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ABSTRACT

Dﬁring the last twenty-five years, much attention has been devoted to
the problem of oﬁtimal orbit transfer. The problem has been conveniently
divided into two categories — unlimited thrust (or acceleration) orbit
transfers aﬁd limited thrust (or acceleration) orbit transfers. The
unlimited thrust orbit transfers use infinite thrust, zero burn time burns
and hence have also come to be known as impulsive burn orbit transfers. In
general it has been found that optimal (i.,e., minimum fuel, time—free)
solutions to these types of transfers require two or possibly three burns.
The limited thrust transfers, in contrast, do not use impulsive burns but
use burns which have a finite thrust level and a nonzero burn time and,
hence, are also known as finite burnm orbit transfers.
| If our attention is restricted to finite multi-burn transfers which
have burn times less than an orbital period, two classes of transfers
emerge. These classes of transfers are either Geometrically Similar to the
Z—Burnflmpulsivé (GS2B1) transfers or Geometrically Similar to the 3-Burn
Impulsive (GS3BI) transfers. For example, if a 2-burn impulsive solution
has a perigee burn followed by an apogee burn, the GS2BI finite burn
transfer would use one or more perigee burns followed by one or more apogee
" burns.

Recent ~studies have presented optimal solutions to GS2BI finite burn



orbit txansférs for various thrust to weight ratios. The current study
presents the optimal solutions to GSﬁBI finite burn orbit transfers between
a 28.5° iﬁclined low-earth orbit and a series of 63.4° inclined circular
orbits and a series of 63.4° inclined elliptical orbits with twelve hour
Aperiods. Also pfesented are optimal solutions to GS3BI finite burn orbit
transfers between 97° inclined high-earth orbits and a 57° inclined
low~earth ofbit. Optimal solutions are found to be bounded by a 1owe; limit
on the initial thrust to weight ratio. ‘It is shown that as the final
perigee altitude is increased, the GS3BI finite burn transfer degenmerates to
a GS2BI finite burn transfer much as it would for the impulsive case.
Analysis of the optimal steering during various burms reveals a natural
division of the sﬁeering strategies into two categoiies based on whether a
burn results in a predominant change in the orbit size -or the orbit plane.
Thé similarity of these optimal steering strategies to previously obtained

simple "near-optimal" steering strategies is discussed.
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Chapter 1

INTRODUCTION

During the last twenty-five years, much attention has been devoted to
tﬁe problem'of optimal orbit transfer [1-15]. The problem has been
conveniently divided into two categoFies ~ unlimited thrust (or
acceleration) orbit transfers and limited thrust (or acceleration) orbit
transfers. The unlimited thrust orbit transfers were shown by Lawden [2] to
use infinite thrust, zero burn time burns and hence have also come to be
known as impulsive burn orbit transfers. In general it has been found that
optimal (i.e., minipum fuel time—-free) solutioné to these types of transfers
require two or possibly three burns [3-5]. The limited thrust transfers, in
‘contrast, do not use impulsive burns but use burns which have a finite
thrust level and a nonzero burm time and, hence, are also known as finite
burn orbit transfers.'

Finite 1-burn solutions to the optimal orbit transfer problem are
numerous in the literature [1, 2, 6-10]. More recently, finite multi-burn
solutions which are Geometrically Similar to the 2-Burn Impulsive (GS2BI)
solutions have also been obtained [11-13]. Typically, if a 2-burn impulsive

solution has a perigee burn followed by an apogee burm, these GS2BI finite



burn tfansfefs have one or more perigee burns followed by one or more apogee
burns. Ihis thesis is devoted to the obtainment and characterization of
finite 3-burn solutions to the optimal orbit transfer groblem which are
Geometrically-Similar to the 3-Burn Impulsive (GS3BI) solutions.

The finite ﬁulti—burn orbit transfer problem is characterized by a
thrust or acceleration level which is bounded by a zero lower level and a
finite uppef level. The first order necessary conditions for both
thrust-limited and acceleration-limited optimal solutions are developed in
Chapter 2 and show that an optimal orbit transfer should consist of one or
more zero or null thrust (NT) arcs, intermediate thrust (IT) arés, and/or
maximum thrust (MT) arcs. A review of the literature on the optimality of
IT arcs revealed, however, that it is not possible to join am IT arc to a NT
or MT arc for the class of problem considered here. Thus, IT arcs will not
‘exist for the orbit transfef problems considered in this study.

The teéhniques used to solve optimization problems have typically been
divided into two types - direct methods and indirect methods. Direct
ﬁethods minimize (or ﬁaximize) the performanée index directly by making
appropriate changes to the inmput variables. Problems utilizing this type of
method are often referred to as nonlinear programming (NLP) or parameter
optimization problems. Indirect methods accomplish the optimization task by
employing the requirement that the first variation of the performance index

must be zero at the solution. The solution of the resulting first order



necesséry coﬁditions for optimal control problems usually involves solving a
two-point boundary value problem (TPBVP). Chapter 3 examines these methods
and discusses the approach taken by Hersom, et al. [11] of combining both
the directrand indirect methods to form a hybrid method. The basic
difference between the hybrid and indirect méthods is the satisfaction of
transversality conditions implicitly rather than explicitly. This advantage,
among others, makes the hybrid method a particularly attractive choice for
solving optimal control problems.

Chapter 4 presents the optimal solutions to GS3BI finite burn orbit
transfers between a 28.5° inclined low-earth orbit and a series of 63.4°
inclined circular orbits as well as a series of 63.4° inclined elliptical
orbits with twelve hour periods. Also presented are optimal solutions to
GS3BI finite burn orbit transfers between 97° inclined high-earth orbits
and a 57° inclined low~eartﬁ orbit. Thrust to weight ratios as low as .02
are considered. An analysis of the optimal steering during various burms is
made in several coordinate frames in an attemptAto discern its similarity to

pfeviously obtained simple "near—optimal” steering strategies [14-15].



Chapter 2

THE OPTIMAL CONTROL PROBLEM

2.1 COORDINATE SYSTEM DEFINITIONS

2.1.1; Earth Centered Inertial (ECI) Coordinate System

The ECI Coordinate System (also known as the Geocentric Equatorial
coordinate system) is depicted in Figure 1. This coordinate system has its
origin at the earth's center. The fundamental plane is the equator and the
positive x-axis points in the vernal equinox direction, . The z-axis
points in the direction of the north pole and the y-axis completes the
right-handed system. Unless stated otherwise, this coordinate system will

be assumed throughout the rest of this report.



Figure 1., The Earth Centered Inertial System
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©2.1.2 Orbit Plane Coordinate System

Assuming the earth is a sphere (and thus has a spherical earth gravity
potentiai function), ballistic atmosphere-free trajectories about the earth
definé conic sections. Hence, the orbit plane coordinate system, where the
fundamental plaﬁe 1s the plane of a coasting vehicle‘s orbit, is one of the
most convenient coordinate frames for describing the motion of space
vehicles. This frame and its relation to the ECI coordinate frame are
depicted in Figure 2, |

Five independent quantities called "orbital elements” are sufficient
to completely describe the size, shape, and orientation of an orbit plane
about a spherical earth., A sixth element is required to locate the vehicle

along the orbit.' The classical set of six orbital elements are defined with

the help of Figures 2 and 3 as follows:

1. a, semi-major axis - half the maximum diameter of the conic-

infinite for parabolic motiom, positive for elliptical motion, and
negative for hyperbolic motion.

- 2. e, eccentricity — a measure of the deviation of the conic from a

circle-numerically zero for a circle, positive but less than
one for an ellipse, equal to one for a parabola and greater than
one for a hyperbola.

3. 1, orbital inclination - the angle from the equatorial plane to

the orbital plane, measured with positive rotation about the

ascending node and in a plane normal to the ascending node.



Figure 2. Relation of Orbital Plane to ECI Coordinate System
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Figure 3. .Elliptical Orbit Geometry
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“4. Q , right ascension of the ascending node — the angle measured in

the equatorial plane from a principal axis (normally the vernal

equinox) to the orbit's ascending node (the line defining the

intersection of the equatorial and orbital planes, directed from
the origin to the point of passage of the vehicle traveling from
the southern hemilsphere towards the northern hemisphere).

5. w, argument of perigee —~ the angle measured about a focus from the

ascending node to the perifocus. (The perifocus is the point on

the orbit having minimum radius).

6. v , true anomaly — the angle, measured at the focus, subtended by

thé perifocus and the vehicle. (The true anomaly may be replaced
as a classical orbital element by the eccentric anomaly, time
relative to perifocal passage, or the argument of latitude, u,
which is the sum of w and v .

In pléce of a and e, it 1s often more convenient to use apogee
altitude, ha’ and perigee altitude, hp. These quantities are defined
with the help of-Figdre 3 as follows:

h = r —-T

a a e
h = r -T
P P e

where T, is the equatorial radius of the earth.



2.1.3 A Inertial Velocity Local Horizontal (VIH) Coordinate System

Besides the ECI coordinate system, it will be convenieﬁt to represent
the thruét vector of the vehicle in two other coordinate systems — the
Inertial Velocity Local Horizontal (VIH) coordinate system and the Inertial
Velocity (VI) coﬁrdinate system. The VIH coordinate system is depicted in
Figure 4. It is a rotating system with its center at the vehicle center of
mass. The fundamental plane is the geocentric local horizon (i.e., the
plane normal to r). The positive x—axis is directed along the azimuth of
the inertial velocity vector and lies within the fundamental plane (i.e.,
the x—axis is the projection of_i in the fundamental plane). The z—axis is
normal to the fundamental plane and is directed toward the geocenter. The
y-axis lies in the fundamental plane and completes the :right—handed system.

2.1.4 Inertial Velocity (VI) Coordinate System

The VI coordinate sysiem will also be used to represent the thrust
vector and is depicted in Figure 5. This system may be obtained from the
VIH coordinate system by a rotation through the inertial flight path angle.
The Fundamental plane is the instantaneous inertial trajectory plame (i.e.,
the orbital plane) and the positive x—axis points in the inertial velocity
direction. The positive y-axis is normal to‘the fundamental plane and
points in the_i x r direction. The z-axis lies in the fundamental plane and

completes the right—handed system.



A 11
Figure -4, The Inertial Velocity Local Horizontal System
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Figure 5. The Inertial Velocity System

VEHICLE
CENTER
OF MASS
YD
” Y
GEOCENTER R Yy
AND Z,,, LIE WITHIN THE
INSTANTANEOUS *yi |
INERTIAL INSTANTANEQUS INERTIAL
TRAJECTORY TRAJECTORY PLANE
PLANE
AZ, AND Y, LIE WITHIN THE
GEQCENTRIC LOCAL HORIZONTAL
PLANE

VEHICLE POSITION

INERTIAL VELOCITY
INERTIAL AZIMUTH

INERTIAL FLIGHT PATH ANGLE



2.2 PROBLEM FORMULATION

13

The equations of motion for the orbit transfer problem can be

expressed by the following set of first-order differential equations:

r
.
v

m

where

Cc

¥

g(r) + ag

-T/c

position vector

velocity vector

(2.2.1)

= acceleration vector due to gravity

T/m = acceleration due to the thrust, T

acceleration (or thrust) direction unit vector

mass of the spacecraft

characteristic exhaust velocity.

A performance index, J, which minimizes the fuel used to perform an

orbit transfer is given by

J = m(to.) -m(tf)

(2.2.2)

where to is the initial time of the orbit transfer and tf is the final

time of the orbit transfer.

The final time t

f

is free subject to the

condition that a maximum of only three burns is allowed.

A thrust or acceleration limit during the orbit transfer can be

represented by either

< <
0sT=T

(2.2.3)



14

whefé T 'is the maximum thrust, or
"~ “max
0<ac<a (2.2.4)
where a .1s the maximum acceleration.

The boundary conditions at to are given by

() = I,
¥e) = ¥,
m(té) = m, (2.2.5)

The b9undary conditions at tf can be expressed by the following
vector function:

plx(ty), w(t)] = 03 (dim(¥) = q < 6) , (2.2.6)

The problem is to find the optimal time histories of 2 and T (i.e., the
optimal control history) to minimize the performance index J subject to the
constraints given by (2.2.1), (2.2.3) or (2.2.4), (2.2.5), and (2.2.6).

2.3 THE NECESSARY CONDITIONS

2.3.1 The General Problem

Our problem can be formulated as a Mayer problem in the calculus of
"~ variations. Ihe analysis will be simplified if we generalize our notation
by using state vector control notation. Written in this notation, the
problem is to minimize
J = ¢[§jtf)] . (2.3.1)
with respect to u(t), subject to the equations of motion

x(t) = f£[x(t), w(e)]; x(g)), £ given; t <t <t (2.3.2)
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the inequaiity constraint

Clu(v),t] < 0, (2.3.3)
and the.terminal boundary conditions

v[x(t)] = 0 (2.3.4)
where 4

Eﬂt) represents a vector of state variables of dimension n

u(t) represents a vector of control variables of dimension m

£ represents a vector of functions of dimension n

c represents a vector of constraint functions of dimension
k<m-1

Y represents a vector of constraint functions of dimension

q;i n-1

The subscripts 'o' and 'f' indicate evaluation at the initial and final
values of the independent>variab1e t, respectively.

The necessary conditions to minimize J are most conveniently expressed
in terms of the auxiliary functions

B o= ATf | (2.3.5)
(known as the Hamiltonian) and

3 = ¢+ v U : (2.3.6)
where

A(t) represents a vector of continuous Lagrange multipliers (also

known as adjoint variables) of dimension n



"‘_y_ Tepresents a vector of constant Lagrange multipliers of
dimension q

The first-order necessary conditions [18] then may be expressed as

x = f ©(2.3.7)
_x_(to), t, given (2.3.8)
i[i(tf). tf] = 0 (2.3.9)
T
: 9H
l = - (-3—5-) (2.3.10)
sac \T ‘
JH T ——— =
<‘aTI U B ) 0 (2.3.11)
>0, Ci =0
ui(t) ’ (2.3.12a)
=0 Ci <0
C [u(t), t] <O T (2.3.12b)

where ,_1_1_(1:) representé a vector of continuous Lagrange multipliers of

dimension k and the subscript 'i' denotes an element of a vector;

' T
T . . oy 2.3.13
aep - (B) - (S @212



:H(tf)> =0 . (2.3.14)
Equations (2.3.11) and (2.3.12) may be replaced by Pontryagin's "Minimum
Principlé" which states that H must be minimized over the set of all
possible u. Equations (2.3.13) and (2.3.14) are called the transversality
conditions.

Equations (2.3.7) to (2.3.14) constitute a well-posed two-point
boundary-value problem (T?BV?). Equation (2.3.11) and the equalities in
equation (2.3.12) represent mtk conditions for determining the m component
vector u(t) and the k component vector u(t). The solution to the 2n
differential equatioﬁs (2.3.7) and (2.3.10) and the choice of the (g+l)
parameters v and t. are determined by the (n+q) boundary conditions
(2.3.8) and (2.3.9) and the (nt+l) transversality conditioms (2.3.13) and
(2.3.14).

