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Abstract

This thesis addresses three problems in seismology and volcanology by applying fluid

dynamical theories that have been developed for engineering applications.

Fault zones are proposed to operate analogously to journal bearings. A quantita-

tive assessment of the physical regimes in which faults behave as lubricated systems

is made using elastohydrodynamic theory. Elastohydrodynamic lubrication with typ-

ical parameters explains the following observable phenomenon: (1) a reduction in the

frictional stress by 50% during large earthquakes, (2) a decrease in high-frequency

(>1 Hz) radiation above a critical slip distance of a few meters and (3) a two orders

of magnitude variation in scaled radiated energy between small (Mw < 4) and large

earthquakes (Mw > 6).

Regionally triggered seismicity often occurs in geothermal areas. It is documented

here that the 1999 Mw=7.4 Izmit, Turkey, earthquake was followed by widespread

seismicity in Greece over a study region extending from 400 km to nearly 1000 km

away from the epicenter. The increase in cataloged earthquakes is statistically signif-

icant at the 95% level. A related phenomenon is the regional triggering of volcanic

eruptions. A model for triggering eruptions based on rectified diffusion is formulated

and evaluated. The excess pressure from rectified diffusion in a typical basaltic system

following a regional M≥8 earthquake is between 0.001 and 0.02 MPa. Strong con-

straints on the porosity, size of the bubbly region, velocity structure and permeability

must be imposed for rectified diffusion to be effective.

A fluid dynamical model based on supersonic nozzle flow is used to link observed

seismic waves with the mass discharge rate of an explosive volcanic eruption. The

method is tested by calculating the vertical mass discharge rate from Mount St. He-

lens for the beginning of the May 18, 1980 eruption. The observed seismic sources

are modeled as thrusts due to a combination of the momentum flux of the erupted

products and the pressure of the eruptive jet. The momentum discharge rate is con-



vi

verted to a mass discharge rate. The calculated mass ejected in the first 100 s is

1.6×1011–4.6×1011 kg. Since the total blast deposit is ∼3.2×1011–4.1×1011 kg, one

interpretation is that the directed blast had a significant (≥40%) vertical component.
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Chapter 1 Overview

This thesis aims to demonstrate that fluid dynamics is an important component of

solid Earth geophysics. The contributions of fluid dynamics have long been appreci-

ated in certain subdisciplines, such as the study of the mantle. Over the last 20 years,

fluid dynamical studies have become a significant component of modern volcanology

[e.g., Wilson et al., 1978; Sparks et al., 1997]. Seismology has remained virtually un-

touched. In this thesis I show that engineering studies of fluid mechanics conducted

for industrial applications have important ramifications for both the qualitative and

quantitative study of seismology and volcanology.

Part I discusses the elastohydrodynamic lubrication of fault zones. Lubrication

may be an important effect in reducing the normal stress during rupture and there-

fore the process helps to explain the apparently low friction on faults. This line of

research is an example of applying engineering methods and data to a geophysical

system. Lubricated bearings have been intensively studied since the seminal work by

Reynolds [Reynolds, 1886] and the parallels between the artificial and natural systems

are striking. Chapter 2 includes quantitative assessments of the physical regimes in

which faults behave as lubricated systems by using elastohydrodynamic theory and

the nondimensional Sommerfeld number [Sommerfeld , 1950]. The theory provides a

unified explanation for a number of disparate seismological observables such as the

variations in radiated energy between large and small earthquakes and the nearfield

waveforms of large earthquakes such as the 1999 Chi-Chi, Taiwan, Mw = 7.6 event.

Recent observations have indicated that seismicity is commonly triggered hun-

dreds of kilometers from a mainshock epicenter. This puzzling phenomenon is not

well explained by traditional elastic models of seismic stresses. The fact that the

sites of triggered seismicity are commonly associated with geothermal and magmatic

activity suggests that fluid dynamics may be an important component of the trig-

gering processes. Part II includes both an observational and theoretical study of
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such regional triggering. Chapter 3 documents that the 1999 Izmit earthquake was

followed by widespread seismicity up to 1000 km away from the epicenter and that

the triggered events often occurred in geothermal areas. Similar correlations between

triggered seismicity and geothermal regions were observed after the 1992 Landers and

1999 Hector Mine earthquakes. Chapter 4 evaluates a model to explain triggering by

seismic waves based on the interactions of waves with bubbly fluids. The particular

mechanism explored here is known as “rectified diffusion.” It has been studied inten-

sively in fields such as bioengineering [Leighton, 1994], but the basic theory required

modification for use in magmatic systems. The new formalism both extends the orig-

inal fluid dynamical studies and contributes to our understanding of the interplay

between processes in magmatic systems.

Part III develops a method for using seismic data to invert for the mass ejection

rate of explosive volcanic eruptions. The momentum discharge rate of a volcanic

eruption is balanced by a force into the ground which generates seismic waves. In-

strumental records of the waves can therefore be used to invert for this momentum

discharge rate. A simple fluid dynamical model based on supersonic flow through

a nozzle is used to convert the momentum to mass discharge. This fluid dynamical

model has long been used for volcanic systems [Kieffer , 1981], but a direct link be-

tween the data and the fluid dynamic model is a new contribution. The resulting

mass ejection rate in kilograms per second is a fundamental and useful metric of ex-

plosive eruptions. This method, which I call thrust inversion, combines traditional

seismological methods with fluid dynamics to formulate the first entirely instrumental

metric of explosivity.

The projects in this thesis represent some exciting new directions that are mo-

tivated by recent observations. Insights into the fundamental physics of all of these

phenomena are gained by approaching the fluid dynamics of the solid Earth with the

tools developed by engineering science.
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Part I

Lubrication of Faults
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Chapter 2 The Elastohydrodynamic

Lubrication of Faults
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Abstract

The heat flow paradox provides evidence that a dynamic weakening mechanism is

important in understanding fault friction. We present here a specific model for dy-

namic velocity weakening that uses the mechanics of well-studied industrial bearings

to explain fault zone processes. As two-subparallel solid surfaces shear a viscous

fluid, an elevated fluid pressure is generated in the gap. This lubrication pressure

supports part of the load, therefore reducing the normal stress and associated friction

across the gap. The pressure also elastically deforms the wall rock. The model is

parameterized using the Sommerfeld number, which is a measure of the lubrication

pressure normalized by the lithostatic load. For typical values of the material prop-

erties, slip distance and velocity, the Sommerfeld number suggests that lubrication

is an important process and reduces the frictional stress by 50% during large earth-

quakes. Elastohydrodynamic lubrication also predicts a decrease in high-frequency

(>1 Hz) radiation above a critical slip distance of a few meters. This prediction

is well-matched by the strong motion data from the 1999 Taiwan earthquake. The

observed two orders of magnitude variation in scaled radiated energy between small

(Mw < 4) and large earthquakes (Mw > 6) is also predicted by the lubrication model.
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Introduction

It is a long-standing problem in seismology that frictional stresses on faults appear to

be lower than expected based on laboratory evidence. Experiments measure the fric-

tional stress of dry rocks sliding against rocks to be approximately 60% of the normal

stress whereas heat flow data taken near the San Andreas fault suggest substantially

less friction in natural systems [Lachenbruch and Sass, 1980]. High pore fluid pres-

sures are often proposed to resolve this dilemma. Interstitial fluids partially support

the load between the fault planes and therefore reduce frictional resistance. Models

generally use the static values of pore pressure for this purpose. Here we consider the

dynamic effect of fluids during seismic faulting. It is commonly observed in engineer-

ing applications that fluid pressure increases during motion [Reynolds, 1886]. As two

sub-parallel solid surfaces slide past each other, they strain the viscous fluid between

them. The finite viscosity of the fluid resists the motion and a high pressure gradient

is formed. This pressure produces a normal stress that can help support the load.

This hydrodynamic lubrication works in two ways to reduce the total frictional stress

on the fault. (1) In the fraction of the fault area lubricated by a continuous film, the

shear stress is the viscous stress which is significantly below the solid-solid friction

for fluids such as water, slurry or mafic melt. (2) More importantly, the mechanically

increased pore pressure reduces the effective stress on the solid-solid interfaces and

therefore dynamically reduces the frictional stress during an earthquake.

In this study we develop a theory to quantitatively predict the frictional effects of

coseismic lubrication by a viscous fluid in a confined fault. We then apply the theory

to three specific observations: heat flow, nearfield waveform complexity and radiated

energy. The fault is envisioned as a bicontinuous system of solid matrix and fault

fluid. The fault fluid flows around asperities in a nearly linear path as the area of the

asperity contacts is much less that the total fault surface area (Figure 2.1). The flow

is modeled as two-dimensional and the deflection due to the asperities is neglected.

We calculate the fluid pressure generated by this flow and then consider its effect on

reducing the load on the asperities.
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Figure 2.1 Map view of a fault surface. There is a bicontinuous system of solid matrix
(rock) and fault fluid (slurry). The upper block (not shown) moves to the right relative to
the lower block. The fluid is dragged around the asperities (grey) in the nearly slip-parallel
path direction shown by the arrow.

The fault fluid is formulated as generally as possible since the physical process

described refers to any viscous fluid sheared between two rough surfaces. We favor

identifying the fluid as a slurry of fine-grained fault gouge and aqueous fluid because

geological evidence for such a material exists [e.g., Otsuki , 1999] and slurry viscosities

are large enough to produce significant lubrication pressures. Other candidate fault

fluids include aqueous fluid and frictional melt. The general theory presented here

applies equally well to any viscous fluid, although the numerical results would need

to be recomputed with the appropriate material properties.

Lubrication theory

A quantitative understanding of hydrodynamic lubrication requires a brief review of

the standard formulation of the motion of the fluid between two subparallel planes.

The fluid motion is completely described by the full Navier-Stokes equation,

ρ
Du

Dt
= −∇p + η∇2u, (2.1)

where ρ is the density, u is the velocity vector, p is the pressure and η is the viscosity.

An important simplification of the Navier-Stokes equations can be made if the flow
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U

p=p p
0

p=p p
0H

L

∆H

x

z

Figure 2.2 Characteristic dimensions H and L in a narrow fault. L is the characteristic
dimension of pressure changes and H is the mean height of the gap. For a fluid-filled fault,
the mean gap height is the same as the average thickness of the slipping zone. U is the slip
velocity of one side of the fault relative to the other, p0

p is the undisturbed fluid pressure and
∆H is the average asperity height. All cartoons in this chapter are vertically exaggerated.

is through a thin gap, such as a fault zone. A thin gap is defined as one where the

length, L, over which the fluid pressure changes significantly is much longer than the

mean height, H, of the gap (Figure 2.2). The thin gap simplification of the equations

of motion is known as the lubrication approximation and all terms in the Navier-

Stokes equation of order H2/L2 or smaller are neglected. The inertial term is also

negligible provided that the Reynolds number is much less than L2/H2 (Appendix

A). For faults during rupture both conditions are met and the governing equations in

two dimensions reduce to

∂p

∂x
= η

∂2u

∂z2
(2.2)

∂p

∂z
= 0 (2.3)

where u is the fluid velocity in the x direction and the coordinate system adopted

defines x as parallel to the fault slip vector and z as the normal to the fault plane

(Figure 2.2).

Pressure gradients across the gap are negligible under the above assumptions and

the dynamics are dominated by the balance of the viscous stresses and the pressure
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gradient parallel to the gap. The continuity equation for an incompressible fluid is

∂u

∂x
+
∂w

∂z
= 0 (2.4)

where w is the velocity in the z direction. Combining (2.4) with the boundary condi-

tions and the equations of motion (2.2) and (2.3) provides solutions for the velocity

and pressure fields.

We adopt a frame of reference that is stationary at the wall where z = 0 and

assume no slip boundary conditions at the walls.

At z = 0, u = 0, w = 0

At z = h, u = U,w = 0 (2.5)

At the wall with z = h, where h is defined as the local slipping zone thickness, u = U

where U is the relative velocity between the fault walls. The relative motion between

the walls is assumed to be entirely in the plane of the fault. The slipping zone height

includes both the initial distance between the walls and any elastic deformation that

may be caused by the fluid pressurization. At both walls (z = 0 and z = h), w = 0

since there is no flow in the direction normal to the impermeable walls.

We integrate (2.2), impose the boundary conditions (2.5), and use the integrated

form of the continuity equation (2.4) to derive the Reynolds equation, a standard

result in lubrication theory [e.g., Hamrock , 1994],

d

dx

(
h3 dp

dx

)
= −6ηU

dh

dx
. (2.6)

A more convenient integrated form is

p(x)− p0
p = 6ηU

∫ x

0

h∗ − h

h3
dx (2.7)

where h∗ is the gap height at the point of maximum pressure, i.e., at x = x∗ where

dp/dx|x=x∗
= 0. Given boundary conditions for p and the geometry of the fault
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b

a

p = p    = 0
0

p p = p    = 0
0

p

h(x)

U

x=0 x=L

p

x

Figure 2.3 Lubrication under a slider block. (a) The geometry of the slider plate. (b) The
pressure increase as calculated from (2.7) in arbitrary units.

specified by h(x), the Reynolds equation can be solved to find the pressure distribution

p(x). The typical behavior of lubricated systems can be illustrated by considering a

tapered slider moving over a plane surface (Figure 2.3).

The pressure in the farfield is the initial reservoir pressure, p0
p. It is convenient to

reference all pressures to this level and set p0
p equal to 0. The appropriate boundary

conditions for pressure are that at x = 0 and x = L, the pressure p = p0
p = 0. The

pressure rises in the narrow region and therefore exerts a net force or “lift” separating

the two blocks.
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Elastic effects

To this point we have assumed that the fault wall behaves as a rigid body. This is

not true in many lubrication problems. The fluid pressure deforms the wall and in

so doing adjusts the geometry to make lubrication more effective. This phenomenon

explains how originally symmetric asperities like that pictured in Figure 2.2 deform

to generate a net pressure increase. The everyday experience that arbitrary rough

surfaces slide more easily when lubricated than when dry is evidence of the efficacy

of the elastic adjustment.

The elastic deformation is computed by considering the fluid pressure to be a se-

ries of pressure line sources. The pressurization lasts as long as the fault is rupturing.

Since the asperities are at most a few meters long, the time it takes the elastic waves

to traverse the asperities (� 10−2s) is likely much less than the duration of loading.

Therefore, a quasistatic solution to the elastic equations is appropriate. Elastody-

namic deformation is simultaneously occurring on the fault walls during rupture due

to additional processes such as asperity collisions. Those additional dynamic effects

are beyond the scope of the present study and would simply be superposed on the

linear elastostatic solution presented here. The elastostatic solution is derived in

Appendix B, and at point x the gap changes in height by a quantity δ(x),

δ(x) =
4(1− ν2)

πE

∫ L

0
p(ξ) ln

∣∣∣∣∣∣
a+

√
(x− ξ)2 + a2

x− ξ

∣∣∣∣∣∣ dξ, (2.8)

where 2a is the width of the lubricated zone in the fault plane direction normal to slip,

E is the Young’s modulus of the rock and ν is the Poisson’s ratio. We assume that

the lubricated zone is equidimensional. The width is comparable to the length and

a = L/2. We also assume that the pre-earthquake pore pressure p0
p is in equilibrium

with the initial asperity shape and produces no deformation.

Figure 2.4 shows the deformation of an asperity with the initial shape s(x) =

h1(cos(2πx/L) + 1) + h0 where the constants h1 and h0 are both 10−3 m for this

example. Details of the numerical method are in Appendix C. There are two features
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Figure 2.4 Elastic deformation of a cosine asperity with an initial minimum separation of
1 mm. (a) The dashed line is the undeformed asperity shape s(x) and the solid line is the
equilibrium shape h(x) = s(x)+δ(x) with the elastic deformation coupled to the lubrication
fluid pressure. Parameters are E = 5 × 1010 Pa, L = 5 m, U = 1 m/s and η = 10 Pa s.
(b) The same as (a) with L = 15 m. (c) The same as (a) with L = 30 m. (d) The change
in pressure in the fluid due to lubrication effects. The total change in gap height is plotted
and includes the elastic deformation of both sides of the faults. (e) Same as (d) with L = 15
m. (f) Same as (d) with L = 30 m.
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of the solution that are particularly important for the discussion that follows. (1) The

asperity is deformed to an asymmetrical configuration, thus promoting lubrication and

supporting a net load. (2) As the length of the asperity L increases, the displacement

δ(x) increases in accordance with (2.8). Since the initial asperity height is the same

in all three cases of Figure 2.4, the deformed asperity flattens with increasing values

of L.

Sommerfeld number

Equation (2.6) balances the pressure gradient in the gap with the viscous stresses

generated by the variations in gap height and implies that the excess pressure due to

lubrication, PL ≡ O(p(x)− p0
p), scales as

PL ∼
6ηUL∆H

H3
(2.9)

where H is the mean gap height and ∆H ≡ O(h − h∗) is the mean variation in

gap height caused by asperities (Figure 2.2). Capital letters are used here to denote

characteristic scales while variables are written in lowercase. The lubrication pressure

increases with viscosity. This dependence on viscosity is why oil is a better lubricant

than water for most household uses [Persson, 1998, p. 97].

For a fault with asperities that intermittently are in contact during rupture, the

average asperity height, ∆H, may be of the same order as the average gap height, H.

The expression for the lubrication pressure would reduce to

PL ∼
6ηUL

H2
. (2.10)

However, the assumption that the mean asperity height ∆H is of the same order as

the initial gap height H0 is always not valid for natural surfaces. Power and Tullis

[1991] showed that faults are self-similar over a wide range of scales. According to

their measurements, ∆H = KL for values of L between 10 µm and 40 m where K is
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a constant of order 10−4–10−2. In this case, equation (2.9) reduces to

PL ∼
6ηUKL2

H3
. (2.11)

For natural fault surfaces and large ruptures (earthquake magnitude, M , > 6), the

parameter K is of the same order as H/L. As will be discussed below, lubrication

pressure is only significant for large earthquakes. Therefore, equation (2.10) is often

a convenient approximation for the lubrication pressure, even though equation (2.11)

is more rigorously correct.

The effectiveness of lubrication is estimated by normalizing (2.11) by the pressure

from the static load to form the dimensionless Sommerfeld number,

S ≡
PL
P

=
6ηUL2K

PH3
(2.12)

where P is the lithostatic pressure for geological problems [Sommerfeld , 1950]. This

form of the Sommerfeld number is slightly modified from the original reference because

of the geometric difference between the axisymmetric journal bearing problem that

Sommerfeld was considering and the natural, planar fault considered here.

The average gap height H is equal to the sum of the initial average gap height

H0 and the average elastic deformation, D. According to Hooke’s law, D is related

to the lubrication pressure by

D = LPL/E (2.13)

where E is Young’s modulus. For small lubrication pressures, the elastic deformation

is negligible and

S =
6ηUKL2

(H0)3

1

P
. (2.14)

The initial gap geometry drives the lubricating flow and the asperities are undeformed.

This regime occurs when the lubrication pressure is much less than the pressure

necessary to generate deformation of order H0,

PL � EH0/L. (2.15)
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We define a critical lubrication length Lc below which the elastic deformation D is

insignificant. Lc is defined as the length at which D = H0. Combining equations

(2.11) and (2.13),

Lc = 2H0

(
H0E

6ηUK

)1/3

. (2.16)

In the inelastic regime where L � Lc, the larger the value of L, the larger the

lubrication pressure.

For large L � Lc, elastic deformation is significant. The initial gap height H0 is

much less than D and the total gap height H is primarily determined by the elastic

contribution, i.e., H ≈ D. The roughness K is assumed constant and therefore for

L� Lc

S =

(
6ηUKE3

L

)1/4
1

P
. (2.17)

Equation (2.17) indicates that S decreases with increasing L in the elastic regime.

As the value of L increases, the elastic deformation widens the gap and therefore

the lubrication pressure gradually decreases. This decrease of lubrication pressure in

the elastic regime is a gradual process (PL ∼ L−1/4) since the decreasing lubrication

pressure also reduces the strain, D/L.

The Sommerfeld number measures the importance of lubrication in determining

the frictional properties of a system. The effect of lubrication pressure on friction can

be understood in terms of the classical model of Hubbert and Rubey [1959] describing

the effects of pore fluid pressure. The effective pressure Pe on the solid contacts is

the static load less the average pore pressure Pp [Hubbert and Rubey , 1959],

Pe = P − Pp. (2.18)

The Hubbert and Rubey [1959] model, like nearly all frictional models, is based on the

observation that contacting asperities account for the majority of the frictional stress

even though they comprise only a small fraction of the fault plane area. This work

shows that during rupture the pore pressure is dynamically increased and Pp = P 0
p +

PL. If the Sommerfeld number is high, then PL is significant and the effective pressure
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on contacting asperities is decreased. The contribution of the asperity contacts to the

average frictional stress τf on the fault is

τf = µsPe (2.19)

where µs is the solid frictional coefficient.

For small Sommerfeld numbers, the lubrication pressure supports an insignificant

fraction of the load. The two sides of the fault are in contact at asperities and

conventional formulations of solid friction as proportional to the normal stress are

appropriate. This limiting behavior is known as boundary layer friction. The fric-

tional stress τf is determined by adhesive forces and can to some extent be predicted

from the surface chemistry [Persson, 1998]. Boundary layer friction is conventionally

formulated in terms of the frictional coefficient,

τf = µsP , (2.20)

where µs is a material property of the solid.

For large Sommerfeld numbers, the lubrication pressure completely supports the

load and no normal stress is exerted on contacting asperities. The only frictional stress

is the viscous resistance of the fluid and (2.19) is not relevant. The magnitude of the

viscous stress in the fluid is ηdu/dz. Equation (2.2), which is the lubrication equation

of motion in the x direction, shows that the velocity gradient du/dz scales as PLH/Lη.

Therefore, the viscous stress scales as PLH/L. Since this viscous stress is the only

frictional stress in the fully lubricated regime, the effective frictional coefficient µ ≡

τf/P is

µ = SH/L (2.21)

where the definition of the Sommerfeld number as S = PL/P has been used to simplify

the expression.

Between the boundary layer and hydrodynamic regimes is the “mixed regime.”

