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Abstract

This study investigates the phenomena of evolution of two-dimensional, fully nonlin-
ear, fully dispersive, incompressible and irrotational waves in water of uniform depth
in single and in double layers. The study is based on an exact fully nonlinear and
fully dispersive (FNFD) wave model developed by Wu (1997, 1999a). This FNFD
wave model is first based on two exact equations involving three variables all pertain-
ing to their values at the water surface. Closure of the system of model equations
is accomplished either in differential form, by attaining a series expansion of the ve-
locity potential, or in integral form by adopting a boundary integral equation for the
velocity field.

A reductive perturbation method for deriving asymptotic theory for higher-order
solitary waves is developed using the differential closure equation of the FNFD wave
theory. Using this method, we have found the leading 15th-order solitary wave so-
lutions. The solution is found to be an asymptotic solution which starts to diverge
from the 12th-order so that the 11th-order solution appears to provide the best ap-
proximation to the fully nonlinear solitary waves, with a great accuracy for waves of
small to moderately large amplitudes.

Two numerical methods for calculating unsteady fully nonlinear waves, namely,
the FNFD method and the Point-vortex method, are developed and applied to com-
pute evolutions of fully nonlinear solitary waves. The FNFD method, which is based
on the integral closure equation of Wu’s theory, can provide good performance on
computation of solitary waves of very large amplitude. The Point-vortex method
using the Lagrange markers is very efficient for computation of waves of small to
moderate amplitudes, but has intrinsic difficulties in computing waves of large am-
plitudes. These two numerical methods are applied to carry out a comparative study
of interactions between solitary waves.

Capillary-gravity solitary waves are investigated both theoretically and numeri-



v
cally. The theoretical study based on the reductive perturbation method provides
asymptotic theories for higher-order capillary-gravity solitary waves. A stable nu-
merical method (FNFD) for computing exact solutions for unsteady capillary-gravity
solitary waves is developed based on the FNFD wave theory. The results of the
higher-order asymptotic theories compare extremely well with those given by the
FNFD method for waves of small to moderate amplitudes.

A numerical method for computing unsteady fully nonlinear interfacial waves in
two-layer fluid systems is developed based on the FNFD model. The subcritical and
supercritical cases can be clearly distinguished by this method, especially for waves

of amplitudes approaching the maximum attainable for the fully nonlinear theory.
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Chapter 1 Introduction

The phenomena of water waves have attracted great attention from people of all
ages and the subject’s extent and diversity are enormous. The different types of
waves in water, such as ripples on a quiet pond, breaking waves on a beach, billows
on a stormy sea, geophysical waves and devastating tsunamis, are truly extensive.
The salient features of the wave properties can often be perceived qualitatively with
attentive naked eyes. Of the various wave phenomena found in nature, water waves
have the distinction in exhibiting some basic properties that can rarely be matched
by other kinds of waves. First, dispersive effects on water waves make their (phase)
velocity vary with their wavelength, which in turn may differ considerably from the
(group) velocity at which wave energy propagates. In deep water, the group velocity
varies from three-halves of phase velocity for ripples to one-half the phase velocity for
gravity waves. For long waves, the length of which is large compared to water depth,
the dispersive effects, though slight in this case, can accumulate, in time, to noticeable
margin as shown by the length increment of tsunami waves propagating across the
Pacific. In addition, water waves can give conspicuous displays of the nonlinear effects
(making linear superposition of solutions no longer a solution) as is evident in breaking
roll waves on the beach. However, with the dispersive (wave-separating) and nonlinear
(wave-focusing) effects kept in a proper balance, moderately steep waves are found to
propagate on shallow water, keeping permanent in shape. This was first discovered
by John Scott Russell (1844) who observed in August 1837. In what he claimed to be
the happiest day of his life, he saw a boat, drawn along a narrow channel by a pair of
horses, suddenly stopped. A single, hump-like mass of water detached itself from the
boat and continued its course at eight to nine miles an hour without change of form
or diminution of speed. In recent decades of the colorful modern history of pure and
applied mathematics, physics, engineering science, biology and other disciplines, the

same type of weakly nonlinear and weakly dispersive wave phenomena, now known
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under the blanket term of solitons, seem to occur almost universally.

Different fundamental theories have been developed to interpret and predict the
properties of water waves. These theories may be classified according to the specific
regimes of the key physical parameters involved and on which regime they are based.
Of the rich ensemble of physical parameters involved, two key parameters are essential,

namely

a=a/h, e=h/\, (1.1)

which represent, respectively, the nonlinear and dispersive effects for characterizing
waves of amplitude a and typical length A in water of typical depth h. Theoretical
modeling of water waves becomes greatly more difficult when additional relevant
factors are considered such as the extension from two to three spatial dimensions and
another from uniform (h =const.) to nonuniform medium (with h varying in space
and time). In fact, it takes decades of efforts to progress from a simple case to a more
general one. Nevertheless, needs for generalizations do exist for various reasons. And
in this respect, the nonlinearity factor «, the dispersion factor ¢, and the medium
geometry (nondimensional h, whether uniform or varying in space and time) can be
said as the three primary parameters for modeling water waves. In addition, there are
other parameters including the Froude number F' = U/+/gh (for measuring the gravity
effect pgh relative to the inertial effect pU? for motions with typical velocity U of fluid
of density p under gravity acceleration g), the Weber number U/ \/fy_/l, ( for scaling
the surface tension effect py/l relative to the inertia effect, v being the kinematic
surface tension), the specific fluid density variation Ap/p for density-stratified fluids,
and perhaps also the frame rotation effect for rotating flows, etc. These parameters
need be considered when their effects play a role in the problem in question. It is in
this framework and scope that modeling of water waves is constituted, as has been
much illuminated by Lin & Clark (1959), J.D. Cole (1968) and Sir James Lighthill
(1978).

This study is focused on incompressible irrotational two-dimensional waves in

water of uniform depth in a single layer and in double layers. Two classes of classical
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theory, the weakly nonlinear and weakly dispersive (WNWD) wave theory, and the
fully nonlinear and weakly dispersive (FNWD) wave theory for shallow water waves
have been developed in literature, as recently reviewed by WU (1999a).

The WNWD theory was developed by the pioneering works of Boussinesq (1871,
1872), Rayleigh (1876) and Korteweg & de Vries (1895) for interpreting the solitary
wave discovered by Russell (1844). Boussinesq (1872) found that the assumption of
a = O(€?) < 1 provides a well balanced role between the nonlinear and dispersive
effects for solitary waves to exist. Based on this assumption, Laitone (1960) used
the method of Friedrichs (1948) to develop a solitary wave theory to second-order.
Chappelear (1962) and Grimshaw (1971) further extended it to third-order. From a
different approach, Fenton (1972) found a solution for solitary wave up to the ninth-
order by assuming a series expansion for the wave elevation, with the coefficients
numerically calculated. This solution has been subsequently further numerically ex-
tended by Longuet-Higgins & Fenton (1974) to 14th-order. So far no exact asymptotic
theory by systemic analytic expansion has been known to exist for the solitary wave
of order higher than the third.

For unidirectional waves of the Korteweg-de Vries (KdV) family in particular,
the original KdV equation has been shown by Zabusky & Kruskal (1965) to possess
remarkable properties implying that the KdV equation admits not only one, but N
solitary waves, for N = 1,2, - - ., of arbitrary amplitudes, propagating and interacting
on one real line and conserves all their entities, for which properties the term soliton
is coined for such solitary waves.

The subject of water waves with parameters within the regime of the FNWD
class has been of considerable interest in various aspects. The first order theory
is known as Airy’s model which has a certain range of validity in subcritical and
supercritical regimes but fails in supporting solitary waves of permanent form in
the transcritical regime. This shortcoming is due to a mismatched account on the
balance between the effects of nonlinearity and dispersion. For modeling long waves
of finite amplitude in layered media, Green & Naghdi (1976) assumed o = O(1)

and € < 1, so that € is the only small parameter adopted in deriving the Green-
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Naghdi model. Along this direction, recent advances have been made by Ertekin
et al. (1984, 1986), Choi (1995), Choi & Camassa (1996), and others for modeling
nonlinear and dispersive wave motions in a single-layer or two-layer fluid, with intent
to achieve higher accuracy than existing models. This demonstrates that various
theories can be sought by making analysis based on different parametric regimes to
obtain different approximations to serve as differing theoretical models, provided they
be duly validated under the original premises.

The literature on numerical computation of unsteady gravity waves is rather exten-
sive. A great number of previous studies can be categorized as the class of boundary-
integral method using Lagrange’s markers, including the works of Longuet-Higgins
& Cokeket (1976), Vinje & Brevig (1981), Baker, Meiron & Orszag (1982), Roberts
(1983), and Dold (1992). Beale, Hou & Lowengrub (1996) proved the convergence of
a boundary integral method for deep water waves. Most of the numerical schemes
for computing nonlinear shallow water waves found in literature can be applied for
simulating evolution of shallow water waves of small to moderately large amplitudes.
However, it is a great challenge to develop a stable and accurate numerical method
for computing fully nonlinear unsteady solitary waves of large amplitude, especially
for waves of amplitudes very close to that of the highest wave (which has an inner
angle of 120° at the wave crest), due to a strong singularity at the crest.

A simpler but still challenging approach is to compute the fully nonlinear solitary
waves of permanent shape. Cooker (1990) computed the exact stationary solitary
wave solutions by using the method of Tanaka (1986). Wu & Kao (2000) obtained an
exact solution for steady exact solitary wave with a high accuracy by evaluating more
accurately the effects due to the irrational singularity of the asymptotic solution at
the physical infinity.

There are nevertheless needs for modeling fully nonlinear, fully dispersive water
wave phenomena, as for further developing the subject and for practical applications
that would require the nonlinear and dispersive effects retained in the model to play
their full exact physical roles. In a series of studies, Wu (1997, 1998a,b,c, 1999a, 2000)

developed an exact inviscid theory for evaluating three-dimensional fully nonlinear,
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fully dispersive (FNFD), incompressible, irrotational water waves in water of uniform
or variable depth in single layer or in double layers. This exact theory is first built
on two basic equations, one being the free-surface kinematic condition, and the other
the horizontal momentum equation projected onto the free surface. These two partial
differential equations are both exact but involve three unknowns, the horizontal ve-
locity, 4, and the vertical velocity W at the free surface (in two horizontal dimensions)
and the water surface elevation, . Closure of the system is accomplished either in
differential form by attaining a series expansion of the velocity potential or in inte-
gral form by adopting a boundary integral equation for the velocity field. This FNFD
theory provides both analytical facilities and computational efficiency that a theoret-
ical model can provide for resolving nonlinear water wave problems. In versatility,
this theory can be approximated to various degrees of validity to agree with existing
theories as special cases for predicting nonlinear dispersive water wave phenomena
pertaining to their specific parametric regimes, as pointed out by Wu (1999a).

This study applies Wu’s exact theory to theoretical and numerical investigation of
various problems in two-dimensional shallow water waves. In chapter 2, Wu’s FNFD
model for describing the properties of evolution of nonlinear shallow water waves is
reviewed for completeness of this thesis. The two exact equations are derived from the
basic Euler equations. The closure of the system are accomplished in both differential
form by performing a series expansion of the velocity potential and in integral form
by adopting a boundary integral equation based on Cauchy’s integral theorem for the
velocity potential; either of them suffices to complete the set of modal equations.

The differential form of closure is used to derive higher-order asymptotic theories
of solitary waves. Wu (2000) developed an asymptotic theory using the free sur-
face elevation and horizontal velocity at the free surface as the basic unknowns, up
to O(a3) for solitary waves which are in agreement with the results of Korteweg-de
Vries, Laitone, Chappelear and Grimshaw. He pointed out that regardless of the
various basic velocity used as a variable (jointly with the unknown free surface el-
evation) in the derivation, such as the velocity on the bottom (used by Rayleigh

(1871)) and the depth-mean velocity (used by Boussinesq (1871), Korteweg and de



6

Vries (1895), Green & Naghdi (1976) and Wu (1981)), different perturbation theories
should provide the same solution for the free surface elevation. Finding the higher-
order asymptotic solutions for solitary waves is an interesting problem because it will
illustrate a theoretical proof of existence of the solitary wave to the Euler equations,
at least in an asymptotic sense. However, the formidable algebra may be responsible
for confining researchers from going further to orders higher than O(a?). A reductive
perturbation method is developed for pursuing asymptotic higher-order solitary wave
solutions using the surface elevation and the bottom velocity as the basic unknowns
based on the differential form of Wu’s FNFD theory in chapter 3. This approach
simplifies the derivation to a level that highter-order solution can be evaluated by
a PC using a carefully designed Mathematica code. Solitary wave solutions have
thus been found in this study up to O(a'®). Comparisons between the results of the
present FNFD theory and those of the higher-orders asymptotic theory indicate that
the asymptotic solutions produce a sequence of increasingly improved approximations
to the exact FNFD solution, with an increasing accuracy for solitary waves of mod-
erately large to very large amplitudes, before the asymptotic series solution diverges
at the 12th-order.

The integral closure equations provide an efficient way to develop a numerical
method using the Euler mesh. In chapter 4 we provide two stable and efficient nu-
merical schemes, namely, (i) the FNFD method using the integral closure and the
Euler mesh for integration, and (ii) the Point-vortex method using the Lagrange
markers, for computing evolution of unsteady fully nonlinear shallow water waves.
The FNFD method using an Euler mesh is efficient and stable for computation of the
asymptotic properties of solitary waves of amplitudes over nearly the whole range,
even very close to the highest wave. In comparison, the Point-vortex method provides
a good performance on computing interactions between solitary waves. Various as-
pects of these two numerical methods are studied to provide a compatible numerical
method which is stable and convergent. We present the numerical results and an
appraisal of the accuracy of both schemes in chapter 5.

With the accuracy established, we apply the numerical methods to study the in-
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teractions between solitary waves in chapter 6. In chapter 7, we investigate capillary-
gravity solitary waves under the effects of both gravity and surface tension. Solutions
of higher-order asymptotic theories and numerical solutions of the FNFD theory are
obtained and discussed. In chapter 8 we extend the numerical exact FNFD method to
study interfacial waves in fluids of double layers. The numerical results of large-time
asymptotic wave motion are found in excellent agreement with the fully nonlinear

stationary solutions given by the method for steady wave motions.



Chapter 2 A fully nonlinear long-wave

theory for modeling shallow water waves

2.1 The surface-projected basic equations

To facilitate evaluation of the general properties of free surface waves propagating
in water of finite depth, we introduce the following model for describing the general
class of fully nonlinear and fully dispersive (FNFD) water waves. We consider the
motion of two-dimensional waves in water of uniform depth in a single layer. The
fluid moves with velocity (u,v) referred to the (z,y)-coordinates fixed in the flow
field bounded below by a rigid horizontal bottom at y = —h and above by the free
surface at y = ((z,t), measured from its rest level at y = 0 at time ¢ as sketched in
Figure 2.1. With the fluid assumed incompressible and inviscid, the motion satisfies

the Euler equations of continuity, horizontal and vertical momentum as follows:

uw_|_fuy = 0, (21)
Ccll—? =U+UU +V U, = —% D (2.2)
dv 1
'CE:’Ut“'U’Uw"i"'U'Uy = _;py_g, (23)

where g is the gravitational acceleration, p the pressure and p the constant fluid
density. Here the subscripts denote partial differentiation. We may assume that the
ambient pressure on the free surface is gauged to zero and we ignore the surface
tension for a moment to simplify our analysis. The capillary effect will be added on

in chapter 7 to study specific problems. The boundary conditions are

S
[l

G+h¢, aty= C(.’L‘,t), (2'4)
p = 0 (at y=((z,1)), (2.5)
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v = 0 (at y=-h) (2.6)

where the hat and the underline bar denote variables at the free surface and at the
bottom, respectively.
The momentum equations can be converted into an equation for (4, () as in Wu

(1997). For an arbitrary flow variable f(z,y,t), it assumes its free surface value

f(.’]?, C(.’I?,t),t) = f(SC, t)’ (27)

and we have for its derivatives, by the chain-rule, the following relations

3 _ of 2 _ of
8tf($at) - (atf + a_y at<)1y=(;’ aa:.f(w’t) - (Quf + ay 6z§)‘y=(:' (28)
From the above relations we readily deduce, under condition (2.4), that
d| (05, 00, 0
dthc = (Bt e Y 3y>y=¢
A o o R R
= fi+a fo— [a—f G+ Cw—v)]
Yy y=¢
= (0, +10,) f=Df, (2.9)
with operator D defined as
D=208,+10,. (2.10)

Using these relations, we can project the horizontal momentum equation (2.2) onto

the free surface so that

Op

pDi=—0,p| = —(0,p— 6_y‘y=<; Cx)-

e (2.11)

Combining this equation with the vertical momentum equation (2.3) and conditions

(2.4) and (2.5), we have the momentum equations projected onto the free surface as

Gy + 10 Gy + [g + D?¢] ¢ = 0. (2.12)
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This provides an equation for (4, () at the free surface. Although (2.12) involves,
superficially, only the variables pertaining to the water surface, it actually has in-
corporated the vertical momentum equation as well as the kinematic and dynamic
conditions at the free surface to yield this equation of an overall equilibrium as pointed
out by Wu (1997). Moreover, it is exact. In addition, the kinematic condition at the

free surface is as before,

=D(=(+1 G, (2.13)

(&)

So far we have two exact equations that can facilitate modeling time-evolving,
two-dimensional, fully nonlinear and fully dispersive water waves, one being the free-
surface kinematic condition (2.13) involving (4, 0, ¢), and the other being the surface
projected momentum equation (2.12) for (4, (). Closure of this system now requires to
find a third equation that relates the three variables (i, 9, (). When it is so closed, the
new system will comprise the basic variables (4, 9, ), which are of (1+ 1)-dimensions
in (z,t) instead of the (2 + 1)-dimensions in (z,y,t) for the underlying Euler system
(2.1)-(2.3). Further, it is important to note that equations (2.12)-(2.13) hold valid
regardless of whether or not the flow is irrotational. In this study, however, we
shall only consider irrotational water waves so that there exists a velocity potential,

é(z,y,t), such that u = ¢, v = ¢, and, by (2.1), it satisfies the Laplace equation

With this equation, closure of (2.12) and (2.13) can be accomplished either in dif-
ferential form by finding a series expansion of the velocity potential ¢ or in integral
form by adopting a boundary integral equation pertaining to (2.14). The closure in
differential form will be investigated in this section by performing a series expansion
of the velocity potential. The equations will first be scaled to dimensionless form and
a series expansion is performed to provide a closure to (2.12) and (2.13). The integral
form can provide a method for directly performing numerical computations of exact

solutions in the Euler context, as will be studied in section 2.2.
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2.1.1 The basic equations in dimensionless form

The same dimensionless variables as those used in Wu (1979) for a single-layer system
are adopted here to scale the basic equations in dimensionless form. In the following,
* indicates a dimensionless variable, A is a characteristic wavelength, ¢ = /gh is the
wave speed of linear waves on water of depth h, and € = h/A.

We scale the horizontal length by A, the vertical length by h, time by A/c, the

velocity potential by cA, and the velocities (u, v) are scaled by (c, ec) since
vV~ UE (2.15)
according to the continuity equation. Thus we have

z=z"A (4, =E"¢)h t=t"Ac,
p=0¢%cA, u=u'c, v=ev'ec (2.16)

Substituting (2.16) into (2.12)-(2.14), and omitting the superscript *, we obtain

the Laplace equation in dimensionless form as
by + € bz = 0, (2.17)
and the free-surface projected dynamic equation as
Gy 4 Gty + [1 + €D*¢)¢, = 0. (2.18)
The kinematic equation at the free surface remains unchanged, namely,
b=D¢=¢ + 0l (2.19)
The boundary condition at the bottom now becomes

v=0, aty=-1 (2.20)
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2.1.2 The series expansion of ¢; closure in differential form

We now seek a series solution of (2.17), (2.18) and (2.19) under condition (2.20). To
begin with, we tacitly assume € to be small (0 < € < 1), which applies to the general
class of long waves (with A < )), so that the velocity potential takes the following

series form:

P(x,y,t;€) = i dn(z,y,1) €. (2.21)

n=0

Substituting (2.21) into (2.17), we have

(¢O)yy = Oa (¢n)yy = _(¢n—1)zm, (’I’L = l, 2, 3, .. ) (222)

Integrating this set of recurrence equations and applying the boundary condition at

the bottom, (2.20), we can write the solution for ¢ as:

T L] (2.2)

n=0

From this expression for ¢, we can compute the horizontal velocity at the bottom as

u(z,t) = a%¢|y=—1 = d%qbo(w,t), (2.24)

and the velocity conponents at the free surface by

d 00 1 2n d2n

i) = g = 3 (1" EET ), (225
1d 00 12n—1 d2n—1

ot) = grpthec= 3 (0 I By, a9

Here, 4 and % are unique functions of (u,({) as determined by (2.25) and (2.26).
Finally, by examining the validity of this solution, we find that the original assump-
tion of € being small can be relaxed provided u and all its derivatives exist and are
bounded within the flow domain because then all the series in (2.23)-(2.26) converge
absolutely and uniformly with an infinite radius of convergence. Upon substituting

these relations for @ and ¢ into (2.18) and (2.19), we obtain the model equations for
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evaluating fully nonlinear and fully dispersive gravity waves on water of uniform depth
in terms of (u, (). This model will be used to determine the solutions to higher-order

for solitary waves in chapter 3.

