (1), independence
of coordinate system (2) and convergence (3). These examples also illustrate
specific aspects of jet flow. These issues will be addressed in test problems

with cylindrical symmetry. The presence of cylindrical symmetry allows us
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to study (1) by consideration of contour plots, (2) by comparison of the re-
sults with one-dimensional computations using polar coordinates, and (3) by
variations of mesh-size and time step-size. Furthermore, an explicit proof
is given to show that the two-dimensional scheme preserves divergence free
magnetic fields to within arbitrary small error (in the sense of a discretized
spatial derivative). This is illustrated also numerically in diverging shock

problems in a uniform magnetic field in the (x,y)-plane.

4.2 A 2D numerical scheme

The 2D computations are performed on a 2D Cartesian grid with coordinates
z,y and with uniform grid size, Az = Ay. An immediate 2D implementation
of the pseudo-spectral smoothing method in [55] is obtained as follows. At
each grid point (z,y) = (:Az,jAy) two one-dimensional problems are con-
sidered to which the method from [55] can be applied: one problem on the
r—axis as defined by the restriction y = const. and the other problem on the
y—axis as defined by the restriction £ = const. The one-dimensional updates
(F(t;% 7+l and (F(t;s 7+, respectively, thus obtained at time ¢ = (m + 1)At
yield an update (F*4)7?*! given by
ij ij

m 1 m m
(FtA)in = 5[(F(t$) oy (F(trﬁ) 1. (4.1)

In terms of the smoothing operator S, and the spatial derivative operator

8. [56] this amounts to updates of the form

(F'Y™ = S2D{(F'A)Y™=1} — 9At6,, o( F*4)™ — 2At6, ,(F*4)™,  (4.2)
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where
52D — -;-(Sw,x + Su)- (4.3)

Here, a subscript , z(y) refers to the restriction of the argument to y = const.
(z = const.). Thus, the same smoothing is applied to each of the equations
in (3.3), as before in the one-dimensional implementation by S,. We remark
that the smoothing parameter w as introduced in [55] will be fixed at 12 in
all computations.

A numerical scheme of the form (4.2) conserves ¢(U) = u®h. = 0 identi-
cally, for which a proof will be given below. Let z, = (¢,2,), @ =1,2,3, be a
specific coordinate system with the coordinate ¢ time-like. In this coordinate

system, Maxwell’s equations
V{ulth¥ 4+ g%¢(U)} =0 (4.4)
may be written as

3a(v/=gul*h®) + \/=gg®*8,c = 0. (4.5)
Let 8, be discretized time- and space-derivatives, corresponding to the co-
ordinate derivatives d,. We assume these operators to be commuting, z.e.,
8,05 = 836,. For example, §,, can be the familiar central-differencing operator:
(6™ )ik = [f1se —fﬁljk]/2Aw, where I = f(tm,2i,¥;,2x) and Az is the
grid spacing in the z—coordinate. Furthermore, $2° and §,,, are assumed to

be commuting, as is the case at hand with our particular smoothing (4.3).

Theorem 1 A numerical scheme of the form (4.2) for MHD in divergence
form with commuting smoothing operator S?P and discretized derivative op-

erators 8., preserves the constraint ¢(U) = uh, = 0 identically.
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Proof: Let w® = \/—gul*h?l. Maxwell’s equations (4.4) in MHD in diver-

gence form may then be written as

O™ + Bpw™ + 0yw®® + /=g dic + /=997 Osc + \/—gg¥Byc = 0. (4.6)

Let m index time-slices ¢ = t,. Variables on ¢ = t¢,, will be superscripted
by m. We will take the induction hypothesis ¢* = 0 for all n < m. In two

dimensions time-stepping of the form (4.2) amounts to

J=gghem ! 4 (W)t = §2D{(tb)m-1} ()
—2At6,(w®)™ — 2AL68, (w)™. ’

Letting b = t,z,y and using ¢™ = 0 these equations amount to

V=gg" ™ + 2A16, (W)™ + 2At(w¥)™ = 0, (4.8)
(W)™ — SEP{(w'*)™ 2} + 2AL6, (w¥*)™ ! =0, (4.9)
(W)™ — SEP{(w™)™ %} + 2At6,(w™)™ " = 0. (4.10)

Now apply 8, to the second and 6, to the third equation above, and use

commutativity of the é,, and S2P, thereby obtaining

6(w)™ — S2P{(6,w")™ 2} + 246,68, (w¥")™ T, (4.11)
8y (W)™ — S2PL(§,w™ )™ "2} 4 2A16,6,(w™)™ 1. (4.12)

Notice that antisymmetry of w and commutativity of the 6., yields
826,(w¥ )™ + 8,6,(w™)™ = 0. (4.13)
Adding the two equations in (4.12) therefore gives