Friction is determined by a mixture of viscous resistance and solid asperity contacts
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(Figure 2.1). The effects are additive and the frictional stress is

τf = µsPe + SPH/L. (2.22)

If we neglect the initial hydrostatic fluid pressure P 0
p for the purposes of this qualita-

tive discussion of friction, then Pe ≈ P (1− S) and the effective frictional coefficient

is

µ = µs(1− S) + SH/L. (2.23)

All three types of behavior are shown schematically in the classical Stribeck curve

in Figure 2.5 [Spikes, 1997] and are summarized by

µ =


µs S � 1

µs(1− S) + SH/L S ≈ 1

SH/L S � 1.

(2.24)

The Stribeck curve demonstrates both effects of lubrication outlined in the intro-

duction. In the hydrodynamic regime, the shear stress is low since solid-solid friction

has been eliminated in favor of viscous effects. In the mixed regime, the friction has

been depressed since the lubrication pressure is high.

Rough surfaces

The length of the lubricated zone L is defined as the length over which the pressure

returns to its reservoir value. For a single asperity, such as shown in Figure 2.4,

this is clearly the asperity length. Real fault surfaces are thought to be fractals

with asperities over a continuous range of lengths [Scholz , 1990; Power and Tullis,

1991]. The ratio of asperity height to wavelength is constant to a first approximation

[Power and Tullis, 1991]. Figure 2.6a is a simulation of a rough surface generated by

the function

f(x) =
nmax∑
n=1

Kλ

n
cos(

2πnx

λ
+ φn) (2.25)
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Figure 2.5 The Stribeck curve schematically shows the variation of the coefficient of fric-
tion, µ, with S. In the region labeled “boundary lubrication,” solid-solid friction predom-
inates. Between the dashed lines is the mixed regime where solid-solid friction is reduced
by the lubrication pressure. In the “hydrodynamic lubrication” region, solid-solid friction
is eliminated and the friction is determined by the viscous stress.
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Figure 2.6 Roughness generated by slip on a self-similar surface. (a) The top surface slips
a distance d relative to the bottom one. (b) The gap height function h(x) after slip. The
characteristic wavelength is comparable to the scale bar of length d.

where K is a constant aspect ratio, φn is a random phase lag between 0 and 2π, nmax

is the maximum value of the index n and λ is the length of the computational region.

Since Power and Tullis [1991] observed that K is constant for wavelengths from 10

µm to 40 m, the expression in equation (2.25) is valid as long as λ/n is within this

range.

We assume that the two rough sides of the fault are initially well-matched before

the earthquake due to interseismic processes and the gap height function h(x) is

constant along strike. If the fault fluid is a slurry, the thickness of this initially

uniform fluid layer is controlled by the fluidization process as well as the fault surface

geometry. As one side of the fault slips relative to the other, a mismatch between the

fault sides develops and h(x) varies with x (Figure 2.6). Since the initial roughness

f(x) is self-similar, the characteristic wavelength of h(x) scales as the displacement

between the two fault surfaces. Figure 2.6 shows how initially conformal, rough

surfaces result in a high frequency gap height function h(x) when one plane is slipped

a distance d relative to the other plane. Larger asperities are isolated with increasing

displacements. Visual inspection suggests that d is the dominant asperity length and

therefore is approximately equal to L.
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A Monte Carlo simulation verifies the scaling relationship between d and L. A

series of 300 calculations were performed with an initial gap height function

h(x) = f(x+ d)− f(x) + h0 (2.26)

where f(x) was randomly generated following equation (2.25). The full pressure

distribution and elastic deformation was calculated numerically following the method

in Appendix C. The ratio of the PL computed with equation (2.11) and L = d to the

mean fluid pressure from the full calculation measures the accuracy of this scaling

relationship. The median of this ratio for convergent trials is 0.75 and 74% of the

results are between 0 and 2. The results confirm that the lubrication pressure scales

as d. For the purposes of the order of magnitude calculations in this paper L ≈ d.

About 46% of the trials were non-convergent. Convergence fails in the numerical

calculations in some cases due to the inherent instability in the elastohydrodynamic

coupling (Appendix C). Other cases fail to converge because the initial geometry

diverges too strongly at some point on the fault for lubrication to produce positive

pressures with this set of parameters (K = 10−3, λ=10 m, d=1 m, η=10 Pa s, h0=1

mm, U = 1 m/s). It is expected that some areas of a real fault surface will fall into

this category and therefore be unlubricated. However, most of the trials were entirely

lubricated over the full 10 m surface. Even the trials that failed had significant sections

of the fault that were favorably oriented for lubrication. The calculations show that

for typical geometries and fluid parameters most regions will become lubricated.

Dynamic control of roughness

Figure 2.7 is a calculation of elastohydrodynamic lubrication using a rough surface

generated by equation (2.25). The gap height function is produced by slipping this

surface a distance d relative to a well-matched surface as in equation (2.26). The in-

crease in deformation with increasing d reproduces the behavior shown in Figure 2.4

for a single asperity with increasing L. The separation between the original and de-

formed surfaces increases with d. An additional complication in the rough surface
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Figure 2.7 Lubrication of a rough surface. (a) The light curve is the undeformed asperity
shape and the dark curve is the equilibrium shape. Parameters are as in Table 2.1. d = 0.5 m
(b) The same as (a) with d = 1 m. (c) The same as (a) with d = 2 m. (d) The change in
pressure in the fluid due to lubrication effects with d = 0.5 m.(e) Same as (d) with d = 1
m. (f) Same as (d) with d = 2 m.

calculations is that the initial asperity height also increases with increasing L. Larger

asperities are included in the gap height function as the slip distance increases. There-

fore, the flattening is not apparent as in Figure 2.4. If d exceeds the critical value

Lc the gap is widened by an amount comparable to the largest asperity heights. The

wider gap reduces the number of asperity collisions during sliding. It will be hypoth-

esized that this process has observable effects in nearfield records of high-frequency

ground motion.

Physical constraints on parameters

We now use the above formalism to quantify the support provided by lubrication

pressure for parameters appropriate to an earthquake.
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The value of viscosity depends on the fault fluid. A number of studies have

shown that crustal fluids migrate to highly permeable fault zones [Davis and DeWiest ,

1966] and there is reason to believe that aqueous fluids are abundant at mid-crustal

levels due to metamorphic reactions [e.g., Rumble, 1994]. If the lubricant during an

earthquake is H2O, the viscosity is on the order of 10−3 Pa s [Sengers and Watson,

1986]. Alternatively, solid-solid frictional stresses may melt the wall rock during the

early stages of an earthquake as first suggested by Jeffreys [1942]. Such a melt would

be a viable lubricating fluid with a viscosity of at least 10 Pa s [Spray , 1993]. In

this case thermal effects should be considered in addition to the strictly mechanical

lubrication addressed here. We favor a slurry formed from the mixture of fine grained

gouge with H2O as the lubricant for the reasons noted in the introduction. There is

evidence of slurries in fault zones and they are probably viscous enough to produce

significant lubrication. Major and Pierson [1992] showed that at shear strain rates

greater than 5 s−1 and atmospheric pressure, fine-grained slurries exceed their yield

strengths and behave as Newtonian fluids with constant effective viscosities. Since

the shear strain rates during rupture are on the order of 1000 s−1, we expect the

fluid to be in this Newtonian regime even if some increase of yield strength occurs

with confining pressure. The observation of eddy structures in fault zone cataclasites

gives further evidence that gouge fluidizes during rupture [Otsuki , 1999]. Slurries

with mean grain diameters less than 63 µm had viscosities of 0.2 Pa s to 7.1 Pa s in

the experiments of Major and Pierson [1992] at atmospheric pressure. We expect the

viscosity to increase somewhat at depth and therefore estimate the slurry viscosity to

be 10 Pa s. Major and Pierson [1992] also showed that slurry viscosity is extremely

sensitive to solid volume fraction and can change by an order of magnitude if the

solid volume fraction changes from 45% to 50%. As a result our estimate of viscosity

is necessarily approximate and we acknowledge that it may be inaccurate by a factor

of 10 or more.

An average value for slip velocity for moderate earthquakes is 1 m/s [Lay and

Wallace, 1995]. This standard value is adopted for most of this study. A preliminary

model incorporating variable velocity is also explored in this paper under the discus-
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sion of radiated energy data as a model application. This more complete treatment

includes velocity variations consistent with the variations in friction due to lubrica-

tion.

The aspect ratio K is observed to be 10−4–10−2 for asperities in the slip parallel

direction [Power and Tullis, 1991]. In the absence of more precise data, we select

K = 10−3 as a representative value.

The lubrication length L is approximately equal to the slip distance d as discussed

above. The slip distance d scales as M
1/3
0 where M0 is the seismic moment [Kanamori

and Anderson, 1975]. We assume that the slip for a Mw = 6 earthquake is 1 m. This

approach uses the final slip distance as L and therefore calculates the maximum value

of S for a given magnitude earthquake.

The average initial gap height H0 is assumed to be comparable to observed geo-

logical features that are inferred to have been generated during a single slip event.

Such features include intravein septa, slickenslide surfaces and occasionally pseudo-

tachylytes. All of these features often indicate sliding localized to regions on the scale

of millimeters [Sibson, 1999]. Therefore, we take H0 = 1 mm.

The elastic modulus E is a material parameter of the rock and is 5×1010 Pa for a

typical granite [Carmichael , 1982]. Ambient pressure is estimated as the lithostatic

value at the hypocenter. Typical values in the seismogenic zone are 1–2×108 Pa. More

precise estimates can be made for specific events by using the hypocentral location.

The parameters listed above are summarized in Table 2.1 and result in values of

the Sommerfeld number on the order of 0.1 for moderate earthquakes. These values

indicate that the rupture process overlaps with the dynamic regime in which variations

in lubrication pressure are significant. Values for a few representative events are listed

in Table 2.2.

Combining the above constraints and using the standard relationship between

seismic moment and magnitude,

logM0 = 1.5Mw + 9.1, (2.27)
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Table 2.1. Typical Parameter Ranges

Parameter Values

η 10 Pa s
U 1 m/s
K 10−3

L (M0/M0
0 )1/3 ma

H0 10−3 m
E 5× 1010 Pa
P 1–2 × 108 Pa

aM0
0 is the moment of a Mw = 6 earthquake (1.3 ×1018 N m) and is used

to normalize the slip distance to be 1 m for such an event.

Table 2.2. Representative Events and Source Parameters

Earthquake Mw U d P S
m/s m 108 Pa

Landers1 6/28/92 7.2 1 7 1.9 0.1
Northridge2 1/17/94 6.7 1 3.2 4.7 0.1
Parkfield3 12/20/94 4.7 1.1 0.77 2.4 0.1

Sommerfeld numbers for representative earthquake. Values for P are
based on hypocentral depths. In order to provide consistent comparisons,
Sommerfeld number is computed for the maximum observed velocity and
slip. Parameters omitted from this table are taken to be the typical values
in Table 2.1. References: 1Wald and Heaton [1994]; 2Wald et al. [1996];
3Fletcher and Spudich [1998].
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where M0 has units of N m, we graph a relationship between Sommerfeld number and

magnitude (Figure 2.8). Lubrication pressure can reach 30% of the lithostatic pressure

for large earthquakes with typical fault parameters, but lubrication is negligible for

small earthquakes.

Parameters in Table 2.1 are approximate and Figure 2.8 shows the sensitivity of

the results to errors in the estimates. The least constrained parameters, η and H0, are

varied. The results are very sensitive to the parameters chosen for small earthquakes

and more robust for large earthquakes. Despite the variation, small earthquakes

remain essentially unlubricated in all cases. The significant lubrication pressures in

moderate to large events are relatively insensitive to variations in parameters because

of the limiting effect of the elastic deformation. This result is consistent with the
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scaling argument in equation (2.17) where the Sommerfeld number is shown to be

proportional to the 1/4 root of most parameters.

Model applications

The previous sections presented a conceptual overview of hydrodynamic lubrication,

a mathematical model and the necessary quantification of parameters. We now use

lubrication theory to explain the following three observations: low heat flow on the

San Andreas, along-strike variations in strong motion spectra and a difference in

scaled radiated energy between large and small earthquakes. At the end of this section

we present an optimized parameter set that is consistent with all three applications.

Heat flow

Heat flow measurements across the San Andreas fault require that the frictional stress

on the fault is less than 107 Pa at 7 km depth [Lachenbruch and Sass, 1980]. This

strong constraint on the fault energetics is puzzling in light of laboratory data on

rock friction. According to laboratory experiments, the frictional stress τf between

rock surfaces is determined by Byerlee’s Law

τf = µsPe = µs(P − P
0
p − PL) (2.28)

where the coefficient of friction µs is between 0.6 and 0.85 and the effective pressure

is as discussed for equation (2.18). At an average seismogenic depth of 7 km with

hydrostatic fluid pressure (P = 1.9 × 108 Pa, P 0
p = 7 × 107 Pa), Byerlee’s law re-

quires the frictional stress to be at least 7×107 Pa (Table 2.3). A dynamic increase

in fluid pressure of 108 Pa, i.e., S = 0.5 is required in order to solve the friction para-

dox. The parameters considered in Table 2.1 allow a maximum lubrication pressure

PL = 3× 107 Pa. Dynamic lubrication in this situation reduces the friction by 30%

relative to the hydrostatic value, but does not completely solve the friction paradox.

Sufficient lubrication pressure can be achieved by lubrication using a higher viscosity
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Table 2.3. Frictional Stress

Case P 0
p PL τf

(107 Pa) (107 Pa) (107 Pa)

a 0 0 10
b 7 0 7
c 7 3 5
d 7 10 0.9

Minimum frictional stress on the fault τf computed from Byerlee’s law
(2.28) for different assumptions. The cases are: (a) Dry rock. (b) Hy-
drostatic pore pressure only. (c) Lubrication with typical parameters. (d)
Lubrication with η=350 Pa s.

slurry or melt with η = 350 Pa s. Alternatively, other mechanisms such as thermal

pressurization in the confined fault zone might account for a portion of the dynamic

fluid pressure increase [Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 1987].

The calculations show that hydrodynamic lubrication is only significant for large

earthquakes. A dynamic lubrication model for reducing frictional stress requires that

the majority of slip on a fault occurs during the larger magnitude events. This

is consistent with standard scaling relationships for seismic energy with magnitude

[Kanamori and Anderson, 1975].

Strong motion spectra

A unique set of strong motion records was recorded within a few kilometers of the

surface rupture during the September 20, 1999, Mw = 7.6 Chi-Chi, Taiwan, earth-

quake (Figure 2.9). The earthquake is notable for its high particle velocities as well

as the distinct lack of high frequency energy in the areas with large velocities [Ma

et al., 2000]. The northern records are dominated by a smooth, large amplitude pulse

in velocity, whereas the southern ones have higher frequency energy with lower veloc-

ities. This difference in frequency content along-strike was also manifested as greater

damage in the south, despite the larger displacements in the north. The damage

patterns and mapped fault offsets confirm that the variation in the records is a re-
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Figure 2.9 Velocity records from Chi-Chi, Taiwan Mw = 7.6 earthquake. (a) North com-
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stations. (b) Station map and surface rupture. Fault plane dips to the East.



30

sult of along-strike trends rather than local site responses or amplified motion on the

hanging wall.

We hypothesize that the high frequency energy is generated by contacting asperi-

ties (Figure 2.10). Collisions between asperities are accommodated by a combination

of normal displacement and failure. Both processes radiate high frequency energy.

Asperities that radiate energy by these processes must be much smaller than the slip

distance. The rate of asperity contact controls the minimum frequency, fc, of the

displacement waves generated by asperity collisions. Therefore,

fc � U/d. (2.29)

Using the values in Table 2.3 we compute that for station TCU129, fc � 0.8 Hz and

for TCU068, fc � 0.4 Hz. Based on these values we define “high frequency energy”

as waves with frequencies greater than 1 Hz.

The lubrication model can explain the observed data if the lubrication lengthscale

L in the northern section of the fault was larger than the critical value Lc and therefore

elastic deformation was significant. For the self-similar rough fault L is identical to

the slip distance d as shown in Figure 2.6. It is hypothesized that at the northern

stations d � Lc; therefore, the elastic deformation widened the fault and reduced

asperity contact. High frequency radiation was reduced. Elsewhere on the fault d is

hypothesized to have been less than Lc throughout the earthquake.

We verify the consistency of the hypothesis with the data by comparing the ob-

served maximum slips (L) with the theoretical values of Lc from equation (2.16).

The results calculated with the standard lubrication parameters in Table 2.1 com-

bined with the velocities and slip distances in Table 2.3 are shown in Figure 2.11.

The critical slip is between 1 and 2 m at all of the stations. L is shown to exceed Lc

only at the two northernmost stations and therefore the results are consistent with

the lubrication hyopthesis. The values of Lc presented here depend on the estimates

of the parameters in Table 2.1. However, equation (2.16) shows that the results are

relatively insensitive to errors in all the parameters except H0. The critical slip Lc is
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Figure 2.10 Cartoon illustrating asperities breaking during rupture. (a) Undeformed fault
surface. As the point at the tip of the arrow slips to the right, it collides with the asperities
on the lower surface above the dotted line. A schematic high-pass velocity trace for a station
located at the arrow is shown above the figure. (b) Deformed fault surface. There are fewer
asperity contacts than in the undeformed case as shown by the shading and the velocity
trace.

Table 2.3. Taiwan Station Parameters

Station d (m) U (m/s)

TCU068 9.6 3.9
TCU052 8.7 2.7
TCU067 1.2 1.1
TCU065 1.6 1.5
TCU075 1.3 1.2
TCU076 1.3 0.87
TCU129 1.0 0.78
CHY028 1.3 0.94

Observed maximum horizontal slip and particle velocity. Stations are ar-
ranged north to south as in Figure 2.9. The first two stations show anoma-
lous “pulse” behavior.
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Figure 2.11 Comparison of observed maximum horizontal slip (L = d) at each station as
tabulated in Table 2.3 (solid line) with the values of Lc computed using equation (2.16)
(dashed line).
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Figure 2.12 (a) Acceleration spectra for the Chi-Chi earthquake of the N component from
a northern (TCU068) and southern (TCU129) near-fault station. (b) Displacement spectra
derived from the acceleration records.

likely to be of the order of a few meters. Spectral analysis of the northern stations

shows a fall-off in frequency above ∼1 Hz as would be expected from the lubrication

model (Figure 2.12).

We predict that any large earthquake with slip distances greater than a few meters

will have a zone of the fault that is well-lubricated with depleted high-frequency

energy. This behavior has direct implications for efforts to mitigate the effects of

strong ground motion. Structures designed to withstand large earthquakes must

accommodate large amplitude long-period motion, but do not need to accommodate

as much high frequency energy as would be predicted from scaling the spectrum of

small events. Of course, such theoretical predictions are preliminary and should be

thoroughly validated before being incorporated into any design plans.
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Figure 2.13 Observations of the ratio of locally measured radiated energy ER to M0. Data
is from the following sources: stars, Prejean and Ellsworth [submitted]; pluses, Abercrombie
[1995]; x’s Kanamori and Heaton [2000]; circle, Ma et al. [in prep.]. (a) The data is separated
into two regimes. To the right of the dashed line ER/M0 is approximately constant and
to the left it gradually decreases. Scatter also increases for the small events as discussed
in the text. (b) The data and a solid line indicating the modeled values of ER/M0 using
(2.12) and (2.30)–(2.33). We only attempt to fit the change in ER/M0 by a factor of 100
for Mw=4 to Mw=6. Parameters are as in Table 2.1 and as follows: G = 2.0 × 1010 Pa,
µs = 0.6, P = 108 Pa, σ0 = µsP + 2× 105 Pa, Vr/β = 0.65, β = 3300 m/s.
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Radiated energy

It has been observed in California that the ratio of radiated energy ER to seismic

moment M0 is a function of magnitude (Figure 2.13) [Abercrombie, 1995; Prejean

and Ellsworth, submitted; Kanamori and Heaton, 2000]. Large events (Mw > 6)

have values of ER/M0 ≈ 10−4 while the small ones (Mw < 4) have values as low as

10−6. This type of observation is extremely difficult and the error increases for small

events because of the model-dependent corrections for attenuation. Such corrections

are necessary for accurate measurement of radiated energy and likely obscure the

systematics for small earthquakes. We therefore only attempt to interpret the overall

trend. There is a constant, large value of ER/M0 for large events and a transition

occurs at Mw ≈ 5 to smaller values of the ratio for small earthquakes. We attempt

to fit only the observed change of ER/M0 by a factor of 100 from Mw=4 to Mw=6.

The observations of scaled radiated energy have particularly important implica-

tions for slip velocity and therefore frictional behavior. Both Sato and Hirasawa

[1973] and Mott [1948] derived a relationship between rupture velocity Vr, driving

stress ∆σd and the observable ratio ER/M0, by calculating the kinetic energy during

rupture.

ER
M0

=
∆σd
2G

(
Vr
β

)2

(2.30)

where G is the shear modulus and β is the shear velocity in the country rock outside

the fault zone. The average driving stress during an earthquake is related to the

initial stress σ0 and the frictional stress σf by

∆σd = σ0 − σf (2.31)

and the frictional stress is reduced by the lubrication pressure. Therefore, the driving

stress is

∆σd = σ0 − µsP + µsPL. (2.32)

The lubrication pressure PL depends on the slip velocity U as shown in (2.11). The
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Figure 2.14 Dynamic friction model results. Frictionally controlled (a) Sommerfeld num-
ber, (b) slip velocity and (c) radiated energy as a function of magnitude. Parameters are
as in Figure 2.13.

relative slip velocity is related to the driving stress in a propagating shear crack by

U = ∆σdβ/G
2Vr/β

E

[√
1− (Vr/β)2

] (2.33)

where E[ ] is the complete elliptic integral of the second kind [Husseini , 1977]. The

derivation of (2.33) assumes that the driving stress is equal to the static stress drop.

Here we assume that the equation is equally applicable for the instantaneous driving

stress σd.