This (n+l) dimensional TPBVP can be put in a more convenient form and
reduced to an n dimensional problem by reformulating transversality
conditions (2.3.13) and (2.3.14) and by making use of the fact that, in

general, t_ can be determined from one component of equation (2.3.9). If

£

we denote this component by ¢o[§ﬁtf), tf] and the remaining (q-1)

components by'ﬂlgﬁtf),tf], then (2.3.9) can be written as
v [x(tg), t] = O (2.3.15)
Elfﬂtf), tf] = 0 (2.3.16a)
Now, equations (2.3.13) and (2.3.14) represent (mtl) equations in the

q unknown constant Lagrange multipliers V. Any q of these equations which
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are liﬁearly>independent in the v's can be solved for these unknown v'sf
These valpes can then be substituted into the remaining equations yielding
(n+1-gq) fiansversal*;y functions. This reduction can be done either
analytically'dr numerically [16]. The net result is that conditions
(2.3.13) and (2.3.14) can be replaced by

Tix(e), Me0l = 0 | (2.3.16b)
where.I_represents an (n + 1 - q) vector of transversality functions., The n
dimensional TPBVP theﬁ is to determine the n variables 2§to) to satisfy
the n boundary conditions (2.3.16).

2.3.2 The Thrust-Limited Problem

The necessary conditions to minimize J for the general problem have
been given in the previous section. They can be easily specialized to the

thrust-limited problem by making the following assignments:

r A
X ={v 2 A N
S e L e o U2 L 2
m A
, m (2.3.17)
v
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The Hamiltonian is thus

B o= AL

T T
P YA g(n) + T/m -\ T/e (2.3.18)

The optimality conditions corresponding to (2.3.11) and (2.3.12) can
be most easily~obtained from the "Minimum Principle”. For H to be minimized

with respect to_& it follows that

v = 1 O (2.3.19)

This result, that f_must be parallel to lv’ was first found by Lawden [2],
who designated lv as the primer vector. Inmserting (2.3.19) into (2.3.18)

and éimplifying yields the following expression for H:

A A
H A_v+A g(x) < ) (2.3.20)

The Hamiltonian is minimized with respect to T, subject to the control

inequality constraint (2.2.3), only if
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- . £ A A
T = 0 when < + B) < o0
m c
: xv km
T = T when — 4+ —J > 0 (2.3.21)
: max- m c
= [ A A
0<T<T ,when —~ + B ) = 0 for a finite time
max m c
Previous aﬁthors have designated
A p\ .
KT = v L, n (2.3.22)
m c

as the switching function, since its value determines whether the thrust is
“"on” or "off". KT <0, KT > 0, and KT = 0 for a finite time
correspond to coast arcs, maximum—thrust arcs, and intermediate-thrust arcs
respectively. The requirement that KT = 0 for a finite time for
intermediate—thrust arcs is made because it is possible that KT = 0 only
instantaneously at the "switch times” — the times when T changes
instantaneously from 0 to T or from T to O.
- . max max
The differential equations for A , A | and A are found by
-’ —v m

taking the negative partial derivatives of H with respect to r, v, and m
respectively. Thus,

("Ti(r))r = ‘(’a&)T A ~ (2.3.23)
-7 — -8-? -V

A
--—I‘

[}
-
1
il
%

i A
v ~r



_ .
A= o=A, &5 : (2.3.24)
m

It is interesting to note that since g(r) is obtained by differentiating a

_ g
potential function with respect to.E,-g; is a symmetric matrix.

The transversality conditions corresponding to equations (2.3.13) and

(2.3.14) are given by

[ /oy \T T
L | vry
L V= t=t,
(2.3.25)
AL AV
t-—tf
[ 3(m(t ) - m(t,))
A _(e) = o £ ] (2.3.26)
m am = _1
- t=t
£
H(t,) =0 (2.3.27)

Following the procedure for the general problem in the previous section, the
transversality conditions given by (2.3.25) and (2.3.27) can be reduced to a
set of (n—q) transversality functions given by

T x(ep), w(tp), A(t), A ()] = 0 (2.3.28)

In summary, a set of necessary conditions to minimize J is given by



r=x
v = g(x) + T/mg dimension 7
m = - T/e
i , (2.3.29)
. (a_g_) .
Ao=~[—=1] 2
= 3L v
A-v = - A-r dimension 7
: 2
A= o=, T/m J
2 = - A /A ]
- —v/ v
= = A A <
T 0 when KT v/m + m/c: 0
_ 4 (2.3.30)
T = T . vhen Ry = )\v/m + Xm/c >0
Q<Tcx« Imax when Kr = Xv/m + 3\m/c = 0 for finite time 4
Cx(e) = x_, vt ) =9, m(t ) = m_, t given (2.3.31)
v [z(ep), w(x)] =0 dimension (g -1) <5 )
Tlxe.),v(t),n, () A, (t)]1=0 dimension (6 - q + 1) L (2.3.32)

: ;\m(tf) = =1
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Assuming KT‘f'O for a finite time, this is a well-posed TPBVP with 7
search variables - Ar(to), Av(to) and Am(to) - to determine so
as to satisfy the 7 boundary conditions (2.3.32). (The fipal time te 1s
determined fr&m wo the component of Y not included in‘i.) When KT =0
for a finite period of time, the problem is singula£ since T cannot be
determined from the given set of equations.

The existence of singular or intermediate—thrust arcs has been
investigated by a number of authors, and found to depend on the form of the
gravity acceleration vectorig(z) and the choice of boundary conditions. The
results of these investigations and their bearing on solving practical
problems are detailed in Section 2.4.

It is advantageous to note that since H does not depend explicitly on
time, é = 0 on the optimal trajectory. Thus, from (2.3.27), H = 0 on the
optimal trajectory, and the number of search variables and boundary
conditions can be reduced by one.

2.3.3 The Acceleration - Limited Problem

The necessary c&nditions for the accelérationrlimited problem are very
similar to those just obtained for the thrust-limited problem. The
differences arise because the acceleration, i.e., T/m, is treated as a
control variable instead of T. Rewriting (2.3.20) where we have substituted

ma for T ylelds



A_m
_ . T T m (2.3.33)
B=2v+2 780 - O, + —)a

Thus, H is minimized with respect to a, subject to (2.2.4), only if

A m )
a=0 when (A + ——) <0
Ao | 34
a = amax when (Av + —c—) > 0 > {2.3. )
)‘mm
0 <ac< a « when (Av + — ) = 0 for a finite time

Here we designate the switching function Ka as

A_m-
a . c

and note that it is identical tom KT’ i.e., Ka = mKT.

The differential equations :Eor:ir and lv will not change from

those found for the thrust-~limited problem and are given by (2.3.23). The
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differential equation for Am’ however, will be different and is found to be

Y =3 2 = T
Am Am c Am vy (2.3.36)

The transﬁersality conditions are the same as those previously given
by (2.3.25), (2.3.26) and (2.3.27). Hence the transversality functions
(2.3.28) afe also valid for this problem.

In summary, a set of necessary conditions to minimize J for the

acceleration-limited problem is given by

dimension 7

| <
]
ba
—~
H
S’
+
r]
F)

le
1]
I
B
~
0

L (2.3.37)

dimension 7

E)J- é)—'n Ay-
L]
1
-



L = - X /A
: /A,
a = 0 when K =
a
a = a when K =
max a
0 <ac<a when »Ka

¥ [x(e), ()] = 0

Tix(e),v(e)od (2.2 (£)] = 0 dimension (6-q+1)

Am(tf) = -1

26

3
<0
[ (2.3.38)
>0
= 0 for a finite time
J
to given (2.3.39)
dimension (g-1) <5
(2.3.40)



 As fof the thrust-limited problem, this is a well-posed TPBVP except
when Ka f O for a finite period of time. The possibilities of both
intermediate thrust and acceleration (i.e., singular) arcs will be treated
in the next section.

(An equivalent set of necessary condifions excluding the o and Rm
equations also exists for the acceleration—limited problem. This is
possible because, as can easily be verified, (k;m) = 0 and thus lmm =
~constant., Normalizing the mass such that m(tf) = 1 will allow one to find
the optimal control without using the m and im equations. This result
could have been directly obtained if the equivalent performance index
1= lafm(t )] - la[m(t,)] had been used.)

2.4 THE POSSIBILITY OF SINGULAR ARCS

Rather than treat the thrust and acceleration cases separately, we
can, by generalizing our notat;on, treat both cases together. Let u denote
the scalar control variable T or a. From (2.3.20), (2.3.22) and (2.3.33),
(2.3.35), we find that

-g% = =~ K, for the thrust-limited case, (2.4.1)
oH

e - " K for the acceleration-limited case. - (2.4.2)
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o : oH o
We can thus regard 3; as a general switch function with é%% = 0 for a

finite time as the criterion for a singular arc. Not only is éﬁ; = 0Oona

singular are, but so are all the time derivatives of %% . Taking time

derivatives of L shows that

Ju
at /sm (). i)
— (3—) = - KT = - AV )m = (0 on Intermediate-Thrust
att V¢ arc (2.4.3)
¢t /o (i) (i)
—_ (———) = - K = = A = (0 on Intermediate-Acceleration
dtl u a v

arc (2.4.4)

where i > 1 denotes the iEE time derivative. Thus we see that the

existence of singular arcs depends only on the time history oflv.
A necessary condition for the optimality of singular arcs known as the

generalized Legendre*Clebséh condition (Kelley-Contensou test) is
. 2p
P 2 4 (?_12) ;
( ;L) du [dtZP au 20 (2.4.5)

for a minimization problem {17]. Since the mass, m, is always positive for

a physical problem, we see from (2.4.3) and (2.4.4) that for both the
thrust-limited and acceleration~limited problems, this necessary conditionm

can be expressed as



(-l)p ,_52_ [Av'(ZP)] < 0 | . (2,4.6)

—

The iﬁtegér p-is thé order of the singularity (although Bryson and Ho [18]
give tﬁis label to 2p) and is determined by taking successive time
derivatives of ‘2‘5‘ » or equivalently )'v’ until the control u appears.
Not only does this differentiation procedure give twice the order of the
sivngularity,v but it also allows us to find an expression for u on the
singular arc. Four successive differentiations of Av and use of either

(2.3.29) and (2.4.3) or (2.3.37) and (2.4.4) yield [21]

T
0 = _A_v A 2.4.7)
BE'T
0 = 2% —-) A+ A Ta (2.4.8)
-~ 31:_ -V —r -—r .

: ag\ T og \T
- 8 T | - T (2.4.9)
0 B__ [2‘-‘: <8r> A\r ] A4 43'\7 <8r > l;':

0 = - L a@ 3 A, A) +WGE v, AL A (2.4.10)



Thus, for both the thrust-limited and acceleration-limited problem,

P=2 and the thrust on a singular arc is given by

(2.4.11)

Also, for both problems, we find by inserting (2.4.10) into (2.4.6)
that the necessary condition for optimality of the singular arc becomes

oz, v,2 1) >0 (2.4.12)

Because T is non-negative and bounded, (2.4.11) implies that if W and
q are not simultaneously zero, then (2.4.12) can be strengthened to

q(z,¥,2 L1) >0 (2.4.13)
and in addition

W(_z;,_g,&r,_)lv) >0 ‘ (2.4.14)
on a singulér arc.

The question as to whether optimal singular arcs exist for the orbit
transfer problem has been investigated by a number of authors [2, 17-29]
over the past 20 years. This investigation has been concentrated in two
distinct areas — the existence and characterization of regions inr - v

space where the above necessary conditions are satisfied and the existence
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and chéractérization of necessary conditions at -the junctions joining
nonsingu;ar and singular arcs. -

‘With regard to the first area, La%den [2] first proposed a singular
arc for the'ffee terminal time case where the gravity acceleration
magﬁitude, g(r); is of the forﬁ 1/r2 (i.e., a "spherical earth". gravity). The
singular arc trajectory takes the form of a spiral coplanar transfer and has
become known as Lawden's spiral. Robbins [21] and others, [22], have since
proved that Lawden's spiral is not optimal., Archenti and Vinh [23] later
showed that in the equatorial plane of an "oblate earth” where g(r) =
-f(1/r2, l/rh), Lawden's spiral may be optimal. But Teschner [25] then
showed that this was true only if a circular coasting arc did not form any
part of the optimal trajectory. Teschner expanded this result to include
any coplanar transfer in which g(r)/r is a monotonic decreasing fumction
‘with r. To date, the author is unaware of any investigation into the
optimality of three~dimensional singular arcs.

Robbins [21] first considered the junction conditions for the orbit
transfer problem and felt it probable that oﬁly for certain special boundary
conditions would a singular arc exist, with the consequence that the thrust
on the nonsingular arc would alternate Between~zerd and its maximum value at
an infinite frequency. McDanell and Powers [27] provided additional insight
into junction conditions by clarify{hg and extending the necessary

conditions concerning the continuity and smoothness of a piecewise analytic
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optiﬁal coﬁtrol at a junction. New necessary conditions were also provided
to aid in characterizing problems which might possess nonanalytic

junctioqs. *McDanell and Powers stated‘that their conditions assuming
plecewise anélytic control would probably not apply to singular arcs of even
order since their experience indicated that 5unctions for these singular
arcs were nonanalytic. Breakwell and Dixon [28] made a notable contribution
by completely characterizing the junction conditions for the orbit transfer
problem. Through consideration of the secondary accessory minimum problem
(i.e., minimization of the second variation of the performance index) they
éhowed that the singular surface is a four—-dimensional manifold in a
six-dimensional state space obtained through a coordinate transformation on
Y and v. To maintain continuity of the state variables for gemeral boundary
conditions, a short period of strong variations in the acceleration (pr
thrust) is required. The ﬁature of these strong variations - found by
minimizing.the change in the performance index up to (but not including)
third order terms — is characterized by an infinite number of switches
‘between maximum and zero thrust during the short period. Thus, the
suspicions of Robbins were verified. Bershchanskii {29] later generalized
this result for any optimal control problem having an even order of singular
control where the control is a bounded scalar. These junction conditions
are physically unrealizable and thus have only a theoretical significance.

A review of the published work therefore shows that an optimal
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three~dimensional singular arc for the orbit transfer problem may exist, but
that it is physically impossible to join this arc to a nonsingular arc.
Thus, the possibility of a singular arc occurring for a practical problem

need not be considered if nonsingular arcs are allowed.
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Chapter 3

SOLUTION OF THE OPTIMAL CONTROL PROBLEM

3.1 CHOICE OF METHOD

Rewriting equations (2.3.1) - (2.3.4), our problem is to minimize
J = ¢[1_-:_(tf)] (3.1.1)

with respect to u(t), subject to the equations of motion

x(t) = £[x(0), m(e)]; x(r), t, givems £ <t <t (3.1.2)
the inequality comnstraint
Clu(t),t] < 0, ’ (3.1.3)
and the terminal boundary conditions
¥ [x(e.)] v
v [r)] = Srsmr ] = 0 , (3.1.4)
(=] =\ 3T |

As was seen in Section 2.3, through use of the first—order necessary
conditions, this problem can be posed as a nonlinear TPBVP:

x = (3.1.5)

Ex,D, £, <t <t
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.t T
A R ) : —
= oH 3.1.