(6,01 + 8,¥)™ = S22 {6, (w2 + §,(w?)™"2} = 0 (4.14)
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by our induction hypothesis. It then follows from (4.8) that ¢™*! = 0, which
completes our induction step.D

We remark that the statement of the theorem is sharp: application of
Strang’s method [22] to computations of problems with nontransverse mag-
netic field show a drift in ¢ away from zero. This is not necessarily dramatic,
as some cases showed that ¢ remained small (< 1073) without any instabil-
ities. Smaller time-steps reduce ¢, so that ¢ can still be kept small (10~°)
at the cost of greater computation time. It should be mentioned that in
transverse MHD problems Strang’s method preserves zero ¢ and the method

showed excellent isotropy.

4.3 2D shock problems in relativistic MHD

MHD in divergence form will be exemplified by several computations. First,
problems with cylindrical symmetry are discussed for the purpose of testing
the numerical scheme. We continue with examples of some more generality.

These examples contain aspects of flow in astrophysical jets.

4.3.1 Cylindrically symmetric shock problems

The first test is on a diverging cylindrical shock problem. We consider an
initially cylindrical column distribution of high density, » = 1, high pressure,
P = 2/3, and strong magnetic field h, = 1 in a surrounding of low density,
r = 0.125, low pressure, P = 0.10 and weak magnetical field, h, = 0.0625
(see Fig. 4.1). The result of this “Mexican Hat Problem” is shown in Figs. 4.2
and 4.3. The contour plots in Fig. 4.3 clearly show a high degree of isotropy
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in this computation. In Fig. 4.4 we further compare this result with a one-
dimensional computation using cylindrical coordinates. Notice the remark-
able agreement between the two computations when the the number of radial
points in the 1D simulation is the same as in the 2D simulation.

A second test on a problem with cylindrical symmetry uses the relativis-
tic analogue of the problem as discussed in nonrelativistic hydrodynamics by
Payne [49], Lapidus [5], Munz [53] and, recently, also by Zhang and So [26].
Here, the evolution of a converging shock and its reflection in its point of
syrhmetry are studied. This is a problem of singularities, as the hydrody-
namical state becomes singular at the moment of reflection.! The initial data
for this problem are given by a column distribution of low density, r = 1, low
pressure, P = 1, in a surrounding of high density, r = 4 and high pressure
P =4 (see Fig. 4.5). The magnetic field strength in this problem is zero.
The result for different times ¢ = 30, 57 and 120 are shown in Figs. 4.6-4.7.
The time ¢ = 57 is chosen to be the time at which the numerical values of
the density and pressure were maximal near the origin. The contour plots
in Fig. 4.7 clearly show a high degree of isentropy, limited near the origin
only by grid discretization. In Fig. 4.8 we further compare the results with
one-dimensional computations using cylindrical coordinates. Again, there is
remarkable agreement between the 1D and 2D computations with the same
number of radial points. Notice that the 1D simulation with high resolution

indicates that the time at which the maximum density and pressure at the

1A singular perturbation analysis shows that P(t) ~ (t* — )~ as t — t*, where ¢*
denotes the moment of reflection and v denotes the polytropic index (see Appenix A for
a complete analysis).
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Figure 4.3: Contour plots of the solution to the problem shown in the “Mex-
ican Hat Problem” (as in Fig. 4.2). The computation appears with high
degree of isotropy.
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Figure 4.5: The initial density and pressure distribution in the problem of a
converging cylindrical shock in relativistic hydrodynamics.
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Figure 4.6: The density and pressure distributions at times ¢ = 30,57,120
(300, 570 and 1200 time-steps) in the converging shock problem. At time
t = 57 the numerical values of density and pressure reached their maximum in
the 2D computation (theoretically both are infinite at exact time of reflection
at the origin; see also Appendix A).
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Figure 4.7: Contour plots of the solution at times ¢ = 30,57,120 to the
converging shock problem, showing high degree of isotropy.



CHAPTER 4. 2D SHOCK COMPUTATIONS IN MHD 76

.es
ela
[ Z-.es
z g
-1
&5 ] 1
- T
H Z-.28
S
£ E-.25
&
-.38
3 3 15 .28 .25 .32 .35 .48 .45 .S
e .es .1@ .15 .28 .25 .38 .35 .48 .45 .56 e .es .18 . E 25 a3 e 45
cadtu radiue
2.8
2.7
2.6
525
G2
G2.3
22.2
H
£l
g'l.?
. 1.8
il 1.7
s 1.6
e .85 1@ 15 .28 .25 .38 .35 4@ .45 .S58
radius
s
.18
T .85
8 o
@
s -8
2. e
S
&-.15
=-.
-.2¢
- a5 .se
.85 .16 .15 .28 .25 .38 .35 42 .45 .5€ 2 s .18 .15 .2¢ .25 .32 .35 .48 .45 .
cadtue cadios
16 5.5
5.6
G4es
e
w Zaw
S &
a 238
H z
& Z3e
I
Za2s
2.8
1.5
© 85 .10 .15 .28 .26 .38 .35 .48 .45 .58 e .es 1@ .15 .26 .25 3¢ .35 _e@ _45 .58
radius cadive