Combining (2.32), (2.33) and the definition of PL in (2.11), we solve for U . The

model nonlinearly couples the driving stress, slip velocity and lubrication pressure. In

Figure 2.13 solutions of S and U as a function of Mw are computed and then ER/M0

is derived using (2.30). The behavior of this model is best understood in terms

of the critical slip distance Lc defined by equation (2.16). For the inelastic regime
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where L < Lc, as the slip distance increases, the lubrication pressure rises. For small

magnitudes (Mw < 4), the lubrication pressure is much less than lithostatic pressure

(S � 1) and there is little effect on the total frictional stress. Therefore, velocity

and ER/M0 are nearly constant in this magnitude range. At Mw≈4 the lubrication

pressure becomes a significant fraction of the lithostatic pressure and the frictional

stress is reduced. Since the frictional resistance is less than in the unlubricated case,

the driving stress is increased. The driving stress is coupled to U and ER/M0 in

equations (2.30) and (2.33). Therefore, U and ER/M0 also increase relative to their

values for small events (Mw < 4).

For large magnitude earthquakes (Mw > 6) where L > Lc and elastic deformation

is significant, the lubrication pressure decreases with increasing magnitude. The

lubrication pressure PL gradually decreases as L−1/4 for large events in accordance

with equation (2.17). The decrease in lubrication pressure results in a small increase

in frictional resistance and therefore a decrease in the available driving stress. As a

result, the slopes of the velocity and radiated energy curves in Figure 2.14 are slightly

negative. At large magnitudes the model predicts a gradual decrease in radiated

energy with increasing magnitude. This decrease is not observed, but the trend is

much smaller than the scatter in the data. One could infer that this inconsistency

is due to the sparse data set, or that it is the result of the specific assumptions in

the model. For instance, it is possible that Vr/β is not constant for all magnitudes.

As the proportion of fracture energy in the total energy balance decreases for large

earthquakes, the relative rupture velocity increases. Including a linear increase in

Vr/β would improve the fit of the model, but invokes physics that is beyond the

scope of the theory presented here.

We noted above that the increase in scatter for small earthquakes may be due

to the methods used to measure radiated energy for small events. We speculate

that there may also be real variability in ER/M0 for small events due to variations

in parameters in the unlubricated regime. In the lubricated regime the system is

insensitive to differences in the fault properties as shown in Figure 2.8 and equation

(2.17). The scatter in ER/M0 data for large earthquakes is therefore small.
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The earlier calculation of Sommerfeld number versus magnitude in Figure 2.8

appears to be superseded by Figure 2.14. However, the latter figure contains more

model dependent assumptions embedded in (2.30)–(2.33). We have therefore chosen

to present both forms of the relationship between Mw and Sommerfeld number S.

Optimized parameters

We present a heuristically optimized set of parameters that fits all three model ap-

plications in Table 2.4. The approach taken in this section is to find parameters that

match all of the datasets reasonably well instead of assigning the typical values of

Table 2.1 a priori. No formal optimization algorithm was used since the fit is non-

unique. The values in Table 2.4 are merely one representative set that can match all

three datasets. The major difference between the optimized and typical parameter

sets is that the viscosity is larger in the optimized set by a factor of 5. Since small

changes of the particle concentration can change the slurry viscosity by an order of

magnitude, we consider this adaptation reasonable.

All three model applications demonstrate the most important prediction of elasto-

hydrodynamic lubrication theory. Large earthquakes behave qualitatively differently

than small ones. Events with slip distances greater than ∼0.5 m have low dynamic

friction, fewer asperity-asperity contacts and a larger proportion of the energy radi-

ated.

Discussion

Now that the magnitude of the hydrodynamic lubrication effect is calculated, it is ap-

propriate to review the assumptions about the fluid dynamics that were incorporated

into the model. It is assumed that the fluid forms a continuous layer of constant

initial height in the gap between moving, subparallel surfaces. This fluid may be

a slurry which forms during the initiation of the earthquake. The duration of the

earthquake is assumed to be much longer than the time necessary for fluidization. In

the lubricating layer a continuum approximation is assumed to be appropriate. The
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Figure 2.15 All three model applications with an optimally selected parameters set from
Table 2.4. (a) Sommerfeld number as a function of Mw used to match heat flow data. S
is calculated using the model of equations (2.32)–(2.33). (b) Observed lubrication length
at each station compared to the theoretical critical value computed using the optimized
parameters and the observed maximum velocities in Equation (2.16). (c) Predicted ER/M0

as a function of Mw and observed values. ER/M0 changes by a factor of 300 from Mw=4
to Mw=6.
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Table 2.4. Optimized Parameters

Parameter Values

η 50 Pa s
U see (2.33)
K 2× 10−3

L (M0/M0
0 )1/3 m

H0 2× 10−3 m
E 5× 1010 Pa
P 1 × 108 Pa
G 2.0× 1010 Pa
µs 0.6
σ0 6.01 ×107 Pa
Vr/β 0.8
β 3.3 km/s

sediment particles in the slurry are much smaller than the gap height. In the farfield

where there is no slip, the pressure remains at the pre-earthquake level. The transi-

tion from the slipping to non-slipping zone is not explicitly modeled and is assumed

to have only local effects.

Additional complications could be added to the model and are likely to perturb the

results presented here. The purpose of this study is to present a new concept in fault

mechanics along with the minimum necessary quantification. Further refinements are

clearly possible, but here we confine ourselves to only a brief evaluation of a few of

the possible complicating factors.

In the lubricated fault, fluid flows into a narrow gap and the pore pressure dy-

namically increases. The permeability of the surrounding rock is sufficiently low that

the fluid is effectively confined by the walls. This model is clearly an idealized end-

member. In the natural system some leakage occurs during faulting to reduce the

lubrication pressure. Such reductions can be included numerically as they are in the

porous bearing of Kaneko et al. [1999] or the thermal pressurization calculations of

Lachenbruch [1980]. Note that the fluid pressures calculated for the typical param-

eters of Table 2.1 are at most 40% lithostatic and therefore insufficient to produce
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hydrofractures as a means of releasing pressure. The optimized parameter set pro-

duces higher pressures and may result in hydrofracture.

Common lubricants in engineering applications have pressure dependent viscosities

where the viscosity increases with pressure. This has the effect of increasing the

lubrication pressure as there is a positive feedback in the process. Similar behavior

might be expected for fault slurry, but silicate melt viscosity decreases with pressure

[Kushiro, 1980]. Therefore, any identification of the fault fluid as melt must carefully

consider whether the pressure dependent viscosity would eliminate the lubrication

effect.

The two-dimensional fault model neglects flow perpendicular to the slip direction.

Such “side-leakage” for a lubricated gap with equal length and width can reduce the

fluid gap height by a factor of 2–3 for a constant load [Hamrock , 1994, p. 483]. It is

not clear what the effect would be in the case of a fault where the fluid layer height

is constant and the load varies. In addition, the contacting asperities set much more

complex boundary conditions than are addressed here. A fully coupled solid-fluid

model is required for a rigorous and complete study. The theoretical and numerical

underpinnings of such models are at the forefront of current research in tribology

[Spikes, 1997; Jiang et al., 1999].

The normal velocity of the wall, V , is neglected in the form of the Reynolds

equation used here. This approximation is valid if V � UH/L [Leal , 1992]. The qua-

sistatic model used for the elastic deformation also assumes that V is small therefore

the model is self-consistent. However, a fully dynamic calculation may show that the

wall velocity is important in modifying the lubrication pressure.

In bearings, the lubricating fluid is seldom able to support negative dynamic pres-

sures [Dowson and Higginson, 1977]. A combination of cavitation and exsolution of

dissolved gases maintains the pressure at the initial reservoir level in strongly diverg-

ing channels. Cavitation is not expected to occur on a fault with a large confining

pressure, but exsolution may be possible. If exsolution occurs and prevents negative

dynamic pressures, then the net effect of hydrodynamic lubrication is much greater

than calculated here.
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Another possible complication is the compressibility of the fluid. Since the lu-

brication pressure is at most of the order of the initial hydrostatic pressure, the

effects of compressibility on the pressure distribution are expected to be small [Szeri ,

1998]. Dowson and Higginson [1977] showed for rectangular elastohydrodynamic con-

junctions that fluid compressibility has no significant effect on the elastic deformation

although the pressure distribution is slightly different than in the incompressible case.

Preliminary numerical experiments suggest that these results are also applicable to

the rough fault studied here, but more work would be necessary to fully exclude the

importance of compressibility.

As the fluid is squeezed through the narrow gap, dissipative heating occurs that

may increase the temperature of the system. This thermal effect could decrease

lubrication by decreasing the viscosity. At the same time, the thermal expansion of

the fluid would increase the fluid pressure. Additional complications could arise if the

fluid is Non-Newtonian and the viscosity depended upon the shear rate [Jacobson,

1991]. Inelastic effects such as wear of the wall rock may also be important.

Conclusions

We have shown in this paper that the mechanical effect of a viscous fluid lubricating

a fault zone has implications for the rupture dynamics. Lubrication reduces the

frictional stress during an earthquake by as much as 50% for typical parameters and

can completely eliminate it if the fault fluid has a viscosity of 50 Pa s. Dynamic

widening of the fault reduces the radiation of high-frequency (>1 Hz) energy for

earthquakes with large slips. The two order of magnitude difference in the ratio of

radiated energy to moment between small and large earthquakes is interpreted to

reflect the lubrication-controlled frictional properties. All of these applications utilize

the variation in lubrication behavior between small and large slip events. This change

in behavior at the critical slip distance Lc is one of the most intriguing consequences

of this theory and warrants further study.

Hydrodynamic lubrication does not provide a complete answer to the “friction
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paradox.” However, the mechanism outlined here indicates that the static values of

pore pressure are not appropriate for studies of earthquake rupture. The lubrication

effect is present in all fluid-filled faults and is independent of any assumptions about

the thermal effects of fault friction. The pore pressure must be viewed as a dynamic

quantity and the pre-rupture values should not be used for modeling coseismic friction.

Appendix A: The lubrication approximation

The standard simplification of the Navier-Stokes equation for a thin film follows. For

more detailed discussions see Szeri [1998] or Leal [1992].

The fluid motion is completely described by the full Navier-Stokes equation,

ρ
Du

Dt
= −∇p + η∇2u, (2.34)

and the continuity equation

ρ∇ · u =
Dρ

Dt
(2.35)

where ρ is the density, u is the velocity vector, p is the pressure and η is the viscosity.

In a two-dimensional, incompressible flow,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂z

)
= −

∂p

∂x
+ η

(
∂2u

∂x2
+
∂2u

∂z2

)
(2.36)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂z

)
= −

∂p

∂z
+ η

(
∂2v

∂x2
+
∂2v

∂z2

)
(2.37)

and
∂u

∂z
+
∂v

∂z
= 0 (2.38)

where u is the velocity in the x direction and v is the velocity in the z direction. We

adopt a coordinate system in which x is defined as parallel to the slip vector and

z is the normal to the fault plane. For a narrow slit geometry, such as would be

commonly found in a fault plane, some simplifications can be made. The length L

over which the velocity varies significantly in the x direction is much greater than the
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distance H over which velocities vary in the z direction (Figure 2.2). This separation

of characteristic lengths for the two dimensions results in a natural separation of the

terms according to the power of H/L. This result can be derived by replacing the

variables by their non-dimensional equivalents as follows:

x̄ ≡ x/L (2.39)

z̄ ≡ z/H (2.40)

ū ≡ u/U (2.41)

v̄ ≡ v/(UH/L) (2.42)

p̄ ≡ p/(ηUL/H2) (2.43)

t̄ ≡ t/(L/U) (2.44)

where U is the relative velocity of the two sides of the fault. The above scaling uses the

continuity equation to establish the characteristic scale for v and the Navier-Stokes

equation to find the characteristic value of p. Equations 2.36 and 2.37 in terms of the

above non-dimensional variables are

ρUL

η

(
H

L

)2
(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂z̄

)
= −

∂p̄

∂x̄
+
(
H

L

)2 ∂2ū

∂x̄2
+
∂2ū

∂z̄2
(2.45)

ρUL

η

(
H

L

)4
(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂z̄

)
= −

∂p̄

∂z̄
+
(
H

L

)4 ∂2v̄

∂x̄2
+
(
H

L

)2 ∂2v̄

∂z̄2
. (2.46)

The thin gap geometry implies that H/L � 1. The Reynolds number Re ≡ ρUL/η

appears on the left-hand side of these equations. If Re� (L/H)2, the inertial forces

are negligible. To first order in H/L, the Navier-Stokes equations are:

∂p

∂x
= η

∂2u

∂z2
(2.47)

∂p

∂z
= 0. (2.48)

Equations (2.47) and (2.48) are the equations of motion for a lubricating layer. Pres-

sure gradients across the gap are negligible and the dynamics are dominated by the
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Figure 2.16 Geometry for calculating deformation from an finite line source of pressure.
In the geological case, the x− y plane is the fault plane and slip is in the x direction.

balance of the viscous stresses and the pressure gradient parallel to the gap.

Appendix B: Elastic deformation solution

We begin with the solution for the deformation from a force of magnitude F applied

at the origin on the free surface of an elastic halfspace [Timoshenko and Goodier ,

1970],

w(r) =
F (1− ν2)

πEr
, (2.49)

where w(r) is the vertical deformation on the free surface at a distance r from the

origin and E is Young’s modulus. This is equivalent to a pressure source p(x, y)

applied at a point,

p(x, y)δd(x)δd(y) = F (2.50)

where δd() denotes a Dirac delta function.

A finite line on the y-axis with ends at y = ±a generates a deformation that is

the sum of the point source terms (Figure 2.16). If the pressure is constant in the y

direction, i.e., ∂p/∂y = 0, the displacement at a point on the x-axis that is a distance
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r from the origin is

w(r) = 2
∫ a

y=0

(1− ν2)p(x)

πEr
dy . (2.51)

If the finite line source is at x = ξ, the displacement w(x) in a Cartesian coordinate

system is

w(x) = 2δd(ξ)
∫ a

y=0

p(ξ)(1− ν2)

πE
√

(x− ξ)2 + y2
dy. (2.52)

After performing the integration, the displacement is explicitly

w(x) =
2p(ξ)(1− ν2)

πE
δd(ξ) ln

∣∣∣∣∣∣
a+

√
(x− ξ)2 + a2

x− ξ

∣∣∣∣∣∣ . (2.53)

The deformation from a pressurized fault of length L is the integration of (2.53) over

every point x = ξ. The change in total gap height δ(x) combines contributions from

both walls,

δ(x) =
4(1− ν2)

πE

∫ L

0
p(ξ) ln

∣∣∣∣∣∣
a+

√
(x− ξ)2 + a2

x− ξ

∣∣∣∣∣∣ dξ. (2.54)

In the model described in the text, we assume that the lubricated zone is equidimen-

sional and therefore 2a = L.

Appendix C: Numerical method

Incorporating elastic deformation into lubrication in a thin gap requires the simul-

taneous solution of the Reynolds equation (2.6) and the elastic deformation of the

boundaries (2.8). The gap height h(x) is related to the initial gap height s(x) and

the elastic deformation δ(x) by

h(x) = s(x) + δ(x). (2.55)

These equations are to be solved with the boundary conditions,

p(x = 0) = 0
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p(x = L) = 0. (2.56)

Reynolds equation

In the absence of elastic deformation, the Reynolds equation (2.6) is solved by con-

sidering its integrated form.

p(x) = −6ηU
∫ x

0

h− h∗

h3
dx+ p0

p (2.57)

We use the boundary conditions (2.56) to solve for the integration constant h∗ in

(2.57). As discussed before, the pressures are referenced to the level where p0
p = 0.

The boundary condition at x = L is p = 0 which implies that

h∗ =

∫ L
0

1
h2dx∫ L

0
1
h3dx

. (2.58)

In order to numerically solve for p we use a discretization of (2.57) utilizing the

trapezoidal rule [Abramowitz and Stegun, 1965]

p̃i = −6ηU
i−1∑
j=1

(
hj − h∗

h3
j

+
hj+1 − h∗

h3
j+1

)
∆x

2
(2.59)

where ∆x ≡ xi+1−xi and p̃i is the solution to the Reynolds equation for the pressure

at x = i∆x. In the absence of elastic deformation h(x) = s(x) where s(x) is the

initial gap height function.

Elastic deformation

The elastic deformation equation (2.8) is discretized as

δi =
4(1− ν2)∆x

πE

N∑
j=1

pj ln

∣∣∣∣∣∣
L/2 +

√
(L/2)2 + (xi+1/2 − xj)(xi−1/2 − xj)√

(xi+1/2 − xj)(xi−1/2 − xj)

∣∣∣∣∣∣ (2.60)

where N is the number of grid points. The terms xi+1/2 and xi−1/2 are introduced

following Okamura [1982] to handle the singularity where xi = xj .
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The elastic deformation is combined with the Reynolds equation using an iteration

scheme with damping. Instead of using the full computed p̃(x) from (2.59), a portion

of the calculated pressure is added at each step. The pressure distribution for step

k + 1 is calculated based on the pressure at step k by

pk+1
i = pki + ω(p̃i − p

k
i ) (2.61)

where ω is a damping factor between 0 and 1. For gaps with an initial average height

of 0.1 mm, ω must be 0.01 or less during the first two steps for convergence to be

achieved in the majority of cases. After the initial few steps, the problem becomes

more stable and the degree of damping can be reduced adaptively. For randomly gen-

erated rough surfaces, ω=0.01 is occasionally insufficient and the calculation does not

converge. The hydrodynamic code and iteration scheme were verified with analytic

and approximate solutions for a planar slider like that shown in Figure 2.3.

The full scheme for computing iteration step k is as follows:

1) An initial gap height s(x) is chosen and calculated as a function of x.

2) The deformed gap height h(x) = s(x) + δ(x) is calculated. During the first

iteration δ(x) is assumed to be 0 everywhere, so h(x) = s(x).

3) The integrated, discretized Reynolds equation in (2.59) is solved for p̃(x) using

the geometry given by h(x).

4) The new pressure pk+1(x) is calculated using (2.61). Initially p(x) = 0; there-

fore, pk+1(x) = ωp̃(x) in the first iteration.

5) The deformation δ(x) is calculated with (2.60) using the new pressure distri-

bution pk+1(x).

6) The convergence parameter Dif ≡ (p̃l − pkl )/p
k+1
l is evaluated at a point l. In

the computations, we arbitrarily choose l such that l = N/4.

7) ω is adapted based on the value of Dif. If Dif < 100, the value is increased by a

factor of 10 and is further increased for each order of magnitude that Dif drops until

a prescribed maximum value ωmax is reached. In these computations ωmax = 0.1.

8) If Dif > ε where ε is a small number, return to step 2. The code used here has
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ε = 10−5.
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Regional Distance
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Preface

Regional-scale triggering of seismicity and eruptions by large earthquakes has been

reported anecdotally for many years, but only recently has the phenomenon been

robustly and convincingly demonstrated. Modern, dense sense networks recorded a

sharp increase in seismicity following the 1992 Landers earthquake [Hill et al., 1993].

The triggered sites were up to 1200 km away. Hill et al. [1993] was the first modern

study of triggered seismicity and convinced even some of the most sceptical researchers

that farfield triggering can and does occur [Ruff , 1993].

One of the surprises of the Landers observation is that triggered activity is asso-

ciated with geothermal and magmatic areas. Triggered sites in the western United

States included Long Valley, the Geysers and Yellowstone. If this apparent correlation

is confirmed by studies of triggering cases in other regions, it implies that fluids are an

important component of the triggering process. Chapter 3 presents further evidence

that regional triggering occurs. The 1999 Izmit earthquake is shown to have triggered

seismicity in Greece. The region is under extension and there is some evidence that

the triggered sites may be geothermal.

Eruptions that appear to be triggered by large, distance earthquakes have also

been reported anecdotally. Recently Linde and Sacks [1998] showed that eruptions

occur more often within a day of large earthquakes than would be expected of a

random sampling. In light of our new understanding that earthquakes can have

significant effects hundreds of kilometers from the epicenter, triggered eruptive mech-

anisms deserve renewed attention. In chapter 4 we evaluate the proposal that rectified

diffusion, a process used in engineering applications, allows transient seismic waves to

increase the pressure in magmatic systems. A similar mechanism has been proposed

to explain triggered seismicity [Sturtevant et al., 1996].
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Abstract

The Mw=7.4 Izmit, Turkey, earthquake triggered widespread regional seismicity in

Greece over a study region extending from 400 km to nearly 1000 km away from the

epicenter. Small events began immediately after the passage of the mainshock surface

waves suggesting that the transient stresses of the seismic waves were the trigger. The

increase in cataloged earthquakes in ordinary continental crust is a new observation

and is statistically significant at the 95% level. Unlike the previous example of distant

triggering during the Landers earthquake, the activated seismicity occurred entirely

in non-volcanic areas. The Greek sites were triggered by waves with amplitudes at

least a factor of 3 lower than the amplitude of the observed triggering threshold for

Imperial Valley. We speculate that dynamic triggering on a regional-scale results in

countrywide episodes of increased seismicity, or “superswarms,” in regions with low

triggering thresholds such as Greece.
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Figure 3.1 Number of earthquakes per day recorded by Thessaloniki network west of
longitude 25o. (a) Events of M≥2. (b) Events of M≥3.5. The dotted line indicates the
date of the Izmit earthquake. The peak on day 250 is caused by the Athens Mw=5.8 event
and its aftershocks.

Observation

The Mw=7.4 Izmit earthquake on August 17, 1999, at 00:01:39.80 UT was followed

immediately by small earthquakes occurring throughout much of continental Greece.

The number of earthquakes per day recorded by the network of the Department of

Geophysics of the University of Thessaloniki from January 1, 1999, through October

9, 1999, are shown in Figure 3.1. A peak is visible on the day of the Izmit event

(Julian day 229). The seismicity discussed in this figure and throughout this study

includes only the events west of longitude 25o, i.e., at least 400 km from the Izmit

epicenter at 40.702oN 29.987oE. A cursory inspection of the daily seismicity maps

before and after day 229 strongly suggests a link between the activity in Greece and

the Turkish event (Figure 3.2).