Z [ai(g,y_,__)] , St 2 , (3.1.6)
. 1
V-E(to)’ t° given (3.1.7)
Y[x(t)] = 0 (3.1.8)
Tix(te), Altd)] =0 (3.1.9)
te determined from wo[zﬁtf)] =0 (3.1.10)

where '
E o= AT £ (x,u) (3.1.11)
E = arg min(H) subject to C(u,t) < O (3.1.12)
u

Blank and vShinar [{30] have performed a recent study and comparison of
four basic methods to solve this type of problem. These four methods
consisted of a direct methbd - the sequential gradient projection—
restoration algorithm (SGPRA) - and three indirect methods — the modified
quasilinearization algorithm (QUASIM), the Neighboring Extremals Algorithm
"(NEEXT), and the Direct Shooting Algorithm (DSA).

Blank and Shiﬁar tabulated the main characteristics of the algoritims

as follows:
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Table 3.1 Comparison of Algorithms

: Computer Convergence Convergence
Method Implementation Formulation Storage Sensitivity Speed

SGPRA complex simple high very good Initial: high
Terminal: low
QUASIM simple complex high poor high
NEEXT simple complex low poor high
' DSA very simple very simple low good Initial: low

Terminal: high

Convergence sensitivity, or robustness, (i.e. the capability of the
algorithm to converge for poor initial guesses) and convergence épeed are
measures of the computational efficiency of the optimization algoritlm. For
problems with noncontinuous control, such as thrust switches, Blank and
" Shinar advocate using a combination algorithm of SGPRA and DSA. (The
second-order methods QUASIM and NEEXT cannot be used directly if the control
is discontinuous.) This combination would result in very good computational
efficienﬁy, bdt‘at the expense of implementation, formulation, and computer
storage.

A better approach, if it can be found, might be to modify the DSA
method in such a way as to preserve the good characteristics and improve the

convergence sensitivity and the initial convergence speed.
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Avéandidate approach presented by Hersom, Dixon, Bartholomew-Biggs, and
Pocha [11] for solving orbit transfer problems converts the indirect DSA
method into a‘hybrid (i.e. combination of indirect and direct) nonlinear
programming (HﬁLP) method which is even simpler to implement and formulate,
The HNLP method ;hould be more robust than the DSA method since it minimizes
the performagce index directly as will be seen below,

Hersom, et al, include another modification first presented by Dixon
and Biggs [31], called an Ad joint-Control Transformation (ACT), which has
been found to increase both robustness and convergence speed when applied to
the DSA method. The ACT will be discussed in Section 3.3.

Incorporating both modifications results in a method (which will be
referred to as the HNLP/ACT method) which eliminates the faults and improves
the advantages of the DSA method. The HNLP method, in fact, offers a
solution technique for many quite general optimal control problems with a
minimum of effort, by taking advantage of the excellent NLP algorithms
developed over the years.

The next section presents an aﬁalysis of the HNLP method for a class of

general optimal control problems.

3.2 THE HYBRID NONLINEAR PROGRAMMING (HNLP)AHETHOD‘

The DSA method for solving the TPBVP given by equations (3.1.5) -
(3.1.12) is an iterative technique for improving estimates of iﬂto) (the

search or optimization variables) so as to satisfy the specified terminal



conditions,iequations (3.1.8) and (3.1.9). Two basic approaches exist for
implementing this technique. The first approach considers ¥ and T as
implicit fumctions of }ﬁto) and finds the simultaneous solution of the set

of nonlinear equations ¥ = 0 and T = 0 by some modification of Newton's

method. This épproach can be posed as:

Find lﬂto)
such that {f;_[?‘_(to)] =0 (3.2.1)
=0

TA (e )]
The second approach [32] considers the cumulative error in the terminal
conditions as an implicit function of iﬂto) and finds the minimum of this
error function through use of an NLP algorithm. At the minimum of the error
function.£ = 0and T = 0. If the error function is of the form
E(ACe)] = $IACE )] + T'T [ACe )],
then this second approach éan be posed as the following NLP problem:
| min {97 (e )]+ TT ace 1] (3.2.2)
Ae))
Various combinations of these two approaches can also be used to
formulate the problem. One such formulation might be to pose it as:
min T'T ()]
Ale) (3.2.3)
such that ‘Ml(to)] =0

It is this formulation which suggests the HNLP methed.



Tﬂe HNLf method is very similar to the DSA formulation of (3.2.3) but
differs in one important respect. Instead of minimizing the cumulative
error in the ‘transversality functions, the HNLP method directly minimizes
the performanée index, equation (3.1.1). 1In other words, the HNLP method
considers ¢ andli as implicit functions of jﬂto) and poses the NLP problem
as:

min $[A(t )]
Ay (3.2.4)
such that i[L(to)] =0

By posing the problem this way, the transversality functions are
implicitly satisfied by the NLP algorithm at the solution; hence, they do
not even have to be derived. Thus, if the HNLP method is used to solve the
optimal control problem given by (3.1.1) - (3.1.4), then the only additional
equations which need be derived are (3.1.6), (3.1.11) and (3.1.12).

Besides being easier to implement and formulate, the HNLP method has
one other advantage over the DSA method. Because the performance index,
rather than an error function obtained from the first order variation of the
performance index, is being minimized directly, a larger convergence domain
should exist. That is, the method should be more robust.

The next section details a transformation of the optimization variables

which has been shown to also increase robustness.



3.3 THE ADJOINT - CONTROL TRANSFORMATION ACT

As we have seen, the solution to an optimal control problem by the HNLP
(or DSA) me thod involvés finding the values of the initial adjoint
variables, jgt;), which satisfy the first order necessary conditions. We
will call these #ariables the optimizétion vériables and denote their
optimum value by_ﬁ*(to). The function of the NLP algoritlm then, 1s to
findlif(to) beginning from some initial guess for the optimization
variables which we will denote by i?(to). .

Unfortunately, systems of state and adjoint equations have the
characteristic that terminal conditions are often very sensitive to changes
in_iﬁto). Thus, a poor choice for é?(to) could result in very iarge
terminai condition errors. This accounts for the low initial convergence
sbeed and lackluster convergence sensitivity of the DSA method. Dixom et al
[31] have found, however, thét both of these performance criteria can be
improved thfough use of an Adjoint—Control Transformation (ACT), which
results in initial values of control variables and their derivatives being
used as the optimization variables instead of’&ﬂto).

The use of control related variables rather than‘iﬁto) as the
optimization variables is also desirable from the standpoint of good initial
guesses., Mathematically, iﬂto) is the influence vector on J, the optimal
performance index, of changes in the initial conditions of the state

variables, i.e.



41

T
Mep (a:%) -
° =0

While this may offer some physical insight into the nature of éﬁto), it is
not verf useful for providing good initial guesses. Control-related
variébles,voﬁ the other hand, typically have much greater physical
significance. Their optimal values can usually be reasonably well estimated
based on the physical insights gained from the solutions of related problems.
| The ACT for the thrust—-limited problem will be derived using equations
(2.3.29) - (2.3.32). The results obtained will also apply for the
acceleration-limited problem.

We first observe that at a switch point, i.,e.,, when t=ts, the
switching function KT is zero. Thus

mkm
Av(ts) = — (3.3.1)

Also, we observe that lv can be expressed as the following function of £:
A = =2 8 :
2 v 2 (3.3.2)
Herce, if %(t ) is known, A (t.) can be found from (3.3.2), i.e.,
A = =X '3 .3.
—v(ts) v(ts)__(ts)- (3.3.3)
We next attempt to find.ér(ts) in terms of control related

variables. From (2.2.27) we see that

- - (3.3.4)



42

Differentiatiné (3.3.2) and combining the result with the above equation
yie1d$ 

Ay T AL+ 2 (3.3.5)

We would have our desired result if kv(ts) were known. Since the
Hamiltonian H is zero on the optimal trajectory, we know that at a switch

point

T T
(&TX'+.iv_§ )t = 0.
s

(3.3.6)

Substituting forlﬁr from (3.3.5) andiv from (3.3.2) and rearranging

P
gives v
T T
v - Rﬂg
) = - ——— 3.3.7)
A, (tg) A, e) T (
v t
- - s
Thus, from (3.3.5)
«T T
v fv-21tg . o
A (e) = = (t) L - 2 (3.3.8)
s T -2
Ly e

The ACT, therefore, consists of (3.3.1), (3.3.3), and (3.3.8). These
equations apply for both the thrust—limited and acceleration-limited
; : A
problems. Assuming v(ts) can be computed,_lr(ts)and lv(ts) can
be found from.&jts) and éﬁts) - the thrust pointing vector and the

derivative of the thrust pointing vector. Since £ is a unit vector it is



possibie to‘éxpress both £ and é-as functions of two pointing angles and
their derivatives, i.e. £ = % (o,B ) and_é -_é (o, B, &, é).

-The computation of Av(ts) deserves further consideration. Since
m(to) is given; m(ts) can be obtained by numerically integrating the m
equation forﬁard; This cannot be done, however, for %n(ts) since

'lm(to) is not known. We do know, though, that ﬁm(tf) = -1. Also

since lm-: 0, we know that %m like m, is a monotonically decreasing

function. If ts denotes the time when the switch function first becomes
1

positive (i.e., the ignition time of the first burn), then t, < tg -
| - 1

Since m and Am are zero when the thrust is zero,
m(to) m(tsl) v(tsl) c/mo.
Since Av =|Av| and must be nonzero at tg for the control to be

1
defined, we can deduce that X (t ) < 0 and therefore 0 > A (t) > -1 for

t <t<t

o An analysis of the adjoint equations in either (2.3.29) or

f.
(2.3.37) reveals that they can be normalized by Ilm(to)l without
affecting the computation of the control. We will therefore have an equally
valid set of first order necessary conditionsbby specifying that

Am(to) = -] instead of Am(tf) = .1, Thus lm(ts) can be obtained,

like m(ts), by numerically integrating forward the Xm equation from
Am(t°)= -1, and so Av(ts) can be computed for a given ts. Since
t_ ~is not usually known apriori, it would have to be included with the

s
1
optimization variables.
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3.4 HNLP/ACT PROBLEM FORMULATION

The HNLP/ACT method for the solution of the thrust-limited or
acceleration~limited optimal control orbit transfer problem can be
' N

formulated as follows:

Min :[m(to) - m(t)]
z

such tflat "‘;_[g(tf), ¥(t)] =0

where the vector z of optimization variables is given by

ﬁ(tsl)\ | > o (3.4.1)
)

B(t

\t /) J

and where _"i and [m(to) - m(tf)] are related to the optimization variables
through X

r = v

v = g(x) +T/m2

m = -T/c

. eg \ T :

A= - (E) A, $t51: £ <t

l.'v = -

1 = [— A, Tlm2 for thrust-limited case

- A T/mc for acceleration-limited case

y




= 0 when A + —]::— <0
T ¢ for thrust-limited case
A m
= T when A + —— >0
L c
( - Am
0 when A+ ~—%—— <0
T 1 ‘ for acceleration-limited case
)\mm
L= ma when A + — > 0
v c

with _{(tsl), X(tsl), m(tsl), Am(tsl) computed from

r = v () =1z,
v = g@@ ,¥t)=v

T >t SElEg
m = 0 ,m(tc)=‘mo 1

A = 0 , Am(to) = -1

and _Xr(tsl), _):v(tsl) computed from

ytsl) = if“(tsl)' B(tsl)]

_2_.(1:51) = _sa_[u(tsl), B(tsl), u(tsl), B(tsl)]



_m(Fsl) A )

xv(tsl) S
_&TV -_ ZTE -
A (e ) = - (£ )| —— L-2
r s1 _ v sl lTv
1

Afeg) = ALy ace, )

Instead of using the switching function to determine the number of
burns, it is much more convenient to specify the number of burmns a priori,
This is easily done by including the ignition and burnout times for the
burns as optimization variables. In addition, one could also use the ACT to,
reinitialize the adjoint equations at the beginning of each burn. This may
prove helpful if some insightful information is known about the pointing of
the thrust vector during the buras,

Although not required, additional constraints may also be included in
the formulation to help "guide” the optimization process toward the optimal
solution. .Examples of such constraints are réquirements that the switching
function be zero at the beginning and end of each burn.

These decisions must be based on the accuracy of initial guesses and
the characteristics of the NLP algoritlm. ' One of the advantages of the HNLP
method is that various combinations of op;imization variables and
constraints can be tried until a proper "mix" of robustness and convergence

speed are obtained.



Chapter 4

NUMERICAL RESULTS FOR SEVERAL CLASSES OF ORBIT TRANSFERS

4.1 SPECIFICATION OF PROGRAM PARAMETERS AND TECHNIQUES

4.1.1 Earth and Spacecraft Constants

A spherical, non-rotating earth model was used for this study. Thus

the gravity vector referred to in equation (2.2.1) is given by

gx) ==Y » ' (4.1.1)
r

where M is the earth gravitational constant. The values used for earth
radius, Tos and U were
re = 20925721.78 feat (6378160 meters)

p = 1.407653916 x 101 2

ft3/sec
To faciiitate comparisons with earlier studies, the specific impulse of
the spacecraft was chosen to be 450 secs.

£,1.2 . Integratoi and Propagator

During periods of nonzero thrust, the equations of motion were

- numerically integrated using an.Adams—Moulton, variable step, eighth order
integration scheme. The scheme chooses the step size to maintain the
estimated error below a given upper bound. The estimated error is computed

in such a way that for magnitudes of the integration variables greater or



less tﬁan one, the ‘error is, respectively, a relative or absolute measure
'of the accuracy. The upper bound used for this study was 10—9.

Duriﬁg coast phases (i.e., periods of zero thrust) the system of
equations given by (2.3.29) for the thrust-limited case and (2.3.37) for the
acceleration-limifed case are identical. Inspection of these equations
reveals that m and lm remain constant during a coast. Use of (4.1.1) for
the gravity vector allows the remaining equations to be analytically
integrated. The details of this procedure have been given by Vinh [33].
The independent variable used to propagate r, v, —J‘r’ and A, was chosen
to be the coast angle. The corresponding coast time is easily computed
using Kepler's equation.

The use of a propagator during the coast phases resulted in a
significant savings in computation costs, since the coast arcs were usually
quite large.

4.1.3 The NLP Algorithm

The NLP algorithm used in this study was developed by J.T. Betts and is
described in detail in Reference 34ﬁ The genéral features of the algoritim
allow it to solve problems containing both equality and inequaiity
constraints. Betts uses an approach which does not require explicit
evaluation of gradient information. Thus implementation and formulation of
an NLP problem is straightforward and simple. A central feature of the

method is the use of an orthogonal decomposition of the problem Vvariables
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into hoptiﬁization" and “"constraint elimination” variables. The constraint
elimination is accomplished using a generalized secant method in the
transfof&ed*variables. A finite difference Newton method is used to perfo;m
the unconstrained minimization process. The overall solution to the NLP
problem requirés solving a sequence of equality constrained problems defined
by an active set strategy.

Numerical experience with the algorithm indicates that it is among the
best of the available methods for solving the general NLP problem. Thus,
selection of this algorithm is an appropfia&e choice for use in solving the

problems described in this chapter.

