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Abstract

We investigate a stochastic model for homogeneous, isotropic turbulence based on
Hill’s spherical vortex. This is an extension of the original work done by Synge and
Lin in the early 1940’s. The spherical vortex is an inviscid, steady, rotational solution
to Euler’s equation and its structure makes it a natural candidate for a model of a
turbulent eddy. The model assumes that a field of locally isotropic turbulence is gen-
erated by a homogeneous distribution of Hill’s vortices. The cascade process of eddy
breakdown is incorporated into the statistical model through an average over vortex
size. Dissipation field characteristics are assumed for the vortex size distribution. We
are interested in the statistical properties of the model, in particular order-n structure
functions defined by rank-n tensors for the ensemble average of a set of incremental
differences in a given field property. We are primarily concerned with the second order
pressure structure function, D, = ((p(x+ &) —p (x))2> /p?, and the velocity struc-
ture functions, orders 2-6, where D; s = ((u; (x + &) — u; (%)) ... (us (x + &) — u, (x)))
and (...) denotes the ensemble average.

Specifically D,, D;;, D;jr, and the longitudinal component of D;jkimn are calcu-
lated. Comparing D;; and D;ji; with experimental curves fixes the two independent
model parameters while the sixth-order longitudinal velocity structure function is a
predicted result. The pressure structure function is calculated both from first prin-
ciples and directly from its integral relation with the fourth-order velocity structure

function and compared with direct numerical simulation.
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Chapter 1 Introduction

1.1 Introduction

Turbulence is a highly unpredictable state of fluids in which small disturbances are
generally amplified, rendering their deterministic evolution intractable. Turbulent
motion is by nature unstable; it describes a regime dominated by the quadratic non-
linearities in the momentum equation. The degree of instability is characterized by
the Reynolds number which measures the relative importance of the nonlinear con-
vective motions over the linear dissipative damping. This work is concerned with
fully developed turbulence which refers to the limit of very large Reynolds numbers.
Such a limit corresponds to large velocities (convective dominance) or small viscosity
(weak viscous damping).

Classical theory relies on the premise that turbulent motion is so complex and un-
predictable that statistically averaged quantities provide the most meaningful infor-
mation. A decomposition of the velocity and pressure fields into mean and fluctuating
fields gives rise to the Reynolds equations which are analogous to the Navier-Stokes
equations for the mean velocity and pressure but include a supplementary term in-
volving the second order moment of the velocity fluctuations, the so called Reynolds
stress tensor. It is a simple exercise to show that the evolution of the second or-
der moment depends on the third order moment, or more generally, that the n-order
moment depends on the (n+1)-order moment [3]. This generates a hierarchy of equa-
tions which constitute the well known closure problem. To close the set of equations,
an additional phenomenological hypothesis or model can be adopted. For statisti-
cally inhomogeneous flows and when the average quantities depend on only one point
in space, one point closure models have been proposed [4]. One such hypothesis
proposed by Prandtl in 1925, introduced a characteristic scale and velocity for the

turbulent fluctuations. Borrowing ideas from molecular diffusion, Prandtl expressed
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the Reynolds stress as a turbulent diffusion which regularizes the mean velocity gra-
dients for scales smaller than the characteristic length. The analogy with molecular
diffusion however is very misleading. As pointed out by Farge [5], molecular diffu-
sion is decoupled from the large scale dynamics, whereas turbulence is characterized
by non-linear interactions at all scales. A separation of scales decoupling large scale
dynamics from small scale ones does not exist. The more modern renormalization
group techniques [6] suffer from the same obstacle. Hence, the adequacy of one point
closure models remain an open question.

Significant simplifications are made when the flow is statistically invariant under
translation (homogeneous) and rotation (isotropic). Homogeneity permits the as-
sumption that the mean velocity is zero, and interest is turned to two point closure
modeling and correlations. For homogeneous flows it is convenient to work in Fourier
space where many of the statistical properties have physically significant meanings,
and the modes make additive contributions to the energy spectrum. Since Taylor’s
famous paper in 1935 [7] where he characterized turbulent flows by their energy spec-
trum tensors, the vast majority of turbulence research has been based on analysis in
Fourier space. Taylor’s initial assumption that ensemble averages are homogeneous
and isotropic has remained a pivotal assumption to progress in the last sixty years.
Shortly after Taylor’s work, Kolmogorov and his student, Obukhov, applied proba-
bility theory to turbulence and published four significant papers in 1941 [8, 9, 10, 11]
laying the foundation for dimensional analysis and statistical theory of fully devel-
oped turbulence. Batchelor also made substantial contributions, and published his
famous book, Homogeneous Turbulence, in 1953. To study the distribution of energy
across the scales, Kolmogorov assumed that external forces inject energy at the large
scales, while the effects of viscosity are limited to the small scales. For fully developed
flows, this leaves an intermediate bandwidth of scales, the inertial range, in which a
uni-directional cascade of energy on average from large to small scales at a constant
rate, €, was assumed. Kolmogorov further assumed a constant skewness which led