.@5 1@ 1S .28 .25 .38 .35 .42 .45 S8 e .es e a5 286 .25 38 35 e .45 .se
redivs

radive

Figure 4.8: Comparison of solutions shown in Figs. 4.6-4.7 with solutions
obtained in polar coordinates. The upper, mid and lower four windows cor-
respond to times ¢ = 30, 57 and 120, respectively. See caption of Fig. 4.4 for
explenation of the dotted curve and the two smooth curves in each window.



CHAPTER 4. 2D SHOCK COMPUTATIONS IN MHD 7

origin occurs is somewhat delayed compared to the two 1D and 2D problems
with lower discretizations.

These two computations indicate that the 2D implementation is highly
isotropic and agrees with 1D simulations in polar coordinates. The agreement
with 1D simulations suggests that convergence in the 2D simulations is no
different from that reported in [55]. The standard tests of convergence by
varying the mesh size and time step-size have also been performed, and no

anomalies have been observed.

4.3.2 A shock induced vortex

Flow with high ram pressure, such as jets, can efficiently generate shocks.
Strong shocks can further be a source of strong vorticity, as is well known
in supersonic combustion theory (see, e.g., [28]). We will illustrate this in
the following example. Consider a relativistic flow initially moving along the
positive z—axis (here, with I & 2.35). This flow is initially discontinuous at
a sinusoidal surface, ¥, described by (z,y) = (z,yo0 + y1 sin 27z), separating
the jet flow from an outer region. The fluid in the outer region is initially at
rest. These initial data are shown in Fig. 4.9. Notice that some smoothing
has been applied in order to prevent numerical instabilities at initial times.

A process of strong collision of gases will commence at that part of X
which possesses a normal velocity which is ingoing, ¢.e. the “working sur-
face” ze(%,3r) (in the terminology of [39]). The result is a high pressure
region near this working surface bounded by two shock fronts one of which is

in the jet and the other is in the outer fluid, clearly present in Fig. 4.10. This
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high pressure region further possesses a contact discontinuity (a displace-
ment of ¥) with high shear velocity as the parallel component of velocity is
highly discontinuous. The high pressure fluid at the inner side of the contact
discontinuity naturally possesses high parallel velocity, while the fluid at the
outer side possesses low parallel velocity obtained only through expansion.
The high pressure region can expand because it is localized. The parallel
component of this expansion flow is highest near the edges of the contact
discontinuity at z = 7 and = = ?41. At the edge point z = %, the expansion
flow possesses a negative —component of velocity and turns to join the fast
jet flow at the other side of the contact discontinuity. Thus, a vortex natu-

rally results as a mixing point for the flow from the outer region to the inner,

jet flow (see Fig. 4.11).

4.3.3 An ultra-relativistic jet simulation in the hy-
drodynamical limit

A jet simulation in slab geometry is presented in the limit of vanishing mag-
netic field. The computation shows the initial evolution of a low density,
rjee = 0.10 highly supersonic jet with I' =~ 3.25 (velocity =~ 0.955) im-
pinging on an outer medium of higher density, ryegivm = 0.5. The jet has
width W. The jet itself is in pressure equilibrium with the outer medium,
Pjet = Predium = 0.10. The results are shown in Figs. 4.12 -4.14. In Fig.
4.12 the jet evolution is shown at an early time (time/width=2%), Fig. 4.13

2477

shows the jet at three epochs time/width =%, g—g, %’ and 4.14 shows the jet
at time/width=13. In each computation At/Az = At/Ay = 0.10.

