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Evaluating Imprecision in Engineering Design
by
William S. Law

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

Imprecision is uncertainty that arises because of vague or incomplete information.
Preliminary design information is characteristically imprecise: specifications and
requirements are subject to change, and the design description is vague and incom-
plete. Yet many powerful evaluation tools, including finite element models, expect
precisely specified data. Thus it is common for engineers to evaluate promising de-
signs one by one. Alternatively, optimization may be used to search for the single
“best” design. These approaches focus on individual, precisely specified points in
the design space and provide limited information about the full range of acceptable
designs.

An alternative approach would be to evaluate sets of designs. The method of
imprecision uses the mathematics of fuzzy sets in order to represent imprecision as

preferences among designs:

e Functional requirements model the customer’s direct preference on perfor-
mance variables based on performance considerations: the quantified aspects

of design performance represented by performance variables.

* Design preferences model the customer’s anticipated preference on design vari-
ables based on design considerations: the unquantified aspects of design per-

formance not represented by performance variables.

Design preferences provide a formal structure for representing “soft” issues such as

aesthetics and manufacturability and quantifying their consequences.



This thesis describes continuing work in bringing the method of imprecision
closer to implementation as a decision-making methodology for engineering design.
The two principal contributions of this work are a clearer interpretation of the ele-
ments that comprise the method and a more efficient computational implementation.

The proposed method for modeling design decisions in the presence of impreci-
sion is defined in detail. The decision-maker is modeled as a hierarchy of preference
aggregation operations. Axioms for rational design decision-making are used to de-
fine aggregation operations that are suitable for design. An electric vehicle design
example illustrates the method. In particular, the process of determining pref-
erences and a preference aggregation hierarchy is shown to be both feasible and
informative. Efficient computational methods for performing preference calcula-
tions are introduced. These methods use experiment design to explore the design
space and optimization assisted by linear approximation to map preferences. A
user-specified fractional precision allows the number of function evaluations to be
traded-off against the quality of the answer obtained. The computational methods
developed are verified on design problems from aircraft engine development and
automobile body design. Procedures for specifying preferences and group decision-
making are described. These procedures provide not only a pragmatic interpretation
of the method, but also an informal solution to the problem of bargaining: prereq-

uisites for bringing the method to design problems in the real world.
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Chapter 1

Introduction

To learn truly what each thing is, is a matter of uncertainty.

Democritus (ca 460-ca 370 B.C.)

Imprecision is uncertainty that arises because of vague or incomplete informa-
tion. Preliminary design information is characteristically imprecise: specifications
and requirements are subject to change, and the design description is vague and
incomplete. Precise information about the final design is usually not available. Yet
many powerful evaluation tools, including finite element models, expect precisely
specified data. Thus it is common for engineers to evaluate promising designs one
by one. Alternatively, optimization may be used to search for the single “best”
design. But these approaches focus on individual, precisely specified points in the
design space and provide limited information about the full range of possible designs
under consideration. This is illustrated in Figure 1.1, where individual designs d
in the design variable space (DVS) are evaluated through a multi-dimensional map-
ping f (cf) to obtain multiple measures of design performance in the performance
variable space (PVS). (The DVS is not necessarily Euclidean, i.e., R", though the
PVS is usually assumed to be.) The information provided is local to the individual
design points evaluated and short of evaluating a large number of points there is no

systematic provision for exploring the full space of designs.



DVS PVS
(Design Variable Space) (Performance Variable Space)

Figure 1.1 Evaluating individual designs one by one.

DVS PVS

Figure 1.2 Evaluating sets of designs.



An alternative approach would be to evaluate sets of designs, as illustrated in
Figure 1.2. This seeks to provide information on the full range of acceptable designs.
By distinguishing subsets of designs that are in various ways preferred, this approach
can explicitly model design imprecision.

The method of imprecision borrows the notion of membership in a fuzzy set
in order to represent preferences among designs. Fuzzy sets model uncertainty in
categorization. The set of tall men, for example, is fuzzy in that its boundaries
are not precisely defined: it is inaccurate to assume that a single, crisp height,
e.g., 5 feet 9 inches, sharply distinguishes tall men from not-tall men. Instead,
membership, a real number between zero and one, defines the degree to which an
individual belongs to the set. In this example, the fuzziness associated with the set
of tall men is linguistic and stems from the inherent fuzziness in the definition of
“tall men.” Design imprecision is subtly different. The fuzziness associated with
a design specification is not fundamentally linguistic. Imprecise design information
is not fuzzy in meaning, but fuzzy in unresolved alternatives. Design imprecision
is progressively reduced through design decisions until, ultimately, the final design
is precisely specified. Early in the design process, it is not clear to what degree
each design alternative reflects the final design that is as yet unknown. Although
design imprecision is not a form of uncertainty in meaning, it is still a form of
uncertainty in categorization, for which fuzzy sets are an appropriate representation.
A direct application of fuzzy set theory would focus on the membership of each
design alternative in the set of possible final designs, presumably also the set of best
possible designs. This is, however, a somewhat esoteric notion and thus instead
of membership, the method of imprecision focuses on preferences: the actual or
anticipated preferences of the customer. This is a distinction in interpretation rather
than in mathematics, but it is nevertheless significant.

Simon French [17] has questioned the value of fuzzy sets in a normative or
prescriptive theory of decision-making. In contrast to a descriptive decision analysis,
a normative decision analysis seeks to advise or guide the decision-maker. French [17]

distinguishes two ways in which a normative analysis can guide decisions:



1. By example — through constructing a model decision problem, invoking a
model decision-maker, and hence arriving at an idealized yet representative

decision.

2. Through the modeling process itself — defining a model decision-maker en-
courages the exploration and clarification of the decision-maker’s own prefer-

ences and belijefs.

In this context, French [17] has raised three concerns, posed as questions, for fuzzy

decision analysis:

1. Is the model decision problem erected within a fuzzy analysis a suitable rep-

resentation for real problems?

2. Do I (as the decision-maker) wish to emulate the “ideal” behavior exhibited
by the model decision-maker, i.e., do I accept the underlying canons of ratio-

nality?

3. Is the process of constructing the model decision-maker as a reflection of me
both feasible and informative; and is it helpful in guiding the evolution of my

beliefs and preferences?

These three questions will be used as a basis for discussing the contributions of
this thesis. The practical value of the methods developed in this work will be

demonstrated to directly address French’s concerns.

1.1 Organization of Thesis

This thesis builds on the work of Wood and Antonsson [66, 67, 68, 69] and Otto and
Antonsson [43, 44, 46, 47, 69]. Their work has laid a broad theoretical foundation
for the method of imprecision. The work described in this thesis seeks, through
examining the specific rather than the general, and the practical rather than the
theoretical, to bring the method closer to implementation in industry. Its two
principal contributions are a clearer interpretation of the elements that comprise

the method and a practical and efficient computational implementation.



Chapter 2 is concerned with modeling imprecision in engineering design. Sec-
tions 2.1 and 2.2 present key definitions that form the foundation for the model
decision problem that the method assumes. In particular, the modeling of impre-
cision in terms of preference is defined. The model decision-maker is introduced
in Sections 2.3 to 2.6. Axioms for rational design decision-making are presented in
Section 2.3. Section 2.4 discusses importance weighting. In Section 2.7, an elec-
tric vehicle design example is presented to illustrate not only the model decision
problem and model decision-maker, but also the process by which these models can
be constructed. Section 2.8 surveys related work in design decision-making under
uncertainty.

Chapter 3 describes the algorithms used to perform preference calculations and
discusses important issues in implementing the method of imprecision in a compu-
tational tool. Section 3.1 describes previous work and motivates the development of
improved methods based on optimization (Section 3.2) and design of experiments
(Section 3.4). The particular difficulty addressed, that of mapping preference from
the design variables to performance variables, is discussed in detail in Section 3.3.

Chapter 4 introduces the Imprecise Design Tool, a computer program developed
by the author that implements the method of imprecision in order to verify the
algorithms described in Chapter 3 and to apply the method examples taken from
industry. Two industrial examples are presented: the first from aircraft engine de-
velopment (Section 4.1) and the second from automobile body design (Sections 4.2).

Chapter 5 discusses wider issues involved in implementing the method in indus-
try. The interpretation and specification of preferences is addressed in Section 5.1.
Section 5.2 presents a scenario for implementation involving the electric vehicle
example from Section 2.7. An informal procedure for supporting group decisions
is discussed. Section 5.3 lists the essential steps in the method of imprecision as
presented in the electric vehicle design scenario.

Chapter 6 summarizes the contributions of this thesis and returns to French’s
three concerns for fuzzy decision analysis. The work presented in this thesis ad-

dresses, within the limited context of design decision-making under imprecision,



each of French’s concerns.

Appendix A describes an algorithm to approximate a mapping through succes-
sively subdividing the search space into tiles. This method ultimately proved to
have severe limitations. It is included for completeness and as an anecdote that

speaks honestly about the reality of research.



Chapter 2

Modeling Imprecision in Design

“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said, gravely, “and go on till you

come to the end: then stop.”

Lewis Carroll (1832-1898), “Alice’s Adventures in Wonderland”

This chapter begins with fundamental definitions that underpin the model de-
cision problem assumed by the method of imprecision. The notion of preference
and how it is used to represent imprecision is introduced in Section 2.2. The model
decision-maker is manifested as the aggregation functions that trade-off preference.
Section 2.3 presents axioms that attempt to define necessary conditions for aggrega-
tion functions to exhibit rationality in design decision-making. Section 2.4 discusses
importance weighting and re-casts the axioms of rational design decision-making to
include weights. The suitability of the model decision problem constructed is sup-
ported by examples throughout the chapter. A more detailed example involving the
design of an electric vehicle is presented in Section 2.7. Section 2.8 surveys related

work in design decision-making under uncertainty by other research groups.

2.1 Basic Definitions

Definition 2.1 The design variable space or DVS is the set of design alternatives

currently under consideration. a



Definition 2.2 The design variables di,..,d, are the attributes that distinguish
alternative designs in the DVS. O

Design variables need not be continuous: the design variable styling may have the
discrete values “conservative” and “sporty.” The interval methods used to calculate
Imprecision, however, require that discrete design variables are at least ordinal.
Design variables do not completely specify a design: they serve only to distinguish
alternatives. Other attributes of the design either are not under active consideration
and have fixed values, or cannot be directly specified and have uncontrolled values.
Design variables serve to distinguish design alternatives that the designer considers
to be distinct for the purpose of analysis. Hence if the designer is considering
different lengths of a particular component, then that length should be a design
variable. Other variables, such as the width of the same component, do not need to
be design variables if they are not under active consideration.

Design variables should be independent: no d; should be a function of the other
di,...;di_1,diy1,...,dn. This does not imply that variables cannot be related to each
other in any way, but merely that no variable be redundant. For example, two
design variables inner diameter di and outer diameter dy are clearly related in that
dy < dg, but neither is a function of the other. Tube thickness ds, however, is a
function of d; and dy and should not be defined as a third design variable. Note
that in this particular example, it would probably be more convenient to choose as
design variables tube thickness and then either inner diameter or outer diameter,
to avoid having to ensure that inner diameter was less than outer diameter. The
choice of design variables is thus not unique.

The set of valid values for the design variable d; is denoted X;. The whole
set of design variables forms an n vector, J; that distinguishes a particular design
alternative in the DVS. Distinct d define distinct design alternatives. Conversely,
distinct design alternatives will be described by distinct d.

In order to eliminate inferior design alternatives and refine the set of designs
under consideration, designs need to be evaluated. Design evaluation seeks to predict

how well a design alternative will perform when it is ultimately evaluated by the



customer. “Performance,” in general, has many aspects: rarely is it feasible to

quantify all of them.

Definition 2.3 The performance variables py, ..., pq are the aspects of a design’s
performance that are explicitly quantified. Each performance variable p; is defined

by a mapping f; such that p,; = fj(o?). O

The mappings fi,..., f; can be any calculation or procedure to evaluate the per-
formance of a design, including closed-form equations, computational algorithms,
“black box” functions, prototype testing, and market research. A design variable
can also be a measure of design performance and hence a performance variable.
Weight, for example, could be a design variable describing distinct design alterna-
tives while also being a performance variable that the customer is interested in. The
set of valid values for a performance variable p; is denoted Y;. The set of perfor-
mance variables for each design alternative forms a ¢ vector, p' = f (cf), that specifies
the quantified performances of a design d. Other aspects of performance which are

not quantified are not formally modeled as performance variables, and are excluded

from p.

Definition 2.4 The performance variable space or PVS is the set of all quantified

- =

performances = f(d) that are acheivable by designs d € DVS. O

2.2 Representing Imprecision

Design and performance variables are initially imprecise: they may potentially as-
sume any value within a possible range because the designer does not know, a priort,
the final value that will emerge from the design process. Yet even though the de-
signer does not know which value will ultimately be specified, certain values will be
preferred over others. This preference is used to quantify the imprecision associated
with a variable.

Performance variables attempt to predict how the design will perform in the eyes

of the customer, and hence for performance variables it is the customer’s preferences
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0 : .
6s 9s b1

Figure 2.1 Imprecise functional requirement “less than 8 seconds”.

that should be quantified, even if it is the designer who estimates them. Thus
preferences on the time required to accelerate from 0 to 60 mph for an automobile,
for example, are the customer’s anticipated preferences, even if the customer has no
stated preference on the 0-60 time in particular: the 0-60 time correlates with the
average acceleration over the speed range of the engine [37], which in turn correlates
with perceived acceleration and vehicle performance. These issues, which together
determine preferences on performance variables, will be referred to as performance

considerations.

Definition 2.5 The functional requirement Hyp; (p;) represents the preference that

a customer has for values of the performance variable pj:
pip; (pj) : V5 = [0,1] CR. 0

tp; (Pj) quantifies the customer’s preference for values of p; and is distinct from the
customary membership function in a fuzzy set, which quantifies the extent to which
values belong to the set. An example functional requirement on the performance
variable 0-60 time might at first be given as “less than 8 seconds.” Further elicita-
tion would reveal the imprecision associated the nominally crisp value “8 seconds,”
resulting in a preference function yy,, , where p; is 0-60 time, as shown in Figure 2.1.

Values of p; < 6s have p,, = 1 and are most preferred or ideal. Values of p1 > 9s



11

have pp, = 0 and are unacceptable.

The basis for preferences among values of a design variable is less obvious. Design
variables distinguish alternative designs: two different values of a design variable d;
indicate two distinct designs, but the values of d; do not indicate if one design is
preferred over the other. Design variables do not directly measure design perfor-
mance and hence the customer has no direct basis for preferring any particular
design variable value. The length of the rear axle of an automobile, for example,
is not a variable of much interest to the typical customer. Yet choosing differ-
ent axle lengths will affect aspects of design performance such as vehicle handling
that are of interest to the customer. Some of these aspects will be quantified and
hence modeled as performance variables. The customer’s preferences on these per-
formance considerations are already represented as functional requirements. Other
aspects of design performance that are not directly related to explicitly quantified
performance variables are as yet not modeled and the preferences that exist on these
attributes have not been represented. These preferences, corresponding to aspects
of design performance that are not explicitly modeled as performance variables, are

represented as preferences on the design variables dj, ..., d,,.

Definition 2.6 The design preference function ta;(d;) represents the preference
that the designer has for values of the design variable d; based on aspects of design

performance that are not already represented by performance variables:

Ndi(dz') X — [0, ].] CR. ]

Because the customer has no direct basis for preferences among values of a design
variable d;, the designer must decide how values of d; influence unquantified aspects
of design performance which are not represented by performance variables. Speci-
fying a design preference p4, relies on the designer’s experience and judgement in

three ways:

1. to determine which unquantified aspects of performance to consider and their

relative importance,
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2. to estimate how values of the design variable d; affect each unquantified aspect

of performance considered, and

3. to anticipate the customer’s preferences on these unquantified aspects of per-

formance.

In specifying a preference function on the design variable rear azle length, the
designer might consider that vehicle cornering, suspension geometry constraints,
and manufacturability are the most important unquantified aspects of performance.
Additionally, experience may lead the designer to define minimum and maximum
lengths based on previously successful and unsuccessful vehicle drivetrain designs.
These issues, which guide the specification of design preference, will be referred to
as design considerations. Because vehicle cornering, suspension geometry, manufac-
turability, and the experience gained from previous vehicle drivetrain designs will
not be explicitly quantified, design preferences are the only means of including these
important aspects of design performance. Design preferences represent preferences
on relevant aspects of design performance that are not explicitly quantified and

hence would otherwise be omitted.

2.3 Aggregating Preferences

In order to evaluate designs de DVS, the various individual preferences must be

combined or aggregated to give a single, overall measure.

Definition 2.7 The owverall preference uo(ci) combines the preferences of the de-
signer and customer for a particular design d and is a function of the design prefer-

ences [ig;(d;), and the functional requirements tp; (P5) = pp; fj(cf)):

-

po(d) = P (2, (d2), o i ()t (S (@), s 1, (Fo(d))) O

The aggregation function P reflects the trade-off strategy, which indicates how com-

peting attributes of the design should be traded-off against each other [44, 45].
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An airplane can be made lighter, but this action will probably increase
manufacturing cost. One of the most difficult aspects of product devel-
opment is recognizing, understanding, and managing such trade-offs in

a way that maximizes the success of the product. [60] (p5)

The trade-off strategy formalizes the designer’s balancing of conflicting goals and
constraints. The overall preference embodies the preferences that the designer ex-
presses on design variables as well as the preferences that the customer expresses on
the performance variables. Overall preference may be expressed on the DVS, ,uo(ci),
or on the PVS, u,(p): po(p) will be defined in Section 3.1. The set of design config-
urations that maximize p, is denoted X*. Such peak preference designs d e X* are

“most preferred” with respect to the design and performance variables modeled:

—

Vd € X po(d) = py = sup{p,(d) | d € DVS}.

1o is the peak overall preference in both the DVS and the PVS [47]. The set of

performances that correspond to the set of peak preference designs X* is denoted

—

Y= f(xr).
The following five axioms have been suggested as necessary conditions in order

for P to reflect how a designer might rationally trade-off preferences [43] (set N =

p+q):
Axiom 2.8 Commutativity:

P(ﬂ'la ooy Hgs ey ks ...,,LLN) = 73(#17 ey Mk eees Hog s ---,,U'N) Vja k.

A basic condition is that the overall preference should not depend on the order of

the preferences being combined.

Axiom 2.9 Monotonicity:

P(ﬂl,'--vﬂk7-"aﬂN) < rp(ﬂla-“)u;mwvﬂ'N) for Pk < I"l“;c N
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As any single preference increases or decreases, the overall preference should either
move in the same direction, or not at all. An aggregation function that does not
satisfy monotonicity would allow a design with the same preferences as a second
design but with a lower preference on one particular variable, to have a higher
overall preference. If two bicycle designs differ only in that one is lighter (hence
higher preference on the performance variable weight), then only an irrational trade-

off strategy would prefer the heavier design.

Axiom 2.10 Continuity:

Pty i o) = B Pty iy o i) V.

My = ke

Two designs with the same preferences on all variables except one, for which the
preferences differ infinitesimally, should have similar overall preferences. An ag-
gregation function should not create discontinuities in the overall preference where

there are no discontinuities in the preferences that are being aggregated.

Axiom 2.11 Idempotency:

Py ooy 1) = po.

If all aspects of a design are equally satisfactory and have the same preference
W, then the overall preference should also be p. A non-idempotent aggregation
function would be either optimistic or pessimistic in aggregating preferences and

would introduce an artificial bias.

Axiom 2.12 Annihilation:

P(Ml, ...,0, ---,NN) = 0.

A preference of 0 is defined as representing complete dissatifaction: the variable
value specified is unacceptable. Unacceptability implies that the design has failed to

meet a minimum requirement. If any aspect of a design is in this way unacceptable,
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the entire design must be unacceptable. If, for example, an electric vehicle design has
unacceptably high structural stresses, no enhancement in cost, vehicle performance,
range, or styling can compensate.

These design axioms do not define rational decision-making in general, but
merely indicate necessary conditions for aggregation functions within a fuzzy model
of engineering design such that these functions appropriately reflect how designers
rationally aggregate preferences. Fung and Fu [18] define a similar set of axioms for
rational decision-making in general: commutativity, monotonicity, continuity, idem-
potency, and associativity. With the exception of associativity, which is included
in the definition of hierarchical aggregation functions in Section 2.6, these axioms
are a subset of the five design axioms. It is apparent that the annihilation axiom
is particular to design. Yet it is a corollary to the definition of zero preference as
failure to meet a minimum requirement. The annihilation axiom is necessary to
ensure that every acceptable design meets all minimum requirements.

Aggregation functions that satisfy the five design axioms shall be termed design-
appropriate. A variety of design-appropriate aggregation functions exist. The choice
of aggregation function is, however, not one that the designer is free to make: the
appropriate trade-off strategy is usually dictated by the design problem. Although
it is the designer who balances the different attributes of the design, it is the rela-
tionship between attributes, a property of the design problem itself, that determines
how they should be traded-off.

Consider a system of components, where the failure of one component results
in the failure of the system such that the entire assembly must be replaced. A
high preference corresponding to a long time to failure for one component cannot
compensate for a low preference corresponding to a short time to failure for an-
other component. Only the lowest preference should be considered in evaluating
the design: higher preferences for other attributes of the design cannot compensate

for a lower preference. This is a non-compensating trade-off strategy for which the
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aggregation function is the minimum Pp;,:

-

(21) No(d) = min (Ndu ooy My s Bpys oo ﬂpq) .

This is Bellman and Zadeh’s [6] hard “and” operation for fuzzy sets, which does not
allow attributes to be traded-off against each other. Yager [70] notes that this choice
of aggregation function leads to the classic max-min solution from game theory.
Alternatively, consider an ordinary household battery, and in particular the per-
formance variables battery life (energy stored) and unit cost. A different relationship
exists between these two variables. Low unit cost can partially compensate for short
battery life and long battery life can partially compensate for high unit cost. Name
brand alkaline batteries are examples of long life, high cost designs. Generic bat-
teries are examples of low cost, short battery life designs. The two attributes unit
cost and battery life can be traded-off against each other, so that a more acceptable
attribute partially compensates for a less acceptable attribute. This can be modeled
as a fully compensating trade-off strategy for which the aggregation function is the

geometric weighted mean or product of powers Prp:

1
n+q

n q
(2.2) po(d) = | T ra; I 11y,
=1 j=1

This is Bellman and Zadeh’s [6] soft “and” operation for fuzzy sets, which corre-
sponds to the Nash solution from game theory [70].

The aggregation functions Pr;, and Py, which correspond to non-compensating
and fully compensating trade-off strategies, are two limiting cases in a family of
design-appropriate aggregation functions identified by Scott and Antonsson [54].

This class of functions will be introduced in Section 2.5.



17

2.4 Weights

The relative importance of different attributes of the design must be considered in
combining their corresponding preferences. This is achieved by assigning individual

wetghts to each variable:

wg, 20

Wp; > 0.

Each weight w quantifies the importance of its associated variable relative to other
variables.

It has been proposed that importance is a function of design and performance
variables [43]. Consider, for example, one link of a multi-link vehicle suspension
system. The longitudinal stress in this component becomes an important, indeed
critical, variable as it approaches the yield stress of the material. Yet ordinarily the
stress in this particular component would not be considered especially important.
This suggests that the corresponding importance weighting should vary with the
stress in order to correctly represent the change in perceived importance. But this
is not necessary within the method of imprecision because specifying a preference of
zero or close to zero ensures that the stress in this component becomes the critical
attribute, because of the axioms of annihilation and continuity. The variation of
importance with a variable’s value reflects the shifting criticality of variables relative
to each other. This shift in criticality is already modeled by preference functions on
design and performance variables. Weights need only model the relative importance
of variables within the context of the design problem, without reference to specific
designs d or performances D.

In order to account for relative importance, aggregation functions must now
aggregate preference and weight, i.e., (u,w) pairs. Note that preferences are func-
tions of the variables they represent, but weights are constants. The axioms for

design-appropriateness must be redefined to include weights:
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Axiom 2.13 Commutativity:

P((:u'lawl)v ey (/J'j?wj)ﬁ ey (Mk;,(.dk), ceey (/U'NawN)) =

P((Mlawl)’ ey (ﬂkawk)a ) (/J'jij), seey (,UN,WN)) VJ? k.

Axiom 2.14 Monotonicity:

P(u1,@1), oy (B, i)y ooes (v, ON)) S P((1501),5 ey (s W),y wovy (67, WN))
for py < p, Vk

P(11501), woos (1, Wk ) oo (0, WN)) S P11, 01), o0 (B, W), s (15 i)
for wp < wj, where pj < pp Vj #k VEk.

Increasing the importance of the most preferred attribute should not decrease the

overall preference.

Axiom 2.15 Continuity:

P((/wal)y ) (ﬂkawk)a L) (NN,WN)) =
B P, 01), o () o (i o) Vi
B Mk

P(11,w1)5 ees (M W) oony (v, wy)) =

,hm P((ul,wl),...,(uk,wk),...,(uN,wN)) Vk.
wk—>wk N

Aggregation functions should be continuous in preferences and in weights.

Axiom 2.16 Idempotency:

P((M’w1)7 seey ('u"wN)) = .
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Axiom 2.17 Annihilation:

P((u17w1)7"'7(03(‘)16)7"" (ﬂNawN)) =0 where Wk #0 vk
’P((ﬂ'hwl)a e (ﬂkao): e (:uN,wN)) =

P(p1,w1), oo (=1, Wk=1), (ke 1, Wkt1)s v, (8, wy)) V.

A weight of 0 is defined as removing the attribute from consideration.
Weights have been defined without an upper bound on their value and without
the necessity for normalization. Thus an additional axiom is required to correctly

aggregate weights.