him to introduce the K41 model, which predicts the famous £~%2 law for the shell



averaged energy spectrum function,
E (k) = C,e*3k5/3, (1.1)

In response to criticism by Landau, the assumption that ¢ is constant was later relaxed
and Kolmogorov proposed a model in which only a fraction, 3, of energy is transferred
between scales [12]. Assuming a log-normal probability distribution for the dissipation

field, Kolmogorov introduced the K62 model which predicts the following scaling for
E (k):

B
E (k) = Coe?*k™53 n (kﬁ) . (1.2)
I

The constant C, is called the Kolmogorov constant and k; is the modulus of the
wavenumber at which energy is injected. The log-normal distribution function has
since played an important role in understanding dissipation and eddy structure in
turbulent flows [13, 14].

Advances in scientific computing have refocused attention from the classical en-
semble average to independent flow realizations in which the role of vorticity and the
presence of coherent structures can be appreciated. An important manifestation of
turbulent flows is the production of vorticity. Owing to the-inherent instabilities of
continuous vortex distributions, regions of intensely rotational motion form into well-
localized coherent structures which are characterized by distinct shapes and life spans
that exceed the typical eddy turnover time. The nucleation of coherent structures
plays a significant role in non-deterministic flows such as turbulent mixing layers [13].

Presently, the direct numerical simulation of turbulence is constrained by the large
range of scales present in fully developed flows. The number of degrees of freedom
necessary to fully resolve a turbulent flow scales like Re?/ * for three-dimensional flows
and Re? for two-dimensional flows, where Re; is the turbulent Reynolds number
based on the integral scale of turbulence [3]. Such memory and cpu requirements

far exceed present computing capabilities when Re; is very large. However, advances
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in scientific computing have led to promising areas such as Large Eddy Simulation
[15] which resolves the large scale motion yet contains inaccuracies introduced by our
lack of fully understanding the role of the small scales. The promise of vortex models
would be to bridge the deterministic approach (DNS) to the stochastic approach by
providing statistical information about the dynamical impact of the unresolved, fine
scales on the larger ones. This is encouraging as subgridscale modeling is required
for filtering techniques such as LES so that kinetic energy can be taken from the
large, filtered scales and transferred to the subgrid scales and dissipated by viscous
damping.

Vortex models for turbulence are thus emerging rapidly in tandem with numerical
models, attempting to encompass the inherent complexities of turbulent flows. How-
ever, the pursuit of a comprehensive statistical model which reflects both experiment
and direct numerical simulation is slow, as the structures which appear and sub-
sequently contribute to the statistical field properties are seemingly flow dependent.
Qualitatively, turbulence can be described as a superposition of vortex structures with
varying length scales, but the physical nature of the eddy structure changes dramat-
ically in the presence of boundaries, and fluid property variations. The topological
features of the turbulent boundary layer elucidate this [16]. Near the wall, structures
are tube-like, lying in the spanwise direction; their existence owing to the alignment
of the vorticity and the intermediate principal strain rate direction [17]. As revealed
by Vincent and Meneguzzi [18, 19], the alignment is most prominent in regions of
high viscous dissipation. At the boundary, the mean flow enstrophy reaches its max-
imum and appears as a distorted sheet, while the perturbation enstrophy results in
cylindrical structures emanating from the wall. As expected, downstream, and away
from the wall, the structures begin to arch, their shape becoming less discernable. As
the boundary effects become less appreciable the flow tends to a more homogeneous
state and the dynamic role of tube-like structures becomes less significant.

This work is concerned with a statistical model for turbulence in a range of scales
void of concentrations of high viscous dissipation of kinetic energy. In the case of the

turbulent boundary layer or channel flow, this would apply far from the wall. For
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such a region, homogeneity and isotropy become plausible assumptions.