The triggering of events from the Izmit mainshock occurred immediately after the
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Figure 3.3 The waveforms of the mainshock and local events in Greece occurring im-
mediately after it. (a) Records from a temporary deployment of a Guralp CMG40-T at
40.5952oN 23.0023oE (station 7905). The three components are as labeled. (b) The same
records band-passed 5–20 Hz. Note the difference in scales. The two events marked by ar-
rows are located at 40.580oN 22.860oE and 39.930oN 23.367oE with origin times of 00:05:13.4
UT and 00:05:26.1 UT and magnitudes ML≈1 and 3.8, respectively. The glitches on the
north component result from band-passing the clipped signal. The origin time of the plot is
the origin time of the Izmit mainshock. The Love (L) and Rayleigh (R) arrivals are labeled.
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passage of the surface waves. Figure 3.3 shows several local, high-frequency events

that occurred in Greece directly after the surface waves. Although it is possible

that the occurrence of these local earthquakes was coincidental, the timing strongly

suggests that the large amplitude dynamic strain of the surface waves is responsible

for triggering regional seismicity. The local events shown here are not in standard

catalogs since the surface waves obscure their arrivals. This masking of early events

by the mainshock coda results in an apparent delay of approximately a half hour

before the onset of triggered seismicity in the Thessaloniki catalog.

This observation of regionally triggered seismicity is significant for the following

reasons: (1) It is the first fully documented observation of regional triggering over a

large area by seismic waves in non-volcanic continental crust. (2) The threshold for

triggering is at least a factor of 3 lower than in volcanic regions of California. (3)

The observation demonstrates interactions between earthquakes over large distances

and suggests that regions with low triggering thresholds are prone to episodes of

widespread increased seismicity.

Catalog

We use the catalog of the Thessaloniki network for this study. The network consists

of 16 Teledyne S-13 stations with natural frequencies of 1 Hz located in northern

Greece (Figure 3.5). All stations were operational throughout 1999 except station

LKD which was activated on July 10, 1999, and located at 38.707oN 20.651oE. There

was no change in the automated cataloging procedures after the Izmit event; there-

fore, we can eliminate extraordinary alertness of the seismological staff following a

large event as a cause of the apparently elevated seismicity. The Thessaloniki cata-

log exhibits the standard Gutenberg-Richter magnitude-frequency relationship above

M=3.5 and is depleted in events below this magnitude. Following standard practices,

we take M=3.5 as the threshold for completeness of the catalog. As can be seen from

Figures 3.1 and 3.2, the peak in seismicity post-Izmit is still evident even if we limit

ourselves to the formally complete section of the catalog. Including the smaller events



63

in Figures 3.1a and 3.2 provides a larger sampling and makes the phenomenon even

clearer.

Statistical significance

We fit a log-normal probability distribution function to the catalog for the first 228

days of 1999 in order to determine the statistical significance of the peak on day 229.

We then used the best-fitting log mean and log variance for the catalog of M≥3.5

events to calculate the probability that the 12 events occurring on day 229 was a

coincidence unrelated to the Izmit earthquake. With this distribution the probability

that 12 or more events would occur on a given day is ∼3%. The statistical calculation

was repeated for larger catalogs including all events from 1988 to 1998 or all events

with M≥2. Even in the least favorable case, the hypothesis that the increase in

seismicity on day 229 was coincidental can be rejected at the 95% level. Furthermore,

the other days in 1999 with a similar number of events were during locally confined

(<250 km2) earthquake sequences. The activity on day 229 was unique in the 1999

catalog in that it had a large number of events spatially dispersed over 4×105 km2

(Figure 3.4).

Spatial distribution

It has been previously suggested that dynamically triggered seismicity occurs prefer-

entially in geothermal and magmatic areas [Hill et al., 1993]. Continental Greece has

no recent magmatism, but there is a possible correlation between triggered seismicity

and geothermal areas. Anderson et al. [1994] has suggested that such apparent corre-

lations are artifacts of the fact that an increase in events is most easily measured in the

regions which are most seismically active. Such active areas are commonly geother-

mal. To distinguish between these possibilities we have relocated the events listed in

the Thessaloniki catalog using the combined phase picks of the Thessaloniki network

and the Geodynamical Institute of the National Observatory of Athens. Location
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Figure 3.4 Map of daily seismicity (M≥3.5) for all days in the Thessaloniki catalog Jan-
uary 1 – October 9 1999 with a 12 or more M≥3.5 events. Julian days are as marked. All
days except 229 have the majority of the seismicity in a tight cluster.

errors for the combined network were estimated by comparing the network locations

of the September 7, 1999, Mw=5.9 Athens aftershock sequence with high-quality lo-

cations obtained from a local, temporary array. The mean difference between the

network and temporary array locations is 8 km horizontally and 5 km in depth.

The map in Figure 3.5 shows the relocated triggered events and the level of back-

ground seismicity. The Council of National Seismic System (CNSS) composite catalog

of events with M≥4 during the interval 1961–1998 is used as a measure of the normal

regional seismicity. This catalog has relatively uniform spatial coverage for nearly

40 years and is complete according to a standard test of the magnitude-frequency

distribution. The geographical distribution is dominated by a few large mainshock-

aftershock sequences. The difference between active (colored) and inactive (uncol-

ored) areas is therefore interpreted to be more significant than the differences in

levels of activity among the seismic regions.

We do not attempt a systematic statistical study of the spatial correlation of the
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Figure 3.5 Plot of relocated events with M≥2 from 8/17/99–8/22/99 inclusive (crosses)
and background activity (colorbar). The background seismicity is binned into 0.2o×0.2o

cells and then smoothed by linear interpolation between cells. Seismic network stations are
plotted in green. Thessaloniki stations are upward pointing triangles, Athens stations are
downward pointing triangles and station 7905 is a circle at 40.5952oN 23.0023oE. Groups
of events are labeled (a) Arta cluster (b) Pirgos cluster.
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triggered events with either geological features or background activity since the data

are too sparsely distributed. We focus instead on the two most striking groups of the

sequence: (a) the cluster of events near Arta and (b) the cluster near Pirgos. Both

areas have grabens and documented thermal springs [Waring , 1965]. The springs

indicate geothermal activity in that hot, aqueous fluids are present at shallow depths,

although the heat flow is not necessarily elevated relative to the surrounding region.

The Arta cluster occurred in a region which generally has a relatively low level of

seismicity as shown by the white background in Figure 3.5. Contrary to the hypothesis

of Anderson et al. [1994], the largest number of observed triggered events are not in

the most seismically active areas. Triggered activity outside the clusters may also

be located at geothermal sites since hot springs occur over much of Greece [Waring ,

1965]. All triggered events are confined to crustal depths, even though ∼20% of the

1999 Thessaloniki catalog events are below 33 km.

Comparison with Southern California

We compare the Izmit triggered seismicity to the two other well-documented examples

of regionally triggered seismicity in order to establish the relative sensitivity of trig-

gered regions. The June 28, 1992, Mw=7.3 Landers earthquake [Hill et al., 1993] and

the October 16, 1999, Mw=7.1 Hector Mine earthquake both triggered widespread

microseismicity in southern California [U.S. Geol. Surv., S. Calif. Earthq. Cent.

and Calif. Div. Mines Geol., in press]. Like Izmit, both events were large strike-

slip earthquakes and they triggered seismicity in areas under regional extension with

geothermal activity. Since it is established that both the Landers and Hector Mine

earthquakes had the ability to trigger distant events, we infer that any area that was

triggered during one of the events but not the other experienced shaking above its

local triggering threshold during only one of these events. Imperial Valley, California,

was triggered during Hector Mine and not Landers. Therefore, the recorded ground

motion during Hector Mine provides an upper bound to the triggering threshold in

Imperial Valley and the record of Landers provides a lower bound. It is assumed
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that there was no change in the triggering threshold during the seven years between

Landers and Hector Mine.

The strength of the triggering waves can be measured by either the amplitude of

the transient stress, which scales as the particle velocity, or by the energy density

delivered by the waves. Table 3.1 lists both of these metrics. It shows that triggering

in Greece occurred at amplitudes and energies lower than Imperial Valley. The record

in Figure 3.3 measures shaking within 20 km of at least one ML≈1 event. Four nearby

stations situated on a variety of rock types show similar records which suggests that

local site response effects are negligible for the long-period waves considered here. The

record is a good measure of the shaking at the triggered site and yields the values

in Table 3.1. Since the site is closer to the Izmit mainshock than most of the other

Greek triggered sites, the values measured here are upper bounds on the triggering

threshold for susceptible regions in Greece. Whether amplitude or energy is taken as

a measure of the strength of the triggering wave, the threshold is more than a factor

of three lower at the triggered sites in Greece than in Imperial Valley.

Triggering mechanisms

Although static stress changes may be an important trigger for nearfield aftershocks,

the static stress changes at more than a fault length from the source are negligible

even compared to tidal stresses. The observation of events immediately after the

largest amplitude shaking (Figure 3.3) is consistent with the dynamic stress trigger-

ing the earthquakes. A physical mechanism is required to transform the transient

stresses of the seismic waves into sustained stresses on the fault capable of producing

an earthquake hours or days later and a number of possible mechanisms have been

suggested [Hill et al., 1993; Linde et al., 1994; Sturtevant et al., 1996; Gomberg et al.,

1998].

Three mechanisms have received detailed treatment. Linde et al. [1994] suggest

that bubbles in magmatic systems are shaken loose by the seismic waves. As the

bubbles rise, the advective overpressure stresses the system and causes earthquakes.
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Table 3.1. Observed Amplitudes and Energies

Event Station ∆ Amplitude En. Density
km cm/s (MPa) J/m2

Landers SSW1 139 6.6 (0.60) 3.5×105

Hector Mine SSW 158 9.0 (0.82) 1.3×106

Izmit 7905 589 1.9 (0.18) 7.8×104

Distance ∆ is measured from the epicenters to the stations. Amplitude is reported in
terms of both velocity and dynamic stress. The velocity amplitude is half the maximum
peak-peak value of the horizontal velocity. The stress amplitude is the velocity amplitude
multiplied by µ/β where µ is the shear modulus (3×1010Pa) and β is the shear velocity
(3300 m/s). Energy density is the integral over time of the velocity squared multiplied
by β and the rock density (2750 kg/m3) [Kanamori et al., 1993]. Station SSW is in
Imperial Valley. Station 7905 in Greece is described in Figure 3.3.
1SSW was not operational in 1992. The amplitude and energy density here are calculated
by applying a series of corrections to the velocity traces of the nearest station (PFO,
∆=63 km). A Hector Mine aftershock (10/16/99 20:13:37.0 Mw=4.7) recorded on-scale
at both PFO and SSW is used to determine the correction. The raw amplitude ratio
between PFO and SSW for the aftershock was corrected for the theoretical radiation
pattern of the event using the standard theory of Kanamori and Stewart [1976] and the
focal mechanism produced by Lupei Zhu. The resulting ratio is interpreted as the relative
site amplification. The site amplification is applied to the Landers records at PFO to
find the shaking at SSW. In addtion, an empirical correction for the Landers radiation
pattern and directivity [Kanamori et al., 1992] is applied to the Landers records.
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This theory was formulated for magmatic systems rather than the geothermal ones

observed here. The theory cannot be readily adapted to the geothermal case since it

requires unobstructed bubble rise which is not possible in a porous medium. There-

fore, the mechanism is not applicable to triggering in continental Greece. Sturtevant

et al. [1996] suggest that the seismic waves pressurize bubble-filled regions of the

geothermal system via rectified diffusion. This mechanism is physically plausible un-

der certain, limited conditions that will be discussed in the next chapter. Gomberg

et al. [1998] suggest that transient strains of the seismic waves temporarily increase

the sliding velocity in regional faults. The velocity increase is enough to reduce the

friction as prediced by the rate-state formulation of Dieterich [1994] and this process

results in advancing a number of near-critical fault patches to a failure state. The

Gomberg et al. [1998] theory is appealing because it intrinsically addresses the vari-

able strength criteria. It has the disadvantage of not addressing the observation that

geothermal fluids appear to be a prerequisite for triggering.

It is possibile that the tensional stress regime rather than the presence of fluids

distinguishes areas prone to triggering. Initiating slip on optimally oriented normal

faults requires lower amplitude shear stresses to overcome the static friction than on

optimally oriented thrust or strike-slip faults [Sibson, 1974]. However, the mechansims

of triggered events in Long Valley post-Landers include both normal and strike-slip

events [Hill et al., 1995]. If the threshold shear stress was the only factor involved

and the shear stresses were enough to overcome the static friction on strike-slip faults,

then triggered seismicity on the nearby Garlock fault should have followed Landers.

No such events were observed.

A previously undiscussed mechanism for dynamic triggering is subcritical crack

growth accelerated by seismic waves. At crack tips in wet rocks, chemical reactions are

accelerated by the high stresses and cracks slowly grow [Das and Scholz , 1981]. Large

cracks grow faster than smaller ones due to the increased stress intensity at the tip. If

the cracks are in a near-critical state prior to the seismic shaking, the large amplitude

seismic waves temporarily increase the rate of stress corrosion. This transient stress

increases the average size of the crack population and accelerates critical failure. As
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stress corrosion is most effective in hot, wet rocks, this model predicts that geothermal

areas are likely to have a high occurrence of triggered events.

Regional superswarms

Observable interactions between distant earthquakes as shown in this study suggest

that seismicity can be coupled over broad regions. We call such regional-scale episodes

of elevated seismicity “superswarms.” Superswarms can last up to a few months and

are distinguished from common mainshock-aftershock sequences by the large areas

involved. Candidates for superswarms include the October 1994 to January 1995

sequence of large (M>7.0) earthquakes in Japan and the September 1999 Athens

event following the August 1999 Izmit earthquake. Areas prone to superswarms have

low triggering thresholds, as was observed for Greece. Such regions can be identified

globally by using modern broadband instruments to record the amplitude and energy

of triggering waves. A systematic evaluation of regional sensitivity using the methods

shown in Figure 3.3 and Table 3.1 would be a logical extension of this work and a

valuable test of the hypothesis.

A related observation unique to Greece is the apparent occurrence of electrical

signals during periods of heightened seismicity. We speculate that the observation

that large events trigger widespread seismicity in the Mediterranean region suggests

an explanation for both the occurrence of electrical signals during seismically active

periods as well as the observed clustering of large events in the region. The controver-

sial VAN (Varotsos-Alexopoulos-Nomicos) method has been used in Greece to study

the apparent correlation between observed electrical signals and large earthquakes

[Varotsos et al., 1993]. Other authors have noted that the earthquakes which have

seismoelectric signals according to VAN are commonly preceded by foreshocks [Sudo,

1996]. The 1995 group of events studied by VAN spanned all of continental Greece

[Varotsos et al., 1996].

We suggest the following scenario linking the seismoelectric observations and su-

perswarms. The seismic waves from a large event cause the pressurization of geother-
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mal systems throughout the region either by rectified diffusion [Sturtevant et al.,

1996] or other mechanisms resulting from the interaction of the seismic waves with

the multiphase fluid systems. The pressurization has two effects. (1) Earthquakes

are triggered in the pressurized areas. (2) The pressurized fluid flows in accordance

with Darcy’s law. The streaming potential associated with these flow events may be

the signal observed by the VAN system. The scenario would explain why electrical

signals appear to be related to periods of high seismicity. Both the superswarms

and the electrical signals are symptomatic of the same process of regional coupling

between earthquakes and pore fluids by seismic waves. Further studies document-

ing dynamic triggering and associated superswarms will test the applicability of the

proposed scenario.
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Chapter 4 An Evaluation of Rectified

Diffusion as a Means for Triggering

Volcanic Eruptions
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Abstract

Rectified diffusion is a mechanism by which a strain wave can rapidly pump volatiles

into a bubble and therefore increase the pressure in a closed system. The dynamic

strain of distant regional tectonic earthquakes can be translated to static strain in-

side a magma chamber via this process. We formulate a theory appropriate to the

conditions of a magma chamber and calculate the increased pressure using realistic

physical parameters. For a basaltic system initially at 130 MPa pressure, the excess

pressure from rectified diffusion is between 0.001 and 0.02 MPa for a regional M≥8

earthquake. Strong constraints on the parameters including porosity, bubble size,

velocity structure and permeability must be imposed in order for rectified diffusion

to be effective. The pressure from rectified diffusion is often comparable to the static

stress caused by deformation for documented cases of triggered eruptions.
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Introduction

Earthquakes are often used empirically to forecast volcanic eruptions. However, the

precise relationship between seismicity and magmatic activity remains enigmatic. In

some cases, e.g., swarms, earthquakes are taken to be indicative of magma movement

and therefore symptomatic of volcanic unrest. In other cases the relationship is ap-

parently causal. There are a few documented cases of distant regional earthquakes

triggering eruptions. In 1835, Darwin observed four volcanoes erupting after a large

earthquake (M=8.5) on the Chilean coast [Darwin, 1896]. The only historical erup-

tions of both the Tao-Rusyr caldera and the Karpinsky group volcanoes occurred

within days of a M=8.3 earthquake [Kimura, 1978]. Newhall and Dzurisin [1988]

document 50 cases of large regional earthquakes followed by caldera unrest. Linde

and Sacks [1998] found a statistically significant correlation between large eruptions

and earthquakes occurring within a day of each other by searching the entire historical

catalog. In this study we limit ourselves to 11 of the best documented eruptions im-

mediately following distant regional earthquakes. The eruptions we consider, shown

in Figure 4.1, were triggered by large tectonic events over 100 km away. Previous work

has attempted to explain triggered eruptions by computing the static stress change

from elastic deformation [Yamashina and Nakamura, 1978]. The stress change thus

computed is as low as 10−4 MPa in some cases. These stresses are comparable to

tidal stresses and therefore it is difficult to justify triggering a volcanic eruption by

this means. It has been suggested that rectified diffusion is an alternative mechanism

to relate large, regional earthquakes to eruptions [Sturtevant et al., 1996; Brodsky

et al., 1998]. Here we elaborate on the applicability of rectified diffusion to volcanic

systems and quantitatively constrain the conditions under which this mechanism may

be applicable.

Rectified diffusion of dissolved vapor into preexisting bubbles in a magma body is

a mechanism that uses the dynamic strain from distant regional earthquakes to trig-

ger activity. Such bubbles exist in many natural systems as documented from melt

inclusions [Lowenstern, 1995], volatile contents that exceed saturation at moderate
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Figure 4.1 Location of volcanoes and earthquakes studied in this work. The regions
mapped are (a) Kamchatka, (b) the Caribbean, (c) the Southwest Pacific and (d) Chile.
Triangles represent volcanoes and stars represent earthquakes. The numbers correspond to
the following eruptions detailed in Table 4.3: 1, 1835 Robinson Crusoe; 2, 1835 Minchin-
mavida; 3, 1835 Cerro Yanteles; 4, 1835 Peteroa; 5, 1843 Liamuiga; 6, 1843 unnamed; 7,
1877 Llullaillaco; 8, 1950 Ambrym; 9, 1952 Karpinsky group; 10, 1952 Tao-Rusyr caldera;
11, 1960 Puyahe.
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depths [Johnson et al., 1994], and evidence of coexisting gas phases in magma cham-

bers [Lambert et al., 1985]. When subjected to seismic waves, these bubbles expand

and contract. Assuming the bubbles are originally near equilibrium with the vapor

dissolved in the melt, when the bubbles contract, the vapor is oversaturated inside

the bubble and diffuses out to the melt (Figure 4.2). When the bubbles expand, the

vapor is undersaturated inside and diffuses in from the melt. Since the surface area

of the expanded bubble is larger than the contracted one, the mass transfer process

is not symmetric. In addition, the diffusive layer is thicker during the contracting

phase, resulting in a reduced concentration gradient and slower mass transport than

that during the expanded phase. This “shell effect” results in a further net mass

flux into the bubble [Eller and Flynn, 1965]. There is a net flow of vapor into the

bubble, and if bubble growth is limited by the total compressibility of the system, a

pressure increase results. Since the pressures in the bubble and the magma are the

same except for a small surface tension term, an increase in the pressure inside a

bubble translates to an increase in pressure in the entire fluid system. Bubble growth

via rectified diffusion in constant pressure systems has been demonstrated by a num-

ber of experiments [e.g., Eller , 1969] and it is used in industrial applications such as

ultrasonic cleaning. However, the increase in pressure in systems where expansion is

restricted is a new feature of the formulations of Sturtevant et al. [1996] and Brodsky

et al. [1998]. This modification imposes stringent constraints on the systems in which

rectified diffusion can serve as a pressure-building mechanism. If rectified diffusion

increases the pressure, then a variety of mechanisms, including failure of the chamber,

may ultimately result in an eruption.

The limitations and assumptions of rectified diffusion as a pressure-increasing

mechanism in natural magmatic systems are explored here. We present a model of

rectified diffusion in magmatic systems which is closely related to the theory of Sturte-

vant et al. [1996] for geothermal systems. We then specify the necessary constraints

on the system and numerically estimate the magnitude of the effect. The computed

stresses are compared to static stress changes in an elastic halfspace and then we

discuss the implications for documented triggering cases.
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      δ

Figure 4.2 Cartoon of rectified diffusion. As the system is excited by a seismic wave, a
bubble that is (a) initially in equilibrium is (b) expanded and then (c) compressed. The
shading inside the bubble represents the volatile concentration. During the expansion phase
(shown in b) the concentration is lower inside the bubble, and hence volatiles diffuse into
the bubble as shown by the arrows. During the compression phase (shown in c) volatiles
diffuse out of the bubble that has a higher concentration inside. The dashed outer circles
represent a shell of constant volume. During expansion the shell is thinner, thus resulting
in a faster diffusive flux than when the shell thickens during compression [Leighton, 1994].
The diffusive layer surrounding the bubble should be less than the radius of the bubble in
order to be in strict accordance with the formulation of Hsieh and Plesset [1961]. In this
paper the depleted layer is approximately the same size as the bubble.
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Model overview

We derive an expression for the increase of pressure produced by a seismic wave

passing through a bubbly magma chamber by beginning with an equation of state for

the volatiles in the bubble. The strategy of this work is to use this equation of state to

write an equation for the evolution of pressure in the bubble (and hence the system)

in terms of the evolution of the volume of the bubble and the mass inside the bubble.

The mass inside the bubble can then be constrained by the rectified diffusion mass

flux of Hsieh and Plesset [1961], and the volume of the bubble can be determined

by considering the balance in volume changes over the entire magma-volatile system.