Axiom 2.18 Self-normalization:

P(p1, Awr), .., (un, Awy)) = P((p1,w1), .., (un,wn)) where A > 0.

Self-normalization allows groups of weights to be freely scaled by any strictly posi-
tive constant A. This is a necessary property for hierarchical aggregation, which is
discussed in Section 2.6. Design-appropriate weighted aggregation functions must
satisfy Axioms 2.13-2.18. Note that non-weighted aggregation functions are a spe-

cial case of weighted aggregation functions with uniform weights.

2.5 Weighted Means

This section discusses the class of functions known as the (quasilinear) weighted

means [1]:

wig” (p) + ... + ng_l(NN))

(2.3) ?((Nlawl)""’(“N’wN)) =9 ( w; + ... +wy

where g is a strictly monotonic, continuous generating function with inverse ¢~1;
9(0) < p1, .y py < g(1); Wiy ey wny > 0; and wy + ... + wy > 0. Scobt and Anton-
sson [54] show that the properties of the weighted mean include all the properties

of design-appropriate weighted aggregation functions except for annihiliation (Ax-
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iom 2.17). Thus any weighted mean that satisfies annihilation is design-appropriate.
Properties of the weighted mean that are sufficient to define the form of Equation
(2.3) can be derived from the remaining design axioms (2.13-2.16, and 2.18) with
the additional assumption of strict monotonicity [54]. Hence any strictly monotonic
design-appropriate aggregation function must be a weighted mean.

The weighted root-mean-power family of functions is generated by the function

g(p) = p* [1]:

1
wip® + ..+ WNNNS) s

(2.4) Pl 1), s (v, o)) = < WL+ -+ wy

where the parameter s € R and g(0) = 0 < pq,...,un < g(1) = 1. Weighted root-
mean-power functions that satisfy annihilation are design-appropriate. A weighted
mean satisfies annihilation if and only if lim,,_,o g~ (11) is unbounded [54]. lim,, g u%
is unbounded for s < 0 only. Hence P, where s < 0 is a class of design-appropriate
aggregation functions.

Consider the limiting cases of s = 0 and s = —00. P,_g is the product of powers

Pn in its weighted form [54]:

€|

N

(25)  Ps=o((p1,w1), ..., (N, wn)) = <H uk“”“) where w = wy + ... + wy.
k=1

Ps=—oo i8 Pmin without weights [54]:

(2-6) Ps=—oco((k1,w1), -, (4N, wn)) = min (p1, ..., p) .

Ps<o interpolates between the non-compensating and fully compensating trade-
off. The degree of compensation increases as s increases from —oo. Intermediate
trade-offs corresponding to intermediate values of ¢ shall be termed partially com-
pensating. The class of functions Ps<p is not unique in interpolating between Ppin
and Pr: there exist other generating functions that give rise to design-appropriate
aggregation functions that trade-off preferences differently [54].

That Pnin and Pp define the limits of the family of design-appropriate func-
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tions Ps<o suggests that the non-compensating and fully compensating strategies
represent extremes in design-appropriate trade-offs. Indeed, Yager [70] suggests
that “these forms may represent in the oriental sense the Yin and the Yang ....”
Idempotency and monotonicity ensure that no design-appropriate aggregation func-
tion can generate values less than Ppy;, for any set of input preferences. Thus
Pmin defines a lower bound for design-appropriate functions in general [54]. Idem-
potency and monotonicity also ensure that the maximum is an upper bound for
design-appropriate aggregation functions. The maximum, however, fails to satisfy
annihilation and is not design-appropriate. Moreover, a function max’ defined as
equal to max except where annihilation requires max’ = 0, would fail to satisfy
continuity where the function transitions [54]. Thus a maximal design-appropriate
aggregation function Pyax would be as close as possible to max’ while maintaining
continuity near pr = 0. P does not define an upper bound for design-appropriate
aggregation functions, even though it defines the upper bound of a particular class
of design-appropriate aggregation functions.

The class of functions Py~ do not satisfy annihilation, but are compatible with
the remaining design axioms. Therefore, a class of design-appropriate aggrega-
tion functions could be loosely defined in a similar manner as the maximal design-

appropriate aggregation function described above:

Psso if py, e py 29
27)  Psso((p1,w1), - (py,wn)) =< 0 if g =0, we #0,1<k<N

Ps otherwise

where 0 < 0 < 1 and Ps continuously interpolates between P,s¢ = 0 at py = 0 and
Ps>o = Ps>o at ug = 6. In practice, it is not necessary to define & or P5 except that
¢ is distinguishably greater than 0, but is less than the lowest distinguishably greater
than 0 preference specified (i.e., ¢ is small but not infinitesimal). The discretization
of preferences that obviates a precise definition of Py~ is discussed in Section 5.1.

Ps>o interpolates between Pry, the fully compensating trade-off, and Py,

the maximal design-appropriate aggregation function. As s increases to +oo the
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degree of compensation increases such that smaller increases in a higher preference
compensate for larger decreases in a lower preference. This willingness to trade
a small gain for a large loss implies that Py~ is a family of supercompensating
aggregation functions. At the extreme, Ppay judges a design by its best attribute,
except where another attribute is close to unacceptable (u; < §). This may not be
irrational, but it is difficult to envision a design problem for which Py, would be
an appropriate trade-off strategy.

The parameter s is unwieldy and not readily interpreted. A parameter ¢ can be

suitably defined to represent the degree of compensation on the interval [0, 2]:

S

(28) c=1+ m where £ > 0
such that
-1
(2.9) s(c) = kl_—c|c——14 5(0) = —o0, (1) = 0, and §(2) = +o0.

The constant k& should be set to some positive value such that intermediate values
of c represent appropriate degrees of compensation. A suitable value for & has
not, as yet, been determined. It is future research. The value for k£ should be
determined in conjuction with a, perhaps informal, definition of what the degree of
compensation c represents. Currently only three values are pinned down: ¢ = 0 is
non-compensating, ¢ = 1 is fully compensating, and ¢ = 2 is maximally (super-)
compensating. A family of design-appropriate aggregation functions may be defined

by combining Ps<¢ and P>/, and reparameterizing in c:

Ps§08=k‘(1—%) ifo0<e<1

(2'10) PC((Ml’wl)v"'v(ﬂN7wN)) = .
Pssor s =k(z=—1) ifl<ec<2

Table 2.1 summarizes the continuum of aggregation functions defined by P..
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non-compensating  Prin §= —00 c=0
partially compensating Pscp | —co<s<0|0<ec<1
fully compensating Pp s = c=1
supercompensating Psny | 0<s<oo |1<e<?2
maximally compensating Ppax § =00 c=

Table 2.1 Design-appropriate aggregation functions based on the
weighted means, parameterized in s and c.

2.6 Hierarchical Weighted Design

Within a single design problem, different groups of attributes may require differ-
ent trade-off strategies. In the design of a consumer product, for example, certain
variables related to safety might require a non-compensating trade-off, while other
variables related to convenience or portability would require a compensating trade-
off. In general, preferences for individual attributes will need to be successively
aggregated by a hierarchy of different trade-off strategies. Each aggregation oper-
ation must aggregate not only preferences but also weights, such that aggregating
the (preference, weight) pairs corresponding to individual attributes results in an
aggregated (preference, weight) pair. A hat will be used to denote (preference,
weight) pairs: 4 = (u,w). Aggregation operations that aggregate both preference
and weights will also be denoted by a hat:

A~

(2'11) P(fa1, e fiN) = (Pu(ﬂla ) :aN)va(wla ...,CUN)).

Suppose that the N = n + g design and performance variables are split into two

subsets so that a different trade-off strategy can be applied to each:

~

fro = (to,wo)

= P, .--fin)

(2.12) = Pur (731(&1»---,ﬂk),ﬁu(ﬂkﬂ,---,ﬂN)) .
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This is a hierarchical form of Definition 2.7. How should the subordinate aggrega-
tion operations P; and Prr and the superordinate aggregation operation 'ﬁnl be
defined? If a particular trade-off, P, (Equation (2.10)) with an appropriate degree
of compensation ¢, is used to aggregate preferences for all N variables, then 73}‘ ,
P, and Py, must satisfy Equation (2.12) for P* = P,. Yet this condition does
not uniquely specify Py, P}, and Pf;;, nor does it indicate how weights should be
aggregated.

The form of the weighted mean (Equation (2.3)) suggests that aggregated weights

should be added if a weighted mean is used to aggregate preferences:
PY(wiy ey WN) = Wy + ... + wi.

This definition of P is consistent with Equation (2.12) if P*, P¥, Pk 7, and Pry,

are all defined to be the same weighted mean:

P (Pw(wla "‘7wk)apw(wk‘+la "'7wN)) = P¥ (wl + ...+ Wk, Wet1 + ... + wN)
= wr+..twgt+twgyr + ... +wn

(2.13) = PY(wy + .. + wn)

o~

PH (ﬁ(ﬂla~-:ﬂk),P(ﬂk+1a-~-aﬂN)> =P* ((ur,wr), (11, wrr))

—g (wfg_l(uz) + wng_l(ﬂn))
wr + w1

-1 —1
(w1+...+wk)g_1 <g (mg (#alu)iizzg (/Me))) _I_ng—l (ur1)

wi + ... twg +wpr

=9

—y wig™ (p1) + . + wrg (k) + wri19 (Besr) F oo +ng_1(uN)>
w1+ o F W Fwpy + o+ wn

(214) =P (ﬂl? “-9/:[’N)

Thus the use of an aggregation operation (P*,P¥), where P* is a weighted mean
and P* is the arithmetic sum, has been shown to be hierarchically consistent. The

Ps family of weighted means generated by g(u) = u* therefore defines hierarchically
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consistent aggregation operations, as do the Py<g subset of design-appropriate aggre-
gation functions. The specially defined Py~ (or P.>1) family of design-appropriate
aggregation functions must be separately shown to be hierarchically consistent where
Pssor differs from Pgsq, i.e., where there exists a preference py, < 4.

Where i = 0 for some k, annihilation requires that the aggregated preference
be zero and that this zero preference be propagated up the hierarchy. This is clearly
satisfied since Ps~( is defined to annihilate such that Pysor ((p1, W1)y ey (UN,WN)) =
0 if i, = 0 for some k (Equation (2.7)). Hierarchical consistency need not be shown
for the intermediate case where 0 < pj < § for some k because such intermediate
values of preference do not occur in practice, as is discussed in Section 5.1. Thus ﬁc
defined as (P, P¥), i.e., (Ps<0, P¥) and (Pssor, P*), has been shown to be a valid
hierarchical weighted aggregation operation for (preference, weight) pairs.

The hierarchical aggregation operation ﬁc can be successively applied, allowing
multiple levels of problem decomposition or aggregation. Self-normalization (Axiom
2.18) allows weights to be specified at arbitrary levels of aggregation and freely
scaled. A set of variables representing a single design problem can be decomposed
into successively smaller sub-problems based on the structure of the problem and the
nature of the trade-offs between variables. Importance weightings for each elemental
attribute at the lowest level of the hierarchy can be specified either relative to all
other elemental attributes globally or relative to attributes within each sub-problem
locally. Where weights are specified locally by sub-problem, the aggregated weight
representing the importance of the sub-problem must be scaled relative to other sub-
problems at the same level of aggregation. This is equivalent to aggregating multiple
design problems into a single super-problem: the importance of each problem must
be determined relative to the other problems at the same hierarchical level, prior
to aggregation. Weights need not be bounded by any specific limit, though it may
be convenient to normalize weights within a particular problem to sum to 1, such
that they represent the importance of each attribute in the context of the problem

as well as relative to each other.
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Figure 2.2 Amerigon’s electric vehicle chassis © Copyright 1996 CAL-
START, Inc., all rights reserved. Permission to use granted April 30,
1996.

2.7 Example: Design of an Electric Vehicle

This section demonstrates the modeling of a hierarchical design problem through
an example: the design of an electric vehicle (EV) based on a space frame. It is
assumed that the basic geometry of the frame has already been decided and that
the design team is currently concerned with basic frame parameters and important
choices in vehicle components such as the propulsion system. Figure 2.2 shows a
running chassis for an electric vehicle developed by Amerigon Incorporated under
the CALSTART business incubator program. This actual working vehicle design is
the basis for the example presented here, though the vehicle used for the example is
not intended to accurately represent Amerigon’s running chassis. The purpose of the
running chassis is to provide “a modular ‘common platform,’ or shared chassis, that

can serve as the basis for a family of electric vehicle models for several manufacturers.
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Figure 2.3 Design preference aggregation hierarchy for an electric vehi-

cle design.
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Figure 2.4 B pillar design variables.

The running chassis is a fully functional EV without body or interior, utilizing an
aluminum space frame design for lighter weight and lower cost. [23]”

The hierarchical aggregation of individual design preferences is shown in Fig-
ure 2.3. Individual design preferences pg, (d1), ..., uq, (drn) are aggregated through
a hierarchy of weighted aggregation functions into the combined design preference
pa(d) (pa(d) will be formally defined in Chapter 3). The A pillars are on either
side of the front windscreen, and the B pillars separate the front and rear doors
(Figure 2.2). The hierarchy for the frame of the vehicle is incomplete: only the
design variables for the B pillar are given. These design variables are shown in
Figure 2.4. Note that h, w, tweb, and touter do not fully describe the cross-section.
Other variables that are not under active consideration (e.g., those indicated but
not labelled) do not need to be modelled as design variables.

Recall that design preferences 114(d;) represent the customer’s anticipated pref-
erences with respect to design considerations: the unquantified aspects of design
performance which are not represented by performance variables. Thus the first
step is to determine which aspects of performance are to be quantified as perfor-
mance variables. For this example the following performance variables are to be

calculated:

e p; vehicle range
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e po vehicle cost

e p3 acceleration time from 0-60 mph

p4 vehicle weight
e p5 frame stiffness in bending
e pe frame stiffness in torsion

It is assumed that estimates for these quantities are available for any given design
configuration. Range p; can be calculated given data on energy stored, motor and
transmission efficiency, aerodynamic drag, and rolling resistance. Cost ps and weight
P4 and can be calculated using a spreadsheet or similar software, given the necessary
weight and cost data. 0-60 time p3 can be estimated from motor and transmission
characteristics. Bending stiffness ps and torsional stiffness pg can be evaluated
using a finite element model (Section 4.2).

The design considerations that pertain to each design variable are indicated in
Figure 2.3. The careful distinction between performance considerations (represented
by functional requirements on performance variables) and design considerations
(represented by design preferences on design variables) is an important contribu-
tion of this thesis. Design considerations explicitly account for relevant aspects of
design performance that are otherwise not accounted for as performance considera-
tions. Issues such as aesthetics and manufacturability are clearly relevant to design
evaluations, yet they are not easily quantified. Design preferences embody these
issues. In constructing the hierarchy to aggregate design preference, it is important
to understand which specific issues are being aggregated at each step.

Although the B pillar design variables h and w affect stiffness, cost, weight,
range, and acceleration, these considerations will ultimately be explicitly evaluated.
They do not need to be represented by design preference. The design considerations
that remain are aesthetics and packaging. B pillars that are too wide or too narrow
are not attractive. B pillars that are too deep reduce clearance inside the vehicle, yet

a certain minimum depth and width is required to attach the seat belt. Additionally,
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wide B pillars reduce the size of the door opening. The thicknesses tweb and touter
affect the difficulty of extruding the cross-section. The internal web is necessary
to maintain the shape of the cross-section when it is bent, although a thick web is
difficult to manufacture [11]. The values of tyep and toyer affect the difficulty of
extruding a uniform cross-section within tolerance [11]. Joints and attachments to
the B pillar lead to a minimum value for ¢gyter.

The design considerations associated with the B pillar design variables are not
naturally compensating. Packaging constraints and aesthetics cannot significantly
compensate for manufacturability. Yet the trade-off is not purely non-compensating.
Thus the level of compensation specified is ¢ = 0.2. The value of ¢ obtained in this
manner is, at best, an estimate. Indeed, the exact parameterization of ﬁc has not
yet been determined. Nevertheless, the value ¢ = 0.2 approximately represents the
informally defined degree of compensation that is appropriate for the aggregation of
the design considerations associated with the B pillar design variables. More precise
methods of determining ¢ will be introduced in Section 5.2.

For each aggregation operation at a particular hierarchical level in Figure 2.3, the
locally normalized weights assigned to the aggregated branches are indicated. Global
weights normalized for the entire design problem are printed in italics below each
design variable. The global weights were obtained by multiplying the local weights
along the branches connecting each design variable to the top of the hierarchy.
Because it is natural to compare the relative importance of closely related attributes,
local weights were specified first. The global weights corresponding to the local
weights specified were then examined and adjustments were made to both global
and local weights in order to better represent the perceived relative importance of
the design variables.

The types of energy storage considered are limited to conventional nickel-cadmium
and lead-acid batteries, and an advanced lead-acid battery that uses a lead wire
grid extruded onto a fiberglass core. The lead wire-acid battery, developed by Elec-
trosource Incorporated, of Austin, Texas, has advantages in weight and durability

and with an estimated price of $3,000 per vehicle it is among the least expensive new
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energy storage options available for electric vehicles [42]. However, there is a degree
of risk involved in using a new battery technology that is as yet not in widespread
usage. A more important design consideration is the time required to recharge the
batteries. Conventional nickel-cadmium batteries can be partially recharged rela-
tively quickly in comparison to conventional lead-acid batteries. The Peugeot 106
and Citroén AX, both produced by PSA Peugeot Citroén, use nickel-cadmium bat-
teries that can be fast-charged in 10 minutes to extend the vehicle’s range by 20 to
30 kilometers [42].

The total energy stored, E, is essentially the number of batteries. As the number
of batteries becomes large, the quantity of potentially dangerous acid in a lead-acid
battery, for example, becomes a significant safety concern. Battery mass also affects
safety in a collision. Additionally, there is an upper limit to the number of batteries
that can be physically packed into an electric vehicle, independent of their weight.

A crucial component of a practical electric vehicle is an energy management
system. The total energy stored in an electric vehicle is limited: range is depen-
dent on how efficiently that energy is used. Where lead-acid batteries are the only
means of energy storage, the maximum power that can be drawn from the bat-
teries is also a critical limitation. An especially important choice is whether or
not to use regenerative braking in order to recover some of the energy otherwise
dissipated in decelerating the vehicle. Assuming that weight, range, and cost are al-
ready accounted for as performance variables, the remaining considerations are the
additional complexity of such a system, and in particular its impact on reliability.

The design considerations governing the choice of motor used to propel the
vehicle are the availability of types and sizes of motor and packaging constraints
that limit the overall dimensions of the motor. These are relatively unimportant
issues as is indicated by a global importance of 0.04. Note that this does not imply
that the choice of motor is a relatively unimportant decision, nor that the motor is
a relatively unimportant component in the vehicle, but merely that availability and
packaging constraints for the motor are relatively unimportant compared to other

design considerations.
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Ironically, the efficiency of an electric vehicle creates a problem that does not
exist for combustion-powered vehicles: how to heat the interior when there is no
convenient (and free) source of waste heat. The problem is exacerbated by limited
energy storage. Thus the passenger heating and cooling system in an electric vehicle
Is a significant and integral part of the design. The selection of the capacity of the
climate control system directly impacts range, cost, and comfort. Of these, comfort
is not modeled as a performance variable. Its direct importance to the customer is
reflected in a global weight is 0.2. The corresponding design preference fipeqp capacity
is more heavily weighted (Wpeak capacity = 0.2) than any other individual design
preference: the design consideration comfort associated with peak capacity is the
most important of the design considerations in Figure 2.3.

Critical aspects of design performance are typically quantified. Thus they are
modeled as performance variables and the customer’s preferences on them are rep-
resented as functional requirements. Therefore, the remaining aspects of design
performance that must be expressed as design preferences on design variables are
typically of lesser importance. Many design considerations, e. g., manufacturabil-
ity, are only of indirect interest to the customer. Thus the extent to which the
determination of the design preference hierarchy, the relative weights, and the ag-
gregation functions is informal and approximate, is entirely appropriate. The degree
of compensation ¢ for each aggregation operation need only be determined to the
nearest 0.1, at most: for many problems the nearest 0.2 will suffice. Perhaps a more
valuable result of constructing the design preference hierarchy is the understand-
ing gained through identifying design considerations, their relative importance, and
their associated design variables, and formalizing the hierarchical relationships be-
tween design considerations. A similar benefit can be expected from constructing
the functional requirement hierarchy. The functional requirement hierarchy is more
easily constructed because performance considerations are relatively specific and
well-defined. It has been demonstrated that the construction of these models is not
only feasible and informative, but in necessitating the careful identification of the

specific considerations corresponding to each variable and their relative importance,
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the process of constructing the model is itself helpful in understanding the structure

of preferences that characterizes the design problem.

2.8 Related Work

Decision-making methods that address uncertainty, in a broad sense, are not new.
The method of imprecision presented in this thesis may be distinguished from these

other methods in three principal directions:
e the type of uncertainty modeled,
e the means by which uncertainty is modeled,

e the functions used to aggregate uncertainty.

Probability

Probability theory quantifies uncertainty due to random variation. Probability
methods focus on observing a process in order to characterize its behavior and
hence predict the likelihood of various outcomes. Probabilistic uncertainty arises
from a stochastic process for which the best predictor of the final outcome is sta-
tistical analysis of previous behavior. This is in contrast to imprecision in design,
which arises because the designer has yet to make decisions that will more precisely
determine the design. This decision-making process is clearly not random and anal-
ysis of previous behavior is of limited value. Thus probability methods are not
well-suited to modeling design imprecision. Probability methods are, however, well-
suited to dealing with stochastic uncertainty in manufacturing processes, material
properties, loading, reliability, etc. Probabilistic design [22, 56] seeks to support
design decisions through the analysis of these stochastic variations.

Taguchi’s method [7, 50, 57], which is widely used in industry, views manu-
facturing variations as undesirable stochastic noise. The method has three key

aspects [50]:
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1. The loss in producing a product that deviates from target values is assumed

to be quadratic.

2. Selected experiment design techniques are used to efficiently characterize the

behavior of the manufacturing process relative to controlled inputs.

3. The goal is to achieve robustness both in terms of the insensitivity of prod-
uct performance to uncontrolled variation as well as the consistency of the

manufacturing process in delivering products to specification.

Taguchi’s method is a philosophy to understand and minimize the cost of stochastic
process variations and, as such, has been shown to be effective. Design imprecision,

however, is not explicitly modeled in the Taguchi approach.

Utility Theory

Utility theory seeks to aid decision-making in the presence of uncertainty. The
type of uncertainty modeled is uncertainty due to decisions yet to be made, i.e.,
imprecision. Utility theory is based on economics and its central assumption is that
each aspect of a decision can be assigned a function representing utility. Although
utility is similar to preference as used in the method of imprecision (von Neumann
and Morgenstern [61] use “satisfaction” and “preference” as similes for utility), there

are three important differences:

1. Utility functions are specified only on objectives: where there are multiple
courses of action, for example, the expected utility of each action is assessed
on each objective variable [25]. The method of imprecision admits a second
possibility: that preferences may also be specified on design variables, based
on anticipated design performance. Proxy attributes in utility theory [25] are
equivalent to performance variables and not design variables because they still
relate directly to objectives, and most significantly the mapping from proxy

attributes to objectives is not explicitly evaluated.

2. Utility is based on a common monetary commodity:
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We shall therefore assume that the aim of all participants in the
economic system, consumers as well as entrepreneurs, is money, or
equivalently a single monetary commodity. This is supposedly to
be unrestrictedly divisible and substitutable, freely transferable and
identical, even in the quantitative sense, with whatever “satisfac-

tion” or “utility” is desired by each participant. [61] (p8)

While this is reasonable in the context of economic systems, it is not especially
suited to design. Preferences on design attributes are not necessarily identical
and substitutable commodities. Preferences on the stresses in various compo-
nents of an automobile suspension system are not identical to preferences on
various measures of musical fidelity in the sound system. The issue is not dif-
ference in importance, but difference in character: different types of attributes
require different trade-offs. A uniform monetary commodity is always traded

as a commodity. Moreover, every objective is assumed to have a price.

. A consequence of the equivalence between utility and a monetary commodity

is that utility is relative:

. utility is a number up to a linear transformation.
We do not undertake to fix an absolute zero and an absolute unit

of utility. [61] (p25)

Preference is absolute: a preference of zero is defined as unacceptable and a
preference of one is defined as ideal. The absolute definition of zero preference
is essential to design. The annihilation axiom for rational design decision-
making relies on the absolute definition of zero preference. Failure to meet a
minimum requirement in one aspect of the design must render the entire design
unacceptable. Because there is no absolute zero of utility, there is no notion of
absolute unacceptability in utility theory: a sufficiently high utility in another
attribute can always compensate. This does not realistically represent design

decisions.
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Utilities are commonly aggregated with the arithmetic mean, which is a function
in the family of weighted means:

N
1
(2.15) Po=1((p1,w1)s oo, (N, wn)) = N ;Wiﬂ'i

As discussed in Section 2.5, functions Ps~¢ do not satisfy annihilation and hence
are not design-appropriate. In general, aggregation functions in utility theory are
not required to satisfy annihilation because utility is relative and zero utility does

not represent any absolute notion of null preference or unacceptability.