In the early 1940’s, Synge and Lin [20] initially considered Hill’s sperical vortex as
a model for homogeneous turbulence. While the spherical vortex provides a statisti-
cally tractable steady solution to Euler’s equation, it lacks dissipation and an energy
transfer mechanism such as vortex stretching consistent with small scale dynamics.
Since the seminal work of Synge and Lin, there have been numerous investigations
of vortex based models for turbulent flows [21, 22, 23, 24, 25]. A simple solution to
the Navier-Stokes equations which encapsulates a mechanism for vortex stretching is

given by the steady Burgers [26] vortex,

o) =zew (-32), (13)

where s denotes the radial distance to the vortex center, T', is the total circulation,
v is the viscosity and < is the strain rate of a uniform straining field. Equation
(1.3) coupled with a similar equation for a stretched shear layer constitute a dynam-
ical balance between vorticity diffusion and vortex stretching. Together they form
a model consistent with the Kdrman-Howarth equation for turbulence (1.32), which
at zero separation suggests that vortex line stretching by the local straining field
and viscous dissipation of the mean square vorticity are in statistical equilibrium. In
1951, Townsend [21] calculated the one-dimensional velocity spectrum for isotropic
turbulence using an ensemble of axisymmetric and plane Burgers vortices. In the
case where each realization in the ensemble consists of a single axisymmetric Burgers
vortex, the shell-summed energy spectrum is

N7I2 2k2y
B (k) =2 o (— : ) (1.4)

where NV and 7 are model parameters. The spectrum for the plane Burgers vortex be-
haves like k72G (k) exp (—%%), where G (k) is a slowly varying function of k. Hence,
as noted by Pullin and Saffman [27], the K41 model suggests vorticity distributions

for inertial range properties should have both sheet-like and tube-like structure. It
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should be mentioned that volume filling ensembles of such vortices yield poor results
for higher order velocity derivative moments [28].

In the same spirit that Townsend introduced a physical model describing a distri-
bution of vorticity embedded in a straining field, Lundgen introduced the stretched-
spiral vortex model in 1982 [25]. The model consists of axisymmetric straining com-
bined with a slender spiral vortex. The stretching represents the effect of instabilities
while the internal spiral structure provides a source of dissipation. Lundgren related
the energy spectrum to a time integration involving the enstrophy spectrum of the
evolving 2-D cross-sectional flow and gave examples in which a k~%/3 spectrum was
obtained [29]. The structure of the Lundgren model offered a great deal of promise
for developing a robust model for the intermittent fine structure and since its intro-
duction it has received significant attention [30, 31, 32, 27, 2, 33]. Pullin and Saffman
[31] used the model to compute one-point statistics of vorticity and velocity derivative
moments and later calculated higher order velocity structure functions with mixed
results. While the model has had some success recovering local properties for small
separation, its predictive capability for larger scales is questionable.

The majority of vortex based models have embodied the tube and sheet-like struc-
tures occurring in the turbulent boundary layer resulting from the concentration of
dissipation. Other coherent turbulent structures include the Karman vortices ob-
served by Roshko [34] and vorticity tubes which form in statistically homogeneous
flows [35]. The precise source of coherent structures in homogeneous flows is un-
known; however, large scale instability manifested in the roll-up of thin vortex layers
has been suggested. In addition, direct numerical simulation suggests vortex cores
spontaneously nucleate from a random two-dimensional vorticity field [36]. Although
tube-like structures exist in a homogeneous field, it is unlikely that they serve as
the base flow and strongly impact the statistical properties. One might conjecture
that large scale instability gives rise to a region of intense kinetic energy dissipation,
increasing the probability for alignment between the vorticity and the intermediate
principal rate of strain direction, resulting in the formation of a tubular coherent

structure. These local condensations of the vorticity field nucleate randomly and are
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thereafter advected by the base flow in a homogeneous and isotropic fashion. Their
effect is essentially lost during the ensemble averaging. In three-dimensional flows,
vorticity tubes become highly unstable and their temporal and spatial support may
be very small. Therefore, the presence of coherent structures only affect high-order
velocity structure functions which are most sensitive to unusual or extreme events [5].