2.2 Closure of the system in integral form

Instead of using a series solution of ¢ given above for closure, we may also adopt
the solution expressed in terms of a boundary integral to close the basic equations
(2.12) and (2.13). The integral closure equations are useful for direct applications to
numerical computation.

For two-dimensional irrotational water waves, the complex velocity w(z,t) =
u(z,y,t) —tv(z,y,t) is an analytic function of the complex coordinate variable z =

x+1 y at any time instant ¢, where 7 = 4/—1, and we have Cauchy’s integral formula,

ez 1) = § w(z,?)

o0 22—z

d, (2.27)

where the contour is counterclockwise along the boundary D of the flow domain D,
Q=2nfor z € D, Q =x for z € 9D (which is assumed to be a smooth contour),
and Q = 0 for z © D + 0D. Further, for z € 9D, the integral assumes its Cauchy
principal value.

By virtue of condition (2.20) for the special case of a horizontal bottom at hand,

the flow domain D can be continued analytically by Schwarz’s principle of symmetry,
w(z* — 2i) = w*(2), (2.28)
with * denoting the complex conjugate, so that for z on the free surface,

’U,(J}, C) = u(m’ _C - 2)’ v(w7 C) = —’U(.’E, _C - 2)7 (229)
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here with D continued to its extended domain
De:(—2—(<y<(,—00<z<00).

Consequently, we may revise the original boundary 0D into 0D,, the boundary of
D,, thus curtailing the need of calculating velocity u(z) = u(z, —1) on the horizontal
bottom. In fact, taking D, either as a single cell in case of a periodic flow (e.g.,
cnoidal-type waves), or as the entire flow field of a local wave, so that its boundary
0D, consists of four parts as shown in Figure 2.2. The contributions from the two
vertical paths cancel by virtue of the flow being periodic or assumed at rest at infinity.
The remaining line integrals along the free surface and its image may be written, on

account of the symmetry, as

o0 A/ n o0 * AI ~ %

i w(z) = / W) g 5 / _w@) o (2.30)
—o0 Z— 2/ —o0 Z—z 424

where 2 =z + 1 {(z),w(2) = @ — 70. Either the real, or, alternatively, the imaginary

part of (2.30) is sufficient to provide the required closure equation to join (2.12) and

(2.13) in constituting the complete model system.
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Figure 2.1: A sketch of a one-layer fluid system with a flat bottom.
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Figure 2.2: A sketch of the extended domain for a one-layer fluid system with a flat
bottom.
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Chapter 3 Higher-order solitary waves

The weakly nonlinear and weakly dispersive theory has been adopted to study soli-
tary waves over a long history, Boussinesq (1872) and Rayleigh (1876) found the
hyperbolic-secant-squared solution for the free surface elevation. Laitone (1960) used
the method of Friedrichs’s (1948) to obtain the second-order solution. Chappelear
(1962) and Grimshaw (1970) found the third-order solution. In these studies, the free
surface elevation and a different version of the velocity (such as the velocity on the
bottom used by Rayleigh (1871), and the depth-mean velocity used by Boussinesq
(1871) and Korteweg and de Vries (1895)) are used as the basic unknowns to estab-
lish the asymptotic theory. Wu (2000) provided a unified theory for evaluating fully
nonlinear and full dispersive water waves which has the WNWD model as a special
case. He recovered the first three-order solutions for solitary waves, using the surface
elevation and the horizontal velocity at the free surface as the basic unknowns and
yielding results in agreement with the previous contributions. Finding the properties
of a higher-order asymptotic theory for solitary waves and studying the convergence
of higher-order solutions to a fully nonlinear flow model is an interesting problem to
which the answer could illustrate a theoretical proof of existence of solitary waves in
asymptote to the Euler equations. For steady solitary waves, Fenton (1972) developed
an exact operator equation to calculate the coefficients of an assumed series form of
solution to give a ninth-order solution. With convergence improvement techniques,
refined approximations were obtained numerically, including the solitary wave profile,
wave speed, and other physical quantities. This solution has been subsequently fur-
ther numerically extended by Longuet-Higgins & Fenton (1974) to 14th-order. So far
no exact asymptotic theory by systematic analytic expansion has been known to exist
for the solitary wave of order higher than the third. In this chapter, we study the
higher-order solitary waves using the differential closure form developed in the last

chapter. We provide a reductive perturbation method to construct exact higher-order



18
asymptotic solitary wave solutions in the parametric family of Boussinesq, namely,
by (o = €2), see equation (3.3). This method can provide perturbation solutions to
arbitrary higher order. A general solution is obtained up to O(a*®) by applying this
reductive perturbation method. As a result of great significance, the solution is found
to be an asymptotic solution which starts to diverge from the 12th-order so that the
11th-order solution appears to provide the best approximation to the fully nonlinear
solitary waves, nonetheless, with a great accuracy for waves of small to moderately

large amplitudes.

3.1 The perturbation method

In modeling weakly nonlinear and weakly dispersive long waves in shallow water, it

is known to be necessary to adopt two key parameters, namely
h
) = T 3.1
=2 (3.1)

representing, respectively, the nonlinear and dispersive effects for characterizing a
wave of amplitude a and typical length X in water of rest depth h. Boussinesq (1872)
found that the assumption of

a=0()«1 (3.2)

provides a well balanced role between o and ¢ for solitary waves to exist. We will
follow this assumption to find the leading and higher order solitary wave solutions,

and achieve explicit results up to order O(a!®). By assigning
a=é, (3.3)

we obtain the higher-order Boussinesq family model equations from (2.25), (2.26),
(2.18) and (2.19) as follows:

o0 2n  J2n
w(z,t) = ngo(—l)" a”«(—;—nl))!——d—c;—n u(z, t), (3.4)
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0 (<+1)2n—1 d2n——1

’ﬁ(d),t) — n;l (_l)n a1 (2n ~ ]_)l Toan I _’L_L_(l’,t), (35)
T + Uiy + [1 + aD?*¢] ¢ = 0, (3.6)
0="_C + ¢ (3.7)

For waves of (1+1)-dimension in (z,t) progressing in a uniform medium and keeping

permanent in shape, the flow is characterized by variables of the form

f(z,t) = f(6), (3.8)
where 6 is the phase function defined by

0=k (z—ct), (3.9)

in which c is an undetermined wave velocity and k is the corresponding wave number.
Both c and k are a part of the solution and they turn out to be amplitude dependent.

In this moving frame fixed with the wave crest, we have

0 d 0 d

Applying these relations in (3.4)-(3.7), we obtain the following system of ordinary

differential equations

(@@= @+ {l+ak’ [(@a-c? "+ (@-0)]} ¢ =0, (311)
b—k(@—c)¢ =0, (312

where the prime denotes the operator d/df, and

i = ) (-1)a (—(—2#18 u®, (3.13)
n=0 '
P s Rt Ty K (319
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In (3.11) we have made use of
D*¢ = D(D¢) = ¥ [(a — c)d/df]*
Equation (3.11) can be integrated once to yield

a z(“— e
C+?—cu+ak (¢H)? =

(3.15)

(3.16)

where the integration constant vanishes for solitary waves by virtue of the rest con-

ditions at infinity (or takes a certain constant for evaluating cnoidal waves). For the

free surface elevation, ¢, and the bottom velocity, u, we assume the following series

expansion,

0) = Z_:lCn(9) a”,
u(d) = iun(ﬁ) a”

(3.17)

(3.18)

Following Stokes, we further let k£ and ¢ each assume a series expansion as

k = k‘oK:ko(l—l—anan)

n=1
[o o]
c = ch a”.
n=0

(3.19)

(3.20)

Substituting these series expansions into (3.12)-(3.14) and (3.16), we obtain the fol-

lowing equations:

“—ma+imw»m4i%wm2m

n=0
~2
¢+ % cha")u-i-oz (ko (1+Zk a™))?
n=0 n=1
. oo n (C+1)2n

n (<+ )2"1
(-—1) a” @T—)—‘(ko 1+Zk a”

n=1

>
Il
M8

S
il
—

(3.21)

@ gy =0, 322)

2 g2 (3.23)

2n 1 (2n—1)’ (324)
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together with the series in (3.17) and (3.18). Grouping equations (3.21)-(3.24) to

different orders of o, we obtain approximate representations, accurate to successive

orders of a, of the exact model equations (2.25), (2.26), (2.18) and (2.19).

3.2 Higher-order asymptotic solutions for solitary
waves

3.2.1 First order—O(a)

We proceed to determine the solutions of (3.21)-(3.24), order by order. The leading
order equations of (3.21)-(3.24) to O(a) are given by

G—cou = 0, (3.25)
Co Cl —U = 0, (326)
or, in matrix form
G 0
Ly = , (3.27)
(751 0
where
1 —Co
L= ) (3.28)
co -1
For (¢1,u1) to have nontrivial solutions, we must have
1 —Cp
detL; = det =0, (3.29)
Co -1
ie.,
=1, (3.30)

of which we take

co=1 (3.31)
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for considering right-going waves (or ¢p = —1 for left-going waves). We thus have
Uy = Cla (332)

and for the velocity at the free surface, we find by combining (3.32) with (3.23) and
(3.24),

= au;+0(?) =a+0(?), (3.33)
9 = —koaui+0(a?) =—k o +0(?). (3.34)

[~

The equation for solving ¢; will come from the next step (see equation (3.38)).

3.2.2 Second Order—O(a?)

The second-order perturbation equations are found as

L2<@):ﬁ, (3.35)

Ug
where
1 -1
L2 = L= 1 1 (Wlth Co = 1), (336)
c 1 €2 _ 1 k:2 1
£ - (fm): 160 —35 G f 0 61 ‘ (3.37)
fo2 —a G+¢ - 6 ks ¢

Equation (3.35) is an inhomogeneous equation. The homogeneous equation of (3.35)
is the same as (3.27), which has a singular matrix.
Applying Fredholm’s alternative theorem, for ({2, u2) to be solvable, we required

that fo; = fo2, which yields

3 1
—%1g+§4f+§k§d:41 (3.38)
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The above equation can be integrated once to give

1 1
—a i+ G+gk Q=0 (3:39)

where the integration constant vanishes for ¢ to fall off exponentially toward infinity.
In addition, we have the boundary condition, by the assumed symmetry of {(—6) =
¢(8), that at the wave crest, where § = 0, (1(0) = 1, ¢{{(0) = 0, by which ¢, is
determined from (3.38) to give

ca=1/2. (3.40)

Solving (3.39) with ¢; = 1/2 and the condition that ¢ falls off at infinity, we obtain
¢ = sech?(6), (3.41)

with
ko = V/3/2. (3.42)

This is Korteweg-de Vries’s(1895) solitary wave. Consequently, we obtain the first

order solution as

w = C1 = 8, (343)
@ = aS+0(a?), (3.44)
b = V3aST+0(a?, (3.45)
in which we denote
S = sech?(f),
T = tanh(f), (3.46)

to simplify the notation. Finally, by (3.35), up and ¢, are related by

up =G+ G/2 - +¢/8. (3.47)
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This relation is needed for the solution in the next step.

3.2.3 The higher-order solutions

The third-order equations can be obtained by substituting the designated series ex-
pansions into (3.21)-(3.24), collecting all the terms of O(a?®) and using the solutions
of the first two orders, yielding

L, (Cs) P (fzu), (3.48)
U Ja2

where L = L, the same as (3.36), and

fi o= —(2+3k) G%/2+¢° —3¢/128+ ¢ (144 + by — G+ ('/4)
+(8G+6(¢)?—5¢ — 16k ¢ —6¢7) /16, (3.49)
fo = G*2-(0G) =G - TV /640 + (46 - 1) (/2
+(G)? /4= (1 +4ki) (/16 - G /8. (3.50)

The solvability condition for (3.48) requires that f3; = f33, which yields
2/4+ (3 & — 1) = Za(8; ¢, kn), (3.51)
where

Zo(Bic0, k1) = 2G4 —3 (1+k) G2/2—C/80+ ¢ (1+8co+4k + (V) /4
+((C)? =2 (1+3k) (1) /8. (3.52)

Upon substituting the first order solution, we have

19 3
Zo(0;c0,k1) = —(% +2ki—2c)S+3(1+k)S*— 3 S3. (3.53)
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Equation (3.51) is an inhomogeneous ordinary differential equation of which ¢, = (]
is a complementary solution (of the corresponding homogeneous equation), as can be
verified with using (3.38). We can also find another complementary solution of (3.51)

by applying the formula
=1 [ dd/i@), (3.54)

which gives

v = —6—14 sech?(6) tanh(9) (60 6 — 32 coth(8) + 16 sinh(26) + sinh(40)). (3.55)

With these two complementary solutions y; and y», we can solve (3.51) by using

Lagrange’s method to obtain
Q=+ Cry1+Co o, (3.56)
where C, C; are constants and ¥, is a particular solution,
yp = sech?(0) [21 + 40 ¢, + cosh(26) (—9 + 40 ¢;)] /40 + yp, (3.57)

Yo = 0 sech”(6) (19 + 40 k; — 40 ¢;) sinh(26)/40. (3.58)

Since y goes to infinity exponentially as |z| approaches infinity and ; is an anti-
symmetric function of 6, we see that the symmetric property of the problem and the
boundary condition that (, falls off at infinity clearly require that C; = Cy = 0. From
the condition (3(0) = 0, which follows from the definition of the wave amplitude that

¢(0) = a, we get
3

—5. (3.59)

Cy =

As yp in y, decays slower than (i, so if we further invoke that {, decays no slower

than ¢; toward infinity, yp must vanish identically, which gives

5
h=—g. (3.60)
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We therefore have

G = —1 (S — 8%, (3.61)
uy = S/4- 82, (3.62)
and
4 = aS—5a?(S—-58%/4+0(?, (3.63)
o = V3T (aS—a? (18 - 45%)/8) + O(c?). (3.64)

This is Laitone’s (1960) solitary wave of second order. We can further derive a relation

between ug and (3 from (3.48) by substituting the above solutions into f3; or f3; as
uz = (3 + sech*(8) (59 + 47 cosh(26) — 22 cosh(46))/160. (3.65)

This relation will be needed for the solution of O(a?).

We now continue to find further higher-order solutions. Suppose that the solution
has been determined up t0 (Cs—1,%n—1,Cn—1,kn—2) for n > 3. This is accomplished
by considering the n-th order equations, such as (3.48) for n = 3, and u, has been

related to (, by
Un = G+ gn(gly T aC’n—l)’ (366)

such as (3.65) for n = 3, which reduces the two unknowns, namely, ¢, and wu,, to
one, since ¢, ({1, , Ca—1) is a known function. To solve the unknown function {,, we
proceed by induction, to consider the (n + 1)st-order problem, which is determined

to be of the form

L., (C’") —f, = (f"”) (m=n+1), (3.67)

Um f m2

where Ly, = L of (3.36), (m =n+1,n > 3) and (with m =n+ 1) f,111 and foi12

involves ({1, -+, {ny U1, *,Un), of which only u, and (, are unknown. At this order
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(m = n + 1), the solvability condition for (3.67) yields two equations that can be

written as

Jat11 = fat12, (3.68)
Up+1 — <n+1 + gn+1(C1, Tty Cn) (369)

Of these two equations, (3.68) insures the (3.67) to be solvable by requiring the two
equations in (3.67) to be identical, and leaving one of them to be represented by
(3.69). It has been found that (3.68) provides, like what has been illustrated by
(3.51) for n = 2, a second-order differential equation for the single unknown ¢,, after

having used (3.66), of the following form:

F6 B 6= 1)n = ZalGa Comi ), (3.10)

where Z,(C1, * * , Ga—1; Cn, kn—1) involves ({1, -+, (1), the known solutions of the pre-
vious orders, and two unknown parameters ¢, and k,—;. That (3.70) holds valid for
n = 3,4, because the coeflicient factors for ¢, and u,, the terms of the highest
order in (3.67) (withm =n+1,n+2,---) are the same and the unknown parameters
¢, and k,, enter (3.70) in the same manner as for the previous lower orders. Under
all the same conditions as specified for the case n = 3, (3.70) can be solved to give ¢,
¢n and k,_1(n > 3), in a manner entirely the same as illustrated in detail for n = 2.

Along this approach, the equation for solving ((nt1,%n+1) again comes from con-
sidering the (n + 2)nd-order problem, for which the perturbation equations are again
found to be (3.67) with m = n+2. The solvability condition for (Cy2, Uni2) involved
in (3.67) is also found to yield the same two equations as (3.68) and (3.69), only with
n + 1 replaced by n + 2. In this way, the inductive procedure can be carried further,
except the algebra soon becomes formidable.

With a considerable amount of algebra derivation performed on a personal com-
puter by using the Mathematica code which is listed in appendix A, we have succeeded

in determining several successive leading higher-order solutions with accuracy up to
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order O(a'®) for solitary wave, of which we present the final results as follows:

G = S,

G = —3(8-8%)/4,

G = (58 —1518%+1015%)/80,

(o = —(328368 — 9312857 + 1123935* — 521015*),/24000,

¢ = (29173688 — 1168372452 + 2001361053
—17906339S5* + 66590855°) /1568000,

(s = —(1210872368S — 624954406452 + 1463844222453

—188662324888* + 133721330455° — 4105671085S5°%) /470400000,
78263417033S 3094446826693 S2

G = 32633000000 ~ 135828000000
4635672338551 8% 10592199978011 S*
67914000000 90552000000
26185456824781 S5 22060716178577S5 641898267187 S7
217324800000 310464000000 ' 34496000000

—4595761996453S  15837237746581 S?

980980000000 + 420420000000
_ 1639571505368813 83 3548497975278001 S*

11771760000000 + 11771760000000
_38744703041907118 5 334383022700383 S°

9417408000000 + 941740800000
_ 38791575861419 87 14856972755777 S8

215255040000 * 358758400000 ’
6012057610748687S 823567885217539153 S?

971170200000000 13596382800000000
7337762410742701999 S* _ 12909766370832092947 S 4

27192765600000000 18128510400000000
26496135954083452807 S° _ 6146113078456594781 S

21754212480000000 4439635200000000
63588950416860407731S”  2374720426192371311 S8

62154892800000000  5273748480000000
158703473516597379 S°

1757916160000000 ’
—310079433650349323S  247318617521872002437 S*

37822664880000000 + 2600308210500000000
_104331268739412721901"So'3 32765193698344740011081 S*

208024656840000000 + 20802465684000000000

G =

G =

ClO =




29

302809138961851981367 S5 771669987295758309025567 S
T 02868150375000000 | 166419725472000000000
24103993990685635666351S”  111872053959635337853993 S8
T 5283165888000000000 | 36982161216000000000
2218670303725981510183S°  711386192020122827249 S'°
T 1793074483200000000 | 2988457472000000000
58565881437681402143627S  17560673606750211706169879 S2
= T5120615631460000000000 119891543892120000000000
107997962125740311010503641 S8
119891543892120000000000
33036021270973081224856501 S*

9990961991010000000000
193818029032795764146835841 S° B 85943265909385488932472869 S°

23978308778424000000000 6228132150240000000000
2272916284452173574383325797S7  579890737466890138101324067 S®
137018907305280000000000 - 42628104494976000000000
550112613336919313680830793S°  347572831627170361034873 SO
78698039067648000000000 B 185827719168000000000
2979392970179667260449 S*!
19467665817600000000 ’
_ —25977155068872536912989141S = 18997841266459139776474291 52
Gz = 1798373158381800000000000 + 85636817065800000000000

37703569474833916416016881195%  35394051608772186162132343 §*

2397830877842400000000000 + 5320630646100000000000
_ 15081255530194977153653260279 S 5 40547122029260233646303394781 8°

799276959280800000000000 + 1065702612374400000000000
_234176021357688913646973793057 S T 40355081492675140691563777517 S®

4110567219158400000000000 + 599457719460600000000000
2051934435527001478787443666957S°  316262528857958861244295137133 510

30692235236382720000000000 + 5902352930073600000000000
1161623199697902546858143203 S8 31210040402884924933497423 S2
B 40882098216960000000000 4542455357440000000000  ’
_ 2117366915807038535983431301781 S
G = 95547565904825034000000000000

_177644124567465746949821384473 S 2

535280481259524000000000000
113761856683096074482514568827479 83

42465584846588904000000000000
~9871929915033938446110998172251417 St

764380527238600272000000000000
273745293400912344773796025589707 S°

6533166899475216000000000000
_2740007276264233387130124020128777 St

28310389897725936000000000000
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68550206030829879243297456928566211 S”

436788872707771584000000000000
~2305971584012617107391476854402681 S8

16845851839969152000000000000
_ 31999457878030756451557434198541 S

336153052588953600000000000
732051067846105446874612653724081633 S'°

1482434961917285376000000000000
_ 51786418975749110974511704695775813 sH

76022305739347968000000000000
892154079053997239593257442018793 S2

2027261486382612480000000000
_ 75770206774145592234568742670941 S 13

675753828794204160000000000 ’
—99149445200520349298755038931 S

1633291724868804000000000000
1305322838535372677433463350323 S*

2632164349995180000000000000
_14989086227745633190527923649221 S 3

3352546172099124000000000000
52702022309779055107507857074329 5*

2166611471764740000000000000
_ 4551120721126026930613468636757886495 5

5095870181590668480000000000000
605902417762216376866154143802306221 S°

2547935090795334240000000000000
_25748650298557272481122920435016899S 4

49235460691697280000000000000
13939606767089746805510178298884123487 S®

10191740363181336960000000000000
_9687925896614841 15641732084418536413 S?