Matrix Methods

Design imprecision during the earliest stages of the design process is manifested as
a multiplicity of alternative concepts. Morphological matrices [48] classify concepts
by function, solution variant, working principle, type of motion, etc., and in doing
so, facilitate the generation of new concepts. Concepts are typically not sufficiently
refined for quantitative analysis. Concept selection matrices [3, 48, 52] rank alterna-
tives against evaluation criteria. Rankings are typically informally estimated against
an existing design or some other datum. The weighted sum of rankings identifies
promising alternatives. Pugh [52] also describes an alternative preliminary ranking
scheme that has only three ratings: “+” (better than datum), “—” (worse than
datum), and “S” (same as datum). These ratings are not summed algebraically, as
in other methods, but rather serve to indicate the strengths and weaknesses of each
alternative. It is in this respect that concept selection charts are most effective.
They are not intended to be formal analyses. The summation of numeric rankings
does not accurately reflect how criteria should be aggregated.

The analytic hierarchy process, or AHP [53], is a systematic procedure for de-
termining the relationships between elements in a hierarchy of progressively more
specific aspects of a problem. The axioms of the AHP do not include strong assump-
tions of rationality in decision-making [53]. The AHP combines attributes using a

weighted sum which does not satisfy annihilation.
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Optimization

Optimization does not expressly model uncertainty. The purpose of design opti-
mization is to algorithmically search for the “best” design relative to a single overall
criterion. Papalambros and Wilde [49] identify four steps in the design optimization

approach:
1. The selection of a set of variables to describe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design

variables, which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of design vari-

ables, which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize

(or maximize) the objective, while satisfying all constraints.

In practice, steps 2 and 4 pose the greatest difficulty. It is not always possible to
represent all relevant design requirements in a single objective. “The importance of
optimization lies not in trying to find out all about a system, but in finding out,
with the least possible effort, the best way to adjust the system. [2]” Ultimately,
optimization does not seek to explore the design problem, but is interested only in
obtaining the single “best” solution. This directed, point-based approach leads to

algorithmic efficiency but is subject to two of French’s three criticisms:

e Are the algorithms and the criterion used to optimize the design an acceptable

and rational emulation of the decision-maker?

e Is the process of design optimization itself informative, and does it guide the

evolution of the decision-maker’s beliefs and preferences?

Engineers at one major U.S. automobile manufacturer tend to view optimization as
a black box design tool [12]. Given constraints and a set of design variables, the

optimization software simply searches for the design that is (locally) optimal with
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respect to a given objective, e.g., weight or stiffness. The software does not facili-
tate understanding of the design space other than at the single optimal design point.
Moreover, the real problem has multiple objectives. Thus, optimization proceeds by
iteratively cycling through several objectives. Occasionally engineers are tempted
to “tweak” the final design in order to trade-off one objective for another, but this
leads to designs that are non-optimal in some unexpected direction [12]. The prob-
lems of local optima, multiple objectives, and to a lesser extent lack of participation
in the optimization process have been addressed in more advanced optimization
methods, notably genetic algorithms [20] and various multi-objective optimization
formulations [5, 19, 58]. Dlesk and Liebman [14] describe a multi-objective de-
sign methodology that also allows for uncertainty via “hedging,” a more systematic
alternative to tweaking, and sensitivity analysis about the design point.
Optimization is fundamentally a point-based approach. Moreover, it empha-
sizes objectives as opposed to preferences on objectives, and thus implicitly assumes
that preference is a simple, often monotonic function on each objective. Addition-
ally, constraints are typically assumed to be precise. Yet these assumptions allow

optimization algorithms to be computationally efficient and readily implemented.

Set-based Methods

Ward et al. [64, 65], in a remarkable case study of Toyota’s design and development
process, characterize a new approach that they refer to as “set-based concurrent

engineering.”

Toyota designers think abouts sets of design alternatives, rather than
pursuing one alternative iteratively. They gradually narrow the sets

until they come to a final solution. [65] (p43)

To illustrate the power of set-based information relative to point-based information,
Ward et al. [65] use a simple example problem: scheduling a meeting. A conventional
point-by-point approach might begin with the meeting organizer picking a time and

date. As other participants are contacted, the original time may turn out to be



39

unsatisfactory: a new time is picked but now the organizer must go back to check
with all the people who were contacted previously. The new time may be unsatis-
factory for them, requiring yet another change. For large, busy groups, this process
quickly becomes time-consuming and unwieldy. There are two common strategies
for shortening the search while retaining the point-by-point approach [65]. First,
the group can meet briefly to decide when to have the meeting. This accelerates
communication at the cost of the participants’ time. For automobile development,
this corresponds to collocating engineers that are working on the same project and
requiring them to meet more often. Second, one or more powerful members of the
group can dictate a time for the meeting, which is likely to produce a less than

optimal solution, albeit quickly.

A third, set-based approach to planning a meeting requires all parici-
pants to submit the times that they are available, perhaps with prefer-
ences. A convenient time can quickly be found by taking the intersection

of all sets of available times, a process now often automated. [65] (p44)

Ward et al. [65] observed five potential advantages to the set-based approach to
design at Toyota:

1. “Set-based concurrent engineering enables reliable, efficient communication. [65]”
In a conventional, point-based approach, every design change can invalidate
all previous decisions. Moreover, changes will not necessarily converge. Con-
versely, in a set-based approach, engineers communicate information that de-
lineates the full set of possible designs. As the design process proceeds, this
set is narrowed, supplementing without invalidating previous information. Set-
based communication at Toyota appears to have several consequences. First,
it eliminates work that is subsequently invalidated. “Toyota’s body designers
waste little time on detailed designs that cannot be manufactured because the
manufacturing personnel can precisely define the set of bodies that are man-
ufacturable ... . [65]” Second, it reduces the number and length of meetings.

“Toyota’s engineers and suppliers can work relatively independently, because
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each meeting communicates information about an entire set of designs. [65]”
Toyota also achieves a high level of concurrency in its engineering process
without collocating or dedicating its development teams. Third, set-based
communication eliminates a major incentive to delay work. With a point-
based approach, engineers downstream in the process may choose to delay
making decisions because the design is subject to change. Toyota’s suppliers
always know the amount of imprecision in their specifications and are there-
fore able to commit themselves accordingly. Finally, set-based communication
can increase trust in working relationships. Informing a supplier about the
set of possible changes instead of simply providing the minimum information

encourages trust.

. “Set-based concurrent engineering allows for greater parallelism in the pro-
cess, with more effective, early use of subteams. [65]” In a set-based approach,
downstream processes can become involved as soon as the set of possible de-
signs is sufficiently refined. Manufacturing innovation that applies to a broad

set of products may influence product design.

. “Set-based concurrent engineering bases the most critical, early decisions on
data. [65]" The earliest design decisions have the greatest impact on the ul-
timate quality and cost [9, 10], but these decisions are made with the least
data [64], and moreover, data that is the least precise. Set-based methods
allow Toyota engineers to explore the space of possible designs before making

important decisions.

. “The set-based process promotes institutional learning. Designers are noto-
riously resistant to documenting their work, partly because they sense that
documentation is generally useless. [65)” Documenting a point-based design
process provides directions from one specific starting point through one par-
ticular path, to the current, specific design. These directions are only useful to
revisit the particular designs explored. At Toyota, team members systemati-

cally explore larger regions of the design space. Lessons-learned books record



41

the manfacturability of various body designs. In this way, designers have avail-
able to them a clear and up-to-date map of the space of manufacturable body

designs, without even talking to a manufacturing engineer.

5. “Set-based concurrent engineering allows for a search of globally optimal d~e—
signs. [65]” “Rapid inch-up” innovation can only find “local optima”: the best
possible design based on the current fundamental concept. Set-based concur-
rent engineering can explore many different concepts and may potentially find

better solutions based on radically different concepts.

These five advantages are a compelling motivation for all set-based methods, in-
cluding the method of imprecision.

In formalizing their own set-based methodology, Ward and Seering [62, 63] have
developed a theory to propagate intervals with associated labels such as Limits
and Operating-Region. In relation to their work, the method of imprecision has
focused not on the characterization of the nature of each interval (i.e., its “label”),
but rather on the representation of degrees of preference. In practice, the method
of imprecision is manifestly set- and even interval-based (see Chapters 3 and 5).
Indeed, the methods described in this thesis are well described by the third, set-
based approach to planning a meeting quoted above. Fuzzy sets are, after all, a
generalization of ordinary crisp sets.

- Many researchers have used fuzzy sets to represent imprecision in decision-
making outside of engineering design [6, 16, 24, 27, 40, 41, 72]. Most of these
formulations are based on fuzzy “and” and “or” operators and are directed at mod-
eling linguistic uncertainty and fuzzy logic. Although the design appropriate Py,
and Pr aggregation functions are used to combine fuzzy sets, two classes of func-
tions that do not in general satisfy the annihilation and idempotency axioms are
commonly used for fuzzy decision-making: t-norms [36, 16] and ¢-conorms. T-norms
are bounded above by min. T-conorms are bounded below by max.

Zimmerman and Sebastian [73, 74] and Miiller and Thirigen [39] have applied
fuzzy sets to engineering design. Given the basic equivalence of preferences as de-

fined in the method of imprecision and membership as defined in fuzzy set theory,
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their methods are similar to those described in this thesis. The fundamental choice
of fuzzy sets to model design imprecision yields the same mathematical entities to
quantify and manipulate imprecision. The method of imprecision is specifically di-
rected at design decision-making in particular, and thus the more intuitive notion
of preference replaces membership. The axioms that define design-appropriate ag-
gregation function are also specific to design. These are a few of the distinctions
between the two approaches that have arisen because of the relatively specific focus
of the method of imprecision on engineering design. The work of Zimmerman and
Sebastian [73, 74] has mainly been applied to configuration design.

A significant distinction of the method of imprecision is the inclusion of design
preferences. The explicit representation of the customer’s indirect preferences antic-
ipated by the designer is unique to the method. Design preferences, however, must

be mapped from the DVS to the PVS, which is a non-trivial additional step.

2.9 Conclusions

The method of imprecision models the design problem in terms of two separate
spaces: the design variable space (DVS) is the set of all design alternatives under
active consideration, and the performance variable space (PVS) is the set of all
quantified performances that are achievable by the designs in the DVS. Design
variables dy, ..., d,, distinguish design alternatives that the designer considers to be
distinct for the purpose of analysis. Other attributes of the design either are not
under active consideration or cannot be directly specified. The set of design variables
forms an n vector, J; that distinguishes a particular design alternative in the DVS.
Performance variables p1, --,Pg quantify design performance for each design: pj =
fi (cf) The mappings f1,..., f; can by any calculation or procedure to evaluate the
performance of a design, but a performance attribute must be explicitly quantified
to be a performance variable. The set of performance variables forms a q vector,

P = f(d), that specifies the quantified performances of a design d.

Imprecision is represented through quantifying the customer’s direct and indirect
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preferences on design and performance variables:

e Functional requirements pp,, ..., Hp, quantify the customer’s direct preference
on performance variables based on performance considerations: the quantified

aspects of design performance represented by performance variables.

* Design preferences pg,, ..., g, quantify the customer’s anticipated preference
on design variables based on design considerations: the unquantified aspects

of design performance not represented by performance variables.

The precise differentiation between design and performance variables, between de-
sign preferences and functional requirements, and between design and performance
considerations, is a key contribution of this thesis.

The individual functional requirements and design preferences are aggregated
into a single overall preference p,. High overall preference identifies preferred and
hence promising designs and performances. Five axioms for rational design decision-
making were presented in Section 2.3: commutativity, monotonicity, continuity,
annihilation, and idempotency. Of these five, annihilation is specific to design. An-
nihilation is necessary so that a design that is unacceptable in some aspect because
it fails to meet a minimum requirement must also be judged to be unacceptable over-
all. Including importance weightings necessitates a redefinition of these axioms and
the addition of a sixth axiom, self-normalization, which allows weights to be freely
scaled by any strictly positive constant . This property is also useful where prefer-
ences are aggregated hierarchically. Aggregation functions that satisfy the axioms
for rational design decision-making are termed design-appropriate. In Section 2.5,
a family of hierarchically consistent, design appropriate aggregation functions were
defined using the weighted root-mean-power family of functions. This family of
functions P., parameterized in ¢, allow the degree of compensation to be continu-
ously varied from non-compensating (Pe=o = Ppin) through partially compensating,
fully compensating (P.—; = Pp), and supercompensating, to maximally compen-
sating (Pe=2 = Pmax). This family of aggregation functions, which represent the

model decision-maker in the method of imprecision, allow a broad range of degrees
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of compensation and satisfy postulated axioms for rational design decision-making.
They permit attributes to be weighted in importance and they support hierarchical
aggregation. Few of the decision-making methods reviewed in Section 2.8 can match
all of these claims (few methods have been specifically developed for design decision-
making). Thus it is suggested that, provided the axioms of design-appropriateness
adequately reflect the decision-maker’s notion of rationality, the method of impre-
cision can indeed allow the decision-maker to define an aggregation hierarchy that
acceptably models how the decision-maker might actually trade-off preferences.

The electric vehicle example in Section 2.7 demonstrated the modeling of a design
problem, and in particular the process of identifying design variables, performance
variables, and design considerations and constructing the design preference aggre-
gation hierarchy. The elucidation of this process, in particular the construction of
the design preference hierarchy, is the second key contribution of this thesis. The
modeling of performance considerations as performance variables is not new and its
suitability is not in debate. Whether preferences suitably model imprecision with
respect to performance variables is, however, as yet unproven: this issue will be
addressed in Chapter 5. But the two key issues here are first, whether the chosen
means of representing and aggregating the customer’s anticipated preferences on
design variables is a suitable or even meaningful model of the design problem, and
second, whether the suggested process for constructing the model is both feasible
and informative.

The specific issues discussed as design considerations, such as aesthetics and
manufacturability, are clearly relevant to design, yet they are difficult to include
in any formal methodology. The work presented in this thesis not only allows the
representation of these “soft” issues, but introduces a clearly defined formal struc-
ture for quantifying their consequences. Any relevant issue that can be related to
a design variable can be modeled in this way. That design issues can be formed
into a hierarchy with importance weightings is not controversial. The innovation of
separating design considerations from performance considerations may at first make

little sense, but since performance considerations will be explicitly evaluated and
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their consequences calculated, only the design considerations remain to be quan-
tified on the design variables. Using the designer’s experience and judgement to
project the customer’s preferences back onto the design variables is already com-
mon practice. Indeed, a primary difficulty in implementing the method will be to
selectively turn off the designer’s automatic mapping of all of the customer’s pref-
erences onto design variables. Representing design considerations as the customer’s
anticipated preferences on design variables is therefore a suitable model: it is not
inconsistent with how a designer thinks about design. Moreover, such a structure
is also meaningful to the designer: it is readily interpreted.

That the process of identifying design considerations and constructing the design
preference aggregation hierarchy is feasible has been demonstrated for one specific
example. It is anticipated that this procedure will be feasible for any design prob-
lem for which the designer has a sufficient understanding. However, the author is
clearly not an expert on electric vehicle design. Yet the process of enumerating
design considerations, explicitly relating design considerations to design variables,
constructing a hierarchy, determining relative importance and degree of compensa-
tion in aggregation, and examining the resulting model, forced a careful analysis of
how the design variables impact design considerations, and as a result many impor-
tant issues were clarified. This critical analysis of design considerations separately
and in relation to design variables and an aggregation hierarchy is itself a valuable
exercise. Thus it is suggested that the process of constructing the model is not only
feasible and informative, but also requires the designer to more clearly distinguish

and explicitly quantify the beliefs and preferences that are to be modeled.
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Chapter 3

Calculating Imprecision

“Now,” said Rabbit, “this is a Search, and I’ve Organized it—"
“Done what to it?” said Pooh.
“Organized it. Which means — well, it’s what you do to a Search, when

you don’t all look in the same place at once ... .”

A. A. Milne (1882-1956), “The House at Pooh Corner”

Chapter 2 described how individual preferences can be hierarchically aggregated
into an overall preference p,. In implementing the method of imprecision, a key
difficulty is that design preferences are specified on the DVS and functional require-
ments are specified on the PVS. f provides a forward mapping from the DVS to the
PVS, but the backwards mapping from the PVS to the DVS is typically not avail-
able. Hence design preferences are first mapped onto the PVS. The mapped design
preferences are then traded-off against functional requirements to obtain y,(5), the
overall preference function on the PVS. p,(p) represents the combined preferences of
the designer and the customer, expressed in terms of design performance g. In order
to obtain ,uo(a?), the overall preference on the DVS, functional requirements must be
mapped back onto the DVS and traded-off against design preferences. uo(d_) iden-
tifies design configurations that are promising in terms of the combined preferences

of the designer and the customer.

This chapter describes computational methods that have been developed in order
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to perform the calculations described above. The practical difficulties of mapping
preferences from the DVS to the PVS while achieving efficiency in function eval-
uations are discussed in Section 3.3. The methods developed utilize optimization
(Section 3.2) and design of experiments (Section 3.4). Many of these methods have
been implemented in a computer program, the Imprecise Design Tool, which will

be described in Chapter 4.

3.1 The Level Ihterval Algorithm

After specifying design preferences pgq, (d1), ..., 1, (dn) and functional requirements
tpy (P1)s -+ thp, (Pg), and identifying the appropriate hierarchy of trade-off strategies,
the individual 114, (d;) are aggregated to obtain u4(d), the combined design preference

on the DVS. 1i4(d) is then mapped onto the PVS, using the extension principle [71]:

= -

(d)}

(3.1) pa(P) = sup{p4(d) | §

where sup over the null set is defined to be zero. p,d(cf) is the combined design
preference on the DVS, as distinct from pq(p), the combined design preference on
the PVS. u4(p) is obtained by mapping ud(cf) onto the PVS.

Individual functional requirements p,,, ..., up, are aggregated to obtain Lp(D),
the combined functional requirement on the PVS. The overall preference on the

PVS is the aggregation of u4(p) and u,(p):

(3:2) po(D) = P (1a(P), p (D)) -

o(P) represents the combined preferences of the designer and the customer, ex-
pressed in terms of design performance.
In order to obtain uo(of}, the overall preference on the DVS, the combined func-

tional requirement u,(p) is mapped onto the DVS:

- -

(3.3) o) = o5 = F(d).
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Figure 3.1 Discretized design preference pg, .

Although ,up(cf) is easily calculated using f for any given design cf, determining
how the preference function up(tf) varies over sets of designs in the DVS is difficult
without evaluating f many times, especially because the inverse of f is typically not
available.

The first problem to be addressed is how to map design preference from the DVS
to the PVS. Previously, p4(p) has been calculated using the Level Interval Algo-
rithm, or LIA [69], first proposed by Dong and Wong [15] as the “Fuzzy Weighted
Average” algorithm and also called the “Vertex Method.” The LIA defines M lev-
els of preference ..., aps. The individual design preference functions La; (d;) are

discretized into a-cut intervals [d;o% . d;% ] at these preference levels:

(34) [dzgﬁm l?na,x] {:ud ( 2 ak} k=1,..,M.

a-cut intervals for the design preference p4, are shown in Figure 3.1. These indi-

.., D% in the DVS

vidual a-cut intervals are then combined to obtain a-cuts D¢ o

(e
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Figure 3.2 The Level Interval Algorithm.

-

which represent the combined design preference p4(d).
(3.5) D¢ ={deDVS|pg(d) >y} k=1,.., M.

The LIA assumes that design preferences will be aggregated with a non-compensating
trade-off and thus combines the individual a-cuts by using the cartesian product:

(3.6 DE = [di% 1% ] x ... X [dp® dp% ] k=1,.. M.
[¢73 max.

min’? Nmin?’ “Pmax

At the heart of the LIA is an enumerative procedure to map the combined design

_ d . o . . Ko7 ay . "
preference a—cut Dg, onto individual intervals [p;>%  p;% ] in each Y;:

(3.7) P Piot ) = {p;j(d) € Vj | pa(d) > o} k=1,..., M.

For each a, the LIA evaluates pj = fj(cf) for the 2" permutations of a-cut end
points which correspond to the corners of an n-cube defined by ng (there are n

design variables and M a-cuts). Figure 3.2 illustrates how a-cuts ng in two design

Qp

variables dy and ds are mapped onto the interval [P kns piak ] fj is evaluated
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at the 2" = 4 corner points of each ng rectangle. It is assumed that p;o* and
pjok . will occur at these corner points, and not inside ng. Thus the minimum and
maximum p; among the four corner points defines the interval [Pjgakimpjgl’%x]' This
is not true in general: the mapping fi : DVS — Y; and the combination function
P must satisfy certain conditions for the LIA to be exact [46]. In practice, these

conditions require that f; be monotonic: a severe restriction.

3.2 Optimization

The key limitation of the LIA, that it requires monotonicity, stems from the as-
sumption that the extreme values of f; will occur at the corner points of the ng
n-cube. The algorithm may thus be improved by relaxing this assumption [34]. The

problem, restated, is to find:

=

Pimw = min{p; = f;(d) | d e D}

(3.8) Pinkx = max{p; = f;(d) |de DI }.

Finding extrema within a subset of the DVS is a constrained optimization problem.

In choosing an optimization technique, a trade-off must be made between com-
putational cost and robustness (i.e., the ability to find the correct global extremum
for various starting conditions). Traditional calculus-based optimization methods
converge in relatively few function evaluations but seek only local minima. Ran-
domized search methods such as genetic algorithms offer greater robustness [20] but
require more function evaluations. Where function evaluations are relatively expen-
sive, as is common in engineering design, traditional optimization methods are a
pragmatic solution.

The computational implementation described in this thesis uses Powell’s method,
a calculus-based optimization algorithm that begins as a one at a time search. Af-
ter each iteration a heuristic determines whether to replace the direction of maxi-
mum decrease with the net direction moved during the last iteration. This allows

minimization down valleys while avoiding linear dependence in the set of search
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directions [2]. Although optimization algorithms usually assume that variables are
continuous, optimization can also be applied to discrete and mixed-discrete prob-
lems. In the aircraft engine design problem presented in Section 4.1, for example,
all eight design variables are discrete.

An important feature for a practical computational tool is a means to trade-
off the number of function evaluations against accuracy and reliability. Such an
adjustment enables the designer to use the same program to obtain quick estimates
as well as precise evaluations. This is implemented as a user-specified fractional
precision that defines termination criteria for the optimization algorithm.

Suppose that it is necessary to incur the minimum number of function evalua-
tions. A fractional precision of 1 would be specified, creating automatically satisfied
termination criteria, and the optimization would proceed through exactly one iter-

ation of a one at a time search using the maximum step size. The algorithm begins

d
ap?

at one corner of the search space DS, , and checks corners in each of the n directions
given by dji, ..., d,, moving to the minimum each time. It expends n + 1 function
evaluations to find each end point, and therefore 2n + 2 per a-cut, as compared to
2" per a-cut for the LIA. This is a substantial improvement, but the a-cut interval
obtained is only correct if f; is monotonic: none of the interior points of the ng
n-cube are evaluated. Minimizing function evaluations in this way carries the cost
of implicitly assuming monotonicity.

If f; is known to be monotonic, this information can be used to further reduce
the number of function evaluations. The first pass of the optimization algorithm
identifies whether f; increases or decreases in each d;. Subsequent extrema can then
be directly evaluated, without the need for searching. Hence where f; is monotonic,

n + 2 function evaluations are required for the first a-cut and 2 for each subsequent

a-cut.
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Figure 3.3 Design preference intervals for d; and ds.

3.3 Mapping Design Imprecision

In implementing the method of imprecision, a key step is mapping design prefer-
ence pg from the n-dimensional DVS to the g-dimensional PVS. If the individual
design preferences pgq,, ..., g, are to be combined with a non-compensating aggre-

gation function Ppin, the combined design preference a-cuts D¢

Gyt DgM are given

by the cartesian product of the individual design preference a-cuts [digk , di%%. ],
as in the LIA. The resultant Dgl,...,DgM sets, which are n-cubes in the DVS,
precisely describe the aggregation of individual preference intervals. But for aggre-
gation functions other than Py, the Dgl,...,DgM n-cubes do not fully describe
the combined design preference ud((ij. A two-dimensional example will illustrate

the correct geometry of 1iq(d).

Figure 3.3 shows design preference intervals [d; &%

Zminadigl’%x] at pg = oy, a9, a3 for

two design variables d; and dy. Recall that each interval [digk ,di%%.] defines the
range of values for d; over which the design preference Kd; is at least ag. The
combined design preference 4 obtained by aggregating these two discretized design
preferences using an arbitrary aggregation function P is shown (from above) in
Figure 3.4. Three-dimensional views of p4 for Py, and P are depicted in Figures
3.5 and 3.6. Consider the center row, for which dops < dy < do2« and therefore

Bd, = a3 (a3 is the highest preference). Where digt <dp < digz, Bdy > @y and

thus ug > P(a1,a3) = a13. Similarly, where digr, < dy < i3, pa, > oo and
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Figure 3.4 Combined design preference pg = P (g, fra, )- Qi
P(ai,aj).

Figure 3.5 Combined design preference pg = Ppin (dy » thds)-
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Figure 3.6 Combined design preference pug = Pr(pa, , fta,)-

%3
min

pa = Plaz,a3) = ag3. Where digd < dy < di2,, pa, = az but P(as,a3) = a3 by
idempotency, and thus pg = a3. Note that monotonicity (Axiom 2.14) ensures that
a13 S a3 < ag, a2 S a < agg, and @y < agp < o 3. Because Prin(a, a) =
Pmin(o1, @3) = a1 and Pyin(az, @3) = a9, the discretized pd(di,ds) for P = Puyin
is a Mayan (i.e., rectangular, stepped) pyramid with three levels: o, a9, and a3
(Figure 3.5). Each level of the pyramid is a rectangular a-cut ng = [digk , d1 2%, ] ¥
[donk  do& ]. Thus p4(dy, da) is precisely described by three such a-cuts D¢, Dd .
and Dgs. For aggregation functions other than Py, a3 rises above ap. The sides
of the pyramid bulge outwards, although because of the discretization of preference,
this is manifested as an increase in preference levels along each side instead of an
Dd

outwards expansion (Figure 3.6). The rectangular a-cuts D% o

o1 and DZ, remain

valid as long as the steps of the pyramid do not overlap. In this example, the only
possible overlap is if a;3 > ap. But to fully describe wg(dy,ds) for aggregation
functions other than P, additional non-rectangular level sets must be defined for

01,2, a1,3, and ap 3. Thus the basic LIA must be further modified to accommodate
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aggregation functions other than Pn,. Additional, non-rectangular level sets must
be defined to correctly represent the aggregation of the discretized individual design
preferences pg,, ..., itg, into the combined design preference ud(aﬁ.