4.1.4 Choice of Variables and Constraints

4,1.4,1 Choice of Variables

The selection of variables and constraints was predicated, to a large
degree, on the behavior of‘the switching function K (i.e., KT for the
thrust-limited problem and Ka for the acceleration—limited problem). For
a typical optimal finite 3~burn orbit transfer, the switching function
‘behaves as illustrated in Figure 6. In general it was found, however, that
the behavior of the switching function was very sensitive to the initial
values of the adjoint variables. It was not unusual for a given initial
guess to cause K to remain completely positive or negative during several
revolutions of the spacecraft about the earth. This sensitivity makes K a
very undesirable parameter for determining when to thrust or coast. A much

more
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Figure 6. Optimal Form of Switching Function

BURNS

time

COASTS




robustitechni§ue is to introduce burn times and coast times (or angles) as
additional variables in the problem. The optimization algorithm will choose
thesevvariables so that at the solution the switching function will be
positiﬁe during the burns and negative during the coasts. A word of caution
must be made aboﬁt this technique, however. The optimization procedure is
capable of removing nomnoptimal burns or coasts, but is not able to "add in”
optimal ones. Thus, the problem must be formulated with the maximum number
of burns which will insure an optimal solution. Due to the nature of the
present study, this requirement resulted in two additional coast times and
three burn times being included among the vector z of optimization variables
given in (3.4.1).

Included among the optimization variables of (3.4.1) are the pointing
angles @ and B and their time derivatives a and é. These angles are the
pitch and yaw angles, respectively, of an Euler yaw, pitch, roll sequence
from a given.reference frame to the spacecréft body frame. The spacecraft
body frame is a righthanded coordinate frame with the positive x—axis
directed along the thrﬁst vector. It should Be noted that since we are only
interested in the orlentation of the thrust vector with respect to the
reference frame, the roll angle may be ignored. Any of the three coordinate
frames depicted in Figures 1, 4 and 5 are appropriate reference frames.
Hereafter, the reference frame used will be denoted by using a mnemonic for

the frame as a subscript.



As mentioned earlier, the optimization variables include coast times.
Coast angles, however, could just as easily be used. In fact, since the use
of coast angles rather than coast times makes it easier to visualize the
movement of a.spacecraft during a coast, the coast angles rather than the
times were the p£eferred optimization variables.

Prior to solving an optimal finite burn orbit transfer problem, the
geometricaliy similar impulsive burn orbit transfer problem was solved using
the NLP algoritim. The optimization variables for this problem consisted of
the impulsive velocity increments and pointing angles for each burn and the
coast angles. Once the solution was obtained, this impuléive (i.e.,
infinite initial thrust to weight ratio) burn solution served as the initial
guess for the high thrust (i.e., initial thrust to weight ratio of one)
finite burn problem. Rather than using the impulsive burm solution to only
initialize the adjoint equations (through the ACT) at the beginning of the
ttajectory,‘it was found to be much more advantageous to reinitialize the
adjoint equations at the beginning of every burm. Although this involved
using more optimization variables, greater control was maintained over the
type of initial trajectory which was flown. After the optimization had
progressed for awhile, this reinitialization procedure was discontinued.

4.1.4.2 Choice of Constraints

Besides the set of terminal constraints given by _‘ﬂ[_{(tf, Z(tf)] =0,

additional constraints, although not required, were included in the problem



formulétion to help "guide” the optimization process toward the optimal
solution. These additional constraints consisted of requirements that the
switching>funetion be zero at the beginning and end of each burn. Inclusion
of these "switching constraints” resulted in a dramatic improvement in the
convergence speediof the optimization algorithm. An analysis of the
behavior of the Hamiltonlan during the optimization process offers a
pOssible\expianation for this improvement.

Using equations (2.3.29) through (2.3.32), it is not difficult to show

that the time derivative of the Hamiltonian, H, is given by

H = KTT : (4.1.2)
where T may include delta functions. Thus H(tf) is given by
]
H(t,) = H(t ) + E Kp(t ) AT(t,) (4.1.3)
i=1

where t, denotes a switch point and j is the total number of switch
points. The ﬁalue of AT will be either T or =T depending on

max max
whether the switch point is between a coast and a burn or a burn and a
cqést. We thus see thét on a nonoptimal trajectory, H is given by a step
function with the sizes and directions of the “steps” determined by the

values of-AT and K, at the switch points. AnAoptimai trajectory would of

T
course have all the KT(ti) zero, It should also be noted that since H=0
on the optimal trajectory, we can set H(to) = 0. The requirement that H=0

on the trajectory can thus be formulated as the following problem:



Find ti

such»that KT(ﬁi) =0

Hgnce, the inclusion of the switching constraints in the problem which
uses burn times and coast times (or angles) as optimization variables is
equivalent to reéuiring that H=0 on the optimal trajectory. The explicit
statement of this constraint, which is actually a transversality condition
and a set of.corner conditions, helps the NLP algorithm find the optimal
solution more quickly probably because the number of implicit transversality

functions which must now be satisfied is decreased by (1+j).

4,2 COMPARISON WITH RESULTS OF REDDING

A comparison with some of the published results of Redding [13] was
made to validate the optimization procedure. Redding found solutions for
optimal finite burn transfers from a 28.5 degree inclined, 119.78 nmi
altitude (corresponding to a 6600 km radius) circular orbit to
Geosynchronous orbit., Although Redding did not present the transfer orbits
or the total velocity increments required, he did present the differences in
the total velocity increments between the impﬁlsive burn transfer and
various finite burn transfers.

Table 2 compares the results obtained in this study with those of
Redding for three values of the initial thrust to weight ratio. The
agreement is exact to the accuracy obtained in reading Redding's values from

curves. The transfer orbits associated with each case are presented in

Table 3.
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Table 2. Comparison with Selected Results of Redding

Results of Current Study . Results of Redding

.(T/W)o Av,(ft/sec) AV (oo (Ft/sec) AV e (ft/sec)

@ 13975.05 0.00 0.
0.500 14000.05 25.00 25.
0.250 14073.12 98.07 98.
0.125 14339.71 364.66 365.

where

ANT = Total velocity increment required to perform transfer

= T . A . . A
A“&DSS lefe;ence between a given VT and thg impulsive VT



56

Table 3. Optimal Transfer Orbits to Geosynchronous Orbit

(M), : © 0.500
INITIAL STATE:

hp (nmi) 119.784 119.784
h, (ami) 119.784 119.784
i(deg) ) 28.500 28.500
Q(deg) _ 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) : 0.000 0.000
STATE AT 15t BURN BURN-OUT:

hp(omi) 119.784 135.320
h,, (nmi) 19364.385 19364.293
ildeg) 26.328 26.353
Q(deg) 0.000 359.996
w(deg) 0.000 0.000
v(deg) 0.000 15.348
u(deg) 0.000 _ 15.348
STATE AT 299 BURN BURN-OUT:

hp (omi ) 19364.384 19364. 384
h,_ (nmi) 19364.384 19364. 384
i(deg) 0.000 0.000
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 180.000 180.327

u(deg) 180.000 180.327

0. 250

119.784
119.784
28.500
0.000
0.000
0.000
0.000

182.165 -

19364.022
26.425
359.967
359.998
29.638
29.636

19364.384
19364.384
0.000
0.000
0.000
180.625
180.625

0.125

119.784
119.784
28.500
0.000
0.000
0.000
0.000

372.479
19362.996

26.644
359.743
359.987

52.493

52.480

19364. 384
19364.384
0.000
0.000
0.000
180.020
180.020



Hafing established the validity of the optimization procedure, several
problems involving larger plane changes were undertaken.

4,3 TRANSFERS BETWEEN A 28,5 DEGREE INCLINED CIRCULAR ORBIT AND 63.4 DEGREE

INCLINED CIRCULAR ORBITS

4.3.1 Thrust~Limited Solutions

v Circular orbits with inclinations of 63.4 degrees and altitudes between
300 and 10906 mmi have utility for both the military and civilian space
programs [15, 35]. A complete investigation of the optimal transfers to
these orbits from a 28.5 degree inclined, 150 mmi altitude circular orbit
was undertaken by finding solutions for six values of final perigee altitude
and five values of initial thrust to weight ratio (T/Wjo. The six final
perigee altitudeﬁ_chosen were 300, 800, 1250, 2500, 5000, and 10900 nmi.
Four of the five.values chosen for (T/W)o were =(i.e., infinity), 1.0,
Q.l, and 0.05. The "fifth" value was different for each final orbit
altitude but was approximately 0.04. This value was found to be the lowest
value of (T/W)o for which the orbit transfers were optimal. Below this
value it was not possible to find a solution of the assumed form which had
the switching function positive during the first burm.

Tables 4 to 8 present the optimum values of the optimization variables,
the corresponding values of the initial adjoint variables, the vglues of the
final thrust to weight ratio (T/W)f, the ratio of the final mass (or

weight) to initial mass (or weight) mflmo , and the total velocity
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incremeﬁt imparted by the burmns for the problems considered.

The following mnemonics are used in the tables to represent the

optimization variables, adjoint variables, and total velocity increment:

ACSTi -

YVIHi -

PVIH, -

DYVIH, -

DPVIHi -
DLTVi -
AVRI, -
AVVI, -

DLTVT -

The tEE coast angle expressed in degrees.

The initial yaw angle in the VIH frame for the LEB burn;

expressed in degrees.

The initial pitch angle in the VIH frame for the iEE
burn; expressed in degrges.

The time derivative of YVIHi expressed in degrees/second.

The time derivative of PVIHi expressed in degrees/second.
The burn time for the LEE burn expressed in seconds.

The velocity 1ncrement imparted by the iEE burn;
expressgd in feet/second.

The LEE comﬁonent of the scaled_ir vector at the
beginning of the first burn,

The iEE component of the scaled__?_t__v vector at the
beginning of the first burn. |

The total velocity increment imparted by all the burms

during the transfer, i.e., the sum of the DLIVi's;

expressed in feet/second.

The adjoint variables are expressed in normalized units, i.e., units in

which lengths are scaled by the earth's radius and velocities are scaled by
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Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

63.4 degree Inclined Circular Orbits with (T/W)o = @

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DLTVl(fps)
ACSTZ(deg)
YVIHZ(deg)
PVIHZ(deg)
DLTVZ(fps)
ACST3(deg)
YVIH3(deg)
PVIH3(deg)
DLIVB(fps)

m,_/m
f o
DLIVT(fps)

0.000
-53.311
0.000
2531.021
180.000
101.949
0.000
9654. 866
180.000
-128.992
0.000
2189.753

0.370498
14375.64

800

0.000
-50.289
0.000
2959.612
186.000

97.913.

0.000
9450.997
180.000
~126.474
0.000
1615.965

0.379539

14026.57

1250

0.000
-47.557
0.000

3286.145

180.000
94.915
0.000
9356.435
180.000
-125.004
0.000
1186.785

0.384744
13829.36

2500

0.000
-40.909
0.000
4010.320
180.000
88.803
0.000
9255.154
180.000
~123.425
-0.005
333.805

0.390907
13599.28

5000

0.000
-29.697
0.000
5260.549
180.000
79.338
0.000
8409.167

-

0.389010
13669.72

10900

0.000
-16.943
0.000
6956.665
180.000
66.885
0.000
7174.575

0.376805
14131.24
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Values of Optimization Variables, Adjoint Variables,

~and Other Parameters for Optimal Thrust-Limited Transfers to

63.4 degree Inclined Circular Orbits with (T/W)O =1.0

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DYVIHl(dps)
DPVIHl(dps)
TBRNl(sec)
ACST,_(deg)
TBRN,(sec)
ACST_ (deg)
TBRN_(sec)

w NN

W

AVRI
AVRI
AVRI
AVVL
AVVI
AVVI

W N = W N

(Tﬂﬂ)f
mf/mo
DLTVT(fps)

-2.503
-53.312
-0.360
0.05750
0.00962
72.943
173.244
182.850
175.619
27.586

- =0.76053

0.01039
0.07266
-0.03550

- =0.25467

-1.77284

2.700739
0.370269
14384.58

800

-2.883
-50.258
-0.385
0.05487
0.00891
83.669
173.497
175.175
176.399
20.445

-0.84830
0.01642
0.08297

=0.04560

-0.34850
~1.75657

2.636032
0.379358
14033.47

1250

-3.171
-47.508
~-0.408
0.05240
0.00859
91.691
173.648
170.238
176.915
15.004

-0.91682
0.02241
0.09027

-0.05420

-0.43210

-1.73765

2.600165
0.384591
13835.12

2500

-3.914
-40.831
-0.480
0.04601
0.00843
108.964
173.850
160.981
177.824
4.197

-1.05592
0.04110
0.10528

-0.77560

-0. 63041

~1.67500

2.558886
0.390795
13603.43

5000

-4,.842
-29.610

-0.665
0.03421
0.00916
137.101
173.843
137.883

=-1.22445
0.07480
0.12064
-0.11072
-0.94296
-1.51909

2.571196
0.388924
13672.91

10960

-6.175
-16.865

-1.037
0.01976
0.11198
171.760
173.047
108.730

—

-1.31573
0.12682
0.12887

-0.15214

-1.25273

2.654703
0.376690
14135.66
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. Table 6. Values of Optimization Variables, Adjoint Variables,

" and Other Parameters for Optimal Thrust-Limited Transfers to

63.4 degree Inclined Circular Orbits with (T/W)O = 0.1

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DYVIHl(dps)
DPVIHl(dps)
TBRNl(sec)
ACST,(deg)
TBRN,(sec)
ACST. (deg)
TBRN, (sec)

w NN

[#]

AVRI
AVRI
AVRI
AVVI
AVVI
AVVI

W N o= W N -

(TIW)f
mf/mo
DLTVT(fps)

-33.515
-46.100

~4.453
-0.00935
0.01065
959.324
119. 364
1534.319
142. 465
408.368

-0.72091
0.17561

1.00506
-0.56784
-0.36081
~1.66026

0.281604
0.355109
14989.85

800

-34.993
~42.423
-4.470
-0.01131
0.01004
1001.842
120.269
1524.562
148.808
326.409

-0.77644
0.24067
1.03090

-0.64165

-0.44463
-1.61234

0.273193
0.366042
14550.82

1250

~36.385
-39.257
-4.604
-0.01268
0.00977
1041.964
120.793
1523.409
153.031
258.411

~-0.81058
0.29946
1.05129
-0.70443
-0.51400
-1.56482

0.268462
0.372492
14297.92

2500

~40.241
-31.958
-5.188
-0.01509
0.00958
1153.436
121.541
1520.889
160.401
111.897

-0.84578
0.44625
1.09538

-0.85416

-0.65679

-1.43112

'0.262578

0.380839
13977.06

5000

~48.254
-21.093
-6.519
-0.01699
0.00949

1384.000.

