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Abstract

Asymptotic solutions are presented to the non-linear parabolic
reaction-diffusion equations describing a model biochemical reaction
proposed by I. Prigogine. There is a uniform steady state which, for
certain values of the adjustable parameters, may be unstable. When
the uniform solution is slightly unstable, the two-timing method is
used to find the bifurcation of new solutions of small amplitude. These
may be either non-uniform steady states or time-periodic solutions,
depending on the ratio of the diffusion coefficients. In the limit that
one of the diffusion coefficients is infinite, multiple steady states of
finite amplitude are found. When one of the parameters is allowed to
depend on space and the basic state is unstable, it is found that the
non-uniform steady state which is approached may show localized
spatial oscillations. The localization arises out of the presence of
turning points in the linearized stability equations. When diffusion
is absent it is shown how kinematic concentration waves arise. De-
tailed calculations using singular perturbation techniques are made of
the basic oscillation giving rise to these waves, which is a relaxation
oscillation. It is found that the equations in its asymptotic approxi-
mation are not obtained from the full equations as the result of a limit

process.
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0.1. Introductory Remarks

Under certain circumstances, the usual equilibrium state of a
chemical reaction may be unstable with respect to small changes in
the concentrations, or to other perturbations. There is a variety of
phenomena which may occur in the subsequent development of the
reaction. Experimental work has shown that these include self-
sustaining oscillations in concentration; concentration waves; and
the establishment of new steady states which are not uniform. Aside
from their intrinsic interest, these phenomena have implications in
the study of circadian rhythms, morphogenesis, and pre-biological
evolution. However, their prediction and quantitative description
clearly require a detailed knowledge of the reaction mechanism; this
is in most cases lacking. Accordingly, we study a model biochemical
reaction, with known kinetics, which is described ultimately by the

pair of coupled parabolic equations

2
X A - B)X+ Xy +D. 2 X
ot X 2

or
oY 2 EZY
E—‘—‘BX—XY‘PDYSI'Z .

The model is due to I. Prigogine. Numerical studies have shown that,

depending on the parameters A, B, D_ and D_, the equations can

X
exhibit both concentration waves and non-uniform steady states. A
remarkable feature is that when the parameter A (which represents
the concentration of another reactant) is allowed to depend on the

space variable r, the region of instability is localized in space.

The present work uses perturbation techniques to calculate
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asymptotic solutions to the rate equations and show how these phe-
nomena can occur. In the next section we describe the model more
precisely, define the governing equations, and summarize the numeri-

cal results of Herschkowitz-Kaufman and Nicolis [3]
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0.2. Detailed Description of the Model

The model reaction introduced by Prigogine is A+B—~D+E

according to the sequence

A —-X
2X + Y —3X
B+X—Y+D

X——EKE .

It is thought not to represent any known biochemical reaction, but,
as mentioned above, does exhibit some of their important features.
The simplest possible assumption is made about the rate of reaction:
namely, that it is proportional to the correct product of the concen-
trations. Thus the presence of the autocatalytic step 2X+Y — 3X
makes the rate equations non-linear, since the rate of production

of reactant X from this step is proportional to [X]Z [Y]. A further
simplifying assumption is made by setting all the rate constants
equal to one. This means in particular that temperature variations
have been completely neglected; such an assumption seems not un-
reasonable, since chemical reactions going on in living tissue cannot
be very exothermic. Also, it is supposed that there is no convective
motion of the reactants, and back reactions are neglected. Then

the conservation equations for the concentrations A, B, X, Y, D, E

are

0A

2
Bt -A+DAVA
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%%- - -BX+DBV2B

%}g =A+X2Y-BX-X+DXV2X
.%%. = -X2Y+BX+DYV2Y

%]g- = BX + Dy V%D

%‘?: :X+DEV2E

We have written X instead of [X] for the concentration of reactant X,
and so forth, since there can be no risk of ambiguity. The D's are
diffusion coefficients. It will be noticed that the equation for A is
not coupled to the rest so that it may be solved first. Further, the
equations for D and E become merely inhomogeneous linear equa-
tions once those for B, X, and Y have been solved. Actually
Herschkowitz-Kaufman and Nicolis [3] make the further assumption
that the concentration of B is somehow maintained uniform (alterna-
tively, DB = 0) so that B appears only parametrically in the equa-
tions for X and Y. Also, they take DA to be fairly large so that A
relaxes fairly quickly to its steady state. They then substitute this
steady state value of A into the equation for X, and consider the
reaction to be taking place in an infinite slab of width 1. The dif-
ferential equations which they consider are thus

2

9X _ A(r) - (B+1) X + X°v + D, 2 X (0.2.1)
5t X 2
or
9Y 2 0%y
‘“a"t— = BX - XY + DY > s (O. 2.2)
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where r is the spatial co-ordinate and

1

_ r-3

A(r) = A sech cosh 2
VD4 VDo

They pick D, = 197 x 107>, Dy = 1.05 x 103, & = 14 and allow B

and DY to be free parameters. The boundary conditions are that

X(0,t) =X(1,t) = A and Y(0,t) = Y(1,t) = B/A,

In the limit D, =0, so that A(r) = const. = A, there is a

uniform steady state X(r,t)

il

A, Y(r,t)= B/K. When A(r) is not

constant, and DX and DY are small, there is a steady state

X ~ A(r) + O(D DY), Y~ B/A(r) + O(DX,DY). This might be

X’
called the basic steady state. (See figure 0.2.1.) It should be
noticed that the boundary conditions have been chosen in such a
manner that the basic state satisfies them. Thus no boundary layers

occur at the edges of the slab, even though DX and DY are small

and multiply the highest-order derivatives. Herschkowitz-Kaufman

and Nicolis find that for certain values of the parameters B and DY

the basic state is unstable against small perturbationé in the initial
conditions. The subsequent development of the system can lead
either to a new steady state which shows spatial oscillations (''dis-
sipative structure'') or to propagating waves of concentration.

Figure 0.2.2 shows the dissipative structure that is found for the

choices DY = 5,25 x 10‘3, B = 26. Figures 0.2.3 through 0.2.6

show several concentration profiles in the course of one oscillation

in the time-periodic solution that is found for the choices DY =
.66 x 10_3, B =77. These pictures have been copied from the
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Figure 0.2.1. The basic steady state.
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0

Figure 0. 2. 2.

r 1

A localized dissipative structure.
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Several concentration profiles in the course of one oscillation,
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paper of Herschkowitz-Kaufman and Nicolis. In each case the dis-
turbance from the basic state is confined to the centre of the slab
so that the instability of the basic state can be considered local.
This localization is clearly due to the non-uniform distribution of
reactant A.

In attempting to explain the localization we shall take advan-
tage of the fact that DX << 1l and D, << 1. The natural length scale

Y

on which X may be expected to vary appreciably is D

1
A varies on a length scale of DA 2, The ratio of these quantities is

X 3

ol

whereas

1
2

1
(DX/DA) = (1. 05 x 10’3/197 X 10‘3)2

~1/14

so that variations in A can be considered slow compared to those in
X. The case in which A is uniformly distributed is also of interest,
since solutions can exhibit both non-uniform steady states and waves,
although not localization.

Accordingly, the plan of this thesis is as follows. Chapter 1
considers the case of constant A and shows how waves and dissipative
structures may occur. In Chapter 2 we allow A to be non-constant
and attack the problem of localization. Chapter 3 offers some opinions

about the biological significance of the model,
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1. Non-Localized Disturbances

Throughout this chapter the concentration of reactant A is
taken to be constant and equal to A,

1.1 Stability of the Uniform State

When A is constant, equations (0.2.1) and (0. 2. 2) become

2

X _ A- @)X +x°v+p 22X, (1.1.1)
5t >

or
9Y 2 9%y
Y _px - xX°Y + 3D , (1.1.2)
5t Y

and the boundary conditions are X(0,t) = X(1,t) = A, Y(0,t) = Y(1,t) =
B/A. Here we have written D for D and ¥ for DY/DX' It is seen
that (1.1.1) and (1. 1. 2) possess a unique uniform solution X = A,

Y = B/A, which satisfies the boundary conditions. The linearized
stability of this solution can be found by standard methods. If we
write X = A+u, Y = B/A + v, and omit terms quadratic or higher in

u and v, the linearized differential equations for u and v are

2
% o (B-1ju+ A%y +D 22, (1.1.3)
ot 2

or
9 2 o°
9V _ Bu-A°v+3D LY, (1.1.4)
ot Brz

together with the boundary conditions u(0,t) = u(l,t) = v(0,t) = v(1,t)=0.

We look for solutions of the form u(r,t) = th ¢(r), v(r,t) = ect b(r).

The equations for ¢ and { are thus

H

o¢ (B—1)¢+A2¢+D¢” , (1.1.5)

i

oy = -Bo - AZL@ + 3Dy, (1.1.6)
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with boundary conditions ¢(0) =¢(1) = ¥(0) = (1) = 0. This eigenvalue
problem will have a solution only for certain values of 0. If the

. . . . . t
vector eigenfunction associated with the eigenvalue On is [q')n, L;;n] s

then the solution of (1.1. 3) and (1. 1. 4) will be

u 6 (x)]

v REY

when the coefficients c, are determined from the initial conditions.
The uniform state is then called stable if Re O‘n < 0 for all n; unstable
if Re oL 0 for some m; and "neutrally stable' if Re 0., = 0 for one
value of m, but all other o have Re O'n< 0.

Since (1.1.5) and (1. 1.6) have constant coefficients, we try

solutions in sines. First we rewrite the equations in the form

- -1 - e - -
D¢ o-(B-1) _A° )
= , (1.1.7)
1 2
5 Dy B G+A U
. _ . ' 2 2
and then try ¢ = sin nwr, ¢ = Mn sin nrr, so that ¢'' = -n"n ¢ and
AR —nzwij. Equation {1.1.7) becomes
-n%n?D¢ o-(B-1) A% ¢
—nzwz,& Dy B O+A2 Y

or



o-(B-1)+n°w°D A% é 0

= . (1.1.8)

B G+A2+n2w2{& D P 0

-

There will be non-trivial solutions to (1. 1. 8) only if the determinant

of the coefficients is zero; that is, if

[G-(B-—l) + nZTrZD] [U+A2+n2w2g‘; D] + AZB =0,

or

o%+o [—B+1+A2+n27r2D(1+2)~)]

+ A?‘B+[A2+n2n?‘;~; D] [—(B—1)+n2w2D] =0, (1.1.9)

Let us now change the notation slightly. Associated with each value
of n there will be two eigenvalues which are the roots of (1.1.9).
They may be real or complex conjugate, depending on the parameters

> and B. We call them 0: and crr:, according to the definition

fr=t

o F=Llpg1.a%., 2
n 2

ZWZD11+§) i[[B»H—AZ-Pn WZD(;}—I)] 2~4A2B]2$

(1.1.10)
. . . £ T -
The eigenfunction corresponding to o_ will be called 9, = [én,tgn] .
The functions \j)rj: will be given by L};: = I\/_{ni sin nwr, where from
(1.1.8)

oF - (B-1) +n%r’D - A°MF =0
n n

While it is clear that the real part of Grj is always greater

than or equal to the real part of UI: (with equality if they are complex),
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it turns out that 0+ is not necessarily the eigenvalue with the greatest

1
real part. We now show this.

First consider the case » = 0. Then (1.1.10) gives

1
ot = 1{B-1-a%-n%?D+[(B-1-A%-n*r’D)*-4a°BT} .

The point of neutral stability for G: at > =01is at B = 1+A2+n2v2D.

The argument of the surd is then negative so that O’I—: is complex as
its real part changes sign. By continuity it follows that the curve of
neutral stability for G:: in the %, B plane will, for sufficiently small
values of % (which will depend on n), be that which is obtained when
O’]: is complex. That is to say, the curve of neutral stability for G:

for small » is

Re 0: = %[B—I-AZ—nZWZD(lﬁ})] =0 ,

i. e.

B=1+A%+n%s%D(14y) . (1.1.11)

This is a straight line in the $, B plane with slope nZwZD and B-inter-
cept 1+A2+n2n2D. It will also be the neutral stability curve for O'I;
for complex values of Grf:. These lines are shown in figure 1.1.1.
The line corresponding to n =1 is the lowest of these, and so for

li are the eigenvalues with the greatest real part ("'leading

eigenvalues' ) and the curve of neutral stability for the uniform solu-

small 3, ©

tion is
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148>+ 13D

4

Figure 1.1.1. Neutral stability curves for complex eigenvalues,

Figure 1.1.2. Neutral stability curves for real eigenvalues.
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B = 1+A%412D(143) . (1.1.12)

This line will continue to be the neutral stability curve until it inter-
sects one of the neutral stability curves which are obtained for real
values of eigenvalues Gni.

If 0';: is real, then the curve of neutral stability for 0; in the
5, B plane is given by o' = 0, i e.

> nZTr D

» 2
B = 14nn%D + &= 31 4 -——}2—~$ . (1.1.13)
For each n this is a rectangular hyperbola which we shall call Hn'
As > tends to infinity, Hn asymptotes to the horizontal line B =

2 2

1+n"n"D. Thus for sufficiently large », H lies above Hn for every

n+l
n. However, as Y tends to zero each Hn asymptotes to the B-axis.
For each n it is possible to find a value » = ﬁ«o(n) sufficiently small
that Hn lies above Hn+l for all < ;épo(n). Thus every hyperbola Hn
must intersect all the others; the Hn are shown in figure 1.1.2, The
neutral stability curve R for the uniform solution that is obtained
when the leading eigenvalue is real, is thus given by those portions
of hyperbolas Hn which lie the lowest in the 3, B plane for given
values of ; it is scallop-shaped. It is seen from figure 1. 1.2 that
every hyperbola Hn has some portion of it on R.

The places where R is not smooth are the points Kn where
Hn and Hn intersect. They are given from (1. 1. 3) by

+1

2 2
2 2 A31+1 2 2 A

1
nrt D+ = € :(n+1)TrD+-——-§l+—————————-—-£,
> nZwZD 3 (n+1 )ZWZD
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or

2
A
3 = 3 (1.1.14)
nz(n+1)2(w2D)2

The value of B at Kn is therefore

B = 1+n2172D + (n+l)21r2D + 1’12(n+1)2(1TZD)2 .

The neutral stability curve for the uniform solution will be
given by (1. 1.12) until that curve intersects R; then R will replace
it, since it then lies below the straight line (1.1.,12). The point of
intersection will depend on the values of A and D. For A = 8,22 (which
is the minimum value of A(r) chosen by Herschkowitz-Kaufman and

Nicolis [3] Jand D =1, 05x 10-3, we find that K,, lies below (1.1.12)

26
for 0< > < 10, while K27 lies above it. Thus in this case, th¢ neutral
stability curve contains portions of hyperbolas Hl through H27, but
not of Hn for n > 27, The point of intersection of (1.1.12) with R is
therefore given by the solution of equations (1.1.12), and (1.1.13)
with n = 27.- Using the above values of A and D we find » = 1. 274;

this is similar to the value of % found numerically by Herschkowitz-
Kaufman and Platten [4] in the case that A varies with r.