The result is a rate of pressure increase as a function of the physical parameters of

the system.

Theory of rectified diffusion in magmatic systems

For the high pressures and temperatures of a magmatic system, the modified Redlich-

Kwong (MRK) equation of state is appropriate for the volatiles [Holloway , 1977],

P =
RT

v − b
−

a

(v2 + bv)T 1/2

=
RT

V/n− b
−

a

[(V/n)2 + bV/n]T 1/2
, (4.1)

where P is pressure, T is temperature, V is volume of a bubble, n is number of moles,

R is the ideal gas constant, v is the molar volume (= V/n), a is an empirical function

of temperature, and b is an empirical constant. Using the MRK equation of state

instead of the ideal gas law results in a 20% correction in the specific volumes at the

pressures and temperatures of interest. We differentiate (4.1) with respect to time

for an isothermal system and arrive at an expression for the rate of pressure change

Ṗ in terms of V̇ and ṅ,

Ṗ =

(
−
V̇

V
+
ṅ

n

)
A (4.2)
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where

A ≡ −v

[
−RT

(v − b)2
+

a(2v + b)

(v2 + bv)2T 1/2

]
. (4.3)

The system is isothermal over the timescale that diffusion occurs since the diffusion

of heat is much more rapid than the diffusion of volatiles. We must evaluate ṅ and

V̇ in order to derive Ṗ as a function of the state of the system.

We hypothesize that the method for increasing the mass inside the bubbles is

rectified diffusion. Note that ṅ = ṁ/Mv where Mv is the molecular weight of the

volatile and ṁ is the rate of mass addition by rectified diffusion. Hsieh and Plesset

[1961] combine the contributions of each half cycle of an oscillating bubble (Figure 4.2)

to derive the mass flux of rectified diffusion as

ṁ = 24πDCsr0δ
2, (4.4)

where D is the diffusivity, Cs is the saturated volatile concentration at the mean

ambient pressure, r0 is the bubble radius and δ is the amplitude of the dynamic

strain wave. The units of concentration are the same as the units of density (kg/m3).

In the natural system, δ is the strain amplitude of the seismic waves in the magmatic

body since most of the compression of the magma-volatile solution occurs in the

bubbles. Surface tension is neglected in equation (4.4) and the oscillatory frequency

(on the order of Hz) is far from the natural frequency of the bubble (on the order

of kHz) [Brennan, 1995]. The more rigorous derivation of Eller and Flynn [1965]

includes surface tension in the definition of Cs. For a solution following Henry’s law

where the solubility is linearly proportional to pressure, they define

C ′s ≡ HDP

(
1 +

2σ

r0P

)
(4.5)

where HD is the Henry’s Law constant and σ is the surface tension. This results

in a small, constant correction to the solubility for constant size bubbles. For the

magmatic system studied here the correction would be a 0.01% change to HD when

the linear Henry’s Law holds. A 0.005% correction is necessary when the solute is
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H2O and the solubility is proportional to the square root of the pressure. In addition,

it is possible that surface tension changes during oscillations can cause non-negligible

effects in solubility that can affect the total mass flux. The complex details of such

a mechanism are the subject of current research by another investigator and beyond

the scope of this study [Mie Ichihara, pers. comm.].

In order to evaluate the rate of volume change of an individual bubble, V̇ , one

must look at the conservation of volume of the whole system, VS,

V̇S = V̇M +NV̇ . (4.6)

VM is the volume of the magma, and N is the number of bubbles in the system.

The rate of volume change for the entire system V̇S can be nonzero owing to two

distinct processes: (1) leakage of fluid (magma or volatiles) out of the system and

(2) deformation of the magma chamber walls. The importance of the first process

is calculated by assuming that fluid percolates out of the system into surrounding

porous medium following Darcy’s law. This volume flux is only significant if a flow

to compensate the increased mass of the bubbles can only develop during the passage

of the seismic waves. The flow into the porous media develops as fast as the pressure

wave diffuses from the wall of the bubble-filled area to the farfield. The pressure wave

diffuses from the bubbly area with a diffusion constant κp,

κp =
ρmkα

2
m

ηφ
. (4.7)

where ρm is the density of the magma, k is permeability of the surrounding matrix,

αm is the sound velocity of the magma, η is viscosity and φ is the porosity [Philips,

1991, p. 81]. The pressure reaches approximately the farfield value at a distance L

from the wall of the bubble-filled area where L is the radius of the bubble-filled area.

Therefore, the porous medium responds to a change in boundary conditions, such as
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an increase of pressure in the cavity, on the timescale τc where

τc =
ηφL2

ρmkα2
m

. (4.8)

As long as τc is longer than the duration of shaking ∆t, the flow in the porous media

cannot respond during the earthquake and a transient pressure rises occurs. The

condition that ∆t < τc is the first major constraint imposed on the magmatic system

in order for rectified diffusion to be an effective pressure increasing mechanism. If this

condition holds during the earthquake, percolation is negligible and is not relevant to

the mass balance in (4.6).

The second process, deformation of the walls, can be evaluated by assuming that

the chamber walls are compressed elastically by the increasing pressure in the system.

Simplifying the geometry to a sphere,

drr
L

=
P

4G
. (4.9)

drr is the radial displacement and G is the shear modulus of the country rock [Mc-

Tigue, 1987]. The elastic contribution to the change in VS is

V̇S =
πL3

G
Ṗ . (4.10)

With increasing pressure, the magma will also compress elastically, and the magma

volume change will be

V̇M = βVM Ṗ , (4.11)

where β is the isothermal compressibility of the magma.

Combining (4.2), (4.6), (4.10) and (4.11),

Ṗ

(
1 +

3
4

1
G
− β(1− φ)

φ
A

)
=
ṅ

n
A. (4.12)
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Equation (4.12) uses the definition of porosity φ,

φ =
NV

VS
. (4.13)

If second term in the brackets of equation (4.12) is much less than 1, the volume

change of the bubbles will be negligible. This criterion in terms of porosity φ is

φ� φth ≡
A(3

4
1
G
− β)

1− Aβ
, (4.14)

where φth is the threshold porosity. Equation (4.14) explains why a single small

bubble does not increase the pressure in a chamber. If there are too few bubbles, the

compressibility of the magma and the surrounding rock allows the bubbles to change

in size and the resulting pressure change is small. The exact values of the parameters

in equation (4.14) depend on the chemistry of the volatiles and the ambient pressure.

The elastic moduli −β and 1/G are approximately 10−10 Pa−1 and a typical value for

the constant A is 2×102 MPa. For water bubbles at 1.3×102 MPa pressure (lithostatic

pressure at a depth of 5 km), φth is 0.026. For CO2 at the same conditions, φth is

0.037. Temperature and composition dependence in both cases is fairly weak. Since

we have already assumed the existence of bubbles, exceeding these small thresholds

is not a difficult additional constraint. For the remainder of this work we will assume

that the porosity φ exceeds the threshold porosity φth.

If the porosity of the system satisfies (4.14), then (4.12) simplifies to

Ṗ =
ṅ

n
A. (4.15)

We linearize (4.15) by assuming that departures from the initial state are small, i.e.,

A = A0 and n = n0. Assuming a spherical bubble, the initial number of moles n0 is

given by

n0 =
4πr3

0ρ

3Mv

, (4.16)

where ρ is the initial density inside the bubble.
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Substituting (4.4) and (4.16) into (4.15),

Ṗ =
18DCsδ

2

r2
0ρ

A0. (4.17)

Ṗ can be easily calculated from (4.17) for any P , T condition. Note that if a and

b were zero, the equation of state would reduce to the ideal gas law with A0 = P0

and (4.17) would become equation (15) of Sturtevant et al. [1996]. The right-hand

side of (4.17) is constant, and therefore the final pressure attained depends linearly

on the duration of ground motion. The appropriate values of a and b are provided by

Holloway [1977]. The diffusivity D and the concentration Cs can be estimated from

laboratory data as a function of pressure and temperature for a given magma-volatile

chemistry (Table 4.1). The final pressure depends on the squares of the bubble radius

r0 and dynamic strain δ. Both parameters must be constrained by observations of

natural systems.
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Table 4.1. Calibration Data for Solubility and Diffusivity Calculations

Variables References Pressure Range, Temperature Range,
GPa oC

Value a and b for CO2 in MRK Holloway [1977] 0.1-1 100-1000
Value a and b for H2O in MRK Holloway [1977] 0.01-1 ; 0-0.1 20-1000 ; 0-1300
Solubility CO2 in basalt Dixon [1992] and Pan et al. [1991] < 0.1 ; 1.0, 1.5 1200 ; 1300-1600
Solubility H2O in basalt Dixon [1995] 0.018-0.8 1100-1200
Solubility H2O in rhyolite Silver et al. [1990] < 0.15 850
Diffusivity CO2 in basalt Blank [1993] 0.05-0.105a 350-1050b

Diffusivity H2O in basalt Zhang and Stolper [1991] 1.0a 1300-1500
Diffusivity H2O in rhyolite Zhang et al. [1991] 0.0001a 400-850

aNo pressure dependence is modeled for diffusivity. bThese experiments were for granitic composition but pass close to the
one basalt point of Zhang and Stolper [1991] as noted by Watson [1994].
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Volatile concentration

Hsieh and Plesset [1961] derived equation (4.4) for the mass flux assuming that the

solution was saturated. For solutions that are supersaturated or subsaturated the flux

due to ordinary diffusion is superposed on the rectified diffusion flux. In a bubbly

system with restricted volume changes, the pressure will rise as long as the total mass

flux is positive into the bubble even if the ordinary diffusive mass flux is outward,

i.e., the solution is subsaturated. The threshold for a pressure rise can be derived by

setting the mass flux due to ordinary diffusion equal to the rectified diffusion mass

flux. The steady-state ordinary diffusive mass flow rate in the absence of advection

is [Strasberg , 1961]

4πDro (C∞ − Cs) , (4.18)

where C∞ is the volatile concentration in the fluid far from the bubble and once again

the surface tension term is absorbed into Cs. Therefore, the total mass flux into the

bubble from both ordinary and rectified diffusion is

4πDro (C∞ − Cs) + 24πDCsr0δ
2 (4.19)

and this expression must be positive for the pressure to grow. Rewriting this state-

ment as a threshold in terms of concentration produces

C∞
Cs

> 1− 6δ2. (4.20)

Since δ for the dynamic strains considered here is ∼10−4, the last term is negligible

and the fluid must be supersaturated in volatiles in order for the mass flow into the

bubble to be positive.

As the pressure increases during the passage of the seismic waves, the solubility of

the volatiles Cs also increases. As a result, the relative saturation C∞/Cs decreases

and if it drops below the threshold in (4.20), the mass flow into the bubble will

cease. Therefore, there is a relationship between the maximum pressure increase and
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the initial degree of supersaturation. In order to isolate the effects of the rectified

diffusive mass flow, as opposed to the ordinary diffusive mass flow we derive this

relationship assuming that the pressure change is caused only by the rectified diffusion

(Figure 4.3). The scenario requires that the ordinary diffusive flow is ineffective in

raising the pressure for some reason. The situations in which this assumption is

applicable are discussed in some detail after the derivation.

For CO2-magma systems it is appropriate to assume that Cs is linearly propor-

tional to pressure P . We define the initial supersaturation x by

C∞ = (1 + x)C0
s . (4.21)

Since the initial saturation concentration C0
s is proportional to the initial pressure P0

and the final Cs is proportional to the final pressure ∆P + P0, the left-hand side of

(4.20) can be written as
C∞
Cs

=
(1 + x)P0

P0 + ∆P
. (4.22)

The maximum possible pressure rise ∆P is therefore governed by (4.20):

∆P < P0

(
−1 +

1 + x

1− 6δ2

)
. (4.23)

If δ2 � 1 then (4.23) can be approximated by

∆P < xP0. (4.24)

Equation (4.24) is appropriate for CO2 in magmatic systems, but the concentration at

saturation Cs of water in magmas at low pressures is not linear in pressure. For water

dissolved in silicate melts, Cs is better approximated as proportional to P1/2 [Silver

et al., 1990]. The maximum pressure increase for a given initial supersaturation is

therefore slightly higher for water in magma and bounded by

∆P < P0

[
−1 +

(
1 + x

1− 6δ2

)2
]
. (4.25)
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Figure 4.3 Schematic of the change in solubility with pressure due to rectified diffusion
alone. The solid sinusoid represents the concentration at the bubble wall. The dashed hor-
izontal line indicates the far-field concentration C∞, and the dotted curve is the saturation
concentration Cs, which increases as the pressure increases. When Cs becomes greater than
C∞ by ∼6δ2 at the time indicated by the arrow, the solution becomes subsaturated and
rectified diffusion ceases.

Using the same approximation as before, (4.25) to first order in the small parameter

x is

∆P < 2xP0. (4.26)

∆P is limited in both cases by the initial supersaturation. A 1% supersaturated

solution can support approximately a 1% increase in pressure in a CO2 system or a

2% increase in an H2O system.

Given the necessity of supersaturation and hence a positive mass flux into the

bubble before excitation, one might ask what effect the small increase in mass flux

from rectified diffusion would have. Would not the pressure already be rising from

diffusive growth in the supersaturated solution? Since the rectified diffusion mass flux

is much smaller than the ordinary mass flux, why is it not negligible? To answer these

questions in Brodsky et al. [1998], we postulated a steady state diffusive system prior

to the exciting earthquake. We argued conceptually that in a highly heterogeneous
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magma body undergoing vigorous convection as first suggested by Shaw [1965], there

will be some regions that are crystallizing and others that are resorbing mineral phases

into the melt at any given time. As the system nears eruption, crystallizing regions

that are undergoing second boiling and bubble growth should be common. During the

preparatory stages of an eruption there may always be some region of the magma body

that has recently become supersaturated and thus has small bubbles present. These

regions would be the relevant areas for rectified diffusion to occur. As crystallization

slowly supersaturates the magma, a steady-state flow pattern develops and bubbly

magma percolates away through the porous medium. When an earthquake occurs, a

small, uncompensated increase in mass flux occurs since an increase in the percolative

flux cannot develop on this timescale. Even though the rectified diffusion mass flux

increase is much smaller than the total mass flux into the bubbles, the rapid excitation

prevents the development of a compensating loss of volatiles by percolation. The

pressure rises. In Brodsky et al. [1998] we never explored the details of the required

pre-earthquake bubbly region. Below we propose a specific example of a steady-state

diffusive system in order to make the proposed scenario more concrete. In so doing,

we are able to quantify the strong constraints that are placed on the areas in which

rectified diffusion is applicable.

A pocket or cavity of supersaturated melt surrounded by crystalline magma is

shown in Figure 4.4. Here the system has evolved to the steady-state where the

volume of the magma percolating out of the cavity balances the volume of the volatiles

diffusing into the bubbles. The concentration of volatiles dissolved in the magma

inside the bubbly region is maintained in a slightly supersaturated state by continued

crystallization. In order to develop the mathematical description of the system we

treat the bubbly magma as a continuum fluid with material properites that are a

combination of those of the volatile and silicate melt. Conservation of mass at any

point inside the cavity requires that

∇ · u =
Dρ

Dt
(4.27)
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where u is the bulk fluid velocity. Neglecting the advective term,

∇ · u =
∂ρ

∂t
. (4.28)

The bulk density is changing due to the degassing of the magma. If the mass fraction

of gas is much less than 1,

∇ · u =
φ

V ρm
ṁOD (4.29)

where ṁOD is the steady-state ordinary diffusive flux,

ṁOD = 4πDr0(C∞ − Cs). (4.30)

For simplicity, the saturation concentration Cs is assumed to be linearly proportional

to P over small changes in pressure

Cs = HDP (4.31)

where HD is the Henry’s Law constant. By substituting equations (4.30) and (4.31)

into equation (4.29), we derive a continuity equation that is coupled to the pressure

field,

∇ · u =
φ

V ρm
ṁOD = 4πDr0(C∞ −HDP )

φ

V ρm
. (4.32)

The velocity and pressure fields in the magma are also coupled by the Navier-Stokes

equation in the creeping flow limit since the Reynolds number is much less than unity,

η∇2u = ∇P. (4.33)

The velocity is assumed to be bounded at r = 0. The boundary condition at r = L

is p = p1. A solution to the coupled equations (4.32) and (4.33) assuming spherical

symmetry is

u(r) = u1

(
r

L

)1/B

(4.34)
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P (r) = P1 + η
u1

L

1

B(1−B)

[(
L

r

)1−1/B

− 1

]
(4.35)

where

B ≡

√
1 + ηHD4πDr0

φ

ρmV
(4.36)

and

u1 = LB(B − 1)
C∞ −HDP1

HDη
. (4.37)

The dimensionless parameter B is approximately 1 for conditions appropriate to a

magmatic system. Therefore, the pressure is nearly constant inside the region and

the velocity increases almost linearly with r (Figure 4.4). The singularity in pressure

at r = 0 is unphysical and is asssumed to be smoothed out by the non-continuum

processes.

Outside the pressurized cavity is a crystal-rich mush that acts as a porous medium.

The bubbly magma exiting the cavity percolates through the mush in accordance with

Darcy’s law,

u = −
k

η
∇P (4.38)

where k is the permeability. The solution for the flow outside the cavity where r > L

is

P (r) = P1 −
u1ηL

2

k

(
1

L
−

1

r

)
(4.39)

u(r) = u1

(
L

r

)2

. (4.40)

The pressure in the farfield is P∞ ≡ P1−u1ηL/k. The cavity pressure has been raised

relative to the farfield by an amount equal to u1ηL/k. This model makes sense as

long as the change in pressure is much less than the farfield pressure, i.e.,

u1ηL

k
� P∞. (4.41)

In a system that satisfies (4.39)–(4.41), a significant flux exits the cavity to pre-
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Figure 4.4 (a) Pocket of degassing, bubbly magma (speckled region) with radius L sur-
rounded by crystalline mush (box pattern) with permeability k. Spherical symmetry is
assumed with radial coordinate r. Note that r is unrelated to the bubble radius r0. (b)
Pressure in steady state system with parameters in Table 4.2. (c) Velocity in steady state
system with parameters in Table 4.2.
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vent pressure from building due to rectified diffusion. This steady-state system slowly

developed as the magma gradually cooled and crystallization increased the volatile

concentration in the magma. The non-equilbrium petrological system must crystal-

lize fast enough to maintain the supersaturation as gas is exsolved into the bubbles.

The crystallization cannot proceed so fast as to choke the cavity with crystals during

the earthquake. The details of the petrology are beyond the scope of this chapter and

may pose additional constraints beyond the ones considered here. As previously dis-

cussed, the system responds to a change in boundary conditions, such as an increase

of pressure in the cavity, on the timescale τc that a wave of pressure can diffuse a

distance L from the cavity wall. If τc is much greater than the duration of triggering

earthquakes, but less than the time over which the ordinary diffusive system devel-

oped, then after a large regional earthquake rectified diffusion driven by seismic waves

can increase the pressure in the supersaturated system. After substituting (4.37) in

to (4.41), the necessary constraints on the parameters of the steady-state system are

summarized as:

τc > ∆t (4.42)

P∞ >
L2B(B − 1)(C∞ −HDP1)

HDk
(4.43)

One set of parameters that satisfies these constraints is in Table 4.2. In this case

cavities with 100 m diameter would be pressurized during rectified diffusion. The

pressure rise during the earthquake may be much less than the total pressure of

the system. However, the pressure increase happens quickly and the rapid change in

pressure may be enough to trigger an eruption either directly by stressing the chamber

walls or indirectly by increasing the vigor of convection.

This scenario highlights a few of the important requirements for triggering an erup-

tion by dynamic strain. Rectified diffusion is a triggering mechanism. The magma-

volatile system must already be present and exsolving gases. The volcanoes studied

in this paper would have likely erupted eventually. The regional earthquakes merely

accelerated the process. Also, the entire magma body need not be filled with small
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Table 4.2. Example Parameter Set

Variables Values

L 50 m
P1 1.3× 108 Pa
η 102 Pa s
HD 10−6 kg/m3/Pa
D 10−9 m2/s
r0 2× 10−5 m
φ 0.04
ρl 2500 kg/m3

C∞ (1 + 10−4) HDP1

k 10−7 m2

∆t 60 s
αl 5× 102 m /s

bubbles in order for rectified diffusion to occur. As long as a region has enough bub-

bles to meet the porosity constraint in (4.14) and the criteria (4.42)-(4.43) are met,

then rectified diffusion will be an effective pressure-raising mechanism. Equations

(4.42) and (4.43) are an important extension of Brodsky et al. [1998]. The set of

parameters used in that paper do not conform to these new criteria. The parameters

used in [Brodsky et al., 1998] require u1 > 6 m/s and therefore the pressure in the

bubbly region before the earthquake is at least 1000 times the farfield value for any

permeability consistent with equation (4.42). Moreover, if u1 is large, inertial effects

will become important and Darcy’s law may be inapplicable. Although it is possible

that some other steady-state diffusive system exists where the parameters of Brodsky

et al. [1998] are applicable, the author has been unable to formulate such a system.

Therefore, a new set of calculations are presented in this chapter that are consistent

with equations (4.42) and (4.43). Equations (4.42) and (4.43) are also applicable

to geothermal systems and therefore the work of Sturtevant et al. [1996] could be

similarly revised.

Another mechanism that was proposed to explain regionally triggered seismicity
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is subject to similar constraints. Linde et al. [1994] suggested that the advective

overpressure from rising bubbles can increase the pressure in a magmatic system to

unstable levels. As the pressure rises and the solubility increases, the bubbles would

tend to resorb. Advective overpressure is also only applicable in a supersaturated

system. Unless a steady-state diffusive system exists or the bubbles are stabilized by

surfactants [Leighton, 1994], the diffusive flux will change the pressure of the system

more rapidly than the advective overpressure. At this time no surfactants have been

identified in magmatic systems. The search for surfactants may pose an interesting

experimental challenge for the future and has dynamical significance for mechanisms

such as advective overpressure.