Consider the problem of mapping just the rectangular a-cuts Dé , from the DVS
to the PVS. The methods developed below are easily extended to deal with non-

rectangular, intermediate level sets. Each D¢

a, Maps onto an a-cut Pc‘fk in the PVS

-

via f: DVS — PVS (5= f(d)).
(3.9) Py = {7 € PVS| pa(p) > s}

ng will in general be neither a g-cube, nor even defined by straight edges. But
given the need to minimize the number of function evaluations and the preliminary
nature of the design information, the exact geometry of ng need not be calculated:
an approximation is sufficient. Indeed, as ¢, the number of performance variables,
increases beyond 2, there is little reason to pursue more accurate results that may be
difficult or impossible to interpret, especially where Md(‘i) is described by multiple
n-cubic and non-n-cubic level sets, as discussed above.

A straightforward extension of the LIA to deal with multiple performance vari-
ables would use a g-cube approximation to P(‘fk defined by the cartesian product of

the individual intervals [p;p% , p;% I:

(3‘10) PSE = [plzlkinaplglkax]x’ AR X[qukin,pq?ngx]-

This approximation is accurate only for severely restricted f Indeed, f can only
scale the n-cube ng in the principal p; directions. There is also an implicit as-
sumption that the p;’s are independent, so that extrema can be independently
determined. For these reasons ng is an inadequate approximation.

A superior approach is to selectively approximate f as some simple function f"
over D¢ (the a-cut at infinitesimal o = ¢, where 0 < € < 1). From Equation 3.5,
a-cuts with higher preference a are subsets of a-cuts with lower . Thus D¢ con-

tains all a-cuts with non-zero o and includes all potentially acceptable (non-zero
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preference) design alternatives. ng can then be directly mapped onto the PVS,

using f_" . A linear approximation is the obvious first choice:

f1(d)
A = b = fd) + A+ A[d - doy]
| f3(d)
(fl(J(‘:tr) Ay ai1 ... Gy dy — d§™
(3.11) = : 0+ : :
| foldetr) A, Qg1 - Ggn ;e

where Jctr is the center point of Dg and A; is the distance that fj’~ is offset from
fj at (ictr. The elements aj; of the matrix A are linear regression coefficients that
suitably approximate f# over the entire seach space Df. Although a linear approx-
imation is not the only choice, higher order approximations introduce additional
complexity, both in the shape of the level sets mapped onto the PVS and in the
computational algorithm, that is not clearly justified. It is assumed that the cost
of each function evaluation is not negligible and that gradient information is not
readily available. Where these assumptions do not hold, other approaches may be
applicable, such as continuation methods [26]

It is conjectured that if f is not strongly non-linear, a linear approximation
will be adequate to sketch ng where the precise geometry is not required. During
preliminary design, approximate answers are sufficient. As the design is refined,
the set of design alternatives under consideration will be reduced in size. A linear
approximation is likely be more accurate over a smaller set of designs. The diffi-
culty of interpreting an irregular ng set with curved boundaries in more than two
dimensions suggests that a higher order approximation may be of limited value for
problems with more than two performance variables. Yet it is important to con-
sider where on P(fk more accurate results might be desirable. Although the detailed
geometry of ng need not be known precisely, certain points on its boundary will

be used to make design decisions, and these need to be determined with greater
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Figure 3.7 Reducing the search space with linear regression.

accuracy and reliability. The extremal points on the boundary of ng in each of the
pj directions fall into this category. These points are determined by optimization
in the design variables that are not acceptably linear [32]. Acceptably linear vari-
ables are approximated by regression equations, thus shrinking the search space for
optimization by one dimension (Figure 3.7).

A linear approximation also provides a simple measure of the sensitivity of each
performance variable to changes in each design variable. This can be related to
values of o and normalized by the largest value separately for each performance
variable to obtain a relative measure of design sensitivity at discrete levels of pref-

erence.

Definition 3.1 The design sensitivity m;"i’“ is the sensitivity of p; to the variation
in d; defined by the a-cut interval at o = oy, relative to the largest value of fc?‘f for

each p; at the lowest ay:

(3.12) O — aji(diﬁi“ax - dﬁzn)
7 max{|kf |, ..., K550 1}

where o is the lowest value of oy. O
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The design sensitivity n;‘f is distinct from the +-level measure [67], which mea-

sures the sensitivity of a performance variable to a design preference function ex-

Qg

ponentially weighted about a given preference 1. Kjg

measures the sensitivity of a
performance variable to a design preference function specifically at a preference oy,
normalized with respect to the largest value of n;?‘ik V k,1 for each p;.

For a particular performance variable Dj, /s?!“ identifies which design variables
have the greatest influence, and indicates the sign of the linear coefficient. By com-
paring nj‘f for different performance variables, appropriate design variables can be
chosen in order to, for example, reduce p; and increase p2 simultaneously. Design
sensitivities summarize the information contained in the linear regression coeffi-
cients.

A final benefit of constructing a linear approximation is that it provides a com-
putationally tractable means to map the combined functional requirement from the
PVS onto the DVS. The reverse mapping for f is typically not available: given a
performance g, there is no direct means of determining its pre-image {d| 7= fl (cf)}
The linear approximation f’ , however, can be reversed, though typically n > ¢
(there will be more design variables than performance variables) and thus the pre-
image of a single performance 7 will be a set of points in the DVS. The pre-image
{d]| 7= F1(d)} can be found by methods such as Gaussian elimination. The

combined functional requirement a-cut in the PVS is defined analogously to the

combined design preference a-cut in the DVS:

(3.13) Py ={pePVS|pup@) >ax} k=1,..,M.
The combined functional requirement mapped onto the DVS is DA,
(3.14) D}, ={d € DVS | up(f(d)) > a}.

The pre-image of PS, for f" approximates DE,

(3.15) D%, ={d € DVS | up(F(d)) > e}
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Obtaining a linear approximation f” fulfills four purposes: it removes accept-
ably linear design variables from the search space for optimization; it supplies a
global approximation to f over D¢ for determining the geometry of ngk between
extremal points; it enables the calculation of design sensitivities m?i’“; and it pro-
vides a computationally tractable method to map preferences from the PVS onto
the DVS. The mapping of ng onto the PVS does not, however, depend entirely
upon the accuracy of the linear approximation f' . The shape of ng in the PVS is
estimated by obtaining extremal points in each pj via optimization (facilitated by
linear approximation), and then interpolating the bounding edges between points
using ﬂ .

It is not expected that many performance variables will be well modeled by
a linear approximation, even within a limited region of the DVS. But the linear
approximation f" furnishes additional information about the shape of ng away from
extremal points that would otherwise be unavailable. Without f_7 , the geometry of
Padk would only be known at extremal points. f' is used to provide approximate
information not to replace precise information, but to replace a lack of information.
Useful information about ng can still be obtained even where f1, ..., f,; are all highly
non-linear. Where f is non-linear, the calculated shape of ng will be incorrect. But
the extremal points obtained using optimization do not depend upon f being linear.
Moreover, even if f7 is completely unacceptable because f, ..., fq are all strongly
non-linear in dy, ..., d,, Pc‘fE (Equation (3.10)) defined by the extremal values in
each p; provides a bounding set for ng.

Usually n > ¢: there will be at least as many design variables as perfor-
mance variables. If n = ¢ and A is full rank, f’ maps the n-cube ng onto an
n-parallelepiped in the PVS. Otherwise, f7 projects ng onto a ¢'-dimensional
polyhedron where ¢’ < ¢ < n. This ¢’-dimensional polyhedron which is Pg;c is

defined by the external surfaces of the projection of D% , via A. Since ng is an
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Figure 3.8 Approximated a-cut P? on the PVS.

€

n-cube, the directions of the parallel edges of Pg; are given by the columns of A:

a1l G1n
(3.16) : yeoes

aq1 agn

Every bounding edge of Pg; corresponds to an edge on ng, though some of the
edges of ng map to the interior of Pc‘f;. As described above, optimization is used
to more reliably calculate extremal points in each p;. Modifying Pg; to match these
points will distort the geometry and edges may no longer be parallel. Additional
accuracy may be obtained by explicitly calculating the remaining corner points on

Pg; which correspond to corners of the n-cube ng that are not extrema in any p;.

Example

Suppose that for a particular design problem, there are n = 4 design variables
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and ¢ = 3 performance variables. The designer wishes to conduct a preliminary anal-
ysis to explore how preferences on the design and performance variables intersect.
Individual design preferences 4, , fid, , fids, ha,; are specified as intervals [digk  d;%% ]
at two preference levels: a; = €, = 1. An infinitesimal yet non-zero preference €
indicates a barely acceptable variable value. The a-cut interval at a1 = € identifies
the largest acceptable interval of values for the variable. Values outside this range
have zero preference and are thus unacceptable. Conversely, a preference of one
indicates an ideal variable value. The a-cut interval at as = 1 identifies the ideal
or target range of values for the variable. Specifying only two a-cuts is a minimal
implementation that is limited to calculating the boundaries of two sets: the set of
acceptable designs and the set of ideal designs. Relatively few function evaluations
are required. This is consistent with a preliminary analysis. For this minimal im-
plementation, the distinction between aggregation functions is eliminated: at this
level of discretization, the design preference intervals lead to the same n-cubic com-
bined design preference a-cuts D? and D¢ regardless of the aggregation functions
used (this will be discussed in Section 5.1). These n-cubic a-cuts fully describe the
combined design preference pg on the DVS. f' , the linear approximation to the
mapping f : DVS — PVS would be obtained by evaluating a central composite
design over DZ. Suppose that the linear regression coefficients in the matrix A have

been obtained in this way:

11 —012 2 068
(3.17) A=| 01 1 024 2
1.1 08 -124 1

Ped', the projection of D? onto the PVS via A, is shown in Figure 3.8. P? is a convex
polyhedron that approximates the actual a-cut P%. Four edges that correspond to
the four columns of A are labeled ai,...,as. These directions are the principal
directions dy, ...,ds mapped onto the PVS. The labeled corners are extrema in Dy
these points are obtained by optimization. The conventional optimization approach

to this problem would be to search for the optimal p;, ps, or p3, within a constrained
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search space such as DY. Thus if p; is to be maximized and p2 and p3 are to be
minimized, the information provided by optimization would be limited to three of
the points in Figure 3.8 labeled max p;, min py, and min p3. Instead, the method of
imprecision uses optimization to find both extrema in each p; and then constructs an
approximation to the entire set P? using the linear approximation fj. The accuracy
of the extrema is dependent only on the accuracy of the optimization algorithm
used. Linear approximation is used to provide additional information: to fill in the
gaps between extrema and paint a more complete picture.

Ped' indicates the approximate region in the PVS within which tg > 0. The
performances g € Ped' correspond to the performances achievable by all designs that
are at least minimally acceptable with respect to design considerations (the un-
quantified aspects of design performance not represented by performance variables).
Functional requirements, which arise from performance considerations (the quanti-
fied aspects of design performance represented by performance variables) have not
yet been included. Applying the combined functional requirement y,(p) eliminates
performances 7 € P that are unacceptable because tp(P) = 0. The remaining
subset of performances are acceptable relative to all specified preferences.

Pldl, which approximates the region in the PVS within which ta =1, will be a
subset of P%. The overall preference on the PVS, po(p), is obtained by aggregating
pd(P) represented by these two a-cuts with the combined functional requirement
tp(P). The essential information given by (), in this particular implementation,

consists of the sets of performances achievable by ideal and acceptable designs:

-

e designs with u,(d) =1 are ideal, and

=

e designs with u,(d) > € are acceptable,

with respect to the preferences specified on the design and performance variables.
Additionally, the effect of functional requirements on design performances is repre-
sented by the variation of u,(p) between the extremes € and 1. Due to discretization,
however, the combined design preference ugq is only mapped at the two extremes,

and hence intermediate values of p,(5) do not reflect the true variation of pq(P).
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The combined functional requirement f,(5) is mapped back onto the DVS using
the linear approximation f_7 (cf) The resulting functional requirement on the DVS,
,up(ci), is aggregated with the combined design preference ud(ci) to obtain the overall
preference p1,(d). po(d) identifies the ideal (o(d) = 1) and acceptable (u,(d) > €)

sets of designs described above.

3.4 Design of Experiments

The linear approximations f}, ..., fé are obtained using techniques adapted from sta-
tistical design of experiments. Design of experiments seeks to derive information
about a process using as few observations as possible. It has two aims: to separate
the effects to be measured from random noise, and to model the process with regres-
sion equations. The function [fj is treated as an unknown process. Note that if the
process is deterministic, e.g., a computer program, repeated evaluations will always
give the same answer: the output contains no random noise. Therefore, statistical
significance tests to distinguish the signal are unnecessary. This thesis discusses the
use of experiment design only to model deterministic functions (though statistical
significance tests are a valuable technique for processes subject to noise). The tech-
niques used rely on orthogonal arrays, which specify an efficient, independent set of
points at which the function is evaluated.

Orthogonal arrays are widely used not only for statistical design of experiments
but also for the related Taguchi Method or Robust Design methodology [50, 51] and
their direct application to engineering design is not new. Chi and Bloebaum de-
scribe a simple and practical application of orthogonal arrays to a material selection
problem for multi-bar trusses in [8]. Korngold and Gabriele use experiment design
to construct a global quadratic approximation for a multi-disciplinary problem [28]:
their methods are similar to those that have been adopted here. A fundamen-
tal difference, however, is that Korngold and Gabriele have sought to solve a highly
complex and general problem from a necessarily abstract and mathematical perspec-

tive. The work presented in this thesis seeks to apply experiment design techniques
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specifically to facilitate method of imprecision calculations, and adopts a pragmatic
approach that attempts to address the concerns of potential users. Engineers at one
major U.S. automobile manufacturer, for example, consider each function evalua-
tion to be a significant cost: it takes approximately 15 seconds on a supercomputer
to evaluate a simplified finite element model of a vehicle structure. Furthermore,
most engineers do not have the time to become experts on statistical techniques.
New methodologies are expected to come pre-packaged as out-of-the-box software.
Using experiment design to obtain linear regression models is efficient in function
evaluations, does not require advanced statistical techniques, and is well suited to
computer implementation.

The approach is essentially a response surface method [38], which seeks to opti-
mize a response that is influenced by several variables. The function f; is modeled
over the search space D¢ (the a-cut at infinitesimal o = €). The Imprecise Design
Tool uses a 2-level experiment design: two levels are sufficient to quantify linear ef-
fects. An additional center point checks for curvature: non-linearity of the function
in the interior of the search space. A full factorial design would evaluate the same
2" corner points of D? as the LIA, but since there are n main effects and 1 average
to be determined, only n+ 1 evaluations are strictly necessary (excluding the center
point). A fractional factorial design evaluates a balanced subset of corner points
and is more efficient. But in reducing a full factorial experiment to a fractional
factorial experiment, the 2" interactions between the n variables are unavoidably
merged or confounded with each other, so that their effects cannot be distinguished.
A key consideration is how interactions should be confounded. Main effects, which
are to be measured, must not be confounded with other main effects. Moreover,
it is desirable only to confound main effects with interactions that are unlikely to
exist. It is assumed that main effects, due to a single variable (e.g., d;, d3), are more
likely than two-way interactions (e.g., dida, d1?), which are in turn more likely than
three-way (e.g., didods, di2ds, d1®) and higher order interactions.

The resolution of an experiment design indicates the degree to which it confounds

interactions. A resolution III design confounds main effects with two-way and higher
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Figure 3.9 Number of evaluations for a fractional factorial design.

order interactions, and thus satisfies the minimum requirement not to confound main
effects. A resolution IV design confounds main effects with three-way and higher
order interactions [4]. Resolution IV experiments provide more reliable information
but require more observations.

For n = 8, the smallest resolution IV design is a 28~ fractional factorial design
requiring 2* = 16 observations. The 4 in 28~% indicates that the 28 full factorial
design has been “folded” in half 4 times. A resolution III design would require 12
observations. Figure 3.9 compares the number of observations required for resolution
III and IV designs using data from [51]. Resolution III designs approach the strictly
necessary n + 1 function evaluations. Resolution IV designs require between 2n
and 4n — 4 (where n > 1) function evaluations. Of the 16 function evaluations
required for the n = 8 resolution IV design, 9 are strictly necessary to estimate the
8 main effects and 1 average, and so there are 7 “redundant” evaluations. But these
evaluations are not necessarily wasted: they allow main effects to be separated from
two-way interactions, and they provide 7 extra points to verify the accuracy of the

linear regression model.
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d

Figure 3.10 Points evaluated in a central composite design.

The number of function evaluations can also be traded-off against accuracy for
experiment design. The linear regression equations obtained replace the function
where the approximation is acceptable (Figure 3.7). The criteria for “acceptable,”
which determine how accurately the function is modeled, can be directly related
to the user-specified fractional precision used by the optimization algorithm. This
allows a single parameter to trade-off computational effort against accuracy for both
optimization and experiment design.

A fractional factorial experiment only evaluates corner points. Thus comparison
with the center point can only indicate whether [fj is non-monotonic and the degree
to which it is non-linear, and cannot distinguish the design variable in which f; is
non-monotonic or non-linear. If f; is non-linear in d;, f]{ will not accurately approx-
imate f_’ in d;: the approximation is still valid in d; if this inaccuracy is within the
user-specified precision. But if f; is non-monotonic in d;, f]{ is not a valid approxi-
mation in d;. Monotonicity in d; is the minimum condition for d; to be acceptably
linear. In order to estimate non-linearity and non-monotonicity of f; in each d;, an

additional “one-factor-at-a-time” experiment is conducted. Figure 3.10 shows the
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Figure 3.11 Number of evaluations for a central composite design.



68

points that would be evaluated for a resolution III fractional factorial experiment
(small dots) and a one-factor-at-a-time experiment (large dots) where there are three
design variables. The combined experiment is termed a (face-centered) central com-
posite design [38]. This arrangement was chosen in order to include corner points of
the D¢ n-cube without evaluating points outside D?. Extrema within D¢ are likely
to be corner points. In the absence of these constraints, other arrangements that
seek to obtain a more balanced distribution of information over the search space are
possible, e.g., [38] and [21].

The number of function evaluations required for resolution III and IV central
composite designs is indicated in Figure 3.11. If the function fj is amenable to
linear approximation, a maximum of 4n + 1 (resolution III) or 6n — 3 (resolution
IV) evaluations will be incurred to obtain the regression equations and up to 2
evaluations will be required for the predicted a-cut end points. 4n + 1 and 6n — 3
evaluations both exceed the n + 1 evaluations required for a one at a time search,

but the advantages are fourfold:

1. Monotonicity is not assumed: up to 3n — 5 “redundant” points test for mono-

tonicity and linearity.
2. The center point tests for curvature.
3. The entire data set is used in estimating each effect, instead of two points.

4. An even distribution of corner points is sampled, instead of n + 1 adjacent

corners.

After calculating the linear regression matrix A, the constant offsets Ay, ..., A,
must be determined (see Equation (3.11)). fJ'(J) must approximate f;(d) over the
entire search space DZ. Setting Aj = 0 would give a Taylor approximation which is
accurate near dg, only. Setting A such that fj’(ci') passes through the mean value of
fi (cf) over all evaluated points would give a close approximation near the boundaries
of D¢ only, since only one interior point J;tr is evaluated. The Taylor expansion of

fj(cZ) near de;, indicates that the residual error in approximating f; is equal to the
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Figure 3.12 Minimizing f_Lil E? dzy with offset A; (f; = Kyy212).

-

offset A; plus second and higher order terms (% = d— ctr Where —L; < z; < L,

i=1,..,n):
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For the purpose of determining an appropriate value for Aj, assume that the error
in approximating f; is predominantly quadratic. In order to minimize i) Dé E?dv
(the square error integrated over DY), A; should be set to T+ Ky (Figure 3.12
illustrates a one-dimensional example). Qualitatively, it is clear that cross-terms
(Kirzizy, where i # k) do not introduce the need to offset fj’- since they lead to
an error that is anti-symmetric in z; and z;. Square terms (Kiiz;%), however, do
require a constant offset to minimize | Dd E? dV since they introduce an error in

one direction only (positive or negative). The errors (for A; = 0) at the N corner
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points Jlt', v d—%g evaluated by the fractional factorial experiment nominally average
to — iy Kiy; (cross-terms cancel). The error at each point ci;-_ and J;'-" evaluated in
the d; direction for the one-factor-at-a-time experiment is nominally equal to —Kj;

(cross-terms equal zero). The sum of these errors is used to estimate 3 Doy Kii

Aj = 3 ND+2 ( ZE (dy — doge) —;(E(di‘—dctr)+E(d;F—dctr)))
n

519 = 7Ty (ij (@) +Z(fj D+ Jr))—(N%zn)fj(dltr))

where E(Z) is calculated for A; = 0. The points d7,...,d7o and di,...,dx are
symmetric on D? such that the linear approximation f} averages to f;( dete) (for
Aj = 0). Separating f;( Ctr) in Equation (3.19) simplifies the calculation.

As unacceptably non-linear design variables are eliminated from fj’-, A; must
be re-calculated since the square error in the design variable that was eliminated
no longer needs to be offset. f; will be calculated in all eliminated, non-linear
directions and approximated only in the remaining, linear directions (Figure 3.7).
The re-calculation of A; is complicated by the need to balance the data such that
the result is not overly dependent on any single evaluated point. Every non-linear
design variable that is eliminated reduces the space that f]'. approximates by one
dimension. The points ci;_ and J;J“ evaluated in every remaining, linear direction (d;
such that ¢ € £) lie within this reduced space. But all of the fractional factorial
corner points cirf, ...,d‘%g lie outside the reduced space. These corner points now
provide less relevant information that must be adjusted: the Kj; such that 4 ¢ L,
corresponding to eliminated design variables, must be subtracted from the estimate
for 37" | Kj; obtained from the error at each corner point. Moreover, each K;; i ¢ L
can only be estimated from the errors at two evaluated points: J;_ and ci;*. Hence

if f; is not acceptably linear in all n design variables, a different formula must be
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used to estimate A;:

1 2 & = >
5 = s (o 00 3 (5100 5000)

idr
(3.20) + > (Fald) + £3(d)) - 2ne fj@tr))
1€l
where f; is acceptably linear in dic, and there are n, acceptably linear dicc-

A special case arises when there is only one remaining linear design variable
for fj, i.e., ng = 1. Since f]'~ will only be used to approximate f; in a single
design variable dicr, A; can be directly estimated from ‘Z;E ¢ and J;"'e ¢ only, as in
Figure 3.12:

(3:21) A = 5 (o) + fildiee) - 265(d))

D =

3.5 Conclusions

In the method of imprecision, design preferences 4, are specified on design variables
and functional requirements u, ; are specified on performance variables. Individual
design preferences j4,(d;) are aggregated into the combined design preference ud(tf)
and individual functional requirements p; (p;) are aggregated into the combined
functional requirement u,(5). The aggregation of these combined preferences into
the overall preference p, is complicated by the need to map the combined design
preference onto the PVS to obtain p,(5) = P(ua(P), 1p(5)) or to map the combined
functional requirement onto the DVS to obtain ,(d) = Ppa(d), up(ci)). Typically,
only the forward mapping F: DVS — PVS is available.

Previously, design preferences were mapped onto the PVS using the Level Inter-
val Algorithm (LIA). The LIA begins by discretizing individual design preferences
into M levels of preference o, ..., aps. The individual design preference intervals ob-
tained are then aggregated into combined design preference a-cut sets Dgl, o, DY e

The LIA has four important limitations:
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1. The a-cuts ng must be n-cubes, which is accurate only if aggregation uses

Pmin .

2. The calculated performance variable endpoints Djnk and pjok  are only cor-

rect under certain conditions: in practice these require that fj be monotonic.

3. The endpoints obtained only indicate extremal points in each pj on Po‘fk, the
combined design preference a-cut in the PVS: the full geometry of P(ffk is not

determined.

4. Up to 2" function evaluations are required to evaluate each a-cut, a number

that quickly becomes prohibitive as the number of design variables n increases.

The methods presented in this chapter were developed to address these limitations.

The key limitation of the LIA, that it requires monotonicity, may be removed
by reformulating the problem as a constrained optimization: pjnk  is the minimum
and p;ot  is the maximum of p; in ng. In the interests of minimizing the number
of potentially expensive function evaluations, a traditional calculus-based optimiza-
tion algorithm, Powell’s method, was chosen for the computational implementation
described in this thesis.

A key contribution of this thesis is the provision of a fractional precision that
permits the designer to trade-off the number of function evaluations against the
quality, i.e., accuracy and reliability, of the answer obtained. This adjustment
allows the designer to use the same computer program to obtain quick estimates as
well as precise evaluations. Applying Powell’s method with a maximum fractional
precision of 1 reduces the number of function evaluations required per a-cut from
2™ to 2n + 2, or n + 2 if monotonicity is assumed. Such a minimalist computation
is, however, unlikely to be robust.