122.375
1402.300

-0.77998
0.69862
1.14543

-1.10353

-0.79938

-1.16287

0.262590
0.380822
13977.71

10900

-62.507
-8.668
-8.534

-0.01498
0.00882
1789.716
120.784
1061.387

-0.47254
1.04307
1.11396

-1.43081

-0.79036

-0.7329%

0.272910
0.366421
14535.83
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- Table 7. Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)

-78.381
~12.183
-13.340

DYVIH, (dps) -0.05942

DPVIHl(dps) 0.01404

TBRN, (sec)
ACST, (deg)
TBRN_(sec)
ACST,(deg)
TBRN, (sec)

W w NN

AVRI
AVRI
AVRI
AVVI
AVVI
"AWVI

Ww N -

W N e

(Tﬁﬂ)f
mf/mo
DLTVT(fps)

2235.688
71.985
2877.808

112.156
967.600

0.07805

- 0.55737

2.21224
-1.58564
-0.48183
-0.68020

0.154167
0.324323
16302.81

800

-80.078
-9.833
-12.241
-0.05854
0.01124
2285.866
73.614
2830.138
122.987
843.599

0.08563
0.62188
2.16200

-1.63370

-0.44734
-0.58308

0.148007
0.337822
15712.40

1250

~-82.083
~7.439
-11.628
-0.05749
0.00928
2345.497
74.734
2811.621
130.670
729.314

0.11893
0.67815
2.11194
~1.67354
~0.41648
~0.48463

0.144529
0.345952
15368.09

2500

-89.024
-0.797
-11.000
-0.05399
0.00555
2553. 349
76.985
2813.622
145.110
419.377

0.29275
0.79873
1.96655

-1.75223

-0.31500
-0.19886

- 0. 140027

0.357073
14909.99

63.4 degree Inclined Circular Orbits with (TAN)O = 0.05

5000

-102.458
8.185
~10.521
-0.04652
0.00107
2961.518
81.132
2771.151

157.989
30.411

0.66475
0.88623
1.69266
-1.77284
-0.06983
0.24742

0.139021
0.359658
14805.56

10900

-134.926
16.238
-7.324

-0.02372

-0.00471

3965.292
95.148
1934. 468

1.39175
0.73673
0.93168
-1.36906
0.67956
0.93430

0.145150
0. 344471
15430.20
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. Table 8. Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

63.4 degree Inclined Circular Orbits with Minimum Values of (T/W)o

Final hp(nmi) 300

(tM)
) (s}

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DYVIH, (dps)
DPVIHl(dps)
TBRN, (sec)
ACST, (deg)
TBRN, (sec)
ACST, (deg)
TBRN,_ (sec)

W w N b -~

AVRI
AVRI
AVRI
AWVI
AVVI
AVVI

W N = W N

_(T/W)f
mf/mo
DLTVT(fps)

0.039275

-115.633
29.937
-15.650
-0.08004
-0.00797
3191.038
55.633
3533.960
99.113
1240.099

1.09902
0.28897

- 2.07189

-1055676
-0.22535
0.85720

0.128846
0.304823
17200.59

800
0.039545

-115.767
28.076
-13.763
-0.07398
-0.00725
3206:186
58.008
3428.339
111.881
1099.073

1.06328
10.36830

2.01078

~1.56782

-0.14153
0.85497

"0.123429

0.320387
16479.60

1250

0.039829

-116.458

27.038 -

-12.423
-0.06882
-0.00689

3235.206

59.983
3359.261
121.090
973.443

1.05056
0.42685
1.93748
-1.56674
-0.07256
0.86552

0.120630
0.330175
16043.90

2500

0.040603

-121.575
27.042
-10.102
-0.05600
-0.00708
3401.788
64.945
3259.124
139.335
604.222

1.11477
0.51538
1.67238

-1.50279

0.10497

0.96937

"0.117867

0.344482
15429.74

5000

0.041002

~136.653
30.749
-7.147
~0.03605
~0.00883
3906.182
73.074
3143.186
155.878
94.277

1.34629

0.50285
1.13450

=1.21063 -

0.40818
1.25572

0.117450
0.349101
15236.90

10900

0.034888

~218.730
19.434
2.572
0.01791
-0.00602
6277.786
96.627
2377.082

1.40055
~0. 68844
-0.88351
1.11857
0.82867
1.12746

0.106041
0.329006
16095.25
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the cifcular §rbital speed at one earth radius. -

Tables 9 to 13 present the corresponding transfer orbits. These tables
reveal that the first burn of a 3-burm transfer raises apogee; the second
burn, performed near apogee, changes the inclinatidn and raises perigee to
the final orbit altitude; and the third burn lowers apogee to the final
orbit altitude. A typical transfer is depicted in Figure 7. The transition
from a 3-burn to a 2-burn solution occurs when the final orbit altitude is
greater than or equal to the apogee altitude of the transfer orbit resulting
from the first burn. Under these conditions, the necessity of the third
"apogee lowering” burn is removed. Figure 8 attempts to summariie many of
the pertinent characteristics of the problems considered.

Tables 4 to 8 reveal the similarity of the solutions for a given
(T/W)o. This similarity may suggest that using a solution for a given
('I‘/W)o and a given final orbit altitude as an initial guess for a transfer
to a differeﬁt orbit altitude may be quite effective. This was indeed the
case. Cnce one of the solutions for a given (T/W)o was obtained, all the
réét were obtained quife quickly by using thié solution as the initial guess.

fo gain more insight into the nature of the finite burn orbit transfer,
a ”revérse" transfer from the 10900 nmi circular orbit to the 150 mmi
circular orbit was flown for several values of (TYW)O. The optimal
solutions of these transfers are presented in Table 14 and the associated

transfer orbits are presented in Table 15, °"Since the orbital rate during
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Table 9. Transfer Orbits for Optimal Thrust—Limited Transfers

to. 63.4 degree Inclined Circular Orbits with (T/MW), ==

Final,hp(nmi)

300 800
INITIAL STATE:
hy, (nmi) 150.000 150.000
h, (nmi) 150.000 150.000
i{deg) 28.500  28.500
Q(deg) 0.000 0.000
w(deg) ~ 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1St BURN BURN-OUT:
hy, (nmi) 150.000 150.000
h, (nmi) 1215.123  1545.108
i(deg) 32.815 33.271
Q(deg) 0.000 0.000
wldeg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 20d BURN BURN-OUT:
hp (nmi) 300.000 800.000
h, (nmi) 1215.123  1545.108
ildeg) 59.477  60.212
Q(deg) 0.000 0.000
w(deg) 0.000 0.003
 v(deg) 180.000 179.996
u(deg) 180.000 180.000
STATE AT 3*d BURN BURN-OUT:
(nmi) 300.000 800.000
h, (nmi) 300.000 800.000
i?deg) . 63.400 63.400
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.003
u(deg) 0.000 * 0.003

1250

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.000
1851.908
33.520
0.000
0.000
0.000
-0.000

1250.000
1851.908
60.892
0.000
359.999
180.001
180.000

1250.000

1250.000

63.400
0.000
0.000

359.999
359.999

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.000
2724.234
33.779
0.000
0.000
6.000
0.000

2500.000
'2724.234
7 62.591
0.000
359.995
180.004
180.000

2500.000
2500.000
63.400
0.000
0.000
0.000
0.000

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.000
5000.000
33.472
0.000

0.000.

0.000
0.000

5000. 000
5000.000
63.400
0.000
0.000
180.000
180.000

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.000
10900.000
32.120
0.000
0.000
0.000
0.000 -

10900.000
10900.000
63.400
0.000
0.000
180.000
180.000
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Table 10. Transfer Orbits for Optimal Thrust—-Limited Transfers
.63.4 degree Inclined Circular Orbits with (T/MW), =-1.0

to

Final,hp(nmi)

300 800

INITIAL STATE:
hy, (nmi) 150.000 150.000
h, (omi) 150.000 150.000
ildeg) 28.500 28.500
Q(deg) 0.000 0.000
wldeg) 0.000 0.000

(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 18t BURN BURN-OUT:
hp (nmi) 150.098 150.168
h,, (nmi) 1230.071  1556.788
i(deg) 32.861 33.296
Q(deg) 0.000 0.000
w(deg) 359.998 359.998
v(deg) 2.508 2.903
u(deg) 2.506 2.902
STATE AT 20d BURN BURN-OUT:
hy, (omi) 300.011 800.003
h,, (nmi) 1230.145 1557.030
ildeg) 59.430 60.171
Q(deg) 0.000 0.000
w(deg) 0.002 0.001
v{deg) 183.446 183.038
ul(deg) 183.448 183.040
STATE AT 3Td BURN BURN~OUT:
by, (omi ) -300.000 800.000
“h,, (omi) 300.000 800.000
ildeg) 63. 400 63.400
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.843 0.521
u(deg) 0.843 0.521

1250

150.000
150.000
28.500
0.000
0.000
0.000

0.000

150.241
1861.451
33.533
0.000
359.999
3.208

3. 207

1250.001
1861.776
60.858
0.000
0.001
182.735
182.736

1250.000
1250.000
63.400
0.000
0.000
0.331
0.331

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.478
2729.236
33.776
359.981
359.899
3.891
3.789

2500. 000

2729.633

62.573
359.926
359.937

182.109

182.046

2500.000
2500.000
63.400
359.925
0.000
0.003
0.003

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

151.150
4999.741
33.461
0.000
0.000
5.077
5.076

5000.000
5000.000
63.400
0.000
0.000
181.152
181.152

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

152.568
10899.921
32.110
"0.000
359.999

" 6.641
6.641

10900.000
10900.000
63.400
0.000
0.000
180.416
180.416
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Table 11. Transfer Orbits for Optimal Thrust-Limited Transfers
to.63.4 degree Inclined Circular Orbits with (T/W), = 0.1

Finai hp(nmi) 300

800
INITIAL STATE: .
hp(nmi)' 150.000 150.000
h_ (omi) 150.000 150.000
i{deg) 28.500 28.500
Q(deg) 0.000 0.000
w(deg) - 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1%t BURN BURN-OUT:
hy, (nmi) 175.919 182.368
h, (nmi) 1884.997 2137.408
i(deg) 33.641 33.554
S(deg) 359.973 359.987
w(deg) 359.227 359.289
v(deg) 33.032 34.480
u(deg) 32.259 33.770
STATE AT 20d BURN BURN-OUT:
by (nmi) 303.772 801.392
h, (nmi) 1890.701  2153.883
ildeg) 57.823 - 58.421
S(deg) 359.973 359.983
w(deg) 0.405 '0.293
v(deg) 203.058 201.784
“u(deg) 203.463 202.077
STATE AT 3¥d BURN BURN-OUT:
hy, (nmi) 300.000  800.000
h, (omi) 300.000 800.000
i?deg) . 63.400 63.400
Q(deg) 0.000 0.000
wldeg) 0.000 0.000
v(deg) 12.546 8.387
u(deg) 12.546 8.387

1250

150.000
150.000
28.500
0.000
0.000
0.000
0.000

188.840
2385.255
33.459
0.002
359.337
35.841
35.178

1250.540
2408.502
59.131
359.990
0.212
200.666
200.878

1250.000

1250.000

63.400
0.000
0.000
5.749

5.749

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

209.075
3117.125
33.188
0.049
359.438
39.531
38.969

2500.026

3149.854
T61.211

0.001
0.041
197.766
197.806

2500.000
2500.000
63.400
0 002
0.000
1.757
1.757

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

264.066
4972.407
32.602
0.163
359.508
46.534
46.042

5000.000
5000.000
63.400
0.000
0.000
191.505
191.505

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

412.192
10892. 209
31.385
0.389
359.269
56.159
55.428

10900.000
10900.000
63.400
0.000
0.000
183.685
183.685
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Table 12. Transfer Orbits for Optimal Thrust-Limited Transfers
to .63.4 degree Inclined Circular Orbits with (T/M), = 0.05

Fin31 hp(nmi) 300

800
INITIAL STATE:
(nmi) 150.000  150.000
h_ (nmi) 150.000  150.000
i{deg) 28.500 28.500
Q2(deg) 0.000 0.000
wldeg) - 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1St BURN BURN-OUT:
by, (nmi) 338.123  359.630
h, (nmi) 2746.327  2892.607
i(deg) 32.219 32.137
Q(deg) 0.470 0.522
w(deg) 355.427  355.523
v(deg) 69.542 70.196
u(deg) 64.969 65.719
STATE AT 20d BURN BURN-OUT:
by (nmi ) 330.270  814.064
h. (nmi) 2770.256  2944.749
i?deg) 57.360 57.165
Q(deg) 0.004 0.011
w(deg) 0.361 '0.006
v(deg) 213.270  212.316
u(deg) 213.631  212.321
STATE AT 3¥d BURN BURN-OUT:
(nmi) 300.000  800.000
h, (nmi) 300.000  800.000
ildeg) 63.400 63. 400
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 28.819 20.905
u(deg) 28.819 20.905

1250

150.000
150.000
28.500
0.000
0.000
0.000
0.000

383.110
3065.859
32.045
0.588
355.586
71.031
66.617

1256.818
3136.664
57.370
0.021

. 359.751

211.321
211.072

1250.000

1250.000

63. 400
0.000
0.000

15.526

15.526

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

463.734
3679.756
31.789
0.835
355.633
73.812
69.445

2500.699
3779.584
59.132
0.036
359.189
208.255
207.444

2500.000
2500.000
63.400
0 000

0.000
6.020

6.020

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

643.303
5039.297
31.485
1.379
355.539
77.777
73.316

4999.993
5143.877
63.000
0.007
358.374
202.523
200.897

5000.000
5000.000
63.400
0.000
0.000
359.452
359.452

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1259.689
10875.915
31.378
2.597
354.843
79.448
74.291

10900. 000
10900. 000
63.400
0.000
0.000
184.876
184.876
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Table 13. Transfer Orbits for Optimal Thrust-Limited Transfers to
63.4 degree Inclined Circular Orbits with Minimum Values of {T/M),

Finai'hp(nmi) 300

800
(TA), .0392751  .0395451
INITIAL STATE:
hp(nmi) . 150.000 150.000
h, (nmi) 150.000 150.000
i(deg) 128.500 28.500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1St BURN BURN-OUT:
hp (nmi) 558.261 581.982
h (nmi) 3176.543  3259.555
i(deg) 31.816 31.810
Q(deg) 1.828 1.814
w(deg) 348.703 349.238
v(deg) 85.916 85.449
u(deg) 74.619 74.686
STATE AT 2°d BURN BURN-OUT:
hp (omi) 356.269 827.641
ho(omi) -~ 3190.278 3311.588
i(deg) 57.636 57.087
Q(deg) 0.169 0.172
" wldeg) 358.426  358.034
v(deg) 217.484 216.489
u(deg) 215.910  214.523
STATE AT 3'9 BURN BURN-OUT:
hp, (nmi) 300.000 800.000
h,, (ami) 300.000 800.000
i?deg) 63.400 63.400
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 35.156 25.806
u(deg) 35.156 25.806

1250

.0398289

150.000

150.000

28.500
0.000
0.000
0.000
0.000

607.852
3374.355
31.796
1.834
349.676
85.165
74.841

1264.183

-3451.225

56.961
0.171
357.768
215.424
213.192

1250.000
1250.000
63.400
0.000

0.000

19.520
19.520

2500

.0406026

150.000
150.000
28.500
0.000
0.000
0.000
0.000

708.840
3891.336
. 31.764
2.058
350.491
85.084
75.574

2501.578
4003.770
58.248
0.141
357.165
211.870
209.035

2500. 000
2500. 000
63.400
0 000
0.000
7.880
7.880

5000

.0410022

150.000
150.000
28.500
0.000
0.000
0.000
0.000

985.408
5244.487
31.900
2.968
352.446
85.467
77.913

4999.895
5358.159
62.343
1.131
357.088
205.273
202.361

5000.000
5000.000
63.400
1.113
0.000
0.000
0.000

10900

.0348875

150.000
150.000
28.500
0.000
0.000
0.000
0.000

2375.994
10871.374
34.063
3.180
352.487
76.910
69.397

10900.000
10900.000
63.400
0.000
0.000
185.552
185.552
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Figure 7. Optimal Finite Three-Burn Transfer to a Circular
Orbit for (T/W)o = 0.1

FINAL ORBIT
ha = 300 omi

hp = 300 nmi
i = 63.4 deg

2nd BURN ARC

INITIAL ORBIT
ha = 150 mmi-

hp = 150 nmi
i = 28.5 deg

3rd BURN ARC
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Table 14.