211776423131040768000000000000
15300762043711081947499089285035475799 S1°

1235362468264404480000000000000
_2644085152078587505358024303367012623 S 1

123536246826440448000000000000
1662500505933916742709540886313990621 S12

76022305739347968000000000000
_ 813956989367676036459810330026423033 S 13

67575382879420416000000000000
62063599234209399344990904890203947 S+

22525127626473472000000000000 ’
480679968338849799680888066043886427 S

1137016034267417904600000000000000

Cu =

G5 =
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_ 1785377216671669330715893860542806501 S?

2274032068534835809200000000000000
8347688324284894241997564883054795393 53

1137016034267417904600000000000000
~202990140210360708284437919887230309701 St

4548064137069671618400000000000000
477327645576896488436344556254345241137 S®

2598893792611240924800000000000000
_ 196101384977498367 98430534747226914198277 S°

36384513096557372947200000000000000
4513025407887164451395762372181295069931 87

5197787585222481849600000000000000
136091121835171823629081045277390651162543 S8

36384513096557372947200000000000000
_ 26406452121982516294514624429337146147123 S°

612791799520966281216000000000000
10346848645799261402823286404556139503082117 S0

52922928140447087923200000000000000
_ 113815708057848838015836065036274631096995 1
22558792898741299200000000000000
3574606001659914568240385348269834050875309 512
4565899682705238958080000000000000
~ 112567365097762622115066216801549651821051 St
156099134451461160960000000000000
765463262574592321617888290479523177093 S**

2108351945837916979200000000000
_ 579263066809367609441168301389300507881 S 15

71
7529828377992560640000000000000 ’ (3 7 )
and
Uy = ‘Sa
Us = 8/4 - 82,
5T 40 5 5’
—-9438 T1578% 1518% 1978¢
Uy = + + - )

2625 6000 750 125
w — 61891 S + 338399 S? _ 318823 83 _ 8891 §* + 13438 8°
® 7 588000 588000 147000 36750 6125 ’
—27895737S 6090013 S? _ 12457867 83

215600000 14700000 14700000

Ug =



Ur

Ug

Ug

U0

U1

U12
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136711518* 7177385 _ 295102 S°

3675000 ' 183750 91875
440540765238 2342717201 8% 46530081023 S3

588588000000 16978500000 + 33957000000
226064327 S* 259280221 8°  808562128° 127483816 S

176859375 42446250 75796875 + 25265625
—227324509157S 249410423 8% 485243015347 S3

1471470000000 + 21560000000 * 735735000000
_29896015563173 S* 19767139409 S° 148445086843 S©

8828820000000 12262250000 + 18393375000
746928838 S7 _ 205847123 S8
140765625 21896875 ’

6041201332267921S  491544641657249 S* _ 30936968270777 S*

66039573600000000 + 4532127600000000 94419325000000
36091159492204498*  935163163716097 S° 3126148057731 S

~2266063800000000 + 113303190000000 481731250000
590608127509 S” _ 2236629577529 S8 + 204822459482 S°
41688281250 53647343750 7315546875 '

—7412231802809876437S  1148554214829763649 S2

45171068342400000000 20802465684000000000
7329171852702117783  1932388545406550471 S*

~260030821050000000 + 1300154105250000000
2510464250379877273S8%  69732639412783842331 S8

472783311000000000 1300154105250000000
260524552562296559 87  149850874195751467 S®

1289835421875000  347263382812500
890305415130853 S° _ 6134359551506462 S0

1954296093750 34200181640625 ’
3959812931862372436932461S 705149315962562484428298071 S*

179837315838180000000000 2877397053410880000000000
38530956094842855447471514398%  1447848635066743637971622287 S*

2877397053410880000000000 319710783712320000000000
597845006830560029806244731 S° _ 3957875077567014114069158563 S°

57547941068217600000000 234889555380480000000000
32012122972465151142318060079 S” _23947417502676364537483603229 S8

1644226887663360000000000 1534611761819136000000000
59636446835231714452813553 S° _ 1592970882939174775697603 St

7377941162592000000000 681368303616000000000
5144298965617376988301 S'!

19467665817600000000 ’
—22884181900902468146426563S  2573521707927708946289747 S?

41362582642781400000000000 14386985267054400000000000
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U4
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71722800672587531774803S8%  469951664986111795320629 S*

~1798373158381800000000000  1198915438921200000000000
1356493565227743117590395°  539437287823117161700856089 S°

17292049599825000000000 899186579190900000000000
65136292918139467190657899S”  117231522208387924307511187 S8
8028451599918750000000 B 2676150533306250000000
91074886767526804160921835°  14670288995247579944754017 S°
78054390554765625000 - 90062758332421875000

1113473017211252616343 S 309435718604552534242 S'2
9747051767578125 - 9747051767578125 ’

2458487570580839691440933816893 S + 32777840993854432746750576751 S?
764380527238600272000000000000 36399072725647632000000000000
189794651104802475950759750983  36430847821859231161498773173 54

7077597474431484000000000000  191095131809650068000000000000
421619775990569918721845714753S°  38694798274849362565391161067473 S°

15924594317470839000000000000  15924594317470839000000000000
42067937938784718932113590434963S87  32666606451594387704639330863 S8
853103267007366375000000000 B 83085995896312500000000

1002012021077547089497195409527S°  18808329150010338517008338992613 S1°
646290353793459375000000 B 5655040595692769531250000

143307175580196998107404067931 8™ 886673164478904658335578519 512
36250260228799804687500 B 362502602287998046875

24751607534653531604077924 S*3
40278066920888671875 ’

—57646795713239023506979134757S  24358087833416149340263671565109 S>
1976420238496704000000000000 3821902636193001360000000000000

 11616861946494308 140181473583778%  352663720849321690447088685061 S*

764380527238600272000000000000  955475659048250340000000000000
268234037854261439091722853707S°  289770185849991228398038251289147 S°

4571653871044260000000000000 29858614345257823125000000000
35542391795945085498853507182506701 S”

119434457381031292500000000000
~29250506262963232197494477279677181S 8

8531032670073663750000000000
5240765048687756053052117504638699 S°

271441948593252937500000000
_ 6780173729354445851744725056158251 S 10

113100811913855390625000000
609923127385638929220885816532097 S1!

5655040595692769531250000
_ 2434753714957295847895448055173 S 12

21750156137279882812500
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8165073957643214035493101433 S*3

131341522568115234375
_ 47991614932605940421692780525 14

335650557674072265625 ’
99760240286983946586209202240327133681 S

175858479966693969244800000000000000
33346135408891468503563107933007801 S*

568508017133708952300000000000000
51822935365189786746450513412001857 S3

4548064137069671618400000000000000
753586510506211990907606291589569 S*

284254008566854476150000000000000
1144300158117027400622722493485753 S°

8548992738852766200000000000000
_ 10970730166412325609693028761828848819S 6

284254008566854476150000000000000
36213266737539729062197280786399385781 57

20303857754775319725000000000000
_ 520655245153827458654882340512376346229S 8

17765875535428404759375000000000
51138528525707515811137785168897574559S°

222073444192855059492187500000
_ 100682582109711631254370669451757295031S 10

100942474633115936132812500000
194477980379589394750184012568381257 S1*

76125546480479589843750000
_1078929333109362472789014830093184481 S 12

272148828667714533691406250
12765469185453604609350042043641394 13

3489087547021981201171875
_ 8056403686469674361696794559164 5 14

4363457249762939453125
174602377178954615144538764828 S1°

445250739771728515625

U1s

(3.72)

The wave speed and the corresponding wave number are found to be

_ +g 3 3a? N 3a3 3 309 ot N 12237 a® 3 3843597 o
€= 2 20 56 5600 616000 112112000

54122199  105542372307a®  36794935644933 o°

+5605600000 ~ 3811808000000 * 5069704640000000
226367085036921 '®  42146295271439485251 o't

 6560794240000000 + 897844691744000000000
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—66468964361507965444371 o' 2801444532459206080407141 o*3

233439619853440000000000 + 1485524853612800000000000
2276111392948716336942289071a'*  169669920902917515606554781378279 v'®

135304979514995200000000000 | 950552400300863360000000000000
(3.73)

)

and

k= -2‘/-3- K (3.74)

with

5a Tla? _ 100627a®  16259737a* 7606868327 o®

K = 1=+ 95 ~ 70200 T 28672000 ~ 12615680000

2295736286537  3520701528401577  97977609247836695759

3673686016000  524812288000000 + 139893963489280000000
80834051070869584798941a®  547613752949898593705546931 o*°

~106319412251852800000000 + 654927579471413248000000000
—41265105837303292132009447371 !t 5561140407985801031237128721437717 o'

35443139594923540480000000000 * 1754577182507094947921920000000000
_ 12604865268336369242366092375385011 all

610287715654641721016320000000000
1166511052815111141875247523312809421566839 1 -

5698866688783044390850396160000000000000

The horizontal and vertical velocity, @ and 9, at the free surface can be easily found

by substituting ¢, u and k into equations (3.23) and (3.24) as followings:

15 .
4 = Zﬁ”‘ a',
=1
15 .
b= 3 #a, (3.76)
i=1
with
’&'1 = Sa
Gy = —5(S—8?)/4,

i = E_18182+8183
5 7 B 80 80 °
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—24247S 713382 11734383 19717 8%

- - ;

10500 1500 24000 8000
19682295 6299449 S? 185661138%  60318043S* 7039717 S5

538000 588000 1176000 4704000 1568000
10258204875 11568316735 957317395 |

215600000 * 58800000 2400000
5477656007 S* 289813219985 868289447 S°

117600000 94080000 + 94080000 ’
485464036511S 9389235949061 82  24557834890219 S3 B 25775626539427 S*

73573500000 271656000000 + 271656000000 181104000000
7451559431803 S° _23907683834627 S n 2050928559661 S”
54331200000 310464000000 103488000000 ’
—6684013529131S ~ 12378279119963S5?  4509478377283301 S*

735735000000 + 210210000000 2354352000000
268961910004833418*  458004232347899S8°  56726638803047 S°

70630560000000 941740800000 + 142688000000
_ 3129030529573391 8™  15632609830171 8%

16144128000000 + 358758400000
812016688229161861S  440253722638311941 S?

66039573600000000 4532127600000000
3465687373367774293S®  33618651644029768609 S*
9064255200000000  36257020800000000

430759350459058007S8°  2074369672798910203 S°
290056166400000  1294893600000000
35321698432480341923S8"  855757535179651087 S8
31077446400000000  1757916160000000
511058488424380537 S°
5273748480000000 ’

—746496831692783015983S ~ 107246136385333386019 S

45171068342400000000 + 687684816000000000
_1212£~)520455273()52774951S3 175265341150427312340869 S*

16641972547200000000 + 83209862736000000000
_ 1360564477278037917883423 S 5 1835534641689369733414469 S°

332839450944000000000 + 332839450944000000000
_ 54795175457359600300397 87 243954726993961958706911 S8

10566331776000000000 + 73964322432000000000
_2327220363579556779713 S%  2165911414129128627397 S0

1793074483200000000 + 8965372416000000000 ’
3959812931862372436932461S  705149315962562484428298071 S?

179837315838180000000000 2877397053410880000000000
3853095609484285544747151439 5% 1447848635066743637971622287 S*

2877397053410880000000000 319710783712320000000000
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597845006830560029806244731 S° _ 3957875077567014114069158563 S°

57547941068217600000000 234889555380480000000000
32012122972465151142318060079S”  23947417502676364537483603229 S®
1644226887663360000000000 B 1534611761819136000000000
59636446835231714452813553S8°  1592970882939174775697603 S1°
7377941162592000000000 B 681368303616000000000

5144298965617376988301 S'!
19467665817600000000 ’

. —2447326636812357388701234341S  1359625450953015707692407997 S*

w2 = 82725165285562800000000000 + 3596746316763600000000000
_10560823416262’)92219271840582753 10502997363249431655379217833 S*

4426764697555200000000000 + 1128391001337600000000000
_ T133924275094882819721246773395 > 7301481607736444286465199831 S°

28773970534108800000000000 + 153871500182400000000000
~2222952391000580819804362479371 S7  523705518937247583173944121851 88

32884537753267200000000000 + 6975508008268800000000000
_ 87751960412838781830019299293 S ®  74631891677959496264481154597 S0

1278843134849280000000000 + 1475588232518400000000000
_93930511236424705005796063 S 241429174919235920523076517 S*2

3716554383360000000000 + 40882098216960000000000  ’
_32694590412237056000626350631903S  20924450210399274255609971638829 52

Y18 = T764380527238600272000000000000  36399072725647632000000000000
234431494326319473884101083605467 S*

56620779795451872000000000000
_ 112673371574661653655550039321341151 St
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(3.78)

Returning to dimensional form, we have the first 11th-order solitary wave solution,

given by

15

¢ = Y a"G(¥)+0(a"), (3.79)
n=1

u = i a™ u,(0') + O(a), (3.80)
n=1

a4 = i a” 1, (8') + O(a'®), (3.81)
n=1
15

b = Y a" (0)+0(a), (3.82)
n=1

(3.83)
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where

1 et
9’=§\/3aKxhc, (3.84)

in which ¢ and K are the same as (3.73) and (3.75).

It is found that for S(;litary waves the 14th-order solutions of Longuet-Higgins and
Fenton (1974) and the present 15th-order solution by asymptotic expansion analysis
are in complete agreement, with the same results for the wave speed to O(a'*) and
for the wave profiles to O(a®), there being a lack of corresponding data for the latter.
A result of great significance is the finding that the series expansion shows to diverge
starting from the 12th-order term. Numerically, this implies that the present series
expansion is not convergent, but can provide an optimum approximation at the 11th-
order, with a maximum relative error generally negligible in comparison with the
corresponding exact solution, except possibly when the wave amplitude is in a very
small neighborhood of the highest solitary wave, as will be illustrated in the example

provided in next section.
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Figure 3.1a: Comparison between the free surface elevation of the fully nonlinear
solution and that of the weakly nonlinear asymptotic solutions for solitary wave of
amplitude a = 0.70. (p: The fully nonlinear solution computed by the method of
Wu & Kao. (,: n-th order asymptotic solution. Notice the different scales in Figures

(3.1a)-(3.1d).
3.3 Comparison of the higher-order solutions with
the fully nonlinear solutions

In this section, we compare the higher-order asymptotic solutions with the fully non-
linear solution for solitary waves. Wu & Kao (2000) have obtained numerical results
for steady solitary waves using the fully nonlinear equations for the complex velocity
potential. They analyzed the singular behavior of the analytic solution at physical
infinity and had the singularity removed by introducing appropriate terms raised to
irrational powers to the original power-series solution, yielding improved results which
are limited by a maximum local error less than 107%. In Figures (3.1a)-(3.1d), we
compare the asymptotic solutions to various orders with the fully nonlinear solution
for solitary wave of amplitude @ = 0.7. The difference between the exact solution and
the higher-order asymptotic solutions decreases with increasing order of the asymp-
totic approximation before the series diverges at 12th-order. The difference is almost

undetectable at the 11th-order for waves with moderately large amplitudes such as

shown in Figure (3.2) for o = 0.7.



46

0.02

\ ——  5Sth oreder
\ --- 6th order

I bt 7th order | |

[ R 8th order

0.015F !

0.011

0.005

EatoS

-0.005-

-0.01F

~0.015 ! ! L L 1 1 . L
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3.1b: Comparison between the free surface elevation of the fully nonlinear
solution and that of the weakly nonlinear asymptotic solutions for solitary wave of
amplitude o« = 0.70. {p: The fully nonlinear solution computed by the method of

Wu & Kao. (,: n-th order asymptotic solution. Notice the different scales in Figures
(3.1a)-(3.1d).
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Figure 3.1c: Comparison between the free surface elevation of the fully nonlinear
solution and that of the weakly nonlinear asymptotic solutions for solitary wave of
amplitude o« = 0.70. (p: The fully nonlinear solution computed by the method of

Wu & Kao. (,: n-th order asymptotic solution. Notice the different scales in Figures
(3.1a)-(3.1d).
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Figure 3.1d: Comparison between the free surface elevation of the fully nonlinear
solution and that of the weakly nonlinear asymptotic solutions for solitary wave of
amplitude @ = 0.70. (p: The fully nonlinear solution computed by the method of
Wu & Kao. (,: n-th order asymptotic solution. Notice the different scales in Figures
(3.1a)-(3.1d).

We use the infinity norm to measure the error of the nth-order asymptotic solution

with respect to the fully nonlinear solution, i.e.,

error(¢a) = [I¢€™ = ¢olloo = weg’g\g’(w) 1™ (z) — Co()| (3.85)

where (™ = Y7 oi(; is the nth-order asymptotic solution and (o is the exact
solution. The numerical results of the error of the asymptotié solution accurate
to successive orders for waves of various amplitudes are listed in table 3.1. The
asymptotic series show to have a rapid convergent rate for waves of small amplitudes
before the series diverges at 12th-order.

Variations of the wave speed of solitary wave with amplitude have been computed
using (3.73). The relative error of the wave speed predicted by the asymptotic theory

to various orders is defined as
err(c™) = (c™ - ¢)/c (3.86)

where ¢™ = ¢y +acy + -+ + a™c, is the wave speed of the nth-order asymptotic
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order o

0.2001 | 0.3001 | 0.4001 | 0.5001 | 0.6000 | 0.7000 | 0.8095 | 0.833199---

1 7.12e-3 | 1.40e-2 | 2.12e-2 | 2.76e-2 | 3.18e-2 | 4.00e-2 | 1.18e-1 1.42e-1
2 2.92e-3 | 1.01e-2 | 2.49e-2 | 5.06e-2 | 9.18e-2 | 1.55e-1 | 2.63e-1 2.88e-1
3 2.76e-4 | 1.30e-3 | 3.70e-3 | 7.83e-3 | 1.32e-2 | 1.76e-2 | 7.49e-2 9.86e-2
4 | 8.99%-5 | 6.88e-4 | 2.97e-3 | 9.47e-3 | 2.52e-2 | 6.06e-2 | 1.52e-1 1.78e-1
) 1.60e-5 | 1.75e-4 | 9.23e-4 | 3.24e-3 | 8.57e-3 | 1.77e-2 | 5.41e-2 7.75e-2
6 4.23e-6 | 6.60e-5 | 4.80e-4 | 2.26e-3 | 8.52e-3 | 2.84e-2 | 1.03e-1 1.29e-1
7 | 6.16e-7 | 2.09e-5 | 1.95e-4 | 1.09e-3 | 4.24e-3 | 1.25e-2 | 4.31e-2 6.60e-2
8 | 4.6le-7 | 7.26e-6 | 9.29¢-5 | 6.50e-4 | 3.19e-3 | 1.41e-2 | 7.52¢-2 1.01e-1
9 2.73e-7 | 2.27e-6 | 3.70e-5 | 3.28e-4 | 1.85e-3 | 7.49e-3 | 3.65e-2 5.90e-2

10 | 2.93e-7 | 7.80e-7 | 1.83e-5 | 1.88e-4 | 1.31e-3 | 6.90e-3 | 5.54e-2 8.02e-2

11 | 2.84e-7 | 2.30e-7 | 7.48e-6 | 9.50e-5 | 7.65e-4 | 4.21e-3 | 3.85e-2 6.11e-2

12 | 2.86e-7 | 2.53e-7 | 8.16e-6 | 1.18e-4 | 9.54e-4 | 4.62e-3 | 2.52e-2 3.94e-2

13 | 2.85e-7 | 6.84e-7 | 3.09e-5 | 5.83e-4 | 6.3%¢-3 | 4.83e-2 | 3.38e-1 5.00e-1

14 | 2.86e-7 | 1.97e-6 | 1.17e-4 | 2.75e-3 | 3.57e-2 | 3.00e-1 | 2.51 3.94

15 | 2.85e-7 | 6.71e-6 | 5.29e-4 | 1.54e-2 | 2.43e-1 | 2.55 23.2 36.0

Table 3.1: The relative errors of [¢(™ — (o|mae, Where ¢ is nth order asymptotic
solution of ¢ and (p is the fully nonlinear solution, for various wave amplitude a.

solution and c is the exact solution given by Wu & Kao (2000). The numerical results
for this error are listed in table 3.2 which indicates that the higher-order solutions
agree well with the exact solution for waves of moderately high amplitudes before the
series diverges.