The discussion of the magma-bubble system presented here is more extensive than

the previous treatment in Brodsky et al. [1998], but it is not exhaustive. Several effects

that may further reduce the rectified diffusive mass flow are not treated. For instance,

transients in the ordinary diffusive flux during the earthquake due to the solubility

change are not included in the co-seismic pressurization model. Such effects would

ordinarily be expected to be more significant than rectified diffusion by a factor of

∆P/P0δ
2. However, it is possible that they are conteracted by the surface tension

changes due to bubble growth. The existence of significant bubble growth on the

timescale of the earthquake is implicit in the pre-earthquake ordinary diffusive system.

Another effect that would reduce the rectified diffusion mass flux is the depletion of

the volatile layer surrounding each bubble. However, the depletion could be negligible

since the large fluid velocities in the radial flow modeled in equation (4.40) imply that

the volatile-magma solution would be advected over a length greater than the bubble

radius on the timescale of the seismic oscillations. The above simplifications are

maintained in this treatment not because they are physically justifiable, but rather

because the possible reductions in the rectified diffusive flux are not necessary to

dismiss rectified diffusion as the best triggering mechanism. As will be shown below,

the simplified model here predicts pressure rises comparable or less than static stress

changes. It is concluded that rectified diffusion is at best a marginal mechanism. No

further calculations are necessary for the purpose of evaluating rectified diffusion as
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a triggering mechanism.

Physical constraints

The rate of pressure increase is very sensitive to the bubble radius. In a multiple

bubble system an effective radius for the entire system can be calculated. The total

volume change of all the bubbles present is equal to the volume change of N bubbles

of an effective radius reff [Sturtevant et al., 1996]. In terms of average radius r and

average cubed radius r3, the effective radius is

reff =
√
r3/r. (4.44)

The effective bubble radius is weighted towards the largest bubbles in the distribu-

tion. Direct observation of the average bubble size in a magma chamber is impos-

sible. It might be expected that one could learn about bubble sizes from natural

volcanic samples. However, the rapid decompression during eruptions dominates the

observed bubble size distribution, and no easily discernible information about the

in situ magma chamber bubble sizes is retained in the rocks [Cashman and Mangan,

1994]. Hurwitz and Navon [1994] observed average bubble sizes as small as 5 x 10−6 m

in laboratory nucleation experiments, and Davis and Ihinger [1996] observed 10−6 m

bubbles in similar work. The experimental work provides a lower bound for the size

of bubbles a short time after nucleation. We choose to model the effective bubble

radius reff as 20 µm in order to develop a system in compliance with the constraints

in equations (4.42)-(4.43). This value is 20 times larger than the one used in [Brodsky

et al., 1998]. Since the total pressure accumulated during shaking is proportional

to the inverse square of the effective bubble radius, the pressures calculated here are

approximately two orders of magnitude lower than those reported in the earlier paper.

The rate of pressure increase is also very sensitive to the amplitude of the dynamic

strain wave, δ, at the location of the bubbles. Conventional estimates of the dynamic

strain from regional earthquakes are for the measured hard-rock shear wave ampli-
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tudes δr and therefore are not the relevant δ in the bubbly magma body. Calculating

δ from δr inevitably involves large uncertainties; we estimate that δ = 10–15 δr by

proposing the following scenario: (1) When shear waves enter a very heterogeneous

magma chamber, mode conversion occurs and shear strain is converted to volumet-

ric strain. This process results in some loss of energy but appears to be reasonably

efficient since Love waves (transversely polarized shear waves) have been observed

with water-well seismographs which are only sensitive to volumetric strain [Carra-

gan et al., 1964]. The scattering also produces high-frequency waves locally. (2) As

the waves enter a bubbly magma body, amplification occurs. The amplitude of the

wave is increased due to conservation of energy. In addition, a complex series of

reflections cause the structure to reverberate. A very simple model of a soft layer

between two half-spaces is used to establish a rough overview of how the reverbera-

tions would affect the strain amplitude. The Fourier transform of the seismic strain

in the magma chamber, X(ω), is the product of the incident spectrum I(ω) and the

response function G(ω),

X(ω) = G(ω)I(ω). (4.45)

In a magma layer of width 2L between two hard-rock half-spaces, G(ω) for a point

at a distance x into the soft-layer is

G(ω) =
αr
αm

1 +R

1−R2e−4iω L
αm

(
e−iω

x
αm −Re−4iω L

αm eiω
x
αm

)
(4.46)

where R is the reflection coefficient

R =
ρrαr − ρmαm
ρrαr + ρmαm

. (4.47)

ρr and αr are the hard-rock density and P wave velocity; ρm and αm are the magmatic

density and P wave velocity. Laboratory experiments show that melts typically have

densities ∼5% less than their solid counterparts, and the P wave velocities of melts

are ∼50% less [Murase and McBirney , 1973]. A bubbly magma will have an even

lower seismic velocity since the volatile phase is highly compressible [Kieffer , 1977].
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We use a value of αm = 500 m/s in order to be consistent with the steady-state

system in Table 4.2. If αr = 6 × 103 m/s, then the maximum value of the impulse

response derived from G(ω) is 24. Since some energy of the wave is undoubtedly lost

in mode conversion and this estimate is approximate, a range of 10–15 is adopted in

this work, i.e., the strain amplitude in the magma δ is related to the hard-rock value

by

δ = γδr (4.48)

where γ is a constant ranging from 10 to 15.

This procedure for determining the amplification factor is admittedly ad hoc.

Some observational justification for assuming large amplification factors exists. Site

amplification of horizontal 0.3–3 Hz velocity waves in the volcanic area of Long Valley

results in an increase in amplitude by a factor of 4–5 relative to hard-rock site at

Pasadena. Amplification is expected to be even more severe for the high-frequency

waves scattered into the slow magmatic system at depth. Surface amplification near

small, heterogeneous structures like the San Andreas can be as high as a factor of 10

at 10 Hz. For the 100 m pockets of bubbly magma considered here, the amplification

of the high frequency waves is most important. The assumption of large amplification

of seismic waves is necessary for rectified diffusion to be effective and is another strong

constraint on the systems in which triggering can occur by this mechanism.

The hard-rock value of δr for the historical events is estimated by scaling obser-

vations of a well-documented earthquake. The hard-rock amplitude of seismic waves

is assumed to be the same as that observed at well-placed seismometers. For the

regional earthquakes discussed here, we used the strong motion records of the 1985

M=8.1 Michoacan, Mexico, earthquake and the scaling proposed by Houston and

Kanamori [1990]. This earthquake provides a good analog for the large thrust events

that commonly trigger arc volcanoes. The positions of the stations in Michoacan in

relation to the fault rupture are similar to the positions of volcanoes along an arc.

For very large earthquakes the amplitude of high-frequency waves depends primarily

on distance, not magnitude. Since all the earthquakes considered in this work are of
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sufficient magnitude, it is reasonable to use the scaling

δr = δM

(
∆M

∆

)p
, (4.49)

where δr and δM are the strain amplitudes in the earthquake of interest and the

Michoacan earthquake, respectively. The distances from the hypocenter to the site

being considered are ∆ and ∆M . The exponent p is a scaling factor which is 0.43–0.8

depending on frequency [Houston and Kanamori , 1990]. Note that the distance from

the volcano to the rupture zone may be considerably less than the distance to the

epicenter for large events since M= 8 earthquakes break over 100 km of fault. The

scaling of Houston and Kanamori [1990] is designed to still be valid in these cases.

We used ∆M = 35 km and δM = 4.27 x 10−5, which is the highest amplitude of any

wave on this record. Since the pressure increase goes as δ2, it is only necessary to

account for the largest amplitude waves affecting the magmatic system. The dynamic

strain δr is typically of the order of 10−5 for the parameters considered here.

For large earthquakes the duration of the excitation, ∆t, scales as the rupture

duration L/V, where L is the fault length and V is the rupture velocity. L is approx-

imately 1000 km for the Mw = 9.5 1960 Chilean earthquake. The largest amplitude

waves are observed for about one–half the rupture duration on the Michoacan records.

Using the conventional seismic scaling relation Mw ∝ 2 logL, we approximate the du-

ration in seconds,

∆t =
1

2

(
10

Mw−9.5
2

1000

2.9

)
, (4.50)

where the rupture velocity is assumed to be 2.9 km s−1.

Model systems

Equation (4.17) was evaluated for model systems defined by a volatile (carbon diox-

ide or water) in an end-member magma (basalt or rhyolite) in order to establish the

general trends and sensitivities of the rectified diffusion pressure increase. The effects

of temperature and pressure are incorporated into the solubility and diffusivity esti-
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Figure 4.5 Temperature dependence of pressure increase ∆P in model systems via rectified
diffusion. The dynamic strain measures 10−5 at the surface and lasts 45 s. The magma
chamber is at 1.3 x 102 MPa (lithostatic pressure at 5 km depth). For each model system,
two curves are plotted to show a range of amplification factors (δ/δr) of 10-15.

mates from laboratory data (Table 4.1). A range of values are considered, and the

sensitivity of the results is shown in Figure 4.5 and Figure 4.6.

The temperature dependence of the pressure increase from rectified diffusion is

shown in Figure 4.5; pressure dependence is shown in Figure 4.6. Figures 4.5 and

4.6 demonstrate the relative efficacy of different magma-volatile systems. Since the

diffusivity of volatiles in basalt is much higher than that in rhyolite at natural temper-

atures, rectified diffusion is more effective in basaltic systems. For a basaltic system

with water bubbles initially at 130 MPa pressure, the excess pressure from rectified

diffusion is between 0.001 and 0.02 MPa. Figures 4.5 and 4.6 show that when CO2 is

the dominant volatile in basaltic systems, the effect of rectified diffusion is very small.

This difference arises because CO2 is much less soluble in magmas than H2O; that is,

Cs is lower. Since the diffusivity of CO2 in rhyolite is even lower than that of CO2 in
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Figure 4.6 Pressure dependence of pressure increase ∆P in model systems via rectified
diffusion. The basalt is modeled at 1450 K and the rhyolite is modeled at 1200 K. The
excitation and ranges of amplification are the same as those in Figure 4.5.
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basalt [Watson, 1994] and the solubility is ∼30% lower in rhyolite [Blank , 1993], the

pressure increase will be even smaller than in the CO2-basalt system. Therefore, the

CO2-rhyolite system is not considered further in this work. In all cases the pressure

rise is less than 0.01% of the ambient pressure and so would be possible in a slightly

saturated system like the one described in Table 4.2.

Historical cases

Once a pressure increase occurs, a number of processes can eventually lead to dike

propagation and a volcanic eruption. The nature of these mechanisms is uncertain and

therefore the appropriate threshold for triggering an eruption is currently unknown.

The goal of the present work is to compare the pressure increase from rectified diffu-

sion to the stresses produced by the most widely discussed mechanism, static stress

changes. After the magma body is pressurized, the eruption can occur at any time.

The pressure on the bubbly region walls may cause failure and induce an eruption

immediately. Alternatively, the increased pressure gradients outside the bubbly re-

gion may sufficiently destabilize the magmatic system to begin a series of events that

lead to an eruption some indefinite amount of time later.

A number of instances of large tectonic events triggering volcanic eruptions have

been documented. Demonstrating triggering is at best a subjective process. Occa-

sionally, there is a particularly spectacular example such as the 1835 M = 8.5 Chile

earthquake. Immediately after the earthquake, four eruptions began simultaneously.

More often, the relationship is less clear. For this study, only eruptions occurring

within 10 days of a large regional earthquake greater than 100 km from the volcano

are considered. Table 4.3 lists some of the best-documented cases, and Table 4.4

shows the relevant modeling parameters. Locations are mapped in Figure 4.1.
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Table 4.3. Documented Triggered Eruptions

Event Volcano Year Distance, Delay, VEI Earthquake SGVN
Number km days Magnitude

1 Robinson Crusoea 1835 635 0 1? 8.5 1506-02=
2 Minchinmavidaa 1835 664 0 2 8.5 1508-04=
3 Cerro Yantelesa 1835 733 0 2 8.5 1508-051
4 Peteroaa 1835 283 ? 2 8.5 1507-04=
5 Liamuigab 1843 116 0 ? 8.2 1600-03=
6 Unnamedb(15.97deg N, 61.43deg W) 1843 101 9 ? 8.2 1600-07=
7 Llullaillacoc 1877 510 ? 2 8.5 1505-11=
8 Ambrymd 1950 237 2 4 8.1 0507-04=
9 Karpinsky groupd 1952 404 1 1 8.3 0900-35=
10 Tao-Rusyr Calderad 1952 501 8 3 8.3 0900-31=
11 Puyahee 1960 226 2 3 9.5 Mw 1507-141

Earthquake magnitudes are Ms except where otherwise indicated and are estimated from intensities for preinstrumental
events. The event numbers correspond to Figures 4.1 and 4.7. Distances are from epicenter to volcano. The delay is the
time between the earthquake and the eruptive event. The volcanic explosivity index (VEI) and catalog number from the
Smithsonian Global Volcanism Network (SGVN) are included for reference. References: aDarwin [1896]. bRobson and Towblin
[1966]. cCasertano [1963]. dNewhall and Dzurisin [1988]. eBarrientos [1994].
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Table 4.4. Calculated Values For Triggered Eruptions

Event Volcano δ1 δ2 ∆t, Petrology Model ∆P ,
Number × 105 × 105 s MPa

1 Robinson Crusoe 1.2 0.42 55 basalta,b b 7.2×10−4–1.3×10−2

2 Minchinmavida 1.2 0.41 55 basalta,c b 6.9×10−4–1.3×10−2

3 Cerro Yanteles 1.2 0.37 55 basalta,d b 5.6×10−4–1.3×10−2

4 Peteroa 1.7 0.80 55 mafic andesitea,e b 2.6×10−3–2.7×10−2

5 Liamuiga 2.6 1.6 49 basalt and andesitef , phreatic b 9.3×10−3–5.5×10−2

6 Unnamed 2.7 1.8 49 geyser ?
7 Llullaillaco 1.3 0.50 55 daciteg r 1.3×10−5–2.0×10−4

8 Ambrym 1.9 0.92 35 basalth b 2.2×10−3–2.1×10−2

9 Karpinsky group 1.5 0.60 44 andesitei

10 Tao-Rusyr Caldera 1.4 0.5 44 andesitej

11 Puyahe (Cordon Calle) 1.9 0.96 173 rhyolite/rhyodacitek r 1.5×10−4–1.3×10−3

The strains δ1 and δ2 are upper and lower limits on dynamic strain outside the magma body from equation (4.49), ∆t is the duration of
the strong shaking, petrology is the type of observed eruptive products, model indicates the simplified system used (either basalt,”b,” or
rhyolite, “r”) and ∆P is the pressure increase due to rectified diffusion. Notes: aThe products were extrapolated from the general trends
for the volcano. bCasertano [1962]. cCasertano [1963]. dFuenzalida and Etchart [1974]. eTormey et al. [1989]. fRobson and Towblin [1966].
gDeSilva and Francis [1991]. hMcCall et al. [1970]. iMooser et al. [1958]. jNewhall and Dzurisin [1988]. kGerlach et al. [1988].
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Most of the earthquake-volcano systems can be approximated by one of the model

cases shown in Figures 4.5 and 4.6. Where such an approximation was not possible,

such as for the andesitic systems where no laboratory data are available, no further

calculation was attempted. The calculated increase in pressure for all cases is less

than 0.04%. Therefore, the systems require at most 0.02% supersaturation in the

bubbly region of the magma body in order to maintain rectified diffusion throughout

the duration of shaking ∆t in accordance with (4.26).

The static stress changes ∆σs is computed for comparison by using a double-couple

point source model for an earthquake,

∆σs =
M0

4πr3
, (4.51)

where r is the distance from the volcano to the hypocenter and M0 is the seismic

moment. Equation (4.51) is the stress in the direction of maximum amplitude and so

is an upper bound on static stress change. Therefore, the comparison with rectified

diffusion presented in Figure 4.7 is conservative. The pressure increases from rectified

diffusion presented here are approximately two orders of magnitude less than those

reported in Brodsky et al. [1998]. The difference is a result of the larger bubble radius

that was used in order to be consistent with the new constraints in equations (4.42)

and (4.43).

Figure 4.7 shows that in most triggering cases the pressure increase by rectified

diffusion ∆P is nearly equal to the static stress change ∆σs. In the silica system ∆P is

negligible. The most noticeable difference between rectified diffusion and static stress

is that ∆P is nearly independent of the epicentral distance, whereas ∆σs decreases

quickly with increasing distance. This is because the surface waves that are driving

rectified diffusion decay as approximately r−1/2 whereas the static stress decays as

r−3. For the eruption of Puyahe following the extremely large 1960 Mw = 9.5 Chile

earthquake, the volcano is effectively in the near field and it is likely that the direct

deformation effects are important [Barrientos, 1994]. On the other had, rectified

diffusion provides at least as good an explanation as static stress changes for the
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Figure 4.7 A comparison of the stresses from static strain, ∆σs, and rectified diffusion, ∆P ,
for cases where a simple model system was applicable. Elastic stress change is calculated
from equation (4.51) and plotted on the x axis. The minimum and maximum rectified
diffusion pressures (∆P ) are calculated for each case at 1.3 x 102 MPa with a temperature
of 1473 K for basalt and 1173 K for rhyolite. The results are plotted on the y axis. The
range from maximum to minimum takes into account a range of δ corresponding to a range
in possible hard-rock strains as estimated in equation (4.49) and amplification factors. Since
the results are most sensitive to the estimates of δ and r0, these are the largest sources of
error in the calculations, and therefore the range shown can be taken as a crude estimate
of the error bars. Results above the dashed line indicate that ∆P is larger than the static
stress from the elastic model. Numbers correspond to the event numbers in Table 4.3.
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more distant triggering events such as Cerro Yanteles.

Conclusions

The above calculations indicate that rectified diffusion is a marginally viable mecha-

nism for explaining distant seismic triggering of volcanic eruptions. Strong constraints

have been placed on the magma-bubble system. Small (∼100 m) regions of bubble-

filled magma must be slightly (∼0.01%) supersaturated before the earthquake. The

total porosity must be at least a few percent, and the radii of individual bubbles

are assumed to be on the order of 10s of microns. Flow out of these regions into

the surrounding partially molten system must establish a delicately balanced steady

state where the volume flux out of the cavity exactly balances the volatile flux ex-

solving from the supersaturated magma. The supersaturation must be maintained

by rapid crystallization. The diffusive time for a wave of fluid pressure in the perme-

able crystalline mush must be long enough that the flow cannot readjust during the

passage of the seismic waves, i.e., τc > 60 s. The velocity structure must be highly

heterogeneous such that it scatters the seismic waves, promotes mode conversion, and

amplifies compressional waves by about 10–15 times.

Given a system that is consistent with these strong constraints, rectified diffusion

may be as effective a triggering mechanism as static stress in mafic systems. It can

be a slightly better explanation for the most distant cases of triggered eruptions.

It must be remembered that the calculation of ∆P is based on a simplified model

system. Effects such as rupture directivity and multicomponent volatile species have

not been included. The inherent uncertainties in estimating physical parameters like

bubble size and the dynamic strain amplitude prevent a more sophisticated treatment

of such processes from being quantitatively useful.

The stresses produced by both rectified diffusion and static deformation are ex-

tremely small. The magmatic system must be very delicately balanced if a 10−2 MPa

change in stress triggers an eruption. Neither mechanism is completely satisfactory

in this regard and this evaluation of rectified diffusion suggests that the search for
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an appropriate regional triggering mechanism is not finished. However, we have been

able to make important progress in outlining some of the basic physics of how seis-

mic waves interact with complex, multiphase magmatic system. It is likely that any

successful explanation of the observations will require the incorporation of such fluid

dynamical mechanisms into seismological studies. Here we have performed a case

study of one mechanism and have constructed a template for future studies of the

interactions of seismic waves with magmatic fluids.
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Abstract

We calculate the vertical mass discharge rate from Mount St. Helens for the first

few minutes of the May 18, 1980 cataclysmic eruption using a new method based on

seismic constraints. The observed seismic waves indicate that the seismic source is a

series of single forces. We model these forces as thrusts due to a combination of the

momentum flux of the erupted products and the pressure of the eruptive jet. The

momentum discharge rate is converted to a mass discharge rate based on estimates of

the velocity and jet pressure as constrained by a simple fluid dynamical model. Only

two parameters are necessary for the calculation: Mach number and sound velocity.

The calculated mass ejected in the first 100 s is 1.6×1011–4.6×1011 kg. Since the

total blast deposit is ∼3.2×1011–4.1×1011 kg, one possible interpretation is that the

directed blast had a significant (≥40%) vertical component.
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Introduction

One of the most fundamental measures of explosive volcanic eruptions is mass dis-

charge rate. Quantification of the rate and orientation at which mass is ejected

improves the observational constraints on the eruptive process and provides realis-

tic hazard assessment. In this paper, we combine a fluid mechanical model with

seismological data to formulate a method for measuring mass emission rate.

The most common previously established method of assessing the volcanic mass

emission rate is measurement of the column height. Wilson et al. [1978] show that the

height of a plinian column is a function of the energy available for buoyant ascent.

Since the energy source is hot mass ejected from the vent, height can be inverted

for mass emission rate. This method has proven effective for computing average

discharges of plumes [Sparks et al., 1997] but is not applicable for certain eruptive

processes including directed blasts, strombolian explosions, and pyroclastic flow gen-

eration. In all of these cases the erupted mass of interest does not directly contribute

to the buoyant plume and therefore must be measured by other means. Another

shortcoming of the column height method is that time resolution is limited since col-

umn height is usually reported as an average value over several hours. Our method

provides both the time history of mass emission rate and the orientation of the jetting

using continuously measured seismic data. Such resolution allows us to quantify the

sequence of events initiating an eruption.

We illustrate the new method by studying the cataclysmic eruption of Mount

St. Helens. On the morning of May 18, 1980, a giant landslide exposed the cryptodome

beneath the north flank of Mount St. Helens. The hot, pressurized magma exploded

and over the next few minutes 3–4×1011 kg of material surged northward over an

area of approximately 600 km2. Although asymmetric explosive eruptions had been

previously identified and termed “directed blasts” [LaCroix , 1930; Gorshkov , 1963],

the devastation at Mount St. Helens brought the eruptive style to the attention of

the volcanological community.

Many studies using a variety of data sets have addressed the Mount St. Helens
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blast, but none were able to include direct measurement of the mass emission rates.