72

Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers from

a 63.4 degree Inclined, 10900 nautical mile Altitude Circular Orbit

(/)
o

ACSTl(deg)
YVIHl(deg)'
PVIH, (deg)
DYVIHl(dps)
DPVIHl(dps)
TBRNl(sec)
ACSTZ(deg)
TBRNZ(sec)

AVRI

1
AVRI,
| AWRI,
AVVI,

AVVI2

;AVVI3

(TM) £
mf/mo
DLIV,(£fps)

1.00

~0.795
144.386
0.273
-0.08447
-0.00287
175.849
174.820
104.610

0.09902
0.00046
-0.00289
0.01168
-0.28067
1.?6923

2.654217
0.376759
14133.01

0.10

-7.927
143.583
2.650
-0.00870
-0.00279
1765.436
132.024
1058.570

0.09795

0.00505

0.11655
-0.30617

1.76118

0.268497
0.372443
14299.82

0.05

~15.764
141.453
4.988
~0.00474
-0.00265
3560.477
98.350
2186.686

0.09287

0.01276
-0.05701

0.22929
~0.37398

1.73685

0.138341

0.361426

14734.56

0.02

-35.534
126.845
13.451
-0.00192
-0.00345
8774.367
55.326
6599.572

0.02840

0.06869
-0.12445
0.26807
=0.75757
1.60103

0.063148
0.316714
16646.54
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Table 15. Transfer Orbits for Optimal Thrust-Limited Transfers from
‘a 63.4 degree Inclined, 10900 nautical mile Altitude Circular -Orbit

(T/w); 1.00

INITIAL STATE:

hy, (nmi) - 10900.000
h; (nmi) " 10900.000
i{deg) A 63. 400
Q(deg) 0.000
w(deg) : 0.000
v(deg) ' 0.000
u(deg) 0.000
STATE AT 1St BURN BURN-OUT:
hp(nmi) 150.953
h, (nmi) 10899.792
i?deg) 32.116
Q(deg) 0.000
w(deg) 180.000
v(deg) 180.427
u(deg) _ 0.427
STATE AT 2°d BURN BURN-OUT:
h, (nmi) 150.000
h,, (nmi) 1150.000
ildeg) 28.500
Q(deg) 0.000
w(deg) 0.000
v(deg) 183.206

“ul(deg) : 183.206

0.10

10900.000
10900.000
63.400
0.000
0.000
0.000
0.000

243.946
10878.588

31.746

359.941
180.119
184.331

4.450

150.000
150.000
28.500
0.000
0.000
211.715
211.715

0.05

10900.000
10900.000
63.400
0.000
0.000

0.000

0.000

514.829
10809. 266
31.050
359.630
180.780
189.006
9.786

150.000
150.000
28.500
0.000

0.000
242,282

242.282

0.02

10900.000
10900.000
63.400
0.000
0.000
0.000
0.000

2508.994
10460.476
32.672
356.279
191.479
203.472
34,951 -

150.000
150.000
28.500
0.000
0.000
351.499
351.499



the first bﬁrn is much lower for the reverse transfer than for the forward
transfer, the burn arc for this burn is shorter for a given (‘I‘/W)o and

consequently, the finite-burn losses are less.

4.3.2 Acceleration-Limited Solutions

During orBit trénsfers of some spacecfaft, a requirement that the
sensed acceleration not exceed a given upper bound may exist. A
thrust*limited transfer has the characteristic that the acceleration reaches
its maximum value at the conclusion of the last burmn. A4n
acceleration~limited transfer, however, has the characteristic that the
acceleration can be maintained at a given upper bound for thé duration of
the burns. A comparison of the fuel efficiency-for a thrust-limited and an
acceleration—limited transfer to the 63.4 degree inclined, 300 mmi altitude
circular_orbit from the 28.5 degree inclined, 150 mmi altitude circular
orbit is presenfed in Tab1e>16. Both transfers maintain the acceleratiom
below .1288 g's. The better fuel efficiency of the acceleration~limited
transfer can be attributed to the shorter burn durations. Since the burns
are performed at higher acceleration levels, less time is required to effect
a given velocity change and consequently, finite burn losses are reduced.

4.4 TRANSFERS BETWEEN A 28.5 DEGREE INCLINED CIRCULAR ORBIT AND 63.4 DEGREE

INCLINED ELLIPTICAL ORBITS

4.4,1 Thrust-Limited Solutions

Another class of orbits of interest to the space user community is the



.Table 16. Comparison of Optimal Thrust-Limited and
Acceleration-Limited Transfers to a 63.4 degree Inclined
300 nautical mile Altitude Circular Orbit

"Thrust Acceleration Thrust Acceleration
Limited " Limited Limited Limited
(Tm), 0.039275 0.128846 0.039275 0.128846
ACSTy(deg) -115.633 ~-30.7417 INITIAL STATE:
YVIH;(deg) = °29.937 ~45.569 h, (nmi) 150.000 150.000
PVIH,(deg) -15.650 - -3.913 h, (nmi) 150.000 150.000
DYVIH; (dps) -0.08004 ~-0.00663 i?deg) 28.500 28.500
DPVIH, (dps) -0.00797 0.01015 Q(deg) 0.000 0.000
TBRN, (sec) 3191.038 912. 261 w(deg) 0.000 0.000
ACSTy(deg) = 55.633 118.236 videg) 0.000 0.000
TBRN,(sec) 3533.960 1908. 241 u(deg) 0.000 0.000
ACST3(deg) 99.113 121.744
TBRN3(sec) 1240.099 857.355 STATE AT 15t BURN BURN-OUT:
hp, (nmi ) 558.261 176.184
AWRI, 1.09902 -0.76875 h, (omi)  3176.543 2149.503
AWRT, 0.28897  0.17931 ildeg) 31.816 33.995
AVRTg 2.07189 0.90755 Q(deg) 1.828 359,952
AVVI; -1.55676 -0.53448 w(deg) 348.703 359.164
AVVI, -0.22535 -0.39096 v(deg) 85.916 32.989
AVVI4 0.85720 ~-1.66450 u(deg) 74.619 32.153
(TM) g 0.128846  0.128846 STATE AT 2094 BURN BURN-OUT:
mg/m 0.304823 0.348869 h_(nmi) . 356.269 318.971
. DLTV,(fps) 17200.59  15246.52 nP (omi) 3190.278 2155. 668
i(deg) 57.636 57.811
Q2(deg) 0.169 359.965
w(deg) 358.426 0.807
v(deg) 217.484 209.082
u(deg) 215.910 209.889
STATE AT 3T¢ BURN BURN-OUT:
hp(nmi) 300.000 300.000
h_ (nmi) 300.000 300.000
ifdeg) 63.400 63.400
$2(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 35.156 27.210
u(deg) 35.156 27.210
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claé§ of Molniy; orbits, i.e., ellipticai orbits with an inclinatlo; of 63.4
degreeé, arguﬁent of perigee of 270 degrees, and'a period of 12 hours
[15;35]. ‘A complete investigation of the optimal transfers to these orbits
from a 28.5 dégree inclined, 150 nmi altitude circular orbit was undertaken
in a manner idéntical to that described in Section 4.3.1. The results of
this investigétidn are presented in Tables 17 to 21.

Many of.the comments made with regard to the transfers to the 63.4
degree inclined circular orbits also apply here. Tables 22 to 26 reveal
that the first burn raises apogee and moves the argument of perigee; the
second burn, performed near apogee, changes inclination and raises apogee an
vadditional amount; and the third burn rotates the argument of pefigee to 270
degrees and lowers apogee to its final value. A typical transfer is
depicted in Figure 9. The transition from a 3-burn to a 2-burn solution
occurs when the final apogee»altitude is greater than or equal to the apogee
altitude of the transfer orbit resulﬁing from the second burn. Under these
conditions, the necessity of the third "apogee lowering” burn is removed.
The existence of the 3-burn solution is also probably due in large part to
tﬁe value of the'final.argument of perigee. if this value were O or 180
degreés, only a 2-burn solution would be expected.

Figure 10 summarizes many of the pertinent characteristics of the
transfers considered.

4,4,2 Acceleration-Limited Solutions

As in Section 4.3.2, a comparison of the fuel efficiency for a

thrust-limited and an acceleration-limited transfer to the
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Table 17. Values of Optimization Variables, Adjoint Variables,

‘and Other Parameters for Optimal Thrust-Limited Transfers to

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DLTV, (fps)
ACSTz(deg)
YVIHz(deg)
PVIH,(deg)
DLTV,(fps)
ACST3(deg)
YVIH3(deg)
PVIH3(deg)
DLTV3(fps)

mf/mo
DLTV (£fps)

249.748
6.942
-=1.313
8128.934
151.918
-86.484
13.09%
4569.653
98.697
139.043
10.123
2225.587

0.356724
14924.17

800

247.126
7.804
~1.447
7993.087
152.169
~-84.027
12.902
4876.836
103.829
138.095
9.599
1957.301

0.359120

14827.22

1250

244,625
8.602
-1.557
7874.825
152.604
-82.162
12.646
5147.560
108.221
137.497
9.162
1727.776

0.361037
14750.16

Molniya Orbits with (T/W)o =

2500

237.123
10.877
-1.817

7549.388

154.401

-78.355
11.747

5893.056
119.508
136.456

7.849
1128.716

0.365528
14571.16

5000

220.553
15.352
-1.983

6984.150
160.078
~74.172
9.155
7171.690
139.371
134.760
5.056
151.892

0.372240
14307.73

10900

180.000
16.943
0.000
6956. 665
180.000
—-66.885
0.000
7174.575

-
—
-

0.376805
14131. 24
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‘Table 18. Values of Optimization Variables, Adjoint Variabples,

and Other Parameters for Optimal Thrust-Limited Transfers to

Final hp(nmi) 300

ACST (deg)  242.708
YVIHl(deg) © 0 9.243
PVIHl(deg) -3.115
DYVIH, (dps) -0.03328
DPVIH, (dps) 0.01704
TBRN, (sec)  193.427
ACST,(deg)  144.052
TBRNZ(sec) 69.511
ACSTs(deg) 98.457
TBRN3(sec) 26.604

AVRL, 0.64551
AVRL, '0.67523
AVRI, 0.96099
AVVL, -1.61362
AVVI, 0.49832
AVVI, 0.59748
(Tﬂn)f 2.804451
mf/mo 0.356576

DLTVT(fps) 14930.16

Molniya Orbits with (T/W)° =1.0

800 1250 2500 5000

240.182 237.763 230.496 214.355
10.036 10.763 12.815 16.765
-3.171 ~-3.216 -3.303 -3.184

-0.03387 -0.03432 0.03526 -0.03562

0.01653 0.01609 0.01494 0.01290

191.003 188.834 182.908 172,245

144.401 144.902 146.946 153.017

74.122 78.258 89.379 108.580
103.572 107.947 119.178 138.910
%23.334 20.503 13.281 1.715

0.69711 0.74491 0.87847 1.11368
0.66123 0.64568 0.58728 0.41186
0.93955 0.91596 0.83244 0.59993

-1.57737 -1.53985 -1.41120 -1.04860

0.54538 0.58962 0.71562 0.94698
0.65081 0.70020 0.83993 1.10124

2.785678 2.770843 2.736689 2.687226
0.358979 0.360901 0.365405  0.372131
14832.92  14755.60 14576.04 14311.96

10900

173.825
16.865
-1.037

-0.01976

0.11198

171.760

173. 047

108.730

1.31573
-0.12682

- ~0.12887

0.15214
1.25273
1.27145

2. 654703
0.376690
14135.66
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"Table -'19. Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIH, (deg)

180,391
24.780
~14.385

DYVIH, (dps) -0.01744
DPVIHl(dps) 0.01275

TBRN, (sec)
ACSTz(deg)
TBRNZ(sec)
ACST3(deg)
TBRN3(sec)

AVRI
AVRI
AVRI
AVVI

AVVI
AVVI

W N e

w N -

(Tﬂn)f

mf/mo

DLTVT(fps)

2032.391
84.520
697.716
94.630
223.436

1.34246

~0.36106

-0.19074
-0.45580

1.03479

1.38944

0.291044
0.343591
15467.24

800

178.690
24.759
-13.929
-0.01621
0.01230
1999.386
84.994
747.975
99.835
193.245

1.33558
—0.37497
-0.22136
-0.39503

1.04840

1.39781

0.288574
0.346532
15343.84

1250

176.969
24.654
-13.539
-0.01499
0.01193
1969.742
85.746
793.705
104. 246
166.626

1.32831
-0.39079
-0.25324
-0.33510

1.06191

1.40325

0.286637
0.348873
15246.36

Molniya Orbits with ('I‘/W)o = 0.1

2500

171.493
24.085
-12.559
-0.01129
0.01108
1892.517
88.942
915.234
115.320
97.993

1.29969
-0.44777
-0.35705

-0.14910

1.09757
1.40790

- 0.282263

0.354279
15023.73

5000

158.184
21.685
-10.849

-0.00291

0.00984
1780.804
97.972
1090.068

1.19216
-0.60231
-0.60479

0.29455

1.13377

1.35531

0.276222
0.362028
14710.46

10900

117.493
8.668
~8.534
0.01498
0.00882
1789.716
120.784
1061.387

0.47254
-1.04307
-1.11396

1.43081

0.79036

0.7329%

0.272910
0.366421
14535.83



Table 20.