These results have been obtained using a modified numerical scheme.
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Figure 4.9: Initial data for problem of shock induced vortex by jet with
I' = 2.35. The jet flow is initially separated from an outer medium by a sinu-
soidally curved surface of discontinuity. Notice that a slight smoothing has
been applied to the initial discontinuity so as to prevent initial instabilities
in the computation.
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Figure 4.10: The density and pressure and velocity (magnitude) distributions
at time ¢ = 40 (800 time-steps). The density and pressure distributions
are viewed from the the side of the jet, while the velocity distribution is
viewed from the side of the outer medium. The contact discontinuity in the
high pressure region clearly also appears in the distribution of magnitude of
velocity due to a jump in tangential velocity.
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VELOCITY

Figure 4.11: Streamline plot of problem of shock induced vortex (as in
Fig. 4.10). Evidently, the vortex shows mixing of outer flow with jet flow
as the flow turns clockwise here.
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The smoothing S2P was was found to give rise to artificial pressures due
to the ultra-relativistic shear flow at the interface of the jet and the outer
medium. As the unit velocity four-vector u®, u®u, = —1, couples the mo-
mentum density in the y-direction to the energy equation, smoothing in the
transverse, y-direction induces artificial pressures. These pressures can be-
come significant at points where I' possesses a large jump. This constitutes
a fundamental problem with smoothing when applied uniformly to all equa-
tions. This problem has been circumvented ad hoc by avoiding smoothing
by S,y on the densities F*4 altogether. |

The results in Fig. 4.12 are obtained on a grid with 128 by 128 points.
The computation has been performed on a grid with 128 by 64 points using
reflection symmetry across the axis of the jet. Fig. 4.12 clearly shows an
instability arising at the contact surface between the shocked jet fluid and the
shocked outer medium. Two dark points on this contact surface represent low
density regions which numerically run away to negative densities and prohibit
further computation. Notice also the curving of the shock surface in the jet
flow, most clearly in the pressure distribution; expansion of the shocked jet
fluid sidewards decreases pressure and accelerates the shock in the jet. For
the purpose of long-time integration the jet flow has been given a smooth
profile across, thereby preventing this instability from arising. The results
are shown in Figs. 4.13-4.14. These computations have been performed on a
grid with 256 by 128 points, and the results are shown after reflection across
the z—axis. Notice flaring of the shocked outer medium in the extended

region behind the bow shock in the extended region away from the jet. It
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requires further numerical study to distinguish whether this is physical or

numerical?; it clearly originates at the head of the bow shock. Notice also

_50

the two small strike-features in the pressure distribution at time/width=23.

This discontinuity is an acoustic wave in the jet with small opening angle, 8,
due to relativistic beaming, tan % = %i; Here, a is the local sound speed,
a? = ﬁj;_;é_l—?p [20]. This amounts to a small opening angle, tang ~ 0.19.
These relativistic jet computations are to be regarded as indicative for
future work on relativistic jet simulations. It would be of interest to ap-
ply Roe’s method on the equations of relativistic hydrodynamics (using the
equations for hydrodynamics in divergence form as they follow from MHD

in divergence form with vanishing magnetic field (see [55])) for reasons of

comparison.

4.3.4 Magnetic pressure dominated stagnation points

Three problems in nontransverse MHD are considered to illustrate MHD
in divergence form and the computational method in some more general-
ity. These problems also serve to illustrate the fact that the computational
method preserves divergence free magnetic fields to within arbitrarily small
error. The problems have an initially cylindrical column distribution of high

density and high pressure (Fig. 4.15). Three computations are presented,

2Improved results have been obtained using the 2D smoothing operator defined by
S2D{F*4} = Y(Sy,c + Swy){F*4} if A = y and SZP{F*4} = L(Sy - +id){F*4}if A # y.
This construction is based on the observation that the primary jet flow is ram pressure
dominated, while the shocked jet flow and the shocked ambient flow are both hydrostatic
pressure dominated. This S2P applies strong smoothing along the field parallel to the jet
axis and mild smoothing along the field transverse to the jet, and, importantly, shows no
flaring,.
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Figure 4.12: The initial evolution of the relativistic hydrodynamical jet with
I' ~ 3.25. The two sharp features in the contact surface between the shocked
jet fluid and the shocked outer medium are points of instability in this com-
putation. The time/width = 2.
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Figure 4.13: The jet at three epochs at time/width=23, 5% 1% The jet has
been given a smooth profile across so as to avoid any initial instabilities on
the contact surface. Notice flaring of the shocked outer medium behind the
bow shock in the extended region away from the jet.
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Figure 4.14: The jet at time/width=222.
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Problem Quantity Column Environment

(a) density 1 0.125
pressure 2/3 0.100
(b) density 4 1
pressure 4 1
(c) density 10 1
pressure %&03/ 2 1

Table 4.1: Initial data in the three test problems in nontransverse MHD.