For the following practical and scientific reasons such a measurement would be useful:

1. Measurements of erupted mass quantify the hazard. Both the rate of eruption and

the total mass of the products are useful measures of the size of an eruption as noted

by Walker [1980]. Total erupted mass is a major criterion for the Volcanic Explosivity

Index (VEI) [Newhall and Self , 1982] and such metrics constitute an important tool

for formulating effective hazard management policies.

2. Various eruptive styles can be distinguished by their mass discharge rates. At

Mount St. Helens the blast was unexpectedly and disproportionately devastating.

This phenomenon was presumably due to the important role of momentum, or in the

terminology of Walker [1980], the “violence” of this particular eruptive style. Mea-

suring and documenting the mass emission rate of eruptions can clarify such features

of eruptive styles.

3. Measurement of the erupted mass relates eruptive events to their products. The

total mass in a unit can be estimated by mapping the deposits. Providing a history

of the mass ejection over the course of the eruption could potentially associate the

deposits with the processes that produced them. Seismic data can constrain the ge-

ometry of the source in addition to its time history.

4. Mass ejection rate Ṁ provides a direct constraint on dynamic models of an erup-

tion. A number of fluid mechanical models of explosive eruptions have been developed

[e.g., Wilson et al., 1980; Sparks et al., 1997] and the resulting flow solutions include

predictions of mass flux. Accurate determination of Ṁ can test and calibrate these

models.

The inversion for Ṁ begins with a series of equivalent forces that were previously

found from the seismic data for May 18, 1980 [Kanamori and Given, 1982; Kanamori

et al., 1984]. Seismic data have been analyzed to produce similar equivalent force

systems during eruptions at other volcanoes [Uhira et al., 1994; Uhira and Takeo,

1994; Nishimura, 1995]. In this paper, we model the observed seismic pulses as thrusts

due to the momentum flux of the erupted products. The momentum discharge rate

is then converted to a mass discharge rate based on an independent estimate of the
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velocity. The resultant mass discharge rate is integrated over time to calculate the

total mass corresponding to the observed seismic forces. We then reinterpret the

eruption in light of this new data set. Our calculations allow us to evaluate the

directionality of the blast.

The model used to connect the seismic observations with dynamical quantities is

deliberately simplified to provide an analytical method of evaluating the data. As

such, it inevitably omits features of a complex volcanic flow such as multiphase flow

effects and fragmentation dynamics. Wherever possible, we justify the omissions

through quantitative assessment. Such assessments are necessarily approximate and

result in generous error estimates. Numerical treatment of the full solid and fluid

dynamical systems could refine the results presented here and would be a logical

extension of this work.

Observations

At 1532:11 UT (0832:11 LT) on May 18, 1980, seismic activity increased at Mount

St. Helens and the cataclysmic eruption began. Within the next few minutes three

separate landslide blocks detached and dark plumes were photographed rising from

the summit. About 40 seconds after the activity began, the largest slide block had

reached the bottom of the mountain and a sudden expansion of light-colored material

occurred. A light-colored, ground-hugging flow is first visible in photographs at this

time [Hickson, 1990]. These rolling clouds are what is commonly referred to as the di-

rected blast and have been variously interpreted as an underexpanded jet, pyroclastic

flow or surge [Kieffer , 1981; Walker and McBroome, 1983; Waitt , 1984; Hoblitt and

Miller , 1984]. The resulting deposit is called unit A and is subdivided into sedimen-

tary layers A0–A3 [Waitt and Dzurisin, 1981; Hoblitt , 1989]. A giant mushroom cloud

rose from the devastated area about 4 min after the seismic activity increased [Sparks

et al., 1986]. The rapid ascent of the cloud was measured in satellite photos [Sparks

et al., 1986] and reported by airline pilots [Rosenbaum and Waitt , 1981]. The fallout

of this mushroom cloud formed layer A3, a fine, dark deposit distributed over the
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entire devastated area. A3 contains abundant shredded vegetation which suggests

that the material flowed along the ground before being lofted into the mushroom

cloud and eventually deposited [Sisson, 1995]. The next layer deposited (B1) was

a “salt and pepper” combination of lithics and pumice [Sarna-Wojicki et al., 1981].

B1 marks the introduction of juvenile pumice into the deposits. It lies above A3

almost everywhere and the boundary between the units is sharp [Waitt and Dzurisin,

1981]. This indicates that some time elapsed between the mushroom cloud and any

pumiceous Plinian air fall. There was no Plinian column from the vent associated

with the blast phase of the eruption [Criswell , 1987]. This important observation is

reinforced by satellite images that show the blast column from the vent only reached

a height of ∼6 km above the mountain rather than expanding buoyantly into the up-

per atmosphere [Sparks et al., 1986]. Therefore, the dynamics of the blast initiation

can best be understood by studying the compressible, momentum driven flow in the

gas-thrust region [Sparks et al., 1997] rather than by pursuing thermally driven plume

theory.

These eruptive events were also observable seismically. Explosions and flows cou-

pled to the ground to generate seismic waves. The various phases on the seismograms

suggest distinct processes that can be modeled by systems of equivalent forces. Each

process is distinguished by the frequency content and the geometry of the source

(Figure 5.1a). Figure 5.2 reviews the evidence for a series of vertical single forces

as first documented by Kanamori et al. [1984]. The near-field station at Longmire

(Figure 5.2a) recorded the ground motion of the source directly and simple visual

inspection suggests a source of the form illustrated in Figure 5.1b. The teleseismic

data (Figure 5.2b) both characterizes the type of equivalent force system of the seis-

mic source and quantifies the orientation and amplitude of those forces. The key

observation for determining the force system is the azimuthal invariance of the P

waves (Figure 5.2b). The nearly identical amplitudes and waveforms at all azimuths

strongly suggest vertical single force sources. This pattern of radiated energy is in-

compatible with the four-lobed pattern of the double couple force model used for most

tectonic earthquakes. Furthermore, the large amplitudes of the P waves relative to
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Figure 5.1 Time history of the seismic sources. (a) The seismic signal contains information
about two distinct sources during the eruption. (Top) A horizontal long-period source
inverted from the surface waves [Kanamori and Given, 1982] and (bottom) shorter period
vertical pulses. (b) A magnified plot of the vertical pulses. These pulses are the sources of
the seismic waves in Figure 5.2 [Kanamori et al., 1984].

the S waves indicate that the inclination of the source must be at least 60o from the

horizontal. This estimate is further refined by observing that the dominant period of

the S waves in Figure 5.2 is too long to be generated by the P wave source. If the

P wave source generated any S waves, they are obscured by the longer period signal,

that is, they are smaller amplitude than the traces in Figure 5.2b. Therefore, the

inclination of the source must be much greater than 60o [Kanamori et al., 1984]. We

emphasize that the vertical orientation of the force is constrained by the azimuthal

symmetry of the radiation patttern, rather than merely by the fact that the waves

are observed on the vertical component.

The magnitudes of the single force sources are estimated using the amplitudes of

the far-field P waves. The resulting source function in Figure 5.1b is two distinct
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Figure 5.2 Body wave data for May 18, 1980 initial eruptive events. (a) Near-field vertical
record from the WWSSN station at Longmire (LON). The distance ∆ from the source was
67 km and the azimuth Φ was 26o. (b) Far-field recordings of the P and S arrivals at Seis-
mic Research Observatory Network (SRO) and Abbreviated Seismic Research Observatory
Network (ASRO) stations arranged according to azimuths, Φ. P and S waves are observ-
able on the vertical and transverse components, respectively, and the traces are aligned
on the Jeffreys-Bullen arrival times of an event beginning at 1532:11. All amplitudes are
normalized for geometric spreading to the distance of GRF, ∆ = 76.2o. The instrument at
TAT had the polarization of the horizontal components reversed in May 1980. Therefore,
the observed trace is inverted in this figure. ASRO stations are denoted by asterisks. Their
amplitudes are reduced by 2 and the traces are shifted 4 s to the left for comparison with the
SRO stations. At a period of 25 s, an amplitude of 1000 counts in this figure corresponds
to 0.2 µm of ground motion.
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sequences of 20 to 30 s pulses with vertical component amplitudes of the order of

1012 N. The geometric constraints require that any horizontal components of these

pulses have amplitudes less than half the vertical values. The largest pulse of the

first sequence peaks at ∼1532:45 which is the time that a sudden increase in the ash

cloud height occurs in the photos of the eruption. Further support for this source

inversion is provided by more detailed analysis of the seismic data including a full

consideration of the radiation pattern [Kanamori et al., 1984; Burger and Langston,

1985]. Similar lines of reasoning for the surface wave data yield a separate long-

period (300 s) horizontal source that has been associated with traction at the base

of the landslide [Kanamori and Given, 1982]. No direct measure of the horizontal

component of the 20 to 30 s pulses is possible because the larger, longer period

landslide dominated the transverse component signal.

Estimates of the erupted mass from both the geological and seismological obser-

vations are used in this paper to link the two types of data. The mass discharged at

each stage of the eruption can be estimated by calculating the total mass of the corre-

sponding geological deposits while assuming that the mass of the associated volatiles

is negligible. Although gas was volumetrically and dynamically important, it is un-

likely that its mass exceeded a few weight percent when the mixture was originally

erupted from the vent [Eichelberger and Hayes, 1982; Kieffer , 1981]. The total blast

deposit (unit A), which includes both country rock and juvenile dacite, had a volume

of about 0.19 km3 [Moore and Sisson, 1981]. This value is probably an overestimate

of the material erupted from the vent since significant erosion and entrainment may

have occurred as the blast cloud traveled down the slope of the mountain [Kieffer and

Sturtevant , 1988]. The average density has been estimated as between 1660 [Hoblitt

et al., 1981] and 2180 kg/m3 [Glicken, 1996]. The mass of the blast is therefore esti-

mated to be 3.2×1011–4.1×1011 kg. This value can be put into perspective by noting

that the total mass of the juvenile magmatic products erupted on May 18, 1980 at

Mount St. Helens is 5.2–7.0×1011 kg [Christiansen and Peterson, 1981; Friedman

et al., 1981].
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Rock

Magma

Figure 5.3 Cartoon of a control volume (dashed line) around a magma body (dark region).

Force balance

In order to understand the forces generating the seismic waves, we consider the bal-

ance of forces on the magma. The relevant dynamics are analyzed by modeling the

magma as a fluid that is accelerated out of the ground by the depressurization that

accompanied the landslide. The landslide removed the lid from a body of fluid under

high pressure, and therefore the fluid was rapidly ejected.

We define a control volume around the magma in the ground (Figure 5.3). The

geometry is simplified by representing the magma body as a trapezoidal volume. Each

surface represents the area on which the resolved forces in the indicated direction act,

rather than the literal wall of the magma body. The sum of the forces on the fluid

equals the rate of change in the momentum of the fluid according to Newton’s second

law. The stresses acting on the fluid are gravitational and the pressures from the

interactions with the atmosphere and the solid earth. The momentum can change

in the fluid volume V either due to changes in the velocities internally or mass (and

hence momentum) exiting through the surfaces of the volume. The sum of the forces
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exerted on the fluid
∑
Ffl is

∑
Ffl = −Mg +

∑
Fat +

∑
Fse =

d

dt

∫
V
ρudV − Ṁflv (5.1)

where M is the mass of the fluid, g is the magnitude of the gravitational acceleration,

and the forces acting on the surface of the control volume are Fat from the atmosphere

(including the part of the jet which is above the ground) and Fse from the solid earth.

The velocity of the fluid exiting the control volume is v, u represents the velocity

inside the control volume and ρ is the density of the fluid. The rate at which the

mass of the fluid inside the control volume changes is Ṁfl. Note that Ṁfl = −Ṁ as

the mass emission rate is positive when the mass in the control volume is decreasing.

Forces are positive upwards.

Transient forces from the eruption that are coupled to the solid earth generate

seismic waves. It is by observing these waves that we are able to determine the source

parameters of the eruption so the “seismically observed force” F will be defined as

F ≡ −
∑

Fse. (5.2)

In this paper, we are interested in analyzing the observed vertical short-period seis-

mic forces since the horizontal ones are not observed for the Mount St. Helens blast.

Therefore, we will only consider the vertical force balance. Note that the only explic-

itly time dependent term in (5.1) is the time derivative of the momentum inside the

control volume. We neglect this change of internal momentum, to derive a quasi-static

approximation to (5.1), ∑
Ffl = Ṁv. (5.3)

A full discussion of the validity of the quasi-static approximation for eruptive events

is deferred until after the calculation.

Equation (5.3) is often referred to as the rocket equation [Thompson, 1972] since

the sum of forces propelling a rocket upwards is equal to the momentum discharge

rate of the fuel behind it. The blast at Mount St. Helens can be viewed as an inverted
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rocket where the momentum of the mass thrust into the air balances a net downward

force into the ground.

The atmospheric force term
∑
Fat accounts for the fact that a supersonic jet can

be “underexpanded,” that is, at a pressure significantly above atmospheric at the

vent. The net force of the jet on the fluid in the chamber is then the pressure in the

jet P multiplied by the area of the vent. The sum of the atmospheric forces during

the eruption is therefore ∑
Fat = −PA, (5.4)

where A is the area of the vent. F can now be derived in terms of dynamic quantities

by combining (5.1), (5.2), (5.3), and (5.4),

F = −
(
Mg + Ṁv + PA

)
. (5.5)

Equation (5.5) is a quasi-steady description of the force balance. It relates the ob-

served force to the instantaneous dynamics of the jet but gives no insight into how this

force varies over time. In order to understand the shape of the observed seismic pulses

it is useful to reconsider the forces in terms of the geometry during depressurization.

An eruptive pulse is divided into four representative stages in Figure 5.4.

Before the eruption (stage I) the magma is pressurized and at rest. We define the

magnitude of the force exerted by the country rock at the top of the magma body

as FL. This is the force exerted by the lid prior to eruption and includes both the

strength and weight of the caprock. The magnitude of the force on the bottom of

the magma is denoted by Fb. Fb and FL are defined to be the absolute values of the

forces, and we explicitly note their signs in the following equations. For the purposes

of the qualitative discussion of the time history of the force in this section, the vertical

forces on the sides of the control volume are neglected. The difference between FL

and Fb is the net vertical force of the magma on the solid earth, i.e., the seismic force

F .

F = FL − Fb. (5.6)
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Figure 5.4 Cartoon of a control volume (dashed line) around a magma body (dark region)
and the forces between the solid earth (lightly shaded area) and the magma acting during
a single eruptive pulse. (I) The initial conditions. (II) The lid is removed in the landslide.
(III) The fully developed jet. (IV) The final conditions.
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During stage II the lid is removed in the landslide, the restraining force FL decreases

in time, and a jet forms. When the lid is removed, the pressure at the bottom of

the magma body does not begin to fall until after a time τ required for the pressure

drop, or rarefaction wave, to travel to the bottom of the magma body (Figure 5.5).

During this time the lid continues to be accelerated. By the time the rarefaction wave

reaches the bottom of the chamber, the pressure is dropping even faster at the top.

Therefore, the downward force increases in magnitude throughout the lid removal

process (stage II). Stage III in Figure 5.4 is when the lid is completely removed and

the jet is fully developed. As the pressure in the chamber is released, the jet wanes and

the magnitude of F decreases. The final phase, stage IV, occurs after the eruption.

Only the weight of the remaining magma exerts a force on the ground. During the

next pulse the process is repeated. We envision the initiation of the Mount St. Helens

eruption to be a series of such depressurization events as the cap to the cryptodome

broke into pieces. Each pulse released a section of the cryptodome that was separated

from the other sections either by country rock or unvesiculated zones. We speculate

that these separate regions may correspond to the heterogeneously vesiculated zones

described by Hoblitt and Harmons [1993].

The geometric and dynamic considerations can be summarized by the following

four equations:

Stage I F = F 0
L − F

0
b = −M0g (5.7a)

Stage II F = FL(t)− Fb(t) = −{Ṁv+

P
[
Af −AL(t)

]
+M(t)g} (5.7b)

Stage III F = −Fb(t) = −[Ṁv + PAf

+M(t)g] (5.7c)

Stage IV F = −F f
b = −Mfg (5.7d)

where F 0
L, F 0

b , and M0 are the initial lid force, bottom force, and mass, respectively,
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Figure 5.5 Schematic of seismic force F corresponding to the stages of Figure 5.4. The
initial force is the preeruptive weight of the magma. Since a seismograph only records
changes in F , this baseline value is arbitrary.

and F f
b and Mf are the final bottom force and mass of the magma. Af is the final

area of the vent and AL is the area that is covered by the lid. The force history of

the entire process is shown schematically in Figure 5.5.

According to the above theory, the seismic force should be a function of the weight

of the magma erupted, the thrust of the blast and the pressure in the jet. However, the

seismological measurements are bandwidth limited. For the long, complex event on

May 18, 1980, the gravitational unloading occurred over the entire 100 second series

of pulses. In the far-field, such a long-period signal was obscured by the instrumental

and ground noise. In the near-field (LON), the short record available shows spurious

oscillations when the instrument is deconvolved [Kanamori et al., 1984] and these

artifacts obscure any long-period signal. Therefore, we neglected the gravitational

terms Mg in (5.7a)–(5.7d) when analyzing the instrumentally recorded data for this

event even though the magnitude of the gravitational unloading at the source may

be as large as the other terms. For the same reason, the small vertical component of

the longer period landslide force is neglected in the momentum balance. Fortunately,

the photographic record documents that pulsations in the thrust and jet pressure
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occurred at somewhat shorter periods (∼20–30 s) [Nielsen et al., 1989; S. Malone,

Mount St. Helens timing, unpublished data, 1998]. These shorter period waves were

recorded by the seismometers. If a higher frequency component of the unloading

during the eruption was an important contribution to the seismic waves, the neglect

of the upward force would mean that the values given for the downward thrusts here

are underestimates.

We have now related the observed seismic force F to the momentum term Ṁv

and the jet force PA at each stage of the eruption and obtained a qualitative sense of

the time variation of these variables. The only assumption about the fluid dynamics

is that internal momentum changes are negligible. In order to proceed further, we

need to relate the jet force PA to the momentum discharge rate Ṁv which requires

a specific model of the flow.

Flow model

We model the flow as an ideal gas expanding isentropically with a specified mass

fraction φ of suspended particles. We follow Kieffer [1981] in modeling the fully

developed flow geometry as a nozzle in which the discharge is a supersonic jet. For

flows like the blast of Mount St. Helens that are volumetrically primarily gas, the

equation of state of the mixture can be derived by describing the fluid as a mixture

of two gases, one of which (the solid phase) is incompressible. Such a fluid is known

as a dusty gas, or pseudogas, and is used as a model fluid in engineering applications

ranging from solid fuel rocket engines to pipeline technology [Rudinger , 1980]. This

formulation allows us to invoke a number of standard results from fluid mechanics. In

particular, we can relate the flow parameters at the exit to the local sound speed. The

ratio of the pressure term to the momentum discharge rate is then simply a function

of the Mach number.

The equation of state of an equilibrium solid-gas mixture with noninteracting
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particles is [Rudinger , 1980]

P = ρRMT/(1− ξ) (5.8)

where RM is an ideal gas constant for the mixture, ρ, T and P are the density,

temperature and pressure in the mixture, respectively, and ξ is the volume fraction

of solids. The term “equilibrium” in this context means that the solid and gas phases

flow at the same velocity (Appendix A).

The solid volume fraction is related to the mass fraction φ by

ξ = φ
ρ

ρs
, (5.9)

where ρs is the density of the solid. This equation of state is an ideal gas modified

to account for the volume of an incompressible solid phase. In the limit of ξ → 0 the

fluid becomes an ideal gas as modeled by Kieffer [1981]. The isentropic sound speed

c corresponding to (5.8) is [Rudinger , 1980]

c2 ≡

(
∂P

∂ρ

)
s

=
ΓRMT

(1− ξ)2
=

ΓP

ρ(1− ξ)
, (5.10)

where Γ is defined to be the ratio of the specific heats for the mixture and is analogous

to the adiabatic constant for an ideal gas. The specific heat of the mixture is the

weighted average of the specific heats of the gas at constant pressure cp and volume

cv and the specific heat of the solid cs.

Γ =
(1− φ)cp + φcs
(1− φ)cv + φcs

. (5.11)

The solid mass fraction φ is over 90%. The maximum whole rock H2O content

proposed for the preeruptive magma is 3–5 wt% based on both petrological and

isotopic evidence [Hoblitt and Harmons , 1993]. A fraction of the H2O remained

trapped in vesicles and therefore dynamically inactive. Therefore, the minimum value

of φ is 95%. The solid mass fraction φ remains constant throughout the flow of an
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equilibrium dusty gas even though the solid volume fraction ξ decreases significantly

[Rudinger , 1980]. These high values of φ cause the adiabatic constant Γ to be nearly

1. In the limit of Γ→ 1, the nondissipative (isentropic) expansion of the fluid through

a nozzle is isothermal. Rewriting (5.10),

PA = (1− ξ)ρc2A ; Γ = 1. (5.12)

The momentum discharge rate at the exit, that is, the flux through the top surface

of the control volume multiplied by the area, is

Ṁv = ρv2A. (5.13)

Therefore, the ratio of the pressure term to the momentum discharge rate is

PA

Ṁv
=

(1− ξ)c2

v2
=

(1− ξ)

M2
(5.14)

where M is the exit Mach number defined as the exit velocity v divided by the local

sound speed c. Since 1 ≥ ξ ≥ 0,

0 ≤ PA ≤ Ṁv
1

M2
. (5.15)

Until now we have treated only the mass discharge rate of the bulk fluid. When

we compare our results with the geological deposits, we will want to limit ourselves

to the mass discharge rate of the solid phase. According to the definition of mass

fraction φ, the solid mass discharge rate is simply φṀ . As already noted, the mass

fraction is nearly unity for the blast, and approximating the solid mass discharge rate

as the total mass discharge rate is reasonable.