80

Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

Final hp(nmi) 300

ACSTl(deg)
YVIHl(deg)
PVIH, (deg)
DYVIHl(dps)
DPVIHl(dps)
TBRNl(sec)
ACST,(deg)
TBRNZ(sec)
ACSTB(deg)
TBRNS(sec)

(T/W)f
mf/mo
DLTVT(fps)

112.269
11.554
-13.083
0.02501
-0.00367
4579.015
50.904
1244.910
88.433
349.890

0.37151
-1.29741
-1.61539

1.42836

0.73236

0.79531

0.159225
0.314021

16770.17

800

111.794
11.397
-13.028
0.02548
-0.00310
4489.466
49.520
1348.297
94.221
300.729

0.35142
-1.28302
~-1.61727

1.43865

0.72318
0.78509

0.157260
0.317945
16590.37

1250

110.997
11.014
-12.894
0.02604
-0.00272
4401.700
48.985
1452.654
99.188
255.815

0.32447
-1.27354
~1.61923

1.45701

0.70854

0.76431

0.155719
0.321092
16447.77

Molniya Orbits with (T/W)° = 0.05

2500

106.996
8.855
=12.245
0.02815
-0.00236
4164.209
50.967
1749.431
111.144
132.543

0.20402
-1.26349
-1.62705

1.54316

>0.63507

0.65146

0.152345
0.328202
16130.67

5000

91.738
0.839
-10.241
0.03176
-0.00367
3923.497
64.218
2038.833

-0.24229
-1.25873
-1.59205
1.75219
0.31442
0.20011

0.148140
0.337519
15725.39

10900

45.074
-16.238
-7.324
0.02372
-0.00471
3965.292
95.148
1934. 468

-

-1.39175
-0.73673
-0.93168

1.36906
-0.67956
-0.93430

0.145150
0.344471
15430. 20
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" Table 21. Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers to

Molniya Orbits with Minimum Values of (T/W)o

Final hp(nmi) 300

(?‘/W)o

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DYVIH, (dps)
DPVIHl(dps)
TBRNl(sec)
ACSTZ(deg)
TBRNz(sec)
ACST3(deg)
'TBRN_(sec)

AVRI
AVRI
AVRI
AVVI
AVVI
AVVI

WON - WoN

(TM)f
mf/mo
DLTVT(fps)

0.039289

66. 729
-12.223
-2.679
0.03397

-0.01815

6182.456
47.921

1436.667
85.49
438.686

-0.90096
-1.27203

-1.63094

1.63967
-0.35883
-0.62592

0.132516
0.296483
17602. 24

800

0.039052

65.673
-12.963
-2.873
0.03435
-0.01793

6133.645

45.284
1544.846
91.124
384.465

-0.93658
-1.24362
-1.62283

1.62571
-0.36780
-0.65639

0.130055
0.300272
17418.38

1250

0.038869

64.585
-13.663
-3.044
0.03452
-0.01765
6068.662
43.390
1661.021
96.193
334.747

~0.97122
-1.21551
-1.60919

1.61083
-0.37848

~0.68632

0.128100
0.303426
17267.10

2500

0.038684

60.912
-15.603
-3.425
0.03392
-0.01640
5782.381
42.449
2036.974
109.182
192.550

-1.073%
-1.12804

-1.53530

1.55710
-0.42613
-0.77157

0.124279
0.311268
16897.66

5000
0.039752

51.094
-18.815
-3.526
0.02877
-0.01320
5203.560
56.350
2448.622

~1.28629
-0.93622
-1.27098

1.38624
~0.58362
-0.97304

0.122680
0.324030
16315.90

10900

0.034888

-38.730
-19.434
2.572
-0.01791
-0.00602
6277.786
96.627
2377.082

—

-1.40055
0.68844
0.88351

-1.11857

-0.82867

-1.12746

0.106041
0.329006
16095.25
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Transfer Orbits for Optimal Thrust-Limited
Transfers to Molniya Orbits with (T/MW), = @

Final hp(mmi) 300 800
INITIAL STATE:
by (nmi)). 150.000 150.000
h_ (nmi) 150.000 150.000
ildeg) 28.500 28.500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1St BURN BURN-QUT:
hp(nmi) 149.869 149.843
h.. (ami) 20396.201 18885.538
i?aeg) 29.121 29.272
Q(deg) 3.243 3.518
wldeg) 247.657 244,873
v(deg) 359.249 359.173
uldeg) 246.906 244,046
STATE AT 28¢ BURN BURN-OUT:
hy (nmi) 2139.877  2497.471
h. (nmi) 26585.727 25361.180
i{deg) 57.418  57.932
Q(deg) 26.535 25.190
wldeg) 248.350 250.497
v(deg) 132.878 129.434
u(deg) 21.228 19.931
STATE AT 3*d BURN BURN-OUT:
(nmi) 300.000 800.000
h. (nmi) 21500.000 21000.000
i {deg) 63.400 63.400
Q(deg) 15.807 16.539
w(deg) 270.000 270.000
v(deg) 215.241 218.009
u(deg) 125.241 128.009

1250

150.000
150,000
28.500
0.000
0.000
0.000
0.000

149.820
17690.525
29.424
3.740
242,243
359.110
241.353

2813.3888
24323.041
58.449
24.042
252.299

- 126.485
18.784

1250.000
20550.000

63.400

16.989
270.000
220.439
130.439

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

149.762
14885.262
29.916
4,188
234.506
358.961
233.467

3645.255
21605.847
60.018
20.860
257.203
118.410
15.613

2500.000
19300.000
63.400
17.153
270.000
226.879
136.879

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

149.731
11200.4384
31.069
4.150
218.090
358.860
216.950

5186.293
17060.829
62.920
14.366
267.694
102.079
9.773

5000.000
16800.000
63.400
14.045
"7270.000
239.288
149.288

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

150.000
10900.000
32.120
0.000
180.000
0.000
180.000

10900.000
10900.000
63.400
0.000
270.000
90.000
0.000
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Transfer Orbits for Optimal Thrust-Limited

Transfers to Molniya Orbits with (T/W), = 1.0

Final hp(nmi) 300 800
INITIAL STATE:
hy (nmi)- 150.000 150.000
h_ (nmi) 150.000 150.000
+ ildeg) 63. 400 63. 400
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1% BURN BURN-OUT:
hp (omi) 153.402 153.257
h, (nmi) 20355.657 18851.780
i(deg) 29.142 29.291
Q(deg) 3.214 .3.488
w(deg) 247.689 244,904
v(deg) 6.920 6.728
uldeg) 254.609 251.632
STATE AT 20d BURN BURN-OUT:
by (nmi) 2135.833  2493.224
h, (omi) 26550.917 25332.915
ildeg) 57.424 57.936
Q(deg) 26.474 25.132
w(deg) 248,410 250.555
v(deg) 132.964  129.549
uldeg) 21.375 20.104
STATE AT 379 BURN BURN-OUT:
hp (nmi) 1300.000 800.000
‘b, (ami) 21500.000 21000.000
ildeg) - 63.400 63. 400
Q(deg) 15.748 16.481
wldeg) 270.000 270.000
v(deg) 215.273 218.041
u(deg) 125.273 128.041

1250

150.000
150.000
63.400
0.000
0.000
0.000
0.000

153.126
17641.826
29.441
3.709
242.271
6.561
248.831

2807.731
24287.203
58.461
23.975
252,386
126.581
18.968

1250.000
20550.000
63.400
16.929
270.000
220.452

130.452

2500

150.000
150.000
63.400
0.000
0.000
0.000
0.000

152.778
14859.458
29.928
4.157
234.532
6.130
240.662

3640.182
21588.062
60.026
20.811
257.268
118.615
15.882

2500.000
19300.000
63.400
17.110
270.000
226.894
136.894

5000

150.000
150.000
" 63.400
0.000
0.000
0.000
0.000

152.249
11185.311
31.071
4.123
218.119
5.526
223.645

5180.843
17052.637
62.933
14.340
267.763
102.454
10. 217

5000. 000
16800.000
63. 400
14.028
270.000
239.280
149.280

10900

150.000
150.000
63. 400
0.000
0.000
0.000
0.000

152.568
10899.921
32.110
0.000
179.999
6.641
186.641

10900.000
10900.000
63. 400
0.000
270.000
90.416
0.416
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Table 24. Transfer Orbits for Optimal Thrust-Limited
Transfers to Molniya Orbits with (TMW), = 0.1

Final hp(nmi) 300 800
INITIAL STATE:
h,, (nmi) 150.000 150.000
h. (nmi) 150.000 150.000
ifdeg) 28.500 28.500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1S5t BURN BURN-OUT:
hy, (nmi) 486.591  474.264
h. (nmi) 18402.555 17000.449
i?deg) 30.758 30.707
Q(deg) 0.136 0.397
w(deg) 251.592 248.704
v(deg) 60.440 59.741
u(deg) 312.031 308. 445
STATE AT 2°d BURN BURN-OUT:
hp (nmi) 1869.185 2197.963
h, (nmi) 24718.402 23715.564
ildeg) 57.770  58.272
Q(deg) 22.143 20.850
w(deg) 252.109 254.392
v(deg) 131.619 128.055
uldeg) 23.728 22. 447
STATE AT 3¥9 BURN BURN-OUT:
(nmi) 300.000 800.000
h. (nmi) 21500.000 21000.000
ildeg) 63. 400 63. 400
Q(deg) 11.628 12.429
w(deg) 270.000 270.000
v(deg) 214.538 217.315
u(deg) 124.538 127.315

1250

150.000
150.000
28.500
0.000
0.000
0.000
0.000

463.362
15886.876
30.673
0.634
245.907
59.110
305.017

.

2494.873
22854.406
58.822
19.807
256.319
125.033
21.352

1250.000
20550.000
63.400
13.047
270.000
219.703
129.703

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

435.224
13436.343
30.665
1.232
237.561
57.440
295.001

3311.752
20616.124
60.542
17.205
261.245
117.406
18.651

2500.000
19300.000
63.400
13.970
270.000
226.045
 136.045

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

397.079
10700. 448
30.954
1.816
219.965
55.056
275.021

5000.000
16800.000
63.400
12.253
270.000
104.364
14.364

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

412.192
10892. 209
31.385
0.389
179.269
56.159
235.428

10900. 000
10900. 000
63. 400
0.000
270.000
93.685
3.685
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Transfer Orbits for Optimal Thrust-Limited
Transfers to Molniya Orbits with (TM), = 0.05

Final hp(nmi) 800
INITIAL STATE:

(ami) 150.000 150.000
h. (nmi) 150.000 150.000
ildeg) 28.500 28.500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 1St BURN BURN-OUT:
hp (nmi) 1417.291  1372.579
h, (nmi) 17734.441 16270.693
i?deg) 34.148 33.760
Q(deg) 355.065 355.174
w(deg) 260.566 257.957
v(deg) 84.830 84.686
u(deg) 345.396 342,643
STATE AT 204 BURN BURN-OUT:
hp (nmi) 1674.709  1945.011
h, (nmi) 23245.827 22403.59%
ildeg) 58.405 58. 761
Q(deg) 16.186 14.745
wldeg) 255.571 257.975
v(deg) 132.831 128.949
uldeg) 28.403 26.924
STATE AT 3Td BURN BURN-OUT:
hp (nmi) 300.000 800.000
h_ (nmi) 21500.000 21000.000
ildeg) 63.400  63.400
S(deg) 6.322 6.837
wldeg) 270.000 270.000
v(deg) 213.100 216.333
uldeg) 123.100 126.333

1250

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1332.287
15066.971
33.333
355.354
255.077
84.409
339.486

2203.812
21690.978
59.237
13.700
259.989
125.655
25.644

1250.000
20550.000
63.400
7.408
270.000
219.089
129.089

2500

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1232.465
12518.579
32.103
356.245
245.181
83.203
328.385

3000.764
19876.532
61.052
11.779
264.771
117.941
22,713

2500.000
19300.000
63.400
9.113
270.000
225.835
135.835

5000

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1165.277
10650. 447
30.679
358.708
222.875
80.816
303.692

5000.000
16800.000.
63.400
8.925
270.000
107.768
17.768

10900

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1259.689
10875.915
31.378
2.597
174.843
79.448
259.448

10900. 000
10900.000
63.400
0.000
270.000
94.876
4.876
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Table 26. Transfer Orbits for Optimal Thrust-Limited

Transfers to Molniya Orbits with Minimum Values of (TM)g4

Final h?(nmi) 300

800
(TM), .0392889  .0390523
INITIAL STATE:
h, (nmi) 150.000  150.000
h_ (ami) - 150.000  150.000
i{deg) 28.500 28.500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 15t BURN BURN-OQUT:
hy, (nmi) 2144.869  2106.559
h;, (nmi) 18528.089 17099.045
i{deg) 35.145 34.907
Q(deg) 354.583  354.609
w(deg) 262.705  260.742
v(deg) 85.739 86.116
u(deg) 348.444 - 346.859
STATE AT 2°d BURN BURN-OUT:
hy, (omi) 1896.774  2140.025
h, (nmi) 23247.380 22394.192
i(deg) 58.576 58.799
Q(deg) 15.336 13.692
w(deg) 254,533 256.941
v(deg) 134.958  131.184
uldeg) 29.492 28.125
STATE AT 3¥d BURN BURN-OUT:
hp(ami) . 300.000  800.000
h, (nmi) 21500.000 21000.000
i?deg) 63. 400 63.400
Q(deg) 5.165 5.349
w(deg) 270.000  270.000
v(deg) 211.672 214.952
u(deg) 121.672  124.952

1250

.0388693

150.000
150.000
28.500
0.000
0.000
0.000
0.000

2067.533
15855.145
34.567
354.700
258.435
86.320
344.754

2366.998
21667.692
59.131
12.418
259.025
127.846
26.871

1250.000
20550.000
© 63.400
5.607
270.000
217.900
127.900

2500

.0386836

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1941.912
12972.219
33.126
355.501
248.907
85.926
334.833

3093.036
19865.256
60.639
10.083
264.033
119.681
23.713

2500.000
19300.000
" 63.400
6.869
270.000
225.460
135.460

5000

.0397516

150.000
150.000
28.500
0.000
0.000
0.000
0.000

1744.947
10557.061
31.075
358.839
223.933
83.252
307.186

5000.000
16800.000
63.400
7.843
270.000
108.533
18.533

10900
.0348875

150.000
150.000
28.500
0.000
0.000
0.000
0.000

2375.994
10871.374
34.063
3.180
172.487
76.910
249.397

10900.000
10900.000
63. 400
0.000
270.000
95.552
5.552
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Figure 9. .Optimél Finite Three-Burn Transfer to an Elliptical Ofbit
for (T/W)_ = 0.1

3rd BURN ARC ,\\\\\ﬁt\‘
FINAL ORBIT
ha = 21500 nmi
hp = 300 nmi
i = 63.4 deg
w = 270 deg

i
lst BURN ARC’/v, -“

2nd BURN ARC

INITIAL ORBIT
ha = 150 nmi

hp = 150 nmi
i = 28.5 deg
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63.4 degree inclined, 300 nmi perigee altitude elliptical orbit from the
28.5 degree inclined, 150 nmi altitude circular orbit was made. The results
are presented in Table 27. Note that both transfers maintain the
acceleration at or below .1325 g's. As found with the comparison described
in Section 4.3.2, the acceleration-limited transfer is more fuel efficient.

4.5 TRANSFERS BETWEEN 97 DEGREE INCLINED CIRCULAR ORBITS AND A 57 DEGREE

INCLINED CIRCULAR ORBIT

Besides the orbit transfers to 63.4 degree inclined orbits, other
orbit transfers of interest requiring large plane changes are transfers from
97 degree inclined circular (i.e., near sun—-synchronous) orbits to a 57
degree inclined, 150 nmi altitude circular orbit {35]. Since the altitude
range of interest is not as large as that for the previous cases, only
altitudes of 900 and 1500 nmi were considered. The 3-burn solutions for
four values of (T/W)o are presented in Tables 28 and 29. The
corresponding transfer orbits are presented in Tables 30 and 31. For the
values of altitude and (T/W)o considered, we observe that all the
soluéions are 3-burn solﬁtions. Again, a lower limit for (T/W)° was
discovered, below which no optimal transfers were found.

The pertinent characteristics of these transfers are depicted in Figure

11.