Further, to test how well the higher-order asymptotic solutions approximate the
fully nonlinear solitary wave, we use the solutions of different orders, all starting
with the same initial wave of amplitude oo = 0.6 to compute its unsteady asymptotic
limit using the method which we will discuss in the next chapter. The numerical
evolutions of the free surface resulted from starting initially with the solution of a
given order of the asymptotic theory generally exhibit how well the theory of that
order approximates the corresponding fully nonlinear solution. If the initial wave
profile and wave speed provided are taken from an exact solution, the free surface
elevation should be expected to propagate with the shape remaining unchanged if the
error is indiscernible. The results indicate the degree of a broad agreement between

the higher-order asymptotic solutions up to 11th-order and the corresponding fully
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order «
0.1761 | 0.2867 | 0.4074 | 0.5252 | 0.5837 | 0.6970 | 0.8001 | 0.8114 | 0.8241

1 4.07e-3 | 1.01e-2 | 1.93e-2 | 3.09¢e-2 | 3.79e-2 | 5.51e-2 | 8.18¢-2 | 8.69e-2 | 9.33e-2
2 -2.22e-4 | -8.02e-4 | -1.77e-3 | -2.90e-3 | -3.18e-3 | -1.95e-3 | 7.64e-3 | 1.05e-2 | 1.44e-2
3 4.82e-5 | 3.13e-4 | 1.29e-3 | 3.44e-3 | 5.38e-3 | 1.22e-2 | 2.88e-2 | 3.26e-2 | 3.76e-2
4 -7.97e-7 | -1.66e-5 | 7.58¢-6 | 1.34e-5 | 2.32e-4 | 2.05e-3 | 1.14e-2 | 1.41e-2 | 1.79e-2
5 2.31e-6 | 1.74e-5 | 1.96e-4 | 6.62e-4 | 1.31e-3 | 4.61e-3 | 1.64e-2 | 1.95e-2 | 2.37e-2
6 1.37e-6 | 5.72e-7 | 6.36e-5 | 7.41e-5 | 2.24e-4 | 1.53e-3 | 9.45e-3 | 1.20e-2 | 1.54e-2
7 1.41e-6 | 1.93e-6 | 7.88e-5 | 1.61le-4 | 4.03e-4 | 2.13e-3 | 1.10e-2 | 1.37e-2 | 1.74e-2
8 1.39e-6 | 8.14e-7 | 6.11e-5 | 3.01e-5 | 1.04e-4 | 9.28e-4 | 7.42e-3 | 9.68e-3 | 1.28e-2
9 1.39e-6 | 8.98e-7 | 6.30e-5 | 4.81e-5 | 1.50e-4 | 1.15e-3 | 8.18¢-3 | 1.05¢-2 | 1.38e-2
10 1.39e-6 | 7.83e-7 | 5.93e-5 | 3.11e-6 | 2.24e-5 | 4.18¢e-4 | 5.31e-3 | 7.24e-3 | 9.93e-3
11 1.39e-6 | 8.28e-7 | 6.13e-5 | 3.53e-5 | 1.23e-4 | 1.11e-3 | 8.43e-3 | 1.09e-2 | 1.43e-2
12 1.39e-6 | 7.51le-7 | 5.63e-5 | -6.72e-5 | -2.34e-4 | -1.82e-3 | -6.72e-3 | -7.04e-3 | -7.37e-3
13 1.39e-6 | 8.98e-7 | 6.99¢-5 | 2.8%9¢e-4 | 1.15e-3 | 1.17e-2 | 7.36e-2 | 8.93e-2 | 1.11e-1
14 1.39e-6 | 5.22e-7 | 2.05e-5 | -1.38¢-3 | -6.05e-3 | -7.23e-2 | -4.99e-1 | -6.07e-1 | -7.57e-1
15 1.3%e-6 | 1.67e-6 | 2.34e-4 | 7.92e-3 | 3.85e-2 | 5.49e-1 4.37 5.39 6.83

Table 3.2: The relative error of the wave speed, (™ /c — 1), where ¢® is the wave
speed of the nth-order asymptotic solution and c is the wave speed of the fully non-
linear solution.

nonlinear solution.

In most of the cases, the solutions of the 5th-order asymptotic theory can provide

a very good approximation to fully nonlinear waves with a relative error of O(1072)

for waves of amplitudes up to 0.7.
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Figure 3.2: Comparison between the free surface elevation of the fully nonlinear theory
and that of a higher-order weakly nonlinear theory for solitary wave of amplitude
a = 0.70. Dotted line: fully nonlinear theory, solid line: the 11th asymptotic theory.
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Figure 3.3a: Evolution of the free surface elevation computed by the time-marching
method for the unsteady fully nonlinear theory started with the free surface elevation
and initial wave speed and computed by the 1st-order asymptotic theory for a solitary
wave of amplitude 0.6 as the initial condition. Top: The history of the free surface
elevation from t=0s to t=45s. The time interval between two crests is 5s. Middle:
Magnified view of the free surface elevation at t=45. Bottom: Variation of the wave
crest height with time.
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Figure 3.3b: Evolution of the free surface elevation computed by the time-marching
method for the unsteady fully nonlinear theory started with the free surface elevation
and initial wave speed and computed by the 5th-order asymptotic theory for a solitary
wave of amplitude 0.6 as the initial condition. Top: The history of the free surface
elevation from t=0s to t=45s. The time interval between two crests is 5s. Middle:
Magnified view of the free surface elevation at t=45. Bottom: Variation of the wave
crest height with time.
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Figure 3.3c: Evolution of the free surface elevation computed by the time-marching
method for the unsteady fully nonlinear theory started with the free surface elevation
and initial wave speed and computed by the 11th-order asymptotic theory for a
solitary wave of amplitude 0.6 as the initial condition. Top: The history of the
free surface elevation from t=0s to t=45s. The time interval between two crests is 5s.
Middle: Magnified view of the free surface elevation at t=45. Bottom: Variation of
the wave crest height with time.
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Chapter 4 Numerical scheme for fully

nonlinear shallow water waves

In this chapter, two boundary integral methods, the FNFD and the Point-vortex
methods, are developed for computing time-dependent, fully nonlinear, two-dimensional
shallow water gravity waves. Boundary integral methods have been used extensively
for calculation of various sorts of flow motions, especially those with free interfaces.
The key feature of boundary integral method is that only the quantities on the bound-
ary surface of a flow domain need to be computed. Among the variants, the Lagrange
markers are commonly used for performing computations. The Lagrange markers
method can provide automatically adaptive mesh, a method which is efficient, but
has a disadvantage that the markers invariably tend to move together to cause cluster-
ing about boundary points of large curvature of the local surface, such as at the crest
of a large wave. In such case, the calculation must be stopped and the markers be
duly rearranged by some interpolation method to facilitate continuing computation.
The FNFD method is based on the integral closure equations mentioned in chap-
ter 2 using an Euler-like mesh to avoid the problem of clustering. The FNFD method
is very stable and efficient for computation of the asymptotic properties of solitary
waves of large amplitude, even those very close to that of the highest wave which
has an inner angle of 120° at the wave crest. In addition, to take the advantage of
using the adaptive mesh for comparison with the FNFD method, we perform parallel
computations by employing the Point-vortex method with using the Lagrange mark-
ers. The latter method is an extension of the method of Beale, Hou and Lowengrub
(1996) for deep water waves. We modify their scheme by adding a bottom-effect term
for computing fully nonlinear shallow water waves. The Point-vortex method will be
used to compute waves of moderately large amplitude, especially for the computation

of wave-wave interactions.
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4.1 The FNFD numerical method

4.1.1 The basic equations for unsteady fully nonlinear shal-

low water waves

For the purpose of computation, it is advantageous to project the flow velocity into
components proportional to local tangential and normal components. Viewed in these
coordinates, as found earlier (e.g., Beale et al. 1996), the most singular terms cancel
out to the highest order retained in the theory, and the behavior of the linearized
equations qualitatively resemble that for the case near equilibrium. So we adopt a

pair of new variables at the free surface,

Us =T+ (py, Up=10—17 (g, (4.1)
which has the inversion
. Us— Uy . Up+Us
G = == Rz" S st z, (4.2)
where
2 2 o~ A A d2 -
RE=1+( =72 2 (zz:d—£=1+z(x), (4.3)

and * denotes the complex conjugate so that u;/R and u,/R are the tangential and
(outward) normal components of the flow velocity at the free surface. The complex

velocity, written in term of u, and u,, becomes
W=10—70=——on" (4.4)

With the new unknowns ((,us,u,), (2.12), (2.13) and (2.30) can be rearranged to

produce a set of exact model equations as

e = = [C+ 5 (62— w2 = 2uunGa)| (46)
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Tun(z,t) = % [ w[z )z z) )] fus(s) — i un(z')]de”

—~R / w[z(m zm(:(zc))+2][us(x')+iun(x’)]dx’, (4.7)

where 2,(z) = d2(z)/dz and only the real part of the (complex) integral equation
(2.30) is adopted. The final form of (4.5) is obvious, since {;/R is the (outward)
normal component of the velocity of the free water surface. To obtain (4.6), we may
make use of (2.13) and

D* = Do =, + 0 b, (4.8)

to rearrange (2.12) as
s n 0 o ov
(Us)tZ(U+UCx)t=——ax[C+ (u — %)+ 14 ¢,

which is readily converted to (4.6) by using (4.1). Equation (4.7) follows from using
(4.4) in (2.30) and taking its real component. In this system, (4.5) and (4.6) give the
time evolution of ¢ and us, while (4.7) closes the system. Equation (4.7) is a Fredholm
integral equation of the second kind, which is well known for its convergence and
efficiency in numerical computation for solution. We shall call the model consisted
of equations (4.5)-(4.7) the FNFD wave model and use it to study the behavior of

solitary-like waves that result from evolution of waves initially localized.

Stability analysis of the linearized system: the dispersion relationship

We next perform a linear stability analysis of the basic model equations. The re-
sult is of value for it can provide a reference criterion for constructing convergent
numerical schemes for efficient computational applications. Assuming (¢, us,u,) t0
be sufficiently smooth and small in magnitude, all of order O(e) <« 1, we find the

linearized version of system (4.5)-(4.7) as

Ct = Unp (49)
(us)y = —Co (4.10)



- 7(2“&@'. (4.11)

We introduce the Fourier transform of f(z) denoted by its calligraphic uppercase

character as

F(k) = /_oo et ¥ 2 f(z)dr, (4.12)
with the inversion
flz) = % /_ °:o & * 2 F (k) dk. (4.13)
f(z) F(k)
of/0z i k F(k)
1/ —i 7 sgn(k)
z/(z* 4+ a?) | —i 7 sgn(k) e~k
a/(z? + a?) 7 e Tkal

Table 4.1: Some Fourier transform relations.
Applying the Fourier transformation to the linear system (4.9)-(4.11) and using
the relations in table (4.1) for the integrals, which are all in convolution form, we

obtain

Z, = U, (4.14)
U = —ik Z, (4.15)
U, = —iU, sgn(k)tanh(|k]|). (4.16)

The eigenvalues of the above system, determined with all the variables taking a factor

exp(At), are readily found to be given by the following equation
A? = —ktanh(k). (4.17)

This is the linear dispersion relation derived from the basic model equations and is in

agreement with the classical linear water wave theory. We further note that this rela-
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tion plays such crucial roles in analysis of numerical stability that the corresponding

numerical scheme is necessary to be compatible with it.

4.1.2 A convergent numerical method for evaluating unsteady

fully nonlinear water waves

We proceed to derive a numerical scheme for applying the model equations (4.5)-(4.7)
to compute fully nonlinear time-evolving water waves. The numerical algorithm in-
cludes choosing an optimum difference operator for evaluating the derivatives, finding
a quadrature rule to perform the integration, selecting filters to remove errors due
to the discretization and ensure the convergence and stability of the calculation as
well as the accuracy of the result while keeping the physical information intrinsically
unaffected. There are various ways to discretize system (4.5)-(4.7) based on different
choices. However, the selections must be made all conjointly to attain a conver-
gent and accurate numerical method. We shall follow the approach of Hou (1995)
and Beale et al. (1996), who have shown, for free-surface flows in general (involving
high-order accurate singular boundary integrals as in the present case), that valid nu-
merical methods must satisfy certain compatibility conditions (between the choice of
quadrature rule for the singular integral and that of the discrete derivatives) in order
to be stable, and violation of these compatibility conditions will lead to numerical
instability. This compatibility requirement ensures that the balance of the terms at

the continuous level is preserved at the discrete level.

A numerical method for localized waves in infinite domain

We perform the numerical computation in a region, —L < z' < L, with the length
of this region 2L taken to be large enough for the water surface elevation to fall off,
from a localized (solitary-like) wave centered at the origin, to a negligible height at
the two ends (at ' = £L). To simplify the discretization of equations (4.5)-(4.7),
we scale the physical region to a computational region, —7 < x < m, by using a

scaling factor 7/L. Upon finishing the computation with using the mesh generated
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for the computational region, we can convert the result to the physical space just by
inverse scaling. From here on, 2’ and z denote the coordinate in the physical and
the computational regions, respectively. We generate a uniformly distributed mesh
by discretizing the z-coordinate in the computational region with 2N equally spaced
points z; = jh (h = w/N,j = =N +1,---,N). To make choice on the difference

operator, quadrature rule and filters, we shall employ the discrete Fourier transform,

N
Gr=h Y u(z;)etkIM™eN (kb =_N41,.--,N), (4.18)
j=—N+1

with the following inversion formula:

1 X .
u(z;) = S et B 2/EN), (4.19)

21 TN
Notice that iy is periodic in k with period 2N. A discrete derivative operator may

be expressed in terms of the discrete Fourier transform as
(Dif)k =ik p(kh)fe,  (k==N+1,---,N), (4.20)

where the weighting factor p(kh) depends on the choice of the difference operator.
For a few commonly used discrete difference operators, we refer them to Beale et al.
(1996) and cite them in the following list. For the second-order centered difference

operator, we have
sin(kh)

> 0; .
o 2 0; (4.21)

p2(kh) =

for the fourth-order centered differencing,

8sin(kh) — sin(2kh)

pa(kh) = T > 0; (4.22)
and for the cubic spline approximation,
(py=SBER)__ 3 (4.23)
PE) = "kh 2+ cos(kh) = '
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Alternatively, we may choose the spectral derivative operator, with
ps(kh) =1, (4.24)

for obtaining a spectrally accurate (of infinite order) approximation.
Filtering or smoothing of free-surface variable {(z) can be performed by multiply-

ing its Fourier transform (; by p(kh),
& = p(kh), (4.25)

where the superscript p denotes the weighting function of the filter which should
have its value equal to one for most of the relevant frequencies and decay rapidly for
frequencies at the very high end.

With this background clarified, we now derive the numerical scheme for computa-
tion of equations (4.5)-(4.7) by applying the alternating trapezoidal rule to discretize
the singular integral on the free surface and the regular trapezoidal rule to discretize
the regular integral on the image of the free surface. In this manner, we convert

model equations (4.5)-(4.7) into discrete equations, form = —N +1,---, N, as

(Cm)t = Unm, (4.26)
Ugm - u727,m -2 Usm Unm DhCm
ok = D[+ BT D] (a2
N,(j—i) odd P
TUpm = Z R [( Afhzm})) (usj — zum)] 2h
j=—N+1 Zm — Zj

N P

Dpzm .

- Z 4 'A—h—;z*— (usj +1 unj) h. (428)
j=—N+41 2 — 25+ 21

Here h = 7/N, (;(t), us;(t) and un;(t) denote the discrete representation of ((z,t),

us(z,t) and u,(z,t) at z = jh, respectively, and the superscript p denotes the filtered

variables.

When the two boundaries at 2’ = %L are taken to be open boundaries (connected
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to still water outside), we adopt a radiation condition to invoke that

0 0
d_g = :i:cod—gf, (' ==+L) (4.29)

where ¢y = v/gh = 1 is the linear wave speed for water of uniform depth, and the +
signs are vertically ordered. Basically, this radiation condition lets all linear waves go
out of the boundary to avoid numerical instability problems caused by non-physically
reflected waves. This condition has been found sufficiently effective in retaining an
overall high accuracy provided that L is taken large enough to let only waves of very
small amplitudes reach the boundary during the time period of computation. For the
purpose of computing the almost highest nonlinear unsteady waves, it is generally
necessary to let the dominant waves propagate over a long distance to reach their
permanent form asymptotically from any given initial condition. The window-shift
technique used by Wu & Wu (1982) to follow the dominant waves of interest is adopted

in this scheme.

A numerical method for periodic waves

As an alternative, we assume that the flow is periodic in x, with period 2L. This peri-
odic extension provides many advantages for developing a designed numerical scheme.
With the solutions assumed periodic, we may use the spectral differential operator
which provides a very high accuracy. The boundary condition becomes very easy
to deal with under periodicity, especially for studying the evolution of unidirection
waves, since outgoing waves simply reappear periodically in the computation region.
In this manner, the asymptotic properties of a wave can be investigated over a long
time of computation within a physical region of a relatively short length. The error
caused by this periodic extension is within the same range as that caused by trun-
cating an infinite physical region to a finite one. The error can be neglected provided
that L is taken to be large enough to allow the rapid decay rate of the kernel involved

to take its effect in the integration.
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With the assumed periodicity,

f(z,t) = f(z +2nm,t) (n==£1,£2,43,--), (4.30)

for f = ¢, us, u,, the integrals in (4.7) can be summed up to give a single integral

over the primary period. In fact,

T f© _ f(€ + 2nm)
_Zo 2(3:)-2({)d§ N /n;oo z(z) — 2( §+2n7r)d§
- £(©)
- 2 ey —m
— _/ / (25) cot [2(“’);2(5)] d. (4.31)

Similarly, the other integrals in (4.7) can also be so summed up. Thus, equation (4.7)

becomes

omun(z) = R / Z(z) cot [(Z(f”)—()—)] (us(€) — & un(€))de
B T [-OELGERD T

5 us(€) + 1 un(€))dE.
(4.32)

Therefore, with the assumed periodicity, the basic model equations are now consisted

of (4.5), (4.6) and (4.32).

For discretization of the integral equation (4.32), we again use the alternating
trapezoidal rule for the singular integral, and the trapezoidal rule for the regular

integral as before and we finally have the discrete basic equations as follows:

)t = Uni, (4.33)
dusi uZ —u2; — 2ug; Uni DhCz

- _ ; 81 ni , 4.34
dt DSt = =0rman (434
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N, (j—i) odd Z”p _ ZA}?
WU = Y>> R |Dpzcot [ = 5 L) (usj — i(un);)| 2h

j=—N+1

j=—N+1

j=N P _ Pk o
- Z R |:Dh7?i cot (%) (usj + "(Un)j)] h,

(4.35)

for computing nonlinear solitary waves with periodic expansion.

4.1.3 Consistency and linear stability at the discrete level
Consistency

We now examine the degree of how accurate the discretized equations can approximate
their continuous counterpart, equations (4.5), (4.6) and (4.7). It is well know that
the trapezoidal rule has the spectral accuracy for periodic function f(z) € C™[—, 7|
(Isaacson & Keller, 1966), namely,

™

[ f(@)do - S fla)h = O(h™), (4.36)

n j=—N+1

and is accurate to order O(h?) for non-periodic functions(Isaacson & Keller, 1966),

g(z) say,

s

[ 9(@)dz - S g(e;)h = O(h). (4.37)

—_7 J =—N+1
The alternating trapezoidal rule gives the spectral accuracy for the Cauchy-type sin-

gular integral of periodic functions,

N,(i—j) odd N N,(i—j) even n
S fl@h=2 3 f@h- Y f)@h) = [ f@)ds+O0mm),
j=—N+1 j=—N+1 Jj=—N+1 -

(4.38)

but only a second-order accuracy for the singular integral of non-periodic functions.

For the derivative operators, we note that if Dj is an rth-order approximation of
D,, then

| Déj = Ga(w5)| = O(AT). (4.39)
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Similarly, the error due to smoothing in regard to free-surface position is

&7 — ¢(@5)] = O(R"). (4.40)

If we select the spectral derivative operator and set P(kh) = 1, then r = m for periodic
functions. Put the above relations together, and we can conclude that the present
scheme is consistent and accurate to O(h™) under periodic boundary conditions and

to O(h?) for non-periodic flows.