Figure 1.1.3 shows the stability regions of the uniform solu-
tion in the Y, B plane. In region I, below the neutral stability curve,
the uniform solution is stable. In region II the uniform solution is
unstable, but none of the positive eigenvalues has a non-zero imagi-
nary part. (The upper boundary of region II is the neutral stability

curve for G;, ) In region III the uniform solution is unstable and

eigenvalues with positive real part may have a non-zero imaginary
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111

II

Figure 1.1.3., Stability regions of the uniform solution.
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part. This is certainly true immediately above the line given by
(1.1.12).

In the next sections we shall examine solutions of (1.1.1) and
(1.1.2) in several cases when the uniform state is unstable. In sec-
tion 1.2 we look at the case when the point 3, B is only slightly above
the neutral stability curve in region II of figure 1.1.3, and consider
the bifurcation of non-uniform steady states. In section 1.3 we take
> >> 1 and show how many non-uniform steady states can exist. In
section 1.4 we consider the bifurcation of periodic solutions when
the point ¥, B is slightly above the neutral stability curve in region III
of figure 1.1. 3. Finally in secfion 1.5 we show how concentration

waves can exist if diffusion is absent.
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1.2. Bifurcation of Non-uniform Steady States

For convenience we rewrite equations (1.1.1) and (1.1.2):

2
X _A-(B+l)X + X2y + p & X (1.1.1)
5t 2
or
Y 2 9%y
Sr =BX - XY +5D ; {1.1.2)
81'2

the boundary conditions are X(0,t) = X(1,t) = A and Y(0,t) = Y(1,t) =
B/A. In this section we use the two-timing method to study the time
evolution of solutions to (1.1.1) and (1.1.2) when the uniform state is
unstable and the point ¥, B is only slightly above the neutral stability
curve in the ¥, B plane and in region II of figure 1.1.3. The method
was first used in this connection by Matkowsky [ 9] and was elabo-
rated on by Kogelman and Keller [5]. We follow Kogelman and
Keller's analysis. It will be shown that solutions tend to a new,
non-uniform steady state of small amplitude. The amplitude is re-
lated (not necessarily linearly) to the small quantity B-BC, where Bc
is the value of B on the neutral stability curve. The parameter O is
held fixed in this procedure. The form of the new steady state
depends on . If 9, B_ is not one of the points KN where the hyper-
bolas H _and H intersect, then to first order the new steady

N N+1

state is a multiple of the eigenfunction <25N+, where N takes on the

proper value. If 3, BC is one of the points KN’ then the new steady
state is (sometimes) a linear combination of the eigenfunctions 9_3_1;;

+
and Q—Nﬂ*l'

neutral stability curve but in region III of figure 1. 1. 3 is slightly

The analysis when the point >, B is slightly above the

different, and we do that in section 1. 4.
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We suppose that initial conditions are given of the form
X(r,0) = A+ h(r,e),

Y(r, 0) =—§:+k(r,s),

where h(r,¢) and k(r,e) are functions which satisfy h(r, 0) = k(r, 0) = 0,
h(0,e) =h(l,e) =k(0,¢) =k(l,e) = 0, and ¢ is a small parameter. We
seek solutions which deviate from the uniform solution by O(e) when
B exceeds the critical value Bc = BC(A,D,,&) given by (1.1.13). The
amount by which B is greater than BC will depend somehow (not
necessarily linearly) on €. Alternatively, we could suppose that B
exceeds BC by an amount 6 and then seek solutions deviating from
the uniform solution by some small amount which is a function (not
necessarily a linear function) of 6. The two views are equivalent.
The two times to be used in the perturbation calculation are
the fast time t* = t and the slow time 7 = (B(e) - Bc)t. The solutions

to (1.1.1) and (1.1.2) are to be given by the asymptotic expansions

X~A+aul(r,t,'r)+22u r,t,7)+ ..., {(1.2.1)

o

Y~%+£v1(r,t,7)+szv P AT) 4., (1.2.2)

o

with the boundary conditions uj(O, t,r) = uj(l, t,r) = vj (0,t, 1) = Vj(l, t,7) =

0 and the initial conditions

9'h(r, 0)
BsJ

3

1
u. 1‘,0,0 = =
J( ) T

ok(x, 0)

v.({r,0,0) = —%—,—
J 30 ged
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Substitution of the expansions (1.2.1) and (1. 2. 2) into equations

(1.1.1) and (1.1.2) yields the following hierarchy of equations:
2

Bul 2 bS] oy
——8~E—-=(Bc—l)ul+Av1+D 5 (1.2. 3)
or
avl > 82v1
—5€~=~Bcul »Avl+,§D > ; (1.2.4)
or
8112 2 82112 Bul
————— - - ' JRS——
5t (Bc 1)u2+A v2+D 5 B'(0) 5
or
Bc 2
' P —
+ B (O)u1 + = + ZAulvl s (1.2.5)
8v2 2 82v2 avl
— T - _— f .
5t Bcu2 A vy + 3D > B'(0) o
or
Bc 2
- t - oo— — .
B (O)u1 N ZAulv1 ; (1.2.6)
ou, 2 a2“‘3
_—é}— =(Bc—1)u3+A V3+D >
or
ou ou
. 2 B'(0) 1 B''(0) . B'(0) 2
-B'(0) 5 "3 5 + > u1+B (O)u2+ A Yy
2 ZBC
—Hllv1 + 2Au1v2+2Auzvl + R (1.2.7)
V3 2 8Z"3
5t = "BgU3mA V3 +AD —
or
—B‘(O) BVZ B”(O) BVl BH(O) u B‘(O)u _ _]_3.19_)112
or = 2 o 2 1”7 2 A 1
2 ZBC
-uyvy - ZAulVZ - .?.Auzv1 - A WY, . (1.2. 8)

The solution of (1.2. 3) and (1. 2.4) is then given by the

series
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Y1 ‘5’1: on
Ry o+ + - -
= Re nZ=1{ cn('r) exp(cnt) +cn (1) exp(cnt) } ,
V1 N o
(1.2.9)

£ = E.t . .
where o and [(i)n Sy ] are the eigenvalues and eigenfunctions found

in section 1.1. The initial values of the coefficients cni( 7) are found
A
from the initial conditions in the following manner. Let ¢ =

[d)n Uy ]t be the eigenfunctions of the differential equations adjoint

to (1.1.5) and (1.1.6), corresponding to the eigenvalues 0“;. It is

A A
easily seen that they are of the form d); = sin nnr, q;rf = Nnisinmrr,
where

Tx +
o - (B-1)+ nZwZD + BN =0
n n
Thus
2 —
+ A +
Nn - B Mn

A
The inner product of the eigenvectors g@_:: and iz: will be given by

I A N
+ + +  *
[) (6, 6o T4, V) dr
1 AZ N .
:f (sin nTr sin mrr - = M_ M__ sinnwrsinmnr)dr
5 B n m

it

I,

= 3(1 -
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It can be shown from (1.1.10) and the definition of M; that MI;LMI; =

—B-z- . Thus distinct eigenfunctions are orthogonal, and an arbitrary

A
function f has the expansion

[& o]
=), (o 8y o 90,
n=

where the coefficients are given by

NS

-5 (M)

o
B

In particular, we obtain

1 AZ +
zf {he(r, 0) - 5= M k_(r, O)}sin nnr dr
cfoy= -2 < (1.2.10)
n 2
1 A (M+)2
"B n
c
and
1 AZ _
2 £ {hs(r, 0) - -1—3—; Mnkg(r, O)}smnwrdr
cn(O): > (1.2,11)
1 é_. M 2
"B ( n)
c
First consider the usual case, when 3, Bc is not one of the
points KN. The neutral stability curve will then be a portion of the
hyperbola H, . for the relevant value of N. The eigenvalue with the

N

greatest real part when B = Bc will be 01:;; it will be equal to zero,
and all other eigenvalues will have negative real parts. Consequently,
all terms in the sum in the expansion (1.2.9), except the one corres-

ponding to o are exponentially decreasing in the fast time t. Thus

+
N b
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c s . . . + .
any variations in the coefficients <, (1) (except cg('r)) are unimportant,
and we may without loss of generality set them identically equal to

their initial values. The expansion (1. 2.9) then becomes

. - +
u, sinNnr (f)N qbn
+ - - + +
= cN('r) +CN(O) exp(GNt) + Re Z cn(O)exp(Gnt) .
M+ N - n#N +
vy Nsm Tr L}}N L{Jn
(1.2.12)

In the exceptional case, when Y, BC is one of the points KN’ both

+ +
O‘N = 0 and UN+1

real parts. The expansion (1.2.9) is then given no longer by (1.2.12)

= 0, while all the other eigenvalues have negative

but by
u, sinNwr sin(N+1)rr "51\3
+ + - -
= CN(’T) +CN+1(T) +CN(O)eXp(O'Nt)
+ . + . -
Vi MNsmNTrr M_N“sm(NnLl)wr QJN
r L J L J L i
- r &+ ]
¢N+1 ¢n
- - Ay + +
+c (O)exp(o t) +Re / c_{O)exp(o_t)
N+l N+1 nt N, N+1 n n .
- Y
N+ n
(1.2.13)

. + . + + . .
Since CN(T) in the usual case, and CN(’T) and CN+1(T) in the exceptional
case, are not multiplied by decaying exponentials, their variation

with 7 is important. To find it we must look into (1.2.5) and (1. 2. 6).

First we consider the usual case.
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The functions u, and v, are assumed to be bounded, but for

this to happen the right hand sides of (1.2.5) and (1. 2. 6) must satisfy

a certain condition. To find it we take the inner product of the equa-

A
tions with ¢§, integrate from t = 0 to t = T, divide by T and take the

limit as T —o. Terms involving u, and vy alone, and also exponen-

tially decreasing terms, will vanish under this procedure. The

integral for the remaining terms.is

Tl def A2 Lo G
{ { gsm Nmr [—B'(O) ppe (I'E-;(MN) )+B'(O)CN<1+§: MN)]

B 2
.3 +2 ("¢ +)( A~ +)
+ sin N’ITl‘(CN) (A +2AMN 1+BCMN dr dt
dC§ + +.2
(The signs of the coefficients of 0 Swe and (cN) are considered
2 ,
in the appendix. It is shown there that 1 - % (M§)2> 0, and
2 B c
A +
1+ B My > 0, but -+ ZAMl\JE may be of either sign.) We know that
1

f Sinz Nrwr dr = —12—

(o)
and

0 if N is even
! 3
f sin” Nrrdr =
o}
4 . .
N if N is odd

If N is odd, the condition that u, and 2 be bounded 1s therefore

+
2 dc 2
: A 4‘2) N ( A +) +
B (0)(1 - E_C_(MN) —— =B'0) (1 +——BC My ) ey
B 2
8 + A + +.2
+ 3 (-—A—C + ZAMN)(l +§-—-MN) (eq)” - (1.2.14)

C
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B
If N is even or if -AE + ZAMI: = 0, the term in (cg)2 is absent, and in

order to obtain bounded solutions to (1.2.12) it is necessary to pick
B'(0) = 0. Then (1.2.14) is satisfied identically, and to obtain infor-
mation about chL it is necessary to look into equations (1.2.7) and
(1.2.8).

The solution to (1. 2. 14) in the case that N is odd and
B

[ + .
c +(co)c Jr(O)exp')/'r
+ N N
clr) = , (1.2.15)
N c (@) - ¢l (0)[1-expyr ]
N N
where cg(O) is given by (1.2.10),
2
A%+
1 + 'E—_ '
_ ¢ N + -B'(0)
Y = 5 N and cN(oo) = B .
A + 8 c o
1 "B (M) N7 & TeAMy)

If c§(0) has the same sign as c+ @}, then as T — 0, cg(’r) tends to

N

the constant limit cN+(oo), which does not otherwise depend on the

1:; (1)

tends to infinity in a finite time T which is the time at which the

initial conditions. If c;g(O) and cg(oo) have opposite signs, then c

denominator of (1. 2. 15) vanishes.

We conclude that certain initial conditions do not tend to a non-
uniform steady state of small amplitude; presumably they tend to a
state of finite amplitude, If c:;;(O) and cN+(oo) do have the same sign,
then the asymptotic expansion of the solution to (1.1.1) and (1. 1. 2)

is
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3 +
3 cN(oo)cN(O)expy(B—Bc)t

X ~A+ T T sin Nwr
CN(OO)-CN(O)[I—exp’}f(B—Bc)t]
+ ecy(0) expoy t sin Nmr
+ + . 2
+¢ Re Z cn(O) expcnt sin nwr + O(e ), (1.2.16)

n#FN

+ +
Bc scN(oo)cN(O) expy (B—Bc)t o
Y ~ A + T T MN sin Nwr
cp(@)=cy(0)[L-expy(B-B )t]

- - +
+ € cN(O) excht MN sin Nmwr

+
+eRe ), cX(0)expo’t M sinnrr + O(%).  (1.2.17)
nzN ° nooon

So far the value of B'(0) has not been found, nor has ¢ been deter-
mined. However, B(e) and ¢ are related by B~BC =e¢B'(0) + O(sz).
One convenient way to normalize ¢ is to demand that the inner pro-
duct of the solution [u, v]' (where X = Atu, Y = B/A + v) with the
adjoint eigenfunction .32.13; be e. Then B'(0) is uniquely determined.
Another way is merely to choose B—BC =¢e. In terms of this second
normalization, we find that as t— oo the solutions (1.2.16) and

(1.2.17) tend to the steady state
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{(B-B )sinNmr
X~ A - < + O((B-BC)Z) (1.2.18)

8 c +

3Nw (7&“ * 2ANLN)

and
+
B (B-B )MNsinNTrr
c c 2

Y el B +O((B-—Bc) ) . (1.2.19)

—3—%%- (= +2AM)

The method of construction of the solution (1, 2.18) and (1. 2.19)
shows that it is stable, since initial conditions starting near the
steady state tend to it.

If B is slightly less than Bc’ so that B'(0) is negative, it is
possible to go through the same analysis as above and discover that
there is a bifurcating steady state, given by (1.2.18) and (1.2.19),
which is approached as 7 = (B-Bc)t tends to +oo. This steady state
must therefore be unstable, as initial conditions starting near it tend
away from it as t increases. (Note that T tends to +oco as t tends to
-0 in this case. )

These results are summarized in the bifurcation diagram,
figure 1.2.1. The "amplitude" is the coefficient of sin Nwr in (1. 2.18).
It may be positive or negative, depending on the sign of ;S + ZAM_;;.
The solid lines indicate stable branches, while the dotted lines indi-
cate unstable branches.

Jr('T) by considering

N
(1.2.7) and (1.2.8). The equations simplify somewhat since B'(0)=0.

When N is even it is necessary to find ¢

Equations (1.2.5) and (1.2.6) become
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B Bl -

— + Ampfii:uric - + Amfa?f{uie
B, “+ Bc + 2AM + s)
% tAMT <D A w7

Figure 1.2.1. Bifurcation of a non-uniform steady state when N is odd.

-1 4 Arplitude

Figure 1. 2.2. Bifurcation of a non-uniform steady state when Nis even.
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azu B

2

_ 2 c
M‘(Bc’l)uz‘}'AVZ'f‘D—é-;z—’}‘T(C

+ 2AM§ (cg(fr)sm Nrr)?