showing cases for various 3 = P/h%. Initially, the density and pressure in
the column are taken to be as in Table 4.1. The problem is considered in an
initially uniform magnetic field in the (x,y)-plane of strength 1/2 and aligned
along the main diagonal of the grid. The results are shown in Figs. 4.16-
4.22. Each of the results may (somewhat loosely) be interpreted as a sym-
biosis of two one-dimensional problems, one a shock-tube problem in trans-
verse MHD and the other a shock-tube problem in MHD with longitudinal
magnetic field. One-dimensional simulations (in simple planar geometry) of
the associated longitudinal and transverse MHD problems show remarkable
agreement with the respective longitudinal and transverse intersections of the
distributions in the 2D problem. The 2D problem only differs in a jump in
the magnetic field at the shock-front in the longitudinal intersection, which
is due to the cylindrical geometry (in planar geometry there would be no
such discontinuity). The results have also been computed with 400 time-
steps (n = At/Az = 0.15). This results in a slight overshoot at the shock,

but otherwise identical distributions. Furthermore, the computation shows
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Two nearly perfect stagnation points appear in the streamline plot of the
velocity (Fig. 4.22(a)). These stagnation points also appear clearly as two
local maxima in the total pressure, P + h%/2 on the line through the origin
perpendicular to the magnetic field. Furthermore, the pressure at these stag-
nation points is predominantly magnetic pressure, as follows from comparison
of the distributions of pressure, magnetic field strength and total pressure in
Fig. 4.16.

The decreasing importance of the magnetic field in these three problems is
apparent from the three respective total préssure distributions in Figs. 4.16-
4.21 and the plots of velocity streamlines and magnetic field lines.in Fig. 4.22.
The shock strength in these problems clearly increases in going from Prob-
lem (a) to Problem (c). Finally, we remark that in these test problems the

absolute value of ¢;(U) was kept below 107,

4.4 Conclusions

Some test 2D shock computations in MHD in divergence form have been
performed using an extension of the pseudo-spectral method from [56]. The
numerical results show that
(a) convergence and accuracy are consistent with one-dimensional simu-
lations;
(b) the results are highly isotropic;
(c) the computational method preserves divergence free magnetic fields
(in the sense of the discretized spatial derivative) to within arbitrarily

small error, even when shocks are present.
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Figure 4.15: The initial density and pressure distribution in the problem of
an expanding shock in nontransverse MHD. The magnetic field is initially
uniform and aligned along the main diagonal of the Cartesian grid.
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Figure 4.16: The solution to the shock problem with initial conditions as
given in (a) of Table 4.1. at ¢t = 60 (600 time-steps). The solution may be
interpreted as an intrigate symbiosis of two one-dimensional problems one
of which is a shock-tube problem in transverse MHD while the other is a
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Figure 4.17: Contour plots of the solution to nontransverse MHD Problem

(a)-
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Figure 4.18: The solution to the shock Problem (b) in nontransverse MHD
at ¢ = 60.
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Figure 4.19: Contour plots of the solution to nontransverse MHD Problem

(b).
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Figure 4.21: Contour plots of the solution to nontransverse MHD Problem

(c).
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Figure 4.22: Streamline plots of velocity and magnetic field lines in the rest-
frame of the grid of Problems (a)-(c).
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The power of this numerical implementation is further brought about by
obtaining these results on a two-dimensional Cartesian grid with uniform
spacing and explicit time-stepping.

The difficulties of the smoothing method (4.2) in hydrodynamical prob-
lems with ultra-relativistic shear flow indicate that Riemann problems with
relativistic shear flow are the appropriate test problems for numerical hydro-
dynamics in the ultra-relativistic limit.

The results on the magnetic pressure dominated stagnation points demon-
strate that MHD in divergence form allows for accurate and stable numerical

simulations of two-dimensional shock problems.
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tive comments during this work.
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Appendix A

A note on rotational
discontinuities

In this note we will illustrate numerically rotational disontinuities, which
did not arise in the coplanar Riemann problem discussed in Chapter 3. Ro-
tational discontinuities travel at intermediate velocities: faster than slow
rarefaction waves and slower than fast rarefaction waves. They can be in-
troduced by perturbing the coplanar Riemann problem into a noncoplanar

Riemann problem, for example, by taking initially

k., = 0(z < 1),
{ b = hO(z > 1), (A1)

while maintaining the initial condition u* = 0. This introduces two rotational
discontinuities, traveling in opposite directions. We will consider a perturbed
case of that shown in Fig. 3.3. With A{®) = 0.0025 this is illustrated for the
relativistic case € = 0.5 in Fig. A.1 and the nonrelativistic case € = 0 in Fig.
A.2. Clearly, a rotational discontinuity resides between the slow shock and
the fast rarefaction wave traveling to the right. Notice that the velocity of

the slow shock is close to the velocity of the rotational discontinuity in the
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Quantity €= 0.50 e=0

(va)r -0.0838 -0.2761

Ushock —0.0752 £ 0.0025 —0.2958 £ 0.010
(va)r -0.0949 -0.2997

Table A.1: The Alfven and shock velocities in the compound wave. (va)L
denotes the Alfven velocity ahead and (v4)r denotes the Alfven velocity
behind the shock. The data are listed for both the relativistic case € = 0.50
and the classical case € = 0.

relativistic case. With € = 1 numerical results indicate that they are almost
equal. This limiting case is related to the problem of intermediate shock
waves discussed below (see also Lichnerowicz [7, 8] for theoretical results).