Linear stability

Stability analysis of the numerical method for evaluating exact solution to our basic
equations, involving nonlinear singular integrals with the Cauchy kernel, is difficult,
partly due to the high frequency errors that would naturally result from the nonlin-
earity of the problem. However, the linear stability analysis should still be of great
significance since its resulting criteria for the equilibrium state could help identify
sources of instability and cast light on how best to resolve such numerical instability
problems.

From (4.26)-(4.28) we readily obtain the linearized discrete equations as follows:

((m)t = Upm, (441)
(usm)t == _Dh(Cm)’ (442)
Usj Usj(Tm — T;)
TUpm = —— 2h — h
(m—%odd Lm = Zj XJ: (@m = 2;) + 4
-3 ——MLh. (4.43)

The last equation involves three kernels:

Kl(xj) = 3: K2(xj) =0 K3($j) = __2._
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Defining the discrete convolution of f; and g; as

g * f Z 9j-m fm ) (445)

we see that equation (4.43) is a sum of convolutions of the velocity components with

the above kernels and its Fourier transform is found as
T Gk = Kiptior — Koglisk — Kapiing. (4.46)

Following Beale et al.(1996), we find that the Fourier transform Ky has the sum:

o0,0dd )
) 1 ,
Klk: =h Z ——zkmh =2 Z me—zk(2n+l)h - —’I:’/TSgl'l(k h), (Ik‘h| < 71').

- - (4.47)

For K5, we have

7 _ = nh iknh
Ka = 2 mRyE e

n—=—0o0

- ( > mei mh oy err) —err (4.48)

where the singled-out error term is

oo,n,odd  o0,n,even
_ —2n/h _ n iknh
err=e ( > > ) O (—2/h)26 : (4.49)

n=—od n=—oo

which decays exponentially as h approaches zero and we use O(h™) to denote its

order. Making use of the following relation,

alz] __ - —nt n_am\, inx
T sgn(z)et™ = ) m(l-—(—l) e*™e

n=—oo

o) 00,0dd o0,even i
B (E et

(4.50)
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we have

Ky, = —misgn(k) e ¥ + O(exp(—2n/h)). (4.51)

Similarly, for K3, we obtain
Kap = —me ¥ 4 O(exp(—2n/h)), (4.52)

for which we have made use of the following relation

o0

alz| __ _ a (1_ (_1)n aﬂ') inz
me = % € €
n=z—oo n?® + a?
00 o0,0dd o0,even —a )
= +e"( - )| =——=€'"% a<0. (4.53)
n=z—oo n;oo n=Z—oo n? + a?

(4.54)

Applying discrete Fourier transform to equations (4.41)-(4.43) and using the above

relations, we finally attain the linearized basic equations in spectral form as

G = ik, (4.55)
Ugkr = 1tk P(kh)(fk’ (4'56)
G, = tsgn(k)ig, — isgn(k)e 2, — e~2*lg,,,. (4.57)

It readily follows that this discrete version of equations has the dispersion relation
A% = —p(kh) k tanh(k) (4.58)

for the numerical scheme. The scheme is stable but not as accurate for high wave-
number modes as compared with the dispersion relation at the continuous level. How-
ever, we can use the spectral difference operator (with p(kh) = 1) in our scheme to
conserve the same dispersion relation as that of the continuous level to get a spectrally

accurate scheme.
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4.1.4 Other aspects of the numerical scheme
The time-marching method

To compute the ordinary differential equations which we have obtained in the previous
section, we may use any stable ordinary-differential-equation solver as long as we keep
the time step within the stable domain of the method. In our scheme, in particular,
we use the 4th-order Adams multi-step method to perform the time marching except
that we start the initial steps with the 4th-order Runge-Kutta method. In each
step, we use the Gauss-Seidel method iteratively to solve the Cauchy integral. The
iteration is stopped when the difference between two successive steps becomes less
than a threshold value. In our computation, this threshold value is set to be 10710,
The initial guess of data for starting the iteration plays an important role on the

efficiency of the scheme; we use the extrapolation formula,

fn = 4fn—l - 6fn—2 + 4fn—3 - fn—4: (459)

to compute the initial data based on the solutions obtained from calculation of the
preceding four steps. In most cases, only four to five iterations were needed to reach

our threshold value at each time step.

Resolution, aliasing error and roundoff error

An important aspect of numerical computation is the resolution. With a given number
of nodal points, 2V say, we can only represent the wave profile within a range of wave-
number less than N. However, waves with amplitudes greater than a certain threshold
have a wider spectrum, then to have more points in such cases will be needed for
representing such large waves with a required accuracy. We can not describe a wave
with a large amplitude with insufficient number of nodal points. That is, the mesh
size will have to be further reduced to provide the resolution necessary for portraying
it. When waves approach the highest amplitude, the profile becomes very sharp at
the crest like a singular point such as a cornered vertex with an internal angel of 2r/3

for gravity waves. In such cases, we will need many modes in the spectral space to
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Figure 4.1: The spectrum of a solitary wave of amplitude o = 0.7. A number of
nodal points 2N > 240 will be sufficient for describing this wave. |F(k)|: modular
of the component at wave number k of the Fourier transformation of the free surface
elevation (.

describe it. If we choose the number of nodal points 2NV less than this number, we
would lose the capability of describing it with a reasonable accuracy.

In our computation, we choose a number 2N for making the set of nodal points
large enough to start computation so that the modulus of the components in the
spectrum of a wave of a given amplitude would fall off to a low flattened level at
wave-numbers around N in spectrum. If this criterion is met, this chosen number
for 2N should then provide the sufficient resolution for describing that particular
wave. In Figure 4.1 we show the spectrum of a solitary wave of amplitude o = 0.7
in which the modulus of the components with wave number larger than 120 fall off

to a flattened level around 107!3. For this particular case, choosing a number of
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nodal points 2N > 240 will provide sufficient resolution for describing the wave with
a satisfied accuracy. However, the components with wave-numbers higher than N,
whose modulus may be very small compared with the components of lower wave-
number, could still cause aliasing errors on the components with wave-numbers less
than V. Further, these errors can be amplified by a differential operator and thereby
cause numerical instability. For this reason, a dealiasing filter is used to remove these

errors. In our scheme, a 25th-order Fourier smoothing filter, given by
p(kh) = exp (~10(2|k|/N)*), for [k| < N, (4.60)

is applied to smoothen surface variables in each time step.

Appropriate choices of a large number of nodal points 2N, which provides the
resolution needed, and a dealiasing filter, which removes the aliasing error, are two
important factors in computation of high amplitude waves. In our experience, the
choice of a large 2N is even more important. Otherwise, the computation may well
crash in just a few time steps, no mater how the dealiasing filter is employed. In such
cases, the primary cause of instability is due to the choice of a 2N being too small for
the computation. However, the computation could run a long time before it crashes
if we would pick a large enough 2V and turn off the dealiasing filter.

In this manner, the discretized integrals are computed by iteration until the nu-
merical variation between two consecutive steps is less than a specified threshold value
€. The components in the spectrum with energy less than this € are due to numerical
round-off, which are physically meaningless. To keep this kind of error from polluting

the solution and generating instability, a nonlinear filter:

Fr: |Fel > €
Fe={ " 1l 2 (4.61)
0 : otherwise

is applied to computing of u,, in every time step.
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4.2 The Point-vortex method

4.2.1 Mathematical model
The governing equations

As an alternative, we now introduce the point-vorter method to investigate evolution
of fully nonlinear gravity waves on a uniform layer of incompressible and irrotational
fluid of unit rest depth. We parameterize the free water surface with a complex
position variable z(a) at time ¢, with the z and y coordinates as its real and imaginary
parts, i.e., z(o,t) = z(a) + iy(a,t). The parameter « is the Lagrangian coordinate
variable which identifies the initial position of a particle on the free surface. Following
Beale, Hou and Lowengrub (1996), we express the complex velocity potential ®(c, t)

in the flow domain in terms of a distribution of dipole of strength u(a, t) so that

B(a,t) = 271”, /- o 1 g M) da(), (4.62)

where z(a,t) and z(¢/,t) are two points on the flow boundary D and the integral
assumes the Cauchy principal value. In (4.62), time t is merely a parameter and may
be omitted for brevity. In the flow domain D, ® has the velocity potential ¢(z,y, t)

and stream function ¥(z,y, t) as its real and imaginary components, respectively,
®(z,t) = ¢(z,y,t) +iY(z,y,t) (2=z+iy € D+ID). (4.63)

The velocity potential in the interior is given by

8o,y =RE = §_2-Gla(e) — () (o) ds(a), (4.64)

where G(z) = (27)~'log |z|, and n is the unit normal vector at z(/,t) € D outward
from the flow domain. The value of ¢ on the free surface can be determined by

applying the Plemelj formula of complex variables to integral representation (4.64)
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for ¢ to yield

o) = gule) + R 5= [ 7= ) A de(e), (4.65)
> 1 8 / / /
#(0) = 5u(@) + §-G(x(0) - 2(a')) (@) ds(e), (4:66)

where the integration is carried counterclockwise along 0D, the boundary of the
domain D. For the special case with a horizontal bottom, by the symmetry of the
problem due to v(—1,t) = 0, the domain D can be analytically continued to its
extended domain D, : (-2—-¢ < y < (, —o© <z < 00). Accordingly, we
may place a surface dipole strength on the image of the free surface by reflection into
the flat bottom, i.e., let u(z* — 2¢) = u(z) for z on the free surface, z* — 2i being its
image and the % denoting the complex conjugate. We may of course revise the original
boundary 0D into 0D., the boundary of D, thus curtailing the need of calculating
velocity u(z) = u(z, —1) on the horizontal bottom. The contributions from the two
vertical paths cancel by virtue of the fluid being at rest at infinity. The remaining
line integrals along the free surface and its image may be written, on account of the

symmetry, as

#o) = sp(0) + [~ 2-Glala) ~ 2(e)) u(el) ds(e)
- B%G(z(a) — 24a!) + %) (o) ds(e). (4.67)

Differentiating both sides of this equation with respect to o and integrating by parts,

we obtain

o) = e 8 [30 ([7 2w [ D)

2711 \J-= z(a) — z(c) —z*(a') + 2t
(4.68)

where v = puq, = 0 p/d « is vortex sheet strength. Differentiating the complex

potential with respect to z, we obtain the complex velocity w = u — iv = d®/dz
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which has the integral representation

w(z, t) = —— [ / ® @) gy /_ ” 1) — da’] . (4.69)

278 |/ 2z — 2() o 2 —2*(a)

Using the Plemelj formula, we obtain the velocity on the free surface,

L[> _ () S (o) |, ()
- do’ - [ d ,
w(@) 274 [/—oo z(a) — z(d!) - z(a) — z*(a’) + 21 @l 2z4(a)
(4.70)
for which we have taken the limit of z approaching the free surface from the fluid
side.

The evolution of the free surface elevation and velocity potential are governed by

the kinematic and dynamical conditions, namely,
zi(a, t) = w*(a, t) (4.71)

and

¢e(,t) — %lwl2 +¢=0, (4.72)

where the ambient pressure is gauged to zero and the time is scaled by (h/g)'/2. Here,
it is important to note that ¢;(a,t) in (4.72) is the material rate of variation in ¢, it

is related to the Eulerian variation ¢:(z,y,t) by
de(at) = Gu(x,y, 1) + (u® + 7). (4.73)

In summary, we have for computing shallow water waves based on the point-vortex

method the governing equations as follows:

zi(a,t) = w(o,t)

- _2% [/—o:o #az)(a’) del - /—Z (@) —75321) e

v(a)
on(a)’ (4.74)
bilont) = S(u+0%) =, (4.75)

2
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) = % [%r(zi) (/-o:o z(a) —75’?22’) 7o /—o:o Z(a;(—aiz)(a') dal) }
+2¢0(c). (4.76)

We shall call this method the Point-vortex method.

The dispersive relation

We proceed to find the dispersion relation of the linearized system of (4.74)-(4.76) by

perturbing the nonlinear system from its equilibrium state. We assume

(@) =a+7 +iy, y=9, ¢=¢, (4.77)

where (2',3/,7',¢') = O(e) << 1. Linearizing equations (4.74) to (4.76) and omitting

the primes, we have,

($a)t = —VYa, (4.78)

wo= o [ e+ (4.79)
_ i *° ’7(0/) r _];_ 0 (a — o/) ’Y(al) /

Yo = 2ﬂ/_m——a_a,da QW/_M—(a_a,)z_Hlda, (4.80)

Y(a) = /_ N ﬁ%—%—zda’m% (4.81)

Applying the Fourier transform with respect to the variable o, to the above equations

and using the relations in table 4.1, we obtain

X = %(1+e~2"°')r, (4.82)
Vo= %isgn(k)(l—e*"“')ﬂ (4.83)
Py = —ik), (4.84)

I = 26,/(14 72k, (4.85)
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or in matrix form,

X 0 0 1 X
Y| =10 0 isgn(k) tanh(k) vy |. (4.86)
o/, 0 <k 0 b,

The eigenvalues of the above linearized system are \g = 0, /\1,22 = —k tanh(k). This

result agrees with the dispersive relation for waves by linear theory.

4.2.2 Numerical scheme

Beale, Hou and Lowengrub(1996) have proved that the present scheme for the case
of gravity waves in deep water is convergent. The bottom effect term added to this
model for shallow water waves will not change the convergence of the scheme since
the integral along the bottom is regular in nature.

Similar to the way we used in developing the FNFD method, we select a deriv-v
ative operator (which can be chosen among the 2nd-order center, 4th-order center
and a spectral differential operator) jointly a filter, for smoothening the free surface
elevation, and quadrature rules, for calculating the integrations, so as to provide a
stable and accurate numerical method. Here we follow Beale et al. (1996) to dis-
cretize equations (4.74)-(4.76). The integration involving the free surface variables is
performed by the alternating trapezoidal rule and the integration along the mirror
image of the free surface, by the trapezoidal rule.

The Lagrange markers are first uniformly distributed over the computation region
—m < z < 7 and allowed to evolve with time according to equations (4.74)- (4.76).
The computation region can be mapped onto the physical region, —L < z’ < L,
with a scaling factor L/n. L is taken to be large enough as we argued in section 4.1.
The numerical algorithm for calculation of (4.74)-(4.76) can thus be represented as

follows:

1
B = 30+ 0B) (4.7



75

s j—k
2(Dp2)i - 2™ _SH % — 2
1 N

% h
—_— o 4.88
27rij=_21:v+lz£—zpj+2i’ (488)

Nv(j_k)Odd

Ve = Q(Dh¢)k—§R(M > —ij_hp)

Tl TN % %

+R (% fj Tl’_h—) . (4.89)
T G TN s — 2Pt 2
The time-marching computation can be executed by employing an ordinary-differential-
equation solver, for which task we use the Adams solver in our scheme. In each time
step, z and ¢ are updated first and v is solved from the integral equation by iteration.
Dealiasing filter (4.60) is applied to smoothen the free surface elevation at each time
step in order to remove any possible aliasing error. The nonlinear filter (4.61) is then

used to remove the round-off error.
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Chapter 5 Analysis of the numerical

results

The two numerical methods developed in the preceding chapters are applied to com-
pute fully nonlinear shallow water waves of large amplitude. The excess mass and
excess surface energy that must be conserved are computed to check the accuracy
of the methods. In particular, solitary waves of large amplitude are computed using
both methods and the results are compared with the exact solution for permanent

solitary waves computed by Wu & Kao (2000).

5.1 Accuracy of the numerical schemes

In the present computation of asymptotically evolving solitary-like waves propagat-
ing on shallow water of uniform depth, the accuracy of the two numerical methods

employed here will be measured by examining the variation in the excess mass,

N
M =" (h, (5.1)
k=1
and the excess surface energy
N u? 4 v}
E=> (=5 +Gh, (5.2)
k=1

both of which should be conserved. We start computation with an initial wave profile
and wave speed c of a solitary wave furnished by the exact solution for a permanent
solitary wave of equal amplitude obtained by the method of Wu & Kao (2000). At each
nondimensional time unit, the total mass and the total energy are computed based on
the free surface elevation and velocity at the free surface. The variations of the total

mass and total energy from their initial values during the first 100 nondimensional
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f% a 2L | 2N AM AE | c¢/+/gh |cs/\/gh
0.1000 | 0.09992 | 40 | 128 | 1.20e-11 | 2.78e-6 | 1.0491 | 1.0485

0.1000 | 0.09997 | 40 | 256 | 6.87e-12 | 2.78e-6 | 1.0489 | 1.0485
0.1000 | 0.09998 | 40 | 512 | 2.43e-12 | 2.78e-6 | 1.0488 | 1.0485
0.2867 | 0.2860 | 40 | 128 | 2.77e-10 | 1.69e-5 | 1.1320 | 1.1319
0.2867 | 0.2865 | 40 | 256 | 3.36e-11 | 1.40e-5 | 1.1320 | 1.1319
0.2867 | 0.2866 | 40 | 512 | 7.32e-12 | 5.01e-6 | 1.1320 | 1.1319
0.5252 | 0.5233 | 40 | 128 | 6.92e-10 | 1.01e-5 | 1.2245 | 1.2248
0.5252 | 0.5247 | 40 | 256 | 4.23e-10 | 9.02e-6 | 1.2247 | 1.2248
0.5252 | 0.5251 | 40 | 512 | 1.39e-11 | 5.30e-6 | 1.2248 | 1.2248
0.6970 | 0.6908 | 32 | 128 | 2.68e-07 | 1.36e-4 | 1.2779 | 1.2781
0.6970 | 0.6958 | 32 | 256 | 5.32e-10 | 5.25e-5 | 1.2779 | 1.2781
0.6970 | 0.6967 | 32 | 512 | 1.71e-10 | 2.03e-6 | 1.2781 | 1.2781
0.8001 | 0.8000 | 32 | 1024 | 4.01e-12 | 1.61e-5 | 1.2942 | 1.2942

Table 5.1: Numerical results of wave amplitude, wave speed, variation of excess mass
and excess surface energy during the first 100 nondimensional time units for various
wave amplitudes computed by using the FNFD scheme. ag: the amplitude of initial

wave; @ = 310 ay; 2L: length of the computation reg1on 2N: number of computation

points; AM = \/ r, )2)/n; AE = \/ r, E)?)/n; c: wave speed
computed by the FNFD method cs: wave speed computed by the method of Wu &
Kao.

time units performed by using the two unsteady methods are shown in table (5.1)
and table (5.2). The results given in the two tables clearly show improved rates of
convergence of both methods with increasing number of nodal points. Both the FNFD
and Point-vortex methods provide excellent conservations on the mass and energy.
The FNFD method is more accurate on conserving total mass with the smallest error
less than 1071 in all the cases.

The Point-vortex method based on the Lagrange markers provides auto-adaptive
meshes which is efficient and accurate to compute waves of low to moderately high
amplitude. It can also be used to compute the roll-over of waves. However, the
Lagrange markers tend to move toward to the crest from both sides and finally cluster
together so densely in computation of the almost highest solitary waves as to make
it difficult to continue on the work. In such circumstances, the computation has to
be stopped and the markers be rearranged by interpolation to proceed with further

computation. The clustering of the Lagrange markers also put a restriction on the size
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ap a 2L | 2N | AM AE | c¢/+/gh | cs/\/gh
0.1000 | 0.09993 | 40 | 128 | 1.55e-5 | 1.84e-5 | 1.0493 | 1.0485

0.1000 | 0.09997 | 40 | 256 | 3.88e-6 | 6.36e-6 | 1.0488 | 1.0485
0.1000 | 0.09998 | 40 | 512 | 9.69¢-7 | 3.57e-6 | 1.0487 | 1.0485
0.2867 | 0.2863 | 40 | 128 | 1.62e-4 | 1.90e-4 | 1.1319 | 1.1319
0.2867 | 0.2866 | 40 | 256 | 4.06e-5 | 5.40e-5 | 1.1321 | 1.1319
0.5252 | 0.5245 | 40 | 128 | 8.11e-4 | 1.08e-3 | 1.2248 | 1.2248
0.5252 | 0.5250 | 40 | 256 | 2.04e-4 | 2.73e-4 | 1.2247 | 1.2248
0.6970 | 0.6961 | 32 | 128 | 1.86e-3 | 2.78e-3 | 1.2792 | 1.2781
0.6970 | 0.6968 | 32 | 256 | 4.68e-4 | 6.80e-4 | 1.2782 | 1.2781
0.6970 | 0.6969 | 32 | 512 | 9.15e-5 | 1.15e-4 | 1.2779 | 1.2781

Table 5.2: Numerical results of wave amplitude, wave speed, variation of excess mass
and excess surface energy during the first 100 nondimensional time units for various
wave amplitudes computed by using the Point-vortex scheme. og: The amplitude

of initial wave; @ = 1% ay; 2L: length of the computation region; 2/N: number of

computation points; AM = \/ (M; — M)?)/n; AE = \/(Z (B — E))/n; ¢
wave speed computed by the Pomt vortex method; ¢,: wave speed computed by the
method of Wu & Kao.

of time steps. In our numerical experiment, the highest wave amplitude of solitary
wave that can be computed by the Point-vortex method is @ = 0.75. The FNFD
method is better for computing the almost highest waves since in this method we use
the Euler meshes which avoid the problem of clustering. With this advantage, we
are able to compute solitary waves up to the amplitude o = 0.8219 using the FNFD
method, as shown in Figure 5.1.