For aggregation using functions other than P, non-n-cubic a-cuts at inter-
mediate levels of preference between oy may be created in addition to the n-cubic
a-cuts at preferences oy (Section 3.3). In Section 5.1 this complicated geometry

will be shown to be simplified when the method is implemented.
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In order to address the issue of robustness as well as the remaining two limi-
tations of the LIA (that the ng must be n-cubes and that the full geometry of
ng is not determined), an approximation f_7 for f : DVS — PVS is constructed
over D? (the a-cut at infinitesimal o = €). Although Section 3.3 only discusses the
problem of mapping n-cubic a-cuts from the DVS to the PVS using f" , there is no
fundamental difficulty in extending this approach to map non-n-cubic a-cuts. A

linear approximation is chosen for f’ for three reasons:

1. Higher order approximations introduce additional complexity, both in the
shape of the level sets mapped onto the PVS and in the computational al-
gorithm, that is not clearly justified.

2. If f is not strongly non-linear, the selective use of a linear approximation
to sketch Po‘fk where the precise geometry is not required is expected to be

adequate: during preliminary design, approximate answers are sufficient.

3. The difficulty of interpreting an irregular Padk set with curved boundaries in
more than two dimensions suggests that a higher order approximation may be

of limited value for problems with more than two performance variables.

A linear approximation is unlikely to accurately approximate f in all n design vari-
ables. That is not, however, the aim of constructing f’ . Obtaining a linear approx-

imation f" fulfills four purposes:

1. It removes acceptably linear design variables from the search space for opti-

mization.

2. It supplies a global approximation to f over D¢ for determining the geometry

of Pc‘fk between extremal points.

3. It enables the calculation of design sensitivities m}’z’“

4. It provides a computationally tractable, albeit approximate, means to map

the combined functional requirement from the PVS onto the DVS.
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The mapping of D4 , onto the PVS does not depend entirely upon the accuracy of the
linear approximation f’ . The shape of ngk in the PVS is constructed by obtaining
extremal points in each p; via optimization (facilitated by linear approximation),
and then interpolating the bounding edges between points using ]‘77 .

It is not expected that many performance variables will be well modeled by
a linear approximation, even within a limited region of the DVS. But the linear
approximation f" furnishes additional information about the shape of ng away
from extremal points that would otherwise be unavailable. f" is used to provide
approximate information not to replace precise information, but to replace a lack of
information. It will be demonstrated in Section 4.2 that a selectively applied linear
approximation is surprisingly effective in evaluating an example finite element model
of an automobile body.

The linear approximation f’ over D¢ is obtained using techniques adapted from
experiment design. The use of experiment design to explore the design space and
optimization assisted by linear approximation to map preferences is a key contri-
bution of this thesis. Using experiment design to obtain a linear regression model
is efficient in function evaluations, does not require advanced statistical techniques,
and is well-suited to computer implementation. The Imprecise Design Tool uses
a 2-level fractional factorial experiment design which evaluates a balanced subset
of corner points: two levels are sufficient to quantify linear effects. An additional
center point checks for non-linearity of the function in the interior of the search
space. Resolution IV fractional factorial experiments require more function evalu-
ations than resolution III experiments, but the additional evaluations increase the
reliability of the information obtained. This will be demonstrated in Section 4.2.

Fitting a linear approximation f]{ to a function f; over the entire search space D?,
instead of at a single point, necessitates an offset Aj. A procedure for determining
appropriate values for Ay, ..., A, in order to minimize i) Dd E? dV, the square error
integrated over DZ, was described in Section 3.4.

The fractional precision linked to optimization also controls the criteria for

whether f' approximates f sufficiently accurately in each design variable d;. Only
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sufficiently linear variables are approximated for optimization. In order to discern
the linearity of individual design variables, an additional one-factor-at-a-time ex-
periment is conducted to complete a central composite design. The total number
of function evaluations required is 3n + 2 to 4n + 1 for resolution ITI and 4n + 1 to
6n — 3 for resolution IV. These function evaluations are in addition to those required
for subsequent optimization, but they are necessary for constructing the linear ap-
proximation f’ , and they provide robustness. Before optimization begins the search
space is characterized and a balanced set of points is evaluated, although only the
center point lies in the interior of D¢. The likely location of the global minimum
based on evaluated points is chosen as the starting point for optimization. Thus
experiment design is a valuable exploration of the search space that facilitates the

subsequent optimization process.
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Chapter 4

Computational Implementation

The Imprecise Design Tool (IDT) is a C program developed to verify the algorithms
described in Chapter 3 and to demonstrate the method of imprecision on engineer-
ing problems. The work described in this chapter addresses many of the practical
difficulties that arose from trying to create a computational design tool that might
be useful to engineers in industry. This section describes the evolution of the IDT
itself, through example applications to aircraft engine development and automobile

structure design.

4.1 The Engine Development Cost Estimator

The first application of the IDT was to a cost estimation problem provided by
General Electric Aircraft Engines, Cincinnati, Ohio. “Gas turbine engines exert a
dominant influence on aircraft performance and must be designed for each specific
application [35].” At General Electric, the Engine Development Cost Estimator
(EDCE) is used to provide an early estimate of the cost of developing a new aircraft
engine: a cost measured in hundreds of thousands of dollars. The EDCE is one of
several programs that together estimate the total lifetime cost of an engine.

The EDCE uses a separate database for each engine program that contains
estimates for the various components of development cost. Costs are modified by
parameters such as learning, program length, and whether various tests are to be

included in the development cost. The most important input variables which have
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Figure 4.1 Schematic diagram of a turbofan engine.

the greatest effect on the calculated cost represent the degree of innovation in the
components and subsystems of the new engine. These variables are significantly
imprecise: the degree of innovation for a particular component of the engine will,
in general, not be known precisely in advance. Eight of the variables corresponding

to eight subsystems were chosen to be design variables (Figure 4.1):

dy control and accessories
do exhaust nozzle

d3 bearing and lubrication
ds low pressure turbine

ds high pressure turbine
ds high pressure compressor
d7; combustor

dg fan system

The EDCE represents degree of innovation as a percent change relative to an
existing baseline design. A value of “0%” for dg, which corresponds to the fan
system, indicates that the engine to be developed does not possess a fan system. A

value of “10%” indicates that only support engineering will be required. At the other
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Figure 4.2 The Imprecise Design Tool and the EDCE.

extreme, “200%” indicates a new fan with similar or existing technology, fitted to a
new engine design. The numeric values of percent change for each of the ten levels
defined by the EDCE are unimportant: the designer relies on the verbal definition
of each level, which is specific to each input. Intermediate values between levels are
undefined, and hence the eight inputs are effectively discrete. The EDCE produces
a single output p = f (J') the estimated development cost for the new engine.

The EDCE calculates development cost given a set of precisely specified, crisp
inputs. The role of the IDT was to provide a fuzzy interface to the EDCE that
quantified the inherent imprecision in the design variables dy, ..., dg and performance
variable p and evaluated imprecise outputs z(d) and p(p) (Figure 4.2). The EDCE
defined the crisp mapping f : DVS — PVS used by the IDT to perform fuzzy
calculations.

Since the design variables dj, ..., ds are discrete, each design preference d; Was
specified as an array of preference values, one for each valid design variable value
d; € &;. Since the IDT discretized preference into ten o levels 0.1,0.2, ..., 1.0 the user
was effectively restricted to those ten preference values. The functional requirement
on development cost was specified as a list of points (p, pip), defining a piecewise

linear preference function.
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This early version of the IDT assumed that all preferences would be traded-off
with a non-compensating aggregation function Pp;,. Hence the individual design
preferences pq4,(d;) could be aggregated into n-cubic combined design preference -
cuts ng

to intervals [p; % |, p;%% ] on the PVS using the Level Interval Algorithm (LIA) de-

min?’

using the Cartesian product (Section 3.3). The ng were then mapped

scribed in Section 3.1. The LIA was valid because development cost was monotonic
in each of the eight design variables, over the range of values specified. The repre-
sentation of preference as intervals approximated the discrete DVS. Although the
limits of the [dif, digh.] and [p;ok  p;% ] intervals corresponded to valid points
in the DVS, only certain discrete values had meaning within these intervals. Never-
theless, the calculation of seemingly continuous performance intervals was valuable
in identifying the limits of development cost at each preference level ax. In the
example presented below, the points identified by the IDT as promising were all
interval endpoints that corresponded to valid points in the discrete DVS.

The original LIA required 2" = 256 function evaluations to calculate each a-cut
interval in p. Ten a-cuts required 2560 evaluations. At 15 seconds per evaluation on
a Sun4, the total time required exceeded ten hours. A number of pragmatic measures
were taken to substantially reduce the time required. A lookup table was created
to store values of f(d) calculated by the EDCE. Using the lookup table avoided
repeated function evaluations not only for subsequent iterations but also for the
current design calculation. Because the design variables were discrete, adjacent o-
cut intervals often had common endpoints. These common endpoints only needed
to be evaluated or looked up once. Furthermore, it became clear that specifying
ten distinct a-cuts was unwieldy and that restricting preferences to some subset of
the values 0.1,0.2,...,1.0 simplified preference calculations without sacrificing any
important information.

The combined design preference on the PVS, u,4(p), and the functional require-
ment 11,(p) were then aggregated using Ppin to obtain the overall preference to(P),
expressed as an ordered list of pairs (p,p,) defining a piecewise linear preference

function on the PVS. The same step also identified the peak preference py and the
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corresponding peak preference set of development costs )*.

An early solution to the problem of mapping V* back onto the DVS to obtain
X* used the a-cut calculations that mapped ud(a?j onto p4(p). The IDT first deter-
mined o, the largest oy < p}. For a non-compensating trade-off, the set of peak
preference designs X* is a subset of Dg* because o = min(pg, pp) < g Yy, and
thus uo(ci) <of <prvd ¢ D2.: only design configurations d € D&, can have over-
all preference uo(cij equal to u}. Therefore, ,u(cf) was calculated at every d € DY,
for which there existed a lookup table entry for f (J) Any d € D&, with p(d) = p*
indicated a peak preference design configuration. Where f((i) was not immediately
available, /Ld(d_§ provided an upper bound since, for a non-compensating trade-off,
to < pig. Thus ,u(tf) or an upper bound for ,u(of) was obtained at every de D¢, that
could potentially be a peak preference design configuration. Moreover, no additional
function evaluations were required to obtain this information. In order to permit
the user to visualize the variation of u, on the DVS, points could be specified about
which the IDT would generate eight 2D cross-sections of y, in one design variable,

or four 3D cross—sections of y, in two design variables.

4.1.1 Example: Development of a Turbofan Engine

A typical aircraft engine development program begins with the receipt of a Request
for Proposal (RFP) from the aircraft engine user (the customer) [35]. The RFP, a
requirements document describing the final flying characteristics of an aircraft to
be developed, is the culmination of exploratory discussions between the customer
and potential suppliers. Suppose that after examination of the RFP and discussions
with airframe companies, the design team has decided that a particular turbofan
configuration will be required. New aircraft engines are usually derived from existing

designs [13]. In this example, the design team has two options:

1. Develop the new engine from an existing turbojet design by the addition of
a front fan with matching shaft and low pressure turbine (Figure 4.1). The
turbojet engine will require minimal redesign to satisfy the RFP, but the
addition of a fan, shaft, and low pressure turbine, even if taken from an existing

engine, is a major design change.
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2. Modify an existing, but dated, turbofan design. No major design changes will

be necessary, but many subsystems will need to be modified.

At this preliminary stage of design, the design team must decide which option to
pursue. A key consideration is the total development cost for the engine, which can
be estimated by the EDCE. The degree of design change that the designers feel
will be required in the eight subsystems of the new engine is imprecise, but the IDT
permits the imprecise nature of this design information to be retained.

The method of imprecision begins with the specification of the individual design
preferences pg, , ..., pgs and the functional requirement lp, and the identification of
an appropriate hierarchy of design trade-offs. In order to correctly identify appro-
priate design trade-offs, it is first necessary to clearly distinguish what the various
design preferences and functional requirement represent for this particular problem.
The design variables dy,...,ds are inputs to the EDCE that represent the degree
of innovation or design change in eight subsystems of the gas turbine engine to be
developed. The single performance variable p = f (cf) quantifies the development
cost that corresponds to the “design” d. Yetd specifies not a particular engine de-
sign, but a particular set of degrees of design change, specified for each subsystem.
Different points d € DVS represent, for example, the choice between a minor change
to a different hole pattern in the combustor and a slightly more significant change
to different nozzles.

The functional requirement p,(p) represents the customer’s preferences among
values of development cost p. These preferences on development cost are easily
understood but less easily quantified. Clearly, lower development cost is prefer-
able and this corresponds to a functional requirement with decreasing preference
for increasing cost. Yet the exact variation of p,(p) with p would, for a real design
problem, depend on many factors and would hence be difficult to define. The func-
tional requirement fu,(p) specified here decreases linearly from one, at the minimum
development cost (for a turbofan engine with no design modifications), to zero, at
the maximum development cost (see Figure 4.5 or 4.6). This choice of tp, though

reasonable, is arbitrary.
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Recall that design preferences kd; represent the preference that the designers
have for values of each design variable d; based on aspects of design performance
that are not already represented by performance variables. Development cost is
already modeled as a performance variable. Given the high level, abstract nature of
the design variables defined by the EDCE, specific measures of engine performance
are not yet relevant. A more compelling consideration is the feasibility of a par-
ticular design d: whether the levels of design change defined by d will support an
engine design that meets the specifications in the RFP. An excessively high level of
design change, however, introduces unnecessary complexity into the engine design.
Moreover, both of these considerations must be assessed separately for each design
option. Thus feasibility and necessity of a particular level of design change is deter-
mined in the context of either augmenting the turbojet or modifying the turbofan.
This leads to a different set of design preferences for each design option.

The design preferences determined by the design team based on these consid-
erations are shown in Figures 4.3 and 4.4. Note that this example examines two
separate design options that represent two markedly different types of engine devel-
opment programs. It is necessary to deal with these two options separately, even
though the same functional requirement on cost will be applied for both and even
though the two different sets of design preferences specified over the same design
variables dj, ...,d, may overlap. The design preferences differ because feasibility is
assessed relative to each engine development option. Thus the imprecise specifi-
cation of each development program is realized in the design preferences shown in
Figures 4.3 and 4.4.

How then, should the design preferences be traded-off against each other? A
highly feasible and necessary level of design change in one subsystem cannot com-
pensate for a less feasible or excessive level of design change in another subsystem.
Thus a non-compensating trade-off (aggregation function Prin) is indicated for com-
bining fi4,, ..., 145. The correct trade-off between the combined design preference pug4
and the functional requirement pp is less obvious. To what extent does a highly

feasible and necessary set of design change levels compensate for a high develop-
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ment cost? Conversely, to what extent does a low development cost compensate for
a less feasible or excessive set of design change levels? As a first approximation, a
non-compensating trade-off is assumed. It will be shown below that the difficulty of
quantifying the functional requirement on cost renders the exact trade-off between
tq and p, moot.

Figures 4.5 and 4.6 show p4(p) and u,(p) calculated by the IDT for each of
the two options. The development costs shown are representative and were not
calculated using actual cost data. For augmenting the turbojet (option 1), the peak
preference 4} is equal to 0.80 at an estimated development cost of $185 million. For
modifying the turbofan (option 2), u* is equal to 0.85 at an estimated development
cost of $165 million. For the design preferences, functional requirement, and design
strategy specified, the turbofan option results in a higher peak preference, suggesting
that it is the better design choice.

Figures 4.5 and 4.6 show that the functional requirement u,(p) truncates the
combined design preference p4(p) to produce the overall preference p,(p). This is
because the non-compensating trade-off simply takes the min of rd(p) and p,(p).
As given, p,(p) correctly reflects a relative preference for designs with lower cost p,
but ,(p) is an absolute measure. This is an important distinction because absolute
preference on cost is traded-off against absolute preference on the feasibility and
necessity of design changes and the min of the two is the measure by which the
design is assessed. Figures 4.5 and 4.6 demonstrate that lowering p,(p) results
in lower peak overall preference Mg corresponding to lower design preferences and
a different set of peak preference designs. The correct decision therefore hinges on
quantifying the customer’s absolute preference on cost. But the customer’s absolute
preference for cost cannot be accurately quantified if it is no more specific than a
desire to minimize cost.

Assuming that only the direction of the slope of Up(p) is known, consider the
effect of varying the point at which bp(p) intersects the pg(p) pyramid. On the
ra(p) = 1 plateau [pl.  pl .1 the lowest cost point P, = $185 million must be

preferred over all other points in the interval. Indeed, pl. must be preferred over
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all points to the right on the pyramid, since these points have cost p > p}nin and
preference p(p) < 1. Hence only points on the left side of the pyramid where
p < pL, are of interest. The point at which pp(p) intersects p,(p) determines which
performance p < pllnin achieves the peak overall preference p?.

Instead of relying on a well-defined absolute functional requirement Hp to define
the most preferred performance, a less formal method may be used. Figure 4.7
compares only the design preference p4(p) for the two options. The customer’s pref-
erences on cost may now be informally applied to the quantified design preferences to
identify preferred performances p € Y*. In the absence of a sufficiently strong pref-
erence for minimizing cost, the most preferred performance is prlnin = $185 million on
the uq(p) = 1 plateau. pl. can be considered to be a baseline point. As the desire
to reduce development cost increases, points to the left of prlnin with lower develop-
ment cost, but lower design preference, become increasingly attractive. This reflects
an informal trade-off between lower development cost and lower feasibility implied
by lower design preference. Even though this trade-off is not formally modeled as a
specific aggregation operation on well defined preference functions P(pd, 1p), it can

still be represented on Figure 4.7. At pq(p) = 0.9, p%9 = $165 million for augment-

0.9

ing the turbojet is preferred over p%? = $185 million for modifying the turbofan.

0.9
min

Consider the choice between p%:? = $165 million for augmenting the turbojet and
the baseline pl . = $185 million for modifying the turbofan. A straight line drawn
through the two points is a simple indicator of the trade-off involved. A steeper
slope yields a smaller decrease in cost for the same decrease in design preference. In
the absence of any specific preferences on cost, such as a maximum budget of $160
million, the overall preferred performance will either be the baseline point or the
point that defines (or one of the co-linear points that together define) the shallowest
trade-off line. Any point on the yg pyramid below this line involves a steeper and
presumably less desirable trade-off between development cost and design preference.
For this example, the two points that the designers should‘choose between (assuming

that no additional considerations enter into the decision) are pl. = $185 million

0.9
min

for modifying the turbofan and p%? = $165 million for augmenting the turbojet.
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If some additional constraint rules out pl. = $185 million for the turbofan option,

0.8
min

the next shallowest trade-off is given by p%:3 = $159 million for the turbojet option.
Thus a non-specific, relative preference on development cost can be informally ap-
plied to the combined design preference on performance #a(p) in order to highlight
promising performances from which a peak preference set of performances Y* can
be chosen.

The results presented are from an early version of the IDT that used the original
LIA. 12 function evaluations were required to map the design preferences pg,, ..., ftdq
onto the PVS for the first alternative and 128 for the second. The design prefer-
ences for the two alternatives had 4 and 5 a-cuts with some coincident end points,
especially for the first alternative, and the number of dimensions in the search space
was 3 and 6. A more recent version of the IDT that implemented Powell’s method
modified for a discrete DVS reproduced the same results. Without taking advantage
of monotonicity this later version of the IDT required 12 and 38 function evalua-
tions for the two alternatives. As expected, optimization has a greater advantage

for larger n. An example demonstrating the more advanced preference calculation

techniques introduced in Chapter 3 is presented in Section 4.2.1.

4.2 Vehicle Structure Design

A more recent application of the IDT was motivated by discussions with engineers
at a major U.S. automobile manufacturer. These engineers were primarily involved
in design for noise, vibration, and harshness (NVH). NVH design is concerned
with three aspects of vibration: audible noise, tactile vibration, and subjective
evaluations of safety, comfort, and luxury based on perceived levels of noise and
vibration. Measures of static rigidity (stiffness in bending and torsion) are indicators
of perceived safety, comfort, and luxury levels: overly compliant vehicles rate poorly,
though extremely stiff vehicles may suffer from high-frequency noise. Generally,
different classes of vehicles and different body types have different standards for

bending and torsional stiffness. Measures of dynamic response (modal frequencies
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Figure 4.8 The body-in-white.

and shapes, for the whole vehicle structure as well as for specific panels) directly
predict noise and vibration characteristics [12].

The body-in-white is the principal loadeearing structure of the vehicle consist-
ing of thin-walled parts welded, bolted, or glued together, including the windshield
and backlite (rear window) which are structurally significant (Figure 4.8). Chassis
and powertrain components, trim items (decklid, i.e., trunk lid, dashboard, doors,
hood), and components attached using a rubber mount are excluded. Although the
parts excluded from the body-in-white add to the overall stiffness of the vehicle, they
also add mass, and thus the static rigidity and dynamic response of the complete
vehicle is considered to be well modeled by the body-in-white [12].

At this particular U.S. automobile manufacturer, the static and dynamic re-
sponse of the body-in-white is calculated using a commercial finite element package,
usually on a supercomputer. Two types of finite element model are used: detailed

and simplified. A detailed model typically contains 30,000-100,000 elements and
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requires 15 people about 2 months to construct by hand, using shape information
from stylists. Detailed models are considered accurate: static stiffnesses are within
10% of test results [12].

A simplified model contains 5,000-10,000 elements. Simplified models were in-
troduced at the company 2-3 years ago to reduce the calculation time required: they
use fewer shell elements and approximate key structural members and joints with
beam and spring elements. Preparing a simplified model from a detailed model
requires about half the time needed to construct the detailed model, though some-
times a mix of parts from different models for different vehicles are used to create a
new simplified model. The simplified model only approximates the detailed model:
fewer elements correspond to fewer degrees of freedom and greater apparent stiff-
ness. Thus the simplified model is 10-15% stiffer than the detailed model, and local
behavior especially acoustic response is poorly modeled [12].

A key constraint was that each finite element calculation of static and dynamic
response required significant supercomputer time: approximately 15 seconds to eval-
uate a simplfied model [12]. Hence each function evaluation carried a significant cost,
both directly in terms of billed supercomputer time and also in terms of the time
delay (effectively a day). Therefore, in applying the method of imprecision to this
problem, a key consideration was to minimize the number of function evaluations in-
curred. The optimization and experiment design techniques described in Chapter 3
were developed to address this issue. At this time, computational implementation of
these methods is incomplete, and in particular, the IDT has not yet been extended
to simultaneously map multiple performance variables.

Figure 4.9 shows the role of optimization and experiment design in the current
version of the IDT. The information flow for one performance variable p; = 1 (ci) is
indicated. The IDT begins by calling the experiment design module which conducts
a central composite experiment over Dgl, the a-cut with lowest o, and constructs a
linear approximation fJ'-. Optimization is then called to search for the extrema ik
and p; > for each ng. Optimization uses the linear coefficients determined by the

experiment design module to determine starting points. The linear approximation fj'~
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Figure 4.10 Finite element model of a car body.

replaces the function f; for any design variables that are adequately approximated.
The fractional precision “prec” used by the optimization and experiment design

modules trades-off the number of function evaluations against accuracy.

4.2.1 Example: Finite Element Analysis of a Vehicle Body

The finite element model of the passenger compartment of an automobile body
shown in Figure 4.10 was prepared by Michael Scott. It is not intended to be
a realistic model of any particular vehicle or even of any real vehicle in general.
The basic geometry, however, is similar to a typical four-door body-in-white as
illustrated in Figure 4.8. In an effort to simulate part of the vehicle structure design
process, a commercial finite element package was used to calculate bending and

torsional stiffnesses using standard loads and support constraints obtained from [12].
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This section discusses the application of the IDT to the problem of calculating two
performance variables, bending and torsional stiffness, for ten design variables.

Bending stiffness Kp is defined as the total load applied at two pairs of matching
points (i.e., total of four) on the rocker rail, divided by the displacement averaged
over several points on both sides of the vehicle body [12]. Kp has units of pounds
force per inch (Ibf/in). Torsional stiffness K7 is defined as the torque applied
between two pairs of matching load points, divided by the axial angle of twist
measured between the pairs of load points [12]. K7 has units of foot pounds force
per degree (ft-1bf/°).

Ten design variables were selected (all units are inches, except where indicated

otherwise):

di  0.10-0.20 B pillar gauge (thickness of hollow rectangular cross-section)

d2  0.10-0.20 C pillar gauge

d3  0.07-0.13 A pillar gauge

dgy  0.10-0.20 hinge pillar gauge

ds  0.07-0.13 roof rail gauge

dg  0.07-0.13 rocker gauge

d7  0.03-0.05 floor gauge (plate thickness)

dg  0.03-0.05 roof gauge

dg  0.15-0.25 cross-sectional area of each cross-brace (square inches)

dio  -2.0-2.0 fore-aft location of B pillar (fore is positive)
The ranges indicated are the maximum acceptable values assumed, which correspond
60 [difnins dimax]-

Initially, the fractional precision was set to its highest value, 1, in order to test
whether a minimally acceptable linear approximation could be constructed. Lin-
ear regression coefficients for bending stiffness calculated by the IDT for resolution
III and resolution IV experiments are shown in Table 4.1. Design sensitivities &5,
are shown for the resolution IV experiment. af. denotes regression coefficients cal-
culated from the fractional factorial experiment alone. Regression coefficients for

the full central composite design are denoted aj;. Note that apart from B pillar
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II1 v
design variable d; al a1 al; ay; KS;
B pillar gauge 14,400 13,800 | 10,800 10,800  0.053
C pillar gauge 21,700 22,300 | 25,100 25,100 0.123
A pillar gauge 29,600 30,300 | 33,600 33,700  0.099

hinge pillar gauge | 26,400 26,800 | 28,500 28,500  0.139
roof rail gauge 153,000 155,000 | 160,000 161,000 0.471

rocker gauge 345,000 346,000 | 341,000 342,000  1.000
floor gauge -17,600 18,700* | 20,200 20,100  0.020
roof gauge -23,900  4,390* 7,610 7,420  0.007
cross-brace area -5,660 169* | -1,210 169*  0.001*
B pillar location -340 -325 -207 -209  -0.041

Table 4.1 Linear regression results for bending stiffness Kp.

location, all design variables should have positive coefficients for both K and Kp:
thicker gauges should increase both bending and torsional stiffness. The negative
resolution I1I coefficients aT;, al}, aty for floor gauge, roof gauge, and cross-brace area
in Table 4.1 imply that thickening the floor, roof, or cross-braces would decrease
bending stiffness and are hence clearly invalid. The IDT flagged the corresponding
a17,a1s,a19 (originally negative) as not acceptably linear because they disagreed in
sign with the observed slope in the design variables d7, dg, and dgy (all positive).
In such a case the observed sign is more reliable than the calculated coefficient
since relatively small non-linearities in a variable such as rocker gauge can strongly
influence the calculated coefficent for less significant variables. Asterisks indicate
that the coefficients for these not acceptably linear design variables are instead es-
timated from the one-factor-at-a-time experiment exclusively: they are therefore
approximate. Note that the resolution III and IV experiments differ only in the
fractional factorial: the one-factor-at-a-time experiment is identical.

