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ABSTRACT

A link between nucleation models and experimental kinetic measurements
has been established as a result of the present studies of the general transient
kinetics of nucleation in the barrier region and beyond. Based on the new
results on the transient kinetics of nucleation, a theoretical basis for
measuring directly the nucleation energy barrier and its temperature
dependency is developed, an approach for determining the interfacial atomic
transfer mechanism in the nucleation process is presented and some new
experimental strategies for conducting nucleation and crystallization kinetic
measurements are outlined. A new mathematical approach developed for
solving the nucleation kinetic equation in the barrier region and beyond is
described. The results are also presented for the nucleation kinetics in some
spatially inhomogeneous systems where there are mechanisms for subcritical
clusters loss from the system. In addition, a chemical-nucleation model
developed for the cluster formation in a chemically reacting system is

outlined.
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CHAPTER 1

INTRODUCTION



1 HISTORICAL NOTE: NUCLEATION STUD-
IES SINCE FARKAS

Farkas (1927) derived for the first time the steady state rate of homogeneous
nucleation by treating the detailed kinetics of the molecular addition to,
and dissociation from, a nucleus of the new phase. In his paper, Farkas
not only introduced a concept that is known today as the “Markovian birth
and death process,” but also developed the “population-over-flux” approach
that has been widely used for calculating the rate of particles escaping from
a metastable state. Farkas’ work laid down not only the basis for modern
kinetic theory of nucleation, but also for the modern rate theory of barrier-
crossing in general, as recognized as late as the 1990s by physicists and
chemists (Hanggi et al. 1990). It is ironic that the now more renowned
work on the diffusional escape of a particle from a potential well by Kramers
(1940) was in fact solved by Farkas in 1927 with greater generality in dealing
with the rate of homogeneous nucleation. Curiously enough, Kramers did

not cite this pioneering work of Farkas (Hanggi et al. 1990).

1.1 THE FARKAS MODEL OR QUASI-CHEMICAL MODEL

In his paper, Farkas attributed his ideas to L. Szilard. The Farkas-Szilard
model for the kinetics of nucleation, on which practically all the modern
theories of nucleation are based, describes the supersaturated vapor (liquid
solution or solid solution) as an ideal mixture of monomers and clusters
(in the following we will only refer to the vapor-liquid case). This model
adopts the following assumptions: a mixture of clusters behaves as an ideal
gas, thus neglecting the interactions among monomers and clusters and the

interaction among clusters; cluster growth or shrinkage is assumed to be an



isothermal process and this implies that the relaxation of the heat bath is
much faster than that of the system; clusters can grow and shrink by the
addition or removal of single monomers; the nucleating system is infinite
in the sense of negligible change in the monomer concentration and the
system temperature during nucleation; the nucleation process only occurs
in a closed system where there is no mechanism for subcritical cluster loss
from the system. Under those conditions, the discrete master equation for

nucleation can be written for the cluster concentration at size g and time ¢,

fg(t), a
__%fi) =J,— J1

Jg = ﬁgfg(t) - ag+1fg+1(t), (1)
where (B, is the addition rate of monomer to, oy is the rate of monomer
dissociation from a g-mer cluster and Jy is the cluster flux in the size space,

g- Now, a, can be obtained by detailed balancing (Farkas 1927),

ng
oy = 2
o=yt 2)
to give the rate of nucleation,
for1(t) _ fo(t)
Jg = Bgn - , 3
= B[22~ 2] ®)

where n(g) is the equilibrium cluster population of g-mers. Replacing the
difference in Eq. [3] by differential and keep only the first-order differential
of f/n, the so called Zeldovich equation is obtained (Zeldovich 1943),
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There are some different treatments of transforming the discrete master
equation, Eq. [1] to an equation such as Eq. [4] (e.g., Shizgal and Barrett
1989). The nucleation process, according to Eq. [4], is solely described by
B(g) and n(g) since a(g) is estimated by the detailed balancing. It can be
shown that the detailed balancing can be performed at the true equilibrium
state to obtain a(g) in some special cases such as nucleation from a vapor
at a constant temperature. In general, however, a(g) has to be estimated
by using n(g) even for nucleation from a vapor in the case of a constant
monomer concentration. It is n(g) that has attracted most of the attention
in nucleation studies.

Smoluchowski in 1908 and Einstein in 1910 suggested that the probabil-
ity of an isothermal fluctuation is proportional to exp(—AF/kT) where AF
is the Helmholtz free energy associated with formation of the fluctuation.
Along the same line, Volmer and Weber (1926) proposed that n(g«) and thus
the rate of nucleation o< exp(—W./kT), where Wy is the reversible work in
forming a critical cluster of g.-mer given by Gibbs in 1878. Gibbs found
W, = %UA* based on Kelvin equation, where ¢ in the bulk surface tension
and A, is the surface area of the critical cluster evaluated using bulk liquid
properties. The same exponential term is still present in the expression for
the nucleation rate given by various nucleation theories, the form of n(g)
and/or W (g), and thus the preexponential factor in the expression for the
rate of nucleation has been the attention of studies since then.

Farkas for the first time suggested that n(g) = Cexp(—W(g)/kT) and
obtained an expression for the rate of nucleation, where W(g) is the re-
versible work in forming a cluster of size g which was given by using the

capillary approximation and C is the undetermined constant. The so-called



Zeldovich factor was in fact first correctly derived by Farkas. Subsequent
developments have concentrated on estimating the value of C. It is Becker
and Doring (1935) who proposed that C = ni, the monomer concentration
in the initially homogeneous system. This proposal was criticized for ap-
plying the Kelvin equation down to a monomer (Kuhrt, 1952). However, it
is Frenkel (1939), Bank (1939) and Bijl (1938) who derived independently
the same expression for n(g) by formally adopting a quasi-chemical point of
view in which the clusters of different sizes are treated as molecules of a dif-
ferent kind in a chemically heterogeneous mixture. Other subsequent work
(Zeldovich 1943; Kaischew and Stranski 1934) also confirmed Farkas’s re-
sult. From then on, such a nucleation theory based solely on thermodynamic
considerations has successfully been employed in many fields to obtain qual-
itative results for many complex problems, including 3-D growth of epilayers
(Jagannadham and Naragyan 1991), bubble formation in liquid helium at
negative pressure (Maris and Xiong 1989), displacement transformation in
metallic and non-metallic materials (Tanner and Wuttig 1990), formation of
voids in nuclear reactor materials (Katz and Wiedersich 1971), and electron-
hole liquid formation in semiconductors (Westervelt 1976), metallic glasses
(Johnson 1986). More examples of the applications of basic concepts of nu-
cleation in different fields can be found in the books by Hirth and Pound
(1963), Christian (1975), Lews and Anderson (1978), Zettlemoyer (1969;
1977) and Koch (1984) and articles by Gunton et al. (1983) and Russell
(1980). However, there has been no substantial progress made for the gen-
eral thermodynamics and kinetics of nucleation since Frenkel (1939), Bank

(1939) and Bijl (1938) as discussed below.



1.2 ENERGETICS

In the capillary approximation of classical theory the formation of an g-mer
is equated to the formation of a spherical drop of a homogeneous liquid
containing the same number of monomers, having the same properties as
the bulk phase, and surrounded by an interface having the properties of
the macroscopic surface (see also reviews by Abraham 1974; Christian 1975;
Frenkel 1946; Gunton and Dorze 1983; Koch 1984; Kotake and Glass 1981;
Lews and Anderson 1978, Ulbricht et al. 1988; Zettlemoyer 1977; 1969). In
this case the free energy of formation of an g-mer is a sum of a surface and
a volume term.

The debate regarding the applicability of the capillary approximation
has lasted until today. "

The apparent inconsistency in using bulk properties in treating small
clusters has lead to consideration of the curvature dependency of surface
tension (Pound and LaMer 1951; Vogelsberger et al. 1988; Huang 1990) in
the classical Gibbs free energy of formation. This treatment is physically
inconsistent and has not been proved to be useful for two reasons. Firstly as
the size of a cluster decreases, not only surface tension but also the density
of a cluster will change. Secondly the structure of a small cluster is different
from that of the corresponding bulk material. The structure should be
properly taken into account in using any size-dependent properties. That the
classical theory works well in some cases could be a result of the cancellation
of errors.

Using the density functional theory it is possible to obtain the density
profiles as well as the surface tension (Phillips 1984; Lee et al. 1986). But

this approach does not consider the geometrical structure of a cluster either.



The approach considers the geometrical structure based on given interaction
potential is the so-called atomistic theory and its extension (see Hoare 1979
for a review). Of course the concept of surface tension is discarded here.
This approach is limited by the lack of realistic potentials and the small size
can be treated only for crystalline cluster.

There have been a number of attempts to calculate free energies of forma-
tion of clusters without using the surface tension concept. The most impor-
tant approaches for the current discussion are harmonic models (atomistic
models), Monte Carlo studies, and molecular dynamics calculations (e.g.,
Abraham 1974; Zettlemoyer 1977; Freeman and Doll 1988; Li and Scheraga
1990; Reiss et al. 1990; Ellerby et al. 1991).

Methods of numerical modelling which have been developed do not per-
mit direct calculation of the Gibbs free energy of formation, since direct
calculation of the corresponding statistical sum is practically impossible
(Abraham 1974; Binder 1987). This aim may only be achieved in the Monte
Carlo studies, for example, by the state integration method, by integrating
the internal energy calculated along the isobar at many temperatures points
over the inverse temperature in the conventional Monte Carlo method. Also
there is no single view on what definition of a cluster is correct in the litera-
ture (which is the part of the cause for the famous debate about the so-called
replacement factor in the 1960s; Reiss 1977; Reiss et al. 1990; Ellerby et al.
1991). In addition, conclusions about the validity of corresponding numer-
ical studies are difficult to verify since many assumptions have to be made
about the intermolecular or interatomic potentials.

The fundamental flaw of the statistical mechanical formulation of the

nucleation energetics is that the statistical mechanics is only applicable to a



truly equilibrium system while nucleation is addressing metastable problems.

Field theory was developed by Langer in early 1970 to describe nucle-
ation near T, (see the book by Gunton and Dorze 1983 for a review). Re-
cently Oxtoby and Evans (1988) modified the approach by avoiding some
approximations which limit the applicability of the theory to nucleation near
T.. The theory does not change any kinetic part of nucleation. A classical
relativistic approach to the nucleation processes introduced by Nielsen and
Providencia (1990) confirmed the form of the classical expression for W(g).

Nucleation in the pure model system, Ising system, was first studied by
Binder in 1977. Contributions to the development of nucleation in the Ising
system are also by Penrose and his group (Penrose and Bukagiar, 1983).
The model system studies seem to justify the classical theory (Toral and
Marro 1986).

A nonequilibrium statistical treatment of nucleation by Bashkirov (1992)
also gives a kinetic equation similar to classical, including a kinetic equation
similar to Eq. [4]. Other non-conventional considerations, for example by
Desre et al. (1990), have produced almost the same form of W(g) as the
classical one, even though some classical concepts have been replaced.

To sum up, the most fruitful result of those studies and other non-
classical nucleation theories in treating the energetics of nucleation seems to
justify and interpret the classical nucleation theory. Since acceptably real-
istic potentials have been proposed only for argon and water clusters so far,
studies of nucleation by numerical methods and other new approaches have

been confined to those substances and very often to purely model systems.



1.3 KINETICS
1.3.1 Kinetics at g.

The steady-state kinetics of nucleation was essentially solved by Farkas in
1927. However, the desire to interpret the kinetic observations from con-
densed matter systems has pushed one to understand the transient kinetics
of nucleation. The first such attempt was by Zeldovich in 1943 in studying
the cavitation of liquids. In trying to estimate the time required to observe
a steady-state rate of nucleation, Zeldovich obtained a time-dependent form

of the rate of nucleation,
14
T(0) = J, exp(=22) 5)

and estimated the time lag to be t, = (*‘7‘4—_;1‘12- where the size g; is that for
g > g1, f(g,t) = 0 and for g < g1, f(g9,t) = n(g). The value of g; was
undecided. Zeldovich wrote down Eq. [4] based on the known results for
the particle diffusion in a potential field. Even though Eq. [5] is generally
not correct for describing the time dependency of the rate of nucleation
due to transient effects, the reasoning that, after the establishment of a
given supersaturation, the population of some cluster sizes of smaller than
g1 reaches its equilibrium in a time smaller than ¢, is correct as shown later
in this thesis. The g1 is determined to be g« — 8, where ¢ is the half width
of the nucleation barrier region. Zeldovich’s concept that the time lag is
mainly the time spent by clusters around the top of the nucleation barrier
led the subsequent work (Kantrowitz 1951; Wakeshima 1954, 1955; Collins
1955; Andres and Boudart 1965; Kashchiev 1969; Binder and Stauffer 1976;
K-Dannetschek and Stauffer 1981) on the same subject to transform Eq. [4]
into a diffusion equation assuming £(g) in Eq. [4] could be replaced by a
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constant 5(g.). Most of them gave the form of
1
o~ ZQIB*
for the time lag. Feder et al. (1966) obtained t, = §7£_ﬁ: by solely treating

t

the nucleation process as a random walk process in the barrier region without
resorting to Eq. [4]. The valuable contribution of Feder et al. is the correct
identification of the width (26) of the nucleation barrier region, g«—6 < g <
gx + 6. Wakeshima (1954, 1955) obtained a form different from Eq. [5].

Most of the previous studies estimated the t,, by transforming Eq. [4]
into a diffusion equation assuming 3(g) in Eq. [4] could be replaced by a con-
stant 8(g.). Such an approximate diffusion equation seems to be only correct
in the barrier region defined by Feder et al., however, the usual boundary
conditions such as f/n; — 1, as g — 1 certainly cannot be applied in the
barrier region. A possible improvement is to solve Eq. [4] in different regions
then match solutions using the standard asymptotic matching techniques.
Using such ideas, Shniedman (1987) obtained a different form of J(¢) from
Eq. [5]. However, none of previous results for J(t), including Eq. [5], are
valid at the initial stage of nucleation.

One of the important early attempts comes from the work of Kashchiev
(1969), who tried to solve Eq. [4] by using the method of eigenvalue ex-
pansion. Kaschiev’s mathematical treatment was found to be flawed as
analyzed by Binder and Stauffer (1976) and more recently by Shizgal and
Barrett (1989). A similar approach was also used by Gitterman et al. (1984).
Trinkaus and Yoo (1987) introduced the Green’s functional approach to solve
Eq. [4] in the nucleation barrier region. The common problem with these
two methods is that the real boundary conditions have to be shifted to an

unphysical domain in solving the associated eigenvalue problem.
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Turnbull (1948)made the first attempt to solve Eq. [4] numerically, and
confirmed the expression given by Zeldovich. Since then numerical solu-
tions have been attempted by Courtney (1962), Abraham (1969), Kelton
et al. (1983), Volterra (1985), Miloshev and Miloshev (1990), Evans and
Stiffler (1991). The numerical solutions also involved serious approxima-
tions. One of them is that the cluster population below an arbitrary size is
assumed to be in equilibrium, which is similar to that used by Zeldovich in
1943. Presently using numerical approach, it is not yet possible to follow
the temporal evolution of clusters with size ranging from several molecules

to millions.

1.3.2 Kinetics at Detectable Size

Most of the previous results have considered only clusters in the vicinity of
the critical cluster size, which is usually much smaller than the resolution
limit of various instruments which have been avaiable to make reliable kinetic
measurements such as X-ray diffraction and Raman scattering (Suzuki et al.
1988). The high resolution electron microscopy is more suitable for the single

cluster studies (see Andres et. al. 1989 for a good review). The relation

N(gda t) = N[g*st - td(g*sgd)] (6)

and its variants have often been proposed to obtain N (g4,1), where t4(gx, 94)
would be the time needed for a cluster at g. to grow to gg which is a de-
tectable size. The underlying assumption in Eq. [9] that the number density
of clusters measured at g., N(g«,t), is conserved over the time to grow from
g« to gq and is equal to the number density measured at g4, N(gq,1t), is

physically invalid. Since critical clusters of size g« have an equal average
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probability to grow and decay (for a symmetrical barrier), not every cluster

that reaches size g, will subsequently grow to gq4.

1.3.3 Basic Question

To sum up, transient solution of Eq. [4] has proved to be difficult to obtain
even for the simplest initial and boundary conditions, and has challenged
a number of investigators (see also reviews by Russel 1980; Kelton 1992;
Kozisek 1991). The basic question of the subject still remains, that is, to
understand the transient evolution of the CSD, f(g,t), which underlies pre-
diction of all the transient features of nucleation. In particular, understand-
ing the temporal evolution of the CSD at sizes beyond the critical one is the
most essential, since expressions for the transient kinetics of nucleation at
instrumentally detectable sizes offer a connection between nucleation models

and experimental observations.

2 OVERALL GOAL

As reviewed briefly above, various interesting fundamental questions about
nucleation remain. Any ideas and models proposed for those questions have
to be tested against experimental observations. To make such tests possible,
one has to know the kinetics of nucleation for a given nucleation model,
in particular the transient kinetics of nucleation, since nucleation in many
materials may exhibit a considerable transient period, from several seconds
to hours depending on temperature and materials (for example, Suzuki et al.
1988; Kambayash et al. 1989; Zallama et al. 1979; Koster 1978; Bisaro et
al. 1989; Im and Atwater 1990). Reliable kinetic observations, if available,

are usually at cluster sizes well beyond those in the barrier region. It is,
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therefore, necessary to understand the transient kinetics of nucleation for
g > g« to link theory and experiment.

The initial stage of nucleation is strongly time-dependent. The manip-
ulation of the initial stage of nucleation is the basis for many emerging
technologies (Inverson and Reif 1987; Ishiwara et al. 1986; Johnson 1981
and 1986). o understand the very early stage of nucleation, one must able
to predict the transient kinetics at small times.

Therefore, for the verification and development of nucleation models,
for the data interpretation, and for the possible application of experimental
findings in the process improvement and control, one must understand the
transient kinetics of nucleation, that is, the transient evolution of the CSD,
f(g,t), which underlies prediction of all the transient features of nucleation.
In particular, understanding the temporal evolution of the CSD at sizes
beyond the critical one is most essential. One of two main issues dealt in
this thesis is the transient evolution of f(g,t) for t > 0 and g in the nucleation
barrier region and, in particular, the region beyond the barrier. The second
main issue of this thesis is the kinetics and thermodynamics of nucleation
in some important complex systems. Understanding the nucleation process
in many complex systems can be useful in the improvement and design
of processes to tailor nucleation to specific requirements. The connection
between these two issues is the approach for solving Eq. [4] based on the
boundary-layer theory (Bender and Orszag, 1978).

The subsequent chapters are structured as following. Chapters 2 and
3 deal with the nucleation kinetics in the case of subcritical loss due to
scavenging by particles of different sizes. Chapter 4 is about the kinetics

of nucleation in spatially inhomogeneous systems. Chapter 5 deals with
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the selective nucleation of silicon clusters in CVD systems by presenting a
nucleation model that includes chemical etching of atoms as an additional
loss process besides thermal dissociation that competes with the process of
atom addition in forming a cluster. Chapter 6 presents the approach based
on boundary-layer theory for solving transient nucleation problems. Re-
sults for the transient kinetics in the barrier region are presented. Chapter
7 presents the transient kinetics of binary nucleation and the problem of
multiple pathways and saddle-point avoidance. Chapter 8 defines the size
of the nucleated cluster size and obtains the transient solution at that size,
also some time scales in nucleation problems are defined. In Chapter 9,
we apply the new results for transient nucleation to study the time depen-
dency of crystallized volume fraction using the Avrami model. Chapter 10
presents the approach and results for the transient kinetics of nucleation at
sizes far beyond the critical one. Chapter 11 obtains the universal cluster
size distribution in nucleation. Chapter 12 presents an approach for di-
rectly measuring the nucleation barrier and a method for testing models for
monomer addition rate. Chapter 13 summarizes our approach based on the
boundary-layer theory for nucleation problems. In Chapter 14, a summary

is given and some suggestions for further studies are outlined.
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The explicit dependence of the homogeneous nucleation rate on the surface area concentration of
preexisting free molecule particles is obtained by solving the Zeldovich-Frenkel-Becker-Ddring equation
modified to account for cluster scavenging. The present analytical solution is found to be in full agreement

with numerical results. © 1990 Academic Press, Inc.
INTRODUCTION

The effect of cluster scavenging by a preex-
isting aerosol on homogeneous nucleation has
been considered previously (1-7). By gener-
alizing classical nucleation theory the effect of
scavenging by preexisting particles is repre-
sented in the cluster balance equations by a
sink term that is proportional to the surface
area concentration of particles. A closed-form
expression for the rate of nucleation in the
presence of preexisting particles has not here-
tofore been available; rather, the nucleation
rate has had to be obtained by solving the gov-
erning equations numerically. [ McGraw and
Marlow (4) obtained a continued fraction
form for the steady-state cluster distribution
and nucleation rate in the presence of free-
molecule regime particles which improved the
efficiency of numerical calculation.]

An analytical expression for the rate of ho-
mogeneous nucleation in the presence of
preexisting particles can be coupled with the
balance equation for the monomer concen-
tration to study the dynamics of aerosol for-
mation theoretically or to interpret experi-
mental results in systems where nucleation
occurs as a result of monomer generation.

In the present report an analytical expres-
sion is derived for the rate of homogeneous
nucleation in the presence of a free-molecule

! To whom all correspondence should be addressed.

aerosol by using the method of singular per-
turbation. The relative roles of monomer de-
pletion and cluster scavenging in reducing the
homogeneous nucleation rate are also dis-
cussed.

BASIC EQUATIONS

Most current theories of the formation of a
new phase from a supersaturated vapor are
based on the so-called Szillard model (8), ac-
cording to which a supersaturated vapor con-
sists of a mixture of monomeric molecules and
molecular aggregates or clusters. Clusters are
able to grow or evaporate by adding or losing
monomers and clusters. Such a system is de-
scribed by an infinite series of differential-dif-
ference equations

dfe
dat

18!

=5 2 Be-wnfe-ih = Jo 2 Bockk
k=1 k=1

o g-1
+ Z allg—g,g.fl‘c - % fg Z ag—k,k’ [1]
k=g+1 k=1 .

where f; is the concentration of clusters con-
taining g molecules, §; is the probability of
formation of a cluster of size g by the collision
of i- and j-sized clusters, and a‘f«j is the prob-
ability that a cluster of size g will fission into
clusters of sizes { and j.

Defining the cluster flux as arising by ad-
dition or evaporation only of individual mol-
ecules, i.e.,
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Je = Bo-1iS -1 — e, (2]
then Eq. [1] can be rearranged as
dfy 1 £22 .
[T['E =Jg— Jgur + 3 Ez Be—tkf gk fr

~fi S Bk [3]

k=2

The last two terms in Eq. [ 3] describe cluster-
cluster coagulation. Neglecting interaction
among subcritical clusters, as in classical nu-
cleation theory, but including cluster scaveng-
ing by supercritical clusters in the free mole-
cule regime, we express Eq. [3] as

dfy _ kT

1/2
= =) Ag7'2, [4
d[ 27Tm1) £ [ ]

Je = Jgni —fs:.'(
where A is the surface area concentration of
supercritical free molecule particles and where
we have expressed §;; for free molecule clus-
ters (8).

As a standard practice in nucleation theory,

detailed balancing is used to relate the a; to

B; and the equilibrium concentration of clus-
ters. As a result, we have

Jg+l = _6l.gng(jé+l/ng+l _fé/ng)’ [5]

where ng, is the equilibrium cluster size distri-
bution corresponding to the monomer #, (not
to the bulk liquid) and g, , is the product of
the surface area of a cluster containing g-
monomers with the rate, based on the Max-
well-Boltzmann distribution of velocities, at
which a unit surface area is hit by monomers.
B¢ 1s equivalent to (g, ¢) given below.

Within the limits of classical nucleation
theory of Frenkel, Becker-Doring, and Zel-
dovich (8), J, may be replaced by J(g, ?),
which is the cluster flux defined in the contin-
uous cluster size space (g), and its relationship
with the continuous cluster size distribution
f(g, t) immediately follows as

af(g.t) _ aJ(g.1)
at ag

—v8 %B(g, 1) f(g, 1)

(6]
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and
- 9 flg. 1)
J(g. 1) = —p(g. )n(g, 1) 3ene D) (7]
where
B(g. 1) = f(1, )5, (kT/27my)"*  [8]
and
n(g, 1) =n(l, t)exp[-W(g, t)/kT], [9]

with s, m, the surface area and mass of the
monomer, respectively, and vy a dimensionless
surface area concentration parameter defined
by

A

= — 10
YT S D [10]

The critical size

20}
BT (3 In S)
is the size of cluster corresponding to the max-

imum free energy of cluster formation,

Wi(g,t)=—gkTIn S(t) + 5,8*%q,

(11]

(12]

where 0 = 5,0/ kT, the saturation S(¢) = n(1.
1)/ neq( 1), and nq is the saturation monomer
concentration.

About g, a critical region exists in which
the difference between W (g) and W (g,) is
smaller than AT (9), i.e.,

[(W(g) — W(g)] < KT, [13]
the width of which is given by (9)

1 aZW -1/2
- |57 )

which is related to the Zeldovich factor Z by

, [14]

E=8x

b=———=3g¥767"2  [I5]

1
Vrz
By imposing the boundary conditions

Sty =n(l 1)
f(lec, t) =0,
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solution to Eq. [6] without the last term on
the r.h.s. can be obtained formally in terms of
integrals in the limiting case of steady-state
nucleation arising from constant supersatu-
ration and constant temperature. The classical
nucleation rate is then obtained by evaluating
these integrals by using the condition that

0/gs < 1.

NUCLEATION IN THE PRESENCE OF FREE
MOLECULE PARTICLES—THE SINGULAR
PERTURBATION APPROACH

As shown in Fig. 1, a difference between the
equilibrium and steady-state distributions of
clusters develops within the critical region. The
normalized cluster size distribution f(g)/n(g)
exhibits a boundary layer (transition layer)
structure close to g = g.