We note that for waves of rather small amplitudes, the FNFD method with dif-
ferent but uniform sizes of meshes is found to provide results with almost the same
accuracy. However, the accuracy apparently improves with decreasing mesh size when
we use the FNFD method to compute waves of moderate to large amplitudes. These
results illustrate the importance of choosing an appropriate number of nodal points
to have it large enough to provide the resolution needed for describing solitary waves
of high amplitudes. Figure 5.2 shows the spectrum of the water surface elevation of
a solitary wave of amplitude a = 0.1, the moduli of the components in the spectrum
with wave numbers greater than k ~ 20 are around 10~3. With 2N = 128 as the

number of computation points, the wave is well described and increasing the number
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Figure 5.1: Propagation of a solitary wave of large -time asymptotic amplitude o =
0.8219. '

of nodal points does not improve the accuracy. Figure 5.3 shows the spectrum of sur-
face elevation of a solitary wave of amplitude oo = 0.8, the modulus drops to around
10~® for components with wave-number as high as k &~ 300 and greater. In this case,
the computation with a number of nodal points 2N = 128 is found to be not stable
due to the high aliasing error and we must choose a higher number of nordal point,

for example 2N = 1024 to provide the necessary resolution.

5.2 Comparison with the permanent form

The numerical methods developed in the last two chapters, namely, the FNFD method
using the Euler meshes and the Point-vortex method using the Lagrange markers have
been used to compute solitary waves of large amplitudes. The results so obtained will
now be compared with the results obtained by Wu & Kao (2000) using the exact
theory for steady solitary waves permanent in form. They developed a method to
compute the permanent wave forms of fully nonlinear steady shallow water waves by
using conformal mapping method. The singular behavior of the solution at infinity
of the physical plan is found to bear a global effect on the analysis and construction

method of the exact solution. When this effect is well handled to achieve an optimum
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Figure 5.2: The spectrum of a solitary wave of amplitude o = 0.1.
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Figure 5.3: The spectrum of a solitary wave of amplitude o = 0.8.
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Figure 5.4: Wave profiles computed by the FNFD and Point-vortex methods with
the initial wave profile at ¢ = 0 given by the first-order solution of KAV Model with
o = 0.6, the profiles being shown at t = 46.

overall balance, solution can be obtained to very high accuracy with a relative error
less than 107, up to the highest solitary wave (with a cornered vertex of interior
angle 120° and amplitude qyne, = 0.8331990 - - - and wave velocity ¢ = 1.2908904 - - ).
The accuracy of the two unsteady schemes are assessed by comparison of their results
with the corresponding ones by the permanent wave method.

We first compute the time evolution of a right-going solitary wave with a mod-
erately large amplitude, starting with the initial profile and wave speed given by
the solution of the Korteweg-de Vries (KdV) equation as a first order solitary wave,
followed by the time-marching computation of the two fully nonlinear methods till
the profile reaches in each case its own asymptotic state whose terminal amplitude
is different, by a certain slight degree, from the initial input. The asymptotic solu-
tion of the unsteady-wave computation is then used for feed back to the steady-wave
method as a determined parameter to compute the profile of the final steady wave for
comparison, now based on equal amplitude. Starting from the same initial condition,
the free surface variations are computed by both the FNFD and the Point-vortex
methods and shown in Figure 5.4. The wave profiles given by both schemes are found

in good agreement with each other. In more details, as indicated in Figure 5.6, a
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train of left-going waves of very small amplitude is separated at the first moment
from the right-going wave train which is led by the primary wave. Then the domi-
nant solitary wave out runs the packet of small right-going wave train, finally leaving
the right-going wave train behind it. Eventually, the main solitary wave reaches its
asymptotic state, i.e., the wave profile shifts a distance ¢ per-unit-time and keeps its
form unchanged within a specific error limit. The final amplitude and phase speed
are then numerically measured and fed back as parameters to start the steady -wave
computafion. In Figure 5.7 the profiles given by the three methods are compared.

We then start the unsteady-wave computations of the asymptotic wave by feeding
the permanent wave solution obtained from the steady-wave method as the initial
condition. Fully nonlinear shallow water waves with different asymptotic amplitudes
are computed and checked by comparison with the initial data. The computation
region is selected large enough for the free surface elevation to remain less than 10~
at the two ends of the region. In all the cases we have succeeded in obtaining the
permanent right-going solitary waves within the threshold error limit. The wave
speeds are determined numerically from the wave profiles obtained at each time step
and compared with the corresponding wave speeds given by the steady-wave method
in table 5.1 and table 5.2. In Figure 5.5 we present the results relating the wave
amplitude and wave speed determined by the three methods. All the comparisons
show that the two numerical schemes developed for calculation of fully nonlinear
unsteady waves on shallow water are accurate and stable, with a relative error less

than 107 up to the amplitude as large as o = 0.822.
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Figure 5.5: Wave speed versus wave amplitude computed by the three methods: the
steady-wave theory method, the FNFD and the Point-vortex method.
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Figure 5.6: Evolution of a solitary wave started initially from the first-order solution
of the KdV model equation for a solitary wave of amplitude oo = 0.6. Top: A time
sequence snapshot of the free surface elevations given by the FNFD calculation at
different time intervals A¢ = 10. Bottom: The free surface elevation at t=200.
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Chapter 6 Numerical studies of

interactions between solitary waves

6.1 Introduction

Nonlinear wave interactions are of great importance not only in basic science but also
in technological development and applications to many disciplines. A simple class
of problems is concerned with two solitary waves propagating in opposite directions
along a straight channel of uniform rectangular cross-sectional shape and engaging
in binary encounters, or collisions. The salient features of nonlinear wave-wave in-
teractions, such as wave modulations in shape, amplitude and phase, are quite well
exhibited in the Boussinesq class of binary wave collisions. Zabusky and Kruskal
(1965) show that the KdV equation possesses a number of remarkable properties
including the phenomenon of reappearance of initial flow configurations assigned to
a spatially periodic motion, giving rise to a temporally periodic response, on which
phenomenon (and additional wave-wave interaction behaviors) the term of soliton is
coined. The KdV equation has since furnished a rich field in which an enormous
amount of intensive research has blossomed into what may be called a distinguished
colorful modern history of applied and pure mathematics, physics, biology, and en-
gineering and applied science. Close collaborations between various disciplines also
emerged as a distinct mark of the time as similar phenomena are found commonplace
in nonlinear systems.

For the class of head-on collisions of solitons, the special case of total reflection
of a soliton by an inviscid vertical wall has been investigated by Chan and Street
(1970) using the SUMMAC integration of the Navier-Stokes equations, by Byatt-
Smith (1971) using a conformal mapped integral equation, by Maxworthy (1976) and
Weidman & Maxworthy (1978) experimentally, by Power and Chwang (1984) using
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perturbation methods for a comparative study, and by Yih and Wu (1995) from a
different approach. For end-wall reflection, the theory has been extended to higher
orders by Su & Mirie (1980). In another direction, the theory has been generalized by
Wu (1995) for bidirectional interactions between multiple solitons of the Boussinesq
class and by Cooker et al. (1997) for the Euler equations.

For the overtaking interactions between two solitary waves, the two solitary waves
either pass through or remain separated throughout the encounter depending on
the ratio between the amplitudes of the two solitary waves. The critical criterion
separating the single-peak and double-peak regimes for overtaking soliton encounters
was first noted by Zabusky (1967), proved for its existence and numerically analyzed
by Lax (1968), experimentally measured by Weidman & Maxworthy (1978), and
analytically determined by Wu (1995).

In this chapter, we study head-on collisions between two fully nonlinear solitary

waves by using the unsteady wave motion methods developed in chapter 4.

6.2 Head-on collision between solitary waves

6.2.1 Binary head-on collision between two identical solitary

waves

We conduct a numerical study on the physical process of reflection of a solitary wave
by a vertical wall, or, equivalently, the head on collision of two identical solitary waves
propagating in opposite directions on a layer of inviscid fluid of uniform rest depth.
Two identical solitary waves propagating in opposite directions are placed far
enough away from the center (where the wall is situated at = 0) such that the free
surface elevation at the center is less than 1075 at ¢t = 0 to begin with. The initial
solitary profile and speed used for time-marching computation are given from the
permanent wave computation using the method of Wu & Kao (2000). In Figure 6.1
we show a head-on collision of two identical solitary waves of amplitude o = 0.6. The

two waves propagate toward each other with a constant speed till the crests reach
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a distance about three times the water depth from the center where the waves have
their crests asymptotically accelerating to reach the center at a time called the time of
attachment, ¢, with an amplitude of attachment, ¢,, remaining at the wall (for a finite
period called the phase-locking period) with the amplitude at wall first increasing, as
the trailing tail continues coming inward and converting kinetic energy to potential
energy, to reach a maximum amplitude {y at the time of maximum run-up, t = %o,
and then reverse in procedure to drop down and leave the wall at a time called the
time of detachment, ¢4, with an amplitude of detachment, {;. It has been found that
at the lowest-order nonlinear-and-dispersive (i.e., the Boussinesq level) theory, the
procedure has a time-reversal symmetry, namely, ((z, —t) = {(—z,t) where t = 0 is
the instant the wave crest reaches its maximum at the center. However, this symmetry
is modified in higher-order theories, such as given by Su & Mirie (1982) for the third-
order theory and by Cooker (1990) for the Euler model. It is shown here that, in
addition to a modulation of the symmetry, the reflected dominant wave propagates
away from the center with a dispersive wave train trailing behind it. After the wave
train having traveled away form the center, the free surface at the center calms down
and finally returns to its initial value (¢ = 0).

In Figures 6.2-6.7, we show the trajectories of the wave crests and the free surface
elevation at the wall during the head-on interaction between solitary waves of small
to modulate amplitudes.

In table 6.1 we present the results on the time of attachment, ¢,, the amplitude
of attachment, (,, the maximum run-up time, ¢y, with the maximum amplitude (,
the time of detachment, ¢4, the amplitude of detachment, {;, and the incoming and
outgoing wave speed c; and ¢, of the initial incoming and the terminal reflected solitary
waves (of different amplitudes) for this binary encounter. These results are compared
and shown in Figures 6.8-6.10 with those of Sue & Mierie which are accurate to order
of a®. The third-order weakly nonlinear asymptotic theory agrees quite well with the
fully nonlinear results for the amplitude of attachment and maximum run-up. For
the detaching amplitude, weakly nonlinear theory can provide a good prediction for

waves with amplitude less than 0.4. However, the detaching amplitude given by the
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! Qoo Ca o Co |to—ta|ta—to| t c; Cr

0.1000 | 0.0996 | 0.1359 | 0.2062 | 0.1329 | 2.44 248 |4.92 | 1.0522 | 1.0520

0.2000 | 0.1997 | 0.2738 | 0.4269 | 0.2579 | 1.79 1.87 | 3.67 | 1.1056 | 1.0939

0.3000 | 0.2967 | 0.4104 | 0.6604 | 0.3587 | 1.54 1.69 |3.22]1.1360 | 1.1361

0.3999 | 0.3947 | 0.5521 | 0.9239 | 0.4451 | 1.41 1.59 |3.00|1.1784| 1.1734

0.4500 | 0.4433 | 0.6194 | 1.0721 | 0.4832 | 1.39 1.55 | 2.94]1.2000 | 1.1969

0.4998 | 0.4906 | 0.6888 | 1.2387 | 0.5171 | 1.38 1.52 | 2.90|1.2140 | 1.2123

0.5500 | 0.5360 | 0.7578 | 1.4328 | 0.5247 | 1.42 1.51 | 2.92 | 1.2231 | 1.2286

0.5995 | 0.5785 | 0.8254 | 1.6680 | 0.4814 | 1.50 1.49 |2.99 | 1.2513 | 1.2454

0.6109 | 0.5835 | 0.8450 | 1.7264 | 0.4801 [ 1.52 1.48 | 3.00 | 1.2544 | 1.2480

0.6492 | —— | 0.8999 | 1.9551 | 0.4777 | 1.59 1.47 |3.07]1.2672| —

0.7000 | — | 0.9680 | 2.3267 | — 1.71 — | — [ 12793 | —

Table 6.1: Some numerical results for head-on collisions between solitary waves of
initial amplitude a. (w: asymptotic amplitude of the reflected wave. {,: amplitude
when crest merges with wall at time ¢,; (p: maximum amplitude of wave at wall at
time to; (q: amplitude when crest detaches from wall at time t4; ¢, = t4 — t,: phase-
locking time, ¢;: wave speed of incoming wave; ¢.: asymptotic wave speed of reflected
wave.

fully nonlinear numerical computation at @ = 0.55 or higher is noticeably different
from the result computed from Sue & Mierie. Figure 6.11 shows the profiles before
and after the detachment during a head-on collision of solitary waves of amplitude
a = 0.6, the water at the wall is pushed so high by the collision that it still has a rise
when the crests of the dominant reflected waves already emerge to leave the wall. At
this moment, there are three local maximum points on the free surface as shown in
Figure 6.11.

As for the phase-locking time, ¢, = t4 — t,, the fully nonlinear results are found to
be always longer than that of the weakly nonlinear asymptotic theory. The ratio of
(to — ta)/tr is quite close to 0.5 for all the waves in the comprehensive range covered,
which means that the maximum runup is always nearly at the center of the phase-

locking time period, regardless of wave amplitude.

6.2.2 Asymmetrical head-on collisions

During asymmetrical head-on collisions between two solitary waves of different am-

plitudes, the crests of the two incoming solitons do not actually merge, but with the
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smaller one evanescing at time ¢,, with {; = (z = 0 at x = z, and reaching an ampli-
tude ¢ = (4, with the taller wave gaining in height to a maximum height {; at ¢ = ¢,
at £ = zo, and reversing in procedure with time, and with the smaller soliton reap-
pearing to depart at time ¢ = t4, © = x4, with amplitude (4, at which {; = (z = 0.
It is known that at the lowest-order nonlinear theory this process has a time-reversal
symmetry and the two terminal solitons have their profile unchanged from their initial
form once they are totally separated (Whitham 1974). In cases when fully nonlinear
waves are considered, this time-reversal symmetry will be modified and two trains
of dispersive waves are induced to trail the reflected solitons after the crests have
separated from each other during the collision. Figures 6.14-6.16 show an example of
the head-on collision between two solitary waves of amplitude oo = 0.6 and a = 0.4.

Figure 6.17 shows the trajectory of the crests during the head-on collision.
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Figure 6.1: Head-on collision between two identical solitary waves of amplitude o =

0.6.



92

Figure 6.2: The trajectory of the wave crest during a head-on collision between two
solitary waves of amplitude a = 0.1. ®: the time at maximum run-up.
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Figure 6.3: Variations of the water height at the wall with time ¢ throughout a head-
on collision between two solitary waves of amplitude o = 0.1. (It is not symmetric
about 1, i.e., {(0,t —to) # ¢(0,% — t), as is obvious in Figure 6.5.)
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Figure 6.4: Trajectory of the wave crest during a head-on collision between two
solitary waves of amplitude a = 0.6. ®: the time at maximum run-up.
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Figure 6.5: Variations of the water height at the wall with time¢ throughout a head-on
collision between two solitary waves of amplitude o = 0.6.
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Figure 6.6: The wave profiles before and after the maximum run-up during a head-on
collision between two solitary waves of amplitude o = 0.1.
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Figure 6.7: The wave profiles before and after maximum run-up during a head-on
collision between two solitary waves of amplitude o = 0.6.
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Figure 6.8: Comparison between the amplitude of attachment given by the present
FNFD numerical result (in dots) and that by the third order asymptotic theory of
Sue & Mierie (in solid line): ¢, = 4a/3+ (v3(2+k) —1)a?/9, &k = tanh™(1//3).
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Figure 6.9: Comparison between the maximum run-up given by the present FNFD
numerical result (in dots) and that by the third order asymptotic theory of Sue &
Mierie (in solid line): ¢p = 2a + a?/2 + 3a?/4.
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Figure 6.10: Comparison between the amplitude of detachment given by the present
FNFD numerical result (in dots) and that of the third order asymptotic theory of Sue
& Mierie (in solid line): {4 = 4a/3 — (v3(2+ k) — 1)a?/9, k= tanh™(1/4/3).
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Figure 6.11: Magnified view of the wave profiles shortly before, at, and shortly after
the detachment during a head-on collision between two solitary waves of amplitude
a = 0.6. Dot: wave profile at t = t; — 0.005, solid: wave profile at ¢t = t4, dashed:
wave profile at ¢ = t4 + 0.005.
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Figure 6.12: Comparison between the phase-locking time period given by the present
FNFD numerical method (in dots) and that of the third order asymptotic theory of
Sue & Mierie (in solid line) t, = ¢4 — ¢, with: ¢, = 2(—ka™Y/2 + (2 — k)a*/?/8)//3,
and tq = 2(ka™Y2 + (2 + k)a'/?/8)/v/3, K =tanh™}(1/4/3).
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Figure 6.13: Comparison between the (to —t,)/t. given by the present FNFD numer-
ical method (in dots) and that by Sue & Mierie (in solid line). The o computed by
Sue & Mierie is given by: ty = (a!/? + 430%/2/8)/(2v/3).
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Figure 6.14: The asymptotic head-on collision between solitary waves of amplitude
a = 0.6 and a = 0.4; The wave profiles are given with time intervals At = 20 apart,
advancing upward.



105

o

Figure 6.15: A more detailed view of the wave profiles in Figure 6.14 over the time
period of phase-locking. The wave profiles are given with time intervals At = 3 apart,
advancing upward.
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Figure 6.16: Magnified view of the free surface elevation during a head-on collision
between two solitary waves of amplitude o = 0.6 and «a = 0.4 after separating of the
wave crests.
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Figure 6.17: The trajectories of the wave crests during a head-on collision between
two solitary waves of amplitude a = 0.6 and oo = 0.4.
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Chapter 7 Capillary-gravity solitary

waves

In this chapter, we will study the joint effects of gravity and surface tension on
nonlinear long waves by modifying the model equations developed in chapter 2 to in-
clude a uniform surface tension. The model equations closed in the differential form
is applied, with using perturbation method, to develop an asymptotic theory with
accuracy up to 4th-order for capillary-gravity solitary waves. Our results are quali-
tatively in agree with the results of previous contributions such as the works of Sun
(1991), Sun & Shen (1993) and Vanden-Broeck (1991) but with higher accuracy never
achieved before. The FNFD numerical method developed in chapter 4 is adapted for
computing nonlinear long waves under the joint effects of gravity and surface ten-
sion. Comparison between the higher-order asymptotic solutions for capillary-gravity
waves and the corresponding fully nonlinear numerical results are presented later in

this chapter.

7.1 Higher-order asymptotic solutions

7.1.1 The governing equations

In the presence of the capillary effect, the dynamic condition (2.5) at the free surface

of two dimensional flow is found to become

Caa

arapr (@ y=d=1) (7.1)

P=p,—T
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where T is the constant surface tension. Consequently, the projected momentum

equation (2.12) at the free surface combines with (7.1) to give

iy + 0 G + [g + D] Cz=(p L oo (7.2)

P+ Gy

while the kinematic equation and the Laplace equation for the velocity potential

remain the same,

b=D¢ =G+, (7.3)

The two exact equations (7.2) and (7.3) can be closed either in differential form by a
series expansion of the velocity potential or in integral form by adopting the boundary
integral of Cauchy’s theory.

First, we shall use a reductive perturbation method to find the first few leading-
order approximations. We write equations (7.2), (7.3) and (7.4) in dimensionless

form, using the scales in (2.16) and pgh? for T, as follows:

byy + Edas = 0, (7.5)
Gy + Uity + [1 + €D?() ¢, = € T(——Cz—z——)x, (7.6)
b=D¢=¢ + 0. (7.7)
where
re p;;lz (7.8)

is Bond number.