In the case of classical MHD the change of sign of A, indicate that this
shock is intermediate (the argument used by Brio and Wu [37]). That is,
the velocity of the rotational discontinuity is less than the shock speed ahead
of the shock and larger than the shock speed behind the shock. We have
computed the Alfven wave speeds using the relations (cf. [6, 50])

relativistic MHD: (rf + R%)(u,)? — (h%1,)? = 0,
nonrelativistic MHD: vs = v — H//T,

(A.2)

and the shock speed by taking the center point on the jump as the shock
position. The results are listed in Table A.1. The uncertainty in the shock
velocity due to the finite grid resolution of 2048 points is also listed. Thus,
Table A.1 indicates that the relativistic shock is not intermediate, while alone
it leaves open whether the classical shock is intermediate (which illustrates
a limit of our numerical implementation).

Notice peaks at the shock in the compound wave. In the relativistic case
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the relative velocities of the shock and the Alfven waves at either side of it are
so small that the rotational wave does not separate from it given the limit of
our resolution. In the classical case the rotational wave remains “captured”
at the shock. In both cases this results numerically in a nonstationary shock
region of finite thickness. Because intermediate waves leave the thermody-
namical state of the fluid unchanged, this shock persists for longer time even

as the peak becomes large.
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Appendix B

Asymptotics of shock strength

An asymptotic analysis of the shock strength in the converging shock problem
in Chapter 4 is given. Introduce the shock strength, z, as the ratio of the
post- and pre-shock pressure, P and F,, respectively, and denote by R the
ratio of the post- and pre-shock restmass densities, r and rg, respectively. We
will analyze the problem in a frame comoving with the shock. Let (t,0,4)

denote polar coordinates in the laboratory frame such that the shock front

corresponds to (¢, X(¢), #). The transformation o = 6+2;I(t)t_, t= {""&f'(t) with
a = (1 — ¥'(t))? further introduces the coordinates (f,7,¢) such that the
shock surface corresponds to (Z,0,¢). The line element for this coordinate

system is given by
ds® = —di* + d6* + o*d¢>. (B.1)

We will describe the evolution of the shock first in this comoving coordinate
system.

The Rankine-Hugoniot relations for relativistic hydromagnetics are given
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by [20],
fogr=P-pr)l4L (B.2)
r To

with f =1+ 7’_’—1-§ and fo =1+ ,7:’_—1% Notice that we assume the polytropic
index vy to be the same in the pre- and post-shock region. Let v = tanh A
and vy denote the fluid velocities behind and ahead of the shock. Notice that
¥'(t) = —vo, as the shock moves into fluid which is at rest with respect to

the laboratory frame. The Rankine-Hugoniot relations yield

R ~ Ry23,

1
e (B.3)
Vo N1>

as z — 0OQ.
The equations of relativistic hydrodynamics which govern the fluid in the
post-shock region are those of conservation of energy-momentum, baryon

number and entropy

Va(rfutub + ¢g®*P) =0,
Va(rua) =0, (B4)
u®0,(P[r") = 0.

In our coordinate system these equations take the form

rfut0,\ +v29,P = 0,
w®O,r + rv°d,\ = —riiyga (B.5)

Vi
u®d,r — Hutd, P = 0.

Here, we have used the parametrization u® = (cosh A,sinh A,0), and v* =

(sinh A, cosh A, 0). Notice that

ulj = ut\fg, = vlos+ w0, = ul(—vp +v)a ! ~u(y —2)a”l.  (B.6)
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Use the third equation in (B.5) to write the first two equations therein in
terms of A and P. The first two equations in (B.5) may then be written as

(B + wB5)A + 1(35 + w+d5) P =-fvg;, B7)
(B + wBp)A — L(Br+w=85)P =+ '

1— ﬁva’

where wt = T"f%, g = —ﬁ and A = a./fr with a> = yP/r. Notice that
A~ 13@ and 9;A|r=0 ~ —537% (on the shock surface (Z,0,¢)) as z — oo.
Consequently, the term ;) is of higher order in (B.7). We are therefore left

with

wOs A+ L(B + wtd,) P =

w5\ — %(0 + w™05)P —+I+i: (B:8)
Combining these two equations yields an equation for d;P:
ﬂ;—_—[%afp ~ —gé(l i—ﬂv + 1 Qj_ﬂv)] (B.9)
on the shock surface & = 0. Using the identities “’+J2'"’~ = vl—l_—}gl—,, and
-;—(l'i 55 T ;ﬁ;v) = =gz this last equation amounts to
SoP=2ap~—1 1, (B.10)