The boundary layer structure of the nor-
malized cluster distribution is a feature of the
classical homogeneous nucleation problem (in
the absence of preexisting aerosol ). Boundary
layer problems are characterized by a small
parameter, denoted as ¢, which appears mul-
tiplying the term containing the highest deriv-
ative in the governing equation. The small pa-

R
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n(g)

—~ "
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| yx linner iregion;
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~

2

=

T
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FIG. 1. Schematic of the cluster formation Gibbs free
energy W' (g), the thermodynamic and kinetic cluster size
distributions n(g), f( £), and the normalized cluster dis-
tribution f(g)/n(g).

Journal of Colloid and Interface Science. Vol. 135, No. 1. March l.bl990

SHI AND SEINFELD

rameter in the nucleation problem is related
to the width of the critical region §. A singular
perturbation approach can be used to analyt-
ically solve boundary layer problems in which
solutions outside and inside the boundary
layer regime are obtained and appropriately
matched. We will employ such an approach
to obtain the steady-state homogeneous nu-
cleation rate in the presence, and, of course,
also in the absence, of a preexisting aerosol.

With this in mind, we first transform the
steady-state form of Eq. [6] in terms of the
new independent variables y = f( g)/n(g) and
X = g/g% Into

6\ d¥y 2 /6\? dy
—_— —_— —_ — + 1 — -1/3 —_—
(g*) dx? +[3X(g*) ot =« )]dx

_ 'yézg;”éx”w,' — O, [18]

in which Egs. [9], [11], [12], and [14] have
been used. Letting 6/g, = ¢, Eq. [18] becomes
2 dy

d*y
2 2 _ -3y | 4
€ dx2+[3x6 +6(1 —x )]dx

-7/6

- 2mx "y =0, [19]

where m is given by

1 _ 9
m=3ydtg.0 =587 g0 [20]
The condition € < 1 requires that In S < 30°/2,
which is the case in nearly all practical situa-
tions. Eq. [19] together with the boundary
conditions

y(l/gs) = 1, [21]

can now be solved by the method of singular
perturbation. Since the dominant term con-
taining dy/dx changes sign at x = | in the
interval [1/g,, cc], we expect a boundary
layer (transition layer) at x = | as described
above. Thus there are two outer solutions: a
y!. that satisfies the left boundary condition
at x = 1/g, and a yj,, that satisfies the right
boundary condition at x — <c . The outer so-
lution is expected to be valid everywhere ex-
cept in a small region (inner region) around
x=1(Fig. 1).

y(co) =0
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First, we seek an outer solution in the form
of a perturbation series in powers of e
Your = Jo(X) + ep1(x) + €23(x) + -+ - -,
e = 0+. [22]

The outer solution is valid far from the critical
region (Fig. 1) and must satisfy the boundary
condition L, (1/g4) = 1 and y5u(oc) = 0,
which we write as

1o(1/ge) =1, ¥u(1/ge) =0, n>1 [23]
and
n=0. [24]

Equation [22] is substituted into Eq. [19] and
equating coefficients of like powers of e yields

Yu(o0) =0,

dy() 1 x_7/6
o 3Oy 13
dy, 1 x7716
a3y B
dzyn—Z 2 dyn—Z -1/3 dyn
dx? +§c dx 601 =X dx
=2mx7"%y,, n=2. [27]

The solutions to these equations that satisfy
the boundary conditions are

1 —,Yl/6 m B
Yo = (mﬁg) n " [28]
yh = [29]
and
A 1
P\ T3 T s 3T
m_ 1y |
2 3T =X T —gR) |
[30]
where
l_g—1/6
n= +g:‘/6 [31]
and
Yi=0 n=0 [32]
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Thus, the outer solutions to second order in

are

yl _ [ _".1/6 m _m_‘_ezﬂ 1 _—YI/S
out I +x/8) 7" 9\ 1+ xl/e

| —xW6

1 1
X (l VA - 1 —g;'”):' [33]
and
Vou = 0. [34]

As expected, the outer solutions are not
valid near x = 1, so a boundary layer at x = 1
exists. Since the thickness of this boundary
layer is €, we introduce the inner variables X
=(x— 1)/ (A >0) and Y;y(X) = yin(x).
In terms of these variables, Eq. [19] becomes
52 ﬁiﬁ LTIy A %

3 dX+2€ (l+eX)dX2

+3e M1+ X[ = (1 + X))
dY,
X in _ by ~-1/6 -
y m(l + X))~y

As e = 0 with X being fixed, the distinguished
limit of Eq. [35] corresponds to A = . Rep-
resenting Y, as a perturbation series in powers
of e, )

Yin = Yo(X)+ e Y\(X) + 2Yo(X) + - - -,

[36]

[35]

e—= 0,

the boundary condition y(o0) = 0 translates
into

Yo(0) =0, Y,(c)=0, n=1. [37]

Putting A = 1 in Eq. [35] and substituting Eq.
[36] into Eq. [35] and equating coefficients
_of like powers of ¢, Eq. [35] is converted into
a sequence of second-order differential equa-
tions:

d*Y,

1 dy,
2 dx?

+ij—/\7=mYo

[38]
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1 d*Y, dy,
= 3 + X = ’n
2 dX- ¢ m
e T vy > 1. [39]
3 Y 6 mXYrY,—,, nhn=1.

The solutions of Egs. [ 38] and [ 39] that satisfy
the boundary conditions are

1
Yo = EAOi’"erfc(X)
1
+ 3 Boi"erfc(—X), [40]

1
Yl = EAlimerfC(X)

1 m
+ = Bi" -X)-—=
2311 erfc(—X) lzXYo, [41]

and

1
Y, = 2 A,iTerfc(X)

|
+3 B,i"erfc(—X) + P,,n=>2, [42]

where i™erfc(X) is a repeated error function,
P, is a particular solution to Eq. [41], and the
constants Ag, By, A;, B, An, and B, must be
determined by asymptotically matching the
outer and inner solutions. The match consists
of requiring that at the intermediate limits
[e=> 0+, x—=> 11— X = —00;e—=>0—, x>
1+, X = +oo] the inner and outer solutions
agree. The leading-order match gives

A0=(é) n"T(m+ 1), By=0. [43]

Matching to the next order in e requires

1
Al = _G onX, B[ = 0.

[44]

The cluster size distribution that is uni-
formly valid over all sizes can be constructed
from yunif( X) = yout(x) + ,Vin(x) - ymatch(x)s
where Ymacn(X) is the expansion of either the
inner or outer solutions in the matching region
(10). However, to determine the nucleation
rate we are most interested in the cluster size
distribution near the critical size which is given

Journal of Colloid and Interface Science, Vol. 135, No. 1, March 1. 1990
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by the inner solution (to first order in e, more
properly to ¢”")

] — —

12

1 m
¥(x) = 3 ({;) n "T(m+ 1)

x—1 X —
X me }i’"erfc(
€

€

1). [45]

The cluster size distribution in the critical
region in the classical case is the limit of Eq.
[44] as ¥ = O (i.e., in the limit of no preex-
isting aerosol) (9),

flg) = % n(g)erfC(g;g*) . [46]

The nucleation rate in the presence of a free
molecule aerosol is
J f(g)

_6(g*)n(g*)@;(}—)

Il

J(8+)

8=8x

e[ € Y Tm+ 1)
- ﬁ(ﬂ) o7 L
(5+3)

[47]

where J, is the classical homogeneous nucle-
ation rate in the absence of preexisting aero-
sols,

Jo = ZB(g«)n(8x)- (48]

Of course, in the limit of no preexisting par-
ticles, i.e., as y = 0, J(g«) = Jo.

DISCUSSION

The ratio of the nucleation rate predicted
from Eq. [47] to the corresponding classical
value is shown as a function of the dimen-
sionless particle surface area v for fixed values
of f and S in Fig. 2. Also shown in Fig. 2 are
numerical values of this ratio for 0 <y < 1
presented by Larson (7). It is clear from Fig.
2 that the leading-order results (to ™) are quite
close to the numerical solutions and including
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1 F
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FIG. 2. Comparison between the analytic prediction for the rate of nucleation in the presence of preexisting
free molecule particles and the numerical solution at S = 10, 20 and 6 = 10.

the next-order correction in e brings the two
solutions into full agreement. The value of 4
chosen for these calculations is 10, which is
typical of that for condensable organic com-
pounds found in the atmosphere (4) (6 = 6.2
for water vapor at 7 = 298 K). A decrease in
the value of 6 is equivalent to an increase in
the value of v in reducing the nucleation rate
(Eq. [20]). Since ¥ = A/s,n,, the value of vy
can vary over a wide range reflecting the wide
variation possible in 4. For atmospheric ap-
plications, a typical value of 4 is 2 X 107}
cm~'ands; = 1.5 X 107'*cm? (4). For these
two parameter values vy can range from 0.1
for compounds with p., = 1078 Torr to 8.2
for peq = 107! Torr at S = 50, T = 298 K.
The values of the critical supersaturation
Serie (at J = 1 cm*s7!) corresponding to dif-
ferent compounds ( with different equilibrium
vapor pressures ) in the presence of scavenging
aerosols are shown in Fig. 3. Physical param-
eters chosen in the present calculations are o
=30dyncm™, s, = 1.5 X 107" cm?, m,
= 1.6 X 1072 g, and T = 293 K. The critical
supersaturation for compounds with an equi-
librium vapor pressure lower than 1078 Torr
is seen to be significantly increased compared
with that in the absence of any scavenging
aerosol, while for those compounds with peq

larger than 10~ Torr no effect on S, is found
(since v is far less than 0.1) which is in general
agreement with the results over the region
covered in Fig. 3 obtained by solving the ki-
netic difference equations numerically (4). In
view of the close agreement with the numerical
results of Larson (Fig. 2), who obtained the
nucleation rate by solving the kinetic differ-
ential equations, the quite small differences in
the predicted values of S, between the present
result and that in Ref. (4) (not shown in the
figure) is most likely the result of differences
between solving the kinetic difference equa-
tions and the kinetic differential equations.

It has been shown that allowance for scav-
enging of clusters of all sizes by existing par-
ticles leads to an effective increase in the nu-
cleation barrier (an increase in the value of
Serit, Fig. 3). The nucleation barrier results in
this case not from the “‘thermodynamic force,”
i.e., by the competition between evaporation
and attachment of monomer, but by the ki-
netics of cluster scavenging by existing parti-
cles. As a result, for a system with a given S,
the homogeneous nucleation rate depends
strongly on the surface area concentration of
existing free-molecule particles (Figs. 2
and 3).

Journal of Colloid and Interface Science, Vol. 135, No. 1. March 1, 1990
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FiG. 3. Critical supersaturation versus equilibrium vapor pressure in the presence of different area con-

centrations of preexisting free molecule particles.

However, in systems where nucleation oc-
curs as a result of monomer generation, the
supersaturation in the system is often con-
trolled by the monomer depletion. Conden-
sation onto existing particles will limit the su-
persaturation and make the rate of homoge-
neous nucleation completely negligible in the
absence of cluster scavenging (6).

CONCLUSIONS

A closed form expression for the rate of ho-
mogeneous nucleation in the presence of
preexisting free-molecule particles has been
obtained by the method of singular pertur-
bation.

The reduction in nucleation rate by the
preexisting aerosol results from the deviation
of the kinetic cluster size distribution of sub-
critical clusters from the thermodynamic
equilibrium size distribution (by comparison
with the equality between these two distribu-
tions outside of the critical region in the ab-
sence of aerosol). This deviation depends on
the ratio between the surface area concentra-
tion of the scavenging particles and the mono-
mer, and saturation ratio. Analysis indicates

Journal of Colloid and Interface Science. Vol. 135, No. 1, March 1, 1990

that monomer depletion and the cluster scav-
enging can be of comparable importance in
reducing the rate of nucleation in the presence
of free-molecule particles.
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A closed-form expression for the effect of cluster scavenging on the rate of homogeneous
nucleation of a vapor in the presence of continuum regime particles is obtained by solving the
kinetic equation of nucleation by the method of singular perturbation. The reduction in
nucleation rate of a condensing species at a given supersaturation is shown to be dependent
largely on the number concentration, the size of the sink particles, and the molecular number
concentration of the background gas. The reduction in the rate of nucleation due to the cluster
scavenging by transition regime particles is also discussed.

1. INTRODUCTION

Homogeneous nucleation occurs when a vapor becomes
sufficiently supersaturated that critical sized clusters form at
a detectable rate. Preexisting or nucleated particles act to
scavenge vapor molecules as well as clusters and therefore to
depress the rate of homogeneous nucleation below that in
their absence. When the scavenging particles have radii
much smaller than the mean free paths of the vapor mole-
cules and clusters, the so called free molecule regime, the
depression in the overall nucleation rate is a function of satu-
ration ratio and the ratio of the surface area concentration of
scavenging particles to that of the monomer.! For scaveng-
ing particles with radii much larger than the mean free paths,
the so called continuum regime, the diffusion of monomers
and clusters to the particle leads to spatial inhomogeneities
in the neighborhood of each particle. Because the effective-
ness of the scavenging depends on the particle size and num-
ber concentration, the rate of homogeneous nucleation oc-
curring in the bulk system will depend on the size and
number concentration of scavenging particles in addition to
the saturation ratio.

Pesthy et al.> and Stern ez al.® considered the effect of
monomer depletion by scavenging particles on the rate of
homogeneous nucleation of a vapor but neglected cluster
scavenging. McGraw and McMurry* used dimensional ar-
guments to show that cluster diffusion in the neighborhood
of a 1 um diameter particle cannot usually be neglected.

The goal of this paper is to derive an expression for the
influence of cluster scavenging on the rate of homogeneous
nucleation of a vapor in presence of continuum regime parti-
cles. The result will be obtained in a form showing explicitly
the deviation from the rate of homogeneous nucleation con-
sidering only monomer depletion.

Il. BASIC EQUATIONS

The dynamic behavior of a spectrum of growing and
evaporating clusters in a spatially nonuniform system is gov-
erned by

d -1 =
%‘nglfg =%iz Bg_ufg_kﬂ “fg AZ Bg.AfA

+ i g fi

A=g~1

1, 8!
—‘i‘fg Azlai_u,
(hH

J. Chem. Phys. 92 (1), 1 January 1990
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where f, is the concentration of clusters containing g mon-
omers, D, is the diffusion coefficient of the g-sized cluster,
B., is the probability of formation of a cluster of size g by the
collision of i- and j-sized clusters, and af, is the probability
that a cluster of size g will fission into clusters of sizes / and .
Equation (1) has also been written in a slightly different
context by other authors.®

Defining the cluster flux arising by addition or evapora-
tion only of individual monomers, i.e., neglecting cluster—
cluster coagulation as in classical nucleation theory, we can
introduce the flux

Jo =By _11fe-1 —a,f, (2)
and Eq. (1) can be rearranged as
d

As a standard practice in nucleation theory, detailed
balancing is used to relate the @;; to §; and the equilibrium
(with respect to the monomer ) concentration of clusters. As
a result, we have

Jg= _Bl,gng(fg+l/”g+l _.fg/ng)’ 4
where n, is the equilibrium cluster size distribution corre-
sponding to the monomer 7, (not to the bulk liquid) and
B\ . is the product of the surface area of cluster containing g
monomers with the rate, based on the Maxwell-Boltzmann
distribution of velocities, at which a unit surface area is hit by
monomers. 3, , is equivalent to 5(g,) given below.

Within the limits of the classical nacleation theory of
Frenkel, Becker-Déring, and Zeldovich,® J, may be re-
placed by J(g,t) which is the cluster flux defined in the con-
tinuous cluster size space and its relationship with the con-
tinuous cluster size distribution, f(g,?), immediately follows
as

Sern) _ _HEXD | pgyvisgrn. (5
ar dg
where r is the spatial coordinate vector and
Jgrn = —Bgrnn(grn s L&D (6)

dg n(gra)

One boundary condition on Eq. (5) expresses the fact that
the equilibrium and steady-state monomer concentrations
are equal,
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St = n(lre). (7
The second boundary condition on g is that there are no
particles of infinite size

Slee,r,t) =0. (8)

Two more boundary conditions on the spatial coordinate are
needed in addition to the above two boundary conditions on
g. Alsoin Eq. (6),

Blgrt) = f(1.0)5,g* (kT /2rm,)'? 9
with s, ,m, the surface area and mass of the monomer and
the diffusivity of a g-mer with its size much smaller than the
mean free path of the background gas, is given by
_ 1.105g~%7 (‘n'k 12

D
&) s\n, 2m,

(10)

where n, is the molecular number concentration of the back-
ground gas. The classical equilibrium cluster distribution is

n(g) =n(1l)exp(gin § — 6g%*), (11)
where 6 is a dimensionless surface tension
0 =s,0/kT (12)

and where the saturation ratio S = n(1)/n. (1), o is the
surface tension of the planar liquid, and n,, (1) the equilibri-
um number concentration of the monomer.

Equation (5) is solved in the steady-state spatially ho-
mogeneous case to obtain the classical nucleation rate.® In
the present case the inhomogeneities of monomer and clus-
ters in the neighborhood of each scavenging particle make
the rate of homogeneous nucleation a function of spatial po-
sition. The procedure used in Ref. 1 can only be followed
after obtaining an effective kinetic equation for the cluster
balances in which the effect of scavenging is represented as a
volumetric sink term. The first necessary step lies in the con-
struction of a realistic procedure of averaging to obtain the
effective governing equation. The influence of cluster sca-
venging will be presented as a ratio of the rate of homoge-
neous nucleation considering monomer depletion and clus-
ter scavenging and that considering only monomer
depletion.

Il. EFFECTIVE EQUATION AND GROWTH RATE

A. Effective equation

To account for the potential many-body effect, a meth-
od of averaging over the configurational ensemble of the par-
ticle sinks in the system must be established. In a system
without a phase transition such as in diffusion-controlled
reactions, the effective equations are obtained through trun-
cation of the chain of equations for the many-particle distri-
bution functions with the aid of the cluster expansion meth-
od, scaling expansion approach, and other standard
approaches of statistical mechanics,’”'* which rely on ex-
pansions in the smallness of the spatial gradients or sink
concentration or in the slowness of temporal change. A more
tractable averaging makes use of effective medium theories.
Averaging Eq. (5) over the spherical volume elements con-
taining many particles but of the same order as the diffusion
length scale /, we have

I(flgnt)) _ <z9.l(g,r,t)

D()VY(grn),
£ > >+< (@ VHgrn)

(13)

where (f(g,r,t)) is the cluster concentration averaged in the
indicated manner, i.e.,

(flgr,n) Einijf(g,r,t)dv.

Equation (13) describes the time variation of the average
cluster concentration {f{g,r,?) ) as the result of nucleation as
well as capture and evaporation by the sink particles. The
first two terms in the above equation are obtained naturally
from Eq. (5). The decomposition of the last term on the
right-hand side of Eq. (13) requires more attention. In the
case of a macroscopically spatially homogeneous system, the
spatial coordinate is excluded from any averaged quantity.
In addition, we can assume div [ — D(g)V{(f)] =0, i.e,, in-
homogeneties over the scale of / are negligible. With
allowance for the boundary condition Eq. (8), we have

47D(g) &

8L S RV lcnen,
i=1

(14)

(D(g)V*f(g,1)) =

—47D@)p [ R7Vf_.,.n P(RIGR,
(15)

where P(R) is the probability size distribution of the existing
particles which is assumed to be independent of position, R *
is a lower limit for particle radii in the diffusion regime, N is
the total number of particles in the volume ¥, and p is the
number density of the particles. In deriving the above
expression, Gauss’s theorem is used to reduce the volume
integral to an integral over all particle surfaces and over the
outer boundary of the volume ¥ which, subject to the condi-
tion of spatial inhomogeneity, results in the summation of all
fluxes over all the sinks in the volume ¥ and diffusion over
the length scale / which is neglected in the present case.

To find V/, in principle, it is necessary to solve Eq. (5) in
the vicinity of each particle with appropriate boundary con-
ditions. However some reasonable assumptions based on
considering the time scale of each physical process [each
term of Eq. (5) ] enable us to determine V/. We are assuming
that the characteristic time to establish the steady-state clus-
ter distribution is short compared to changes in the satura-
tion ratio S, the term df/dt can be omitted from Eq. (5).
Secondly, the characteristic relaxation time for establish-
ment of the steady-state spatial distributionis 7, ~d>/D(g),
where d is the characteristic length. The steady-state cluster
distribution over g is established in a time 7, ~g/8(g). For
the condition 7,/7,>1 to hold requires that
Deqg €4.441g7 2 S at T =298 K and 1 atm of the pressure
of the background gas and d = 10~ * cm. p,, is in Torr. For
§ = 10to 1000 and g = 50, the critical range for p, is 0.12-
10~ Torr. Therefore for values of p,, in the range we are
most interested in (organic vapors and other particle-form-
ing species), 7, €7, holds and the nucleation term in Eq.
(5) can be omitted for the present purpose of estimating V/
in Eq. (15). By also neglecting the Stefan flow and the effect
of latent heat associated with condensation, determining V /°
in Eq. (15) reduces to solving the diffusion equation
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Vifigr) =0 (16)

with appropriate boundary conditions.
It should be noted that the similar arguments were also
made in the work of Pesthy ez al.?

B. Growth rate by g-mer scavenging

The cluster concentration field around a particle with its
center at the origin takes the following form from solving Eq.
(16) in the case where the growth rate is diffusion limited

fgr) =fig.) +§ fg.R) — flg )], (17

where f(g, ) is the cluster size distribution at a position far
from the particle. By substituting Eq. (17) into Eq. (13) and
using Eq. (15), we obtain

a(f(gvt)>= _<6J(g9t)>__4ﬂ_ wazy-B-P(R)dR,
R* dt

at dg
(18)
where
%’; = D@V |-n =2 (g ) ~f&R]  (19)

is the partial growth rate, i.e., the contribution to the growth
rate of a particle of radius R as a result of g-sized cluster
scavenging.

At a nonzero concentration of sink particles, Eq. (17)
has to be significantly modified. The reason that the modifi-
cation is qualitatively significant even for dilute systems is
that the steady-state concentration field surrounding a parti-
cle is of long range. One of the boundary conditions used in
obtaining Eq. (17) is f(g,7) — f(8, = ) as r— o, Which is only
applicable in the limit of zero sink concentration. At finite
concentration of sink particles, the full many-body problem
can reduce to the consideration of an isolated particle in an
effective medium if a mean-field approximation is invoked.
In the mean-field picture, a single particle grows as a result
of the diffusion-limited flux of monomers and clusters from
the effective medium. We can specify a boundary condition
at/ for Eq. (16), i.e.,

Sl =AgD. (20)

Accordingly, the effect of sink particles of different sizes

within a volume of characteristic length / is represented by
the profile around a particle of average size which is given by
I—r

Since the characteristic length scale of a diffusion process is
\D(g)t., wecan take /< /D(g)t.. The characteristic time
scale 1, for removal of clusters from this characteristic vol-
ume is given by

o=,

47D, Rp

where R is the average particle radius. Thus the length scale /
is given by

flgr) =flgl) + % 2n

(22)

| = const (23)

y

v47Rp

689

which is seen to be inversely proportional to the product of
the number concentration of particles and their average ra-
dius. In the following P(R) is taken to equal 1 for conven-
ience, i.e, R=R.

Consistent with our approximations above, we can re-
late f(g,/) to (f(g,r)) by averaging Eq. (21)

) =(fign) = f f fyf(g,r)dv

=fg)) +al flgR) —flgD)], (24)

which turns out to be independent of the spatial coordinate
as desired and where

o~ 130-5)- @)

R R R)?]) !
1——j|l4+—=+[— . 25
X[( l)[ +1+(1)” 29
Thus
fgh =S8 __a qop) (26)
l—a 1—a
In this case, we have
dR _ D(g) 1 1
_=— > - yR T 7
= fen) — @R = (2]

which reduces to Eq. (19) in the limit of R //—0. By neglect-
ing second- and higher-order powers in R //, i.e., in the limit
of small but finite sink volume fraction, Eq. (27) becomes

4R _ Dig)

=R [ A(®) —fgR)1[1+ RVampR 1,

(28)

which is in the same form as obtained by the method of
multiple scattering'® (the constant appearing in / is taken as
3/2). Also, the rate of diffusion-controlled reaction in the
presence of random traps can be obtained from the above
result which is in agreement with the commonly accepted
expression for the first-order concentration dependence of
the reaction rate.” ~ ' In particular, the result is numerically
in agreement with that obtained by Mattern and Felderhof'
up to a volume fraction ¢( = 4/37pR > ) about 0.15.

In the following, we will obtain the nucleation rate in a
field of nonzero volume fraction of sink particles using the
growth rate given by Eq. (28).

IV. STEADY-STATE SIZE DISTRIBUTION AND
NUCLEATION RATE

Assuming the sink particle size distribution is sufficient-
ly narrow as to be characterized by a single average radius R,
with the growth law obtained in the last section, Eq. (28),
the governing equation for the cluster size distribution, Eq.
(13) takes the form

Iflgn))y _
ot

<o71(g,r) >
g

—47D()p[{f(g.1)) — fr(g.D)]
XR(1+ R\v47Rp)
(fILD) =(n(1,n), (flx,))=0

(29)
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where f (g.,2) is f(g,t) at a particle surface.