Equation (5.15) relates the pressure at the top of the control volume to the mass

discharge rate. We combine (5.7b), (5.7c), and (5.15) with gravity neglected as dis-

cussed above and incorporate the definition of Mach numberM≡ v/c, to obtain the
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inequality

ṀcM≤ −F ≤ ṀcM+
Ṁc

M
. (5.16)

Since the seismically observed quantity is the force F , the inequality can be more

usefully written as
−F

cM
≥ Ṁ ≥

−F

cM(1 + 1/M2)
. (5.17)

If we knew the exit Mach number M and sound velocity c as a function of time as

well as the force history exactly, we could estimate the mass discharge rate within

a factor of (1 + 1/M2). Unfortunately, it is not possible to know the precise values

of these parameters for real eruptions, but we can make reasonable estimates for

well-documented cases like Mount St. Helens using the considerations below.

Estimation of parameters

The force F as a function of time is approximately known from seismic data as detailed

in the force balance section. We must estimate the Mach numberM and the sound

velocity c in order to utilize the bounds imposed by (5.17).

The Mach numberM at the top of the control volume is computed by estimating

the expansion in the crater (Appendix B). The area of the supersonic flow was proba-

bly smallest at the bottom of the crater. This point of minimum cross-sectional area

is termed the “throat” in gas dynamics, and quantities measured there are denoted

by a star subscript. The ratio of the area at the top of the crater to the area of the

vent at the bottom of the crater walls as measured on a geological map [Lipman,

1981] is a rough measure of the expansion. The crater geometry during the blast was

certainly different than the posteruptive topography since the mountain was undoubt-

edly changed during the 9-hour long violent eruption, so we consider a wide range

of possible expansion ratios A/A∗. We estimate that the area of the jet increases by

a factor between 4 and 40 which corresponds to Mach numbers of 2.1–3.4 assuming

that the solid volume fraction at the throat ξ∗ is between 0 and 0.5 (Appendix B).

Since these values are based on approximate estimates, we will round the numbers
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and consider a range of M from 2 to 3.5 in this work. Note that this estimate ofM

is for the fully open vent of stage III. During stage II the jet expands less and the exit

Mach number is smaller. Using values ofM from 2 to 3.5 for both stages therefore

results in a conservative estimate of the mass discharged.

The sound velocity c is estimated by rewriting (5.10) in terms of temperature

[Marble, 1970; Rudinger , 1980]

c =

√√√√Γ(1− φ)RT

(1− ξ)2
, (5.18)

where R is the ideal gas constant for the volatile. We assume the gas phase was

primarily H2O with R = 461.5 J/kg /K. As can be seen from (5.18), the sound velocity

is weakly dependent on the temperature and the volatile content of the erupting

column. Kieffer [1981] proposed a cool reservoir of 600 K, 3.9 wt % H2O and a

density at the throat corresponding to a solid volume fraction ξ∗ of about 30%. The

expansion ratios A/A∗ considered above reduce ξ to at most 4% at the exit and the

corresponding sound velocity is ∼110 m/s. If Kieffer’s model is adjusted to magmatic

temperatures, that is, T=1200 K, the sound velocity is ∼150 m/s. Eichelberger and

Hayes [1982] prefer a hotter, drier mixture of 1173 K, 0.7 to 1.7 wt % H2O and at

least 67 vol % solid throughout the flow. The volume fraction estimate of Eichelberger

and Hayes [1982] is the fraction of H2O trapped in the vesicles of pumice, rather than

the dynamically active gas outside the clasts and therefore is an inappropriate value

for the fluid fraction of the dusty gas. Individual pumice fragments were entrained in

a gas-rich flow that is being modeled here. We consider a range of possible values of

c from 100 to 150 m/s.

The values of M and c considered here correspond to exit velocities of 200–525

m/s. The exit velocity of the fluid at the top of the crater is poorly constrained

by observations. The position of the front of the lateral blast has been analyzed in

photos taken by G. Rosenquist [Voight , 1981]. Depending on the choice of timing

schemes of the photos, the lateral blast front is estimated to have moved northward

at ∼50–100 m/s within 1 km of the vent. However, the horizontal velocity of the
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blast downhill of the vent provides no constraint on the vertical velocity at the vent.

Even if the blast were ejected in the direction of final motion, Kieffer and Sturtevant

[1984] showed that front velocity is smaller than the fluid velocity at the exit.

The parameters above allow us to invert the force F for Ṁ . For F in units of

Newtons and Ṁ in kilogram per second, the numerical equivalent to (5.17) using the

maximum and minimum values ofM and c is

−F

200
≥ Ṁ ≥

−F

570
. (5.19)

Figure 5.6 shows the total mass erupted computed from (5.19) using the observed

forces and integrating the resulting Ṁ over time. The mass of the blast deposit as

estimated from the geological evidence is also plotted as a dashed line for comparison.

Around 1.6–4.6×1011 kg of material was discharged vertically over the first 100 s. An

additional 1–2.8×1011 kg corresponds to the second set of forces.

Discussion

At this point in our study it is appropriate to ask how well-constrained is the force-

time history by the seismic data. What errors are introduced in determining this

function? Limited bandwidth seismic data does not tightly constrain the magnitude

of the equivalent forces. However, the integrated force over time, or impulse, is

robustly determined. Since the total mass erupted is a function of the impulse, the

errors from the seismic data are negligible in comparison to the errors in estimating

the parameters M and c. We can verify this claim by repeating the calculation of

Figure 5.6 using an alternative inversion for the force-time history. The force-time

function in Figure 5.7a is inverted from the far-field waveforms rather than the near-

field data that was used for Figures 5.1b and 5.6a [Kanamori et al., 1984]. Figure 5.7

shows that the impulse for the complete event, and hence the total erupted mass, is

the same for these two models.

We can also quantify the error implicit in the quasi-static approximation. The in-
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Figure 5.6 (a) The forces inverted from the seismic data of Kanamori et al. [1984]. (b)
Estimate of mass erupted using data in Figure 5.6a and (5.17). The upper bound of the
shaded region corresponds to c=100 m/s, M=2 and the upper bound of (5.17); the lower
bound corresponds to c=150 m/s, M=3.5 and the lower bound of (5.17). The mass calcu-
lated from the second set of pulses is shaded darker because these later explosive events are
not conclusively related to the blast (see text).



138

0 20 40 60 80 100 120 140 160 180 200
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

12

  a

Time since 15:32:11 (s)

F
or

ce
 (

N
)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8
x 10

11

  b
Time since 15:32:11 (s)

T
ot

al
 m

as
s 

di
sc

ha
rg

e 
(k

g)

Blast deposit

Figure 5.7 (a) An alternative force model from the seismic data of Kanamori and Given
[1982]. (b) Estimate of mass erupted using data in Figure 5.7a and (5.17). Bounds are the
same as in Figure 5.6. Note that the total mass at 200 s calculated here is the same as in
Figure 5.6 since the total impulse is well constrained by the seismic data.
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ternal momentum term acts as a storage term in the equations. When the boundaries

are changed, e.g., the lid is removed, the internal momentum of the control volume is

increased. The pressure drop travels through the body as a rarefaction wave. When

it reaches the opposite boundary, momentum is transferred from inside the control

volume to the outside by exerting a force on the bottom boundary. We can quantify

the effect of internal momentum changes on the calculated total mass M by integrat-

ing the force balance equation over time from the beginning of the event t0 to the end

of the event tf . ∫ tf

t0
PA dt−

∫ tf

t0
F dt =

∫
V
ρu dV

∣∣∣∣tf
t0

+Mv̄, (5.20)

where v̄ is an average exit velocity defined by

v̄ ≡

∫
Ṁv dt

M
. (5.21)

If we assume that the internal momentum before (stage I) and after the event (stage

IV) are both negligible, then the net effect of the internal momentum term is neg-

ligible. The total mass erupted M is robustly determined by neglecting internal

momentum even though there may be some error in Ṁ as a function of time.

The initial hypothesis that the forces can be modeled as a series of jets must also

be reexamined before the calculated results can be interpreted. How applicable is the

cartoon of Figure 5.4 to each of the observed pulses? Some alternative processes are

considered below.

The landslide undoubtedly was not a strictly horizontal phenomenon. How do

we know that the pulses we observe are not simply responses to irregularities in the

landslide movement? The landslide radiated seismic energy by shearing the ground at

its base. The equivalent forces on the elastic medium were single forces parallel to the

ground. Even if the landslide moved over steep topography in places, an equivalent

force at an angle >60o to the horizontal is highly unlikely to be caused by the landslide

at any time.

Another objection that might be raised is that the decreasing train from 22 to 103

seconds might be reflections due to only one initial explosive event. However, a simple
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seismic reflection from the Moho or some other geological feature would have occurred

significantly faster than the observed 25–30 s between peaks. An atmospheric reflec-

tion would have been slower than the observed period by at least a factor of three.

Another possibility is that the pulses are reverberating depressurization (rarefaction)

waves in the magma body. It has been proposed that the main magma body was

at approximately 7–9 km below the cryptodome [Scandone and Malone, 1985]. If

the waves traveled at the sound velocity through the unfragmented magmatic con-

duit connecting the upper and lower chambers, the two-way travel time might be the

requisite 25–30 secs. However, these reflections would result in further rarefaction

waves and therefore a continually decreasing force rather than the observed series of

triangular pulses. The increasing stage of the downward force (stage II) requires the

removal of a lid. Each pulse must be a separate explosive event with attendant lid

removal.

The coincidence of the first set of thrusts over the first 2 min with the photographi-

cally documented expansion suggests that the thrusts arose from the depressurization

of sections of the cryptodome. It has been suggested that the second set of pulses

from 1534.6 to 1535.3 UT is the result of a distinctly different process. Moore and

Rice [1984] observed that at approximately the time of these forces a plume rose from

the Spirit Lake or Toutle River area 8–10 km north of the vent. The most sustained

and intense infrared radiation was also observed during 1534.4–1534.7 [Moore and

Rice, 1984]. Moore and Rice [1984] interpret these events as either the unroofing

of previously undisturbed cryptodome material in the landslide blocks or explosions

produced by the interaction of the hot material with the water of the Toutle River

drainage. Either interpretation of Moore and Rice [1984] would imply that the mo-

mentum balance would be somewhat different than in the model presented in the

Force Balance section and the appropriate velocities would be unconstrained. How-

ever, the secondary explosion hypothesis of Moore and Rice [1984] is controversial.

Hoblitt [1989] proposes that the late explosions accompanied the removal of slide

block III, the former top of Mount St. Helens. In this scenario, our original analysis

remains applicable. The secondary unroofing event occurred 2 min after the start of
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Table 5.1. Mass Comparison

Mass Mass Mass
1011 kg % Blast Deposit % Total Erupted

Blast deposit 3.2–4.1 100 35–60
Total juvenile 5.2–7.0 125–220 60–100
Total erupted 7–9 170–280 100
Computed mass a 1.6–4.6 40–90 20–65
Computed mass b 2.6–7.4 65–230 30–105

A comparison of the mass calculated for various stages of the eruption
by various methods. Blast deposit mass is the mass of Unit A as discussed
in the text. Total juvenile is the sum of the masses of magmatic products
from all phases of the May 18 eruption [Christiansen and Peterson, 1981;
Friedman et al., 1981]. Total erupted is the sum of masses from all phases of
the eruption, including the non-juvenile component of the blast. Computed
mass a and b are the seismologically determined, vertically ejected mass.
Computed mass a corresponds to the first 120 seconds of data; computed
mass b includes both sets of pulses in Figure 5.6.

the eruption and produced jets that were obscured by the expanded blast cloud. Rec-

ognizing the ambiguity of the field evidence, we include the mass from the secondary

explosions in darker shading in Figure 5.6b but acknowledge that the relationship

between this mass and the deposits is uncertain.

The total mass of the eruption on May 18 was 7–9×1011 kg (Table 5.1). The

calculations of this study imply that between 1.6 and 4.6×1011 kg, that is, 20%–65%

of the total mass of the eruption, was discharged vertically at a rate of ∼2–6×109

kg/s within the first 2 min of the eruption. A second set of explosions is equivalent

to an additional 1–2.8×1011 kg of material. Including the second set of explosions

brings the vertically erupted mass total to 2.6–7.4×1011 kg.

Interpretation

The term “lateral blast,” which is usually used to refer to the initial explosive event

of the Mount St. Helens eruption, implies a predominantly horizontal flow. We can
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use the mass calculation above to evaluate this implicit assumption of the blast’s

direction. Figure 5.6 indicates that at least 40%, or at least 65% if the second set

of events is included, of the mass of the blast deposit was involved in the vertical

thrust events. We acknowledge that there may be substantial errors in both the

geological deposit measurements and the seismic model, but even if we allow for

this uncertainty, a substantial fraction of the blast deposit mass was jetted vertically

from the vent. We reemphasize that this result is independent of the assumed crater

geometry. As discussed in the Observations section, the seismic data constrains the

measured component of the force, and hence the measured mass, to be subvertical. If

each of the vertical pulses represents a thrust, the mass balance considerations make

it unreasonable to assume that all of the blast deposit is composed of material that

was initially ejected horizontally. Much, if not most, of the blast was initially ejected

“vertically,” that is, at an angle much greater than 60o from the horizontal. The

destructive “lateral” blast was either composed of only a fraction of the mass in the

deposit or the vertical blasts were redirected by the geometry of the crater and the

force of gravity. Either possibility has implications for the quantitative understanding

of directed blasts and their deposits.

Conclusions

This case study of Mount St. Helens has shown that the thrust inversion technique

is an effective tool for measuring mass discharge rate. The results are reasonable

although direct verification is imposssible since the mass ejection rate for this eruption

cannot be measured by any other method. The mass ejection history is computed from

the seismic data using only two parameters: Mach number and sound velocity. We

now return to the original motivations for measuring Ṁ mentioned in the introduction

in order to evaluate the importance of our results for the case of Mount St. Helens. We

have found a quantitative meaure of “explosivity”; over the first 100 s ∼2–6 ×109 kg/s

were ejected. The blast style of eruptions is indeed distinguished by extremely high

mass ejection rates. Greater than 20% of the total erupted products of May 18, 1980,
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were ejected in less than 2 min of the blast. Much of the mass was concentrated into

even shorter pulses at the peaks of the mass ejection events. Further quantification

of both the eruptive style and the potential hazard is possible by noting that the

“violence,” that is, momentum [Walker , 1980], of the eruption is directly measured

by the seismic force F to within a factor of (1 + 1/M2)−1 (see equation 5.17). We

propose an index of violence Mv defined as

Mv ≡
1

2
log |Fmax| , (5.22)

where Fmax is the peak value of the seismic force in Newtons. The factor of 1/2 is

included to produce values comparable to standard volcanic indices and earthquake

magnitude scales. For the Mount St. Helens blast Mv = 6.2. Although the Mv index

is well-defined by seismic parameters, its physical interpretation should be used with

caution. Volcanic processes other than explosive ejection of mass can also produce

single forces. Examples include caldera collapse and landslides. In these cases, the

equivalent erupted mass interpretation of Mv would not be applicable.

We have linked the blast process to its products, but the relationship has proved

problematic. Is all of the blast deposit material from the laterally expanding, dev-

asting blast or is a significant fraction of deposition from the accompanying ash

cloud? Alternatively, we can interpret the results as addressing the final motivation—

constraints on dynamical models. In this case, the important problem raised by this

study concerns the mechanism by which the blast was directed. Why was it lateral?

These questions pose challenges for future research and direct our understanding of

the mass ejection process. The formulation presented here is generally applicable

to any rapid, explosive volcanic eruption with significant jetting and can be used

to study dome collapses and strombolian events as well as directed blasts. A ma-

jor weakness of this study is that direct verification of the results by an independent

method is impossible. Future studies of smaller, confined eruptions may provide more

constraints on the accuracy of the method.
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Appendix A: Equilibrium flow conditions

If the gas and particle phases initially travel at different velocities, the relaxation time

τv required for the particles to be accelerated to the gas velocity can be derived by

balancing the particle acceleration against the Stokes drag. The standard result is

τv =
ρpD

2

18η
, (5.23)

where ρp is the density of the particles, D is the diameter of the particles, and η is the

gas viscosity corrected for the presence of particles [Rudinger , 1980]. This formulation

of τv overestimates the relaxation time for high Reynolds number flows and therefore

provides a conservative estimate of the time for equilibration. Thermal equilibrium

is obtained over roughly the same timescale [Rudinger , 1980]. Appropriate values for

ρp and η are 2000 kg/m3 [Hoblitt and Harmons , 1993] and 8× 10−5 Pa s [Rudinger ,

1980; Sengers and Watson, 1986]. The median particle size in the blast deposit is

∼0.1–1 mm [Moore and Sisson, 1981]. Equation (5.23) implies that under the above

conditions all particles 1 mm in diameter or less are in equilibrium with the gas

phase after about 1.4 s. This value of τv is compared to the transit time in order to

establish whether or not the flow is in equilibrium at the throat. All of the dusty gas

results used in this chapter are applied downstream of the throat. If the flow is in

equilbrium at the throat, an equilbrium dusty gas is a good approximation for the

entire downstream region.

Mass balance considerations require the fragmentation wave to travel into the

initially stationary cryptodome at a velocity vf such that

vf = −v1
ρ1

ρ2 − ρ1

, (5.24)

where ρ1 and ρ2 are the densities behind and in front of the fragmentation wave,

respectively, and v1 is the average velocity of the flow behind the fragmentation wave

(Figure 5.8). The fragmentation wave travels the distance Lf from the throat in the

time tf . Therefore, a particle travelling from the fragmentation wave at the velocity
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vf

v1

v2

ρ1

ρ2

L =v t ff f

Figure 5.8 Fragmentation wave travelling into the magma body. The dark area is the
magma and the stippled region is the fragmented dusty gas. Equilibrium flow is established
at the throat when τv < Lf/v1.
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v1 reaches the throat at time t1 = Lf/v1. The transit time t1 scales as

t1 ∼ tfρ1/(ρ2 − ρ1). (5.25)

The maximum value of ξ∗ considered in this work is 0.5 which correponds to ρ1/ρ2 =

0.5 for φ = 1. If ξ∗ = 0.5, then t1 = tf and equilbrium flow is established at the

throat if τv < tf . We assume that the fragmentation wave starts from the throat at

the beginning of the lid removal, i.e., at the beginning of stage II in Figure 5.4. Using

the value for τv that is calculated above, the dusty gas is in equilbrium after the first

1.4 s of a pulse. This result is valid if the solid volume fraction is large. In this

case, equilibrium flow is a justified simplification for most (> 90%) of the pulsation

process.

A dilute flow (ρ1/ρ2 → 0) can have an arbirtrarily short transit time and may

not reach equilbrium by the throat. In this case, it is useful to consider the situation

with no coupling between the gas and the solid phases as a alternative end-member

behavior. The exit velocity used in the momentum balance is the solid particle velocity

and it must be estimated by a ballistic calculation. If the gas and solid phases are

uncoupled, drag is negligible and the ballistic velocity vb is

vb =
√

2gh, (5.26)

where g is the gravitational acceleration and h is the eruption height above the vent.

In order to conservativly estimate Ṁ , we only consider the maximum value of vb

corresponding to the maximum projectile height. The initial blast cloud was observed

to rise to a maximum height of 5 or 6 km above the vent [Sparks et al., 1986].

Therefore, the maximum ballistic exit velocity is between 310 and 340 m/s. The jet

pressure is atmospheric since it is unlikely that a pure gas phase would reach the

supersonic velocities. The equivalent expression to (5.19) in SI units is

−F

310
≥ Ṁ ≥

−F

340
. (5.27)
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These values are within the range considered in (5.19). Therefore, no separate calcu-

lations are required.

Appendix B: Estimating the Mach number

We can estimate the Mach number for a steady expanding isentropic dusty gas by

first considering the conservation of momentum [Rudinger , 1980]. As the fluid flows

in the x direction,

ρu
du

dx
= −

dP

dx
, (5.28)

where u is the velocity of the flow and P is the pressure. Eliminating the differential

dx from (5.28) results in an expression for dP/du. The pressure of a fluid expanding

isentropically is related to the density by the sound speed. Rearranging (5.28) and

substituting the sound velocity c2 ≡ (∂P/∂ρ)s,

−u

c2
du = 1/ρ dρ. (5.29)

If the sound speed were constant, the integration of (5.29) would be trivial. However, a

dusty gas generally has a variable solid volume fraction ξ as it expands. We substitute

the sound speed from equation (5.10) into (5.29) and integrate from the throat to the

vent to find a general expression for the Mach number with variable ξ in the limit of

the specific heat ratio Γ→ 1.

1

2
(1−M2

∗) =
(1− ξ∗)2

1− ξ
− (1− ξ∗) + (1− ξ∗)

2 ln
ρ

ρ∗

1− ξ∗
1− ξ

. (5.30)

The modified Mach number M∗ denotes the velocity at the vent u divided by the

sound velocity at the throat c∗. We can eliminate the density ratio ρ/ρ∗ by noting

that mass is conserved throughout the flow and u∗ = c∗ [Liepmann and Roshko, 1957],

ρ

ρ∗
=
u∗A∗

uA
=

A∗

AM∗
. (5.31)
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Similarly, since no solid magmatic material transforms to the volatile phase or vice

versa, the solid phase is also conserved

ξ

ξ∗
=
u∗A∗

uA
=

A∗

AM∗
. (5.32)

Combining (5.30), (5.31) and (5.32),

1

2
(1−M2

∗) =
(1− ξ∗)2

1− ξ∗
A∗
AM∗

− (1− ξ∗) + (1− ξ∗)
2 ln

1− ξ∗
AM∗
A∗
− ξ∗

. (5.33)

Given a volume fraction ξ∗ and expansion ratio A/A∗, (5.33) can be solved numerically

for M∗. The modified Mach number M∗ is related to M by the ratio of the sound

speeds of the vent and the throat. In the limit of Γ → 1 the fluid expansion is

isothermal and the sound speed varies only due to the variations in solid volume

fraction,

M =M∗
1− ξ

1− ξ∗
=
M∗ − ξ∗

A
A∗

1− ξ∗
. (5.34)

Equations (5.33) and (5.34) together provide a complete method of estimating the

Mach number for particular values of ξ∗ and A/A∗. In the limit of negligible solid

volume fraction (ξ∗ → 0), the sound speed remains constant and the Mach number

can be calculated numerically with the simplified equation

A

A∗
M = exp

(
M2 − 1

2

)
. (5.35)
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