1;;('r)sin err)Z

+(exponentially decaying terms)
2
ov B
_ 2 2 c, + . 2
= --Bcu2 - A v, + 5D —> - —K—(CN(T)Slanr)
or ,
s 2
- 2ZAMN (CN(T) sinNwr)
+ (exponentially decaying terms).
sinNwr ]
M sinNmr
B 2 1
c + A * . 2 .
Z (T +2AM_N)(1 +~B—C Mn).g sin Nwrsinnmrdr
n¥ N 3 _*E AZ

tol (1 --B-Z(M:)"‘)

+ (e.d. )

(1.2.20)

(1.2.21)

sinnmzr

E
Mnsmnnr

+ . . s
Here bN('r) is an unknown function of 7 and we have indicated exponen-

tially decaying terms by the symbol (e.d. ).
t
[w(r), 4(x)],

so that

Let us denote the sum by
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u sinNmr w(r)

= b () + () fle.d.) . (1.2.22)
+ .
Vs MNsmer £(z)

-l

Using (1.2.12) and (1.2.22) in (1.2.7) and (1. 2. 8), we obtain

duy 2 a2“3 B''(0) deyy
5t (Bc—l)u3+A Vg + D 31"2 - ar sin Nwr

B''(0) + . +3. + . 3
> c svar+(cN) MNsm Nrmr

* N

+

. 2
N sin” Nmr]

w(r)) + 2bc M

Z o+

+.3 . + +
+ 2A[(CN) sinNmwr({(r)+M NEN

2B
c

t =

sinZNwr] + (e.d.)

+3 . + +
[(CN) sinNrr w{r) + bNCN

and

- 2 , .
22 -BCuB-A v3 +3D 5 - 5 M’N 37 sin Nnr

+.3

_2A [( cp)® sin Nrr(t(x)+My, w(r))+2bN+c§M§sin2Nfr r:l

2B
C +.3 . + 4+ . 2
Y [(CN) sinNwr w(r) + chN51n Nwr]+ (e.d.) .

A
Just as before, we take the inner product of these equations with 9; ,

integrate fromt = 0tot = T, divide by T, and take the limit as T — co.

Terms involving only ug and AEY exponentially decreasing terms, and
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terms involving sin3 Nwr will vanish (this last because N is even s0O

1
that f sin3 Nrrdr = 0). What remains of the integral is
o

+
T 1 dc 2
. 2 B''(0 N A +.2
J ism N”[‘ 2 : ar (1 -5 (My) )
0o O
B''(0) + A% 4V .4 +3 () A% 4
T N 1 5 MN)]Jrsm NTrr(c:N) M]; Jr————Bc MII

2
+2A sin® Nrr(4()+M,; o(r)) (c§)3 (1 LA M+)

2B AS L+

2
+ sinZNﬂrw(r)(cN+)3(1+—E—I\&N)£drdt )

[~

1
We know thatf si.n4 Nrrdr = -g, so the condition that Uy and V3 be
[0

bounded yields the following equation for c (7):

2

A +.2
1 - 2 +
B''(0) . Be dey BY(0) ot

2 AZ + dr 2 N

l+—B—;-M.N

1
+(c§)3 ;%Ml; + 4Aj; sin® Nwr(g(r)ﬂ\d_;w(r)) ar

4B_ 1 »
+— £sin Nwrm(r)dr% . (1.2.23)

The solution to (1, 2.23) is

lcg(oo), CN+(O) e/ T

a0

{(eg(00?(e® T~ Dys(e o))

cn (™) =
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where
2
A +
1 +-§;MN
Y = > ,
A +.2
L-5 (My)
C
1
+ _ B”(O))z
cnl®) =+ ( 5 (1.2.24)

+.3

N) in (1.2.23). (It can be shown that

and -a is the coefficient of (c
a > 0.)

The choice of the square root in (1.2+. 24) requires a little
de

dr
sign that it has initially. There are four cases: if c;\}(O) > Icg(oo)f

care. Inspection of (1.2.23) shows that

always has the same

+
N

if jc;;(oo)[ > cg(O) >0 or - ICI:;(OO)I > c

or if 0 > cg(O) > - |cy ()] then the slope is initially negative, while

1:;(0) it is initially positive.
Thus if cg(O) > 0, Cg(T) tends (monotonically) to fcl\i(oo)}, while if
c;;(()) < 0, Cg(’i’) tends to - [c;;(oo) ] Thus the dependence of the
steady state solution on the initial conditions is purely one of sign.
The asymptotic expansion of the solution to (1.1.1) and (1.1.2)

in the case that N is even is therefore

£ ICN+(OO){ cS(O)expy(B-—BC)t
X~ A ; sinNrmr

TP Tl
{(cq(0)) (exp2y (B-B ) t-1)+(cy ()} 2

- - . A\ S S .
+ € CN(O) exp Oy t sin Nmr + ¢ Re ), cn(O)eXp Gnt sin nrr

n#N

+ o)’ (1.2.25)
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B £ lcl:g(oo)lc;;(O)expy(B—BC)t

YNK”*I'

+
1 M” sin Nwr
{(c] (0% (exp2y (B-B )t-1)+(c ] (00))?} 2

+ . * + E
+ € CN(O)exp ot MN sinNmr +€ Re Z;N cn(O)expont Mnsulmrr
n

+ 0(e9) (1.2.26)

A convenient normalization of ¢ is now B«LBc = 52. As t— 00, the
. B
solutions (1.2.25) and (1.2.26), valid when N is even and —= +2AM1:;

# 0, tend to the steady state

%o as

B-B 2
C) sinNwr + O(B-B ) , , (1.2.27)

1
B, (B-B_? ,
i( )MN sinNrr + O(B-B_) . (1.2.28)

a

These results are summarized in the bifurcation diagram,
figure 1.2.2. The bifurcating branches have been indicated by solid
lines, since there is a range of initial conditions that tend to each of
the steady states given by (1.2.27) and (1. 2. 28).

B
If —Eci + ZAMS = 0, it is also necessary to pick B'(0) =0 in

order to prevent exponential growth of cf\; (t). Equations (1.2.5) and

(1.2.6) in this case become

8112 > 82u
—é“E— =(BC-1)UZ+A V2+D 5 +(e.d.)
ar
BVZ > 82v
and ——aT—-:-BCuZ—AVZnLéoD > + {e.d.) ,

or
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so that

5 sin Nwr

- bl\-:_(T) + (e. d. )

L

Vo Mg sin Nwr
Equations (1.2.7) and (1. 2. 8) are therefore

2 +
ou o u de
3 _ 2 3 B 1(0) N .
-5 —(}3C 1)u3+A v3+D 31-2 - > s sin Nmr

[ 8]
+ B 2(0) CN+ sinNnwr + (c;])B Mli; sin3NTrr + (e.d.)

and

ov Bzv dc:+
3 _ 2 3 B''(0) N + .
5t = —Bcu3 - A V3 + 3D 8r2 - > a7 MNsmer
B''(0) + . + + .3
- T3 SN sin Nrr - (cN) MNsm Nrr + (e.d.)

In order that ug and Va be bounded, c¢ u

N('T) must satisfy the differential
equation

a®
B''(0) Be N _ B''(0)
3 ) W2 ¢
B

(1.2.29)

As T — o the solution to (1. 2.29) tends to one or the other of the
steady states

3
cg(oo) = & (- “Z—E’%@) ,
3M

et
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depending on the sign of clj](O).
Next we consider the exceptional case when 3, Bc is one of

: + + : .
the points KN’ so that °N T 0 and ON+1 = 0. In order to find equations

N4 (1), we substitute the expansion (1.2.13) into (1.2.5)
A

and (1.2.6), take the inner product of the equations with QNJr, inte-

for cg('r) and ¢

grate from t = 0 to t = T, divide by T and take the limit as T — 00,

and then do the same thing taking the inner product of the equations
A

with QN+1L. If N is odd, the resulting equations which cg(ﬂ and

CN_I_-;(T) must satisfy in order that u, and v, be bounded are

2 dc 2
B'(0) (1 - —é-(M+)2) = B'(O)(l + %—Mg)cg
C

B 2
8 c + A +
+ (”A’ + ZAMN)(I fe MN) (c
c

21 1 1
+%‘['N'+ 2N+ 2) 2(3N+2)]

B 2
c + A + +,2
X (1——+ ZAMNH)(I +~:E—3; MN)(CN+1) (1.2.30)

and

+
N+1 +

g 2 red)
BY(0 ( _(MNH) & =B'0) (1+'B:MN+1 CN+1

2[L ) L]
7 LN = 2(N+2) = 2(3N+2)

X(ZBC + t 1+éiM +\ + +
A N+1 B_ N+l )N N+l

(1.2.31)

If N is even, the equations are



(9]
Z+

. £

2
= B'(0) N(l —g‘——— )

2B
1 1 1 c " A% 4 s 4
+'{T‘[N-1 - (3N+1)]( A +2A(MN+MN+1)) 1 *‘B""MN)CN °N+1

(1.2.32)

2 d
B'(0) (1 . %—-(MQ)Z)
C

and

dCNH +

B'(0) ) = B'(0 1 a? +)
(0)\L - MN+1 —ar = B'(Oeyy +Y3:MN+1

8

B_
3(N+1)w( +?‘AMML)(I“LB MN+1) °N+1)

B 2
1 1 1 c + A + +.2
* F[N-l - 3N+1]("A“” eAMy )(1 YB_ MN+1) (en) -

(1.2.33)

2

We do not attempt to solve these equations explicitly. Instead
we are satisfied with looking at the phase portraits of (1.2. 30) and
(1.2.31) and analyzing their critical points; this will provide all the
relevant information about the steady states of (1.2.3) and (1. 2. 4)

in the exceptional case being considered here. For the sake of defi-
B B
c

. . - + C +
niteness it is assumed that N + ZAMN > 0 and x + ZAM_N > 0, so

that all the coefficients in (1.2.30) and (1. 2. 31) are positive. The

+ +
N’ SN+l

1.2.3 and 1.2.4. They are symmetric with respect to the CN+-axis.

= 0 is a phase trajectory.

phase trajectories in the c plane are shown in figures

Examination of (1. 2. 31) shows that CN+;—
Thus any trajectory beginning in the upper or lower half-plane must

remain there.

The system may have four or two critical points, depending
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N4t

+

AR

Figure 1. 2. 3. Phase trajectories of (1.2.30) and (1. 2. 31) when
(1.2.34) is positive.

+
le

SN

Figure 1.2.4. Phase trajectories of (1.2.30) and (1.2. 31) when
(1.2.34) is negative,
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on the sign of the quantity

8 (EE +2AM1:I“)
- SNw ) A . (1.2.34)
21 1 1 (__E + +)
- I} Tz 2wl U ' RAMtM )

If it is positive, then there are four critical points O, P, Q, R; O

is the origin and P, Q, and R are given by

b ot B'(0)
N 8 Bc + ,
N (1‘ ¥ ZAMN)
+
N+l =0
0 ot - _B'(0) ,
N 2B
21 1 1 ( c + +)
~ IR Tz zoneyy ) L 2AMtM )
ot B'(0)
N+1 7 B
Ik b - ol (S8 2aM +)
TN Tz T ZoNe) M\ & N+l

[

8 (EE”A )
3Nm A MN
B

x {1 -
2¢1 1 1 (“45 +, +)
SNt Iy oz ) (' RAM M)
+ _mt
R: CI\‘I = B'(0) 5 ,
2,1 1 1 (__3 + +)
SN e - 2oy ] L' 2AMM M)
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+ -B'(0)

°N+1 T

B
2l 1 1 c +
-}t 2Ty 2Ny ("A_ * ZAMNH)

3 (EE+2A ”L)
3N \ A 1VlN

B
21 1 1 c + +
SN 2wy - z2oN) (7{' +2A(MN+MN+1))

Q and R are saddle points, O is an unstable nodal point, and P is a

x¢] -

stable nodal point. If (1.2.34) is negative, then only O and P are
critical points; O is an unstable nodal point and P is a saddle point.
(The phase portraits for other signs of the coefficients, and for
equations (1. 2.32) and (1. 2. 33), are similar. ]

It is seen that there are phase trajectories in both figures
1.2.3 and 1. 2. 4 that tend to infinity. Further, a solution represented
by one of these trajectories tends to infinity in a finite time. This
problem cannot be overcome by choosing B'(0) = 0 (as it could for the
case N even), since (1.2.30) and (1.2.31) are not satisfied identically
for that choice of B'(0). We conclude that there are initial conditions
for (1.1.1) and (1. 1. 2) that do not tend to a new steady state of small
amplitude in this case. Presumably they tend to a steady state of
finite amplitude, which would be represented by a different branch
of the bifurcation diagram.

Nicolis and Auchmuty [12] have also considered the bifurca-
tion of non-uniform steady states for (1.1.1) and (1.1.2). However,
their method does not consider the approach to these steady states

in time, nor do they consider the exceptional case.
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1.3 Multiple Steady States when Diffusion is Large

. . . + .
The results of the previous section are valid only when g_S_N is
the sole eigenfunction that is excited or, in the exceptional case,

when g; and éN+;

culated is small. For the case DY >> 1 it is possible to find non-

uniform steady states of finite amplitude. There is no restriction

are excited; the amplitude of the disturbance cal-

on the parameter B, but the calculation does not consider the time-
dependent equations. Thus in this section we study the boundary

value problem

2
ozA-(B+1)X+X2Y+Dd}§, (1.3.1)
dr
2 a’y
0=BX - XY +5D %, (1.3.2)
dr
X(0) = X(1) = A; Y(0)=Y(1):% . (1.3.3)

We assume that D >> 1 and look for solutions with the asymp-

totic expansion

1 1
X~ X+ =X, + X, 4+,
o T 3D 1T
Y~ Y o+ Yo+ v+
o 3D 71 (;}D)Z 2

Substitution of these expansions into (1.3.1), (1.3.2), and (1.3. 3)

yields the following hierarchy of equations and boundary conditions:

2 dZXo
O0=A-(B+1)X +X'Y +D s
o) o~ o 2

dr

(1.3.4)

X (0) =X (1) = A (1.3.5)
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dZYO
=0 , (1.3.6)
d:c2
Y (0)=Y (1) =2 ; (1.3.7)
o T o TA *
2 dZXI
0 = [-(B+1)+2XOYO] X+ X, Y, +D 5 (1.3.8)
dr
x1(0)=x1(1):0; (1.3.9)
2 szl
0 =BX_ -X°Y + , (1.3.10)
o o~ o 2
dr
Y,(0) =Y,(1)=0 . (1.3.11)

The solution of (1. 3.6) and (1. 3.7) is YO—‘—- % . This value can
be substituted into (1. 3. 4) to yield the following boundary value prob-

lem for X :
o

B _2 dZXo
O:A—(B+1)XO+KXO+D dz s (1.3.12)
T
XO(O) = Xo(l) = A . (1.3.5)

One solution is Xo = A but there will be others, depending on B and D.
The solutions of equation (1. 3.12) could be written in terms of elliptic
functions since the non-linearity is only quadratic; however we find it
more transparent to treat (1. 3.12) and (1. 3. 5) directly.