Our goal is to obtain the effect of cluster (g>2) scaveng-
ing by continuum regime particles on the nucleation rate.
Previous work has addressed the effect of monomer scaveng-
ing only.>> Because of the strong dependence of the nuclea-
tion rate on S, nucleation will be suppressed in the immedi-
ate vicinity of a particle where the monomer is being
removed. Moreover, the strong nonlinear dependence of the
nucleation rate on Sinvalidates the equality between J((S ) )
and (J(S)). Representing the effect of cluster scavenging as
a mean volumetric sink term in the kinetic equation of nu-
cleation [Eq. (29)] and thereby obtaining the overall nu-
cleation rate based on the spatial average saturation ratio
(S) is our main approximation. A similar approximation
was used in previous work'® and was assessed later by com-
parison with the cell model.'® It was found that if the volume
fraction & of preexisting aerosol is less than about 10~¢,
J (S) will be indistinguishable from (J(S) ). Thus our results
obtained below are limited to ¢ < 10~°,

Introducing the new independent variables
y={f(8))/(n(g)), x =g/g,, where
26 )3
=\ ) 30
& (3 In(S) (30)

Eq. (29) under steady-state condition becomes
d’y ( 2 -1/3 ) dy —4/3
+ =€ +6(1-x — — 27x =0,
dx? 3x +el ) dx K Y
31

where €=05/g,, the width of the critical region
& =3g276 = '*. We can specify fx (§) = Oand 7in Eq. (31)
is given by

_ 4mpRD(g, ) (1 + R\47R )&’
B(g,)

_19.8847%0R (1 — V34)
GS% nl na

The dimensionless parameter 7 represents the ratio of the
flux of clusters to preexisting particles to the flux in the clus-
ter size space over the Gibbs energy barrier atg = g, . In the
absence of preexisting particles 7 = 0. An increasing level of
preexisting particles is reflected in an increasing value of 7.
Equation (31) together with the boundary conditions

y(1/g,) =1, y(x)=0 (33)

can now be solved by the method of singular perturbation.
Since the dominant term of dy/dx changes sign at x = 1 in
theinterval [1/g, , ], we expect a transition layerat x = 1.
Thus there are two outer solutions: a y., that satisfies the
left boundary condition at x = 1/g, and a y;,, that satisfies
the right boundary condition at x — « . The outer solution is
expected to be valid everywhere except in a small region
(inner region) around x = 1.

The outer solutions are valid far from the critical region
and must satisfy the boundary conditions

(/g =1, y.(1/g,)=0, n>1

€:

(32)

(34)

and

yo(0) =0, nx0. (35)

G. Shiand J. H. Seinfeld: Effect of cluster scavenging

The outer solutions are

. x—l/}_l n
You = 1

®

(36)

and
You = 0. (37)

As expected, the outer solution is not valid near x = 1,
soaboundary layer at x = 1 exists. Since the thickness of this
boundary layer is €, we introduce the inner variables
X = (x—1)/eand Y,, (X)=y,, (x). In terms of these vari-
ables, Eq. (31) becomes

€ dv, Y

0, 1(1“,\,):12 ;"
3 dx 2 dx?

(1+€X) —1/3 de
3——[1-(1+e&X —_
+3 (- e "]—

=71+ €eX)" Y, Y,.(x)=0. (38)
Representing Y7, as a perturbation series in powers of €, Eq.
(38) can be converted into a sequence of second-order dif-

ferential equations. We solve the leading equation

1 d?%Y, dY,
- =7Y, 39)
2 axr ax e (
to obtain the leading-order inner solution as
Y, = 141" erfc(X) + |Bi" erfc( — X), (40)

where 7 erfc (X) is a repeated error function and the con-
stant 4 hastobe determined by asymptotically matching the
outer and inner solutions. The match consists of requiring
that the intermediate limits [e-0 4+ ,x—=1 — ,X— — ] of
the inner and outer solutions agree. The leading-order match
gives

€

n
A=(-3—) g+ 1DE’-1)"7 B=0. (41)

However, to determine the nucleation rate, we are most in-
terested in the cluster size distribution near the critical size
which is given by the inner solution (leading order in €)
. 1(€\” g£—8&
ytg)=—(—-) I‘(n+l)(g.'./3—l)—"z"7erfc( ").
2\3 6

(42)
In the limit of no existing sinks, i.e., 7—0, the cluster size
distribution in the critical region is'’

flg) = % n(g)erfc(—g ;g* )

The rate of nucleation in the presence of preexisting contin-
uum regime particles is

(43)

Jd flg)
J = — _——_
(J(g,)) B(g.)n(g,,)ag o) ls-s.
€ 7T — F(?]+ 1)
=(J . . 44
( °)(6<g1:-‘—1> T2+ p et

where (J,, ) is the rate of homogeneous nucleation of a vapor
taking into account the effect of monomer depletion but neg-
lecting cluster scavenging. In the absence of any preexisting
particles, (J(g,)) = (Jo(g,))-
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From Eq. (27), the spatial average saturation ratio for
¢ <1 can be approximated as

(SY=(1—a)S +a=(1-}38)S + 136  (45)

by assuming that f(1,/) equals the monomer number con-
centration in the absence of existing particles and neglecting
the Kelvin effect.

V. DISCUSSION

The major significance of scavenging is its effect on the
steady-state nonequilibrium cluster size distribution and
consequently on the rate of nucleation. Such distributions
are presented in Fig. 1(a) in the presence of cluster scaveng-
ing [Eqgs. (36) and (42)] and in its absence [Eq. (43)] for
7 = 1. Not surprisingly, in comparison to the classical distri-
bution, scavenging by particles greatly depletes the nonequi-
librium number concentration of clusters. Since the nuclea-
tion rate is determined by the rate of collision of the
monomer with critical sized clusters, a decrease in the num-
ber concentration of critical sized clusters results in a de-
crease in the rate of nucleation. Also shown in Fig. 1(a) is
the thermodynamic equilibrium cluster size distribution
n(g). It can be seen that the deviation of the steady-state
distribution from the equilibrium is greater in the presence of
cluster scavenging. In Fig. 1(b), the normalized cluster size
distributions are shown. In the absence of scavenging parti-

S © o o
“ - M
v vt st sk

o

ol

inner \

f(g). n(e)

o

(Eq.42,

o

o

o4 > 5
O [T ey g T ey v Y1 ey 7Ty v 1y

f(g)/n(g)

0.0 1.0 2.0
g/g
FIG. 1. The steady-state nonequilibrium cluster size distributions in (a)

the case of cluster scavenging [Eqgs. (36) and (42)—left outer and inner
solutions] and (b) in its absence [Eq. (43)].

10 7%
10 7%
10"‘— -
10~ 10" 107
®

FIG. 2. The effect of cluster scavenging as a function of volume fraction ¢.

cles, the normalized nonequilibrium cluster size distribution
obeys a complementary error function. In the case with clus-
ter scavenging, /(g)/n(g) changes with g/g,, almost expon-
entially. The valueof — d( f/n)/dgatx = lisrelated to the
rate of nucleation and a smaller slope at this point in the
presence of scavenging leads to a lower rate of nucleation.

The reduction in the rate of nucleation due to the cluster
scavenging depends on several factors which appears expli-
citlyin Eq. (44). Theratio (J(g, ))/(J, ) isafunction of the
dimensionless parameters ¢, g, , and 7. While 8, and € are
determined by the dimensionless variables S and 6, 7 is de-
termined not only by the physical properties of the condens-
able species, characterized by 6, s,, and 1, , and the number
concentration of sink particles (o) and their sizes (R), but
also by the molecular number concentration of the back-
ground gas (n, ).

The ratio of the nucleation rate predicted from Eq. (44)
to the corresponding nucleation rate considering only mon-
omer scavenging is shown as a function of the volume frac-
tion ¢ for fixed values of 6, S, and R for different condensing
species characterized by p,, in Fig. 2. The value of € chosen
for these calculations is 10 which is typical of that for con-
densable compounds found in the atmosphere (6 = 6.2 for
water vapor at T = 298 K ). For atmospheric applications, a
typical value of ¢ is of the order of 10~ % taking the number

- 10°° 107 10 *

P (torr)

FIG. 3. The effect of cluster scavenging as a function of equilibrium vapor
pressure p,.,.
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FIG. 4. The effect of cluster scavenging as a function of Knudsen number
Kn.

concentration of primary particlesasp = 10* cm~* of 1 um
in radius. We note that the ratio (J )/(J, ) decreases as the
volume fraction of preexisting particles increases. As in the
case of cluster scavenging in the presence of a free molecule
aerosol,' cluster scavenging has the most pronounced effect
for species with lower vapor pressure. Since 7 increases with
decreasing p., a larger value of 7 results in a greater deple-
tion of the nonequilibrium number concentration of critical
sized clusters, thus a larger reduction in the ratio (J )/(J, ).
This feature is also clearly shown in Fig. 3. From both Figs. 2
and 3, it can be seen that for typical values of ¢ in the atmo-
sphere, the scavenging of prenucleation embryos by any pre-
existing continuum regime particles of condensible species
with vapor pressures higher than about 10~7 Torr can be
generally ignored. Many species, however, that are suggest-
ed to be responsible for the formation of new aerosol'® are
those with vapor pressures lower than this value.

The ratio(J )/(J, ) is shown as a function of the size of
the preexisting particles in Fig. 4 based on the above result
and that obtained in Ref. 1 for free molecule particles. Here
the Knudsen number is defined as the ratio of the mean free
path of the background gas to the radius of the sink particle.
For the results shown, the mean free path is calculated by
assuming the pressure of the background gas is 1 atm at
T = 298 K. If the transition regime is characterized by the

)/ (o)

a

FIG. 5. The effect of cluster scavenging as a function of 7.

N

FIG. 6. The effect of cluster scavenging as a function of supersaturation
ratio S.

value of Kn in the interval of 0.25 to 10, the reduction in the
nucleation rate due to cluster scavenging by transition re-
gime particles can be estimated by the formula obtained
above for continuum regime particles.

In Fig. 5, we plot the ratio (J ) /(J, ) as a function of the
dimensionless parameter 7. As discussed above, a larger val-
ue of 7 results in a greater depletion of the nonequilibrium
number concentration of critical sized clusters, thus a larger
reduction in the nucleation rate. The value of 7, as given by
Eq. (32) can vary substantially. If there are no preexisting
particles, 7=0. For §=10, =10, p,, =10"% atm,
p=10" cm~3, R=10"% cm at T=298 K and 1 atm,
7= 10. Since 77 is inversely proportional to n,, the molecular
number concentration of the background gas, a reduction in
pressure at a constant concentration of preexisting particles
leads to a larger value of 77 and greater effect of cluster sca-
venging. Indeed, certain experimental nucleation systems
involve operation at reduced pressure, such as ones utilizing
jet expansion.'®

An increase in supersaturation lowers the energy barrier
and promotes nucleation. In the competition for clusters
between the process of nucleation and scavenging by sink
particles, it is expected that as Sincreases, theratio (J ) /(J ;)
becomes larger, as shown in Fig. 6. As S approaches 100, the
ratio approaches unity for é in the range of 10~ to 10~ 7.

The results presented here are applicable to steady-state
nucleation in which the characteristic time for change in the
saturation ratio is so long compared with the characteristic
time to establish a steady-state cluster distribution. For a
rapid change in saturation ratio that might occur in certain
experimental systems, a general nonstationary solution is
still not available. Finally, the system we have considered is
taken to be spatial uniform. The effect of spatial inhomo-
geneities of preexisting particles on the rate of nucleation has
yet to be considered.

In summary, a closed-form expression for the influence
of cluster scavenging on the rate of homogeneous nucleation
of a vapor in the presence of continuum regime particles is
obtained by solving the spatially averaged kinetic equation
for cluster balance by the method of singular perturbation.
The reduction in nucleation rate due to cluster scavenging is
shown to be dependent largely on the number concentration,
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size of the sink particles, and the molecular number concen-
tration of the background gas.
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Homogeneous nucleation of a vapor in the presence of the loss of clusters by diffusion and
thermophoretic drift is investigated. Analytical results are obtained for the cluster size
distribution and the rate of nucleation by solving the modified kinetic equation for nucleation.
The implications of cluster loss by diffusion and phoretic drift on the onset of the homogeneous
nucleation of silicon vapor in the horizontal epitaxial chemical vapor deposition reactor is
discussed. The range of conditions under which the loss of subcritical clusters by diffusion and
drift becomes important for the interpretation of diffusion cloud chamber experimental data of
the onset conditions of the homogeneous nucleation of vapors is also delineated.

I. INTRODUCTION

Many systems in which nucleation occurs are spatially
nonuniform, and nucleation occurs only in those regions in
which the supersaturation exceeds the critical value. Subcri-
tical clusters formed within this region may leave it by diffu-
sion or by drift under the influence of an external potential.
Such diffusional and drift loss processes compete with the
growth of clusters to the critical size and may reduce the rate
of nucleation below that predicted by conventional nuclea-
tion theories in which the subcritical cluster loss is not in-
cluded. The goal of the present work is to extend classical
homogeneous nucleation theory to include subcritical clus-
ter loss by diffusion and phoretic drift. The implications of
subcritical cluster loss by diffusion and phoretic drift to the
possible control of the onset of nucleation of silicon particles
in a horizontal epitaxial chemical vapor deposition (CVD)
reactor is discussed in light of the present theoretical results.
We will also investigate the implications of subcritical clus-
ter loss by diffusion and thermophoretic drift to the interpre-
tation of experimental data from the diffusion cloud
chamber which is often employed to study the onset condi-
tions of homogeneous nucleation.

Il. FORMULATION OF THE PROBLEM

Consider a cluster containing g monomers, within a one-
dimensional region of thickness d,. Such a cluster may grow
or evaporate or diffuse or drift out of the region. We consider
the cluster size g as a continuous variable. Then the cluster
distribution function f(g,z,t) at position z obeys the continu-
ity equation:

Aflg.z,t) | djlgzt) | Oh(gzt)
+ + =
ot dg 9z
where we have introduced the fluxes of clusters in the cluster
size space, j(g,z,t), and in the physical space, h(g,z,7). The
flux h(g,z,t) is assumed to include contributions from Brow-
nian diffusion and thermophoretic drift,

0, (1)

h(gzt) = — D(g)—g'—:— VS, (2)
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where D(g), the Brownian diffusion coefficient for a g-sized
cluster, is given by’

_ lz,n,(kT-)Z/Jg— 2/3

8p,\2mm, s,

with m_ the mass of a carrier gas molecule which is assumed
smaller than that of a monomer; and V' is the thermophore-
tic drift velocity for a cluster of free molecule size,'

D(g) (3)

(4)

4 dz
Here v is the kinematic viscosity of the carrier gas.

An expression for the flux of the clusters in the cluster
size space j(g,2,¢) can be written by allowing for the fact that
the number concentration of clusters is substantially smaller
than the number concentration of monomers, so that the
motion along g occurs mainly through the interaction of
clusters with monomers. Then the expression for the flux

Jjlgz,t) is’

j=—pnd L, (5)
dg n
where n(g,z) is the equilibrium cluster distribution and
B=n(l)s, g (kT /2am,)'"? (6)

with s, and m, the surface area and mass of the monomer,
respectively. According to the capillary approximation,
n(g,z) can be written as’

n(gz) =n(l,z)exp(gln S — 6g°"), N
where @ is a dimensionless surface tension,

6=s,0/kT (8)
and where the saturation ratio S = n(1,z)/n,,,o is the sur-
face tension of the particle, and n., (1) is the equilibrium
number concentration of the monomer. The capillary ap-
proximation will be employed because we are only interested
in the conditions for the onset of homogeneous nucleation of
vapors. At low rates of nucleation, it is assumed that the
capillary approximation may be invoked even for the nuclea-
tion of silicon vapor at high temperatures. Boundary condi-
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tions are specified at two physical boundaries on z besides the
usual boundary conditions on g: f/n=1, as g—1 and
f/n =0, asg— «. Profiles that might be achieved in a diffu-
sion cloud chamber and a CVD reactor are schematically
shown in Figs. 1(a) and 1(b), respectively as examples of
systems in which nucleation is confined to a thin spatial re-
gion.

The governing equations can be simplified if the satura-
tion ratio is sufficiently large in the narrow region of thick-
ness d, where nucleation occurs. The saturation ratio de-
creases rapidly on either side of this region, and since the
concentration of clusters depends strongly on the supersa-
turation, virtually no clusters can be assumed exist on either
side of the region. If the cluster concentrations at the two
physical boundaries at distances d, and d, from the thin
region d, are assumed to be zero, the gradients for diffusion
toward the two boundaries can be estimated by f/d, and
f/d,.* Then the diffusion loss of g-sized clusters per unit
time from a unit area will be

1 1
D) +-L)
(g’(d, *Z

Since the region of nucleation has thickness d,, the loss per

unit time per unit volume will be D(g) (d,d) ~ 'f, where
1

L
d  d,

|
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d
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FIG. 1. Schematic profiles in a nonuniform nucleation system: (a) diffusion
cloud chamber; (b) CVD reactor.
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The term V.df/3z describing the subcritical cluster loss by
thermophoretic drift per unit time per unit volume will be
approximated as V,f/d, since clusters driven by the ther-
mopheretic force will move to the upper surface when the
temperature gradient is assumed to be along the z direction.
The gradient set up in this manner will underestimate the
actual value since a subcritical cluster (which is larger than
the critical size in the region d,) will decompose back to
monomer immediately outside the region d,. With these
simplifications and assuming a stationary state, Eq. (1) with
Eqg. (2), becomes within the region of nucleation
0= —ﬁ(g—’-p(g)l(iw+l —a)-3—v—(—1—+w)ﬁ
dg d\2 d, 4\ d,
(%

wherew =dIn T/dz.

To obtain the critical conditions for the onset of homo-
geneous nucleation and its rate, it is necessary to determine
the cluster size distribution by solving the above equation.
The procedure based on matched asymptotic expansions de-
veloped by Shi and Seinfeld® will be followed in solving Eq.
9.

lil. CLUSTER DISTRIBUTION FUNCTION
AND NUCLEATION RATE

A. Cluster distribution function
Introducing y = f/n, and x = g/g,,, Eq. (9) becomes

%y 2 _ dy
&9y (—é 6(1—x—" )_
ox? + 3x +el—x ) Ix

=2(ax~ ¥ 4+ bx )y, (10)
where e=6/g, with § and g, given by
5=3gi/39_1/z, g,=( 20 )3. (an
3InS

Here g, is the critical cluster size above which a cluster
grows spontaneously. § defines the width of the critical re-
gion about g, such that the difference between the Gibbs
formation energy of clusters at size g and those at g, is
smaller than kT. Also, in Eq. (10),

o= (J_ 22) Deg,)
2B(g,) \dy 2 d
b= __éi_ (L + w) _391
zﬁ(g¢ ) dZ 4

are two dimensionless time scales. a is the ratio between the
characteristic nucleation relaxation time* which is given by
5°/2B(g, ) and that of Brownian diffusion of clusters. Thus,
alarge value of a implies that the response time of the nuclea-
tion process to changes in the saturation ratio is longer than
the time it takes for clusters to diffuse out of the region of
thickness d,. On the contrary, if g is small, the response time
of the nucleation process to changes in the saturation ratio is
shorter than the time it takes for clusters to diffuse out of the
regions of thickness d,. b is the ratio of the characteristic
nucleation relaxation time to that for the thermophoretic
drift of clusters. Thus a large value of b implies that the
nucleation process responds slowly to changes in the satura-

9

(12)
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tion ratio relative to the time it takes for clusters to thermally
drift out of the region of thickness d,, and vice versa.

To a leading-order approximation in € the nonequilibri-
um cluster distribution function obtained by the method of
matched asymptotic expansions is

SRV =XV V ) .
y(x) =(xg| 3—1 )(l_gx ]/_1) exp[b(x“‘z—g* 1/3)]
*

*

+ lAi" - "erfc(-——x - 1)
2 €

_ y\a=+b
—Al“‘(a+b+l)(1 x) ,
€

(13)

where

a—-b
A=( 6 ) Fla+b+ 1)@l —1)~*(1—gi) -
38,

X exp[b(1 —g, '] (14)

and /" erfc(x) is an integrated error function,and I" ~ '(x) is
the inverse of the Gamma function, I (x).

In thelimitofa = b = 0, Eq. (12) reduces to the correct
limiting result for the cluster size distribution in a spatially
uniform system,®

flg) = —;-n(g) erfc(g ;g* )

y(x)isshownin Fig. 2fora = 0, b = 0, the spatially uniform
case,and a = 1, 3, 5, b = 0. It can be seen from Fig. 2 that
both the concentration of the critical sized cluster and the
slope of f/n at g, , which is related to the rate of crossing at
8, [see Eq. (16) below] significantly reduced in the pres-
ence of subcritical cluster diffusion (as40) compared with
that in its absence. These two factors directly contribute to
the reduction in the rate of nucleation.

(15)

B. Nucleation rate

The nucleation rate in the presence of subcritical cluster
loss by diffusion and thermophoretic drift is given by the flux
of clusters in the size space past the critical size -

1.00

(=}
>0.50 F

0.00

FIG. 2. Steady-state nonequilibrium cluster size distributions in the case of
subcritical cluster loss by diffusion.
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jg) = —Bemg L L&

dg n(g) le=¢,
=ju,4\?2—‘a+b)r"(—-—”+12’+1), (16)

where

Ju =B, )n(g,) (1/\768)

is the rate of homogeneous nucleation in the absence of sub-
critical cluster loss but with other conditions being the same
as in the inhomogeneous system (i.e., the same 7and S). As
expected, j(g, ) reduces toj, whena = b = 0, and the ratio
J(84)/j, decreases with increasing values of ¢ and b. It is
expected that (g, )/j, tends to zero as a and/or b— «. Eq.
(16), however, does not produce this required limit. In fact
the leading-order perturbation requires that ¢ <3/¢ and
b < 3/€. Thus, Eq. (16) underestimates the effect of subcriti-
cal cluster diffusion on the rate of nucleation for a> 3/¢
and/or b> 3/€. (In figures presented below, we will indicate
the calculations beyond these ranges by dashed lines.) A
higher-order approximation in € will give a solution that is
valid over a wider range of @ and b. For the present purpose
of studying the onset of homogeneous nucleation, it is suffi-
cient to have this leading-order solution.

IV.NUCLEATION IN SPATIALLY INHOMOGENEOUS
SYSTEMS

A. Particle formation in the horizontal epitaxial CVD
reactor

The pyrolysis of silane (SiH, ) is widely used in epitaxial
growth of silicon film.*'¢ Figure 1(a) indicates profiles that
might be achieved in a CVD reactor in which a silicon com-
pound is deposited from the gas phase onto a hot substrate.
The reaction zone in which silicon atoms are formed from
silane decomposition will be localized in a thin region near
the hot surface.*’'*!* Most of the silicon atoms will then
diffuse to the substrate and undergo condensation to form a
film. The higher deposition rates correspond to higher diffu-
sion rates which can be achieved by steepening the concen-
tration gradient at the interface, by increasing the silane par-
tial pressure and by reducing the diffusion path length
(reducing the total gas pressure).®® An increase in silane
concentration, however, does not always give a proportional
increase in the deposition rate. There is a competing process
which can cause nucleation of silicon vapor to form silicon
particles in the gas phase resulting in a loss of silane and thus
a reduction of silicon deposition rate, when the concentra-
tion of silicon atoms exceed the critical saturation ratio. Par-
ticle formed in CVD generally have a deleterious effect on
film quality. At low gas temperatures the onset of gas-phase
nucleation can probably be prevented, but to get a good crys-
talline quality of the epi-layer, a high substrate temperature
(1050 °C or above) is usually required.®’

Most of the work related to the onset of homogeneous
nucleation of silicon vapor in epitaxial reactors has been ex-
perimental. Conventional nucleation theory has been used to
investigate the temperature dependence of the nucleation
rate of silicon vapor.'® However, the main complexity in the
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use of nucleation theory for such calculations is the great
nonuniformity of the process when the subcritical cluster
escapes as discussed in the introduction. With the necessary
theoretical formulation developed above, we will investigate
the implications of subcritical cluster loss by diffusion and
drift on prevent from the onset of homogeneous nucleation
of silicon vapor in epitaxial reactors.

First let us consider a case with the gas temperature of
1027 °C at the nucleation zone in a reactor charged with H,
as a carrier gas of atmosphere pressure. Following classical
nucleation theory,'® and use the available data for the equi-
librium vapor-solid pressure, the critical saturation ratio is
26.4 in the absence of subcritical cluster loss. At this other-
wise critical saturation ratio S = 26.4, a is about 12.84¢ and
b1s 0.15¢ and the dependence of the ratioj(g, )/j, on a and
b is shown in Figs. 3(a) and 3(b). Here

1/1 3w
o=——+—]),
d(do 2)

v =3w(l/d, + w),

7 m 3
a=—4—1 ! (E) é , (17)
9p1 m.\ $§; peSg
and
m, vR,TY
b=—22 [Tl (18)
ppSin”S kT M,
i
= !
>\ !- .......
SRR A N
=107y
; 5
10 °, 9677
’O 10 %
° 5 10
a
1
S=500
]O B SEEUNUUUURRSPSEPEL LIS
BN 10 % ]
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FIG. 3. Ratio between the rate of nucleation in presence of subcritical clus-
ter loss in a horizontal epitaxial CVD reactor and that in its absence (a) by
diffusion [j(g, )/j, vs a for 6=0] and (b) by thermophoretic drift
Utg, )7, vs b fora=0].
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where the total pressure in the reactor is assumed mainly due
to the carrier gas and M_ is the molecular weight of the
carrier gas and R, is the universal gas constant.

For an atmospheric CVD reactor with H. as the carrier
gas, we can estimate d, =0.45cm, d, = 0.3 cm, d, = 4.25
cm based on available data.’”? If we also take
dT /dz = 1000 °C/cm, we can obtain & and ¢, thus g and b.
In this case, a is about 142 and b is 0.04. From Eq. (15) the
ratio j(g, )/j, is virtually zero for S = 26.4 Thus the onset
of homogeneous nucleation of silicon vapor at this tempera-
ture is totally suppressed by the subcritical cluster loss due to
the subcritical cluster loss by diffusion. Even at S = 500, a is
about 7.5 and the ratio j(g, )/j, is about 10~ ' while
Jj. = 10°cm~*s~". Thus the critical saturation ratio in the
presence of subcritical cluster loss is about 20 times larger
than that in its absence. The thermophoretic drift loss in
both cases is negligible which is in contrast to previous sug-
gestion.®” Thermophoretic drift becomes relatively impor-
tant for larger particles and becomes at least equally impor-
tant as subcritical cluster diffusion at temperature exceeding
T=1412°C.