The similarity between a% and ay; is potentially misleading: ay; is obtained
by adding the results from the one-factor-at-a-time experiment to af;. Thus the
agreement of the results for a particular resolution is to a certain extent guaranteed.

Especially close agreement, however, for hinge pillar gauge, roof rail gauge, and
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rocker gauge suggests that these variables are significantly linear.  The largest
approximation error at a point evaluated in a design variable direction for a linear
approximation in the seven acceptably linear variables was 2,840 Ibf/in (4%) at J(;_
(rocker gauge). (The center point bending stiffness was 78,400 1bf/in, which is not
unreasonable in comparison with actual vehicles [12].) Errors for roof rail gauge are
also large, suggesting that Kp is significantly linear in these variables only relative
to their large effect on K. The error in the approximation was similar for all seven
acceptably linear variables. All of the errors were positive except at the center point,
i.e., f_7 > f at all evaluated points except detr. The error at the center point is equal
to the offset Ay, which was negative. The same was observed for the resolution IV
experiment. This implies that both approximations overestimate bending stiffness
near the exterior of D? and underestimate bending stiffness near the center point.

It is assumed that the results from the resolution IV experiment are more reliable
than the results from the resolution III experiment. The relatively close agreement
of a% and ay; for resolution IV compared to resolution III is largely because of the
increased number of points evaluated in the fractional factorial experiment (with
center point): 13 versus 33. The number of additional points evaluated to complete
the central composite design was 20 regardless of the resolution. For the approxima-
tion constructed in the nine acceptably linear variables, the largest approximation
errors were measured for the fractional factorial corner points Jrf, ---,G?%m- The
largest of these errors was 4,740 Ibf/in (6%). Clearly, unmodeled non-linear effects
exist. Errors were, however, largely symmetric, with E(J;_) ~ E(d_;"') no design
variable was unevenly approximated. The limits chosen for the ten design variables
were not narrow: bending stiffness varied from 56,900 1bf/in to 97,000 1bf/in.

For the resolution III experiment, the approximation constructed in the seven
acceptably linear variables had a similar degree of accuracy. The largest error, for
JQD, was 4,490 1bf/in (6%). Thus for the purposes of optimization, Kp is as well
approximated by the resolution III experiment as by the resolution TV experiment,
for those variables that were found to be acceptably linear for each resolution.

But the resolution IV approximation linearizes nine variables compared to seven
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design variable d; al; a9; as; a9; KS;

B pillar gauge 19,500 19,900 | 20,600 20,700 1.000
C pillar gauge 1,760 2,100 | 4,100 4,110 0.198
A pillar gauge 9,040 8,930 | 8350 8,340 0.242
hinge pillar gauge =217 550* 962 938  0.045
roof rail gauge 17,500 17,400 | 15,900 15,900 0.461
rocker gauge 31,400 31,800 | 31,800 31,800 0.922
floor gauge 62,600 63,700 | 67,900 68,000 0.657
roof gauge -13,500 4,570* | 5,080 5,050 0.049
cross-brace area, -2,150 132% 81.7 84.6  0.004
B pillar location -61.3  -58.0 | -24.8 -25.6 -0.049

Table 4.2 Linear regression results for torsional stiffness K.

variables for the resolution III approximation.

The design sensitivities «§; tabulated for the resolution IV experiment show
that rocker gauge is the critical design variable. The estimated change in bending
stiffness between the acceptable extremes of roof rail gauge (k{5 = 0.471) is less
than half the corresponding estimated change for rocker gauge. Bending stiffness
also depends significantly on hinge pillar gauge (ki, = 0.139) and C pillar gauge
(k§o = 0.123). Down the list it is seen that roof gauge, floor gauge, and cross-brace
area are relatively unimportant variables in determining bending stiffness. Forces
are largely being transmitted through the roof rail and rocker.

Linear regression coefficients and design sensitivities for torsional stiffness are
shown in Table 4.2. For the resolution III experiment, three variables were invalid
because the sign of the regression coefficient disagreed with the sign of the observed
slope. For the resolution IV experiment, however, all ten variables were acceptably
linear. The results for both bending and torsional stiffness demonstrate that a
resolution IV experiment are likely to resolve more linear variables than a resolution
IIT experiment. Additionally, Tables 4.1 and 4.2 suggest that variables with small
design sensitivities tend to be less easily resolved. The largest approximation error

for the resolution III approximation in seven variables was E(dY) = 1,010 ft-1bf/°
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A AE A, Af

bending (Ibf/in) | -1,230 -548 | -1,240 -456
torsion (ft-1bf/°) | -261 -115 | -258 -258

Table 4.3 Center point offsets for bending and torsional stiffness.

(7%). (The center point torsional stiffness was 13,300 ft-1bf/°, which is comparable
with actual vehicles [12].) The largest approximation error for the resolution IV
approximation in all ten variables was E(d}) = 1,350 ft-1bf/° (11%). Torsional
stiffness was overestimated near the exterior of D% and underestimated near the
center point. Errors were largely symmetric with E(J?) ~ E(ci?’) These effects,
which were common to Kg and K7, may be an artifact of the finite element analysis.

The design sensitivities in Table 4.2 show that the two most important variables
for torsional stiffness are B pillar gauge (k$; = 1) and rocker gauge (k55 = 0.922).
The distinction is not as pronounced as for bending stiffness: torsional stiffness
depends significantly on floor gauge (k%, = 0.657), roof rail gauge (kS5 = 0.461),
A pillar gauge (k3 = 0.242), and C pillar gauge (k59 = 0.198). Recall that roof
gauge, floor gauge, and cross-brace area had low values of k{; for bending stiffness.
Therefore, increasing floor gauge selectively increases torsional stiffness. To a lesser
extent, increasing hinge pillar gauge selectively increases bending stiffness.

The offsets A; (for all ten variables) and Af (for acceptably linear variables)
are shown in Table 4.3. The offsets calculated from the fractional factorial points
were not significantly changed when the one-factor-at-a-time experiment results were
added and are thus not tabulated. This indicates that the quadratic error estimates
from the two separate sets of points are similar. The agreement between the values
for A; for the resolution III and IV experiments is also good. Comparisons involving
Af are not meaningful because the number of linear variables approximated differs.
The offset determines the error at the center point. A; = —1,240 Ibf/in is a -2%
error. Ay = —258 ft-1bf/° is also a -2% error. The error at the center point should
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prec =1 prec = 0.01
design variable d;  difyi,  difax Pitnin Pioiax Djrax
B pillar gauge 0.10 0.20 0.10 0.20 0.20
C pillar gauge 0.10 0.20 0.10 0.20 0.20
A pillar gauge 0.07 0.13 0.07 0.13 0.13
hinge pillar gauge 0.10  0.20 0.10 0.20 0.20
roof rail gauge 0.07 0.13 0.07 0.13 0.13
rocker gauge 0.07  0.13 0.07 0.13 0.13
floor gauge 0.03 0.05 0.03 0.05 0.05
roof gauge 0.03 0.05 0.03 0.05 0.05
cross-brace area, 0.15 0.25 0.15 0.25 0.25
B pillar location -2.0 2.0 2.0 -2.0 -1.3
bending stiffness Kp 56,900 96,900 97,000
torsional stiffness Kt 9,400 16,900 (16,900)

Table 4.4 Extrema for bending and torsional stiffness in D¢

be smaller in magnitude than the error near the boundaries of D& if it is indeed
quadratic, as can be seen in Figure 3.12.

After the construction of a linear approximation, the IDT proceeded with op-
timization over the reduced set of non-linear design variables. A few additional
function evaluations are used to verify the results of the optimization, which begins
at the corner of the search space where the extremum is expected. The calculated
extrema in bending and torsional stiffness achievable by designs de D? are shown
in Table 4.4. For this example the extrema in bending and torsional stiffness found
for both resolutions using a fractional precision of 1 occurred at the same design
d. Hence the results for prec = 1 are shown together. Extrema are not expected
to coincide, in general. Despite the differences in accuracy of the linear approxima-
tions constructed, the same extrema were found for the two resolutions. There is,
however, an issue of reliability and confidence: the approximation obtained through
the resolution IV experiment is more complete and more points were evaluated to
verify its accuracy. The additional function evaluations buy a degree of confidence

in the validity of the results even though they are numerically identical.
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prec=1 prec = 0.01

IIIr 1v 111 v
approximation ;| 41 53 | 33 53
bending optimization 2 2| 58 o8
total 43 55| 91 111
approximation | 41 53 | 33 53
torsion  optimization 2 2| 37 37
total 43 55| 70 90

Table 4.5 Number of function evaluations required by the IDT.

To verify the extrema found, the fractional precision was reduced to 0.01. This
tightened the criteria for acceptable linearity in a design variable such that all de-
sign variables became unacceptable. Optimization searched for extrema without
any of the enhancements described in Chapter 3 that seek to minimize the number
of function evaluations required. The results were again independent of the resolu-
tion specified. The extrema returned for torsional stiffness were identical. A new
maximum bending stiffness was located at an intermediate B pillar location of 1.3
inches aft. The increase in Kp was tiny: 55 Ibf/in (the new maximum bending
stiffness was 97,000 1bf/in). The torsional stiffness at this new maximum of bending
stiffness is shown in asterisks.

An important consideration is the number of function evaluations required to ob-
tain a given reliability or accuracy in the calculated results. The number of function
evaluations for the four combinations of resolution and fractional precision evaluated
are shown in Table 4.5. The number of function evaluations required for ten vari-
able resolution III and IV central composite designs is 33 and 53 (from Figure 3.11).
The additional eight points evaluated in constructing a resolution I11 approximation
for Kp and K1 were required to verify the seven variable approximations. These
verifying points, which define the eight corners of a cube in the three non-linear
variables, did not coincide with any of the 33 points evaluated in the resolution

IIT central composite design. Table 4.5 shows that only two additional evaluations
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were required by optimization when the fractional precision is 1, regardless of reso-
lution, for both Kp and Kp. This implies not that optimization only examined two
points, but that the linear approximation fJ'~ obviated the need to evaluate all but
two points. These two points correspond to the extrema found. This demonstrates
that the linear approximation methods described in Chapter 3 and implemented in
the IDT are effective at reducing the number of additional evaluations required by
optimization.

The number of optimization evaluations required for a fractional precision of
0.01 do not reflect the number of evaluations required by optimization alone. Al-
though optimization rejects the linear approximation and proceeds on all ten design
variables, it begins at the extrema predicted by the approximation. For torsional
stiffness, optimization expends 37 function evaluations in order to determine that
its starting points are indeed the correct extrema, to a fractional precision of 0.01.
For bending stiffness, optimization expends 58 evaluations in order to verify the
minimum and to find a maximum that differs only in B pillar location. Table 4.5
indicates the trade-off between fractional precision and the number of function eval-
uations, for this particular example. There is no simple relationship between the
two. As the fractional precision is reduced, the IDT becomes more selective in ap-
proximating f_: and more cautious in searching for extrema, with smaller step sizes
and more stringent termination criteria. This caution demonstrably results in more
function evaluations, but it is only suggested without proof that it results in better
results.

It is difficult to assess the quality of the results when they are numerically virtu-
ally identical. A difference in B pillar location of 0.7 inches resulting in a marginal
increase in bending stiffness is almost negligible. The apparent effectiveness of the
methods developed poses an intriguing question: if it is possible to obtain the cor-
rect answer with a resolution III experiment and a fractional precision of 1 requiring
only 44 function evaluations, why would additional function evaluations be neces-
sary? It has already been discussed that a resolution IV experiment buys additional

reliability and confidence in the results, and a smaller fractional precision limits the
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allowable inaccuracy. Yet this example appears to show that the central issue is not

accuracy but confidence in the results, which is not easily assessed.

4.2.2 Example: Quadratic Approximations to the Finite Element

Analysis

An example involving closed-form equations for f will further demonstrate the
computational method. For this example, quadratic approximations in the two most
poorly behaved design variables were constructed for bending and torsional stiffness.
These quadratic approximations was then used to calculate Kz and K7 instead of
the finite element package. The two design variables selected were cross-brace area
dg and B pillar location diy. The approximations were constructed relative to the
center point, in terms of 9 and z19. The acceptable intervals at o = ¢ specified
for zg9 and z10 were equivalent to those specified in the previous example for cross-
brace area and B pillar location. The quadratic approximation for bending stiffness

is plotted over D¢ in Figure 4.11:
(4.1) Kp = 78,400 + 170z9 — 240219 — 630z9% — 5zgz10 — 880>

K p is significantly non-linear in B pillar location. g—ﬁ% = 0 on a line from (-0.05,-1.36)
to (0.05,-1.36). This line defines a ridge on which Kp is a maximum for a given
value of cross-brace area. This ridge cannot be modeled by a linear approximation.
The true maximum of Kp on DZ (78,600 1bf/in) is located at (0.05,-1.36). The
minimum (77,600 1bf/in) is located at (-0.05,2).

The quadratic torsional stiffness is plotted in Figure 4.12:
(4.2) K1 = 13,300 + 130z9 — 38719 — 620292 + 529110 + 47102

The partial derivatives of K7 remain non-zero within the search space. The mini-
mum (13,230 ft 1bf/°) is at (-0.05,2). The maximum (13,400 ft 1bf/°) is at (0.05,-2).
The IDT was used to search for extrema at two fractional precisions: 1 and

0.01. For two design variables, the full factorial experiment must be evaluated (all
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Kp Kr

cross-brace area, aj9 170 130
B pillar location ajig | -240 -38

Aj 118 4.8

Table 4.6 Linear regression results for quadratic Kp and Kr.

prec =1 prec = 0.01

Pimin Pjtnax Pimax

cross-brace area | -0.050  0.050 0.050
B pillar location 2.0 -2.0 -1.39
Kp 77,600 78,500 78,600

Kp 13,230 13,400 (13,370)

Table 4.7 Extrema for quadratic Kz and Kr.

four corners of the DZ rectangle): there is no choice between resolution III and
resolution IV experiments. The linear approximation results for K B and K are
given in Table 4.6. The correct linear regression coefficients from Equations (4.1)
and (4.2) were recovered. The offset A; is relatively large and negative in order to
correct for the concave downwards curvature of Kp. Ay is smaller in comparison
and positive: K7 is not strongly non-linear and is concave upwards.

The extrema found by the IDT are shown in Table 4.7. The extrema found
using the linear approximation at a fractional precision of 1 coincided for K B and
K. At a fractional precision of 0.01, optimization identified a maximum for Kp
at (0.05,-1.39). The value for Kg at (0.05,-1.39) was identical, within the floating
point precision, to the true maximum value of Kg. At a fractional precision of 0.01,
only one variable, z19, was rejected as not acceptably linear, for both K and Kr.
Errors for the linear approximations in both variables (prec = 1) and in one variable

(prec = 0.01) are given in Table 4.8 for each evaluated point. Evaluated points are
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E(d)
prec =1 prec = 0.01
z9 z10 Kp Kr | Ky Kr Kp Kr

detr 0 0 78,400 13,300 |-118 48 -0.5 -0.5
d_tf -0.05 -2 78,500 13,380 | 236 -10.2 1.6 0.5
JE -0.05 2 77,600 13,230 | 235 -9.2 0.6 1.5
JE 0.05 -2 78500 13,400 | 235 -9.2 0.6 1.5
JE 0.05 2 77,600 13250 | 236 -10.2 1.6 0.5
dy  -0.05 0 78,400 13,290 | -116 63 1.1 1.0
cig' 0.05 0 78,400 13,310 | -116 6.3 1.1 1.0

dy 0 -2 78500 13,390 | 234 -11.2
i 0 2 77,600 13,240 | 234 -11.2

Table 4.8 Approximation errors for quadratic Kg and K.

shown in Figure 4.13. Although E(JE) = 236 1bf/in for K is only a 0.3% error, the
fractional precision is applied to the observed range in Kp (77,600-78,500 Ibf/in).
Hence for a fractional precision of 0.01, the maximum allowable approximation error
in Kp is 0.01 x 900 = 9 Ibf/in. Similarly E((ffo) = —11.2 ft Ibf/° for K is only a
0.08% error, but 0.01 x 170 = 1.7 ft Ibf/°.

Figure 4.13 shows D?, the design preference a-cut in the DVS. The factorial
experiment points are numbered. The actual and approximate mappings of D¢ onto
the PVS are shown in Figure 4.14. The solid lines indicate the boundary of P2 The
pronounced non-linearity of Kp in 19 results in a boundary that is not only curved,
but also crosses over itself. The maximum in K5 occurs at (0.05,-1.36). The dashed
lines connecting the numbered factorial experiment points indicate the boundary
of Ped/, obtained via linear approximation. For this example, which was chosen to
highlight the two most non-linear design variables, P4 is a poor approximation

€

to P2, especially near th and d-g The mismatch between P? and P% could be

€ €

detected by checking if ﬁ((fctr), the performance of the center point, is inside P?'

Looking at Figure 4.14, it is tempting to suggest that P¢ could be estimated by

€

connecting the dots, but this is difficult to generalize to n design variables. Using
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PR = [p1€ o p1€a] X [P25ins P2max] Would require no additional function evaluations
but would grossly overestimate PZ.

Where f is sufficiently non-linear that Ped' obtained via linear approximation is
inadequate, effective methods to more accurately determine the geometry of P¢ have
yet to be developed within the method of imprecision. Nevertheless, this example

shows that even where variables are non-linear, the correct extrema can be located

and linear approximation can still be valuable in facilitating optimization.

4.3 Conclusions

The Imprecise Design Tool (IDT) was developed to verify the algorithms described
in Chapter 3 and to demonstrate the method of imprecision on engineering problems
from industry. Section 4.1 discussed an application of the IDT to the Engine De-
velopment Cost Estimator (EDCE) provided by General Electric Aircraft Engines,
Cincinnati, Ohio. The EDCE estimates the cost of developing a new aircraft en-
gine and is one of several programs that together estimate the total lifetime cost of
an engine. Eight variables that represent the degree of innovation in eight compo-
nents and subsystems of the new engine were chosen to be design variables dj, ..., ds.
These variables are significantly imprecise: the degree of innovation for a particular
component of the engine will, in general, not be known precisely in advance. Addi-
tionally, because the EDCE defines degree of innovation only at ten levels, di,...,dg
are effectively discrete.

The EDCE calculates the estimated development cost for a new engine given
a set of precisely specified, crisp inputs. The role of the IDT was to provide an
interface that quantified the imprecision in the design variables dy,...,dgs and the
performance variable p. The EDCE defined the crisp mapping f : DVS — PVS
used by the IDT to perform preference calculations.

This early version of the IDT traded-off preferences using the non-compensating
aggregation function Pp;,. The resulting n-cubic combined design preference a-cuts

ng were mapped onto the PVS using a modified form of the LIA that made use of
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a lookup table for values of f (cf) Calculations demonstrated that specifying a-cuts
at ten levels of preference was computationally inefficient and unnecessary.

An early solution to the problem of mapping Y* back onto the DVS to obtain X*
used the a-cut at o, the largest oy, < tg- For a non-compensating trade-off, the set
of peak preference designs X* is a subset of D4, because only design configurations
de Dg* can have overall preference ,uo(ci) equal to .

Section 4.1.1 presented a turbofan aircraft engine development problem which

involved two (imprecisely specified) options:

1. Develop the new engine from an existing turbojet design by the addition of a

front fan with matching shaft and low pressure turbine.
2. Modify an existing, but dated, turbofan design.

The IDT was used to map design preferences onto the one-dimensional PVS. The
specification of a relative functional requirement for minimizing cost was shown to
be problematic. The usual calculation of overall preference 1,(p) by aggregating
pa(p) and py(p) requires u,(p) to be defined as an absolute functional requirement.
Instead, an informal method for representing a purely relative preference on cost
by comparing the trade-offs implied by particular points on the ta(p) pyramid was
described.

A later version of the IDT that replaced the LIA with optimization demonstrated
the application of optimization to a design problem with discrete design variables.
It was also shown that optimization was able to reduce the number of function
evaluations, in one particular case, from 128 to 38. A simpler calculation required
12 evalutions for both methods.

Section 4.2 presented a more recent application of the IDT, to an automobile
structure design problem. Noise, vibration, and harshness (NVH) design is con-
cerned with three aspects of vibration: audible noise, tactile vibration, and subjec-
tive evaluations of safety, comfort, and luxury based on perceived levels of noise and
vibration. Measures of static rigidity (bending and torsional stiffness) are indica-

tors of perceived safety, comfort, and luxury levels. Measures of dynamic response



111

(modal frequencies and shapes) directly predict noise and vibration characteris-
tics [12].

The body-in-white is the principal load-bearing structure of the vehicle consist-
ing of thin-walled parts welded, bolted, or glued together, including the windshield
and rear window. At this particular U.S. automobile manufacturer, the static and
dynamic response of the body-in-white is calculated using a commercial finite ele-
ment package. Two types of finite element model are used: detailed and simplified.
Simplified models reduce calculation time, yet each finite element calculation of
static and dynamic response still requires approximately 15 seconds [12]. Therefore,
in applying the method of imprecision to this problem, a key consideration was to
minimize the number of function evaluations incurred. The optimization and ex-
periment design techniques described in Chapter 3 were developed to address this
issue.

In Section 4.2.1 the IDT was applied to a finite element model of the passenger
compartment of a hypothetical four-door body-in-white. A commercial finite ele-
ment analysis package was used to calculate bending and torsional stiffnesses. Ten
design variables were defined including the gauges of key members and the fore-aft
location of the B pillar. The example not only illustrates the methods introduced
in Chapter 3, but also attempts to demonstrate their feasibility. The use of finite
element models is not limited to automobile structure design: they are widely used
in industry. Detailed results for resolution III and IV central composite experiment
designs were presented. The largest known error in approximating bending stiffness
Kp (acceptably linear variables only) was 6% for both resolutions. For K B, the res-
olution IIT experiment identified seven acceptably linear variables and the resolution
IV experiment identified nine acceptably linear variables. The largest known error
In approximating torsional stiffness K7 was 7% for resolution III (seven variables)
and 11% for resolution IV (all ten variables). Both Kp and K7 were overesti-
mated near the exterior of D¢ and underestimated near the center point. Errors
were largely symmetric with E(ci;_) ~ E(a?;*') These errors suggest that all four

linear approximations (K g, resolutions ITI and IV, and Kr, resolutions III and IV)
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were reasonably accurate. Furthermore, the offsets A, appeared to be effective in
evening out errors such that no subset of the search space was especially poorly
approximated.

Calculated design sensitivities showed that for the a = ¢ design preference in-
tervals specified, bending stiffness was most sensitive to the design variable rocker
gauge. Torsional stiffness was most sensitive to the design variables B pillar gauge
(k8 = 1) and rocker gauge (kS = 0.922).

Optimization at fractional precisions of 1 and 0.01 found the same minima for
Kp and K7 on D? using experiment design information at both resolutions. The
minima for Kp and Kp coincidentally occurred at the same point in the DVS.
Optimization at a fractional precision of 1 found the same maxima for K p and
K1 on D? for both resolutions. These maxima also occurred at a single point in
the DVS. A maximum with a negligibly higher value of Kp was found when the
fractional precision was set to 0.01.

Comparing the number of function evaluations required for resolution III and IV
experiments and fractional precisions of 1 and 0.01 showed that, for this example,
the results and the number of function evaluations required for optimization were
independent of resolution. Approximation was also shown to be effective in mini-
mizing the number of additional function evaluations required by optimization: for
a fractional precision of 1, only two additional function evaluations were required.
Moreover, even a resolution III experiment combined with a fractional precision of 1
resulted in calculated extrema that were extremely close to the best extrema found.
The apparent effectiveness of the methods developed poses an intriguing question:
if it is possible to obtain the correct answer with a resolution III experiment and
a fractional precision of 1 requiring only 44 function evaluations, why would ad-
ditional function evaluations be necessary? It was suggested in Chapter 3 that a
resolution IV experiment buys additional reliability and confidence in the results,
and a smaller fractional precision limits the allowable inaccuracy. Yet this example
appears to show that the central issue is not accuracy but confidence in the results.

Additional function evaluations may find better extrema. A resolution IV exper-
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iment combined with a smaller fractional precision, however, is less likely to miss
the correct extrema.