Equation (1. 3. 12) can be written as a system:

dv _ B .2
bl A (—A—XO—(B+1)XO+A).
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The phase trajectories of the system are shown in figure 1.3.1. They

are symmetric about the line v = 0. The points X, = A, v =0 and

_A
o B’

problem (1. 3.12) and (1. 3.5) will correspond to a trajectory that

X v = 0 are critical points. A solution of the boundary value

starts on the line Xo = A and returns to the same line after a "time
of flight" of 1.

One integration of (1. 3.12) yields

dx 2 2
N 0 Bl1.3 A 2  A° ]_; 2
D (37) +—A-[3XO~2(B+1)BXO+B X,]=%DE",
where
dx_
E = J ;
dr +=0

Thus the concentric integral curves in the picture get larger as E
increases. The critical point X, = A, v =0 corresponds to E =0,
The separatrix can be located by demanding that X, = % be a double

root of the equation

2
AL TANE EAE S N T PR AE

If the other root is called B, then (1. 3.13) must be the same equation

as

2 (5, -4 05,0 -

It is found that this forces

;3:A+~§(A-~§-) =A+—‘%(B—1)



L

NN

Figure 1.3.1.

Phase trajectories of (1.3.12).



-44.-

The value of E corresponding to the separatrix is EO where

2. L A%B-1)°
o~ 3D 52

Aside from these distinguished trajectories, all other trajectories
corresponding to a given value of E have either one or three inter-
sections with the line v = 0, depending on whether E > E_or E < E_.
(The trajectories corresponding to E < EO have two branches, one of
which is a closed curve inside the separatrix. The other is an un-

bounded curve which intersects v = 0 to the left of the critical point
4
B 2

trajectory; this can be done just as well by choosing a particular

X = v = 0.) Choosing E is equivalent to choosing a particular
intersection of the trajectory with the line v = 0.
We now find it convenient to consider not Xo and v but u:XO—A

and v. The boundary value problem for u is

2
0=(B-1)u+u?+pdY (1.3.14)
A 2
dr
w(0) = u(l) = 0 . (1.3.15)

This translation of the dependent variable merely shifts the phase
portrait by an amount A to the left, and the critical point X, = A,

v = 0 to the origin. If now we call the intersections of a phase tra-
jectory with the u-axis v, a, B in increasing order (or just g if E > EO),
then a particular choice of a also fixes vy, B, and E. It will always be

true that when E < Eo’
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A
Y < - ‘B‘(B"l):

A
-—B-(B-l)< a< 0 ,
and >0

Further, as E tends to EO from 0, a tends monotonically from 0 to

LS
B
tonically from O to E, and B tends monotonically from 0 to %-‘% (B-1).

(B-1). Conversely, as a tends to - -—% (B-1) from 0, E tends mono-

Thus we find it convenient to let a = -uk, where
A
K = -B—' (B’l) s

and p is a parameter which can run from 0 to 1 when a is real.

A further integration of (1. 3. 14) gives

du
+ T ruwd dr, (1.3-16)
T Y2 2B[1.3.AB-1) 213
{E - %3 (3 + 2O W12
or

u H

r=+ & L. (1.3.17)
° 3%22 g(u'—w(u'—a)(ﬁ-u')zz

This expression is valid when we integrate along portions of the
closed trajectories. In order that (1.3.16) and (1.3.17) represent

the same function, it is necessary that

2
-u3+ (v +a+{3)u2-(aﬁ+ay +BY Jutafy = —113 - SADE .

A
g (B-1)+ =5

ol w

Substituting a = -uk, we find B+y = (—% + p)K and By =-a(B+y )=
(- :;'i‘ p)f{z. These equations can be solved for § and v in terms of

p and K; the result is
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3 3 2 3 1
Y=%:K{—-—2-+H‘[("2‘+H) -4}1(—5+u)]2§ (1.3.18)
and
1
ﬁ=%x%~-§-+u+((—%+u)2—4H(--g-+u)]2§ . (1.3.19)
Of particular interest are the integrals
i i
N Jﬁ 2B =2 T2
Ty =2 ) (gzp) [@y)w-a)p-u)] " du
and
o 2B '% "%
sz)-Z[L (3ap) [(@-7)(u-a)(p-u)] ~ du .

These represent the time of flight over half of a closed trajectory to
the right and to the left of the line u = 0 respectively. Their sum
T(w) is the loop integral around the whole curve. (Even when y and a
do not exist as real intersections, the integral Tl(p,) can be defined
since the product (u-a)(u-y) will be real.) The boundary value prob-
lem (1. 3.14) and (1. 3.15) will have a solution whenever there are
values of p such that any of the following occurs: Tl(p) =1 or

T, () =15 T(p) = % for some integer n; or nT,(p) + (n=1) Tolp) =1
for some integer n. The number of possible solutions will depend on
A, B, and D.

From (1.3.18) and (1. 3.19) we obtain
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: 1
5 0 L
Tolp) = (6%1)) I*P»K {(U+HK)[H(‘§“M)K2~(%—H)Ku—u2]} * du
-
= ( ) f \f—-‘{(w-ﬂ)[ 5 H)K -( H)HKZW-MZKZWZ]} dw
- (6aDf ° 1
( BK) f {(erl)[(‘“'H) (5-plw-pw }} ° dw
Thus
dT, (GD)% fo 5 {,3 }-% .
dp T \B-1T 5 G- -5 - plw-puw
o Bl o { ‘ : N 14w o
- (_‘22)% fo 1 Wz_W +1 dw
B-1 {(2 H) ('z'—p W~ pWZ} /2 1+

1
- (_..12_.)2 EIN w2+w+1 aw_ .,
5-1) @ STERE B SV

At p =

i
o
3
o
o
®
<
®

1
dT, DV . 2 fl (w? w1 )dw
3 O

[(1+w) (1-w)]2

The integral for Tl(p,) is most easily written in terms of § = vk. Then

1 dv dTl

du dy dv

w
W

In terms of B, (u-y)(u-a) = 112 - (aty)utay = uz +K {5 + v)u+t{2v(~+v).

Thus



-48-

(B
N

VK -
T, (1) :(f’:’gﬂ) fo {(wc_u) [P+ + vyt (S + v)]} du

i1 -1
6 2 2 2
:( BA[I{)) _{;{(l—w)[vw +(~23-+v)w+(—23-+v)]} dw
Hence from (1. 3.19)
1 3
w8 ] -
dp -1 2
bR V3 - i+
! 3
f gv{(g+v)+(—2~+v)w+vw } _dw_
o 1-w
1
5 3
:(D)Z'%[1~L Pl ]
B-1 '
3
\/3(2-— )G +p)
1
(}_)E 1 W2+w+1 dw <0
2 o) 3 3 2 3/2 N1-w
{(—2—+v)+(—7: +v)w+vw}

Atp =0,v =0 as well and

aTy _( )5. Ef (w +w+1)dw
dp B-1 3 o 1+W) (1- W)]~2~

Thus atp =0
d
a; (T1+T2) =0 ,
—d-(n(T +T,)+T,)< 0
du 1 72 1 ’

and
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d. .
a—g (n(T1+T2) + TZ) >0 ,

On the other hand, it is true that %E > 0 for p > 0. This is most

easily seen by considering

2
+{-§+v+(——+v)w+vwz}] dw .

It can be shown that g{: S land3p <v <p. It follows that the term
in brackets in the integrand is a decreasing function of yu, so that the
integrand is an increasing function of .

Next we wish to make estimates on Tl(p) and Tz(p). It is

possible to evaluate Tl(O) and TZ(O): for p = 0 equation (1. 3.14) is

linear, namely

dZu
D———Z—Jr(B-I)u:O . (1.3.20)
dr

Thus u = ¢sinwr, where

[

© = (—B-]—S—l—) i (1.3.21)

Hence Tl(O) = TZ(O) = g , and T(0) = %}T— . {This could also be seen

from the integrals. )

We had

1

R T R

[\

But in the range 0 € w < 1,
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2

vw o+ (-%—+v)w+(-23-+v) = (—g—+v) + (%+v}w = (—23—+v)(1+w) .

Thus

[ S1E0

_zf_( 1)
© l+§-v

The integral T1 always exists as B = vk tends to infinity, and the
above calculation shows that it tends to zero.

Also,

LI

O
T, = o [ (D [E - -G - prw-pw?])  aw

But for 0sw<=1
5

3 2 3
> B- (—2—-~H}W—}.LW < 3-3p + (3p - “2*)(W+1) .

Thus for p sufficiently close to 1,

[

(o]

-2
ST R N | dw 1
2 @ 2 1 1 B
: } 3(1+w)’[~:—P—‘+ 1+ w}€
h-3
1 2 ° dw
) 1 Z) 1
(2p-1)2 1 3(W+ I (1-m2£ 2
H (2u-1)
B
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-1 -————?1—~—1— arg cosh TL
® (2p-1)2 "

Thus Tz(p) tends to infinity as p tends to 1, and at least as fast as
| log(1-p) | .

We can now determine the number and form of the solutions to
the boundary value problem (1. 3.14) and (1. 3.15). The results are
summarized in the bifurcation diagram, figure 1.3.2. On it we have
plotted T versus p. The curves represent nT, nT+T1, and nT+T2
as functions of y. All except Tl(p) asymptote to u = 1. Curves to

the left of the T-axis correspond to branches nT or nT+T,, for

2’
which —3—3 < 0, while curves to the right of the T -axis correspond
r=0
to branches nT or nT+T1, for which g—:{ > 0. There will be solu-
r=0

tions of (1.3.12) and (1. 3.5) whenever one of these curves intersects
the horizontal line T = 1. The number of solutions therefore depends
strongly on the value of -g . For the example shown in figure 1. 3. 2,
there are exactly five solutions to the boundary value problem. Fig-
ure 1. 3.3 sketches them. It is seen that solutions corresponding to
larger values of u (and hence larger amplitudes) have fewer internal
zeroes and larger initial gradients. Solutions of the form nT+T, or

1

nT+T, are symmetric with respect to r = .

2
If we substitute any of the multiple solutions to (1. 3.12) and
(1.3.5) into (1.3.8), (1.3.9) and (1. 3.10), (1.3.11), we obtain unique

solutions to these boundary value problems. Thus consideration of

the next order does not affect the multiplicity of solutions to (1. 3.1),

(1.3.2), and (1. 3. 3) in this limit.
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Figure 1.3.2. Bifurcation diagram for non-uniform steady states.

If i— = —;—% there are exactly five non-trivial solutions

indicated by the dots. The three to the left of the
T-axis have negative initial slope; the other two

have positive initial slope.
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A
A
2
0 r 1
A
A
B
0] r 1

Figure 1. 3. 3. Sketches of the five non-uniform steady states found

m_ 4
Whenzo—_ 15 -
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The bifurcation diagram 1. 3. 2, which indicates non-uniform
steady states of finite amplitude in the limit »— oo, should be com-
pared with the bifurcation diagrams 1.2.1 and 1. 2. 2 found by pertur-
bation techniques. From it one can make a plausible guess as to
how figures 1.2.1 and 1.2. 2 are to be extended to finite amplitude
disturbances. Branches of the form nT correspond to N even in the
notation of section 1, 2, while branches of the form n’I’JrT1 or nT+T2
correspond to N odd. It is reasonable to predict that the bifurcating
branches of figures 1.2.1 and 1. 2, 2 extend to curves like nT+T1 (or
nT+T2) and nT, respectively. In particular, the subcritical branch
of figure 1. 2.1, indicated by the dotted line, eventually curves back.
It can further be predicted that the branches asymptote to some
vertical line, so that the amplitude of any non-uniform steady state

(no matter what the value of B may be) is uniformly bounded.
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1.4 Bifurcation of Periodic Solutions

In this section we wish to consider sclutions of (1.1.1) and
(1.1.2) when the uniform state is unstable and the point %, B is only
slightly above the neutral stability curve in region III of figure 1. 1. 3.
It will be shown by use of the two-timing technique that the solutions
tend to a time-periodic function of small amplitude. Again we follow
the analysis of Kogelman and Keller [5].

As in section 1.2, the equations to be studied are (1. 2. 3) -
(1.2.8), and the solution of (1. 2. 3) and (1. 2. 4) is given by (1. 2. 9).

However, now Bc = 1+A2 + WZD(1+,5~), and the eigenvalues with the

greatest real parts are G;r and crl‘. Specifically,
+ . 2 2, 2 213
o (B) =+ i{4A B, - [B,-1+A" + n"D(3-1)] re, (1.4.1)

and all other eigenvalues have negative real parts. The expansion

(1.2.9) therefore becomes

= Re cf('r) ete +c1—('r)e_1ta + (e.d.),

where a =Im 0; and (e.d. ) indicates exponentially decreasing terms.

Since in this case MI— = M;L, we can write the real part as
u B
- .
=c (r) et ¢ ro e e+ (endl), (1.4.2)
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+c.

1* ). From (1.2.10) and (1.2.11), the initial

where Cl =-§- {c

condition on S is

1 2
2 [ {n_(x,0) - %-Mf k (r,0)}sinvrdr
O
c,(0) = < (1. 4. 3)
2 e
B
C

Substitution of the expansion (1. 4. 2) into (1.2.5) and (1. 2. 6) yields

2
ou g u . .
2 2 2 . it T -it
Tl (B -1)u,+tA v,*+D 81‘2 - B'(0)sinnmr [cl' e %+ ci e 0‘]
. ita ,— -ita
B'(O)snmrr[c1 e Tic) e ]
B . .
c . 2 2 2ita 2  —2 -2ita
+ 4 sin wr[cle +2’cll tc e ]
28 sin®mr [M;fe? ¥ %M e |2 1+]clIZ+Ml+Elze—21m]+(e,d.),
(1. 4. 4)
2
ov 0'v
2 2 2 2
—£=-B u -A“+ 3D
ot c 2 arz
-B'(0) sinnr [I\f.[l+ cl' Moy MljL cl' ehlm]
ita, — -itaqy ‘e . 2 2 2ita, 2 52,-2ita
—B‘(O)sinwr[cl e tcye ] - — sin"mr [Cl e f ll ]
~2asinnxMc F et o |2l [o) |2 M] T2 e 204 (e )

(1.4.5)
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A
We take the inner product of these equations with Q;, multiply by
ite Tbl, integrate from 0 to T, and take the limit as T— 0. Terms

involving only u, and vy drop out, since u, and v, are assumed

2 2 2
bounded; so do exponentially decreasing terms. There will also
arise terms of the form

T Sjta
f e f(r) dt ,
(s}

where j = 3, 1, -1. Since functions f(7) change only slowly in com-
parison with the rapid oscillations of ', the integral is o(T).
Thus terms of this type disappear in the limiting procedure. The
only remaining term in the integral is

T 1 dc 2
.2 1 A +.2
f f 51in TTT[—B'(O) _d_; (]. - i;*— (M]. ) )
O O [

2
1 e .j}_ t
+B(O)c1(l-i~BCI\/I1 dr dt .

Inorder that uy and vy be bounded it will be necessary to pick B'(0)=0,

and to look into (1.2.7) and (1. 2. 8) to find an equation for cl(T).