In the above calculations, it is clear the thermal struc-
ture in the CVD reactor which determines the values of d,,
d,, and d, is central in determining the relative importance
of subcritical cluster loss to the onset of nucleation. As ob-
served by Breiland et al.,'* the maximum Si is very close to
the substrate within 2 mm in a cell of 5 cm height when the
substrate temperatures is in the range of 710-1000 °C. As the
substrate temperature increases, the thermal boundary layer
extends farther above the surface. The temperature at which
silane rapidly decomposes thus occurs at larger distances
(d,) from the surface. Also the spatial range (d,) over
which particles are produced increases with increasing tem-
perature as shown by the broadening of the profiles of Si."?
Thus at a higher temperature, we expect a smaller ¢ and a
smaller 1 and thus a smaller effect of subcritical cluster dif-
fusion on the nucleation rate. For example at T = 1412 °C,
we taked, = 1 cm, d, = 0.5 cm, d, = 3.5 cm based on ob-
served trends."* In this case j(g, )/j, is 10~ * at the other-
wise critical supersaturation ratio S = 16. This calculation
shows that the kinetic nucleation barrier due to subcritical
cluster loss by diffusion is also higher at lower temperature.
Since at relatively low operating temperatures, the subcriti-
cal clusters take more time to accumulate in the gas phase, it
should be relatively easy to suppress the occurrence of possi-
ble nucleation by optimizing operating total pressure and
temperatures and using a light gas as the carrier.

The effect of carrier gas on the onset of homogeneous
nucleation of silicon vapor in the CVD reactor can be in part
explained by the present theory. It is observed that all other
conditions being equal H, as a carrier gas suppresses particle
formation compared to He, which cannot be simply ac-
counted for by the chemical kinetic effect of H, on the gas-
phase decomposition of silane.” The carrier gas effect is in
part explained by the fact a is 1.414 times larger and b is
1.114 times larger in He than in H.. It is noted that the effect
of the possible changes in d,, d,, and 4, due to different
thermal structures in the He or H, carrier gas is not able to
be evaluated.
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According to Egs. (17) and (18), a and b are inversely
proportional to the total system pressure p, as the diffusion
path lengths are inversely proportional to p,. Thus a direct
effect of reducing total pressure is to suppress the onset of
homogeneous nucleation in the reactor. However, the posi-
tion of the maximum in Si density in the reactor shifts up at a
reduced pressure. It is observed that the position of this max-
imum shifts from 1 mm at atmosphere pressure to about 1
cm above the surface at a total pressure of about 20 Torr
when the substrate temperature is 847 °C.'* The same exper-
iment also showed that the profiles at the reduced pressure
become much broader than at an atmosphere pressure. Thus
particle formation could occur in a much wider region at the
reduced total pressure. Although g and b increase by a factor
of 35 when from the reducing the total pressure from 760 to
20 Torr the change in d,, d,, and d,, could outweigh this
reduction.

Purely lowering the total pressure may not prevent the
onset of homogeneous nucleation if a sufficiently thick ther-
mal boundary layer is attained to reduce the efficiency of
subcritical cluster loss by diffusion. This may have been why
particle formation in the gas phase was still observed at low-
er pressure CVD (LPCVD).%'°

It is clear that the thermal structure in the CVD reactor
is very important in determining the efficiency of subcritical
cluster diffusion towards the substrate. If the relationship
between the values of d, and d, and the total gas pressure
and the substrate temperature is known experimentally' or
by modelling,'? one can use Egs. (16)-(18) to select the
optimal CVD conditions in order to minimize the possibility
of occurrence of silicon particle formation in the gas phase
while obtaining a high deposition rate for a given silane con-
centration.

B. Nucleation in diffusion cloud chambers

The diffusion cloud chamber is one of the principal
methods for studying conditions for the onset of homoge-
neous nucleation. Supersaturation varies with elevation in a
diffusion cloud chamber [Fig. 1(b)] and nucleation is ob-
served in a thin region within the chamber. The possible
effects of nonuniformities in the cloud chamber on the nu-
cleation rate or the critical supersaturation ratio were sug-
gested not to cause serious deviations from behavior in the
absence of subcritical cluster loss for substances with equi-
librium vapor pressures larger than 10~ ® Torr.? It will be
shown, however, that substantial deviations can be occurred
for substances even with much higher equilibrium vapor
pressures if the cloud chamber is operated at the reduced
pressures.'’

Consider a system with o=30 dyne cm”',
s, =1.5417x10" " cm®, m, =1.6x10-* g, T=20°C
and p,=1 atm with He as the carrier gas,'”
a=4.6x10"%/(p.S), where p, is in Torr. As calculated
earlier,? the critical supersaturation in the absence of subcri-
tical cluster loss is about 12.5 for p. = 10~ * Torr, and the
value of a is thus about 10~ *¢. The change of the ratio
Jj(g,)/j, withaand b for these conditions is shown in Figs.
4(a) and 4(b). Thus, there is no effect of subcritical cluster
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FIG. 4. Ratio between the rate of nucleation in presence of subcritical clus-
ter loss in a diffusion cloud chamber and that in its absence (a) by diffusion
[i(84)7/j, vsafor b=0)] and (b) by thermophoretic drift [j(g,, )/j, vs b
fora =0].

diffusion on the nucleation rate in this case if we take & = 5
as adopted by Becker and Reiss.> The effect is found to be
observable for equilibrium vapor pressures smaller than
10~-# Torr. At p, = 10~® Torr, a= 1.8 and b= 6.6 for
S = 12.5. Thus, the onset of nucleation in this case would be
affected by diffusion as well as by thermophoretic. Their
magnitudes are roughly equivalent, as seen from Fig. 4. Our
calculations therefore confirm qualitatively the previous re-
sults® in which only the subcritical cluster loss only by diffu-
sion was considered. It is also noted that the total pressure in
the chamber is assumed at 1 atm.

The diffusion cloud chamber is usually operated at a
reduced pressure. The total pressure in a chamber is required
to satisfy the condition'’

M, T,\~'
peil A 1 -7 ) P >2.5p.,
1

where M, is molecular weight of the vapor, and T, T, are
temperatures at the condensing and evaporating surfaces.
The upper bound for p, is that at which the temperature
gradient is balanced by a composition gradient in the vapor-
gas mixture thus the thermal convection is prevented. The
lower limit is estimated empirically, for which results are
supposed to be independent of the amount of carrier gas
used.

(19)
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To maintain the difference between j, and (g, ) within
a factor of 107 requires a < 1. i.e., p, >4 X 10 ~ * Torr for the
organic species considered above. In a similar way we re-
quire b< 1, i.e,, p.>1.1X 10~ * Torr. Here we have used
d, =0.71h,d, = 0.19A and A is the height of cell 4.23 cm as
reported in Ref. 18. d,, has been taken 0.1/ as experimentally
estimated by Daniel ez al.'® The resulting & is about 4.32 and
¢ is about 0.25. Also we have used the upper bound for p,
given by Eq. (19). We conclude that the onset of homoge-
neous nucleation will begin to be affected by subcritical clus-
ter diffusion and thermophoretic drift when p, < 10~ * Torr.
Under this condition, the subcritical cluster loss by thermo-
phoretic drift becomes more important than that by diffu-
sion.

It should be noted that the effect of diffusion and phore-
tic drift on nucleation does not limit to subcritical clusters
loss. Nucleated particles, for example, can reach the upper
surface before growing to a free fall size by action of phoretic
forces at low pressures. Thus higher supersaturations are
observed to maintain a same rate of nucleation.™

V. CONCLUSION

We have investigated homogeneous nucleation process
of a vapor in a spatially inhomogeneous system by extending
classical nucleation theory to include subcritical cluster loss
by diffusion and thermophoretic drift. Approximate analyt-
ic expressions have been obtained for cluster size distribu-
tion and rate of homogeneous nucleation. The primary re-
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sults of this paper are those of Egs. (16)-(18) which can be
used to estimate the effect of subcritical cluster loss by diffu-
sion and drift in a temperature field on the onset of homoge-
neous nucleation.
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Selective Nucleation of Silicon Clusters in CVD

Frank G. Shi and John H. Seinfeld
Department of Chemical Engineering, 210-41
California Institute of Technology
Pasadena, California 91125

Abstract

A nucleation model is developed that includes chemical etching of
atoms as an additional loss process besides thermal dissociation that
competes with the process of atom addition in forming a cluster. The
model has the proper qualitative features to describe observations of
the evolution of cluster formation on amorphous silicon substrates in
the low pressure CVD of a mixture of SiH,Cly/HCl/H,.
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1 Introduction

Nucleation is generally treated as a thermal fluctuation-induced barrier-
crossing process, in which the energy barrier results from the competition
between atom or molecule addition and thermal dissociation in forming a
cluster. Such a nucleation theory based solely on thermodynamic consider-
ations has successfully been employed to obtain qualitative results for many
complex problems including 3-D growth of epilayers,! bubble formation in
liquid helium at negative pressure,? displacement transformation in metallic
and non-metallic materials,? formation of voids in nuclear reactor materials,*
and gas-phase nucleation.’

The same thermodynamics-based approach has also been used to ex-
amine gas phase and surface nucleation and growth problems in chemically
reacting systems such as in CVD reactors. In a chemical reacting system,
however, chemical processes may participate in the nucleus formation pro-
cess directly besides providing the source for monomer. For example, Katz
and Donohu¢6 investigated the rate of nucleation when the arrival rate of
condensing molecules and rate of surface chemical reaction are of similar
magnitude. It is the goal of the present study to develop a nucleation model
in chemically reacting systems where chemical etching of atoms from a clus-
ter acts in addition to the loss due to thermal dissociation of atoms from
the nucleus. By studying a particular system, a general framework for inves-
tigating complex nucleation problems in chemical reacting systems will be
suggested. Such a framework enables one to gain a qualitative understand-

ing of the nucleation process in many complex problems in chemical reacting
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systems and can be useful in the improvement and design of processes to
tailor nucleation to specific requirements.

The motivation for this study arises from the inability to interpret recent
observations of the dynamic evolution of cluster formation on amorphous sil-
icon surfaces in low pressure CVD systems in terms of any thermodynamics-
based nucleation theory.”8 By measuring the cluster density and size distri-
bution as a function of time, it is found that in the CVD of a mixture of
SiH9Cly/HCl/Hg on SiO,,z < 2, all the fine clusters of Si that are formed
in the early stage of deposition do not survive in spite of the fact that they
are much larger than the critical size for nucleation. It is observed, instead,
that large crystalline clusters emerge when the fine ones suddenly disappear
from the surface.”® Using artificial nucleation sites .of SigNy4 (4 pm x 4pm)
on SiOg, the same dynamic process can be observed, i.e., a large number of
clusters formed initially on the nucleation sites disappear at the time when
large crystalline clusters form.”® Measurement of the time dependence of
the surface coverage excludes the possibility that the observed abrupt re-
duction in the number of fine clusters by three orders of magnitude could
be due to obscuration by large clusters. Since most of the observed large
clusters have completely facetted shapes and a single crystalline structure
except for twin boundaries, the possibility of coalescence of submicron clus-
ters is also excluded. The total volume deposited is seen to have a hundred
times increase when the fine clusters are reduced in number and large clus-
ters emerge. Such a sharp increase in volume suggests that the large clusters

could not be formed due to growth and contact with their neighbors, surface
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migration of mobile clusters, or Ostwald ripening in an islanding process.”®

The possibility that fine clusters are dissociated into single atoms has been
suggested with HCI (an etching agent of Si) playing a crucial role. The fine
clusters would be etched by HCl accompanied by the emergence of large

clusters with high growth rate.”8

2 Competition Between Thermal Dissociation, Chem-
ical Etching and Atom Addition: Generalized
Gibbs Free Energy of Formation, AG

Besides the competition between adatom addition and thermal dissociation,
chemical processes may participate in forming clusters. Taking low pres-
sure CVD of SiHyCly/HCl/Hs as an example,”’~? silicon adatoms will be
produced dominantly by heterogeneous reactions on the substrate. HCl in
the gas flow and/or Cl adsorbed on the substrate may etch silicon atoms
away from the clusters as well as Si adatoms from the substrate. The con-
sequence of the participation of atom etching on the formation process of
clusters can be investigated by studying the generalized Gibbs free energy
of cluster formation.

Three processes are involved in forming a cluster, adatom addition, ther-
mal dissociation and etching. The rate of adatom addition to a cluster of size
g is B,g'/3. Here B, is proportional to the number concentration of adatoms,
the diffusion rate of adatoms on the substrate. The process of adatom ad-
dition is assumed to be diffusion-limited!%!! since silicon adatoms will be
produced dominantly by heterogeneous reactions on the substrate for the

system considered. Therefore the rate of adatom addition is taken pro-
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portional to the radius of the cluster (< ¢g1/3). The thermal dissociation
coefficient for a single atom from a (g + 1)-sized cluster, ag41, can be ex-
pressed in terms of the rate of adatom addition to a cluster of size g by
detailed balancing.!®!! It is noted that the exact expressions for 3, and o
are not necessary to be known to continue our analysis. |

The etching process of Si atoms from the cluster is assumed mainly due
to HCl. This assumption is reasonable. Since the adsorption of atomic
chlorine on silicon is very weak,!? the etching of Si atoms from the cluster
due to the adsorbed Cl is small. Considering the uncertainties associated
with the previous measurements,'? even if the adsorbed Cl is relative high,
the adsorbed Cl may immediately react with Si adatoms with a very small
number of the adsorbed Cl left to attack the Si clusters. Accordingly, the
etching process of Si atoms from the cluster is taken to be mainly due to
the HCI either produced from the source gas reaction or supplemented from
an external source.”8 The etching rate on a silicon g + l-sized cluster is
therefore proportional to the surface area of the cluster, (g+1)2/3 /te for the
case of surface site-limited reaction, where 1/t is the specific etching rate.
If all the atoms constituting the cluster can be taken as reaction sites, the
etching rate is proportional to the number of atoms in the cluster, (g+1)/t..

The net rate at which clusters grow from size g to size g + 1, jg4, can be
written as

, +1)2/3
Jg = fgﬂsgl/3 - fg+1[5'fg-l-lgl/3 + (g_t)___}’ (l)

where fg is the cluster size distribution at time ¢. In the absence of chemical

etching, we have the following relation for the metastable equilibrium cluster
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size distribution ng,

ngfs = ng+10q41, . (2)

By analogy, in the presence of chemical etching the equilibrium distribution,
cg, is

ool = corlagig"S+ (g + 1) 3

Thus
Cgt+1 _ ng+1/n9 (4)

c (g+1)*/8 °
¢ 1+ 91 3teagyr

By using Egs. [2] and [3], and the fact that n; = ¢1, Eq. [4] can be written

as
(G+2+1)%3
teit1

g—1
cg =ngexp[— Y _In[l+ - (5)
=1

1=

The above expression is obtained in a similar way to that obtained for the
electron-hole drop formation within Ge and Si.13

For an etching rate proportional to g,

g-1 2/3 , ;—1/3
Ui o
cg = ng exp[— E In(1+ (TH-I))] (6)
i=1 €

From Eq. [5], the generalized nucleation free energy barrier for the cluster

formation process as described above is given by,

. 141/3
(2+2+7) /
tetiy1

g-1
AGy = AGy+ kT Y In[l + 1, (7)
1

1=

where AGg can be taken as the classical Gibbs free energy of formation,10-11

or the Gibbs free energy given by the atomistic theory.!%1!
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3 Nucleation of Silicon Clusters in the Presence
of Etching

It is seen from Eq. [7] that the free energy barrier for nucleation is modified
in the presence of chemical etching compared with that in its absence. Fig.
1 shows AG, as a function of the cluster size g for different values of the

ratio between the rate of adatom addition and the etchinvg rate,

_ 1 etching rate
Xs = Bste  addition rate’

(8)

For simplicity, the model from classical nucleation theory is used for AGg.m’ll
The parameters used in AGg include supersaturation ratio, S, which is
defined by the ratio of the concentration of the adatom and its equilib-
rium value and u(w)6, where for an assumed spherical cap nucleus u(w) =
%(2 + cosw)(l — cosw)? is a geometrical factor'! and § = s;0/kT with
s1 = 471/33v12/3 v; is the atomic volume in the cluster, and o is the spe-
cific surface free energy of the cluster. For ¢ = 1000 ergs/cm? as cited in
Ref. 14, then @ is about 21 at the temperature of deposition T' = 1223K.7-8
If the specific surface energies are taken equal to the surface tensions esti-
mated by the method suggested in Ref. 17, o is about 820 ergs/cm?2. Thus 6
can be considered to vary in the range of 10 to 20. SEM (Scanning Electron
Microscopy) micrographies”313 show that nuclei are indeed of hemispherical
shape with a contact angle w > 90°. For w > 90°, u(w) = 1. Thus typical
values of fu are taken to vary from 10 to 20 in the following discussion.
However, it should be noted that the results presented in this paper are not

affected qualitatively by the values assigned to the parameters.
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The curves in Fig. 1 are labeled with the values of x, which is pro-
portional to the ratio of the adatom addition rate (G, and the chemical
etching rate, 1/t.. The etching rate is kep% (1 — cosw)/2 for the following
mechanism, (Si), + 2HCl — SiCly T +Hz + (Si),_; where (Si)y represents
a g—sized silicon cluster, where k. is the forward rate constant for above

etching reaction.
3.1 Conditions for Suppressing Surface Nucleation

For a given S and u(w)#, the evolution of the free energy curve with the
increase of the ratio between the etching rate and the collision rate can be
described as follows.

First, if the ratio of the etching rate and the collision rate, x;, is suffi-
ciently small, for example xs < 0.1 for S = 100, 0u = 15 as shown in Fig.1,
the AG curve is virtually the same as that in the absence of HCI or/and
Cl etching of Si clusters, i.e., there is a maximum of AG at the critical
cluster size g.«. As xs increases, the AG curves have not only a maximum
corresponding to the critical cluster size but also exhibit a minimum corre-
sponding to the stable cluster size g.s which results from the balance between
the atom addition and the HCI etching of the Si clusters. Fig. 1 shows that
the stable cluster size decreases with an increase in xs. As xs approaches a
limit, about 0.24 for S = 100, fu = 15, the critical cluster size and the stable
size merge and AG increases linearly with g. Beyond this limit, the critical
cluster size is infinity and nucleation is completely suppressed by the HCI

or/and Cl etching of the subcritical silicon clusters.
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Figure 1. Generalized Gibbs free energy of nucleation AG(g),

for diffusional adatom addition, for different values of the ratio Xs
at S=100 and 6 u(w)=15. At the first critical value of the ratio

Xs» 0.178, all of the nucleated clusters will be dissociated by
chemical etching of clusters. At the second critical value of the
ratio g, about 0.24, the critical cluster size becomes infinity

and the stable cluster size disappears.
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By examining the relation

IAG(g) _
99 - 0 9)
the limiting values of x; beyond which nucleation is totally suppressed can

be found as a function of S and fu. If g is treated as a continuous variable

in the context of classical nucleation theory,!! Eq. [7] can be rewritten as,

(z+2+ LH/3

@) 19 (10)

AG(g) = AGY(g) + lcT/lg Infl +

where AG(g), AG%(g) and a(g + 1) are the continuous versions of AG,,
AGY and agy1. Then Eq. [9] leads to the following relation,

20u(w)
exp[— =] = S[1 -
| 3g:"°

1 (gc+1)%3

a gg/g ], (11)

where g. is the critical value corresponding to Qé%ﬂ =0.

The relation between g./g« and xs given by Eq. [11] is shown in Fig.
2 for a given value of u(w)f# (=15) and a range of values of S, 10, 100 and
1000; and in Fig. 3 for a given S(=100) for typical values of u(w)6, 10,
15, 20. As shown in Figs. 3 and 4, g. equals g, the critical cluster size in
the absence of chemical etching of clusters when x; = 0. For x, < 0.1 for
S = 100, g. = g«, that is no significant effect is expected when the etching
rate is smaller than about one tenth of the collision rate between the cluster
and the adatoms. This should be the case at the initial stage of CVD. g,
becomes a dual-valued function of x,s as the ratio exceeds a certain value
(about 0.1 for S = 100). The dual values of g. for a given x; are that of the
critical cluster size and stable size. As shown in Figs. 2 and 3, the critical

size (gcs) for nucleation is almost the same as that in the absence of chemical
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Figure 2. The ratio g /g, of the *‘critical’” cluster size in the presence of

chemical etching, of clusters, 3., and the critical cluster cluster size for
nucleation in the absence of chemical etching g,, as a function of ¥ for

the chemical etching rate of the silicon clusters and the adatom addition
rate, for S=10, 100 and 1000 at 6 u(w)=15. Dual values of g for certain

ranges of % correspond to the critical cluster size , g¢, and the stable
cluster size, g..
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Figure 3. gJ/g, as a function of x for 6 u(w)=10, 15 and 20 at

$=100. Dual values of g for certain ranges of ¢ correspond
to the critical cluster size for nucleation, g, , and the stable

cluster size, g g -
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etching of the subcritical clusters, g«, for xs; belows its second critical value
(about 0.24 for S = 100). While the stable size decreases significantly with
increasing xs until the second critical value of x;s, the critical size and the
stable size become identical, or, more precisely, the two sizes disappear.
Beyond that limit, nucleation is suppressed completely because of chemical
etching. In other words, there is a second critical value, different for different
S and Ou for x,, where a small increase in the etching rate or a decrease in
the collision rate can lead the critical cluster size to change from ge. & g
to infinity.

For an etching rate proportional to g2/3 and ges >> gex,
20 3
v R Gy R [ . 12
For an etching rate proportional to g, we have the same gc«.

3.2 Abrupt Change of Cluster Number

Also shown in Fig. 1, there is another critical value (0.178) for xs. At
xs = 0.178, the free energy barrier for forming the clusters is equal to that
for dissociating the nucleated clusters of size g.s by HCl or/and Cl etching.
In other words, at and above the critical value of x, = 0.178 at S = 100 and
fu(w) = 15, all of the clusters nucleated will eventually dissociate back into
single atoms by chemical etching (backward nucleation); no single cluster
nucleated by the forward nucleation can survive.

As will be discussed in detail in Section 4, this is relevant to the ex-
perimentally observed abrupt change in the total number concentration of

clusters on the surface,”®
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3.3 Conditions for Forming Equal-Sized Clusters

As shown in Fig. 1, only for x, smaller than its critical value, 0.178, some
of the nucleated clusters will stay at the same size, g.s. The formation
of equal-sized stable clusters is basically the result of the balance between
the etching process and the atom addition process. The formation rate of
the surviving stable clusters will be proportional to the difference between
the forward and backward nucleation rates. The time scale for the forward
nucleation is the same order of magnitude as the collision rate between the
critical cluster and the adatoms. The time scale for backward nucleation is
of the same order of magnitude as that of the etching process. Since the
etching rate of silicon clusters is the same order of magnitude as the collision
rate,'6 the two time scales are expected to be the same order of magnitude.

The stable cluster size can be obtained from Eq. [11]. For an etching

rate proportional to ¢2/3 and ges >> gex,
13
Ges = [teﬂs(l - §)] . (13)
For an etching rate proportional to g, we have the same gex but
1
Ges & [tefs(1 — g)]3/2~ (14)

3.4 Continuing Growth of Surviving Stable Clusters: Role
of Direct Impingement

Since the adatom concentration decreases with the deposition time due to

the decrease of the available adsorption sites on the substrate, the dominant

mode of adsorbing adatoms will change to that of direct impingement from
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the vapor phase. The mode change can have an important consequence; the
surviving clusters limited to the stable size g.; can continue to grow.
In the case of direct impingement from the vapor phase, the rate of

addition of atoms to a cluster of size g is given by

kT 72

1

Bog?® = amr?g® Py, (

where 1, is the number concentration of the compound containing Si in the
gas phase and M, is the molecular weight of the compound and 7 is the
transformation efficiency from the Si-containing compound, absorbed on the

cluster surface into Si atoms. Then

, +1)%/3
o = Foog®? — fyloguag® + WD (16)
(4
where
AG,41— AG
agi1 = Po exp(——%)

By repeating the steps in Section 3.1, we can obtain the generalized
energy barrier as a result of competition between the atom addition from
the direct impingement from the vapor phase and the atom loss due to

thermal dissociation and chemical etching, as

(1+1/4)%/3
tear?)

g-—1
AGy = AGy+ kT ) In[l+ ] (17)
1

1=

with the corresponding critical cluster size given by the following relation,

20u(w)

x| 1 (g +1)*°
3g:"°

tefs gz/ 3

]=S[1- ). (18)
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The above relation is shown in Fig. 4 for different values of S, 10, 100, 1000
and fu(w) = 15. It can be seen that, differing from the case of nucleation
by the mechanism of adatom diffusion, the g. is a single-valued function of
Xo = ﬁ{ In the present case, g. is the critical cluster size for nucleation,
gn«. Fig. 4 shows that g,. increases with increasing x,. As X, approaches
some limiting values which are much larger than the second critical value for
Xv, Nucleation becomes totally suppressed by chemical etching of Si clusters
since ge. approaches infinity. Before reaching the critical value for the ratio
of X, the surviving trapped clusters nucleated by adatom diffusion can grow
without thermodynamic and chemical limits, if their sizes exceed gp«. This
also can be seen from Fig. 5 which shows the nucleation energy barrier given

by Eq. [17].