2—~q0’
where we have used A ~ yP/\/y =1 and B ~ /vy —1 as z — oo. It follows
that

-1-3t ~_J T (B.11)

in the shock surface in the limit as z tends to infinity, and the shock evolves

as

P v
= ~ Bt (B.12)

0
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Finally, M(Z,5) of the form A ~ A\g+\ P2 +j £ shows existence for solving the
asymptotic equations (B.8) by suitable choice of Ay, as O;A = )\25 = Agﬂ%
at & = 0. Now let t* denote the moment of reflection of the shock at the
origin, so that ¥(t) ~ ¢t* — t as a consequence of (B.3).

The asymptotic solutions can now be given as

P% ~ (t*+w—"t)—7>

B.13
/\~/\0+)\1(t*+$_t)%+)‘2?£5—_t’ ( :

as z tends to oo, valid in a layer % < 1, where x denotes the distance to

the shock surface.
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Appendix C

On the structure of Einstein’s
tensor

An algebraic proof is given on the structure of Einstein’s tensor. These re-
sults are familiar in particular in a space-time split {z*} = {t,2*} with lapse
function N and shift functions N,. However, we wish to emphasize that the
results can also be viewed as an algebraic rather than a geometric property of
Einstein’s tensor. The purpose of this treatment lies in its possible applica-
tions towards numerical integration of the initial value problem in relativity.

We begin with the structure of the Ricci tensor.
Lemma C.1  The Ricci tensor Ry is of the form
R} = L§(9ea)(0:0a9us) + P (9)Quiy..is (0cfuv), (C.1)
where P = gotigizagiais qnd Q. ;. is quadralic in its arguments.
Proof Introduce P%1+is = goi1giziagisis. We will analyze Rg,

R} = g*0cTg, — 9*°0.Tg, + 9* T Loy — ¢°TeuT,. (C.2)
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The terms containing the first partial derivatives of g.4 will be factorized over
P. We will do so in three steps.
Step(a): The terms containing the first partial derivatives of g.4 in the

first two terms of R} will be evaluated using the identity
1
_gadgcu egquSb = _Epadcuvwaeguu')'dbw- (03)

Using the relations 9.¢%" = —¢°“0.guvg™ and 'Sy = 19°(gab,a + Jadp — Gab,a] =
29°%Yabd, it follows that the first partial derivatives of g.q in the first two terms

of R} are contained in

1
—§P“d°“"“’(8cguv’7dbw — OdGurYebw) = padewvw 4, - (C.4)

Continuing this expansion, we find

Abdcuvw = —%guv,c(gwb,d + Jdwp — gdb,w) + ’;‘guu,d(gwb,c + Gewb — gcb,w) (C 5)
= —Guv,cGb[w,d] + Guv,dGblw,c] — %guu,cgdw,b + %gu'u,dgcw,b-

Step (b): The terms containing the first derivatives of g.4 in the last two

terms of Rf follow from expanding

1
gad]‘-‘fleZC = Z-Padcuvw’)'dbug'uw,c (06)
adpec T 1 adcuvw
g drdu be — ZP d Ydvu Yoew (C7)

with

%’deung,c = i[gub,d + Gdub — gdb'u]ng,c = %ng,cgb[u,d] + %ng,cgdu,b
%')inu'ybcw = %[guv,d -+ Gduw — gd'u,u] [gwc,b + Gbw,c — gbc,w]
= "liguv,dgwc,b + %guv,dgb[w,c] + %gd[u,u]gwc,b + 9d[u,v)Gblw,c]-

Step (c): Thus, Qsdcuvw is obtained by adding the results from Step (a)
and Step (b) as

decuvw = l(zz)cuvw + Ql(filuvw (08)
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with

g}d)cuvw = —Guv,cYb[w,d] + %guu,dgb[w,c] + %ng,cgb[u,d] — Gd[u,v]9blw,c]» (Cg)

2 1 1 1
gd)cuvw = —39%uv,c9dw,b + 19w,d9cwb + 79vw,cGdub-

Here, we have used gcw‘bgd[u,U]P“dcm’“’ = 0 in view of the symmetry gjc.)s = 0.

Define the quantities I}** and J@¥ by

Iiw = gcd,bgucgmia
T = Gye,q199"

Notice that I¥ is symmetric and J}¥ is antisymmetric in » and v. Notice
also that neither I* nor J¥¥ contains 0,9« Whenever b # a. Using this, we

obtain

PaQ((Jl) — _guv’ch)agcu + %guw,c']bcang ~ Gdfu] Jg}ugad,
PP = 100, J50% + Lguu o I5°0™ + Y gunali g%

Here, we have used ¢y,4J¢’ = 0 by symmetry of gy, in v and v. This
completes the representation of }.0
The full factorization of the first derivatives in R} we will refer to as the

PQ factorization.