The boundary conditions at the bottom is

v=0, aty=-1. (7.9)
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We seek a series solution of (7.5) in the following form,

é(z,y,t;€) Zgbn (z,y,t) (7.10)

n=0

which under condition (7.9) becomes, as before in (2.23),

n 9 +12n d2n
(z,y,t €) = Z( yn @+ D7 o, 1) (7.11)

n=0 (2n)l

From this series expansion for ¢, we have the velocity at bottom,

u(z,t) = %¢ly=—l = d%cbo(x,t), (7.12)

and the velocity components at the free surface,

d 00 2n d2n
w(z,t) = —¢|y=c = Z:O(—l)" 62"%&6%@(@ t), (7.13)
oo 12n—1 d2n 1
i) = Froh<=3 (e Py, g

We now seek the solitary wave solution of equations (7.2), (7.3) (7.13) and (7.14) in
wave frame as we did in chapter 3 so that all the variables can be written in term
of phase function § = k (z — ct), such that f(z,t) = f(#) for flow variables. In this

wave frame, and under the assumption of a = €2, we have the governing equations as

follows:
C+%2—cﬁ+ak2 @-cf (2 =a7"/(14+ ()32, (7.15)
b—k(@—c)¢ =0, (7.16)
4= 20 (=1 " (C(—;nl)),—zri K uC), (7.17)
9= gjl (~1)" an-? —(E ) 1_)2:)_!1 g2 O, (7.18)

with the prime denotes the operator d/df. This system of equations is an extension

of (3.21)-(3.24) with the surface tension term added to equation (3.22). The method
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to solve equations (7.15)-(7.18) is exactly the same as for (3.21)-(3.24) in chapter 3

and we will just present the results here.

7.1.2 Higher-order capillary-gravity solitary waves

The first order equations are the same as (3.25) and (3.26), hence again

Cp = 1, (719)
Uy = Cl, (720)

for the right-going wave and (; is determined by considering the second order equa-
tions.

The second-order equations are found to be the same as (3.35)-(3.37) except with
the coefficient (—1/2) of the term k3¢} in (3.37) replaced by —(1/2+7). Consequently,
the solvability condition for the second-order equations requires, in analogy to (3.39),
that

—o G5 G g(1-587) K () =0 (7.21)

Here, 7 = 1/3 is a critical value at which equation (7.21) becomes singular and does
not have solitary wave solutions as found earliear by Benjamin (1982) and Vanden-
Broeck & Shen (1983). Depending on the value of 7, we invoke the following boundary
condition

G®%={l PET<I (7.22)

-1 T >1/3,
to let ¢ fall off exponentially toward infinity. Under this premise, we have found few
leading-order solutions by using the Mathematica code in appendix A and present
the results below.
Denoting

N:

{L 0<7<1/3
(7.23)

-1, 7>1/3
and

S = sech?(f), (7.24)
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we have the leading 4th-order solution for the free surface elevation and the bottom

velocity as

in which,

G
G2
Cs

G =

and

Uy
U2

Uus

4
¢ = Za"§n+0(a5),
n=1
4
u = > a"u,+0(a?),
n=1
NS,
3(-1—47+1272%) @
4(1-371)° S

N [(5+607 — 24672 + 7273 + 2167%) S
+(—151 — 1020 7 + 283272 + 5040 7° — 10800 %) S?
+(101 + 4207 — 37272 — 5760 7° + 86407%) S%]/(80 (1 — 37)%),
[4(—8209 — 383257 + 182808 7% + 427680 7> — 1828980 74
+ 1117800 7° + 291600 7°%) S
+4(23282 + 204675 T — 481284 7% — 25925407 + 6345540 7
+ 170100 7° — 5248800 7°) S?
+(—112393 — 1237800 7 + 2534616 7% 4 9322560 72 — 9570960 7*
— 43934400 7° 4 55987200 7°) 3
—9(—5789 — 63600 7 + 148968 72 + 73680 7% + 943920 74
— 4309200 7° + 4017600 7°) $*]/(24000 (1 — 37)°),

N S,

[(1—307+547%)8 + (-4 + 457 — 7272)8%/(4 (1 — 37)?),
N [2(—19 + 3847 — 591 72 — 153073 4 2295 74)S

+(—16 + 5407 — 10713 72 + 34470 7° — 30240 7%)S?

(7.25)

(7.26)

(7.27)
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+3(32 — 6007 + 4631 72 — 11640 73 4- 9360 7%)S3] /(80 (1 — 37)*),
ug = [2(—30176 — 154275 — 3424338 7% 4 22967820 7° — 38745945 4
+ 10120950 7° + 10461150 7%)S
+7(28628 — 449625 7 + 6168339 7> — 12484260 7 — 31273290 7*
+ 108511650 7° — 77857200 7°)S?
+7(4832 — 330600 7 + 4630041 7% — 62030340 7° + 255481290 7*
— 416696400 7° + 239695200 7°)S?
+21(—12608 + 343200 T — 3743004 72 4 24343785 7° — 74468160 7*
+ 105591600 7° — 56764800 7%)S*]/(168000 (1 — 37)°). (7.28)

For the wave speed and the corresponding wave number, we obtain

~ 1 541/(1—3r2
c = 1—!—N2a— 0 a

—_ 2 _ 3 4
Ly 30—4267 +18277° — 37807° + 28357"
560 (1 — 37)"
3 (412 — 54487 + 401407 — 1528207° + 3524857 ~ 42525077 1 2126257°) ,

22400 (1 — 37)°

?

(7.29)
and
y \/?_,/(2\/1—37)}{, 0<7<1/3 (7.30)
\vIevEm—DEK, r>13 ] |
where
B (56— 127) 355 + 727(207 — 21)
K= =Ny " ea—s  ©
N 100627 + 530460 7 — 817056 7 + 1382407 ob (7.31)

179200 (1 — 37)°

Capillary-gravity solitary waves are elevation (or depression) polarized waves which
move faster (or slower) than linear gravity waves for 0 < 7 < 1/3 (or 7 > 1/3). Figures

7.1-7.4 show the free surface elevations computed by the leading four-order theories
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Figure 7.1: Wave profiles of capillary-gravity solitary waves of amplitude o = 0.1
given by the first order asymptotic theory with various values of 7. Dashdotted:
7 =0, dotted: 7 =1/5, dashed: 7 =1/2, solid: 7 = 1.

for capillary-gravity solitary wave of amplitude o = 0.1 with various values of 7. We
compare the wave form computed by the first four order asymptotic theories in Figure
7.5 for a given 7. The difference among solutions of the second, third and fourth for
both elevation and depression waves is very little. This indicates rapid convergent
rate of the higher-order asymptotic theories for waves of small amplitude.

The curvature at the crest of waves with small and moderately large amplitude
computed by different order approximations are plotted in Figure 7.6 and 7.7. The

free surface at the crest becomes more curved as the surface tension increase.

7.2 Numerical scheme for computing fully nonlin-
ear capillary-gravity waves

For numerical computation of fully nonlinear gravity-capillary waves, it is more con-
venient to use, instead of the differential closure form of velocity potential ¢, the
Cauchy contour integral representation (2.30) of ¢ to close the system of model

equations jointly with (7.3) and (7.2). A boundary integral method based on the
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Figure 7.2: Wave profiles of capillary-gravity solitary wave of amplitude oo = 0.1 given
by the second order asymptotic theory with various values of 7. Dashdotted: 7 = 0,
dotted: 7 = 1/5, dashed: 7 =1/2, solid: 7 = 1.
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Figure 7.3: Wave profiles of capillary-gravity solitary wave of amplitude o = 0.1 given
by the third order asymptotic theory with various values of 7. Dashdotted: 7 = 0,
dotted: 7 =1/5, dashed: 7 =1/2, solid: 7 = 1.
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Figure 7.4: Wave profiles of capillary-gravity solitary wave of amplitude o = 0.1 given
by the fourth order asymptotic theory with various values of 7. Dashdotted: 7 = 0,
dotted: 7 = 1/5, dashed: 7 =1/2, solid: 7 = 1.

10

Figure 7.5: Wave profiles of the capillary-gravity solitary wave of amplitude oo = 0.3
given by the leading four orders of asymptotic theory with 7 = 1/10 for elevation
wave and with 7 = 1 for depression wave. Dashdotted: 1st-order theory, dotted:
2nd-order theory, dashed: 3rd-order theory, solid: 4th-order theory.
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Figure 7.6: The curvature at the crest of solitary wave of amplitude o = 0.1. Dotted:
1st order, Dashed: 2nd order, DashDotted: 3rd order, Solid: 4th order.

"0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T

Figure 7.7: The curvature at the crest of solitary wave of amplitude o = 0.5. Dotted:
1st order, Dashed: 2nd order, DashDotted: 3rd order, Solid: 4th order.
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integral closure equation similar to that in chapter 4 is developed here for the time-
dependent, two-dimensional shallow water capillary-gravity waves. With the basic
equations written in terms of (¢, us,u,) defined in (4.1), equations (7.3), (7.2) and
(2.30) can be rearranged to produce a set of exact model equations for modeling

nonlinear capillary-gravity waves as follows:

G = Un, (7.32)

C+ L (uf - ui - 2usunCz) - T__C-wz_] y (733)

2 3
2R J1+@
%

Tun(z,t) = R /_ °:o [m—%} [us(2") — i un(a')]dz’

(us)y = —

—R /_ : [z o _22(8) " %] [us(z) + tun(z))]de’.  (7.34)

The linearized version of the above equations reads as,

G = Un, (7.35)
(us)t = _C:t"'TCa::z:z: (736)
TUu,(z) = _o/o [ﬁdx’_zx(__w;)f_l_él us(z')dz’
[ 2u(@)
—_[o T (7.37)

We again apply the Fourier transformation to the above linearized equations and use

the relations in table 4.1 to obtain following equations in Fourier form

Z, = U, (7.38)
Us): = —i(kZ+7KZ2), (7.39)
U, = —ilUssgn(k)tanh(|kl|). (7.40)



119

This set of linear equations for capillary-gravity waves in shallow water is found to

have the following dispersion relation:
A% = —k(1+7k?) tanh(k). (7.41)

This result agrees with the linear water wave theory.

The discretization of (7.32)-(7.34) is similar to that given in chapter (4) to ensure
that the balance of terms at continuous level is preserved at the discrete level. The
surface tension term put a stricter restriction on the size of time step due to the
higher derivative terms arising from the surface tension effect.

The numerical method is used to study the evolution of free surface flow under
the joint effects of gravity and surface tension. We start computation with the initial
wave profile and wave speed given by the 4th-order asymptotic perturbation theory.
Figures 7.8 and 7.9 show the results for elevation- and depression-polarized capillary-
gravity solitary waves of amplitude o = 0.2 with 7 = 74/980, and a = 0.2 with
T = 2/3, respectively (the former is for water laboratory premise). Both examples
show that the results of the asymptotic theory of O(a®) are in excellent agreement
with the fully nonlinear numerical results for waves of small amplitudes. For waves
of higher amplitudes, the numerical results exhibit the following characteristics in
more detail. For a right-going primary wave, a train of left-going dispersive waves of
small amplitudes separates at the initial moment from the right-going main wave, and
then a train of right-going waves of very small amplitude is cast to trail behind the
leading dominant elevation-polarized solitary wave. In sharp contrast, for depression-
polarized main waves, interestingly, the right-going dispersive wave train propagates
ahead to lead the dominant solitary wave. Figures 7.10 and 7.11 show two examples
of capillary-gravity solitary wave of amplitude o = 0.5 with 7 = 74/980, and a = 0.5
and 7 = 2/3, respectively; the numerical results are obtained with the initial condition

given by the solution of the fourth-order asymptotic theory.
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Figure 7.8: Evolution of a terminal capillary-gravity solitary wave of amplitude
a = 0.2 with 7 = 74/980, with the initial condition provided by the fourth-order
asymptotic theory.
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Figure 7.10: Top: Evolution of a capillary-gravity solitary wave of amplitude oo = 0.5
with 7 = 74/980, with the initial condition provided by the solution of the fourth-
order asymptotic theory. Bottom: Magnified view of the wave profile at t=120.
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Figure 7.11: Top: Evolution of a capillary-gravity solitary wave of amplitude o = 0.5
with 7 = 2/3, with the initial condition provided by the solution of the fourth-order
asymptotic theory. Bottom: Magnified view of the wave profile at t=50.
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Chapter 8 Fully nonlinear internal

long-wave model for two-fluid system

8.1 Introduction

Internal waves was first observed by Fridtjov Nansen in 1896, who called it the dead
water problem. Following that, active research has been stimulated to gain better
understanding of flows involving internal waves. Many important engineering prob-
lems, such as oil exploration in deep water and mixing processes in the interior of
the ocean, are related to the dynamics of internal waves. Internal waves in the ocean
and lakes can have very large amplitudes due to the small difference in water density
commonly observed. Such large amplitudes are usually beyond the range of validity
held for weakly nonlinear theory.

Keulegan (1953) and Long (1956) investigated interfacial solitary waves with the
weakly nonlinear Boussinesq equations and the KAV equation. Benjamin (1967)
studied the general case of continuous stratification and obtained solitary wave of
algebraic profile as a special case. Ono (1975) generalized the work of Benjamin
and derived the so called Benjamin-Ono equation. Joseph (1977) and Kubota, Ko &
Dobbs (1978) derived a theory for solitary interfacial waves in stratified fluids with
finite to large depth. Zhu, Wu & Yates (1987) studied the transcritical two-layer
flow over an uneven bottom topography. Evans & Ford (1997) computed stationary
interfacial solitary waves of large to maximum amplitude using an exact potential-flow
integral equation. Grue et al. (1997) studied the unsteady interfacial waves of large
amplitude using a scheme of the pseudo-Lagrange particles. Wu (1996) developed an
exact fully nonlinear model for unsteady internal waves for a two-fluid system.

In this chapter, we study the properties of interfacial waves in a two-fluid system

based on Wu’s model. Section 8.2 discusses the governing equations. The discretiza-
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tion of the equations are similar to that described in detail in chapter 4. We present

some numerical examples and compare them with the steady solutions of Evans &

Ford’s (1997) in section 8.4.

8.2 Mathematic formulations

We study two-dimensional inviscid long wave motions under the action of gravity on
a two-layer fluid of uniform rest depths h; and h; and constant densities p; and pa,
respectively, with indices 1 and 2 referring to the lower and upper layers, and with
p2 < pi for ensuring the static stability. For simplicity, we consider here the interfacial
waves in two-layered fluids bounded top and bottom by two horizontal flat plates of
infinite extent. The theoretical results subjected to this confinement are generally
useful to provide accurate simulations of the analogous motion in two-layered fluid
systems that have the top surface also free to move, as pointed out theoretically and
experimently by Zhu et al. (1986, 1987) except for the special case in which the
top fluid layer is exceedingly thin compared to the wavelength and for (1 — p2/p1)
not very small. A coordinate system is introduced, with the z-axis sitting along the
interface at rest and the y-axis pointing upwards as indicated in Figure 8.1. The fluid
moves with velocity (u,w) in the flow field bounded below and above by rigid walls at
y = —h; and y = hy, respectively. The interface is represented by y = {(z, t), which
is measured from its rest position at y = 0 as a function of the horizontal position z
and time ¢. Assuming the fluid incompressible and inviscid, we have the same Euler
equations of continuity and momentum as (2.1)-(2.3) for both layers of the fluid, i.e.,

for j =1,2,

Ujz +v5y = 0, (8.1)
du: 1
Fil = Ujt + Uj Ujo +Uj Ujy = _E DPjzs (8.2)
d v 1
—1 = Vjt +UjVje +Vj Vjy = —— Djz— 49 (83)

dt Pi
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Figure 8.1: Sketch of a two-fluid system.

where p is the pressure, and g the gravitational acceleration. Here, the subscripts

denote partial differentiation.

The kinematic boundary conditions at the interface, top and bottom are given by

U = G+ G, (ony={((z,1)), (8.4)
vy = 0, (ony=—hy), (8.5)
7, = 0, ( ony = hz), (86)

where the underline, overline and tilde represent the variables at the bottom, top and

interface, respectively.

The dynamic boundary condition at the interface is

ﬁl(x7 t) = ﬁg(fL‘, t) (y = C(.’.II, t)) (87)

where p;(z,t) is the pressure at the interface and the subindicies 7 =1, 2 refer to the
lower and upper layers of fluid, respectively.

The momentum equations can be projected onto the interface, in a way similar to
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that illustrated in chapter 2, to obtain an equation for (4, @, {) as

. J ~ 2 - - o~ ~ 2
Gt + @t + (9 + D1 (16 = 0 (ilas + fiatlae + [g + Do ¢1G) (8.8)
where
g = -Z‘g, Dj = 8,: —|—'&, ajz (] = 1, 2) (89)
1

This equation, though involving only (u1,s, (), has incorporated the vertical mo-
mentum equation as well as conditions (8.4) and (8.7)at the interface to yield this
equation of an overall equilibrium, as pointed out by Wu (1999b). The interfacial

kinematic condition remains intact,
G = Di¢ = G+ G (7=1,2) (8.10)

The three equations (8.8) and (8.10) involving five variables (vy, U, 11, 1, ¢) are ex-
act. Closure of the system requires finding additional two equations that relate the
five variables. For the irrotational motions considered here, the velocity potentials,

#;(z,y,t), (j =1,2), satisfy, by (8.1), the Laplace equation,

¢jz:c + ¢jyy =0 (.7 = 1, 2)’ (811)

in there flow domain, respectively. Closure of the system can be accomplished in
integral form by adopting two boundary integral equations pertaining to (8.11).

An exact solution of the Laplace equation in integral form may be obtained by
Cauchy’s integral theorem. Adopting complex analysis, we introduce the complex
variable z; = x; +iy; and complex velocities w;(z) = u; —%v;, where i = /—1. Since
the w;’s are analytic functions of z, we have Cauchy’s integral theorem,

w;(2;, 1)

iQ(2)w;(2,t) = }[ i,  (=1,2), (8.12)

/!
9D; z] - Z]

where the contour is counterclockwise along the boundaries D of the flow domain

Dy, (j =1,2). Qis defined in the same way as that in (2.27) and the integrals assume
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their Cauchy principal value with z € 0D;.
The rigid-wall conditions (8.5) and (8.6) make it possible to apply Schwarz’s prin-

ciple of symmetry, namely

w1 (2" — 2h14,t) = wi(2), wa(z" +2hei) = wi(2), (8.13)

and thereby to avoid the need for calculating the horizontal velocities on the rigid
walls. With the original flow domain D; extended to D.; including the mirror images
of D; (into y = (—1)7 hj, j = 1,2), and with dD; extended to dD,;, the boundary of
D.j, we obtain the velocities on the two sides of the interface in terms of the integral

equations as follows,

s 7 . wi (2 .

miw (2) = Z—z’d '—i—/ ’*—121h1)—zdz, (8.14)
L T w3 . wi(z "

rin() = [ 2y [ ) o (815)

in which the contributions from the vertical paths at the two end of the computation
region are zero due to the fact that the fluids at infinity are at rest. These two
equations provide a closure to equations (8.8) and (8.10) in constituting the set of
exact modal equations for FNFD internal waves in this two-layer fluid system.

For the purpose of computation, we adopt two pairs of tangential-like and normal-

like velocity components on both sides of the interface,
Uy =Uj+ 05 Gy Uy =0 —U & (1=1,2), (8.16)
similar to what we did in chapter 4. According to condition (8.10), we have
Upl = Upa = Up. (8.17)

In terms of the new unknowns (¢, us1, us2, un), (8.10), (8.8), (8.14) and (8.15) can



129

be rearranged to produce a new set of exact model equations as

(e = Un, (8.18)
(w1 ~ ousz)e = = [((uf = ouly) = wh(1 = 0) = 2 un (a1 — ousz)) /(2R2)]
—[¢(1 = o), (8.19)
74 (us1 (%) — itin(w)) = Z(%) (us1(2) ~ i un(z)) do’
+_7 e —zgﬁ)l — (@) + i un(a))da’ (8.20)
—7 1 (52() — itin () = 7(-—()%)(——9 (usn(2') — i un(')) do’
? a

_Zo 2*(2') + 21 hy — 2(z) (us1(2') + % un(a'))de’, (8.21)

Following Grue et al. (1997), we note that (8.19) suggests us to adopt two new

variables, P = us; — 0 us, and Q = u1 + s, in terms of which (8.19) becomes

P(L=0)+0Q* 0 —1)+40PQ  unls w2
2(1+ 0)?|RP2 “ TR Cgpp) - o)l (822)

Pi=-

In addition, taking the imaginary part of the difference between the (8.20) and (8.21),

we have the following equation,

@ = 5y ) W;@%)P(aﬂ)dﬂ;'
" g—;_i %(z(x)z”_(?(m,p (a') do’
’ _: @) =+ h)l 2@ 7 (@) f;% —) @) da’
e S R
b o w0,
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(8.23)
Next, taking the sum of (8.20) and the product of o with (8.21), we have
_ 2z () N
mu(e) = 1= / R ) P&
-0 | z:() u (2 da!
+ 1+o0 / (z(m)—z(a:')) n(@)d
i z(2) Z(z) 0 \_P@E)
+ Zo *(z') — 27,h1 — 2(z) + 2(x') + 2thy — z(w))(l “+ a)zdw
i 2(2) % (2) Q) o, ,
* Zo i z*(x') — 2zh1 —2(x)  2*(2') + 2ihy — 2(z ))(1 + )2d
7 (z) L z2(z) 0 )un(w,)da}'
o *(z') — 2zh1 —2z(z) 2(2)+2ihy —2(x)" 14+0
(8.24)

Therefore, we have the governing equations (8.18), (8.22), (8.23) and (8.24) for the
four unknowns P, @, u,, and (.