4 Evolution of Cluster Number Concentration with
Deposition Time

The foregoing analysis aids in interpreting the newly observed dynamical
phenomena of cluster formation on a-Si substrates in the CVD system of
SiH5Cla/HCl/Hy which are not explainable by using the conventional nucle-
ation and growth theory.”® The main interest lies in the abrupt drop in the
total cluster number concentration on the substrate and the abrupt disap-
pearance of small clusters on the substrate accompanied by the appearance

of the large clusters.
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Figure 4. g /g, as a function of y¢ for S=10, 100 and 1000 at

0 u(w)=15. Differing from the case of the diffusion-limited atom
addition, g is a single-valued function of X, = 1/7.B,. As %y
approaches some limiting values, g, approaches infinity.
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4.1 Ratio x, in the CVD system of SiH,Cl,/HCI1/H,

The key parameter is the ratio between the etching rate and the collision
rate of a cluster with the adatoms, xs. The two rates are estimated to be
of the same order of magnitude, i.e, about 1um per second for the particu-
lar experiments.!® Since the experiments were done for constant deposition
conditions, the input concentration of HCI is constant but the concentration
of HCl in the CVD reactor increases with the deposition time since the reac-
tions in the system of SiHoCla/HCl/Hg2 can also generate HCL. Also 85 o n1
where n; is the number concentration of adatoms. Since n; is limited by
the available adsorption sites which decrease with time. Thus xs and the
critical cluster size increase with the deposition time. As x, approaches the
first critical value (for example, 0.178 for S=100 and fu = 15 in Fig. 1)
the net nucleation will be zero, that is the formation nucleation rate equals
the backward nucleation rate (by chemical etching). As x,s approaches the
second critical value (e.g.,~ 0.24 for $=100 and fu = 15 in Fig. 1 or Fig. 2),
forward nucleation by the adatom diffusion mechanism is totally suppressed.
4.2 Evolution of Cluster Number Concentration with Depo-
sition Time
At the initial stage of the CVD deposition of silicon, and the ratio x; is
small, the surface nucleation of silicon by adatom diffusion can proceed
relatively easy since the critical cluster size is virtually the same as that in
the absence of chemical etching (Figs. 1 and 2). The number concentration
of clusters formed on the surface is limited by the available adsorption sites

which decreases with time, and the ratio x, therefore increases with the
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deposition time. Since the critical cluster size for nucleation, gc«, is not
affected by the ratio x; when the ratio is below its second critical value,
the forward nucleation can proceed without a significant effect of chemical
etching. However, as the ratio x, increases, the backward nucleation rate
increases. As the ratio x, reaches the first critical value when the free
energy barrier for the forward and backward nucleations become equal, all
clusters formed by the forward nucleation will eventually disappear from the
substrate.

As the ratio of x, approaches the second critical value at which the
critical cluster size and the stable clﬁster size merge, a small increase in the
ratio can cause the critical cluster sizevto change abruptly from g.. = g« to
infinity. No further forward nucleation can occur.

The total cluster number concentration on the substrate reaches a max-
imum value™® (see Fig. 1 in Ref. 7) when the forward nucleation rate
equals the backward nucleation rate. The total number concentration of
clusters on the substrate should remain constant until the ratio x, reaches
the second critical value. Since the critical cluster size changes abruptly to
infinity around the second critical value, the nucleated clusters will expe-
rience an abrupt increase in the etching rate, resulting in a sudden drop
in the total number concentration of clusters on the substrate as observed
experimentally”8 (see Fig. 2 in ref. 7). This is also the reason for the abrupt
disappearance of small clusters from the substrate. Thus it is concluded that
the mazimum cluster concentration is reached when the ratio of xs reaches

the first critical value; the sudden drop in the total cluster concentration
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and the sudden disappearance of the small clusters occur when the ratio X,

reaches the second critical value.
4.3 Growth of Stable Clusters

At the early stage of CVD deposition, the cluster size distribution is found
to have a single peak”® (see Fig. 3 in ref. 7) which should correspond to the
stable cluster size of the surviving clusters as predicted by the present model.
But if the surface adatom diffusion is the only atom addition mechanism,
the largest cluster size will be limited to be that of the stable cluster, g.s as
shown in Fig. 1. The dominant mechanism for atom addition will change
from adatom diffusion to direct impingement from the vapor phase when
the rate of the latter mechanism is larger than that of the former. Direct
impingement from the vapor can brihg the stable clusters, limited to the
size of g.s, out of the trap. The liberated clusters can continue to grow
without thermodynamic limit (see Fig. 5), except when the ratio x, reaches
its critical value (see Fig. 4 ). Thus the trapped stable cluster predicted
by considering adatom diffusion only, with their size larger than gn«, can be
liberated from the trap and continue to grow by direct impingement from
the vapor phase.

If the mode change of atom addition happens at or just after the time
when x; reaches its second critical value, it is expected to observe the for-
mation of large clusters accompanied by a sudden drop in the total number
of clusters.

Although the mechanisms of direct impingement from the vapor and

adatom diffusion act simultaneously, only when the rate of atom addition
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Figure 5. Generalized Gibbs free energy of nucleation
for the direct impingement from the vapor phase,

AG(g) as a function of g for a range of values of ¥, at
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by the former mechanism is larger than that of the latter, will the clusters
trapped at the stable size will continue to grow. The stable sizes depend on
the ratio xs (see Fig. 1) which changes with the deposition time. Not all
of the trapped clusters can be reactivated by direct impingement from the
vapor phase since not all of them exceed gn«. This explains why the number
concentration of the large clusters is much smaller than that at stable size.

Before x, reaches the critical value, the collision rate by adatom diffusion
(Bsg'/3) can be smaller than the rate due to direct impingement from the
vapor phase (8,9%3). For B,9'/3 < B,¢%/3, B, can still be far smaller than
Bs. A smaller 3, can correspond to a larger cluster size than that by adatom
diffusion. As shown in Fig. 4 as the ratio of x, reaches its own critical value,
a small increase in the ratio also can lead to the critical cluster size have a
sudden change to infinity. In that case, all survived clusters formed by the
adatom diffusion mechanism will eventually be etched from the substrate.

This seems not to be the case for the experiments concerned.”8

5 Conclusion

We have reported the development of a nucleation model in which direct
chemical etching of atoms from a nucleus is treated as an additional process
to atom addition and atom dissociation to and from a nucleus.

The important consequence is that the ratio between the rate of atom
addition and the rate of chemical etching plays a crucial role in cluster
formation dynamics. It is found that by adjusting operational conditions to

change the ratio between atom addition and chemical etching, it is possible
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to suppress nucleation completely or to form equal-sized clusters.

The analysis aids in understanding the physical and chemical origins
of the newly observed dynamical phenomena of cluster formation on a-Si
substrates in the CVD system of SiHaCla/HC1/H2 which are not explainable

by conventional nucleation and growth theory.”8
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CHAPTER 6

TRANSIENT KINETICS OF UNIARY NUCLEATION
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Analytical solutions for the time-dependent cluster concentrations and nucleation rate in homo-
geneous nucleation are obtained by the singular perturbation approach. The effect of cluster
scavenging by free molecule particles on the kinetics of nucleation is also investigated through
analogous analytical solutions in this case. Apparent conflicting suggestions in the literature con-

cerning the time lag of nucleation are resolved.

I. INTRODUCTION

When the saturation ratio of a vapor is suddenly in-
creased to a value at which homogeneous nucleation
occurs, a transient period exists during which the cluster
concentrations increase to their eventual steady-state
values, and the nucleation rate, defined as the flux of clus-
ters past the critical size, also increases to its steady-state
value corresponding to the new vapor saturation ratio.
In an effort to understand the general character of nu-
cleation phenomena and the observations in nucleation
experiments that utilize sudden changes in saturation ra-
tio, such as expansion cloud chambers, expansion noz-
zles, and free-molecular expansion methods,' the dura-
tion of the transient period in nucleation is of interest.

Under actual nucleation conditions preexisting parti-
cles are frequently present that act as scavengers for the
vapor molecules and clusters, thereby depressing the rate
of new particle formation by nucleation below that in
their absence. One needs also to understand the effect of
preexisting particles on the transient nucleation kinetics;
that is, for example, is the characteristic time required to
establish a steady-state nucleation rate increased or de-
creased in the presence of preexisting particles over that
in their absence? Such open systems occur in many
different situations, such as nucleation in the presence of
cluster scavenging by a preexisting aerosgl,> of cluster
diffusion loss to the walls in a cloud chamber,* and of a
strong diffusion (or drift) loss of nuclei on the boundaries
of a crystal in the case of an electron-hole liquid forma-
tion by nucleation.’

Previous studies of transient nucleation kinetics have
been reviewed by several authors.®”® Those studies are
either restricted to special numerical solutions®* ' or are
based on inappropriate approximations.!""}* Kashchiev’s
solution of the classic kinetic equation of nucleation had
generally been considered to be the most accurate and
had been widely used,”® although his choice of the eigen-
function cutoff was shown to lead to incorrect results.®
Recent work by Trinkaus and Yoo,'? which employed a
Green's-function approach, confirmed the analysis of
Kashchiev’s work by Binder and Stauffer.® The earlier
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studies tend to predict a characteristic lag time to attain a
steady state of order 1073-107¢ s for liquid systems, al-
though Gitterman and co-workers'>™'® have suggested
that the time lag can reach dozens of seconds. They have
attributed the overlooking of this time-lag effect in the
previous studies to the approximations used in those
studies, including the quadratic approximation for the
energy barrier and the method of the steepest descent
used in evaluating the integrals involved.

In using those “diffusion” approximations the time lag
obtained does not include the time needed for the subcrit-
ical clusters to reach steady state. Instead, the time lag
obtained is only the time required for a cluster to diffuse
across the energy barrier.

The present work is an attempt to solve the time-lag
problem in nucleation. With the aid of singular pertuba-
tion theory,'® an analytical time-dependent solution is
presented for the cluster size distribution for realistic
boundary and initial conditions. We obtain the charac-
teristic time scales for establishing the steady-state cluster
size distribution, the nucleation rate, and the total parti-
cle formation without incorrect approximation other
than associated with the matched asymptotic expansion.
Our solutions are free of the problem of the incorrect
boundary conditions associated with several previous
studies.

We also solve the time-dependent kinetic equation of
nucleation in the presence of cluster scavenging by free
molecule particles. Thus we provide a quantitative
answer to the time-lag question in an open system in
which the characteristic lifetimes of clusters also play a
critical role in the kinetics of nucleation.

II. BASIC EQUATIONS

The equation governing the continuous cluster size dis-

tribution f(g,!) in a supersaturated vapor is®*°
af(g,t) _ _ dJig,1) )
ot g

where J(g,t) is the cluster flux defined in the continuous
cluster size (g) space

2101 © 1990 The American Physical Society
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Jg,t)=—Blg,)nig,n2 L&t @)

" "9g nig,1)

and Bl(g,?) is the rate of collision between monomers at
concentration f(1,7) and a g-mer

Big,t)=f(1,t)5,8* (kT /2m )/ . 3)

The equilibrium cluster size distribution corresponding

to a monomer concentration n(1,t) is
n(g,t)=n(1,t)exp[—Wi(g,t)/kT], 4)

with s, and m, the surface area and mass of the mono-
mer, respectively. The critical size

3
26
3InS

8. < (5)

is the size of cluster corresponding to the maximum free
energy of cluster formation

W(g,t)=—gkT InS +s,8%*" 0 , (6)

where 6=s,0/kT, the saturation ratio S(t)=n(1,r)/
ne(1), and n (1) is the saturation monomer concentra-
tion.

About g, a critical region exists in which the
difference between W(g) and W(g,) is smaller than kT,
ie.,

|W(g)—Wi(g, )| <kT, (7)

the width of which is given by

s 1 BZW =172 :
= |- , ®
2kT agz £=8s

which is related to the Zeldovich factor Z by

1
vVrZ

Solutions of Eq. (1) for the dynamic cluster size distri-
bution must be subject to appropriate boundary and ini-
tial conditions. The boundary conditions can be specified
at both ends of the cluster size distribution. At g=1, the
monomer number concentration can be assumed to be

8= =3g23g712 ©

the same as the value used to define the equilibrium dis-
tribution
L&ty ey, (10)
n(g)

While for large g, the boundary condition can be estab-
lished by noting that above the critical region the func-
tion n(g) defined by Eq. (4) increases without limit,
whereas the true cluster size distribution f(g,t) remains
finite. Thus

f(g.1) -

n(g)
We wish to study the transient nucleation kinetics that
occur when the saturation ratio S is raised at =0 to a
specified value. Since the equilibrium cluster concentra-
tions for g 22 are much smaller than that of the mono-
mer, it is reasonable to take the initial condition as

(1n

0, g—=x .
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f£g,00=n(1)8(g—1), (12)

where 8(g — 1) is the Dirac delta function.

III. TRANSIENT KINETICS OF NUCLEATION —
THE SINGULAR PERTURBATION APPROACH

As in the ste. dy-state case, the normalized cluster size
distribution f(g,r)/n(g) exhibits a boundary layer struc-
ture about the critical-sized cluster g,.> The small pa-
rameter, denoted as €, which multiplies the term contain-
ing the highest derivative in the equation governing the
cluster distribution, is related to the width of the critical
region 5. A singular perturbation approach®'® can be
used to obtain the transient cluster size distribution, tran-
sient nucleation rate, and transient total number of parti-
cles nucleated.

We define the independent variable y(x,?)
=f(g,t)/n(g) and the normalized cluster size x =g /g,
and transform Eq. (1) into

x72782 3y(x,0) _ [ 8 | 8%ix,0)
Bg,) ot g ax?
2
218 +6(1—x'”3)]
3x | 8.
x pxt) (13)
dx

in which Egs. (2), (4), (6), and (9) have been used and

" Blg,) is Blg,t) evaluated by Eq. (3) at g=g, and

f(1,t)=n(1). Letting 6/g, =€, Eq. (13) becomes

2
ezag(x,t)+ i€2+6(l—x‘”3) ag(x,t)
ax? 3x ax

_x7% dy(x,t1) =0
Bg,) at
The condition € << 1 holds as long as InS << 26°/?, which

is the case in nearly all practical situations.
After a Laplace transformation, Eq. (14) becomes

(14)

2
ezay(xﬂ,s)_*_ iez+6(l—x"’3) dy(x,s)
dx - 3x ox
x 27382 ] .
=—1y(x,s)s—y(x,0)], (15
Bg,) L g
where
)= [ Ty(x,1)e %dr (16)
yix,s) fo yix,t)e
Equation (15) together with the boundary conditions
y(l/g,,s)=%, ylee,5)=0, (17

can now be solved by the method of singular perturba-
tion. Since the dominant term of dy(x,s)/dx changes
sign at x =1 in the interval [1/g,, <], we expect a
boundary layer (transition layer) at x =1 as noted above.
Thus there are two outer solutions: a ., (x,s) that
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satisfies the left boundary condition at x=1/g, and a
You!r,s) that satisfies the right boundary condition at
x — <. The outer solution is expected to be valid far
from the critical region (inner region) around x = 1.

The outer solution must satisfy the boundary condition
yla(1/g,,5)=1and y, (ec,5)=0. To the leading order
in € (the first-order correction vanishes), the outer solu-
tions to Eq. (15) that satisfy the boundary conditions are
ST

1—x173
exp[stix'?—g 7] (18)

1
i = |——
yc\ul(x’s)_‘s ]_g.—l/B

and
You(x,s)=0, (19)

where 7=58%/2B(g,). Since the growth of the clusters
near g, can be viewed as a diffusion process, the time
necessary to pass through the critical region is the order
of 7, with B(g,) playing the role of an equivalent
diffusion coefficient. 7 is of the order of 10~¢ s for liquid
systems.

As expected, the outer solutions are not valid near
x =1, so a transition layer about x =1 exists. Since the
thickness of this boundary layer is ¢, we introduce the
inner variables X=(x—1)/e"A>0) and Y, (X,s)
=Jin(x,5). In terms of these variables, Eq. (15) becomes

ek aYin(X,s) 1 5 azY (X,s)

4+ 2 e21-R) Ayy__in """
S 28 (1+ex)—25

aY, (X,s)

+3e M1+ X)[1-(1+x) 13—
X

=— 8 i)y Xs) . Q0)
2B(g,) me

As €e—0 with X being fixed, the distinguished limit of Eq.
(20) corresponds to A=1. The boundary condition
ylec,s5)=0 translates into

Yolee,s)=0, Y,(e,s)=0, n=1. 21

The leading-order inner solution of Eq. (20) that satisfies
the boundary conditions is

Y (X,s)=1A(s)i""erfc(X)+ 1B(s)i*"erfc(—X),  (22)

where i*"erfc(X) is a repeated error function. The con-
stants A (s) and B (s) have to be determined by asymptot-
ically matching the outer and inner solutions. The match
consists of requiring that at the intermediate limits
[x>1-,X—>—c«;x—>1+,X—+ o] the inner and
outer solutions agree. The leading-order match gives

5T
1 - - | €
Al)==(1—g )77 |-
s s g, ") 3
— =13
xe' T8 *P(sr4+1), Bls)=0. (23)

A. Transient cluster size distribution

To determine the nucleation rate we are most interest-
ed in the cluster size distribution near the critical size

2103
which is given by the inner solution
Y;n(x,s)=%s~(l—g:‘/3 )7 % ]”e”_g;m]”
X T(s7+ 1)i*%erfe | 21 (24)
After an inverse Laplace transformation, we have
Vinlgt )=%erfc g-—sg, +exp |— t=Ar J , 25

where A=g 71> —1+In[3(1—g /) /€.

The transient cluster size distribution far from the crit-
ical region is given by the outer solutions which are the
inverse Laplace transformations of Egs. (18) and (19),

vyl g, t)=0(1—ulg)r) (26)
and

You(8:t)=0, 27
where p(g)=(g;!*—x'?—In[(1—x'?)/(1—g 1))

and © is the unit step function: ©(z)=1 for z>0, 6=1
for z=0, and 6=0 for z <0.

According to Eq. (26), the subcritical clusters approach
a steady state one by one with a time lag u(g)r. As
shown in Fig. 1, the coefficient u(g) of the characteristic
time u(g )7 for subcritical clusters to attain steady state is
not overly sensitive to the value of the critical cluster size
g.- On the other hand, u(g) increases as g increases, in-

1.5

1.0 -

05

0.0
0.0 05 1.0

g/g,

FIG. 1. Coefficient u(g) in the effective time lag p(g) associ-
ated with the subcritical cluster size distribution as a function of
the normalized cluster size g /g, .
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dicating that the subcritical clusters attain steady state,
also equilibrium, one by one from the smaller clusters to
the larger ones, such that the rapid establishment of
steady state for the smaller clusters from the monomer is
followed by a lengthening period for each g-mer as the
size increases. In overcoming the larger Gibbs energy
barrier to form a larger cluster the time needed in estab-
lishing a steady-state cluster distribution at larger size is
longer than that for the smaller clusters.

The cluster size distribution beyond the critical region
¥ ou vanishes as indicated by Eq. (27). This is also true in
the stati?nary case as required by the boundary condition
Eq. (16).

The characteristic parameter in the transient behavior

of the clusters in the critical region A is a function of g,
and 6. For =10, the value of A is about 0.34 for g, =30
and 0.45 for g, =100. For =35, its value is about 0.3 for
8. =30 and 0.40 for g, =100. According to Eq. (25), the
cluster size distribution in the critical region becomes
essentially steady state (about 95% of its steady-state
value) for 1 > (1.5+ A )7 (about 37), i.e.,

g8,

, (28)

flg)=1n(glerfc !
which agrees with the classical steady-state case.'s
We can estimate the ratio between the characteristic
time needed for the establishment of a steady-time sub-
critical cluster distribution u(1—€)r and that required to
form a steady-state cluster flux in the critical region
(A+1.5)r. For g, =30 and 6=10, this ratio is about
0.45. Thus about one-third of the time needed to estab-
lish full steady-state cluster distribution is spent in form-
ing a steady-state subcritical cluster size distribution.
For g, =100 and 6=10 this ratio of characteristic times
increases to about 0.53. As g, increases, more time is
spent on establishing a steady-state cluster size distribu-
tion outside the critical region. This ratio decreases with
decrease in 6; for =35, this ratio is about 0.37 for g, =30
and 0.47 for g, =100. It is clear that in calculating the
time needed to reach a steady-state cluster size distribu-
tion the time needed to reach steady state below the criti-
cal region cannot be neglected. This aspect thus has been
neglected implicitly or explicitly in most previous
analyatic studies.®!!

B. Transient nucleation rate

The transient cluster flux at any size g is given by

d
J )= _—
(g,t) B(g)n(g)a‘g

(g,1)
n(g)

=Z(g,)B(g)n(g)exp

% g8, t—Ar

+exp {—

2
} , (29)

and the transient nucleation rate at g =g, is
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FIG. 2. Normalized transient nucleation rate J(g,,t)/J as
a function of the normalized time /7.

|
9
J(g,,t)=—B(g_)n(g.)5E

(g,1)
n(g)

88y

|-

where J is the steady-state homogeneous nucleation rate
J=Z(g,)Bg,)nlg,), . (31

and Z(g, ) is Zeldovich factor. In the limit as 1 — «, we
have from Eq. (30) that J(g,,t)=J.

It is noted that the new derived formula for the tran-
sient nucleation rate, Eq. (30), is functionally different
from the previous ones which have usually been ex-
pressed’ in the form of J=J[1—exp(—1/1,)], where 1,
is the characteristic time of relaxation of the nucleation
process to a steady state. Different authors have obtained
different expressions for 7., but of the order of .

In Fig. 2, we show the nucleation rate as a function of
t /7 for different values of g, based on Eq. (30) and that
obtained by Trinkaus and Y00.!? The two results are nu-
merically consistent with each other. As shown in Fig. 2,
the time lag associated with the nucleation rate is about
47.

_yizhr

ex
P T

=Jexp {—

C. Time-dependent number density
of critical clusters nucleated

The number density of critical clusters formed in the
system following the increase in saturation ratio at t =0
is the integrated flux N(g,,t)=f6.l(g.,t')dt'. The di-

mensionless total number is

N(g,,t)
—J—'T—=-;-f;_b’%=%[51(ae’b')—ﬁ'l(a)] . 62
ss
-1/3 _
where a=e?=[3(1—g ') /e)%e’**  "and b=2/r,
and E, is the exponential integral.
As t/r—«, we have age %0, and E (ae™")

= —y—Ina+bt+0(ae ~%), thus

Nig,,1)

: =—%[E,(a)+ye+lna]+%, (33)

ssT



where v, =0.5772 is Euler’s constant.

Equation (33) thus indicates that at large times,
N(g,,t) increase linearly with time ¢ as expected. The
beginning of the steady-state regime can be determined
experimentally by the time at which the increase of
Ni(g,,t) becomes linear with time. The time lag (7,)
defined in such a way is given by

re=1[E(a)+vy,+Ina]T. (34)

The time dependence of N(g,,?) is shown in Fig. 3 for
g. =230 and g, =100. The effective time lag associated
with the approach of N(g,.7) to steady state is about 37
which, as expected, is the same order of the time lag asso-
ciated with the nucleation rate. This result is in contrast
with that obtained by Gitterman and his associates.!>™ 18
They have suggested the time lag associated with
Nig,,t) can reach dozens of seconds even for liquid sys-
tems for “fast” quench cases. For a fast quench the ini-
tial condition is given by Eq. (12). It is this fast quench
case that is the one considered in the present work. They
have attributed the overlooking of this effective long-time
lag in the previous studies to the approximations used in
those studies, including the neglect of the time required
to reach the steady-state cluster distribution below the
critical region, the quadratic approximation for the ener-
gy barrier, and the method of steepest descent used in
evaluating the integrals involved. Since the present ap-
proach is free of those approximations, and we do not
find any anomalous increase in the time lag associated
with N(g,,?), we conclude that the increase in the time
lag found by Gitterman and co-workers must arise from
one of two sources. Either it is a phenomenon related to
nucleation near the critical point of phase transition,
since they used critical dynamics to determine the physi-
cal parameters in the kinetic equation of nucleation, or

N(g,.t)/JesT

FIG. 3. Normalized number density of critical clusters
formed N(g,,1)/J 7 as a function of the normalized time ¢ /7.
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the error was introduced by the approximation of shifting
the real boundary conditions to an unphysical domain in
solving the associated eigenvalue problem. However,
there is no experimental evidence as reviewed in Ref. 20
to support the first possibility.

In solving for the time-dependent cluster size distribu-
tion, the problem was condensed by Gitterman and co-
workers into solving the appropriate Schrodinger equa-
tion by approximating the potential as a harmonic oscil-
lator and shifting the boundary from the lowest end of
the size distribution to — . The potential with this
equation could be approximated by the harmonic oscilla-
tor only near the critical cluster size, which is equivalent
to the quadratic approximation for the Gibbs energy bar-
rier. The second assumption in shifting the boundary
condition from g =1 to the region g <0 is similar to that
of Trinkaus and Yo0o'? in using a Green's-function ap-
proach. A consequence of this approximation is that the
solution does not satisfy the physical boundary condition.
This approximation, however, may not cause serious er-
ror since the transient nucleation rate obtained by Trin-
kaus and Yoo'? shows a similar behavior with ours as
shown in Fig. 2.

IV. TRANSIENT KINETICS OF NUCLEATION
IN THE PRESENCE OF CLUSTER SCAVENGING

Let us consider a supersaturated vapor system with
preexisting free-molecule particles of sizes larger than
that of the critical cluster corresponding to the existing
supersaturation in the system. The equation governing
the continuous cluster size distribution is given by?

af(g,1)=_aJ(g,t)__ -7/6
ar FY e Big,t)f(g,t), (35)

where ¥ is a dimensionless surface area concentration pa-
rameter defined by
=4

s f(1,0) 7

Y (36)

with s, the surface area of the monomer and 4 the sur-
face area density of preexisting particles.

The boundary and initial conditions to Eq. (36) are
given by Eqgs. (10)-(12). As in the absence of cluster
scavenging, we can solve for the time dependent f(g,t)
by the singular perturbation approach.

To the leading order in € (the first-order correction
vanishes), the outer solutions to these equations that
satisfy the boundary conditions are

! [ a=x!s |7 13_ =173
yom(x,s)=;- -l—_—_—g—T]-/—s- exp[s(x'?—g'")]
L
1—x6 |7 _
——l+x'/6 n" 37
and
You'x,5)=0, - (38)
where m is given by
m=%752g‘—7/6=%y8—1g1/6 ,
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and n=(1—g7¢)/(1+g7'/®). As expected, the outer
solutions are not valid near x =1, so a transition layer at
x =1 exists. Since the thickness of this boundary layer is
€, we introduce the inner variables X =(x —1)/€¢ and
Y, (X,s)=yp;(x,s). Using a similar method to obtaining
the outer solutions we obtain the following leading-order
inner solution:

1
2s
Xi*"" merfe(X) , (39)

where a=¢/127. In the limit of m =0, Egs. (37) and (39)
reduce to Eqs. (18) and (24).