Table 27.
Acceleration-Limited Transfers to a 300 nautical mile
Perigee Altitude Molniya Orbit '

(TM),

YVIH,; (deg)
PVIH,(deg)
DYVIH, (dps)
DPVIH, (dps)
TBRN; (sec)
ACST,(deg)
TBRN,(sec)
ACST3(deg)
TBRN3(sec)

AVRI,
AVVI;
AVVI,
AVVI3

(T/N)f
mf/m
DLTVy(fps)

Thrust
Limited

0.039289

66.729
-12.223
-2.679
0.03397
-0.01815
6182.456
47.921
1436.667
85.494
438.686

-0.90096
-1.27203
-1.63094

1.63967
—0.35883
-0.62592

0.132516
0.296483
17602.24

Comparison of Optimal Thrust-Limited and

Acceleration

Limited
0.132516

187.640
22.714
-12.988
-0.01867
0.01325
2029.063
78.000
1142.054
92.951
452.795

1.35901
-0.21515
-0.02032
-0.61310

1.03385

1.32829

0.132516
0.343980
15450.87

90

Thrust Acceleration

Limited Limited

0.039289 0.132516
INITIAL STATE:
hp (nmi) 150.000 150.000
h. (ami) 150.000 150.000
itdeg) 28.500 28. 500
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 15t BURN BURN-OUT:
ho(nmi)  2144.869 479.788
h,(nmi) 18528.089 18102.024
ildeg) 35.145 30.795
Q(deg) 354.583 0.247
w(deg) 262.705 251.250
v(deg) 85.739 65.666
u(deg) 348. 444 316.915
STATE AT 27d BURN BURN-OUT:
h, (nmi) 1896.774 1854.902
h,(nmi)  23247.380 24573.193
iCdeg) 58.576 57.829
Q(deg) 15.336 21.901
w(deg) 254.533 252.403
v(deg) 134.958 132.322
u(deg) 29.492 24.725
STATE AT 374 BURN BURN-OUT:
hp, (nmi) 300.000 300.000
h_(omi)  21500.000 21500.000
ildeg) 63.400 63. 400
Q(deg) 5.165 11.426
w(deg) 270.000 270.000
v(deg) 211.672 214.836
u(deg) 121.672 124.836
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.Table 28. Vélues of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust-Limited Transfers from

"Sun-Synchronous"Orbit with (T/W)o = 1.0 and (T/W)o = 0.1

Initial hp(nmi)

ACSTl(deg)
YVIH, (deg)
PVIH, (deg)
DYVIHl(dps)
DPVIHl(dps)
TBRNl(sec)
ACST,(deg)
TBRNz(sec)
ACST3(deg)
TBRN3(sec)

AVRI
AVRL
AVRI
AVVI
AVVI
AVVI

W N = W -

(T/w)f
mf/mo
DLTVT(fps)

('I.‘/W)o = 1.0

900 1500
-1.567 -0.999
50. 400 51.146
-0.309 -0.218
-0.06125 -0.06621
0.00992 0.00904
60.996 47.468
174.934 175.787
194.233 198.176
175.7717 175.792
41.961 48.221
-0.55550 -0.42516
0.02377 0.01265
0.02511 0.01302
~=0.02155 -0.01277
-1.23085 -1.24767
-1.30139 -1.28539
2.944822  2.882127
0.339579  0.346966
15637.29 15325.72

(T/W)o = 0.1
900 1500
-21.918 -14.982
46.066 48.520
~-4.153 -3.070
-0.00090 ~-0.00421
0.01051 0.00913
837.249 697-524
134.809 142.886
1672.680 1721.832
142.329 141. 620
505. 440 555.960
-0.55732 =0.44017
0.32337 0.18557
0.36510 0.19965
-0.34236 -0.21361
-1.13102 ~-1.18766
-1.34635 -1.32397
0.303106  0.295143
0.329918  0.338819
16055.17 15669.75
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Values of Optimization Variables, Adjoint Variables,

and Other Parameters for Optimal Thrust—Limited Transfers from
"Sun-Synchronous'"Orbit with (TAJ)O = 0.05 and Minimum Values of (T/W)o

Initial hp(nmi)

ACSTl(deg)
YVIHl(deg)
PVIHl(deg)
DYVIHl(dps)
DPVIHl(dps)
TBRN, (sec)
ACST, (deg)
TBRN, (sec)
ACST.(deg)
TBRN, (sec)

N -

W w N

AVRI
AVRI
AVRI
AVVI1
AVVI2
AVVI3
(T/w)f
mf/mo

DLTVT(fps)

(TM) = 0.05
[s ]

900

-52.115

30.846
-11.100
0.01627
0.01425
1989.165

96.789
3095. 147
111.230
1119.307

-0.33808

0.71032

0.92446
~0.97936
-0.74847
-1.29989

0.160922
0.310709
16923.69

1500

-37.330
39.841
~-8.143

0.00522

0.01108

1731.256
111.316
3146.005
109.658
1216.676

-0.37791
0.44224
0.53160

-0.62391

-0.97694

-1.36580

0.154849
0.322896

16366.67

.0267748

900

-129.598
-42.280
-17.735
0.05311
~0.01158
4765.542
52.525
5407.190
72.646

2146.354

1.04225

0.89240
0.77010

-1.32054 .

1.09252
0.52119

0.100272
0.267021
19117.59

.0210557

1500

-127.501
~41.946
-18.784
0.04666
-0.00926
5708. 635
50.142
6922.722
53.893

3129.870

0.84722
0.78509
0.65374
-1.35190
1.08737
0.44617

0.080205
0.262525
19363.45
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Table 30. Transfer Orbits for Optimal Thrust-Limited Transfers
from'"Sun-Synchronous"Orbit with (T/M), = 1.0 and (TM)y =-0.1

(TM), = 1.0
Initial hp(nmi) 900 1500
INITIAL STATE:
hy, (nmi ) . 900.000 1500.000
h, (nmi) 900.000 1500.000
ildeg) 97.000 97.000
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 0.000 0.000
u(deg) 0.000 0.000
STATE AT 15t BURN BURN-OUT:
hp (nmi) 900.041  1500.015
h, (ami) 2138.198 2587.692
ildeg) 93.196 93.825
Q(deg) , 0.000 0.000
w(deg) 359.999 359.999
v(deg) 1.582 1.009
u(deg) 1.581 1.008
STATE AT 209 BURN BURN-OUT:
hp (nmi ) 150.055 150.086
h: (ami) 2137.936  2587.302
i?deg) 62.040 62.218
Q(deg) 0.000 0.000
wldeg) 0.001 0.001
v(deg) 182.619 182.329
u(deg) 182.620 182.330
STATE AT 3t¢ BURN BURN-OUT:
hp(omi) 150. 000 150.000
h, (nmi) 150.000 150.000
i?deg) 57.000 57.000
Q(deg) 0.000 0.000
w(deg) 0.000 0.000
v(deg) 1.342 1.535

u(deg) 1.342

1.535

(TM), = 0.1
300 1500
900. 000 1500. 000
900. 000 1500. 000
97.000 97.000

0.000 0.000
0.000 0. 000
0.000 0.000
0.000 0. 000
912.083 1505.186
2954.512 3387.076
92.155 92.531
0.016 0.013
359.612 359.720
22.018 15.102
21.630 . 14.823
160.237 163.884
2940.357 3364. 296
62.449 62.370
0.021 0.017
0.296 0. 267
197.855 196.377
198.151 196. 644
150.000 150.000
150.000 150.000
57.000 57.000
0.000 0.000
0.000 0. 000
16.211 17.717
16.211 17.717
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) Table 31. Transfer Orbits for Optimal Thrust-Limited Transfers
" from"Sun-Synchronous"Orbit with (TM), = 0.05 and Minimum Values of (TM),

(TM), = 0.05
Initial hpy(nmi) 900 1500
INITIAL STATE:
hp (nmi ) 900.000  1500.000
h, (nmi) 900.000 1500.000
ildeg) 97.000 97.000
Q(deg) 0.000 0.000
wldeg) 0.000 0. 000
v(deg) 0.000 0.000
u(deg) 0. 000 0.000
STATE AT 15% BURN BURN-OUT:
hp (nmi.) 992.716  1545.414
h; (nmi) 3953.650 4371.282
ildeg) 92.689 92. 304
Q(deg) 359.959 0.011
w(deg) 358.428  359.063
v(deg) 50,397 37.213
uldeg) 48.825 36.276
STATE AT 209 BURN BURN-OUT:
hp(nmi) 210.203 226.484
h,, (nmi) 3922.856  4315.208
i(deg) 62.009  61.754
(deg) 0.003 359.991
w(deg) 0.768 0.858
v(deg) 205.739 203. 829
uldeg) 206.507  204.688
STATE AT 3¥¢ BURN BURN-OUT:
hp (nmi. ) 150.000  150.000
h, (nmi) 150.000 - 150.000
iCdeg) 57.000 57.000
Q(deg) 0.002 0.000
wldeg) 0. 000 0.000
v(deg) 35.215 38.096
u(deg) 35.215 38.096

(TM), =

-0267748

900

900.000
900.000
97.000
0.000
0.000
0.000
0.000

1524.579
5321.217
93.862
358.685
349.970
142.281
132.250

398.703
5232.341
60.657
359.728
359.245
215.014
214.259

150.000
150.000
57.000
0.000
0.000
62.161
62.161

.0210557
1500

1500. 000
1500. 000
97.000
0.000
0.000
0.000
0.000

2179.297
6477.947

93.820
358.698
349.712

89.938

79.651

685.528
6287.977
59.707
359.493
0.755
216.700
217.456

150.000
150.000
57.000
0.000
0.000
87.484
87.484
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4,6 ANALYSIS.OF THRUST POINTING ANGLES

A qualitative analysis of the thrust pointing angles was undertaken to
determine>the-similarity of the optimal pointing angle time history to
simple types of control laws, i.e., control laws where the pointing angles
vary linearly or ére constant with time. Previous authors [14, 15] have
suggested that some of fhese simple control laws closely approximate the
optimal contfol. These previqug studies did not, however, investigate the
effect of the pointing angle coordinate system on the “"optimality” of these
simple control laws.  With regard to the coordinate systems depicted in
Figures 1, 4, and 5, it seems reasoﬁable to suspect that the time histories
of the pointing angles in these different systems.may be more or less
"simple”. | |

The analysis was carried out by making plots of fhe changes in the
pointing angles during the burns of three different orbit transfers. For
each burn, three plots were made, each corresponding to the three coordinate
systems of Figures 1, 4, and 5. The transfers chosen were those from the
28.5 degree_inclined,_iow altitude circular orbit to the géosynchronous
orbit;‘the 63.4 degree inclined, 300 mmi altitude circular orbit, and the
300 nmi perigee altitude Molniya orbit. 1In order to make the best possible
comparison with the previous studies, an initial thru#t,to weight ratio of
0.1 #nd a specific impulse of 300 sec was used. The resulting plots are

presented in Figures 12 to 14.
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Iﬁspection of Tables 9 to 13 and 22 to 26 reveals that the first and

third burns of the transfers to the 63.4 degree inclined orbits can be

classified mainly as orbit size changing burns, while the second burns of

these transfers can be classified mainly as orbit plane changing burnms.

Similarly, Table 3 reveals that the first Burn of the tramnsfer to

geosynchronous orbit is an orbit size changing burn while the second burn

changes both orbit size and plane.

Correlating these classifications with the plots of Figures 12 to 14

reveals the following three characteristics:

1.

for orbit size changing perigee burmns, the pointing angles have the .
smallest variation wheq expressed in the VI coordinate frame, i.e.,
the thrust vector remains relatively fixed with respect to the
inertial velocity vector;

for érbit size changing apdgee burns, the pitch pointing angle has
the smallest variation when expressed in tﬁe VIH coordinate frame,
i.e., the thrust vector remains relatively fixed with respect to
the local horizontal plane;

for orbit plane changing burns, the pointing angles have the
smallest and most linear variation when expressed in the ECI
coordinate frame, i.e., the thrust vector remains relatively fixed

with respect to the inertial frame.

These results baéically agree with those of Bartholomew-Biggs [14], who
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showed fﬁat use of linearly varying pointing angles in the VIH frame give
near optimal performance. However, better performance might have been
obtained by Ba}tholomew—Biggs if the ECI or VI frame had been used for some
of the burns. Kaplan and Yang [15] reported that inertially fixed burms
always give large velocity losses and that time varying pointing angles give
the optimum performance. Kaplan and Yang did not state if this variation of
the angles with time was linear, but this seems implied. They also did not
define the coordinate system for their pointing angles. 1In spite of their
omissions, the present study certainly confirms their assertion that time
varying angles are better than inertially fixed angles. However, it is not
clear that use of inertially fixed burns will always result in “"large”
“velocity losses, especially if the burn-is used to change the orbit plane.
Exception is also taken to Kaplan and Yang's use of the word “"optimum”,
since no information is given with.regard to the coordinate frames or

optimization procedures and criteria used to obtain their results.
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Chapter 5

" CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

5.1 CONCLUSIONS

The number and variety of orbit transfer problems which have been
solved indicate that the HNLP method is a very effective method for solving
optimal orbit transfer problems. The method is very simple to implement and
formulate. All thatvis required is the system of algebraic-differential
equétions which constitutes the optimal control problem, an integration
scheme, and an NLP algoritim. The formulation of the tramsversality
functions is not required.

The use of the switch times as optimization variables and the zeroes of
the switchiﬁg function as constraints greatly aided the optimization
process. By formulating the problem this way, the possibility of flying
”;ild" trajectories (ﬁhich could happen if the switching function was used
to determine when to burn and coast) during the optimization process is
removed.

Based on‘the solutions obtained in this study, it appears that in
general, an optimal orbit transfer consists of either three or two burns,
depending not only on the size and orientation of the final orbit, but also

on the magnitude of the thrust level. It was also found that the optimality
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of the solutions could be maintained only if the thrust level remained above
a certain lower bound. Below this lower bound the positivity of the
switching fun;;ion during the first burn could not be maintained.

The results show that a high to low altitude transfer between two
orbits is more fuel efficient than a low to high altitude transfer between
the same two orbits and that an acceleration—limited transfer is more fuel
efficient than a thrust-liﬁited transfer having the same maximum
acceleration. A general conclusion to be drawn from these results is that
the length of a burn arc is apparently a more fundamental measure of finite
burn loss than is the thrust or acceleration level.

The results also revealed that the finite burn solutions maintained a
geometric similarity to the impulsive solutions. The locations of the burns
and their effects on the transfer orbits were generally independent of the
thrust level.

The analysis of the thrust pointing angles leads to the conclusion that
the magnitude and timg linearity of the change in the angles is dependent on
the choice of coordinate frame used to represent these angles. 1In general,
use of the ECI coordinate frame for orbit plane changing burns and VI or VIH
coordinate frame for orbit size changing burns will‘result in the smallest
and most linear time variation of the pointing angles.

5.2 SUGGESTIONS FOR FURTHER STUDY

Before this study was undertaken, the author was under the impression

that as the thrust level was decreased to lower and lower levels, the burms
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of anvéptimal two or .three burn solution would eventually coalesce into one
burn, i.e., an optimal one burn solution would result. The results of this
study indicate that apparently this cannot occur unless some of the '
optimality cbﬁditions are violated during the transition to a one burn
solution. A more detalled investigation of this phenomenon is certainly one
possible area for further study.

Other aspects of the orbit transfer problem to be investiéated are the
effects of much larger plane changes, the tradeoffs between multiple burns,
transfer time, and finite burn loss, and comparisons of optimal two burn and
three burn solutions for the same orbit transfers. An investigation could
also be made of the performance penalties resulting from the use of simple
steering strategies instead of the optimal steering strategy.

The generality of the HNLP method should allow it to be easily applied
to other optimal control problems. The utility of the method for problems
involving mdre complicated constraint functions would seem to be another

fruitful area for investigation.
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