In this system, (8.18) and (8.22) provide the time evolution of ¢ and P. Given an
initial condition, these two equations can update ¢ and P to new values. Equations
(8.24) and (8.23) close the system by providing u,, and Q with the updated ¢ and
P. Equations (8.23) and (8.24) are Fredholm integral equations of the second kind,
which is well know for its convergence and efficiency in numerical computation for
solution. The system (8.18), (8.22), (8.23) and (8.24) will be taken as the model

equations for our numerical studies on large-time asymptotic behavior of solitary-like

internal waves.
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8.3 Stability analysis of the linearized system; the

dispersion relationship

We next perform a linear stability analysis of the basic model equations. Assuming
(¢, P, Q, uy) to be sufficiently smooth and small in magnitude, all of order O(¢) < 1,
we find the linearized version of system (8.18), and (8.22)- (8.24) as

A -
o6 (8.26)
= i z -2 o (J) _ xl) / /
e = —_4 ((:c ) DTS P e 4h%) P(a)dz
_ 7 x—2x B r—z Q(!L") adx/
—o00 (.’L‘ - $I)2 =+ 4h% (w - _/1;/)2 + 4h% 1+o
o0 2 h]_ 2 h,z g , ,
—Zo <(£U — m/)z + 4h% (aj — .’13’)2 + 4h%> ’U/n(-’L' )d$
7 P@)
+_!o rEEd (8.27)
— 7 r — :1:’ T — :L" / /
o0 2 hy 2 hy P(:I:') /
-I-_Zo ((ZB —z')2+4h? (z—2') + 4h§> 1r adx

2 h]_ ag 2 h2 Q(ml) /
. 8.2
((w—m’)2+4h% + (x——w’)2+4h§) 1+adw (8:28)

I—I—
g~

Applying the Fourier transformation as defined by (4.1) to equations (8.25)-(8.28)

and using the relations in table 4.1, we have

Z, = U, (8.29)

(P = —ik(l—0) Z, (8.30)
(1 —e 2k 4 5 _ e—2k:h2)

~ (14+0) (1+e2kh 4o + g e2kh2) P
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g

) k 8.31
+é sen(k) (1+0) (1+e2kh g4 g e2kha) < (8:31)
e—zkh]_ _ e—Qkhz
Q = 1—e2kh ;g — g g-2km
e=2kh1 _ o=2khy
+i sgn(k) (1 + o) TPy rr—— U, (8.32)

Substituting (8.32) into (8.31) we find, after some regrouping,
U, =—1is n(k)—l—’P (8.33)
" & 140 '

The solution to the eigenvalue problem for the simplified equations

2 = —isgn(k) I% P, (8.34)
(P)y = —iksgn(k)(l-0) Z, (8.35)
(8.36)

provides, for both Z and P bearing a time factor exp(iwt), the dispersion relation

1—
W=k 7

, (8.37)

which is in agreement with the linearized theory of internal waves.

8.4 Numerical results

We use (8.18), (8.22), (8.24) and (8.23) as the governing equations for computing
interfacial solitary waves between two-layer fluids. The Numerical aspects of this
problem are similar with those given in chapter 4 which requires no reiteration. We
appraise the accuracy of our results with the numerical results of Evans & Ford (1996)
which hold only for stationary nonlinear waves. The wave speeds for solitary waves of
various amplitudes are compared for the two corresponding cases in table 8.1 for waves
under what is commonly taken as an oceanic condition with o = 0.997, h; = 3 hs.

Figure 8.2 shows the evolution of a solitary interfacial wave of amplitude o =
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o 0.2 0.4 0.6 0.8 0.9 0.95 0.99
c | 0.050232 | 0.052267 | 0.053689 | 0.054534 | 0.054744 | 0.054797 | 0.054816
cq | 0.050237 | 0.052268 | 0.053689 | 0.054539 | 0.054761 | 0.054797 —

Table 8.1: Comparison of c: wave speed computed by Ford & Evans, with cz; wave
speed computed by the numerical method for FNFD unsteady theory over a range of
wave of amplitudes for interfacial waves with oceanic condition o = 0.997, h; = 3hs,.

0.95 hy as computed with the initial wave profile and wave speed given by the numer-
ical result obtained by using the method of Ford & Evans (1997). It is of importance
to note that the initial amplitude o = 0.95h; is already quite close to the maximum
amplitude allowed for any stationary internal solitary wave to reach under the given
condition (o = 0.997, h; = 3 hy), which is & = .9985hy. In the case at hand, the
effect of nonlinearity is very strong for a wave with this large amplitude.

In Figure 8.3 we show the difference between the tangential velocity components
of the upper and lower layers at the interface for a solitary wave of amplitude o =
0.99 under condition ¢ = 0.997, h;y = 3h;. The velocity jump at the interface can
stimulate the Kelvin-Helmholtz instability. The numerical solution becomes unstable
with respect to disturbances with wave length shorter than a threshold value Mg,
say. The value of A\g, increases with increasing velocity jump and o. Figure 8.4
shows a result that may be ascribed to the effect of Kelvin-Helmholtz instability. In
our computation for a solitary wave of initial amplitude o = .99 hy, short waves are
observed to be generated at the wave crest and washed down-stream along the current
induced by the main long wave. The wave length of the short waves is very closed
to the most unstable wave length, computed with the velocity jump at the crest by
using the theory of Kelvin-Helmholtz, which suggest these short waves are due to
the Kelvin-Helmholtz instability. However, more research will be needed to ascertain
whether this set of short waves superposed on the primary long wave can definitely be
attributed to the Kelvin-Helmholmz instability along the slowly vary slip-stream of
the vortex sheet induced at the interface. Nevertheless, this set of wave train is found
to maintain its constancy, both in space and time. This may therefore be regarded as

a claim that this example shows that the numerical method developed for evaluating
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Figure 8.2: Evolution of an internal solitary wave of amplitude o = 0.95h, under an
oceanic condition o = .997, h, = 3h,.

interfacial waves in a two-fluid system is stable and accurate.
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Figure 8.3: The jump in tangential velocity component at the interface for a solitary
wave of amplitude oo = 0.99h, under an oceanic condition o = .997, h; = 3h,.
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-1.6F 1
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Figure 8.4: Evolution of an interfacial solitary wave of amplitude oo = 0.99h, under
an oceanic condition: o = 0.997, h; = 3he. A train of short waves are automatically
generated and holding robust in space and time.
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Chapter 9 Conclusion

In summary of the previous chapters, we may draw the following conclusions:

1. Wu’s exact theoretical model for evaluating unsteady, fully nonlinear, fully
dispersive, two-dimensional gravity waves on a single layer of water of uniform depth
is reviewed in chapter 2. The system of model equations is reduced in spatial di-
mensions by one from the underlying Euler equations, but otherwise retains the full
capacity of the primary system in every respect. The model equations are closed
either in differential form, for facilitating theoretical studies and reductive analysis,
or in integral form, for numerical computation of exact solutions. In exactness, this
theory is fully established by the numerical results obtained in this study for the
large time asymptotic wave profile and wave velocity of terminally evolving solitary
waves in comparison with the exact solutions based on the permanent solitary wave
formalism.

2. A reductive pertubation method is developed to provide higher-order asymp-
totic theory for solitary shallow water waves in chapter 3. This reductive method
provides a constructive way to find higher-order asymptotic solutions for solitary
waves. Higher-order perturbation solution up to 15th-order is obtained by asymp-
totic expansion analysis, and the solution is found to be an asymptotic series which
diverge starting from the 12th-order. An optimum approximation to the exact the-
ory is provided at the 11th-order with a maximum relative relative error generally
negligible except when the wave amplitude is in a very small neighborhold.

3. Two stable, accurate, and efficient numerical methods, namely, the FNFD
method and the Point-vortex method, are developed in chapter 4. The accuracy of
the two methods is checked in chapter 5. The Point-vortex method has the advantage
of using a self-adaptive mesh provided by Lagrange’s markers and is more efficient
for computing waves of small to moderate amplitudes. The disadvantage of the

~ Point-vortex method is a result of the fact that Lagrange’s markers tend to move
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together about wave crests causing a mesh clustering at the wave crest and making
the method difficult to compute waves of large amplitudes. The FNFD method,
which uses an Euler mesh to avoid the clustering problem, is especially useful for
computing evolutions of solitary waves of large amplitudes. The method has been
applied to compute unsteady fully nonlinear solitary waves of amplitude up to 0.822
which is very close to the highest amplitude (0.8331990- - -) of solitary waves that has
a cornered crest with a 120° interior angle and a wave speed ¢ = 1.2908904 - - - (Wu
& Kao, 2000).

4. Interaction of solitary waves are numerically studied in chapter 6. The results
are compared with those given by the asymptotic pertubation method, including the
third-order results of Sue & Mirie (1980). The asymptotic perturbation results make
good predictions for collisions between waves of small amplitude. Change of flow
parter is found possible to occure during collisions between solitary waves of high
amplitudes as indicated by the fully nonlinear numerical results.

5. The properties of capillary-gravity solitary waves on a layer of water of uniform
depth is investigated both theoretically and numerically in chapter 7. Higher-order
asymptotic theories show that the resulting solitary waves are elevation-polarized like
solitary gravity waves, moving faster than linear waves, or depression-polarized and
moving slower than linear waves according as the Bond number 7 <, or > 1/3. This
is fully confirmed by the numerical computation based on the fully nonlinear model.
Higher-order asymptotic theories provide approximations to the fully nonlinear theory
with greater accuracy for waves of smaller amplitudes as indicated by comparisons
between the two theories.

6. A stable and efficient numerical FNFD method is developed for computing
evolutions of interfacial waves in a two-layer fluid system in chapter 8. Comparisons
between the results of this FNFD method and those given by the stationary fully
nonlinear method of Ford & Evans indicate a very high accuracy of present FNFD
method.

In conclusion, it is hoped that the asymptotic theories and the numerical methods

developed in this work based on Wu’s FNFD model may offer opportunities for further
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studies of these very interesting problems. It may also provide a sound starting point
for making new advances in areas requiring considerations of other new physical effects

that are of importance under differing premises.
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Appendix A The Mathematica code
used in chapter 3 and 7
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Symbles : 3
Order : the Order of the pertubation equations
zt : &, z[i, x] :&i, zpt: L, z2t : £
vt:u, v[i, x] :u;
ut : 4, wt : ¢
eqgd : Surface projected dynamic equation
egk : Kynematic condition at free surface

First Order 11

m Settings 11

order =1; n =order +1;

zt = sum[z[i, ®] a*i, (i, 1, n}];

vt = Sum[v[i, ®] a*i, {i, 1, n}];

zpt = D[zt, x]; 22t = D[zpt, x];

ct = Sum[m[i] a*i, {i, 0, n}]:

kt =ko* (1 +Sum[k[i] a*i, {i, 1, n}]);

ut = Sum[(-a) A1/ (24) ! (L+zt)+(24) kt4 (24) D[vt, {x, 24}], {i, 0, n}];
wt = Sum[(-1) Aia4(i-1)/(24-1)!
(L+zt)A(24-1) kt4(24i-1) D[vt, {x, 24 -1}1, {i, 1, n}];

eqd = Series[zt -ct *ut +ut*2/2+a*xkt42+ (ut-ct)*2+2ptr22/2-
Takt*22z2t / (Sqrt[l+a kt 42 zpt+2]+3), {a, 0, n}];
eqk = Series[wt - kt » (ut - ct) »zpt, {a, 0, n}];

rd0 = Simplify[SeriesCoefficient[eqd, 1]]
rk0 = Simplify[SeriesCoefficient[egk, 1]]

rkl = Integrate[rk0, x]

mtx[1l] = {{Coefficient[rd0, z{1, x]], Coefficient[rdo, v[1, x]]},
{Coefficient[rkl, z[1l, x]], Coefficient[rkl, v[1, x]]}}

(1]

solutions

m[0] =1
v[l, x] = z[1, x] B
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Second Order J

m Settings 1]

order = 2; n = order +1;

zt = Sum[z[i, x] a*i, {i, 1, n}];

vt = Sum[v[i, x] a*i, {i, 1, n}];

zpt = D[zt, x]; z2t = D[zpt, x];

ct = Sum[m[i] a*i, {i, 0, n}];

kt =ko* (1 +Sum[k[i] a*i, {i, 1, n}]);

ut = Sum[(-a) 4i/ (24)! (L+zt)+(21) ket (24i) D[vt, {x, 21i}], {i, 0, n}];
wt = Sum[(-1) Aiar(i-1)/(24-1)!
(L+zt)*(2i-1)ktr(24-1) D[vt, {x, 2i-1}], {i, 1, n}];

eqd = Series[zt -ct xut +ut*2/2+a*kt* 2+ (ut-ct) 4 2xzptr22/2-
takt* 2 z2t / (Sqrt[l+akt+2zpt+2]43), {a, 0, n}];

eqgk = Series[wt -kt » (ut - ct) »zpt, {a, 0, n}];

rd0 = simplify[SeriesCoefficient[eqd, 2]];

rk0 = Simplify[SeriesCoefficient[eqk, 2]];

rkl = Integrate[rk0, x];

tpv = Solve[rkl = 0, v[2, x]];
v[2, x] =v[2, x] /. tpv[[1]][[1]]

8v0 = Simplify[rdo0]

svl = Integrate[sv0+2D[z[1, x], x], x]

sv2 =svl /. {z[1, x] »y[x], z(®V[1, x] >y’ [x]}

Y|

2 [miypars YEE L L 050 gy a2 1
Execute one of the following step: j
for v>1/3: j'_

tpc = Solve[ (sv2 /. {y[x] » -1, y’[x] - 0}) =0, m[1]] J.
for O<7<1/3: _]

tpc = Solve[ (sv2 /. {v[x] »1, y*[x] - 0}) =0, m[1]] 31
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m[1] =m[1] /. tpc[[1}][[1]]

3
3 1.

Fullsimplify[sv2] j

a0 = Coefficient[sv2, y[x] *2]
al = Coefficient[sv2, y[x] *3]
a2 = Coefficient[sv2, vy’ [x] +2]

sv3 = DSolve[cOy[x] *2 +cly[x]*3 + c2y’[x]*2==0, y[x], x] /. C[1] -0 3]

Simplify[sv3 /. {c0 - a0, cl1- al, ¢2 - a2}]

2 2 N
{{rix] > -sec EE ]} {vixl» -Sec[———l/—g—}—{— 11}
2+/(1-371) K3 2+/(1-371) K3 J44
o V3 |
2V-(1-371)
V3
24-1+3¢ J
Simplify[sv3 /. {c0 » a0, cl - al, c2 - a2}] jm
{{y[x] > -Sech[x]?}, {y[x] » -Sech[x]?}} b
Solutions j_

m[1]
z[1, x] = ~Sech[x]?
v{l, x] =z[1, x]

1

2

-Sech[x]?

114 L Va
I

-Sech{x]?

i

v[2, x]

]

N 3200.2)[1, x]
1 hixl? - 4 , R
g 3 Sech(x]“ -6 Sech[x]®+6z([2, x] + 4(-1+37)

v[2, x] = Simplify[v[2, x] /. 2“2 [1, x] » D[z[1, x], {x, 2}]]

E,
I

(5-9T+ (-2+3t) Cosh[2x]) Sech[x]*+4 (-1+371) 2[2, x]
-4+12 ¢

A
{
L
L
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= Homogeneous solutions ]

vyl = Simplify[D[=z[1l, x], x]];
y2 = Simplify[yl Integrate[l/yl142, x]];
wr = Simplify[Det[{{y1l, ¥2}, {D[yl, x], D[¥2, x]}}]1];

|
Higher Orders 1]
]

Successivly repeat this section with order=order+1

m settings 1

order = 3;

n = order +1;

zt = sum[z[i, x] a*i, {i, 1, n}];

vt = Sum[v[i, x] a*i, {i, 1, n}];

zpt = D[zt, x]; z2t =D[zpt, x];

ct = Sum[m{i}j a+i, {i, 0, n}];

kt =ko* (1 +Sum[k[i] a*i, (i, 1, n}]);

ut = Sum[(-a) A1/ (24) ! (L+=zt) 4 (24i) kt+ (24i) D[vt, {x, 24}], {i, 0, n}];
wt = Sum[(-1)*iar(i-1)/(2i-1)!
(L+zt)~(24i-1) kt4(24i-1) D[ vt, {x, 2i-1}1, {i, 1, n}];

eqd = Series[zt ~ct »ut +ut*2/2+a*kt*2% (ut-ct)*2%zptrt2/2-
takt42z2t / (Sgrt[l+akt ~2zpt+2]43), {a, 0, n}];
eqgk = Series[wt - kt » (ut - ct) *zpt, {a, 0, n}];

i

rd0 = SexriesCoefficient[eqd, ttt];
rk0 = SeriesCoefficient[egk, ttt];
rkl = Integrate[rk0, x]

tpv = Solve[rkl == 0, v[ttt, x]];

v[ttt, x] =v[ttt, x] /. tpv[[1]]1[[1]]

eq=xd0 /. {z[ttt -1, x] »y[x], z(O2) [ttt -1, x] >y’ ' [x]}; 3

F = FullSimplify[Coefficient[eq, v’ [x]]] N

G = FullSimplify[Coefficient[eq, y[x]]]

R = Simplify[Fy’’[x] +Gy[x] -eq];

_1 1
4

1-3 Sech(x]? 3

Yp = TrigExpand[y2 Integrate[ylR /F, x] - yl Integrate[y2R /F, x]1: J |
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Simplify[yp] v

1

40 (1-3 1)

Cosh[2x] (-9 +40m[2] -30T (3+8m[2]) +45 2 (5+8m[2])) -x (-19 + 40 k[1] +
40m[2] -30T (-1 +8k[1] +8m[2]) +457% (1+8k[1] +8m([2])) Sinh[2x]))

— (Sech[x]* (21 +30T-13572+40m[2] -240 tm([2] +360 t>m[2] +

yp0 = FullSimplify[yp /. x - 0];
tpm = Solve[yp0 == 0, m[ttt -1]]
mttt - 1] =mfttt-1] /. tpm[[1]][[1]]

({21~ 45 (‘5‘(_1:13—;)'2—)}} :

1 1 S
E(—Sn(l—n)z]

tk = Coefficient [yp, x];
Fullsimplify[tk];

tpk = Solve[tk == 0, k{ttt - 2]];

k[ttt -2] =k[ttt-2] /. tpk[[1]][[1]]

B -5+12 ¢t
8 (-1+371)?

Solutions T ]




Appendix A

k[ttt - 2]

m[ttt - 1]

z[ttt -1, %] = FullSimplify[yp]
vttt - 1, x]

-5+12T
8 (-1+371)°?

0 (571"‘13—>)

3(-1+2t) (L+6t) Sech[x]? Tanh[x]?
4 (1-371)2

1

T4+12 T ((5—9't+ (-2 +3 1) Cosh[2x]) Sech{x]* +

3(-1+27t) (-1+37t) (1+61r) Sech[x]? Tanh[x]?
(1-31)2

vttt, x] =v[ttt, x] /. z(®? [ttt -1, x] > D[z[ttt -1, x], {x, 2}]

1 16 (<143 1) [3@ (17-38r+24 2+ S02E, - 3TL5:020) ) sech[x]
3 (-8+2471) 32 (-1+371)%/?
2 6
BT s (48 sencer
(-12+————2+30z+6 (—5————1——2) T-9 (—5~—1—2] T2 -
(L-371) (1-371) (1-3 1)
5 (-5+12 1) R 15t (-5+12 1) N 60 (-1+271) (1+6t) Sech[x]? Tanh[x]? ~
(-1+31)? (-1+371)2 (1-31)2
360t (-1+271) (1+67t) Sech[x]? Tanh[x]?
(1-371)2 *
540 t2 (-1+27t) (1L +6t) Sech[x]? Tanh[x]? )) _
(1-31)2
1 3(-1+27t) (1+671) Sech[x]? Tanh[x]?
E—(~1+3c)ﬁ[ﬂ(— ( = <1—)3c)2[] e
9t (-1+27t) (1+671) Sech[x]® Tanh[x]*
(1-31)2
1

T (3 (-1+27T) (-8 (1+671) Sech[x])* Tanh[x]%+ (1L +6 )

Sech(x]? (2 Sech[x]* - 4 Sech[x]? Tanh[x]?) + (1 + 6 T) Tanh[x]2

(-2 sech[x]* + 4 Sech[x]? Tanh([x]?))) +8z[3, x] -24 T z[3, x]])

|
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