The solution of (1. 4. 4) and (1.4.5) is

u2 sinmr sinmr
= bl('r)elm +b1('r) e_ltCL
+ . + .
Vs M1 sinmr M1 sinmr
- 1 ) B =
., O p
+c12 ethaZ sinzwr sin nwrdr (—A-(-:- + ZAM;) ——% _(_i@_;
n=2 O [s)
n
oo} 1 B N pi
AN . 2 . c + + n *+
+]cl[ 2 f sin“wr sin nwrdr (Z =t ZA(M1+M1)) — <_f>_n
n=2 o O’n
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B :}:
- -2ita + Pn
+c Z f sm1rr sinnwrdr ——A-Jr 2AM 1 —--;_c{)_ +(e.d.},
%n
where bl('r) is an undetermined function and
R
A +
&
Pn = 2 2
A £ 2
P-g5 O4)
c
+ . - + . + .
If M is complex, then M_ = M Thus if M_ is complex,
n n n n
+ o
pn + n -
T+ én - Q—n :
o c
n n
so that the sum
@ 1 > i .
Z} f sin"wrsinnwrdr —% é&
n=2 o o
n
is always real. If we define w(r) = [w(r), z(r)]t by
i
B Q0 p
w(r) = (_AS+ ZAM;—)Z f sin2 nr sinnwrdr -—% g‘lz ,
n=2 o o
n
then the solution of (1.4.4) and (1. 4. 5) is given by
r - . r
u, sinmr sinwr
= b (r)e ita + B () e e (1.4.6)
+ . S
Vo Iv[1 sinwr M;1 sinwr
J . J
+ Cf@tha w + Icl }2 (_\,_V_+E)+ E? e—21ta E + (e.d.)
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We substitute (1. 4. 2) and (1. 4. 6) into (1.2.7) and (1. 2. 8) to

obtain

3 _ 2
——————(Bc—l)u3+Av +D +

de, . dec . . .
1 ita 1 -ita ita |, — -ita .
x[—-—a—-——-e g ¢ +cle +c1e }smﬁr

3 3ita
e

+ sin3rrr [cl

+ 3’(:1’ -ita . ¥ E3 e—Bitu

+ tho.

+ ZAsinZTrr [Zb c M1

- = + .t ——— -2ita , +
+ (b1c1+blcl)(Ml+M1) t2bc e M, ]

3 31to.

+2A z(r)sinnr [c ] € + , 1’ 1ta]

+2A(z+z)sinmr Hcl IZ N elta | lcl I e‘ito“]

+2Az sinmr Hcl ]2 El e—ita + E? e—Sita]

+2Aw(r) sinmr [cf dite

+ 2
M1+]cl} cle 1

+
CLl\./Il + }cl

+2A(w+—\ir—)sinwr Hc:1 IZ c

+2A w sinnr cf —31mM + ‘CI‘
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2B .
c . 3 2ita |, — —  -2ita
+—— sin"wr Dﬁple +(b1c1+b1cl)+blcle ]
+ E_I_}_c_ w sinmr [03 e3itGL + ’c ’2 c eita]
A 1 1 1
2B . .
c —_— 2 ita 2 — ~-ita
t— (w+w) sinwr Hcl] cpe  + 'cll c, e ]
2B . .
c — . 3 -3ita 2 — -ita
+—x— wsinnr [c] e +[c1! c, e ] +(e.d.)
and
2
ov o v
3 _ 2 3 B''(0)
-———8t —-—Bu3—-AV3+,§~D + 5
or
de . dc . . .
+ 1 ita + 1 -~ita ita — -ita .
X [—Ml 3 © —Ml 3 € +cle +cle ]su’mr

~f(r) + (e.d.),

where f(r) is the remaining part of the inhomogeneous portion of the

right hand side of the previous equation. To find an equation for <

A
we take the inner product of these equations with é—l’ multiply by
T"1 elta, integrate from t = 0 to t = T, and take the limit as T — oo,

Since U,y and vy are assumed bounded, there results in the same

manner as before the following equation:

2 dc 2
. A +2)B”(O) 1 l( AS  +\B''(0) =
0"'2(1'§‘<M1> 7z & U TE M )T o9
C C
2 — A% N\lo + 2 —
+}c1} ¢y (1+‘E—;M1)1§M1+2A£sm nr(z+i2z) dr
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2B 1

< f sinzvr (w + 2w) dr} .

TR
O

We write this as

dec
B''(0) 1 1 _ B'™0) — . 2 —
> ,7 i > < +-§/— lcll cy > (1.4.7)
where
2
A +
1 +———-—BC 1\/111
" A? 2
+
BNt

and—% is twice the quantity in braces in the previous equation.
To solve (1.4.7) we write cl('r) = ¢c(T) exp (-iw(T)), substitute
into (1.4.7), and equate real and imaginary parts to zero. The

result is

B0 ge - BUO) (Rey)e + (Red) (1.4.8)

B (0) 2(0) g_";_ - B ;(O) (Imvy)c+ (Imy)c

3

(1.4.9)

Equation (1. 4.8) is the same as (1. 2. 23) and has the solution

c(r) = c() ¢(0) exp(T Re?)

i
2

{(c(0))%(exp(27 Rey)-1)+(c(w))?}

where
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Then the solution to (1. 4. 9) is given by

-
w(T) = w(0) + 7 Imy + Eﬁl?g%f cz(s)ds.
o

As 7 —00,

ofr) ~ 7 (Imy - SELImA,

The asymptotic expansion of the solution to (1.1.1) and (1.1.2)

in this case is therefore
X~ A+ 2¢ c(r)cos (at-w(T)) sinmr

+ *
+ ¢ Re c (0) exp Gnt sin nwr + O(ez) R

S8

2

B S

Y ~ __‘_&c_ + 2¢ c(1) cos (at-w(T)) (MT%—M;)

sinwr

109)
& +
+ eRe Z cn(O) expcnit Mn sin nmr + O(sz) .

n=2

As t =+ oo these solutions tend to the periodic solution

= Rey ImA
X~ A+ \/—E:—B—; 2 J—R—g\ cos{t(a~(B‘Bc)[hn ) ——%?—\—ﬂ])}

X sinwr + O(B-—BC) , (1.4.10)

B
~ _C - Rey (B-
Y~ — +NB B, 2¢y- Re> cos{t(q (B-B_)

ReYIMA 10 rnet o nety o
X [Imy - ————%—5?\————] )} (I\A1 + Ml) sin wr

+ O(B-B_) . (1.4.11)
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1
It is seen that the amplitude of the disturbance is O((B—BC)2> and the
frequency shift is O(B-BC).

- - . - » j:
Once again, this expansion is valid only when o, are the only

1
eigenvalues which have positive real parts. This restriction would
appear to be more important for the qualitative understanding of
periodic solutions when B—BC is not small than the analogous restric-
tion was for the bifurcation of steady states. There the shape of
finite amplitude disturbances was essentially the same as the shape
of infinitesimal disturbances. The periodic disturbances of this
section, however, cannot possibly show travelling waves, since

they are time-periodic multiples of the function sinwr; that is, stand-
ing waves. Further, the neutral stability curve for the eigenfunctions
corresponding to 0; in region III is Bc = 1+A2 + nZTrZD(1+ J). For a
small value of D, say D = 10—3, many eigenfunctions will be excited
even when B-—BC is as small as 1. Each would oscillate with a
different period, so that the resulting disturbance may be expected

to be a complicated interaction of all of them. Consequently, an
approach different from eigenfunction expansions is likely to be
necessary to account for the other features of the oscillations ex-

hibited by the model. The next section is the beginning of an

attempt at such an approach.
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1.5 Concentration Waves - Diffusion Absent

If diffusion is absent, the rate equations (1.1.1) and (1.1.2)

become

—?—,E:A-(B+1)X+X2Y (1.5.1)
and

2% -Bx - x°v . (1.5.2)

These are in effect a pair of coupled autonomous ordinary differential
equations in the time; space does not enter, except through the initial
conditions.
The unique critical point of (1.5.1) and (1.5.2)is X = A,
Y = B/A. It is unstable if B> 1 + A%, (If diffusion were included,
the critical value of B for instability of the uniform solution would
be B =1 + Az + WZD(1+:;«) if » is sufficiently small, as was calculated
in section 1.1.) If the critical point is unstable, it is found that phase
trajectories starting near the critical point run onto a limit cycle,
which can be denoted by Xo(t), Yo(t). Since (1.5.1) and (1.5.2) are
autonomous, the functions Xo(t—n), Yo(t~n) also represent periodic
solutions to (1.5.1) and (1.5.2), where n is an arbitrary function of r.
Lavenda, Nicolis, and Herschkowitz~Kaﬁfman [6] have studied
the ordinary differential equations (1.5.1) and (1.5.2) numerically
and analytically for the values B = 77, A = 8 - 2. In this case the
limit cycle is a relaxation oscillation, characterized by (nearly) dis-

continuous jumps. Solutions starting from initial conditions near the

critical point run quickly onto the limit cycle.
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Thus, after a short period of time, the solution of (1.5.1) and
(1.5.2) may be considered to be of the form Xo(t—n), Yo(t—n), where
1 is determined from the initial conditions, and represents the time
taken to reach the limit cycle from time t = 0. Since the initial con-
ditions for the (degenerate) partial differential equations (1.5.1) and
(1.5.2) depend on r, so does the phase shift n(r). The functional
form of the oscillation in space is therefore that of a travelling wave
with wave speed c(r) = n(r)/r.

The rest of this section consists of calculations of the form
and period of the relaxation oscillation for the choice B >> 1. The
calculations done here are similar to those done for the van der Pol
equation in Julian Cole's book [1]. They give a more accurate de-
scription than the phase plane arguments of Lavenda, Nicolis, and
Herschkowitz-Kaufman, (The theory of Pontryagin [13] and Mishch-
enko [10 ], which examines discontinuous oscillations in detail using
phase plane arguments, does not apply to (1.5.1) and (1. 5. 2) without
modification. ) It will be found that, in contrast to most singular
perturbation calculations, the equations to be studied are not derived
as the result of a limit process from (1.5.1) and (1. 5. 2).

It is possible to eliminate Y from (1.5.1) and (1.5.2) by

solving (1.5.1) for Y in terms of X and dx (there will be no confusion

dt
. . ) d s dy
in replacing 5 by —(E)’ and then substituting the values of Y and T

into (1.5.2). The result is a second order equation for X which,
however, contains a term (E(%S 2. This may be removed by the trans-
formation X = % . (The transformation X = A/(1+A£), employed by

Lefever and Nicolis [7], accomplishes the same thing.) The resulting
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differential equation for u is

2 2

d"u A du 2 1
-———Z—dt +{-;—1-2-+2u-v}a?+A {1——6}-0, (1'5'3)

where v = B+1>> 1, This equation is clearly equivalent to (1.5.1)

and (1.5.2). We prefer to use (1. 5. 3) since it is of the form
u'' + f(u)u' + g(u) =0,

and such equations have been intensively studied. The steady state
for (1.5.3)is u = 1. The restoring force g(u) is negative for u< 1
and positive for u > 1; it tends to AZ as u—~+oo and to - as u -0,
The damping f(u) is negative for u = 1 but tends to +o0 as u -~ o and
as u ~0. (We always work in the region u > 0 since it corresponds
to positive concentrations of reactants,) Thus (1. 5. 3) represents a
self-excited oscillation, and the existence of a limit cycle in the
unstable case is guaranteed by a minor extension of the Levinson-
Smith theorem [8], even when B is not large.

We now proceed to the calculation of the limit cycle in the
case B+l =v >> 1. The perturbation argument is that, in the presence
of a small or large parameter, certain terms in the differential equa-
tion are negligible in the leading order. In singular perturbations,
the negligible terms are different in different regions of the motion,
In regions of slow time variation, or outer regions, the acceleration
term u'' is negligible. In regions of fast time variation (inner regions
or jumps), the restoring force is negligible. Transitional regions
occur when representatives from all three terms in (1. 5. 3) are im-

portant. We may expect the solution to increase in amplitude when
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the damping is negative, and decrease when it is positive. Thus the
approximate size of the limit cycle will be determined by the sign
changes of the damping. It is seen from (1. 5. 3) that there are two
distinct regimes: one where u~ v, and one where u ~ v—%. The
following regions occur in the description of the motion: the upper
outer region, where u~v and time variations are slow; the upper
transition region; the jump down; the lower outer region, where
u~v-%; the lower transition region; the jump up to the upper outer
region. In each region a separate asymptotic expansion will be
necessary. OSince the jumps join regions of differing order of mag-
nitude for u, we may expect a certain asymmetry in the equations

for the jumps. It will be found that the equations contain the parame-
ter v explicitly, in contrast to the usual situation for singular per-
turbations. The balancing of the various terms will require that

there be several natural time scales on which the motion progresses.

The upper outer solution

The asymptotic expansion in this region will be u ~ va, tuy 4

1
v_luz +... . We want to balance the second two terms of (1.5. 3),
so the appropriate time scale is é—i—g ~v72, Letr=v %t Substitution

of the expansion into (1. 5. 3), and equation of coefficients of powers

of v to zero, yields the following hierarchy of equations:

duo >
(Zuo—l)—d—; + A" =0 R (1. 5. 4)
du du 2
1 o A
(Zuo-l)‘a‘:}“‘*‘z -—&-’F—ul - -{1-(—)-——0, (1.5.5)
duZ duo du1 Azu1
(Zuo—l)—(ﬁ— + 2 ’a‘;u2+2u1—a—7_—+“‘-2'_ =0 . (1.5.6)
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The solution of (1.5, 4) is found by separation of variables:
2
(2u_-1)du_ = -A"dr .
o o)

Thus

-(uo-%)zzAZ'rJrc. (1.5.7)

Equation (1. 5.7) represents a family of coaxial parabolas with ver-
tices at u = 3. Since the differential equation is autonomous, we
may choose the time origin wherever is convenient. If C = 0, then
u, has its vertical tangent when 7 = 0. We choose the upper branch
of the parabola since the solution is going to have to jump down to

the lower outer region., Thus

u =i+ ANTT . (1. 5. 8)

L, _2 . .. 1
du 2a -1 17 " u
o o
that is
1 d 1 — _l_
g ol AL U
UO—‘Z“ O O
Therefore
- + 4 lo +A)
ul - 4 (“uo 2 g uO 1 ’
uo—‘g

where Al is a constant of integration, to be determined from match-

ing. Using (1.5, 8) we obtain
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1
1 AN-T

u

{Al—%(1+log2)~A\f:F +§1og(1+2A\/?F)} (1.5.9)

As T —=0-, Uy has the expansion

1, ~

1 AN-T

{Al - —;;(1+10g2)} ~ANCT - %*r +o((-1)>/?) . (1.5.10)

The lower outer solution

Y
In this region the asymptotic expansion will be u~ V—ZWO +

v-lwl + ..., and in order to balance the second two terms of (1. 5. 3)
we let '% ~ 1, Then the hierarchy of equations is
2 dw 2
A o A
(—————2 - 1) T T e =0 , (1.5.11)
w o)
o
2 dw 2 2 dw
A 1 A 2A o 2
W W w
o o o

The solution to (1.5.11) is
2 12 2
AlOgWO'EWO=At+C'

Since the solution is going to have to jump up to the upper outer region,
we choose the lower branch of this function; it has a vertical tangent

at W, = A. Call the time at which the tangent is vertical 1:j (:tj(v)).