Utilizing tube-like structures as in the Burgers and stretched-spiral model aims
at modeling the small scales where dissipation becomes important. We are, however,
in need of a different model for the larger structures defined by scales for which
stretching is not the dominant dynamic. This paper is primarily concerned with a
model for the base flow for a statistically homogeneous turbulent field. We assume
the flow is locally isotropic which forces all finite dimensional probablity distribution
functions to be unaffected by rotations about the origin and mirror reflections about
any plane passing through the origin. In such an idealized, isotropic, homogeneous
field, the eddy would have an unbiased orientation and shape. The spherical vortex is
a natural candidate for such an eddy — symmetrical, rotational flow is secluded from
potential flow by a sphere of radius a.

A stochastic model for turbulence includes a physical model for the topology of
the fine scale motion as well as information regarding at least one probability dis-
tribution function for the flow. In turbulence, focus is generally directed toward the
joint distribution function which provides the statistical connection between random
values of the velocity field at different points in space-time. It is the joint probability
distribution function which is essential to most hypothesis regarding the mechanism
of turbulence decay. Once the machinery for computing averages is established, nu-
merous statistical properties can be computed and tested against theory, observation
and numerical simulation.

Synge and Lin were able to compute the velocity correlation for the Hill’s spherical
vortex model, hereafter referred to as HSV, and present strong data suggesting that
the spherical vortex provides a reasonable representation of a large scale turbulent
eddy. We modify and extend the work of Synge and Lin by incorporating cascade

characteristics into the statistical model, and investigate both velocity and pressure
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statistics. We compute the high-order velocity structure function tensors D;;, D;jk,
the longitudinal component of Djjrimn and the pressure structure function, D,, for
a field of locally isotropic turbulence generated by a homogeneous distribution of
Hill’s vortices. The model is based on an ensemble of statistically independent vortex
spheres advancing with constant velocity through a fluid which is at rest at infinity.
Initially field averages are computed under the assumption of a single vortex type.
The assumption of fixed vortex size is later relaxed with the introduction of the
log-normal distribution function governing vortex radius which embodies the cascade

process of eddy breakdown.

1.2 Governing equations for turbulent flows

This work is concerned with fluid motion which can be regarded as incompressible
(constant density of fluid elements) and Newtonian (deformation stress proportional
to velocity gradients). The fundamental equations governing the dynamics of such a

motion are the equation of continuity and conservation of momentum,

V.U = 0, (1.5)
8,:U+(U-V)U+%VP — VAU 4F, (1.6)

where U(x,t) is the fluid velocity at position x and time ¢, P the pressure, F the
resultant of external forces per unit mass, p the density, and v the kinematic viscosity
of the fluid. These equations can be derived from kinetic theory [37] or via the
methods of continuum mechanics [38]. They describe the dynamics of such common
fluids as water, air and most gases. A more physically illuminating framework for
studying turbulence is given by the vorticity equation which results by taking the curl

of (1.6),

Ow—+ (U-Vw=(w-V)U+vV2w+V xF. (1.7)
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The vorticity equation describes the effect of three distinct processes on the time
dependence of the vorticity of fluid elements (disregarding external forcing). Corre-
sponding to the second, third and fourth terms in (1.7) respectively, these are the
convection of vortex lines with the fluid, the intensification of vorticity due to vortex
stretching and the diffusion of vorticity. The Burgers vortex [26] is an exact solution
to the Navier-Stokes equations and involves all three processes. Radially outward dif-
fusion of vorticity is countered by a straining field which sweeps vorticity back toward
the vortex axis and intensifies the vorticity by stretching fluid elements in the axial
direction.

A simplification in the momentum and vorticity equation results for an ideal
inviscid fluid motion commonly referred to as Eulerian flow. For conservative forcing,

F = —VH where H is a potential, (1.6) and (1.7) reduce to

8tU+(U-V)U+%VP = -VH, (1.8)
Dw

The operator —1% denotes the total derivative. Equation (1.9) also results by beginning
with the Navier-Stokes equation and considering a stationary state of turbulence
in which the net energy injected into the flow by external forcing is dissipated by
viscosity. In 3-D, (1.9) shows that vortex tubes may be stretched by velocity gradients,
a phenomenon suggested as a mechanism for energy transfer from large to small scales.
In 2-D, (w- V) U is zero, so that the vorticity and its infinitely many moments are
Lagrangian invariants of the motion. Without a mechanism for the cascade, energy
tends to accumulate in the large scales [5].