Lemma C.2  The component R} of the Ricci tensor does not depend on
(1) 0.0:9cq for all ¢,d,
(7i) 0,945 whenever b # a.

Proof of Part (i): The first part follows from analyzing the second deriva-
tivesin R}. An easy calculation shows that R} contains no second derivatives
of the form 0,0,9.« (all p,b): the second derivatives of the metric in R} are

contained in

970, — g7 0T, (C.10)
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and, therefore, in

1 e cu 1 e _cu
59” g [gub,e + Geub — geb,u],c - Egp 9 Guc,eb- (Cl]-)

Derivatives of the form 0,0,¢.. therein appear as

1

pa _au pe . au

1 1 1
a ub,aa e euba — § pegre ebaa — 5 pe g uc,ab- 012
597°9" Gubsaa + 5979 Geusa = 5979 Iebaa = 5979 Gucar-  (C.12)

When b # a, these terms contain 0,0,9.« necessarily in the first and third

terms as

1 a aa ]' a , au
5979 gab,aa — —2-9” 9*“Yauaa = 0, (C.13)

while when b = a these derivatives are contained in all four terms as

%gpagaugua,aa + %gpegaugeu,aa - %gpeglmgea,aa - %gpagcuguc,aa

= %gpagaugua.,aa + %gpagaugau,aa + %gpegaagea,aa - %gpagaagaa,aa (C 14)
—%gpegaagea,aa - gpagacgac,aa + %gpagaagaa,aa )

= 0.

Proof of Part (ii): To obtain (ii) PQ™ and PQ? will be analyzed in two
steps. We emphasize that in what follows ¢ and b are fixed. In particular,
no sum is taken over a as an index.

Step (a): We will now analyze PQ() in its dependency on 9,g... We
consider the case b # a. In seeking terms 0,g.«, the relevant terms in P“Q,(,l)

are

ve au 1

1
_guv,a*]b g - igdu,anugad + §gdv,aJ:a9ad- (0-15)

Here, we have used Jg* = 0. In seeking terms 0,¢4«, conclude

va aa 1 au aa ! va . a
—ga’U,GJb g — igau,a']b g + 'igav,an g d = 0. (016)
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It follows that no terms of the form 0,g,. are present in P“le), b# a.
Step (b): In this step we will analyze PQ in its dependence on J,gq.-
Again, we consider the case b # a. The terms containing 8,g.. in PQ® are

then given by

10000 d27% + 100 I g% + Ly o I8%g7Y. (C.17)

In seeking terms of the form 0J,¢,., we encounter the terms

1 aa au

av aa 1 1 av . aa 1 aa aw
_'2“ga'u,o.-[b g — ig‘ua,aIb g + §gav,a1b g + §gaw,aIb g = 0, (018)

where we have used the symmetry Ig“"] = 0. Tt follows that no terms of the
form 0,¢,. are present in P“Q,(,Z), b#a. O
We will now turn to the dependency of the components G§ of Einstein’s

tensor,
a a 1 a nd
Gb = Rb —_ _2—66 Rd (C.].g)

on 0,9q.. Here, 8¢ is the Kronecker delta-function. Using the previous

Lemma, we find

Theorem C.1 The components G} of Einstein’s tensor do not depend on
(1) 0,0,9c4 for all c,d,
(71) Ougap for all b.

Proof: The first part is well known. As to the second part, clearly we only

need to assert that

1
G* = R* — —
R 5

a

R? (C.20)
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has no dependency on 0,¢,«, as the result immediately follows for G¢ = R}
by the previous Lemma whenever b # a. Here, no sum is taken over a. The

Bianchi identity,

Va.RY — %VQRZ =0, (C.21)
yields
Bu(RE — %Rj) = TR TR — Y O.R:. (C.22)
c#a

Consequently, the right-hand side in this equation (C.22) contains no depen-
dency on 0,0,9.. by the previous Lemma on R¢. Conclude that

Ge= R — %Rﬁ (C.23)

a

possesses no dependency on 0,¢,+. This completes the proof of the Theorem.
0
The dependency of G§ on its arguments can be summarized as follows.
Let {z°} be a coordinate system. Fix a coordinate a* and denote by - the
derivative 0, (for example, a* denotes a time-like coordinate, t). Then the
dependency of Gf on its arguments g.q, §ca and g4 is as follows:
o= e e (€249
where only dependence on the highest appearing a*—derivatives has been

made explicit.
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