Thus
Al log WO—AZ logA - %wi + éAZ = Az(t—tj) .
A ) y
Lett = t—tj; then the lower outer limit will have € fixed. Thus

A% og WO—AZIOgA - %wi +1a% A0 (1.5.13)
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Next, (1.5.12) may be written

dw, 1 2A°%
—e - W + 1 = O ’
dw W 2
o w _(A“-w)
o o
or
q AZ—WZ WZ—A2
0 o _ o
dw ( W l) - w
o o o
Therefore
N 1 1.3 2
Wl = m{awo - A WO lOgWO ’f‘DIWO} 5 (1'5'14)

where Dl is a constant of integration.
We shall be interested in the expansions of W and w, as
A A
t — -tj and as t —+~0-. We postpone consideration of the first limit

: o . A
for awhile, but can write immediately thatas t — 0-,

WONAu-\/-@ SFt ) (1.5.15)
and
1A% A%1ogAt)) D
W, ~ ! 1 +—LA~—1—A10 A‘i‘}*—*—l
1 2A AR 6 g 6 A
+ 0 (V-t) . (1.5.16)

The inner solutions

The appropriate time scale to balance the first two terms of

(1.5.3) is E%N v. In the original variables, the leading equation for

the jumps is thus (in both cases)
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48 )8 w8l g (1.5.17)
) ) dat
dt u
or
du, 2 _ éi~c (1.5.18)
dt B I T

Figure 1.5.1 shows the phase trajectories of equation (1.5.17). The
line u' = 0 is singular. It is seen that there are two distinguished
trajectories QR and ST which correspond to a jump up between two
finite values of u, and to a jump down. Other trajectories start at
u=0, u = oru=o0, u = -0 and are not of interest. The points
Q and S are double zeroes of the cubic uz—vu-AZ/u = C, while R and
T are simple zeroes. For the jump down it will be necessary that S
match with the jump-off point u = 3v of the upper outer solution, at
least to o(l). This can be done by proper choice of C. For the jump
up, Q must match with the jump-off point u = Av —%:. This can be
done by another choice of C.

An important point is that in the jump down, when (at least

2
at first) u~ v, it is still necessary to include the term é-Z' in equa-

tion (1.5.17). If it is omitted, the phase trajectories ar:a1 no longer
cubics but parabolas, and these have completely the wrong behavior
for jumps. In the jump up, the term 2u must be included for the
same reason. Although these terms are quantitatively negligible at
the beginning of the jumps, they are important at the end. Thus it
will be necessary to treat them as being of honorary order v. The

asymmetry introduced is not found in the similar equations for the

van der Pol oscillator. In this case, the inclusion of the extra
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A

Figure 1.5.1. Phase trajectories of equation (1.5.17),
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terms implies that the inner equations are not obtained as the result
of a limit process, and the equations in the hierarchy all contain v
explicitly.

For the jump down we try u~ v go(v,F) + B v) gl(v,%—) +
ﬁz(v)gz(v,jc“) +..., wheret = v(t-6(v)). There is a possible time
shift, because only g{—— is determined from balancing considerations.
The coefficients {31(\/), ﬁz(v), ..., and §(v) are to be found from
matching. Since we treat AZ/U.2 as being of honorary order v, the

hierarchy of equations obtained from (1. 5. 3) is

2 -
d7g 2 dg
R Y | il R (1.5.19)
-2 32 o -
dt vog dt
o]
2 -
d“g 2 dg 2 |dg
Ll 25 v2g -1 —Ls|2- 22 |24 =o0.(1.5.20)
) 32 o - 33| = 81
dt Vg, dt LA 08 dt

Integrating (1.5.19) once, we have

dg 2
o) A 2
— 4 [_ 3 +go“go] _.CO, (1.5.21)
dt vog
o)
— dgo
As t — -0, we want g6 to tend to a = % + o{(l) and —— to tend to
2 dt
zero; a must be a double root of - ‘;‘ + gi - g, T Co. Call the
v g
other root B; then (1.5.21) becomes ©
2
dg (g,-a) (g,-B)
-—-——_(-_)— = - o B o :(a-gc)z(—é—— 1) . (1.5.22)
dt €o

The condition that a be a double root requires that

2
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Three iterations using Newton's method on this equation yield

2 4
4A%  32A _
a=%(1--—3—-+——-6-—+0(v 9)) (1.5.23)
Vv v
and
2 2
B=1 - 2a-= 4‘°§ (1 -8A3 +0(v‘6)). (1.5.24)
v v

From equation (1.5.22) we see that the decay of g, to a as t— -0 is
only algebraic, whereas the decay to p as t— +o0 is exponential., As

t— -o0, g, has the expansion

A —_ A 2
- 1 log(-t) . 2 log (-t)
go—a+ — Al,Z =5 +~2+A2,3 3 + ...,
t t t t
(1.5.25)
where
2
By\-1 _ 8A
Al—(l-) _1+—v—§—+. ,
A =B 1 B3 16A° (1 24A%
1,277 "ot T3\l T3 :
a v
=1
Ap 2By o
As t— +o0, g5 has the expansion
(-0)® ¢
g, =B+O(eXP(-—@—’§L—t)) (1.5.26)
2 2
= 4‘2 (1- 8A3 + ...) + transcendentally small terms.
v v

Next, (1.5.20) implies

dg 2
T P |
dt dt Vg,
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dg

Certainly g = h1 -—-:l- , where h1 is a constant of integration, is a
dt

solution. The general solution will be the sum of this and the par-

ticular integral of

(1.5.27)

We can find the leading order contribution to g, s t =+ . As

t — -00, equation (1.5.27) is asymptotic to

dg - 2
Ly 3%(2+...)+—195_i—;—) (-32 85+ ..0)
dt t t %
2
1 32A a
+_—:—2-(-——3—+...)%g1—-k1.
t v

Thus the particular integral is asymptotic to

2
o4 “6.— 16 A —
g1p~kl}(-§+0(v )t +(—3—-——§ .. ) log(-t)
2
8A
v
and hence as t — -0,
1 -
gl"“-é-klt + ...

The homogeneous solution does not enter until later in the expansion.

As yet the constant k., is not known. As t —+oo, (1.5.27) is asymp-

1
totic to
dg 2
—-—-—_%—Jr( ?2+261+TST>gl:k1.
dt v B
Thus as t— + o, g, = 16"; k, + TST.
v

[

The expansion for the jump up will be u~ v~ z t “l(v)zl+' .

~ A
with the time t = v(t - X(v)). As was mentioned above, it will be
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necessary to treat the term 2u as being of order v. The hierarchy

of equations that results is

One integration of (1.5, 28) yields

dzo AZ Zi
"“'*[“"z‘;*;"ﬁi‘zo]:(' (1. 5. 30)

dt

As T — -0 we want z, = A + ofl) and ——-—g — 0; the value ¢ that z

dt
attains must be a double root of

2 z2
A )
T A C -
o %
If the other root is called {, then (1.5.30) becomes

2
dz (z_-¢) " ($-z_)
o _ 1 0 0
= V3/2 - R (1.5.31)

o]

dt
and ¢ rmust satisfy the equation 2(153-\/3/2(;52 +v3/2A2 = 0. Three iter-
ations using Newton's method yield

A2 2

5 A -9/2
¢:A(l+ + = + Ov )),
v372 2 VZ

3/2 44

Y= v

From (1.5.31) it is found that as T — -0,



g >~y ¢
_ 1 log(-t ) 2
zo-¢+N +g1’2 =5 =5 t.e.. (1.5.32)
t t t
where
g =-v3/2(“’-1)1:-A(1+~—7—4A F.o.)
1 32 - ° 3
39 0 3 _ 8A
%’Z-V ¢2(¢-1) -.A.(l +;-37-2+. ),
% :%?1,2 :
As?—*oo,
2

3/2 2A 2A
z_ =y + TST =v 1 - - Z—= +...)+TST. (l.5.33)
o= V¥ ( ,3/2 L3 )

Next, (1.5.29) implies

dz1 AZ ZZO 8
1 +(~_.+ -1)7, - A, (1.5. 34)
dt zi v3;2 1 1

where 81 is a constant of integration. As t — -0, we find by the

same method as for the jump down,

4A

3., ~ 2 ~
)t +§(1 +——7——v3 2Jr...)log(-’c)

z) = 81[%(”0(\)’

1 4A

(
RN )|+ odeslt)) (1.5. 35)
v3;2 tZ
As t —+ o,
B 2
z, = 1 +rsT =4 [1+-24 198 . ) rsT
1 2 ) 1 372 3
A +2L§J o1 v v
2 372
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Leading order calculation of the period

Knowledge of the ends of the jumps enables us to make a first
approximation to the period at this stage. The jumps themselves are
treated as being instantaneous, and the period is the sum of the time
taken for the upper outer solution to get from u = v-%np tou =2v and
the time taken for the lower outer solution to get from u =vf to
u = v-%A. Substitution of these values into (1.5.8) and (1.5.13)

yields

2
v . 8A 3
T:————-—-—-(l--;m+...)+—210gv»lOgA—ZlOgZ‘f‘... .

4A2
This formula agrees to leading order with the one calculated by
phase plane methods by Lavenda, Nicolis, and Herschkowitz-Kauf-
man [6]. The form of the solution u(t) is shown in figure 1.5. 2,
and the concentration X = % is shown in figure 1. 5. 3.

Although the inner and outer solutions match to leading order,
the algebraic decay of the inner solutions as t — -co and as t— -
means that higher order matching cannot be carried out. A more
detailed computation of the solution, and thus of the period, requires
the introduction of transition expansions. The upper transition
solution must match the upper outer solution as 7— 0- and the jump
down as t — -c. The lower transition solution must match the lower
outer solution as ::\—-* 0- and the jump up as t —~ -c. (Since the decay
of the inner solutions is exponential as t — +o and t — +o0, there is
no trouble in matching them to the outer solutions there.) FEach
transition solution must contain representatives from all three

terms in equation (1. 5. 3).
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Figure 1.5.2. One oscillation of u(t).
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Figure 1.5, 3. One oscillation of X = A/u. The concentration
of X is nearly zero throughout most of the os-

cillation.
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The upper transition solution

The necessary time scaling in this region is aq;c— ~ 1, say

t* = t-p(v), and the expansion is of the form u~ 1 v + f1 +v’ f2+. ce .

The hierarchy of equations is
a’t) df
+ 2f

% *
dtz 1 dt

L 1 a%2-0, (1.5.37)

deZ cilf2 df1 >
F+Zfla§+2mfz—2A =0. (1.5.38)

One integration of (1. 5. 37) yields

i+f2+A2t*:O, (1.5.39)

where the constant of integration has been absorbed into p(v). If we

let £, = V' /V= _c—i% log V, then (1.5.39) becomes
v, 2
‘-—-—;iz——z—‘*’At*V:O; (1.5.40)
dt

Substituting z = 6t¥%, where 62 = Az/e, we find that (1.5. 40) becomes

a’v

dzz

+zV =0,
which is Airy's equation for negative argument and has the solution
V=MV Ky (3(-2)%%) ¢ N LGP
3 3

I» and K are modified Bessel functions. As t¥— -c0 (i.e., z — -00)
3 3

they have the expansions
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é -
Ky (4(-2)°/%) = 3437 ()70 exp[-%(—z>3/2]{1— 2e(-2) 3/2+..-}‘,

(% —2)3/2) :%F( z)” iexp[z 3/2]{1+Z§(—z)3/2+...}.

(1.5.41)

I

1
3

In order to match to the upper outer solution, we need to choose the
solution of (1.5. 39) that behaves as + ~-t% as 7 — 0-, This can
happen only if N = 0. This choice uses up one of the constants of
integration; the other is in p(v). Since fl = VYV, we can choose M =1
and obtain
e L 232 fora< 0
V(z) = (1.5.42)

\-f-_‘;—- Nz {J (2 2372 4 J-%(fg-z?’/z)} for z >0 .

1
3

As t¥ — -c0, fl therefore has the expansion

N = 5 w\-5/2 w-1/2
f. = AN-t* - yreoa m(-—tﬂ“) + O((-t*) ), (1.5.43)

found from (1.5.41) and (1.5.42). To match to the jump down we
take the limit z — W s where W, is the first zero of the Airy function.
It is a simple zero with the approximate value w, = 2.338., As z

tends to W

V(z) & -(z- ) + g o (z-0) + O((z-w_)") . (1.5.44)

wit

z tendsto 8 = A “w_. So as t¥ —§ ,
[e] O o]

- i 4/3 & = 3
f. = -3 A wo(t 80) +O((t -90) ). (1.5.45)
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Next, (1.5.38) becomes upon integration

dfz >
a—t—;k-‘*‘z_flfz‘—’ZA t*+C2,

that is

5 £ C
ver, = [ 2a’xviouan + [ c,vZ()dx + D,

- Q0 - Q0

In order to prevent exponential growth of f, as t*— -00, we must

choose D2 =0, Thus

C M 28 M 2
0 = —= [ viouax + 24 [ awPooan. (1. 5. 46)
v -0 v -0

Using (1.5.41) and integrating by parts, we find that as t¥% — -o0,

A *

c, )
= ANTEF + 2 1 Tart o((-t%)"5/2) . (1.5. 47
N -t

Using (1. 5.45) we find that as t* —~0

£ = —-_IM.ZA"*/33 fo (X)dx
(t*-6 )
(o]
2 Jo 4 2
+ 2A f AVZ(A)d)\ggl +1 A /3 Wy (t-6_ )7 + .

-0

(1.5.48)
The lower transition solution

ok

In this region it is necessary to use the expansion u~v 2 A +
-5/6

- 2 A

! + v /6 Yo + ... and to take %N v3, so that tﬁ'L :vz/B(t-k(v)).
The hierarchy of equations is

a’y dy

1 2 y 1 A=0,

dt+2 Al at’

(1.5.49)
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___....dzyz [2 +--_3Y?] M2 D 0 (1.5.50)
+]1-%y - =y -y, =0. ..
372 A72 7 2| AT AL T
One integration of (1. 5. 9) yields -
dy

1 1 2 +
— - = yT At =0,
at Al |

(1.5.51)

where once again the constant of integration has been absorbed into
Av). If we let Vi

-AV'/V, then (1.5.51) becomes

aév o+

—s +tt V=0,
dt+2

Thus

=Vt Ky G s T G
We want the solution of (1

'[ A AT
.5.51) that behaves as -V -t as t —0-,
This forces N = 0, and as before we may also choose M =1,

Thus
Vit xo(2-th)37% iftT< 0
3
vit') =
ARV A {JL(%t+3/2) + 7 l(%t+3/2)} ittt > 0.
\/‘3' 3 -3
As t+—> -0, ¥, has the expansion
y, = AVt o+ A +-§-§: 17572 L oty /%) (1.5.52)
4t
and as 1:Jr - W Yy has the expansion
1 + + 2
y, = -AL+ N - %,—wo (t -w,) + Ot -w,) )] . (1.5.53)
O
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Next, one integration of (1.5.50) yields

d 3
g§§-+2(~§;—;logV)y2+%:-AlogV+ é,
or
1 4 .2 NG
?ﬁ(v Yz)—“{r-g‘:—AlOgV'i‘{z. (1.5.54)

A further integration together with the use of (1.5.51) and integration

by parts gives

" 2
¢ 2 +dy1(62+logV) ZAft vzlongx+1yl
Y R e - E_—.
2=z "7 \& 29 A
(1.5.55)

To prevent exponential growth of as t+-’ -0, it is necessary to
p p Yo y

choose }72 =0. Ast'— -, ¥, then has the expansion

+ &
yp = albets LoD T

oV 41 1
— - 1 log -31+ ——-] e+ £
> 5 cee s
L¢F A 2 9t
(1.5.56)
and as t+~'wo, Vs has the expansion
log(w -t
o~ 1 “o.,2 1
yzzA " 5 t — Z§52~2Af V"™ log VdA+3 A +€
t - wo) (t - wo) -0
(1.5.57)

Matching of the various expansions

Since the expressions for the functions to be matched and
their expansions in the various time limits are complicated, we find
it safer to go explicitly through the intermediate limit procedure in
every case.