In Section 4.2.2, the methods introduced in Chapter 3 for mapping a-cuts from
the DVS to the PVS were demonstrated on quadratic approximations to the bending
and torsional stiffnesses calculated by finite element analysis. The two most non-
linear design variables cross-brace area and B pillar location were selected. Despite
the non-linearity of Kg in B pillar location, the correct extrema were found when a
fractional precision of 0.01 was specified. Moreover, even for a fractional precision
of 0.01, cross-brace area was sufficiently linear to be approximated by f" . However,
the geometry of P? was poorly approximated by Ped/. Where f is sufficiently non-
linear that Pfd' obtained via linear approximation is inadequate, effective methods to
more accurately determine the geometry of P¢ have yet to be developed within the
method of imprecision. Developing these methods is an important goal for future
research. Nevertheless, this example shows that even where variables are non-linear,
the correct extrema can be located and linear approximation can still be valuable
in facilitating optimization.

These results demonstrate that a selectively applied linear approximation can be
surprisingly effective in evaluating an example finite element model of an automobile
body. Finite element models are widely used in industry. The automobile structure
design and aircraft engine development examples represent two contrasting design
problems from industry. For the automobile structure the design variables were
continuous; for engine development cost they were discrete. For the automobile
structure example there were two performance variables Kp and Kp; for the engine
development example only development cost was quantified. The verification of the
algorithms for method of imprecision calculations on realistic design problems is a

key contribution of this thesis.
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Chapter 5

Interpreting Imprecision

Design preferences p4, and functional requirements pp; were defined in Chapter 2.
Yet the specification of these preferences is significantly more difficult than defining
what they represent. Moreover, as will be discussed in this section, the form in

which preferences should be specified is dependent on the algorithms used.

5.1 Specifying Preferences

The algorithms described in Chapter 3 for mapping the combined design preference

d
apg?

pd from the DVS to the PVS rely on approximating Md(d—) as a-cut sets Dgl s eeey D
defined in Equation (3.5). This discretizes the preference function p4(d) into M pref-
erence levels oy, ...,ap. Mapping M a-cut sets instead of a continuous preference
function leads to a computationally tractable algorithm. But appropriate values for
ai, ..., ap have not yet been defined.

Recall from Section 3.3 that aggregating discretized individual design prefer;
ences Lg,, ..., 4, With an aggregation function other than Pp;, creates additional
level sets. These additional level sets occur at intermediate preference levels corre-
sponding to the aggregation of dissimilar . Hence if individual design preferences
are discretized into My levels of preference o, .-y pf;, then the combined design
preference will be discretized into Mp levels, where M D = Mj. The following dis-
cussion applies equally to functional requirements that are discretized into the same

Mj levels of preference a, ..., aps,. The combined functional requirement will then
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be discretized into Mp levels where Mp > M;. Mp is not necessarily equal to Mp.

The preference levels oy, ..., ap, for the individual design preferences are auto-
matically propagated through the aggregation function P because of idempotency.
The additional preference levels result from P defined for the number of design vari-
ables n operating on heterogeneous combinations of the preference values oy, ..., ayy, -
For the design preference aggregation example described in Section 3.3 with n = 2
design variables and M = 3 levels of preference, three potentially distinct preference
levels are created: a7 9 = P(a1,as), a1,3 = P(a1,a3), and az 3 = P(az, a3). Gener-
alizing to arbitrary n, there are four situations for which an intermediate preference

level ;. 1, where a; < ... < oy, would not be distinguished from o, ey QU0
1. P is such that P(w, ..., k) = @i, €.9., Pmin,
2. P is such that P(ay,...,a;) = oy, e.g., Pmay except when o; ~ 0,

3. a; is zero or sufficiently close to zero that annihilation and continuity require

that P(wy, ..., ax) =~ o,
4. P(ay,...,a) = a; by coincidence, a; < aj < ey,

Although it might seem that larger M and hence finer discretization would lead
to more accurate calculations, there are two compelling reasons why fewer a-cuts
may be better. First, each additional level set required to describe ud(cf) must be
separately mapped onto the PVS, incurring additional function evaluations. Each
additional a-cut defined for the individual design preferences potentially creates as
many new level sets for Md(j) as there are new combinations of a. Hence adding
a-cuts, in general, increases computational effort significantly faster than linearly.

Second, the accuracy with which design preferences are represented should not
exceed the accuracy with which they can be elicited, or the accuracy with which the
results can be interpreted. Design problems with fewer than four design variables
and three performance variables are unlikely to pose significant challenges for de-
signers in industry. Yet the single approximated a-cut in the PVS shown in Figure
3.8, for four design variables and three performance variables, illustrates the diffi-

culty in visualizing multi-dimensional a-cut sets. Imagine three such regions nested
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in the three-dimensional PVS. Then imagine the same three regions modified after
aggregation with p, and mapped back onto the four-dimensional DVS. There is
insufficient motivation to calculate additional a-cut sets that will add information
of diminishing value.

How many preference levels a, ..., s, should be defined and what values should
be specified? Since the computational algorithm requires individual design prefer-
ence functions pg; to be discretized into a-cut intervals [d; 2%, di%L. ], oo, [dior?  dimnd],
the pg4, should be directly specified, by the designer, in terms of these a-cut inter-
vals. The preference levels ay, ..., apy, should therefore be chosen to be meaningful
to the designer.  The two most important a-cut intervals are at « = 1, corre-
sponding to ideal variable values, and o = ¢ (0 < € < 1), corresponding to barely
acceptable variable values. A preference of one indicates an ideal variable value.
The a-cut interval at o = 1 identifies the ideal or target range of values for the
variable. These values fully satisfy the considerations that are represented by the
preference function. A preference of zero indicates an unacceptable variable value,
which can only produce an unacceptable design which fails to satisfy the relevant
considerations. An infinitesimal yet non-zero preference ¢ indicates a barely accept-
able variable value. The a-cut interval at o = ¢ identifies the largest acceptable
range of values for the variable. Values outside this range have zero preference and
are thus unacceptable.

The barely acceptable a-cut set defined by the combined design preference is
De, D¢ defines the set of designs that are acceptable with respect to design pref-
erences, i.e., with respect design considerations: the unquantified aspects of design
performance not represented by performance variables. This specifically excludes
preferences arising from performance considerations: the quantified aspects of per-
formance represented by performance variables. D? includes all designs that are
minimally acceptable relative to design preferences only. Applying functional re-
quirements up, will eliminate designs de D¢ with unacceptable performances and
identify a subset of D? that describes acceptable designs relative to all specified

preferences.
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The infinitesimal preference € is a special case. It is the smallest value of prefer-
ence for which a useful a-cut can be defined. An a-cut at o = 0 would include the
entire DVS. Additionally, anihilation and continuity ensure that aggregating a pref-
erence of € with any other preference values will result in an infinitesimal preference
which is effectively equal to e: aggregations involving € result in e. Intermediate
preference levels that aggregate an a-cut at a@ = e with other a-cuts, will have
preference equal to €, i.e., no new preference level is created. Indeed, given that
new preference levels are created by aggregating dissimilar a-cuts, monotonicity and
idempotency ensure that there are no new preference levels created between € = a;
and the second lowest a-cut preference ay. Preference levels below a9 can only
be generated by aggregation involving a preference less than ap. The only a-cut
preference below o is €, and aggregations involving € result in €. Thus defining an
a-cut at o = € is computationally efficient.

A basic implementation of the method of imprecision would use only two a-cuts
@) = € and ag = 1. This requires the designer to specify acceptable intervals for
each variable which barely satisfy design and performance considerations, and ideal
intervals for each variable which fully satisfy design and performance considerations.
These two a-cuts have been chosen as being the most naturally defined. The concept
of a range of acceptable values and a range of ideal values for a variable is not new
to engineers in industry. It is the careful specification of these ranges with respect to
clearly identified design and performance considerations, on design and performance
variables, and the explicit calculation of how they combine on the PVS and the DVS,
that is innovative.

As discussed above, aggregation cannot create new preference levels between €
and 1. Mapping preferences between the DVS and the PVS also does not create new
preference levels. Although functional requirements can be specified as functions
with continuous preference, these functions are necessarily combined with design
preferences that are represented simply as two a-cuts at a; =€ and ag = 1. In
the absence of design preference information at intermediate levels of preference,

calculated results are reliable only at preference levels near these two extremes.
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Therefore, it is assumed that functional requirements are also specified only at
a; =€ and as = 1.

Specifying only two a-cuts a; = € and ay = 1 eliminates the difference between
aggregation functions. Aggregations involving the same preference oy return oy by
idempotency. All other aggregations involve € and result in €: these will be subséts
of the a-cut at oy = € and need not be calculated. Relatively few function eval-
uations are required. All design-appropriate aggregation functions reduce to the
intersection of intervals, regardless of weights. Thus approximating preferences as
only two a-cuts obviates the identification of aggregation functions or even an aggre-
gation hierarchy. Barely acceptable preference intervals a; = € and ideal intervals
az = 1 are simply intersected (separately for each ) to aggregate. Moreover, it is
easier to specify a set of ideal and acceptable intervals than a continuous functional
requirement, and the results are more easily interpreted. Thus the propagation of
ideal and acceptable intervals can be used as a preliminary analysis of the design
problem in order to sketch the boundaries of the design space while also searching
for an ideal set of designs.

A more complete implementation would add an intermediate a-cut. A natural
choice would be o = 0.5. A preference of 0.5 lies halfway between unacceptable and
ideal. Membership of 0.5 in a fuzzy set implies membership of 0.5 in its complement.
Analogously, a preference of 0.5 indicates a variable value that is equally well (or
equally poorly) described as ideal or as unacceptable. The designer or customer is
neither satisfied nor dissatisfied. The a-cut interval at o = 0.5 identifies a neutral
or indifferent range of values for the variable. This implies that a preference above
0.5 expresses positive satisfaction, such that the customer or designer considers
the variable value to be desirable or better than the norm. A preference below
0.5 expresses negative satisfaction, i.e., dissatisfaction, such that the customer or
designer considers the variable value to be undesirable or worse than the norm.

Thus the three a-cuts can be characterized:

¢ o = ¢ indicates undesirable yet barely acceptable variable values,

e as = 0.5 indicates neutral or indifferent variable values,
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Figure 5.2 Aggregating three o-cuts: level sets for pg =
Pmax’ (Mdl ) p'd2)‘
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® a3 =1 indicates (desirable) ideal or target variable values.

As before, no new preference levels are created between oy and o9 and any aggre-
gation involving c; = ¢ results in e. Aggregations involving as = 0.5 and ag = 1,
however, can create new intermediate preference levels depending on the aggrega-
tion function P. Therefore, increasing the number of a-cuts from two to three
potentially increases the number of design preference level sets and hence the com-
putational effort, by more than 50%. The number of new preference levels created
depends on the form of the aggregation function P: the non-compensating trade-off
Prin and the design-appropriate maximal trade-off Py, do not create intermedi-
ate preference levels; other aggregation functions do. Figure 5.2 shows the level
sets that result from using Pp .y to aggregate individual design preference a-cuts
at three levels: a3 = ¢, ap = 0.5, and a3 = 1. There are n = 2 design variables.
Although the combined design preference level set at g = 1 is not rectangular, no
new preference levels are created. Figure 5.1 shows the level sets that result from
using Pr; to aggregate the same individual design preferences. A new preference
level at g = Pr(0.5,1) ~ 0.7 is created. This intermediate level set describes the
combined preference where the individual design preferences are 0.5 for one design
variable and 1 for the other. The effect of using a different aggregation function P
is to vary the height of the intermediate level set between the limits defined by Puin
(Figure 3.5) and Pp,y (Figure 5.2).

The number of potentially new intermediate preference levels is equal to the
number of unique (non-ordinal) combinations of n preferences chosen from {a, az},
excluding (as, ..., a2) and (a3, ..., a3). There are n — 1 such combinations. Including
the new a-cut at a3 = 1 brings the total number of new preference levels to n: the
increase in Mp and complexity grows linearly with the number of design variables
n. For the example given above with two design variables, the third a-cut increases
the maximum number of preference levels from two to four (Figure 5.1). If there
are eight design variables, however, the increase is from two to ten: a fivefold jump
in complexity. Adding further a-cuts exacts an even stiffer penalty. The number of

unique combinations of n preferences chosen from {as, a3, a4}, excluding (a2, ..., )
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and (o3, ...,as) is 3(n + 1)(n + 2) — 2. Hence the total number of potentially new
preference levels added by a fourth a-cut is $n(n +1). For eight design variables, a
fourth a-cut potentially adds 36 level sets to bring the total to Mp = 46.

Yet the proliferation of new preference levels brings the ability to reflect the
effects of different aggregation functions. The intermediate preference levels encode
different trade-offs between design variables that are not modeled in the simple two
a-cut implementation. The third a-cut is necessary to fully implement the method

of imprecision.

5.2 A Scenario for Implementation

This section develops the electric vehicle design problem from Section 2.7 in order
to present a possible scenario for implementing the method of imprecision in an
industrial setting. The scenario is that the company produces a variety of electric
vehicles based on a common basic chassis. A new vehicle intended for short dis-
tances (less than 50 miles) is to be developed. The vehicle will be used within the
neighborhood and for commuting moderate distances. It is assumed that recharging
will be available at home and at work. The vehicle will be a four-door compact able
to seat four adults or two adults and three children. Target buyers are under 40,
environmentally conscious, suburban or city residents, male or ferhale, with house-
hold incomes between $30,000 and $100,000. To begin with, a preliminary analysis
of the design problem is required. Such a preliminary analysis can be provided by
a minimal implementation of the method of imprecision which uses design prefer-
ence and functional requirement a-cuts at only two levels, € and 1, as discussed in
Section 5.1.

The first step is to identify design and performance variables. Design variables
are the attributes under active consideration that distinguish alternatives that are
to be evaluated separately. Performance variables are those aspects of design per-
formance that are to be quantified. The means of evaluating pj = fj((f) should also

be defined. Given that this is a new variant in a family of similar electric vehicles,
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these evaluation tools should be readily available. The performance considerations
that will be represented by functional requirements on the performance variables
and the design considerations that will be represented by design preferences on
the design variables must be identified. The design considerations for this problem
were discussed in Section 2.7. Performance considerations are typically obviously
related to the performance variables. Range and cost require little explanation.
The customer’s preferences on these variables are direct and do not need to be in-
terpreted. Because it is widely reported and frequently the only numerical measure
of vehicle performance that the customer is aware of, 0-60 time has particular sig-
nificance . Weight is a measure of the efficiency of the design that impacts vehicle
handling. Bending stiffness Kp and torsional stiffness K are indicators of NVH
performance [12], as well as vehicle handling.

The next step is to specify individual design preference and functional require-
ment intervals at a; = € and as = 1. These correspond to the two separate ranges

of barely acceptable and ideal values:
e for the design variables based on appropriate design considerations, and

e for the performance variables based on appropriate performance considera-

tions.

For such a minimal implementation, the n-cubic combined design preference a-cuts
D2 and D¢ fully describe ud(cf). No non-n-cubic a-cuts at intermediate preferences
are created. Experiment design is used to calculate regression coefficients for f on
D¢ and construct a linear approximation f-7 in acceptably linear variables. The
evaluated points and f’ are selectively applied to facilitate optimization and to
calculate the full geometry of the approximate combined design preference a-cuts
on the PVS P4 and pe. P% and P are then intersected with the combined
functional requirement a-cuts PP and P} to obtain the a-cut representations of
1o(P). Aggregation is reduced to the intersection of intervals separately at a = ¢
and a = 1. The results of this first calculation are two approximate a-cut sets at

€ and 1 that indicate the acceptable and ideal performances based on the complete



123

set of specified preferences. It is possible, even probable, that the a-cut set at a
preference of 1 is the empty set, i.e., there are no performances that simultaneously
achieve ideal values for all design and performance variables. Examination of P{
and PP may indicate which functional requirements are not fully satisfied. If the
a-cut set at a preference of € is also the empty set, then some adjustment of the
originally specified preferences is necessary since no acceptable performances exist.

The discussion has, so far, referred to a single designer. Design problems are
typically solved by design teams. Different team members will have different ar-
eas of expertise as well as different opinions and preferences. Furthermore, group
decision-making in design tends to involve bargaining or negotiation [565]. Negotia-
tion is not easily formalized in a design methodology. The relative power, authority,
and expertise of the parties involved is amenable neither to formal modeling nor
to explicit expression. It is not suggested that the method of imprecision can per-
form the trade-offs between the differing preferences of team members on the same
variable. It is even problematic to suggest that the method be used as a common
framework to resolve the different preferences expressed by team members on their
particular segments of the design. Bargaining would be manifested in the lowballing
or highballing of a-cut intervals. The form of the aggregation hierarchy and relative
importance weightings would also be subject to negotiation.

One alternative would be to appoint a single facilitator, who would need to have
enough authority and experience to weigh the different opinions of the team mem-
bers. Constructing the method of imprecision model would be the responsibility of
the facilitator, but the preferences specified and the aggregation hierarchies iden-
tified would be those of the design team. In this way, the resolution of conflicting
opinions remains an informal process, even though it falls principally on the shoul-
ders of one person: the facilitator. Yet this may discourage extreme bargaining
behavior: extreme opinions risk being dismissed by the facilitator. Borrowing from
the idea of pendulum arbitration, this could be formalized by requiring the facili-
tator to choose only one side at a time to revise its opinions towards producing a

set of designs that are acceptable for all team members. Lowballing or highballing
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increases the chance of being chosen. There is thus an incentive to submit infor-
mation that is realistic instead of exaggerated, as well as a mechanism for building
consensus. For large groups, several participants could be required to revise their
opinions during each iteration, instead of just one.

For the implementation scenario presented, this form of arbitrated iteration
would be used to determine a set of collectively specified preferences that intersect
to give a non-empty set of acceptable performances. It may even be possible to
further modify preferences until a non-empty set of ideal performances is found.
These preliminary calculations are best performed at minimal levels of ‘accuracy,
since it is only necessary to establish whether a non-empty set of of performances
exist at preferences of € and 1. Once such a set has been shown to exist, it can be
more precisely determined. |

The next step is to map the combined functional requirement onto the DVS.
This relies on the linear approximation f7 constructed for the forward mapping of
design preferences onto the PVS. The approximate combined functional requirement
a-cuts on the DVS DY and D{'l obtained are then intersected with the combined
design preference a-cuts D¢ and Df. The final results of this backwards calculation
are two approximate a-cut sets at € and 1 that indicate the the barely acceptable
and ideal designs based on the complete set of specified preferences. These overall
preference a-cut sets in the DVS correspond to the overall preference a-cut sets in
the PVS. The shape of these sets indicate the full range of acceptable designs, a
restricted range of ideal designs, and the performances achievable by each set of
designs. Particular designs d on the boundaries of the a-cut sets in the DVS will
have been evaluated and hence can be matched to their corresponding performances
7= fld).

The purpose of this preliminary analysis is to construct a basic model of the
design problem with design and performance variables explicitly related to design
and performance considerations, and to settle on a set qf acceptable and ideal in-
tervals that intersect to produce at least a non-empty set of acceptable designs and

performances, and possibly also a non-empty set of ideal designs and performances.
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(combined functional requiremenD

performance . ) .
variables KB K weight 0-60 time  cost range
global
weights 0.105 0.105 0.09 0.14 0.28 0.28

Figure 5.3 Functional requirement aggregation hierarchy for an electric
vehicle design.

The a-cut overall preference sets at € demarcate the limits of the possible designs
and performances as in the Toyota’s design and development process [65]. These
boundaries can be communicated to downstream engineering groups in order to
facilitate concurrency in the design engineering process. Moreover, if non-empty
sets of ideal designs and performances exist, these can provide additional informa-
tion. The method of imprecision can provide not only set-based information, but
set-based information that distinguishes more than one level of preference.

The next stage of the design will require a more precise analysis. The pur-
pose is now to refine the set of possible designs by evolving a more precise set of
preferences that‘distinguish promising designs. Moving from the minimal two a-

cut implementation of the method of imprecision to the more complete three a-cut
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implementation (Section 5.1) requires the determination of design preference and
functional requirement aggregation hierarchies. The design preference hierarchy is
shown in Figure 2.3 and has already been discussed. The functional requirement
hierarchy is shown in Figure 5.3. Bending stiffness Kg and torsional stiffness Kp
are both frame parameters and are naturally grouped together. They do not com-
pensate strongly for each other because they measure two different modes of the
vehicle’s dynamics that together determine vehicle handling and perceived comfort
and quality. Range, cost, and 0-60 time are performance variables of direct interest
to the customer that can be traded-off with a high degree of compensation. They are
labeled as “desirables.” All the possible trade-offs among these three variables that
increase one or more preferences but reduce the others yield marketable vehicles: a
slow, short range, but cheap vehicle; an expensive, slow, but long range vehicle; an
expensive, short range, but fast vehicle; an even more expensive, but fast and long
range vehicle, etc. A fully compensating trade-off (c = 1) is specified. Weight is less
easily located in the hierarchy. It is neither directly of interest to the customer, nor
is it purely a frame parameter. A difficulty is that the most obvious consequences
of weight are range and 0-60 time, which are already performance variables. The
performance considerations that remain for weight are design efficiency and vehicle
handling. Since K and Kt are better measures of vehicle handling, weight becomes
a surprisingly unimportant performance variable, with a global importance weight
of 0.09. In comparison, cost and range have global weights of 0.28 each, 0-60 time
has a global weight of 0.14, and Kp and Kt each have global weights of 0.105.

The degree of compensation c is difficult to specify, partly because the parameter
k in Equation (2.10) that defines P, has not been determined. Without a value for
k, only three values of ¢ are pinned down: ¢ = 0 is non-compensating, ¢ = 1
is fully compensating, and ¢ = 2 is maximally (super-) compensating. Yet even
without a complete definition of P., a more systematic method of specifying ¢ can
be developed.

Figure 5.4 shows individual a-cut intervals in d; and dy being aggregated by

Pe. The design considerations represented by g, are more important than those
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Figure 5.4 Aggregating three a-cuts with weights, wy > ws.

represented by (g4, and hence w1 > wy. It is apparent that P.((1,w:), (0.5,ws)) >
Pc((0.5,w1), (1,ws)): ideal values of d; matched with neutral values of dy are pre-
kferred to neutral values of d; matched with ideal values of dy. This is consistent
with 14, being more important than i4,. The preference levels P.((1,w1), (0.5, w9))
and P.((0.5,w1), (1,ws)) are determined by P, or more specifically the degree of
compensation c¢. Thus choosing the degree of compensation is, for this three a-cut
implementation, equivalent to choosing the preference levels Pe((1,w:), (0.5, w2))

and P¢((0.5,w1), (1,ws)). This can be framed in terms of two questions:
e If d; is ideal and dy is neutral, what is your combined preference?
e If d; is neutral and ds is ideal, what is your combined preference?

These two questions are not independent because only one degree of compensation
can be specified. Furthermore, it is necessary to keep in mind the pivotal values of
preference given by Pe=o = Pmin, Pe=1 = Pu1, and Pey = Pray. Peeo(0.5,1) = 0.5
and P.=2(0.5,1) = 1: these functions are independent of weights. Thus the ex-
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Figure 5.5 Overall preference aggregation hierarchy.

tremes of compensation are clearly given. But as is discussed in Section 2.5, su-
percompensating values of ¢ > 1 imply a willingness to trade-off small gains in one
preference for large losses in another. They are thus not suitable for typical de-
sign problems, despite satisfying the axioms for design-appropriateness. For most
problems, the limits of ¢ are zero (Puyin) and one (Prr). Po—1((0.5,w:), (1,wq)) and
Pe=1((1,w1), (0.5,ws)) depend on the ratio of w; to wy and are not equal unless
w1 = wy. It is also not intuitively obvious what their values are. For w1 = wo,
Pe=1((0.5,w1), (1,w1)) = 0.71. Thus if the degree of compensation is to be deter-
mined using this procedure, it is important to evaluate Pe1((0.5,w; ), (1,w9)) and
Pe=1((1,w1), (0.5,ws)) in order to pin down the extreme of full compensation. The
preference levels P.((1,w1), (0.5, ws)) and P((0.5,w;), (1,ws)) that determine ¢ can
then be chosen relative to P.—g and P,—;. This is still an informal and approximate
procedure, but it is an improvement over direct estimation.

After the design preference and functional requirement aggregation hierarchies
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have been defined, one final aggregation operation needs to be specified: [, =
ﬁc((ud,wd), (#p,wp)). The combined design preference and the combined func-
tional requirement must themselves be aggregated into the overall preference. Since
functional requirements represent performance considerations which are important
enough to be quantified as performance variables, Uy is expected to be more impor-
tant than py. The complete preference aggregation hierarchy is shown in Figure 5.5.
The relative weights of 0.4 for the combined design preference and 0.6 for the com-
bined functional requirement were chosen to appropriately scale the global weights
associated with particular design and performance variables.

The aggregation of individual preferences into the overall preference is now fully
defined. Through the arbitration procedure described above, or otherwise, individ-
ual design preference and functional requirement intervals at a; =€, ap = 0.5, and
a3 = 1 are specified. The discretized design preferences are aggregated via the design
preference aggregation hierarchy. The combined design preference a-cuts obtained
are then mapped onto the PVS using the methods described in Chapter 3, some of
which were demonstrated in Chapter 4. The individual functional requirements are
aggregated via the functional requirement aggregation hierarchy into the combined
functional requirement fu,(5). p4(p) and p,(F) are then combined via the final ag-
gregation operation shown in overall preference aggregation hierarchy. The results
of this forward calculation are a-cut approximations to to(P), the overall preference
on the PVS. These a-cut sets indicate the multi-dimensional performances (range,
cost, 0-60 time, weight, Kg, and Kr) that are achievable by designs at the three
principal levels of overall preference e (acceptable), 0.5 (neutral), and 1 (ideal), as
well as intermediate levels of preference between 0.5 and 1 that indicate desirable
designs that trade-off neutral and ideal preferences.