Y (X,s)=—exp(—Ast)a"T(m+s7+1)

A. Transient cluster size distribution

The cluster size distribution near the critical size is
given by the inner solution

Yinlx,8)= —Z!S-cxp( —Ast)a"T(m+s7+1)

x—1

X i$7+ merfc (40)

After an inverse Laplace transformation, we have

8™ E&»
6

Yin(8,t )=-§-a”‘l‘(m +1)i"erfc

1 X+exp(—t/7+2A) —2
f a™w—X)"e Y dw .

TV

X
41)
In the limit of m —0, Eq. (41) reduces to
1 g—8
Yinlg )= Eerfc IT‘
_ 1 pXxtep—t/r+0) 2
Vrdx e tdw
=lerfc £-¢. +ex iz , 42)
2 6 T

which is the transient cluster size distribution in the ab-
sence of cluster scavenging, Eq. (25).

The subcritical transient cluster size distribution far
from the critical region is given by the outer solutions
which are the inverse Laplace transformations of Egs.
(37) and (38), respectively,

1—x1/6 m

You(8:1)=0l1—plg)r) |-

", (43)

which reduces to Eq. (26) for m =0 and
Youlg,t)=0. (44)

In the subcritical region, by comparison with Eg. (26),
we note that the presence of cluster scavenging does not
change the time u7 needed to reach the steady state. The
steady-state number density of subcritical clusters is the
same as the equilibrium one corresponding to the Gibbs
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energy potential in the absence of cluster scavenging,?
while in the presence of cluster scavenging the steady-
state number density of subcritical clusters is smaller
than the equilibrium one. The presence of cluster
scavenging does not change the time needed for the sub-
critical clusters to reach steady state indicating the time
for the establishment of a dynamic balance between the
cluster scavenging process and the cluster flux across the
g space is always the same regardless of the values of m.
A consequence of this is the cluster flux becomes g depen-
dent.

B. Transient nucleation rate

The transient cluster flux as defined by Eq. (2) in the
critical region can be obtained from Eq. (41),

J(g,t)=PB(gn(g)Z(g)

1

3a”ﬁl‘(m +1)i™ ~lerfc g%

)

2a™(w—X)" !

X

fX+exp(—l/-r+).)
b ¢

Xe"”zdw] , @49

and the cluster flux in the subcritical region is obtained
from Eq. (42),

1—x /6 m=l
J(g,1)=Blg)n(g)Bt=Br) | 7%
m —mx—5/6
3g, (1+x176)7 0

The nucleation rate defined as the cluster flux at g, is
given by
" Tim+1)

F(m/2+1/2)

a

V713

J(gy,t)=J

—fﬂp‘_”fﬂ)Za"‘w"‘He'“’zdw . (4D
0

In the absence of preexisting particles, that is, as m —0,
we have from Eq. (25, or Eq. (46), J(g,,t)
=Jexp(—{exp[ —2(r —Ar)/7]}), which is the same re-
sult as that obtained in the case without cluster scaveng-
ing, Eq. (30).

In the limit of large times, we recover the steady-state
nucleation rate in the presence of cluster scavenging,’

Tm+1)

€
Tim/2+1/2) °

24

Jm=J 0™ ™7 48)

It is known previously’ and from Eg. (46) that the nu-
cleation rate in the presence of cluster scavenging can be
reduced significantly from that in its absence depending
on the surface area density present in the system.

The normalized nucleation rate J(g,,1)/J, asa func-
tion of 1/7 based on Eq. (46) is shown in Fig. 4 for
different values of m. We note that the presence of clus-
ter scavenging shortens the time lag needed for the nu-
cleation rate to approach the steady state. For m =0 we
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FIG. 4. Normalized nucleation rate J(g4,?)/J,, as a func-
tion of normalized time ¢ /7 for different values of m.

have the case of transient nucleation in the absence of
cluster scavenging. Thus the suggestion that the time lag
should be very long for an open system® is shown to be
not correct. At a higher surface area density of cluster
scavengers (larger m) present the nucleation rate reaches
the steady state faster than at the lower surface area den-
sity.

This behavior can be understood by analogy to two
chemical reaction systems: A=-B and A=B —C. In the
first system the concentration of B reaches a steady state
in a time scale 7)=1/k_,, and 7,=1/(k_, +k,) is re-
quired for B to reach steady state in the second system.
Here k_,; and k, are the rate constants of the reactions
of B and 4 and of B and C, respectively. 7,>, as a re-
sult of the additional removal path for B in the second
system. By analogy, the nucleation time lag in the pres-
ence of cluster scavenging is shorter than that in its ab-
sence. As k, increases 7, decreases, and the time lag in
the case of higher surface area concentration of preexist-
ing particles is shorter than that at lower concentrations.

Figure 5 shows J(g,,t)/J. For a suppressed nu-
cleation rate, the time for the appearance of nuclei in a
unit volume becomes very long. For example, for
J(g,,t)/J=0.04 in the case presented in Fig. 5 for
m =1.3, the time for a given concentration of critical
sized clusters to appear in a unit volume in the case of
cluster scavenging is about 25 times longer than in ab-
sence.

C. Time-dependent number concentration

The time-dependent number density of critical cluster
nucleation in the system with cluster scavenging is given

t/T

FIG. 5. Normalized nucleation rate J(g,,7)/J, as a func-
tion of normalized time ¢ /7 for different values of m.

by
N(g.,t)=Jmt_J“foxfoexp(—r'/rﬁ—l)zamwm_H
Xe~Wdu di'. (49)

Thus the effective time lag that can be verified experimen-
tally is

t pexp(—t'/r+1) —p?
T""=fo fo P 2a™wm tle " dwdr’,  (50)

which becomes equal to 7, given by Eq. (34) in the limit
of m =0.

V. CONCLUSIONS

In this work we have investigated the transient nature
of nucleation by examining the time dependence of the
cluster size distribution, the nucleation rate, and the
time-dependent number density of critical sized clusters
formed. The approach used is based on a singular pertur-
bation method in which approximations made previously,
such as, the quadratic approximation for the nucleation
barrier, and the steepest descent method to evaluate the
integrals involved are avoided.

We have also investigated the transient kinetics of nu-
cleation in the presence of cluster scavenging by free-
molecule particles by solving the kinetic equation of nu-
cleation. It is shown that the presence of cluster scaveng-
ing shortens the total time lag, which decreases with in-
creasing surface area density of cluster scavengers.
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Explicit analytical expressions are obtained for the rate of nucleation over different paths in a
binary system. It is shown that anisotropy in reaction rates and anisotropy in the free energy
surface can cause nucleation to occur bypassing the saddle point. Homomolecular nucleation is
demonstrated to be the natural limit of binary nucleation as the concentration of one
component goes to zero. Explicit expressions are also obtained for the time lag of binary
nucleation by using the singular perturbation approach. It is shown that the time lag associated
with different paths of nucleation is essential in determining the relative importance of

different nucleation pathways.

1. INTRODUCTION

The identification of a preferred nucleation pathway is
essential both for definition of the mechanism of nucleation
and calculation of the nucleation rate in a binary system. The
nucleation pathway in the classical theory of binary nuclea-
tion' is found to go across a saddle point in the free energy
surface (G) for the formation of a mixed particle. The steep-
est descent path corresponding to the minimum energy di-
rection on the surface is defined solely in terms of the geo-
metrical properties of the formation free energy surface
without consideration of the monomer concentrations in the
system.>* Consequently, the classical theory of binary nu-
cleation based on the steepest descent path is not kinetically
consistent in that it does not reduce correctly to one compo-
nent homogeneous nucleation theory when one component
vanishes.”™ Large discrepancy is also found between the
predictions of the classical theory and experimental observa-
tions when the concentration of one component is signifi-
cantly different from that of the other component.*

Based on a general multicluster coordinate nucleation
theory,” Stauffer” has obtained the correct direction of the
nucleation path by considering the properties of both the
formation free energy surface and of the nucleating compo-
nents. His result confirmed an earlier suggestion by Stauffer
and Kiang." However a correct expression for the rate of
binary nucleation in a system with significantly different
concentrations of the two components has not been ob-
tained,” nor has an expression for the rates of nucleation
taking different paths and their relative contributions to the
total rate of nucleation. Recent attempts along these lines
have been made by Trinkaus,” however a consistent theory
of nucleation in a binary system, which reduces correctly to
the homomolecular nucleation of one component when the
other component is made to vanish, has yet to be developed.

To develop such a theory is one goal of the present pa-
per. An additional goal is to study the role of nonstationarity
at the initial stage of nucleation in determining the relative
importance of different paths.

The present paper is structured as follows. We will first
show that the physical picture of binary saddle point nuclea-
tion is similar to that of homomolecular nucleation and the
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singular pertubation approach used in uniary nucleation can
be followed to treat the present binary nucleation problem.
Using that approach, we will derive the steady state binary
nucleation rate in the case of the cluster flux line going over
the saddle point and compare the result with those existing.
Then an analysis of multiple nucleation pathways will be
given. The relative magnitude of the steady state rate of nu-
cleation over different paths in a binary system will be shown
to be controlled not only by the anisotropy in the reaction
rates but also by the anisotropy in the shape of the free ener-
gy surface. In particular, a continuous transition between
heteromolecular nucleation and homomolecular nuclation
in a binary system will be predicted. Next. using the singular
perturbation approach, we will derive an explicit expression
for the effective time lag for binary nucleation. It will be
shown that the time lag associated with establishing differ-
ent nucleation paths is essential in determining the relative
importance of different stationary nucleation pathways in
contributing the rotal rate of nucleation.

1l. SINGLE NUCLEATION PATHWAY: CLUSTER FLUX
LINES GO OVER THE SADDLE POINT

A. Basic equations

The basic equation governing the time-dependent clus-
ter number concentration f(g,.g,.f) may be written as' "’

g gt _ 3. 9 "
at dg, g,

where g, is the monomer number in a cluster (i = a.b). and
the cluster flux in composition space is given by
o= =R R g S
ag., ag.
where the equilibrium cluster size distribution
fo=n,exp[ —BG(g,.8,)] with n, the total monomer
number concentration in the system and G(g,,.g,,) is the for-
mation free energy of the clusters.” No explicit form of G is
needed in treating the kinetics of nucleation in the present
work. = 1/AT where A is Boltzmann's constant and 7 is
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the absolute temperature. The reactionrate R (g,.g,) 1s de-
fined as the collision rate between monomer i and a cluster of
composition (g,.g,.). For example. in the case of gas-phase
nucleation. the reaction rate R, is proportional to the cluster
surface area and the i-component monomer number concen-
tration." In diffusion-limited nucleation in a condensed sys-
tem. R, is proportional to the radius of a cluster and to the /-
component monomer concentration.” Both cases will be
considered although no explicit form of R, need be specified.

B. Saddle-point binary nucleation

Consider the case of the saddle point nucleation in a
binary system in which no single species is supersaturated
with respect toits pure state, i.e., the trajectory of cluster flux
lines passes only over the saddle point (conditions for saddle
point nucleation will be clarified below). A supersaturation
with respect to the mixed-component cluster may develop
and clusters may grow spontaneously to be larger stable par-
ticles after passing over the saddle point. The cluster size at
the saddle point is the so-called the critical size. Thus the
physical picture of binary saddle point nucleation is similar
to that of homomolecular nucleation and the approach for
deriving the rate of uniary nucleation has often been fol-
lowed to derive the expression for binary nucleation.' For
uniary gas-phase nucleation it has been shown" that the clas-
sical steady state rate is exact to the leading order in ¢, a
parameter inversely proportional to (8G*)'/". Here G * is
the formation free energy barrier at the critical point.

The approach of singular pertubation has proved to be
useful in addressing a number of problems in homogeneous
nucleation theory.*'" It will prove to be similarly useful in
attacking binary nucleation problems. To provide a basis for
the analytical approach of this paper, we will first derive the
rate of binary saddle point nucleation by using that approach
and compare the result with the existing ones."*”’

Following the procedure presented previously,* we will
first derive the equations governing cluster number concen-
tration valid in both the outer and inner regions. The inner
region is defined as that in the vicinity of the saddle point. It
also can be called the critical region in which an unstable
cluster becomes a stable cluster by passing over the saddle
point. It is expected that the cluster size distribution within
this region is far from equilibrium. In contrast, the cluster
size distribution in the outer region is close to the equilibri-
um distribution corresponding to the individual monomer
concentrations.

1. Outer solutions

Normalizing Eq. (1) by introducing z=f/f,.
m =g, /g¥and n =g,/g* and by neglecting terms propor-
tional to € and €;.. where ¢, = \—R—,’,'/gj ande, = \ﬁ/gﬁ'
which are proportional to (g%) ™' ‘and (g*) ' . respec-
tively, for gas-phase nucleation and (g*)~* “and (g*) " '
respectively. for nucleation in a condensed system. we obtain

J Chem Phys.. Vol 93.No

oz R,

“_ _
ar g*

m

G az
/3[Gw *.“-—‘.— (n— 1)]5—

8

R, G
* gm )

b u

(3)
n

We have used "*" to indicate the value at the saddle point.
Also we have used the quadratic expansion for G =~

G=G*+G,(8 —8) +Gu.lg, —g)
+2G,, (g, —82)(8, — &%), (4)

where G, =10°G/dgl, G, =19°G/dg. and
G,, =19°G/dg,dg,atg, = g*andg, = g Thesecond de-
rivatives describe the shape of the saddle point. While this
expansion is more valid near the saddle point, the functional
form is expected to be also correct in the outer region. More-
over, it will be shown later a more detailed expression for G
does not significantly change the result obtained. The above
equation valid in the outer region is not easily solved except
for the case in which no cross term appears in G. We thus
have to diagonalize the matrix

(Gvu Guh)
Gh« G, '
which can be accomplished by introducing an ordinary rota-
tional transformation. This transformation can be intro-

duced more clearly in solving for the inner solution given
below.

2. Inner solutions

Introducing the inner variables X = (m —1)/¢,.
Y= (n—-1)/€¢,,and Z = z, we have the following equation
valid in the inner region from Egs. (1) and (2),

az ( X\.’Ff+pY\fR_7,):""
— |+—.—_—.—_
at g
>((é”Z 9z
ax:  ar: dxX X
dInf, 6Z 2 _83Z 2

3y oy 3 grax 3¢
where u is the ratio of a- and b-monomer volumes and
g* =g + ugl. By neglecting terms containing €, and
smaller in Eq. (5) we have

dInf, 9z

£=8’Z+&32_aﬁ6£_8ﬁ’6§£ (6)
d  9X® dY: Gx X 4y avr’
and now

BG=pG. +D, X +D, Y +2D, XY
with

D, =BG, R*

D, =pG.R:.
and

D, =pG,\RIR.

By diagonalization we have

BG —BG*= —ux’ -3, ur>0. (71

12 15 December 1980
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The minus and plus signs in Eq. (7) show that the variables x
and v are. respectively, unstable and stable. Here

u= - %[D.m +D,, — \’(D.N

—D,) +4D] (8

and

=%[Duu + D/m + \(D.,u _Dm,): +4DZ(,], 9)

which are the two eigenvalues of the matrix

D (1-7w Duh)
- Dlxu th .

The rotational transformation introduced to diagonalize the
bilinear form of G to a quadratic form allowing us to deter-
mine the stable and unstable variables is

x=Xcosa+ Ysina,

y= —Xsina+ Ycosa, (10)

[D..

tana =

-D,, +\(D,, =D, +4D3,].

ub

In Eq. (7) that the squares of the variables have different
signs means that the energy barrier has a saddle character
(G,,G,, — G, <0). The determination of the stable and
the unstable variables enables us to obtain the outer and in-
ner solutions by solving Egs. (3) and (6). First we address
the inner solution. By using the variables x and y to describe
the cluster, Eq. (6) becomes

8z 39’z 9%z Oz Jz

ar ax* oy’ “ Ix Zuyc?y’ an
which is solved at steady state to give
=Af exp( — uk *)dk + B (12)

w(x)
with
w(x) =J‘ z(x,p)exp( — vy°)dy.

The constants 4 and B are to be determined by matching the
outer and inner solutions. It is noted that Eq. (11) is similar
in lhe form to the inner equation for homomolecular nuclea-
tion.”

The direction of the nucleation path at the saddle point
is given by a which is an angle with respect to the g, axis. The
value of the angle reduces to the classical result of Reiss' for
isotropic reaction rates, R, = R,. Ourresult fora, Eq. (10),
is the same as that obtained by Stauffer.” In particular, in the
limit of R # € R %, tan a -0, a = 0, thus the nucleation pro-
ceeds along the g, -axis direction. At the opposite limit,
a = /2, the nucleation proceeds in the g,-axis direction.
Thus the directions of the nucleation path at those limits are
kinetically consistent with physically based expectations. A
continuous transition between the angle of the binary nu-
cleation and that of the uniary nucleation of the more abun-
dant component (if its concentration is large enough to be
supersaturated) is ensured. i.e.. the nucleation path changes
from passing over the saddle point on the two-dimensional
energy surface to a path going over a point on the mountain
ridge in the one-dimensional energy curve. The problem now

is why previous theories of binarv nucleation do not reduce
to that of uniary nucleation in a kinetically consistent way
even though the direction of the nucleation path exhibits a
proper transition? This is one of the questions we will ad-
dress in the remainder of the paper.

3. Matching inner and outer solutions

Using the coordinate rotation introduced above to ob-
tain the inner solution we can obtain the left steady state
outer solution from Eq. (3),

=1 (13)
This left outer solution satisfies one of the boundary condi-
tions (B.C.) to Eq. (1), i.e.,

z—1 as g, +g,—1.

Satisfying the remaining B.C.,

z2—0 as g, +8,—c,
the right outer solution is given by

Zygn =0 ' (14)

Matching the inner solution with the left outer solution,

lim limlimz= lim

N = w6, =0 X ) X -

lim hm Zeh, (15)

> € -0 X

and the right outer solution

lim lim lim z = lim lim hm 2o (16)
2-7 €, —=0X=| X= 7 €—=0X
gives
u

A = ———,
R.R !detGl

and
1 —
=—2—\ﬁ/l.‘

withdetG=G:, - G,,G,,.

4. Steady-state rate of binary saddle-point nucleation
The total cluster flux in the size space in the case of
binary nucleation is difficult to define."**” From Egs. (11)
and (12), we have
Gw _d- “'+2u§£= _l_a_(_ﬁyi3£>
9 ox° ox /i O0x dx
or

a (- 1 ( 311)
- , d = = - - 0 . (17}
31,[ ,fondy= et g4

The Jacobian of the transformation going from variables

8,8, toxyin fis 'R *R ¥. Changing the variables x.y into
£..8. in fon the left-hand side of Eq. (17). we have

PRP
Ef Sx(8..8.)7(8..8.)]dr(8,.8.)

dx

=< 5% c?u') a
R*R*fe' —|= —— /. (18)
VRS dx dx
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where J i1s the one-dimensional cluster flux along the unsta-
ble variable x. averaged over the stability variable y

=S5, e OU = (7, 9
J=—\R:R’:ﬁ.€ —ﬁ:\'—.__—\R:R:J. 7f.,5—xdy4
(19

The left-hand side of Eq. (18) is the rate change of the clus-
ter number concentration which is now equivalent to the
left-hand side of Eq. (1): thus J defined by Eq. (18) is also
the total flux of clusters in the composition space. The rate of
nucleation is given by the total cluster flux at the critical size.
and we finally get for the steady-state rate of binary nuclea-
tion

=T o Ow u 4G *
—\VRIR: fiet — = ne P°°.

g (20)
dx pB.detG

Jr =

The above expression for the rate of binary nucleation is
similar in form to that of uniary nucleation (which is given
by ZR *f%, where Z is the Zeldovich factor, R * is the reac-
tion rate of a critical-sized cluster, and /% is the cluster num-
ber concentration at the critical size). An important differ-
ence lies in the fact that the reaction rate in the expression for
uniary nucleation is replaced by a complicated factor u that
is determined by the reaction rates as well as by the shape of
the free energy surface at the saddle opint {Eq. (8)]. Our
result for the steady-state rate of binary nucleation with the
cluster flux lines passing over the saddle point is exactly the
same as that obtained by Trinkaus’ who employed a differ-
ent coordinate transformation. Our result is also the same as
that obtained by Stauffer.’

5. Limiting behavior of saddle point binary nucleation

The limiting behavior of binary nucleation taking a sad-
dle trajectory for significantly different reaction rates is
sought to examine the kinetic consistency of the theory.

Considering R, € R, (we can also of course consider the
analogous limit, R, € R, ) we have from Eq. (8),

a. G, < 0. Negative G, at the saddle point implies that
a barrier exists along the axis g, on G for a given small con-
centration of g,. In this case, from Eq. (8),

u=pBR*G,, "' 2n

Thus, the kinetic factor in the rate of binary nucleation [Eq.
(20)] is controlled by the fast (or more abundant) compo-
nenta (i.e, R, >R, ). which seems on the surface to be con-
tradictory to physical intuition and the direction of the nu-
cleation path. This inconsistency has been attributed to the
assumption that the trajectory of the cluster flux line even in
the limit of R, » R, crosses the saddle point.”'"'* However.
we will show later that the steady-state prediction by Eq.
(20) with u given by Eq. (21) is kinetically unattainable
because an infinite time lag is required as R */R *—0 for
G,, <0. Thus in this case the total rate of nucleation is zero
because neither component is supersaturated. Therefore, the
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kinetic consistency of binary nucleation theory is ensured for
the case of R*> R ¥ and G, <0 which will be further dis-
cussed below. When the 2 component is supersaturated with
respect to its pure state. the total rate of nucleation in the
system equals the rate of nucleation of the a component at a
given small concentration of the b component with a path
along a ridge of the one-dimensional free energy curve. A
kinetically consistent theory of nucleation has to be devel-
oped by considering multiple nucleation pathways as will be
done in the next section.

b. G,, > 0. Positive G,, means the saddle point is a mini-
mum along the g, -axis in G for a given negligible concentra-
tion of g,. Under this condition,

u=BR%detG/G,,. (22)

Thus, the slow (or the less abundant) component controls
the kinetic factor in the nucleation rate. In the limit of
R % -0, the rate of binary nucleation thus goes to zero as
expected physically. In this case as also shown below the
steady-state rate predicted here [Eqgs. (20) and (22) ] might
be realized without constraints due to the long time lag as for
the case of R, <O.

¢. G, =0. G, = 0implies that the saddle point is not a
critical point along the g, axis for a given small concentra-
tion of g,. In this case, from Eq. (8),

u= 86, RIRT 23)
and the kinetic factor in the nucleation rate is determined by
both the slow and fast components. In the limit of R 7 -0,
the rate of binary nucleation thus goes to zero as expected
physically. As shown in a section below this is the most ideal
case of a saddle point nucleation whether or not a is supersa-
turated with respect to its pure state.

In the above three cases when R, € R, the cluster flux
line first traces along the equilibrium line dG /dg, =0, un-
less it either reaches the coordinate g7 of a saddle point with
G, <0, oritreaches, after having passed over a saddle point
with G, >0, a point G,, = 0 of unstable growth with re-
spect to component a, or it just reaches the saddle point for
thecase of G,, = 0. At those points it bends over into the fast
reacting direction a [ Eq. (10) ]. It should be noted that simi-
lar discussions are given for the first two cases by Trinkaus.”

In the following we will explore the relative contribu-
tions of different nucleation pathways to the total rate of
nucleation (binary and uniary) in the system.

ill. MULTIPLE NUCLEATION PATHWAYS: CLUSTER
FLUX LINE BYPASSES THE SADDLE POINT

Asdiscussed above when one reaction rate is significant-
ly different from the other the flux line can turn into the
direction of the fast-reacting component before the saddle
point coordinate of the slowly reacting component 1s
reached. If the fast-reacting component is supersaturated
with respect to its pure state. the cluster line can pass over
the ridge in the direction of a before g* is reached. This ridge
pathway can always coexist with the saddle-point pathway
since for very large values of g_ and fixed g, the formation
free energy approaches — =« for the pure bulk liquid of a
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component. The valley pathway and the ridge pa'":way are
two solutions to dG /dg, = 0 for a given small g, when the
activity of a is greater than 1.*

The possibilities of multiple nucleation pathways were
discussed by Stauffer and Kiang® but no results were de-
rived. A recent attempt’ to deal with this problem quantita-
tively was not successful. The problem lies in using an incor-
rect governing equation and an incorrect definition for the
rate of nucleation as discussed below.

It is known physically that in the case of significantly
different reaction modes, the fast mode adjusts itself to the
slow one, the slow-reacting one thus determines the overall
kinetics of the process.'* For a binary nucleation system with
significantly different reaction rates, the rate of overall nu-
cleation is governed by the slow component. This means that
we can exclude the rapidly relaxing variable, reducing the
governing equation to an effective one-dimensional equa-
tion. This can be done by using the method of elimination of
the fast variable."’

The resulting one-dimensional effective equation, ob-
tained by integrating Eq. (1) with respectto g,, is

al(g, dffdg,
(g’)+.,u.—.-_ig__, (24)
g, at
where the total cluster flux is
7= (i ds.. (29

J. isthe cluster flux bending from the equilibrium line (or so-
called valley defined by JdG /dg, = 0), passing over the
ridge.

GLI]”
J.(8w) = [‘B__—] R on,exp( — BG D,
27

(26)

where rindicates values on the ridge defined by dG /dg, = 0,
3°G /3g,, <0. Thus by averaging over the fast variable in the
anisotropic limit, the two-dimensional barrier crossing prob-
lem is reduced to a one-dimensional barrier crossing prob-
lem. The governing equation [Egs. (24) to (26) ] is new. Eq.
(24) describes the cluster number conservation (continu-
iy).

Itis noted that j, given by Eq. (26) is different from the
expression for the same flux given in previous work.” They
used f for n, in Eq. (26) resulting in an incorrect governing
equation which is similar in the form to the diffusion equa-
tion with a sink term.'*'* The governing equation obtained
is also similar to the governing equation for homomolecular
nucleation in the presence of cluster depletion.”'"