To match the upper outer and transition solutions, we
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consider the limit 7— 0-, t* — 00, We let tﬂ = ic;s—g—% < 0 be {fixed,
where 1<< n << vz as v —~o0o0. Thus t* = ntﬁ’ T= v°2(ntn+p). It
may be assumed that p << n. From (1.5.8) and (1.5.10), the expan-
sion of the upper outer solution in the intermediate variables is

v 14 1

we g AVIE 5+~ LA, - J(1+og 2))
2 i A\rm—nt 1
n-p
A
- ‘;‘V—ntn—p ...

Ay -3 (1+log2)

v A 1
:“‘+Av—ﬂt - é‘ p + v
2 n ‘r‘———_ntn A ‘r——"ﬂtn

[>

v

V—ntn e . (1.5.58)

From (1.5.43) and (1.5.47), the expansion of the upper transition

solution in the intermediate variables is

_ v A
u == +AV—ntn - —V—V—ntn tooe . (1.5.59)

Both p and Al should be determined from a comparison of (1.5, 58)
and (1.5.59). Thus we must choose p = 0 and Al = 3(1+log2). The
terms omitted vanish faster than those matched.

To match the upper transition solution and the jump down,
we take the limit t* — 6, t —~ -0, We let v-l << n << 1 and t"? <0
be fixed. Then t = v(t-6(v)) = v(t*-86(v)) = vntn. Thus t* = ntn+6

and t*—@o: ntn-m(v) where o{v) =8(v) - 80. We may assume 0 >> 7.

In the intermediate variables the upper transition solution is



_V 1 1,4/3
u-2‘+nt o "'3A w(t+0)+00
0 )
+ 1 A™4/3 ;cz f ° veax +24°2 f %nvZan
v(nt_+0) -0 -0
Y
_ K 1 _ (8] 1 4/3
—2+T} 2+... —3A wontn+..
n  (nt_ )
n
0 0
+—-———1—-2- A’4/33c2 [e v?‘duzz-xzf‘37072@17{;z ,
nint_) -0 -co
n
(1.5.60)
and the inner solution is
2 2
v 4A 8A 1
=5l - F...)+(1+ 5t - )-———'qt +.
v v il
+pl(v)§klvntn+... . (1.5.61)

Comparison of (1.5.60) and (1.5. 61) shows that we must take
) 3]
Py = v Ky = ‘A4/3wo, 6 =0, and C, = -24° | Oxvzdx/ °vZan.

2
-0 oo
Thus the inner expansion is u~ vBy T v gt and as t ~+ 00,

+ TST . (1.5.62)

v

The time shift §(v) is equal to 6, = A3 W -

The limit to be taken in matching the lower outer and transi-
2
. . . A R -
tion solutions is t—0-, t+-—> -c0. We introduce n(v) where v “<<n<<l1,

[

2 A 2 A
let t < 0 be fixed, and put £ = W Eoa(v)) = vint . Then't =nt +X

In the intermediate variables the outer expansion is
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u = A (1- N-nt_-x —}-(nt )t L)
Vv nooe
. FAZ-Azmg a+D
4+ —
v 2A x/‘-_ﬁ‘t’;-’i

n
Ant A%-A%loga+),

- 04 5E . . (1.5.63)
6NV v \]—ntn

v
log(-v-°nt_)
+ "7/6[6- nt + L, O ... 0+...
n 8 P
3
V- t
V'r]n 21
3iogv
(A A LA 1, TR
Nov N N-v L3 r—————_ntn
(1.5.64)

Comparison of (1.5.63) and (1.5. 64) shows that it is necessary to

1
choose Tl—é—A v -3/2 logy =2 v 72 \A, or ) :_élovgv’ and also

D

lezlogA—%AZ.

The matching of the lower transition solution with the jump up

Wi

+ ~ . . sl -1 -
occurs as t — W, and t —+ -0. The intermediate limit is v << n<<vy

k4

~ ERA
with t < O fixed and t = vntn. But since t = 3(’c———L—g—)

i 2
1/:\ ~ -5 .+, 1 logv

T = v(t -x(v)), we have t = v(v "~ t T T x(v)), andt —w =
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2 w
v3(ntn+ t) where {(v) = X(v) - % lc_"_}%l - —(21 . In the intermediate
Kl
variables the transition expansion is
2
u = _‘_A._V'S/é_A[._.___—.___a 1 —%‘Q)O(‘Q"'t +§)v3+...]
Jv VIt +L) N
2
log(-v?(nt_+¢))
vy /6 2 o ... (1.5. 65)
vi(nt +
(n n £)
to A 2
A A 4 %o £ Alogv
= A2 (1- +ouu)+ (nt_+4)+ toees
2 76 7
Ny v?ntn ntn v1 M v5 2(n‘tn)2
The inner expansion is
4A
1+ ——3-72— +oaaa)
wu=2 1Ay - L4
\/‘-}— V3;2 Vntn
8A
(1 +;72-+ ...)10g (—Vntn)
+ + ... +
(vnt )'2
n

(1. 5. 66)

vnt 5 4A
+ plﬁz)é% 517?.-+ 3(1+-—§77 + ...)log(—vntn)+...

1%

A N A logv
3/2 Y 2
t v (nt
vty (M n)

A

kel +%Hl(v)81‘vnt +...
v n

., 1/6
To match (1.5. 65) and (1. 5. 66) it is necessary to choose By =V ,

that is p,(v) = v~7/6. Further, —lngA =1 Bl’ or 81 = Aw_. Also
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Al _ Alogv _ logv _ 1 logv “o . .
v3/2 = v5/2 , or { = —— . Thus x(v) =g t—=z- This choice
of 81 means that (1. 5. 36) becomes

2
Zl:AwO(1+4A 194 +...>+TST,
v v

y3

ast —+ .

The only matching remaining to be done is that of the jump
down to the lower outer solution and the jump up to the upper outer
solution. First it will be necessary to calculate the expansion of the
lower outer solution at the bottom of the jump down; this had been
postponed earlier.

. . A
To leading order, it was found that as t — -t.

j
_4a® | . 8A%
Yo T szz \LoT3 e

2

We expand (1.5.13) about this value of W and obtain

2 2
(o, )

Wo T T3/2 3
v 1%
(1.5.67)
paat (), 248 [t + 2 logy-loga-2log2+Ow ~2)] +
-‘}—3‘72 v3 « w0 > gv-logh-~ g ] .« s
Expansion of (1.5.14) about the same value of W yields
2
wy =y (122087 ) g 1270, (124 )
17,2 3 372 3
2 2 2
2 8A“ 4A 3 . 2 8A
-A (1- V3T );m[—z‘logV|lOg4A - V3 +...]+.-.z+..
- 1+16A2+ 6a® 108V . 1 4p _4nll0gan?)
= 3 v3§72 372 T g

+0(V‘9/Z)$ el (1.5. 68)
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The limit to be taken in matching the lower outer solution and the
jump down is t—+00, t — 0+. We have t =v(t- 60) and fc\ = t—tj, s0
t = v(;:\ +tj—80). We lett = vntn where v-1<< n << 1 and t’ﬂ> 0 is
fixed, so that @: ntﬂ—tj +90. In the intermediate variables the inner
expansion is just
2

2 2

4A 8A 16A 4/3
u 2 (1 —-——3-'"}‘ ...) - y) (A. U..)O) + TST s (1. 5. 69)
Vv v v
and the outer expansion is
_4A® . gA? B . 4A? . 24A° .
- 2 - 3 M 2 ——3—_ » s &
v v v Vv

3 -3
X [ntn—tj+60+—2— log v - logA - 2log2 + O(v )] to.. F

2
2 (1 y16A° ) [6A2 logy (-4A%logA

3 3z '7'

v
2
-A (2-810g2))+...} Feoo (1.5.70)
In order to match these expansions we must pick

- 3
‘cj = 80 t = logv - logA - Zlog 2

l -

;3 logy | (4logA 4+ (2-8log2)) (1.5.71)

M

oo

v
The matching is then correct up to order v_s/zlogv; the first omitted
term in equation (1.5.71) is of order v—3logv. The error in tj is
smaller than order v 2,

The final matching is of the jump up to the upper outer

1 -
s o/,

solution. The jump up ends atu = v in intermediate
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variables this is just

2
B 2A 2A -7/6
u-v(l-v——7—32-—————v3 +) + O(v ) + TST , (1.5.72)

R ZA
and so the outer solution is to be expanded about u, =1- ;—372 -

2
Z—%—- +... . However, this portion of the cycle is no longer given

v

by (1.5.8) but by the expression

where T = vuz('r—T(v)) and T(v) is the period of the oscillation. The
outer limit has 7 fixed. The variable u takes on the proper value

when

The expansion of ug is therefore

— 1 8A
u =1 - +...+A(’r+ [1- +...])
o) v372 1 4A2 v3/2

8A 2

- 1
+A(T+—-—— 1 - +...) tToeee
2 4A2 [ v3;2 ]

where
du
o) 2 4A
A :~—~{ = -A (1+7+...) ,
1 dr = — v32
T =7
o
2
d"u
o) 4 12A
A = = -2A (1+———7— +)



Then
u, = 1 -u_++logu_ + i(l+log2)
1 ° 1 o 128U, T2 g
o 2
_ 2A 4A
~(log2—l+;§72—+...)(1+;—§72+...)+..

Now t = '?vz + T(v) and

~ A
t =v(t -x(v))

logv 0

v " z2/3)

v

_ 7
= V(t—tj - '6-

w
o 3
-_-v(t_zz_/g-—z-logv + logA + 2log2 + ...) .

Thus

w
t :v(;v2+T(v) —%logv ~i‘logA-——C%2 + 2log2 +...)
A3

We choose the intermediate limit v -1 << n << vz, where t = vnt‘n and

t’ﬂ is fixed. Thus
vl =mt -TW) + = logy - logA + "o 2log2 +
=T 5 108 g 227—3- g . .

In the intermediate variables the outer expansion is

<

2A 2 4A
u—v(l-—:—3—7—2—+...)—vA (1+-—3—7—2-+...)

wite

nt T(v)- é—logvﬂogA—A” w +2log2
% n o 2 5 o} +
vZ § (1.5.73)
1 8A ‘ 2A
+ > ( - "‘WZ'F...)gT...'{’(lng—l'f“_—gﬁ“}‘...)
4A v
A

Vv
4
X(l +;}_372+.‘.)
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In order to match (1.5.72) and (1.5.73) we choose
3 vz 8A 3
T(v) = ;XZ (1 - ;—572 + ) +§logv—logA
w

+—-—-%~210g2+
A3

v

> (1-log 2) .

The error made in T(v) by omitting other terms in u and u, is
O(v-l), while the error made by omitting u, is O(1).

Summary

The more detailed description of the solution of (1. 5. 3) is
now given by the equations (1.5.8), (1.5.9), (1.5.39), (1.5.46),
(1.5.22), (1.5.27), (1.5.13), (1.5.14), (1.5.51), (1.5.55), (1.5.31),
and (1.5. 34), together with the values of the integration constants
that were found from the matching. It is clear how the calculation
could be continued if it were desired.

For the values v = 78, A = 8, 2, W, = 2. 338 we calculate
T(v) = 24.5. Lavenda, Nicolis, and Herschkowitz-Kaufman [6]
calculate T = 24. 3 asymptotically and T = 25, 3 numerically. It
seems clear that it is not v alone, but some combination of v and A
that is the proper large parameter in this problem. However, A
enters into the formulae for T(v) and u in a very complicated way,
and it is not clear what the combination should bqe. The fact that
the error made in T(v) by omitting u, is O(1l) indicates that it is
partly good luck that the asymptotic values of T agree as well as
they do with the real value, The other number that the authors cal-
culate in [6] is the maximum of X = A/u. This corresponds to the

bottom of the jump down, which is given by (1. 5. 62) as



4/3
min 2 - 2 3
Vv v Vv
Thus
2 a3, 2
- v ( 1+ o 8A
max 4A 2 3
v Vv

Lavenda, Nicolis, and Herschkowitz-Kaufman calculate Xmax = 189

numerically.

) = 190.5.
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2. Localized Disturbances

The analysis of the rate equations in the case that the concen-
tration of the reactant A is not constant is made considerably more
difficult by the fact that the basic steady state is no longer uniform.
However, the principles will be the same as those of the last chapter.
The basic state may be stable or unstable, depending on the parame-
ters A(r), B, D, and ». The neutral stability curve in the %, B plane
will be similar to figure 1.1.3. It will have two portions, one of
which occurs when the eigenvalue of the linearized stability problem
with the greatest real part has real part zero and imaginary part
non-zero, and the other of which occurs when the eigenvalue with the
greatest real part is purely real. If the point ), B is slightly above
the neutral stability curve and in a region corresponding to region III
of figure 1.1. 3, we expect to see the bifurcation of a time-periodic
disturbance. If », B is slightly above the neutral stability curve but
in a region corresponding to region II of figure 1.1. 3, we expect the
bifurcation of a new steady state. Just as in sections 1.2 and 1. 4,
these disturbances should be multiples of the eigenfunctions corres-
ponding to the eigenvalues with the greatest real parts.

The question of the localization of disturbances when the basic
state is slightly unstable is therefore intimately related to that of the
form of the eigenfunctions of the linearized stability problem. Since
the equations of linearized stability have variable coefficients and
the boundary value problem for eigenfunctions is not self-adjoint, the

calculation of the eigenvalues and eigenfunctions is very difficult in
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general, However, when the diffusion coefficients are small it is

possible to obtain some information by the WKBJ technique.
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2.1. The Basic State and its Stability

The equations to be studied in this chapter are (0.2.1) and

(0.2.2), namely

2
X _ A(r) - (B+1)X + X°y + D 2 X (0.2.1)
5t Z

or
9Y 2 o’y
£l = BX - X“Y + 3D . (0.2.2)
5t "

D is a small quantity and » = O(l). The function A(r) varies slowly

oy

compared with the length scale D 2. It is given explicitly by

1
r-3

cosh (2.1.1)

2D, D,

The boundary conditions are X(0,t) = X(1,t) = A and Y(0,t) = Y(1,t) =

A(r) = A sech

B/A.