The backward calculation requires reversing the mapping f : DVS — PVS
using the linear approximation f' - The combined functional requirement is mapped
onto approximate a-cuts in the DVS and these a-cuts are aggregated with the
combined design preference via the same overall preference aggregation operation as

for the forward calculation. The a-cut sets obtained approximate ,uo(cf), the overall
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preference on the DVS. These a-cuts indicate the sets of designs that correspond to
the principal overall preference levels e (acceptable), 0.5 (neutral), and 1 (ideal), as
well as intermediate overall preference levels between 0.5 and 1 that indicate designs

that trade-off neutral and ideal preferences.

5.3 Conclusions

The specification of design preferences 14, and functional requirements Wp; s signifi-
cantly more difficult than defining what they represent. Moreover, the form of these
specified preferences is dependent on the algorithms used. The algorithms described
in Chapter 3 for mapping the combined design preference 14 from the DVS to the
PVS rely on approximating ud(cZ) as a-cut sets D¢

g s e DgMI. This discretizes the

preference function ud(d_) into My preference levels o, ..., ap, .

Aggregating discretized preference functions with an aggregation function other
than P, creates additional non-n-cubic level sets (Section 3.3). Although it might
seem that finer discretization would lead to more accurate calculations, there are

two compelling reasons why fewer a-cuts may be better.

1. Each additional level set required to describe ud(af) must be separately mapped
onto the PVS, incurring additional function evaluations. Each additional a-
cut defined for the individual design preferences potentially creates as many

new level sets for ud(cf) as there are new combinations of a.

2. The accuracy with which design preferences are represented should not exceed
the accuracy with which they can be elicited, or the accuracy with which the
results can be interpreted. The difficulty of visualizing even one a-cut set in a
four-dimensional DVS suggests that calculating additional a-cut sets will only

add information of diminishing value.

The two most important a-cut intervals are at o = 1, corresponding to ideal
variable values, and o = € (0 < € < 1), corresponding to barely acceptable variable

values. The a-cut interval at o = 1 identifies the ideal or target range of values for
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the variable. A preference of zero indicates an unacceptable variable value, which
can only produce an unacceptable design which fails to satisfy the relevant consid-
erations. An infinitesimal yet non-zero preference € indicates a barely acceptable
variable value. The a-cut interval at o = € identifies the largest acceptable range of
values for the variable. Anihilation and continuity ensure that aggregating a pref-
erence of € with any other preference values results in an infinitesimal preference
which is effectively equal to e. Monotonicity and idempotency ensure that aggre-
gation cannot create new preference levels between a; = ¢ and the second lowest
a-cut preference ap. Thus defining an a-cut at « = € is computationally efficient.

A basic implementation of the method of imprecision suitable for preliminary
analyses would use only two a-cuts oy = € and az = 1. No new preference levels can
be created between € and 1 and the difference between aggregation functions is elim-
inated: aggregation is reduced to the intersection of intervals. It is unnecessary to
identify aggregation functions or even an aggregation hierarchy. Both design prefer-
ences and functional requirements are represented as acceptable and ideal intervals.
Such an implementation requires relatively few function evaluations. Moreover, it is
easier to specify a set of ideal and acceptable intervals than a continuous functional
requirement, and the results are more easily interpreted.

A more complete implementation would use three a-cuts:

e a3 = ¢ indicates undesirable yet barely acceptable variable values.
e a9 = (.5 indicates neutral or indifferent variable values.

e a3 = 1 indicates (desirable) ideal or target variable values.

As before, no new preference levels are created between «; and oy and any aggre-
gation involving a; = € results in e. The number of potentially new intermediate
preference levels, i.e., the number of unique (non-ordinal) combinations of n prefer-
ences chosen from {ap, a3} excluding (as, ..., a2) and (as, ..., @3), is n— 1. Including
the new a-cut at a3 = 1 brings the total number of new preference levels to n: the
increase in complexity grows linearly with the number of design variables n. For

eight design variables the maximum number of preference levels increases from two
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to ten: a fivefold jump in complexity. Adding further a-cuts exacts an even stiffer
penalty. The total number of potentially new preference levels added by a fourth
a-cut is 3n(n + 1).

Yet the new preference levels that accompany the third a-cut also bring the
ability to model different aggregation functions. The intermediate preference levels
encode different trade-offs between design variables that are ignored in the basic two
a-cut implementation. The third a-cut is necessary to fully implement the method
of imprecision.

In Section 5.2 the electric vehicle design problem from Section 2.7 was used
to present a possible scenario for implementing the method of imprecision. The
scenario involved the development of a new variant in a family of electric vehicles
based on a common basic chassis. The steps described in implementing the method

of imprecision as discussed in this thesis are as follows:

1. Conduct a preliminary analysis of the design problem using a minimal imple-

mentation of the method of imprecision (M| = 2).

(a) Identify design and performance variables and define the mappings fj(czj.
Identify design and performance considerations corresponding to each

variable.

(b) Specify individual design preference and functional requirement intervals

at a; = € (acceptable) and az =1 (ideal).

(c) Aggregate individual design preference intervals into D¢ and D¢ using

the Cartesian product.

(d) Use experiment design to calculate regression coefficients for f on D¢
and construct a linear approximation f7 in acceptably linear variables.
Selectively apply the evaluated points and f’ to facilitate optimization
and to calculate the full geometries of the approximate combined design

preference a-cuts on the PVS PY and P?.

(e) Aggregate individual functional intervals into P? and P? using the Carte-

sian product.
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Intersect P? and P with the combined functional requirement a-cuts
P? and P to obtain the a-cut representations of y,(7) at € and 1: the

acceptable and ideal performances.

If no acceptable performances exist or if acceptable or ideal performances
are otherwise not satisfactory, return to step 1(b)and revise the prefer-

ences specified.

Use f7 to calculate the a-cuts D and D’f/ on the DVS, which approxi-
mate the pre-images of P? and Pf, the combined functional requirement

a-cuts on the PVS.

Intersect DY and D? with DY and D{ to obtain the a-cut representations

-

of 11,(d) at € and 1: the acceptable and ideal designs.

If the calculated sets of acceptable or ideal designs require adjustment,

return to step 1(b)and revise the preferences specified.

2. Perform a more precise analysis using a more complete M; = 3 a-cut imple-

mentation in order to refine the set of possible designs and identify promising

designs.

(a)

(b)
(c)

Determine the design preference and functional requirement aggregation
hierarchies, and in particular importance weightings and degree of com-

pensation for aggregation operations.

Determine the overall preference aggregation operation P, ((sq, wq), (py wp))-

Specify individual design preference and functional requirement intervals

at a1 = € (acceptable), ap = 0.5 (neutral), and a3 = 1 (ideal).

Aggregate individual design preference intervals into Mp a-cuts D¢, Dg‘ [

€
via the design preference aggregation hierarchy.
Use experiment design to (re-)calculate regression coefficients for f on D¢
and construct a linear approximation f7 in acceptably linear variables.
Selectively apply the evaluated points and f7 to facilitate optimization
and to calculate the full geometries of the approximate combined design

dl

preference a-cuts on the PVS Ped',Péi_'57 PP
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(f) Aggregate individual functional requirement intervals into Mp a-cuts

P, Fs, ..., P via the functional requirement aggregation hierarchy.

() Aggregate PY, Pg. ..., P% with the combined functional requirement a-
cuts P?, Py, ..., P! to obtain an a-cut representation of uo(5). These
o(P) a-cuts indicate sets of performances at different levels of preference:
barely acceptable, neutral, ideal, and various levels between neutral and

ideal.

(h) If no acceptable performances exist or if calculated a-cuts performance

sets are otherwise not satisfactory, return to step 2(c)or step 2(a).

(i) Use f to calculate the a-cuts Df/,Dg_’5, ...,Df’ on the DVS, which ap-
proximate the pre-images of PP, P{., ..., P/ the combined functional re-

quirement a-cuts on the PVS.

(i) Aggregate DF ngs, .., DY with D¢, Di5, ..., D} to obtain an a-cut repre-
sentation of ,uo(cf). These uO(J) a-cuts indicate sets of designs at different
levels of preference: barely acceptable, neutral, ideal, and various levels

between neutral and ideal.

(k) If the calculated a-cut sets of designs require further refinement, return

to step 2(c) or step 2(a).

The difficulty of determining the degree of compensation ¢ for aggregation op-
erations in steps 2(a) and 2(b) was discussed in the context of the three a-cut
implementation introduced in Section 5.1. An informal procedure for exploring the
choice of c relative to the aggregation functions Pe—g = Ppin, Pe=1 = Pr, and
Pe=2 = Pmax Was presented.

For group decision-making, specifying preferences (1(b) and 2(c)) and determin-
ing the aggregation hierarchies (2(a) and 2(b)) subject to bargaining or negotiation.
One suggested solution is to appoint a facilitator, who would weigh the opinions
of the members of the design team in determining preferences and aggregation hi-
erarchies. Whenever preferences or hierarchies need to be modified, the facilitator

should be required to choose only one participant’s opinions for revision. For large
p P g
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groups, several participants could be chosen for each iteration. This provides an
incentive to submit information that is realistic instead of exaggerated, as well as a

mechanism for building consensus.
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Chapter 6

Conclusions

If a man will begin with certainties, he will end with doubts; but if he

will be content with doubts, he shall end in certainties.”

Sir Francis Bacon (1561-1626), “Advancement of Learning” Bk. 1

What I tell you three times is true.

Lewis Carroll (1832-1898), “The Hunting of the Snark”

The method of imprecision represents design imprecision through the customer’s

preferences on relevant aspects of design performance.

e Functional requirements model the customer’s direct preference on perfor-
mance variables based on performance considerations: the quantified aspects

of design performance represented by performance variables.

e Design preferences model the customer’s anticipated preference on design vari-
ables based on design considerations: the unquantified aspects of design per-

formance not represented by performance variables.

The precise differentiation between design and performance variables, between de-
sign preferences and functional requirements, and between design and performance
considerations, is the first key contribution of this thesis. The innovation in distin-

guishing design considerations is that it provides a clearly defined formal structure
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for representing “soft” issues such as aesthetics and manufacturability and quanti-
fying their consequences.

In Section 2.5, a class of aggregation functions were defined using the weighted
root-mean-power family of functions. This family of aggregation functions, which
represent the model decision-maker in the method of imprecision, allow a broad
range of degrees of compensation and satisfy postulated axioms for rational design
decision-making. They permit attributes to be weighted in importance and they
support hierarchical aggregation. Thus to answer French’s second question, provided
that the axioms of design-appropriateness adequately reflect the decision-maker’s
notion of rationality, the method of imprecision can allow the decision-maker to
define an aggregation hierarchy that acceptably models how the decision-maker
might actually trade-off preferences. The method of imprecision seeks to guide
the designer in creating a model decision-maker that accurately reflects the design
decision while embodying appropriate canons of rationality for engineering design.

The electric vehicle example in Section 2.7 demonstrated the modeling of a design
problem, and in particular the process of identifying design variables, performance
variables, and design considerations and constructing the design preference aggre-
gation hierarchy. The elucidation of this process is the second key contribution of
this thesis.

The feasibility of the process of identifying design considerations and construct-
ing the design preference aggregation hierarchy was demonstrated for an electric
vehicle design in Section 2.7. The process of enumerating design considerations, ex-
plicitly relating design considerations to design variables, constructing a hierarchy,
determining relative importance and degree of compensation in aggregation, and ex-
amining the resulting model, was in itself a valuable exercise. The careful analysis
of how the design variables impact design considerations clarified many important
issues. Thus in reply to French’s third question, it is suggested that the process of
constructing the method of imprecision model is not only feasible and informative,
but also requires the designer to more clearly distinguish and explicitly quantify the

beliefs and preferences that are to be modeled.
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In the method of imprecision, design preferences tq; are specified on design
variables and functional requirements Kp; are specified on performance variables.
Individual design preferences p4,(d;) are aggregated into the combined design pref-
erence ,ud(cf), and individual functional requirements tp; (pj) are aggregated into the
combined functional requirement ,(p). The aggregation of these combined prefer-

ences into the overall preference 1, is complicated by the need to map preferences

between the DVS and the PVS:

¢ The combined design preference must be mapped to pg(p) on the PVS to
obtain (p) = P(1a(P), up(P))-

e The combined functional requirement must be mapped to ,up(ci) onto the DVS

-

t0 obtain f1o(d) = P(ua(d), p(d)).

Previously, design preferences were mapped onto the PVS using the Level Interval

Algorithm (LIA). The LIA has four important limitations:

1. The a-cuts ng must be n-cubes, which is accurate only for aggregation by

Pmin-

2. The performance variable endpoints pjg’“in and p;2% calculated are only cor-

rect under certain conditions: in practice these require that fj be monotonic.

3. The endpoints obtained only indicate extremal points on Po‘fk, the combined

design preference a-cut in the PVS: the full geometry of Po‘fk is not determined.

4. Up to 2" function evaluations are required to evaluate each a-cut, a number

that quickly becomes prohibitive as the number of design variables n increases.

The primary limitation of the LIA, that it requires monotonicity, may be removed
by reformulating the problem as a constrained optimization.

In order to address the issue of robustness as well as limitations 1 and 3, an ap-
proximation f7 for f : DVS — PVS is constructed over D4 (the a-cut at infinitesimal

a = €). Obtaining a linear approximation f’ fulfills four purposes:
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1. It removes acceptably linear design variables from the search space for opti-

mization.

2. It supplies a global approximation to f over D? for determining the geometry

of ng between extremal points.

3. It enables the calculation of design sensitivities n;‘f

4. Tt provides a computationally tractable, albeit approximate, means to map

the combined functional requirement from the PVS onto the DVS.

The mapping of ng onto the PVS does not depend entirely upon the accuracy of
the linear approximation f_7 . The shape of ng in the PVS is estimated by obtaining
extremal points in each p; via optimization (facilitated by linear approximation),
and then interpolating the bounding edges between points using f’ . The linear
approximation f’ furnishes additional information about the shape of ng away
from extremal points that would otherwise be unavailable. f7 is used to provide
approximate information not to replace precise information, but to replace a lack of
information.

The linear approximation f’ over D¢ is obtained using techniques adapted from
experiment design. The combined use of experiment design to explore the design
space and optimization assisted by linear approximation to map preferences is the
third key contribution of this thesis. Using experiment design to obtain a linear
regression model is efficient in function evaluations, does not require advanced sta-
tistical techniques, and is well-suited to computer implementation. Experiment
design evaluates a balanced set of points in the search space Df in order to charac-
terize f and construct f_” . The likely location of the global minimum is chosen as
the starting point for optimization.

The fourth key contribution of this thesis is the provision of a fractional precision
that permits the designer to trade-off the number of function evaluations against
the quality of the answer obtained. This adjustment allows the designer to use the
same computer program to obtain quick estimates as well as precise evaluations. The

fractional precision determines not only the tolerance of the optimization algorithm,
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but also the necessary conditions for f—7 to approximate f sufficiently accurately
in each design variable d;. Only sufficiently linear variables are approximated for
optimization. Optimization proceeds on f over the remaining non-linear variables.

The Imprecise Design Tool (IDT) was developed to verify the algorithms de-
scribed in Chapter 3 and to demonstrate the method of imprecision on engineering
problems. Section 4.1 discussed an application of the IDT to the Engine Devel-
opment Cost Estimator (EDCE) provided by General Electric Aircraft Engines,
Cincinnati, Ohio. The EDCE estimates the cost of developing a new aircraft engine
and is one of several programs that together estimate the total lifetime cost of an
engine.

Section 4.1.1 presented a turbofan aircraft engine development problem which

involved two (imprecisely specified) options:
1. Develop the new engine from an existing turbojet design.
2. Modify an existing, but dated, turbofan design.

The IDT was used to map design preferences onto the one-dimensional PVS. The
specification of a relative functional requirement for minimizing cost was shown to
be problematic.

A more recent application of the IDT, to an automobile body design problem,
was presented in Section 4.2. Noise, vibration, and harshness (NVH) design is
concerned with three aspects of vibration: audible noise, tactile vibration, and
subjective evaluations of safety, comfort, and luxury based on perceived levels of
noise and vibration. Measures of static rigidity (bending and torsional stiffness)
are indicators of perceived safety, comfort, and luxury levels. Measures of dynamic
response directly predict noise and vibration characteristics [12].

At this particular U.S. automobile manufacturer, the static and dynamic re-
sponse of the body-in-white is calculated using a commercial finite element package.
Each finite element calculation of static and dynamic response requires significant
supercomputer time: approximately 15 seconds to evaluate a simplified model [12].

Therefore, in applying the method of imprecision to this problem, an important
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consideration was to minimize the number of function evaluations incurred. The
optimization and experiment design techniques described in Chapter 3 were devel-
oped to address this issue.

In Section 4.2.1 the IDT was applied to a finite element model of the passenger
compartment of a hypothetical four-door body-in-white. Bending and torsional
stiffnesses were calculated using finite element methods. Ten design variables were
defined including the gauges of key members and the fore-aft location of the B pillar.
This example attempted to demonstrate the feasibility of the methods introduced
in Chapter 3.

Comparing the number of function evaluations required for resolution III and IV
experiments and fractional precisions of 1 and 0.01 showed that, for this example,
the results and the number of function evaluations required for optimization were
independent of resolution. Approximation was also shown to be effective in mini-
mizing the number of additional function evaluations required by optimization: for
a fractional precision of 1, only two additional function evaluations were required.
Moreover, even a resolution III experiment combined with a fractional precision of 1
resulted in calculated extrema that were extremely close to the best extrema found.
The apparent effectiveness of the methods developed poses an intriguing question:
if it is possible to obtain the correct answer with a resolution III experiment and
a fractional precision of 1 requiring only 44 function evaluations, why would ad-
ditional function evaluations be necessary? It was suggested in Chapter 3 that a
resolution IV experiment buys additional reliability and confidence in the results,
and a smaller fractional precision limits the allowable inaccuracy. Yet this example
appears to show that the central issue is not accuracy but confidence in the results.
Additional function evaluations may find better extrema. A resolution IV exper-
iment combined with a smaller fractional precision, however, is less likely to miss
the correct extrema.

These results demonstrate that a selectively applied linear approximation can be
surprisingly effective in evaluating an example finite element model of an automobile

body. Finite element models are widely used in industry. The automobile body
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design and aircraft engine development examples represent two contrasting design
problems from industry. The verification of the algorithms for method of imprecision
calculations on realistic design problems is the fifth key contribution of this thesis.
In Section 4.2.2, the methods introduced in Chapter 3 for mapping a-cuts from
the DVS to the PVS were demonstrated on quadratic approximations to bending
and torsional stiffness. Despite the pronounced non-linearity of bending stiffness,
the correct extrema were found when a fractional precision of 0.01 was specified.
However, the geometry of P2, the combined design preference a-cut D¢ mapped
onto the PVS, was poorly approximated by Ped'. Where f is sufficiently non-linear
that Ped/ obtained via linear approximation is inadequate, effective methods to more
accurately determine the geometry of P4 have yet to be developed within the method
of imprecision. Developing these methods is an important goal for future research.
The specification of design preferences 4, and functional requirements Pp; 18
significantly more difficult than defining what they represent. Moreover, the form
of these specified preferences is dependent on the algorithms used. The algorithms
described in Chapter 3 for mapping the combined design preference pg from the
DVS to the PVS rely on approximating ,ud(J} as a-cut sets Dgl, veey DgM].
Aggregating discretized preference functions with an aggregation function other
than P, creates additional non-n-cubic level sets (Section 3.3). Although it might

seem that finer discretization would lead to more accurate calculations, there are

two compelling reasons why fewer a-cuts may be better.

1. Each additional level set defined for the individual design preferences poten-
tially adds not just one new level set for the combined design preference, but
as many new level sets as there are new combinations of a. Each new level

set incurs additional function evaluations.

2. The accuracy with which design preferences are represented should not exceed
the accuracy with which they can be elicited, or the accuracy with which the

results can be interpreted.

The two most important a-cut intervals are at o = 1, corresponding to ideal



143

variable values, and a = € (0 < € <« 1), corresponding to barely acceptable variable
values. The a-cut interval at o = 1 identifies the ideal or target range of values
for the variable. The o-cut interval at o = € identifies the largest acceptable range
of values for the variable. Aggregating a preference of € with any other preference
values results in an infinitesimal preference which is effectively equal to e. Aggrega-
tion also cannot create new preference levels between a; = € dnd the second lowest
a-cut preference ap. Thus defining an a-cut at @ = ¢ is computationally efficient.

A basic implementation of the method of imprecision suitable for preliminary
analyses would represent both design preferences and functional requirements as
acceptable and ideal intervals, thus reducing the procedure to the propagation and
intersection of acceptable and ideal intervals. It is unnecessary to identify aggrega-
tion functions or even an aggregation hierarchy. Relatively few function evaluations
are required. Moreover, it is easier to specify a set of ideal and acceptable in-
tervals than a continuous functional requirement, and the results are more easily
interpreted.

A more complete implementation would use three a-cuts: a; = € (undesirable
yet barely acceptable), az = 0.5 (neutral or indifferent), and a3 = 1 (ideal or target).
Up to n new preference levels are created between oy and a3. These intermediate
levels allow different aggregation functions to be modeled: they encode trade-offs
between design variables that are ignored in the basic two c-cut implementation.
The third a-cut is necessary to fully implement the method of imprecision.

For group decision-making, specifying preferences and determining a preference
aggregation hierarchy are subject to bargaining or negotiation. One suggested so-
lution is to appoint a facilitator, who would weigh the opinions of the members of
the design team in order to construct the method of imprecision model. Whenever
preferences or hierarchies need to be modified the facilitator should be required
to choose only one participant’s opinions for revision. For large groups, several
participants could be chosen for each iteration. This provides an incentive to sub-
mit information that is realistic instead of exaggerated, as well as a mechanism for

building consensus.



144

A theory for representing and evaluating design precision is incomplete with
feasible and efficient computational algorithms. Computational algorithms must be
verified on realistic problems. Yet even a methodology complete with efficient com-
putational algorithms that have been verified on design problems from industry is
still incomplete without practical procedures for implementation. The procedures
described in Section 5.1, which are an essential step towards bringing the method
of imprecision to design problems in industry, are the sixth key contribution of this
thesis. These procedures reduce the abstract mathematics of representing prefer-
ence to readily understood acceptable, neutral, and ideal intervals and allow for
both preliminary and detailed analyses. Moreover, through an informal arbitration
procedure for determining preferences and aggregation hierarchies, the difficult but
ever-present problem of bargaining can be addressed. An effective means to con-
trol bargaining behavior is a prerequisite for applying the method of imprecision to
support group design decisions. |

In Section 5.2 the electric vehicle design problem from Section 2.7 was used
to present a possible scenario for implementing the method of imprecision. The
scenario involved the development of a new variant in a family of electric vehicles
based on a common basic chassis. The full treatment of the electric vehicle example
in Sections 2.7 and 5.2 addresses French’s first question by demonstrating that an
aggregation hierarchy of explicitly defined design and performance considerations
is capable of modeling imprecision for a realistic design problem. The example is
intended to reflect the detail that is often difficult to model formally, but is an
intrinsic part of real design problems. The flexibility of the model decision problem
postulated by the method of imprecision enables these details to be represented in

a formal decision-making methodology.
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Appendix A

Approximation by Tiling

This section presents an alternative method for approximating f : DVS — PVS
that was ultimately shown to be impractical. The quadratic example presented in
Section 4.2 highlights a basic deficiency in approximating f as a linear mapping.
Yet a quadratic approximation introduces curved surfaces that would be difficult to
calculate and to interpret. An alternative is a piecewise linear approximation.

The idea was to successively partition Dgp silon, 160 n-cubic tiles. A design vari-
able d; that was not acceptably linear would be approximated by multiple tiles in
the d; direction. A linear approximation would be constructed on each tile. This
is a type of branch-and-bound scheme [59]. The quadratic bending stiffness shown
in Figure 4.11 could be approximated by two such tiles, as shown in Figure A.1.
Tiling preserves some of the simplicity of linear approximations while allowing the
function to exhibit internal extrema.

Figure A.1 does not show the many potential problems with constructing a tiled
linear approximation. The K surface is not significantly skewed or twisted. For less
well behaved functions, linear approximations on adjacent tiles may be misaligned,
leading to discontinuities near each end of the shared edge (Figure A.2). Extrema
will in general not be aligned with any particular variable direction and thus the
boundary between two n-cubic tiles will not accurately follow the ridge or trough in
the function. Tiles should be n-cubes in order to simplify the construction of linear

approximations on each tile using experiment design, and also because allowing
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sloping boundaries would introduce significant complexity into algorithm. If the
linear approximations are not to be constructed using n-cubic experiment designs,
then this restriction may be relaxed, though convenient methods for constructing
and representing such a tiling and for using it to map a-cuts may not exist.

The disadvantages of tiling the search space become clearer as the number of
design variables grows large. Each partitioning of D¢ requires the evaluation of an
experiment design for each of the two new tiles created. Only half of the previously
evaluated points can be reused. Thus each partitioning adds one complete experi-
ment to the total number of points evaluated. For two design variables, one central
composite design requires only 9 evaluations. Four tiles that partition Df in both
variables require a total of 36 evaluations. For eight design variables, each resolu-
tion IIT central composite design requires 29 evaluations. 16 tiles that partition D¢
in four of the eight variables requires a total of 464 evaluations. As n increases,
the number of points evaluated in each experiment, the number of potentially non-
linear variables, and hence the number of necessary partitions, all increase. A test
implementation of tiling expended a rapidly increasing number of function evalua-
tions as the fractional precision was refined. Moreover, it was difficult to determine
whether, for a given fractional precision, the algorithm could complete its calcula-
tion in any reasonable length of time: the number of function evaluations required

was impossible to predict.
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