At steady state, by using Eq. (26), Eq. (24) can be inte-
grated to give

12
“—‘_] R.’,nnexp( “BG‘-H)v (27)

exp( — BG*") = f exp( — G ")dg,.

9037

We see that the binary nucleation is reduced to a uniary
nucleation with an effective free energy G " (g,). G*" (g, ) is
essentially equal to G*"[g,(g,).g.]. where g,(g,) is the
value of g, in the valley defined by dG /dg, = 0. This valley
defines the minimum energy path leading from the outer
region through the saddle point to a stable-growth region. In
general, we can obtain the rate of nucleation passing over the
ridge of the one-dimensional curve G *" from Eq. (27) which
is one of the important results obtained. However, depend-
ing on the relative magnitudes of g; and g?, we can deter-
mine the relative contributions of different nucleation path-
ways to the total rate of nucleation (binary and uniary) from
Eq. (27). (Here g, and g¥ are the b-monomer numbers in
the two critical sizes existing in a binary system with the
activity of component a greater than 1. One is the usual sad-
dle point; the other, the activation size, is the one at which
point the barrier to addition of molecules of the supersatur-
ated component vanishes. )

A.g,=g:

In the saddle point region the expansion for G given by
Eq. (4) can be used. From Eq. (27). the steady-state rate of
nucleation at g, = g/, =g% and g, = g, =g is given by

_Gr 172
Jf\=[——'ﬂ-] R n,exp( —BG*). (28)

th

The ratio between J . and the rate of the saddle-point

nucleation in the limit of R, » R, with G, <0is given by
®

A ! . (29)

J:‘ \”l-(cih/IG‘mthl)l

Thus, the relative contributions of the saddle point path
and the mountain ridge path depend on the anisotropy in the
free energy surface at the saddle point. When

1> Gi;- > [G,u thi

or
151G, Gul> Gim

thenJ* > J !, i.e., the contribution to the rate of nucleation
from the saddle point is more important than that from the
ridge path. For a symmetrical potential surface,
=16, G| J2/J | = x.Also.J] =0forG, =0.In
those cases, the cluster flux lines can only pass over the sad-
dle point regardless if either of the single species is supersa-
turated with respect to its pure state because of the dominant
importance of the free energy surface. In other words under
those conditions only saddle-point nucleation can occur. Of
course in the limit of R } — 0. the rate of saddle point nuclea-
tion also tends to zero as given by Egs. (20) and (23).
When the free energy surface at the saddle point be-
comes very anisotropic such that the ratios between G, and
the product G,,G,, become larger than 1. then the cluster
flux line can bypass the saddle point completely and the
mountain ridge nucleation path becomes dominant in con-
tributing to the total rate of nucleation. This is typically the
case for a flatter potential surface.
Equation (29) is also valid for isotropic reaction rates,
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i.e.. R, = R,. Thus we have shown that aniostropic reaction
rates are not the only cause for cluster flux lines to avoid
passing over the saddle point. This saddle point avoidance
caused by anisotropy in the potential surface near the saddle
point even for isotropic reaction rates might also be a general
phenomena in multidimensional activated rate process.'*'

B.g.>g;

Two pathways can be followed by the cluster flux line.
The first one is the single barrier path. It is the usual path
along which the cluster flux line will first go across the sad-
dle point remain in the valley. Clusters may grow without
thermodynamic constraints by accretion of both a and b
monomers. This saddle point trajectory is the minimum re-
sistance pathway. Another possible pathway is a double bar-
rier pathway. After passing over the saddle point, clusters
may avoid the valley and jump the mountain ridge at g" to
grow by adding mostly @ monomers.

Since the rate of this double barrier nucleation is smaller
than that of the single barrier saddle-point nucleation by a
factor of exp( — G ") one expects

L =0,

J N
and the contribution from the saddle point path is the deci-
sive one in determining the total nucleation rate in a binary
system when g, > g7.

C.g,<9;
In this case we can expand G " about g;, =0,
G,=G;h:n+Gl’»gh+G:(gu_g:)’ (30)

where G, =93G /dg,, G, =dG/dg, at g, =g, =0, and
g, =g, .Thus,atg, =g, andg, =0,

J.= - J‘/u dgl.
- 2‘_1_ vt ﬂG;,
GL~ .
=(E?—) R.n,exp(—pBG"), (31
where
G =G, , —%ln(ﬁG;).
Since
1
—In(5G )
B
1s negligibly small in comparison with G, ,, we have

G =G, ..
Equation (31) thus gives the exact expression for the rate of
a uniary nucleation of component a.

We have therefore demonstrated for the first time a con-
tinuous transition between binary nucleation and umary nu-

cleation and the conditions under which this transition oc-
curs.

The contribution to the total nucleation rate from nu-
cleation across the saddle point is given by Eq. (20). with the
eigenvalue given by Eq. (21). The ratio of the rate of saddle
nucleation and to that of the ridge nucleation is

R* G | - 12
yoysr RE_Gu ( 2 )
R videt G| BIG.:.,I

xexpl —B(G*—-GN].

which is smaller than 1 if G *» G but it is larger than 1 if
det G goes to zero. This is in contrast with our expectation
thatJ [ »J%. Also it is surprising to find that the ratio does
not depend on the ratio of R,/R,. That the ratio of the
steady-state rate of nucleation taking the saddle point path
over that taking the ridge path does not depend on the ratio
of the reaction rates is also in contrast with previous proposi-
tions" and conclusions.”

It will be shown in the next section that the steady-state
assumption of different paths might not be realized. The
time lag associated with the different paths controls the rela-
tive importance in contributing to the total rate of nucleation
in a binary system, and it is indeed the ratio of the reaction
rates that determines the time lag. Thus a consistent theory
for nucleation in a binary system must include the effect of
this initial nonstationarity.

Before going on, it is worthwhile pointing out that in
previous studies,” the governing equation used was incorrect
as mentioned above, and the cluster flux at g, = 0 was used
as the rate of nucleation, which is only correct for g; <g7.

IV. TRANSIENT KINETICS OF BINARY NUCLEATION
A. Effective time lag in binary nucleation

The pathways of nucleation that have been discussed up
to now are stationary ones. We have shown that binary nu-
cleation reduces to uniary nucleation of the fast-reacting
component @ when R, » R, and G,,, < 0. But what if no sin-
gle species is saturated with respect to its pure state when
R, > R,? Physically neither binary nucleation nor uniary
nucleation should exist. The prediction given by Egs. (20)
and (21) is in contrast with this physically based expecta-
tion. In the following we will show the steady-state rate of
binary nucleation as predicted by Egs. (20) and (21) is kine-
tically unattainable because of the associated infinitely long
time lag.

An explicit expression for the time lag for binary nuclea-
tion in the case of the trajectory of the cluster flux line pass-
ing over the saddle point will be obtained by solving the time-
dependent governing equation (1) using the singular
perturbation approach.

1. Outer solution
Equation (1) can be simplified as follows:
_ _p 508G _p o 3G
ar dg., 0g. dg, 03.
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in the outer region as shown in Sec. II.
Using the coordinate rotation adopted above. we have

I . Oz 2302

== = 2ux(l4ex)” = = 2up(l +cx) =, 33)
R i renT e T Y
where
R*® R si
JURN *cosa + py sma' (34)
gt
Solving Eq. (33) by introducing

2(x.y.5) = f exp( — st)z(x.p,1)dt, we obtain the Laplace
transformation of the outer solution as

; i(I_E)\/::4(1+;+§2)-\/4::
- 1 =4 ]+S‘-o+§lz\

Xexp{ -3 -f—[tan' '(gs—f—l)
2u /

\3
—tan"(ij-—l-)”, (35)
\3
where

E=(1+ex)'" (36)

and &, is the valueof §atg, = 1,8, = 1.
For the diffusion-limited nucleation in a condensed
phase system, we have

2. L(l_g)\nu(l+§-+§:)-\/iu
TUs\-s) Nl g g

Xexp[\3 —S—[tan‘ .(_24'_:}—_1_)
2u V3
—tan"(-—-———z's"j- 1)” (37)
\3

and the right outer solution still is z,,.,, = 0 for both cases.

In obtaining the above outer solutions we have assumed
that the solutions depend only on the unstable variable (x).
The reason that cluster nucleation can be generally de-
scribed in terms of a single nucleation path in the outer re-
gion is that for relative large g* the system is essentially in
equilibrium everywhere outside the saddle point region. In
the inner (saddle point) region the solution has to be ob-
tained by solving the complete equation in terms of unstable
and stable variables as will be done below. The accuracy of
our solution will be confirmed by reducing it to the known
asymptotic result. Our solution is an improvement over that
of Wilemski'¥ who assumed that the solution depends solely
on the unstable variable over the whole region, which is phy-
sically incorrect as he pointed out. Another improvement is
that we have adopted a more proper coordinate transforma-
tion scheme. Wilemski assumed that tan @ = g% /g* whichis
also incorrect physically in view of the present result [Eq.
(10) ). Finally our result is analytically expressed in terms of
the properties of the free energy surface and the reaction
rates of the two species present. A stochastic approach'' and
a variational method'" have been developed to study the
transient kinetics of binary nucleation. but no explicit analy-
tical expression for the time lag was obtained.

2. Inner solution

Solving the time-dependent equation (11) by using La-
place transformation, we obtain the inner solution in terms

of two repeated error functions,
w=Ai"*erfc(xyu) + Biv* erfc( — x\u), (38)

which is the same for both gas-phase and diffusion-limited
condensed phase nucleation.

3. Matching outer and inner solutions
By matching the outer and inner solutions we get

4= Lr(1e 2)SEEEE
ZS 2" 3\—3—1‘( 1- gu)

XCXP[—\/S(?#—t —l l+2§u ]] ﬁ (39)
v
for the case of the gas phase, and
M+t 12
A=l]‘(l +i){c\4:§u+§u
2s 3v3u(l —5"(.)

XCXP[\g(":— — tan -1 1 -+ 2~() ]] 1/’ (40)

for the case of diffusion- hmxted nucleanon in the condensed
phase, and B = 0 for both cases.

4. Time-dependent rate of binary nucleation

After an inversion, we have, from Eqgs. (38)-(40),
w=-L E-erfc[{?x-ﬁ-exp(—-’-:—&.—)] (41)
2 v T

for both of the diffusion-limited and gas-phase nucleation.
Using Eq. (19) and the above obtained cluster size distribu-

tion,
il "’)]. (42)
where

r=(2u)""' (43)

is the characteristic time scale of binary nucleation deter-
mined by the collision frequency between monomers and a
critical-sized mixed cluster. and

A= \’3(% —tan~' 1+25 +_25")

\3

+|n[—-—3‘3““ ““’] (44)
o\ T+i -5

J=J* exp[-—-exp(—-z

for gas-phase nucleation. For diffusion-limited condensed
phase nucleation. we have.

. <[ T 1=
/.=—-\3(?—tan‘

W3u(l =&
-+-ln[—————"3"(l ")] (45)

o l+&+80
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and c is given by Eq. (34). The difference between the gas-
phase and diffusion-limited cases is obviously due to the dif-
ference in the reaction rates.

Equation (42) is given at g, = g* and g, = g7 Differ-
ent time dependency can be observed at different cluster
sizes. It is also noted that the time dependency of the rate of
binary of nucleation is similar to that of uniary nucleation.”
This double exponential dependency of the transient rate of
nucleation differs functionally from all other previously ob-
tained results (for a more detailed discussion see Ref. 9).

5. Effective time lag of binary nucleation

The number density of critical sized clusters formed in
the system following the increase in activities of both compo-
nents at 1 = O is the integrated flux N(r) = §,J(1")dr". Us-
ing Eq. (42), the dimensionless total number is

O dx

J.r 2 Jo 0 xet

=-;—[E,(e Ay ~ E(eM)], (46)
where E| is the exponential integral.

As (t1/r—A)—c, we have e 27" 4.0, and
E,[e 2. ».x] = _,},_2(/{_1/?) +0[e-2(:/r-fl)]'
thus

20 —i[E,(ez"‘)+r+2&]+1, (47)

J.r 2 T
where 3 = 0.5772 is Euler's constant.

Eq. (47) thus indicates that at large times, N(7) in-
creases linearly with time 1 as expected. The beginning of the
steady state regime can be determined experimentally by the
time at which the increase of N(7) becomes linear with time.
The time lag (7, ) defined in such a way is the effective time
lag which is given by

T =—;—[E,(e3’)+7/+ 24 )7 (48)

with 4 given by Eq. (44) for gas-phase nucleation and Eq.
(45) for diffusion-limited nucleation in the condensed
phase.

The effective time lag for binary nucleation is function-
ally the same as that for uniary nucleation.” In analogy to
uniary nucleation. the term ¢~ '\ u is equivalent to the small
parameter (€). Also the present expression for 7 reduces to
the same rin the case of an uniary nucleation when R, or R,,
equals zero. Thus we can examine the accuracy of the qua-
dratic expansion for G in solving for the time lag for the
binary nucleation by comparing the expressions for the time
lag for uniary nucleation using the quadratic expansion for G
and using the complete conventional expression for G. In
using the quadratic expression,

= 2(e*) '
/l=\3[i——tan"———————-—'(g ) —_ +l]
3 \3
3
kY

| =]
2 L+(g) ™"+

+ ln{i(x - (g“)“""]}
€
while
A=(g*)" "' =1 +ln[i(l - (g*)-"‘ll
€

using the complete conventional expression for G.° For
g* = 30, the difference between the two expressions for 4 is
1.557. Using the quadratic approximation, we have overesti-
mated the value of 4. Since the term In(3/¢) is the dominant
one in the expression for the A, the small difference (1.557)
in the above expressions for A implies that the quadratic
expansion for G used in the present work for deriving the
expression for the time lag of binary nucleation is acceptable.
However if G is known the procedure presented can be fol-
lowed to obtain a more accurate expression as done in the
case of an uniary nucleation.’

B. Transient kinetics and nucleation paths in a binary
system

Let us first examine the time lag at the limit of R, <R, .
In this limit, we have

(49)
(50)

— G R*
“u :g' -é—"h- = =0. (51)

Thus, we observe the following important behavior.
First for G,, <0, the time lag for saddle point nucleation in
the limit of R, € R, can be relatively long (depending on the
ratio of R */R 2) since =_ is proportional to In(3c ™ 'u). As
R, /R, goes to zero, the time lag 7, approaches infinity. The
physics of the problem is clear. If the concentration of one
species becomes vanishingly small, heteromolecular nuclea-
tion becomes impossible when the remaining species is not
supersaturated with respect to its pure state. An infinite time
lag of nucleation corresponds to a zero rate of binary nuclea-
tion in this case. Thus, although Egs. (20) and (21) predict
that the steady-state rate of nucleation for G,, <0 depends
on the fast reactive component a, the actual rate depends on
the transient kinetics. If a is supersaturated with respect to
its pure state, then for R, > R, and G, <0, since the time lag
of heteromolecular nucleation is longer than that for ridge
nucleation. the degeneration of the saddle-point binary nu-
cleation into uniary nucleation as discussed in Sec. II1 (case
3) will be realizable.

We have thus resolved the conflicit” between the predic-
tion by Egs. (20) and (21) inthecaseof R, >R, and G, <0
and the physical expectation. The theory of nucleation in a
binary system is therefore consistently developed.

Thefirstcase (G, <0) shows how the anisotropy in the
reaction rates affects the transient kinetics of nucleation.
The second case (G, > 0) will show how the anisotropy in
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the free energy surface affects the transient kinetics. From
the above expression for G, >0, as |det G | decreases. the
time lag of nucleation increases. It should be noted that in
this case the time lag is independent of the anisotropy in the
reaction rates. Although the transient kinetics might not be
the controlling factor in realizing the steady-state rate of
nucleation. the rate is controlled by the slow-reacting com-
ponent b as predicted by Egs. (20) and (23). If a is also
supersaturated with respect to its pure state, then the con-
cept of nucleation becomes meaningless for G:F >0 at the
ridge (G<" >0 because of G, > 0).

_In the third case of G,, = 0, the effective time lag also
increases with increasing R, /R, In this case the ridge cross-
ing nucleation is impossible as discussed in Sec. III A. The
prediction for the rate of saddle point nucleation given by
Egs. (20) and (23) will be realized after a relatively long
time lag for a nonzero concentration of b.

V. RELATIONSHIP TO OTHER ACTIVATED RATE
PROCESSES

Kramers classical theory of activated barrier crossing
deals only with the case of isotropic diffusion rates. Recent-
ly, the role of anisotropy in both potential surface and diffu-
sion rates in affecting the rate of barrier erossing has been an
active area of investigation.'®'**~* Since nucleation is an
activated barrier crossing rate process, our present results
have some implications to the other activated barrier cross-
ing processes. First our results show that saddle-point avoid-
ance can occur even for isotropic diffusion rates when the
shape of the potential surface in the saddle region is very
asymmetric. In the context of chemical kinetics, this effect is
still under study.'**

The saddle point avoidance caused by the anisotropy in
diffusion rates is related to the time lag required for system to
reach its steady state. The importance of transient kinetics in
determining the rate of multidimensional barrier crossing
process has not been fully addressed.*' It will be interesting
to apply the present procedure to study the rate and the
transient kinetics of a general multidimensional barrier
crossing process.

VI. CONCLUSIONS

Explicit analytical expressions are obtained for the rate
of nucleation taking different stationary paths in a binary
system. It is shown that not only the anisotropy in reaction

rates but also the anisotropy in the free energy surface can
cause nucleation to bypass the saddle point completely. Ho-
momolecular nucleation is shown to be the natural limit of
heteromolecular nucleation as the concentration of one
component goes to zero. Explicit expressions are also ob-
tained for the time lag of binary nucleation by using the sin-
gular perturbation approach. Knowledge of the steady state
rate of nucleation taking different paths is not sufficient to
determine the relative importance of different paths. The
saddle point avoidance caused by the anisotropy in diffusion
rates is shown to be related to the time lag required for sys-
tem to reach its steady state.
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Analytical results obtained for the transient kinetics of nucleation enable one to interpret
N(ga4,t), the accumulated number concentration of clusters at the instrumentally
detectable size, gq4. The new results enable one to extract kinetic and thermodynamic
parameters of nucleation from experimentally measured cluster concentrations and to test
nucleation theories experimentally. An approach to estimate the mean time to form the
first nucleated cluster in a given sample is also presented.

I. INTRODUCTION

When an amorphous material is heated to a certain
temperature, atoms may rearrange themselves to form
small crystalline clusters. The phase transformation from
amorphous (a-) to crystalline (c-) phases is generally
considered to be initiated by a nucleation process, and
the Gibbs free energy change for this nucleation process
is determined by the gain in volume free energy for
atoms in the crystalline phase relative to the amorphous
phase and by the cost of the free energy necessary to
form an interface between the crystalline cluster and the
amorphous matrix.!?

Phase transformations from a- to c-phases or vice
versa have various technological applications, one of
which is processing of a—Si films or layers to obtain high
quality SOI (Silicon on Insulator) structures. To obtain
high quality SOI, lateral solid-phase epitaxial (LSPE)
growth of a-Si films deposited on Si substrates with
SiO, patterns has been extensively investigated as a
promising technique.> Random nucleation in the a-Si,
however, can compete with LSPE so that the growth of
a single crystal over SiO, is currently limited to length
scales smaller than about 10 um.3 A similar problem
arises in enlarging grain sizes of a polycrystalline film
from an a-Si film by thermal annealing.*> The effective
time lag for nucleation is often taken as the maximum
length of a period of annealing during which random
nucleation and thus random crystallization is supposed
not to occur.*

The technological importance of transient nucleation
has stimulated extensive experimental studies of nucle-
ation and crystallization of a-Si.*® The fundamental
parameters characterizing nucleation and crystallization
have to be extracted from experimental data based on
theoretical formulations for the transient kinetics. The
time required to form a specified crystallized volume
fraction is the measure of the stability of an amorphous
phase’ and has to be evaluated based on theoretical
expressions for the transient rate of nucleation and time-
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dependent crystallized volume fraction. In view of its
importance, it is surprising to find that little theoretical
analysis of transient kinetics of nucleation has been
performed®'* in the past two decades.

The present work presents new theoretical results for
the transient kinetics of nucleation and time-dependent
crystallized volume fraction.

Il. TRANSIENT KINETICS OF NUCLEATION
IN THE CRITICAL REGION

Results presented below and in Part II for the tran-
sient kinetics of nucleation and crystallization are inde-
pendent of the specific nucleating system (e.g., vapor to
liquid, liquid to solid, solid to solid) as long as the Gibbs
free energy (AG) of formation consists of a volume and
a surface energy term, i.e.,

AG = —gAp+ s,09*/3

and the rate of addition of atoms to a cluster, 3(g), is
proportional to the surface area of the cluster, i.e.,

h kT

where g is the number of atoms in a cluster, Ap is
the chemical potential difference of an atom in the
nucleating phase and in the nucleated phase, s;. =
(47)/3(3v,)2/3, v, is the atomic volume in the nucleat-
ing phase, o is the specific interfacial surface free energy,
n, is the number of atoms per unit area near the surface
of a cluster, E, is the activation energy of migration
of interfacial atoms from the nucleating phase to the
nucleated phase, k is Boltzmann’s constant, T is tem-
perature, and h is Planck's constant. For nucleation and
crystallization of a~Si, for example, the above form of
the Gibbs formation energy was proposed by Turnbull’
and discussed by Roorda and Sinke.? It should also be
noted that results presented below may be extended to
cases with different forms of the Gibbs free energy of

B(g)
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formation? and different forms of the addition rate, such
as a diffusion limited rate. Binary or multicomponent
nucleation may also be studied accordingly.'

The number of atoms in the critical cluster will be
denoted as g,. The critical cluster is that corresponding
to the maximum of AG(g). The critical region is the
region of clusters, g, — 6 < g < g. + 6, which is defined
as the region of g satisfying |AG(g) — AG(g.)] <
kT, 6§ = 3¢2/°9-1/2, and 6 = s,0/kT. The critical
region consists of a left region, g. — 6 < g < ga,
and a right region, g. < g < g. + 6. To the left
of the critical region is the left outer region where
1 € g < g. — 6; the right outer region is g > g. + 6.
The steepest variation in cluster concentration with size
occurs over the critical region, which can be treated as a
transition layer.'? The approach of singular perturbation
developed for transition layers'® can be employed to
obtain an inner solution in the critical region and a
right outer solution in the right region, and a left outer
solution in the left outer region. Two unknowns in
the inner solution can be determined by matching the
inner solution with the two outer solutions. It should be
noted that the singular perturbation approach developed
for conventional boundary layers cannot be used for
solving nucleation problems since the left outer boundary
condition cannot be directly applied to the inner solution.

The transient cluster flux J(g,¢) valid strictly in the
entire critical region, g. — 6 < g < g. + 6, was the
key result obtained by a singular perturbation analysis

outlined above, as'?
( t-AT>']2}
+exp| —
-

O

560 = (6) exp{ -7

where

Js(9) = Blg)n(9)Z2

and n(g) is the equilibrium cluster number concentra-
tion, Z is the Zeldovich factor, g. = (25,6/3Au)°, 26
is the width of the entire critical region, and 7 is the
characteristic time for a cluster to diffuse over the free
energy barrier of the characteristic scale 4,

62 94331

T= 24. = YA ?)
where 3. = [(g.). Also A is given by
A=g71? =1 +1In[(g)? - 1)6"/?] 3)

It should be pointed out that the solutions obtained by
the approach of singular perturbation are accurate for
AG > KkT.

By substituting ¢ = g. in Eq. (1), the transient
cluster flux at the critical size is,'?

J(got) = J,(g.)exp{— [exp(—Q = ”)} } @

T

from which one can obtain an expression for the total
number concentration of critical clusters formed from
0tot,

t
N(g.,t) E/ J(g.,t)dt
0
1
=3 Jo(9.)7[E1(ae™®) = E1(a)]  (5)
where b = 2/7, a = €?*, and E, is the integral expo-
nential function. Equation (5) reduces to a particularly

simple form,

~ 5 (8 )7IEy(@) + 7+ 2]
Jo(ge)[t — 7e(g.)] 6)

N(g.,t) =

n

when
t> (% +/\)T=‘r¢(g.)+ Lrl-A-E@] O

where v = 0.5772 is Euler’s constant. Equation (6) thus
allows one to identify 7.(g.) as the effective nucleation
time lag associated with N(g.,t),

(o) =54+ E@] ®

iil. TRANSIENT BEHAVIOR OF THE CLUSTERS
AT A DETECTABLE SIZE g4

Ordinarily clusters of the critical size g. are too
small to be detected experimentally. Rather there is a
larger size, g4, which will be termed the detectable size.
To evaluate observations of the time-dependent behavior
of clusters at g4, as evidenced by the accumulated num-
ber concentration of N(ga,t), it is necessary to relate
N(ga,t) theoretically to the parameters of nucleation
theory. The derivation of such a relation is the subject
of this section.

A. The nucleated cluster

Since critical clusters of size g. have an equal
average probability to grow and decay, not every cluster
that reaches size g. will subsequently grow to gg, i.e.,

N(gdv t) ?‘L‘ N[gnt - td(g-vgd)]

where t4(g., g4) would be the time required for a cluster
to grow from g. to g4. In order to interpret N(gq,t) from
nucleation theory and thus to obtain fundamental infor-
mation about nucleation from the observed N(gq,t), it

2092 J. Mater. Res., Vol. 6, No. 10, Oct 1991



94

G. Shi and J.H. Seinfeld: Transient kinetics of nucleation

is necessary to know at which size, go, go > g., One has
the conservation of total clusters,

N(g94,t) = Nlgo,t — ta(go, ga)] O]

that is, every cluster that reaches size go will grow to
ga, with a finite time lag t4(go, ga). Evidently, go > g.
and go will be chosen as a size at which the probability
to grow exceeds that to decay. Figure 1 illustrates the
relationship among g., the critical region, go, and g4.
The time to grow from any size g to size gq, t4(g, ga)
is given by the integrated inverse of the growth rate g,

9d dg
ta(g,94) = / -
g 9

which is a stochastic variable for g near g.. The deter-
ministic part of the growth rate (g, ),'°
B(g) OAG OAG
= ——= —, —— < kT
gm kT &g dg <
is dominant for a size g > g. + §; i.e., outside the right
critical region, a cluster has a much larger probability to
grow than to decay. It is therefore appropriate to take
go > g. + 6, for which the growth rate is

g>g9.+6

(10)

9= gm., @an

from which t4(go, g4) can be obtained directly.