Reynolds introduced statistics to turbulence in 1894 [39] and decomposed the

velocity and pressure fields into a mean field and a fluctuating field,

U = Ul(xt)+u'(x1), (1.10)
P = P(x,t)+p (x1). (1.11)
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The overbar denotes time average which is generally replaced by a suitable volume
average under the assumption that the flow is ergodic. It follows from U = U that
the fluctuations have zero mean. Substituting this decomposition back into (1.6) and

averaging yields the Reynolds equations,

o.U; +U; g[x]; ;gﬁ: = 81% (zxg—gj — (uju ) + F. (1.12)
The equation for the mean is just the Navier-Stokes equation for the mean variables
with the inclusion of a term involving (u’~u’4> due to turbulent fluctuations. Note that
we have replaced u i with its ergodic equivalent <u which denotes volume aver-
aging. Thus, the dynamlcal equations for turbulent flows contain three independent
unknowns. This is perhaps the simplest version of the closure problem. Subtracting

(1.12) from (1.6) yields an equation for the fluctuating velocity,

Oyui + uj gg + U, gx 8ij {uju — (uju) } = —=— + vV2ul. (1.13)
While this equation vanishes upon averaging, multiplying through by u} (x,t) prior
to averaging generates the one-point moment hierarchy common to engineering ap-
proaches to closure. Multiplying through by . (X, t) prior to averaging generates the
two point moment hierarchy which forms the basis for the fundamental approach.
The role of one-point and two-point statistical models is thus to provide closure in-
formation for the moment problem.

In practice a correlation is measured by averaging over the lifetime of a signal.
The turbulent velocity and pressure signals vary in space and time for each realiza-
tion. Mathematically, computing correlations requires replacing the signal average
with a suitable ensemble average. Substituting the ensemble average with a space
average supposes the turbulent motion is ergodic. Two point correlations underly the

basis of classical theory, and their Fourier transforms dominate themes of research in
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turbulence. In general, a two-point correlation of a field quantity is given by

Qi (x,%;t,1) = (g; (x,1) g (%,7)). (1.14)

In the laboratory, correlations are measured by allowing the distance between points
x and X to vary in a controlled way while allowing relative transverse motion between
the vector connecting the two points and the reference frame. This is equivalent to

introducing the change of variables,

R = 3 (1.15)
& = x—X%, (1.16)

where R is the centroid (absolute) coordinate and ¢ is the separation (relative) coor-

dinate. A similar transformation exists for the time variables ¢ and £,

T - It (1.17)

T o= t—1, (1.18)
so that, in general, two point correlations have the form,

Qij (X7 X; taf) = Qij (67 R;T, T) : (119)

1.2.1 Isotropic regimes

Assuming the turbulent field is stationary, homogeneous and isotropic, correlation

tensors depend solely on the magnitude of the relative position vector and the relative

time,
(a: (x,1) g; (XF)) = Qs (&, 1) (1.20)

Such a tensor is invariant under the Euclidean group E (3). Isotropic two-point tensors

can be written in terms of invariants of the rotation group, SO (3). Robertson [40]
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showed that all the requisite symmetries of a second order isotropic tensor are satisfied

by a relationship with two scalar, even functions of |£| = &,
Qij (§) = A(£) &¢&; + B (€) di5. (1.21)

Although the explicit time dependence has been omitted, it is understood that the
scalar functions and the correlation tensor are time dependent in general. In the case
where @Q;; (§)is the two-point velocity correlation R;; (£), A (£) and B (€) are related
via continuity. Having introduced the relative position vector £, a preferred coordinate
system can be introduced based on the configuration of the two points where one of the
Cartesian axes is colinear with the separation vector. Based on such a configuration, a
correlation can be established between longitudinal velocity components (ug, %i¢) and
transverse components (u., %,). Thus, longitudinal and transverse (lateral) velocity

scalar functions can be introduced through the following relationships:

(W) F(&) = (uet), (1.22)
(W)g () = (uyily), (1.23)

where
() = 3 () + (13) + (13)). (1.24)

In terms of f (§) and g (§) the two-point velocity correlation tensor is

Ri; (€) = (wity) = (u®) <%§ifj +9 5ij> : (1.25)

These relationships are fully developed in Batchelor’s book on homogeneous turbu-
lence [41]. Continuity translates into requiring %Rij (¢) = 0 which fixes the relation-

ship between the scalar functions,

g=f+ %g f. (1.26)
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Two important length scales can be computed from the longitudinal correlation
function f(€). One is a differential length scale, the Taylor microscale A, and the

other is the integral length scale L,, defined respectively by

1

f;, = BSVE (1.27)
L = [ rede (1.28)

The l