Under these conditions, there is a basic steady state Xo(r),
Yo(r) which may be found asymptotically by a regular perturbation
expansion in the small parameter D. (There are no boundary layers
because the boundary conditions have been fixed in such a manner

that the basic state automatically satisfies them.) The expansion is

X~ A(r)+D<A“(r)+g~B(-&1-__-c—))”> +O(D2) , (2.1.2)
B it 1 1B 1
Y, NI D(-BA (r) - (B-1) :yB(———————A(r)) )Am—z(r)
+ O(DZ) . (2.1.3)

Just as in section 1.1, we find the equations of linearized
stability for X and Y by writing X =X +u, Y =Y +v, substituting
o) o o) o ©

into (0. 2.1) and (0. 2. 2), and neglecting the non-linear terms. The
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linearized stability equations are

ou 2 8211
s = [-(B¥1) +2X Y Ju+ X v+D— , (2.1.4)
or
ov 2 azv
5t = [B-2X Y Ju- X v+3dD— , (2.1.5)
or

together with the boundary conditions u(0,t) = u(l,t) = v(0,t) = v(1,t)=0.

th)

If we look for solutions of the formu = e (r), v = ect U(r), we find

that the equations for ¢ and § are
o =[—(B+1)+2XOYO]¢ +Xi\p+D¢", (2.1.6)
— 2 i
oy = [B-ZXOYO] ¢ - X_ 4+ 3Dy, (2.1.7)

and the boundary conditions are ¢(0) = ¢(1) = ¢(0) = y(1) = 0. (These
equations reduce to (1.1.5) and (1.1.6) if A is constant and Xo = A,
Y = B/A.)

Since the coefficients of (2.1.6) and (2.1.7) are variable and
the system is not self-adjoint, we cannot expect to solve this eigen-
value problem exactly., However, it is possible to take advantage of
the facts that D is small and that the coefficients vary slowly com-
pared with a length scale D%. In the next section we use the WKBJ

technique to consider (2.1.6) and (2.1. 7).
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2.2. Possibility of Localization

The stability of the basic steady state is determined by the

eigenvalues of the boundary value problem
- 2 it
0¢ = [-(B+1) +2X Y ]é + X ¢ + D', (2.1.6)
- _ 2 tt
oy = [B ZXOYO] ¢ - Xy +5Dy' (2.1.7)

with boundary values ¢(0) = ¢(1) = $(0) = (1) = 0. The form of the
solution when the basic state is slightly unstable is determined by
the eigenfunctions of the problem. In this section we use the WKBJ
technique to investigate the eigenfunctions, and show how the locali-
zation of disturbances can arise out of the presence of turning points.

We seek solutions to (2.1.6) and (2.1.7) of the form

¢ £,(x) £,(x) £,(r)
~EexXp iw(r) + D + D + .
VD
Y g,(1) g(x) g,(x)

(2.2.1)

Substitution of this expansion into the equations (2.1.6) and (2.1.7),
and equation of coefficients of powers of VD to zero, produces the

following hierarchy of equations:

Do

c+w'2+(B+1}-2XOYO X £ 0
= ; (2.2.2)

2.2
-B+2X Y otdw' “+xC || g, 0
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g

2
1
o+w +(B+l)—2XOYO

o™

-B+2X Y cv+,3;w’2+X
0O O

The system (2.2.2) is homogeneous,.

f i(w''f +2w'f')
o o

= (2.2.3)

2

3 it Pyl
ol B1 di(w''g +2w'g)

e - -

Thus it will have a solution only

if the rows of the matrix operating on [fo, go]t are linearly dependent,

so that the determinant of the coefficients is zero. Suppose that the

sum of the first row and c times the second row is zero. Then by

adding c times the second equation to the first equation in each of

(2.2.2) and (2. 2. 3), we obtain the following systems:

0 0 £ 0
(o]
= (2.2.4)
-B+2X Y O'+,§~W‘2+XZ 0
o o o] gO
and
0 0 £, i[w'' (£ +eyg pr2w' (£l +edg )]
SB+2X Y otyw'l+x? | |g Si(w''g +2w'g')
o o ) o 1 o o
(2.2.5)
From (2. 2.4) we obtain the relation
(-B+2X Y ) { + (0+%W'2+X2)g =0 (2.2.6)
o 0o’ o ~ 0’®o ’ T

and from (2. 2. 5) the differential equation
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w”(f0+c§go) + 2W‘(£O+c,§pg0)’ =0 . (2.2.7)

The phase function w(r) is to be found from the equation

ot+w' 2 4(B+1)-2X Y _x?
[o N ¢ (8]
det -0 (2.2.8)
_B42X Y oty L4
o O O

by solving the quartic and integrating. With w(r) known, equation

(2.2.7) integrates to
(fo + c:}go) Nw! :rconst, (2.2.9)

where the principal branch of the square root is taken. Then (2.2.6)

and (2.2.9) yield

2.,2 -1
const [ oty w' +Xo ]
g = eyt ——— s (2.2.10)
(o] \/—“7, B_ZXOYO

so that f0 and g, are determined up to constants. Some of the con-
stants are determined by imposing the boundary conditions at r = 0.
The boundary conditions at r = 1 can be satisfied only for certain
values of ¢, which are the eigenvalues of the problem.

This procedure works only if the term

G+§W'2+Xi

T TEIX Y

o"o
in (2.2.10) does not vanish. If it does, then fo and g, are infinite,
so that the asymptotic approximation (2.2.1) breaks down there.

This difficulty is equivalent to the phenomenon of turning points

familiar in quantum mechanics. Since from (2. 2.8)
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o +w' 4 (B+]) - 2X ¥ =c [B-2X_Y ]
oo o ol ’
the condition that (2.2.1) be valid is
A [0+w'2+ (B+1) - 2X Y ]+0‘+,§~W'2+X2¢ 0o,
o o o ’
i. e.,
25w'? + > [o+H(B+1)-2X_ Y ]+o+xz¢ 0 (2.2.11)
~ o~ o o : s
But the solution to (2. 2. 8) is
2yw'” = -{5 [o+(B+1) - 2X Y ]+ 0+ XZ}
oo o

+ [{} [0+(B+1)_2XOYO] +U+Xg}2

Db

2 2
-4 {a [c+(B+1)+XO - ZXOYO] + XO}] . (2.2.12)

Comparing (2.2.11) and (2.2.12), we see that the asymptotic approxi-
mation (2.2.1) breaks down exactly where the discriminant of (2. 2. 8)

vanishes; that is, where

{g}[c+(B+l) -2X Y ]+o+ XZ}Z
c o O

= 42}{0[0+(B+1) + XZ -2X Y ]+ XZ} . (2.2.13)
(o] o 0 o]

It is of particular interest to find the locations of the points
where the discriminant vanishes in the case ¢ = 0. This will corres-
pond to a value B = BC, the point of neutral stability in the %, B plane

for an eigenfunction. Equation (2.2.13) becomes
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[A}[(B +1) - 2X Y ]+ XZ]Z - 45x%°
C O © (o] (o]
B
In terms of X_ = A(r) + O(D) and Y_ = A(‘;) + O(D), this is

[>(-B_+1) + A%(r)]% = 45 A%(x) + O(D) ,
or

Bczl-?l‘\*—(-ﬂ+éé;{fl+0(\/ﬁ). (2.2.14)
\['5 ~t
(In taking the square root we have assumed that x‘;(-BC-H) + Az(r) is
positive. This will be justified shortly. ) Let the maximum and mini-
mum values of A(r) be A and Am.m, respectively. Then the asymp-
totic aéproximation (2.2.1) for an eigenfunction corresponding to 6 =0

and B = Bc will not be valid in the entire interval 0 € r < 1 if/BC is

such that

A . \2 = \2
(1 - mm) < B <(1 - ———)
NES ¢ NES

(The term O(ND) has been omitted in writing down this inequality. )

A picture of the function (1-A/Ny )z together with a possible value of

BC is given in figure 2.2.1., Call the values of r for which (2. 2. 14)

2
holds r, and Tse Then for rl<r< T BC> (1 - -é—) while for
RN NN
0€r<r,andr, <r <1, B < 1————-).
1 2 c

NE

Next we consider the approximation (2.2.1) in the regions

rp<r<r, and 0 € r< Ty, T, <r < 1. Equation (2.2.12) for the

case 0 = 0 is
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Figure 2.2.1. A possible value of B for a localized
iw(r)

disturbance. The exponential exp
' D

ig oscillatory when BC lies above

the curve (1-1&/'\/5T )2.
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1
2

23w’ = -{»[-B_t1] Al + [{ >[-B +1] A% (@) -45A% ()7 .
(2.2.15)

It is seen that if ,&[—Bc+l] +A2(r) = 0, then W'Z is complex. Thus the

2
points where Bc =1+ —%—— must lie to the left of T, and to the right of

2
r This would not occur if we chose BC = (1 + —A‘«) instead of

! V5
(2.2.14) as the points where (2.2.1) ceases to be valid.

It is also seen from (2. 2.15) that those portions of the curve

2
(1 - —A—) which lie above Bc correspond to w'2< 0. Thus the expo-
VS

nential

iw(r)

VD

exp

min

5

lies entirely above B and the exponential is non-oscillatory across

2
is not oscillatory in such regions. If B < (l - ) , the curve

the entire interval 0 <r < 1. In such a case it is impossible to
satisfy homogeneous boundary conditions at both ends. Thus no new

steady state can be excited at a value of B which is less than

2A . .
1 - T B We conclude that the portion of the neutral

NES ~

stability curve in the ¥, B plane that is obtained by the consideration

of real eigenvalues, must lie above the curve

2Arnim mi ’
B=1- + =

(This result might be compared with the exact result of section 1. 1.

There the neutral stability curve for the uniform solution was given by
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2 2
. A 2 2 A
B = min {1+-—:§—+nﬂD+——————2———2——-—

<)
n ;}(nwD)}
A 2

If BC lies above (1- =— )7, then w‘2 is complex across the
vy iw(r)

entire interval, so that the exponential exp
D

tory. Eigenfunctions corresponding to values B = Bc in this region

is always oscilla-

are therefore not localized, and correspond closely to the eigenfunc-
. * . £ t
tions én = [sm nrr, Mn sin mrr] of chapter 1.

Finally, if Bc satisfies

A_.\2 w2
(1-Zmin) < < (1oAY,

Ny Ny
then there are values ) and r, for which (2. 2. 14) is satisfied. For
r, < r<r,, the exponential exp iw(r) is oscillatory; for 0 < r< r,
! 2 Nis

and r,<r s 1 it is not. Eigenfunctions corresponding to values
B = Bc in this region are therefore localized. The mechanism of
localization is the change from negative to complex of the function

(W'(r))z, and that occurs because A(r) varies.
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3. Conclusions

The equations describing Prigogine's model reaction show
unexpected mathematical richness, and the results of the previous
chapters are only a step towards understanding them. However, a
few conclusions may be drawn at this stage.

Nicolis and Auchmuty [12] have argued that the bifurcation of
non-uniform steady states forms a basis for understanding the mecha-
nism of biological pattern formation, and specifically morphogenesis.
We are not so sure. It would seem reasonable that the formation of
biological structures is a result of repeated loss of stability and
branching. More and more complicated structures would appear
at each point of secondary bifurcation. The equations studied in
section 1. 3 do not exhibit secondary bifurcation, and it is our opinion
that the full equations (with both Dy and Dy, finite) do not show it
either. If that is the case, then the range of patterns that the model
can exhibit is limited, and so is the model's utility as an explanation
of morphogenesis. The mechanism of pattern formation in biology
is undoubtedly extremely complicated; and it seems unlikely that
consideration of only reaction and diffusion is sufficient to explain
it in more than the most primitive cases.

The phenomenon of localization studied in chapter 2 is evidently
a consequence of the simplifying assumptions made in arriving at
equations (0. 2.1) and (0. 2. 2). Since both A and B are the initial re-
actants, there is no particular reason (aside from simplifying the
equations enough to make them tractable) to assume that B is to be

uniformly distributed when A is not. In this respect, then, the
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localized disturbance is artificial. However, if the equation for the
concentration of B is considered, it is found that there is no uniform
solution of the partial differential equations for which all the concen-
trations are positive. Hence, if a non-uniform solution of the
equations is unstable, the new disturbance may be localized in the
sense that the leading eigenfunction of the linearized stability prob-
lem may have parts that are oscillatory and non-oscillatory in space.
The model appears to be more relevant to the study of chemi-
cal waves and oscillations, since these have been observed experi-
mentally (see [14] and [15]) under conditions in which only reaction
and diffusion are likely to be operating. It should be noted that the
waves studied in section 1.5 are only kinematic, since the oscilla-
tions at each point in space are not coupled. Also, these oscilla-
tions cannot satisfy the boundary conditions. However, they might
serve as a candidate for the first term in the outer expansion (away
fro;n the boundaries) for time-periodic solutions of (1.1.1) and
(1.1.2) in the case that diffusion is small in the special circumstances

that the initial conditions are sufficiently smooth that the derivative
92X (t-n(r))

81‘2

If that is not the case, and near the boundaries, it becomes necessary

is O(1l). Then (1.1.1) and (1.1.2) are satisfied to O(D).

to include the diffusion terms explicitly.
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Appendix. On the Signs of Coefficients Appearing in the Formulae

for Bifurcating Solutions

Certain expressions appear in equation (1.2.14) whose sign

is not obvious. They can be determined by consideration of the defi-
s +

nitions of MN and Bc'

We had for the bifurcation of steady states,

2 2 A2 1
BC:1+NWD+T l‘f'—‘z“"z“"‘)a
N« D

and in general

AlM T =0t (B-1)+ %D .
n n
+
If o7 = 0 then
2.+ 2 2
A*MY = <(B_-1) + N %D
__Af (1+ ! )
> NZWZD
Thus

>0
+ - + - Bc
Also, if oN = 0 then on < 0; using MN I\/LN = :A:Z we find
+
AZ +.2 MN
1 - B (MN) =1 - -
c M.,

N
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-(B_-1 N2 D

- 2 2
oy - (B -1)#Nn"D

>0 .

The third quantity whose sign is to be considered is

B

B 2
c +_ "¢ ZA +
=t ZAl\% = =% (1 + B MN)

2
=-;§—-[1+N2172D—%— (1 +~—2——%——)]
N D

From (1.1.14) we see that N = 1 corresponds to

AZ

JE s
4(TrZD)2

b

while other values of N correspond to

A2 _. 2
N (N+1)%(n°D)? N*

A

Thus for N# 1

2 Bc +

#2D)(1-(N-1)%w2D)

2 2

(1+N%m2D)(1-(N+1)

< (14N

H

B
and as > changes, the quantity A(TC&E + ZAMN+) takes on all the inter-

mediate values. Hence the quantity

BC +
= + ZAMN

may change sign as > Changes; it will if l-(N-l)ZnZ

1-(N+1)%7°D < o.

D> 0 but
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The quantity

BC
& teAMy

+

D > 0 but 1-(N+2)°7°D < 0 o D¢ ioam t
ut 1-(D )y , and —¢ N-1
will change sign if 1—(N—2)2w2D > 0 but I-NZWZD < 0. Thus there are

B

at most two values of N for which the expression XC— + 2AM§ changes

will change sign if l-—NZWZ

sign in the interior of an interval

A2 A2

SNV
NZ(N+1)2(WZD)2 (N~1)2N2(W2D)2

For very large values of 3, the expression is positive.
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