B. Transient kinetics at go and g4

To obtain N(go,t), one has first to obtain J(go,t).
Equation (1) is strictly valid in the critical region g. —
6 > g > g. + 6. According to the principle of singular
perturbation,'s Eq. (1) is also asymptotically correct for
z < 1/e, ie,, g < 2g., where ¢ = §/g. is the small
perturbation parameter.!> An approximate J(go,t) can
be obtained from Eq. (1) for ¢t > (A —In 2zp) 7 with

20 = (go—g.)/6 > 1 as,
t—T‘o
2]

J(g0rt) = Ju(g0)e” exp [— exp(-

Since ¢ = gm for g = g. + 6 and Eq. (1) is valid for
g < 2g., we thus can take the average of the above
upper and lower limits for g as go = —;—(2g. +g.+06)=
(3. +6).

Ja(go)e* * should be exactly equal to J,(g.) since
the steady-state cluster flux is the same at all sizes.!? It
should be noted that the difference (about 10%) between
Jo(go)e*e " and J,(g,) is due to the fact that Eq. (1)
is strictly valid only in the critical region and only
approximately correct at go. The error is not due to the
singular perturbation approach itself; that is, including
higher-order contributions does not improve the accuracy
of the result. Since the steady-state rate of nucleation
is the same at all sizes, and J,(go)e® ~ is the steady-
state rate of nucleation at go, the small error can be
corrected by simply taking J,(go)e*e = Ju(g.) in the
expression for J(go, t). Equation (12) is in a similar form
to that obtained by Shneidman'4 who, however, obtained
a different expression for 7o.

Subsequently, from Eq. (12), one can obtain

N(go,t) = Jo(g.) T[Es(e7 (7)) — Ey(e7/7)]
(14

For sufficiently large times, ie., t > 79 + 7, Eq. (14)
reduces to

N(go»t) = J,(g.)[t - Te(go)] (15)

The effective time lag associated with N(go,t) is then
given by

Te = Te(go) = T[y + mo/T+ E1(e™/)]  (16)
which can usually be approximated as
Te
—=7+7/T an

since E; (e™/™) & 0. Using the fact that the total number
concentration of nucleated clusters is conserved, the
experimentally determined N (gq,t) is equal to the total
accumulated number at g,

where
N(ga,t) = N(go.t - ta) (18)
7o = [A+1n 2z) 7 (13) '
which, for sufficiently large times, t > 7o + 7 + tg,
reduces to
critical N(g,U=N(gg.t-t)
Ml 7 — _ -—
g..?g:.ns number conservation N(ga,t) = Jo(g)(t = ta = 7) (19)
g & d where t4 is given by,
criical nucleated detectable
size size size _ 94 dg
I A ) ta = ta(go.94) = =
FIG. 1. Relationship between the critical size, nucleated size, and the 90 9Im
detectable size. Not every cluster that reaches size g. can reach g4, but 1/3
every cluster reaching size go can grow to gq. Since Eq. (1) is valid in 1/3 g 1/3 (g—d) -1
the critical region'? as well as asymptotically valid for g < 2g., one =T gd - (—0> +1In —g'—T
can obtain N (go.t) from Eq. (1). as shown below. One then can use gx g» 90 / -1
the fact that the total accumulated number concentration of nucleated 9-
clusters is conserved to obtain N(ga.t). (20)
J. Mater. Res., Vol. 6, No. 10, Oct 1991 2093
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The total time lag associated with N(g4,t) defined by
Egs. (19) and (20) can be regrouped as

ta+ 7 2
YT =y -l + EB(e77) + g7

~1/3

+mM”ﬂLwWﬂ+( )
(@ —1/3_]} _( )1/3

ge

2/3 1/3
9o 9o

m{(2), (%) +1 21
+1In [(g.>+ (g.). + } (21

Since E;(e™/7) = 0 and the value of —(go/g.)"/® +
In{(g0/g.)%* + go/g. + 1] varies from 0.1 to 0.01
as go/g. varies from 1.5 to 2, the choice of gy does
not affect the final result for the total time lag 7. + ¢4
associated with N(g4,t).

Equations (14) to (21) enable one to extract the
thermodynamic and kinetic parameters from measured
N(gq.t) and thus also enable one to test nucleation the-
ories. Figure 2 shows the schematic relationship between
N(ga,t) and N(go,t) according to Egs. (14) to (19). The
time for a cluster to grow from go to g4, ta(go,9a)/T
increases with the detectable size r,4/r., as shown in
Fig. 3, where 74 and r, are the radius of a cluster at the
detectable size and critical size, respectively.

The expressions for the transient rate of nucleation
and the accumulated number concentration of nucleated
clusters are functionally different from those obtained
previously by Kashchiev!! for the reasons explained in
Ref. 12.

Se
A

+ In

LIe

C. Effective time lag for nucleation

The effective time lag associated with N(go,t) ob-
tained above, Eq. (16), can be written as

Te (gO) =

= Yy=1=1In6+ E (e™/7) +g71/3

+1In[6'/2(g}/* - 1) (3 + g/%6%/%)]
(22)

where ¥ — 1 —In 6 ~ —2.2146 and E;(e™/") = 0.
Similarly, the time lag associated with N(g,,t) given
by Eq. (8) can be written as

Te(Tgx) =7/2_ 1 +E1(e2z\) +g;—1/3

+1n[812(g1% ~ 1)]

The ratio of 7.(go)/7 and 7.(g.)/7 thus depends on
both g. = (260kT/3Ap)* and 6 = s,0/kT. In contrast,
the effective time lag associated with N(g.,t) obtained
previously by Kashchiev,'!! whose solution has been
regarded as the most accurate,® is a constant, 72/6 7

3)

2094

N(t)

t

FIG. 2. The relationship between total number concentration of nu-
cleated clusters, N(go,t) given by Eq. (14), and at the instrumentally
detectable size g4, N(gaq,t), given by Eq. (18). The dashed lines are
the large time limits of N(go,t) and N{(gq,t), which are given by
Egs. (15) and (19), respectively.

where 7, = 87’/71'2. In our notation, Kashchiev’s re-
sult for the effective time lag associated with N(g.,t)
is 47/3.

Figures 4 and 5 show the ratios of 7.(go)/ and
7e(g.)/T as a function of g, for various values of
the dimensionless surface free energy!’ according to
Eqgs. (22) and (23). The dashed lines in Figs. 4 and 5 are
Te(go)/™ and 7.(g.)/T = 4/3. It is seen from Figs. 4 and
5 that the ratios of 7.(go)/7 and 7.(g.)/ are different
from 4/3, even though no large variation is observed for
6 in the range of 2 to 10.'7

Physically, the problem underlying previous results
for the effective time lag 7.(g.) associated with N(g..t),
as has been discussed,!#*10 is that the time to form the
subcritical cluster distribution is not taken into account
properly. Obviously 7.(go) # 7e(g.) since the time taken
in the formation of the supercritical cluster distribution

J. Mater. Res., Vol. 6, No. 10, Oct 1991
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2 4 6 8 10
Iy/Ts

FIG. 3. The time, t4, given by Eq. (20), for a cluster to grow from
go to the detectable size gq as a function of r4/r.. Here rq4 and r.
are the radius of a cluster at the detectable size and the critical size,
respectively.

from g. to go is not included in 7.(g.). The time for
the formation of the subcritical and supercritical cluster
distribution depends on the height of the Gibbs energy
barrier, and is reflected in the coefficient of .(go)/7.

1:e(go)/‘c
3.5
6: 10
8
’ 6

g/g

FIG. 4. The ratio between the effective time lag 7. associated with
N(go.t) and the characteristic time scale 7 for cluster diffusion over
the energy barrier, 7./7, as a function of the critical size g. for
different values of dimensionless specific surface energy 6,'” as given
by Eq. (22). The dashed line gives 7. /7 = 4/3 obtained previously.'?

To(g.)/T

[

20 40 60 80 100

g/g

FIG. 5. The ratio between the effective time lag 7.(g.) associated
with N(g.,t) and 7, 7. /7, as a function of g. for different values of
dimensionless specific surface energy 6,'7 as given by Eq. (23). The
dashed line is 7.(g.)/7 = 4/3.

"

IV. TIME TO FORM THE FIRST NUCLEATED
CLUSTER IN A GIVEN VOLUME

By setting N(go,t) = 1, Eq. (15) presents a general
formulation for estimating the average time to observe
the first nucleated cluster in a unit volume, t;.

The conventional expression for t¢; has the

form18-2]
f= —— + 7.(g.)
1= J,(g.) e\g»
Replacing 7.(g.) by 7e(go), one has
1
=+ 24
131 NACH) + 7e(g0) 24

which can be easily obtained from Eq. (15) but is not
a universally valid expression to estimate ¢; because of
the assumptions inherent in Eq. (15).

Equation (24) indicates that the time to observe the
first nucleated cluster in a unit volume, ¢, is equal to
the sum of the effective time lag associated with N(go.t)
and the inverse of the steady-state nucleation rate. This
is probably the root of the erroneous concept that the
rate of nucleation is negligible during the period of the
effective time lag for nucleation and consequently that
the stability of amorphous phases is measured by the
length of the effective time lag for nucleation.

J. Mater. Res., Vol. 6, No. 10, Oct 1991 2095
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Since Eq. (15) is valid only for t > 70+ 7, Eq. (24)
can be used to estimate the time to form the first
nucleated cluster only for

Ji(g.) T < 1—1—’; = 2.365 (25)
Using experimental data*> obtained for crystallization of
a—Si at about 900 K, the order of 7 is about 10° s and J,
is of order 10% s™! cm™2. Thus the condition for using
the conventional formula, Eq. (24), is not satisfied in this
case. Instead, Eq. (14) should be used in general. An
estimation based on Eq. (14) gives the time to form the
first nucleated cluster per cm® in the above cited system
to be the order of about 10~ 7.. For other systems, the
above condition can be easily checked if the order of
magnitude of 7 and J, can be estimated.

The time to form the first nucleated cluster in a given
volume as a measure of the stability of an amorphous
phase has also been used to construct models for the exis-
tence of a critical thickness in solid state amorphization
(SSA).18!° For modeling the critical thickness in SSA
of NiZr, Meng et al.'® used 1/J,(g.), and Highmore
et al.’ used 7.(g.) given by Kashchiev as the time
to form the first critical cluster (in a unit volume).
Unfortunately, those applications of t; are invalid for
two reasons. First, the approximation for t; used by
both is inapplicable for nucleation with a long time lag
in NiZr at low temperatures (360 °C)," as discussed
above. Second, neither realized that ¢; is the time to
form the first nucleated cluster in a unit sample (unit
volume or surface), which cannot be used unless one
has specified the critical volume or surface. Also, in all
previous applications no distinction was made between
a critical cluster and a nucleated cluster.

V. CONCLUSION

New results are presented that enable one to extract
fundamental kinetic and thermodynamic information for
nucleation from N(g4,t), the accumulated number con-
centration of clusters at the instrumentally detectable
size, g4, and to test nucleation theories experimentally.
Relationships between the effective time lag for nucle-
ation and the time to form the first nucleated cluster in
a given volume have been developed.
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Analytical expressions for the time-dependent crystallized volume fraction are derived
from new results for the transient rate of nucleation reported in Part I. Conventional
formulations that have been used in interpreting crystallization experimental data and
for assessing the stability of amorphous phases are shown to be large time limits of the
newly derived expressions. An approach for assessing the stability of an amorphous

phase is proposed.

l. INTRODUCTION

Theoretical expressions for the time-dependent crys-
tallized volume fraction allow one to extract kinetic
and thermodynamic parameters of crystallization from
experimentally measured crystallized volume fraction.
This enables one to test nucleation and crystallization
theories and to address technological issues such as
determining the stability of an amorphous phase at a
given temperature, critical in processing of a~-Si films
or layers to obtain high quality SOI (Silicon on Insula-
tor) structures,! and designing processing procedures to
enlarge grain sizes of a polycrystalline film by thermal
annealing.>? Assessing the stability of an amorphous
phase is critical in evaluating materials suitable for
erasable phase-change optical recording.*

The time-dependent crystallized volume fraction, a,
is generally described by the Avrami model,**

t
a(t)=1--exp —kdvd/J(t’) (t—t) at’
0

=1-exp(-ya) O]

where d = 1,2, 3 corresponds to one-, two-, and three-
dimensional growth of a cluster, k; is a geometrical
factor (e.g., k3 = 4n/3, ko = =, and k; = 2 for
a spherical crystalline cluster). V(¢ —t’) is the linear
dimension of a cluster at time ¢ that is nucleated at ¢/,
V' is the growth rate of a crystalline cluster that can be
taken as a constant for an isothermal annealing process,
and yq is the extended-volume.® J(t) is the transient rate
of nucleatior, which is generally taken as J(g.,t). Based
on the difference between J(g.,t) and J(go,t) and the
definition of nucleated clusters as described in Part I, it
is clear that J(go,t) is a more appropriate choice for
J(t) in the Avrami equation.

The expression for the transient rate of nucleation at
the nucleated cluster size go, J(go.t) derived in Part 1,°
will be used to obtain analytical expressions for the time-
dependent crystallized volume fraction based on Eq. (1).

J. Mater. Res., Vol. 6, No. 10, Oct 1991

The conventional Avrami-like expressions that have been
used in interpreting crystallization experimental data
and in assessing the stability of amorphous phases are
shown to be the large time limits of the present re-
sults. Throughout the paper, the crystallization of a—Si
will be discussed as an example of application of the
results, although the results can be applied to other
crystallizing systems.

Il. BULK CRYSTALLIZATION: HOMOGENEOUS
NUCLEATION AND 3-D GROWTH

In this section, we will derive an expression for
a(t) for the case of nucleation occurring in the bulk
and with subsequent three-dimensional growth of
nucleated clusters.

By substituting the expression for J(go,t) obtained
from Part I° into Eq. (1), one obtains

at) =1 — e=¥
[\ Te T\ie= (—q)"
ya—(T—s) {1_4T+24(?) nZ:; ]
2
—-nt/T __ n_t__l n_t
[e 1+ - 7 (7’ (2

where ¢ = e™/" and

3 1/4
=|— 3
=[] ©
which, together with 7, and 7, characterizes the speed
of crystallization. Using expressions for J,(g.) and V’
from Part 1,” Eq. (3) can be rewritten as

9_[ 2

T Ardn,

1/4 1
~-5/1291/8 —9 2/3 4
- J g-e exp[lg g: } *

where rin; ~ 1.
As shown in Fig. 1, 73/7 depends strongly on 6
and g. because of the strong dependence of the rate

© 1991 Materials Research Society 2097
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FIG. 1. Characteristic time scale for crystallization 73 /7 as a function
of g. for various values of 6, as given by Eq. (4).

of nucleation on # and g.,-which are determined by
temperature and the type of material.

A. Comparison with previous results

Equation (2) indicates that the change of the crystal-
lized volume fraction with time depends on 73/7(go),
7.(go)/T and t/7, while a(t) was found to be a function
only of t/7 and 73/7 by Gutzow et al.,® which is the only
previous systematic study of the role of the nucleation
time lag in crystallization. Their previous result, in terms
of the present notations, is

o= () -3 B -3
TR ()

(=1 _(nza? )/
. ES‘;B)_C (n2 /8)(¢/ >] ®)
n=1

Figure 2 compares the predictions of a(t) by Egs. (2)
and (5) for 7./ = 1,2,3 at 73/7 = 1,3. The dashed
lines in Fig. 2 are given by Eq. (5), which predicts that
a(t) is independent of 7. /7. Since a(t) clearly depends
on 7.(g0)/7, Eq. (5) is not capable of predicting c(t)
even qualitatively.

It should be emphasized that although numerical
values of 7. resulting from newly derived and previous
expressions for the transient rate of nucleation are not
similar, as shown in Part I, the functional difference
between those expressions results in significant differ-
ences when used to evaluate «(t). Another reason for
such differences is that the nucleated cluster is properly
defined at go instead of g. as in all previous work. The
role of the nucleation time lag in the overall kinetics

2098

(b)

FIG. 2. (a) Crystallized volume fraction a(t) as a function of time as
predicted by Egs. (2) and (5) for 7. /7 = 1.2,3 at r3/7 = 1; (b) and
at 73 /7 = 3. The dashed curves give the prediction® by Eq. (5).

of crystallization is overestimated or underestimated by
Eq. (5), which cannot be used either as an expression to
fit data of (t) nor as a predictive tool.

B. Large time limit

The conventional expression for fitting observed
a(t) in the case of homogeneous nucleation and three-
dimensional growth has the form,”®

a(t) = l—exp[—<t;n)4] (6)

which, as shown below, is a large time limit of Eq. (2).
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Under the condition of t > /67., Eq. (2) can be
approximated as,

t\* T
~ ( — —4-=
y3~(7’3) (1 4 t)

~ T T AN (AN
~ 3Js(g.)Vt(1 t)_< ) ©)

T3

Equation (6) is obtained by substituting Eq. (7) into
Eq. (1). Thus Eq. (6) is valid only for t 3> V/67..

In Fig. 3, we compare the predictions given by
Eq. (2) and its large time limit given by Eq. (6). In-
dicated on the curves are the values of 7./7. The solid
curves are predictions according to Eq. (2). The dashed
lines correspond to large time limits given by Eq. (6).

Figures 3(a) and 3(b) show that at given conditions
the crystallization is completed within v/67., thus Eq. (6)
is obviously not suitable to predict a(t). Strictly speak-
ing, Eq. (6) may not be used to fit experimental data
on «(t), either, since the shape of the solid curve and
its corresponding dashed curve for a given 7. /7 are not
equivalent. This observation also invalidates the previous
assessment that the role of the nucleation time lag is
simply to displace the origin of the curve of a(t) by 7.
or a fraction of 7..%

As shown in Fig. 3(c), the differences between the
predictions by Egs. (6) and (2) become negligible as
T3 increases, i.e., for a small rate of nucleation and/or
growth rate. There are no data available for 73/7 for
bulk crystallization of a—Si or other materials to allow
us to draw further comparisons.

17.5

10 12.5 15

tt

FIG. 3. Crystallized volume fraction a(t) as a function of time as predicted by Egs. (2) and (6) for 7. /7 = 1.2.3 (a) at 73/7 = 1; (b) at
73/7 = 3, (c)at 7. /7 = 1 and 73/7 = 1. The dashed curves are given by the conventional expression Eq. (6).
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C. Time to form a specified crystallized volume
fraction: stability of amorphous phases
The time, t., taken to form a given crystallized
volume fraction o, in an amorphous phase can be taken
as a measure of its stability. This concept originated in
assessing glass formation in a melt at given conditions.’
a. is frequently taken as 107, which is usually instru-
mentally undetectable. Theoretical prediction thus is the
only possible way to assess the stability of an amorphous

phase in this case. Equation (2) can be used to extract

values of 7., 73, and 7 from observed N(gq,t) and

«(t) and to predict experimentally inassessible quantities

such as the critical time to form a volume fraction
of 107 of an amorphous phase.!® The previously ob-

tained expression,® Eq. (5), and the conventionally used
expression, Eq. (6), cannot be used in such applications.
From Eq. (6), one obtains the time taken to form a

given critical fraction o, < 1,

3In(l-a.
7Js(g.)V3
However, because Eq. (8) is valid only when

) 1/4
EYACRIZ ]
=T, “+ (
1/4
T3> a§1/4(\/6~ I)Te

tc=Tc+[

3ac )1/4
= Te + T3,

(for a, = 1078, ac‘m(\/é

T4/T

14

12
10

1
1
1
1

1

]
!
!
]
!
'
!
1
1
1
U

®

®

—1) = 46) and generally

L s

t/T

FIG. 4. The critical time ¢, taken to reach a given crystallized
volume fraction a. = 10~ as a function of characteristic time for

crystallization (73 ), as predicted by Eqs. (10) (solid) and (8) (dashed).

The values of t. predicted by Eq. (10), shown in Fig. 4,
are all only a fraction of 7.
ill. BULK CRYSTALLIZATION: HOMOGENEOUS

NUCLEATION AND TWO-DIMENSIONAL GROWTH

For homogeneous nucleation in a thin film of thick-
ness | with the nucleated crystalline clusters growing
two-dimensionally, one can obtain an equation analo-

gous to Eq. (1),
t
at)=1—-exp —kszl/J(t’)l(t -t at
0

(11

T3 is not much larger than 467., Eq. (8) is not a valid
expression to calculate t.. Since Eq. (8) indicates that

t. > Te, one often assumes that almost no crystallization
can occur within the period of the effective time lag
for nucleation, and this conclusion is not true. We
will return to this issue in the next section on two-

dimensional growth.
For a. < 1, Eq. (2) can be rewritten as
(9"

a(ty=1-—e"%

oo
4 4 Te 3
= r*—-4— 24
y ac{ 'rz + 'Z:l nin!

[e'"’ - 1+4+nz- %(nz)z]} (10)

where y = 73/ and = = t./7. Equation (10) thus gives
t. as a function of 73, 7., and 7 and should be used to

obtain t..

Figure 4 gives the critical time, t., to form a given
small volume fraction (o, = 107%) as a function of 3.
The solid lines give the prediction from Eq. (10) and
dashed lines are according to Eq. (8). The numbers on
the curves are the values of 7. /7. Obviously, for a wide

range of 73, the large time limits given by Eq. (8) cannot
be used in predicting the stability of amorphous phases.

=1 - exp(—y2)
By substituting J(go,t) obtained in Part I for J(t)

in Eq. (11), one obtains,

t Te 733
we(5) 13550 S
i (o) o
where
3 1/3
= (wvzug.)l) 43)

Equation (13) can be rewritten as
1/3
1
g <————2 ) 9:4/99”6exp(+—993/3>
T 9
(14)

Vrringl
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From experimentally obtained®*!! curves of a(t) and
the accumulated grain number concentration N (t), one
finds that 7,/7 is about 0.5 to 2 for crystallization of
a-Si at about 900 K. Thus 7, /7 is about 0.5 to 6, since
Te/7 is usually in the range of 1 to 3, as shown in Part I.

In the case of homogeneous nucleation and two-
dimensional growth, the conventionally used expression

to fit the measured a(t) is in the form,>>!112
t—Te

aomrom] (52)]

which can be shown to be the limit of Eq. (12) for
t > /3 .. Figure 5 shows a(t) given by Eq. (12)
(solid curves) and by Eq. (15) (dashed curves), where

(15)

the values of 7. /7 are indicated. As in the 3-D case, the
conventional expression, Eq. (15), cannot be used as a

predictive tool.
The critical time taken to reach a given fraction

a.(< 1), from Eq. (15), is,

‘= 3a. 3 _ 1/3
c=Te+ (m) =Te + To0, (16)
which is valid only for ¢ 3> /37, i.., for

(17)

> a;”“(\/i— 1)78 =737,

Since experimental data®*!! show that 7, is much smaller
than 737, Eq. (16) cannot be used to predict ¢.. Thus
the concept that the effective time lag can be regarded
as the time period during which no nucleation and
crystallization can occur is usually incorrect. Instead,
t. should be estimated from the following equation

obtained from Eq. (12),
3 _ 3 Te 2 — ("q)n
Y —ac[:c —3?1‘ -—62 )

n=1

(e™ -1+ nz)] (18)

where y = 7p/7 and z = t /7.
Figure 6 shows the critical time ¢, to reach a crystal-

lized volume fraction o, = 107 predicted by Egs. (18)
and (16). It is evident that the conventio:::! expression,
Eq. (16), can overestimate greatly the time taken to reach
a.. Figure 6 also clearly shows that the critical time to

reach a. is usually only a fraction of 7. even for 7o /7

as large as 25.

T,/T
25 1 2 1] 3 i 1]
] ) )
) ) ()
) 1 )
20 H ! !
1 1 1
] 1 1
] 1 )
15 : ! H
1 2 3
) ] )
) ]
10 ] i
1 1 )
1 ] [
1 ] )
5 i H !
: ' ! oo.=10°
] 1 1
H : !
1 2 3 2
t/T

(b)

FIG. 5. (a) Crystallized volume fraction a(t) as a function of time
as predicted by Eqgs. (12) and (15) for 7. /7 = 1.2.3 at o /7 = 1;
(b) and at 7o /7 = 3. The dashed curves correspond to Eq. (15).

FIG. 6. The critical time t. taken to reach a given crystallized
volume fraction a. = 10~% as a function of characteristic time
for crystallization (72), as predicted by Egs. (18) (solid) and (16)
(dashed).
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The above results for volume nucleation with 3-D or
2-D growth can also be extended to the cases of surface-
induced crystallization with surface nucleation and 1-D
or 2-D growth of nucleated clusters.

IV. CONCLUSION

Theoretical expressions for the time-dependent
crystallized volume fraction are presented using the new
expression for the rate of nucleation. Conventional
formulations in interpreting crystallization experimental
data and for assessing the stability of amorphous phases
are shown to be the large time limits of the present
results and not generally applicable. Our results enable
one to interpret experimentally obtained c(¢) and thus to
extract crystallization information from the data. Newly
derived formulations for a(t) also enable one to assess
the stability of an amorphous phase at given conditions.
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Abstract

Closed-form analytical expressions are obtained for the transient
cluster size distribution function, the cluster flux and the number den-
sity of grains above the critical size of nucleation. These new results
provide the basis for interpreting kinetic nucleation measurements at
the instrumentally detectable size and enable one to extract the fun-
damental information on nucleation processes in amorphous materials.
It is also shown that previous results used in interpreting transient
nucleation measurements are generally invalid.
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1 Introduction

The time dependence of the number density of grains, N(gg4,t), and the
time dependence of the grain size distribution, f(g,t), g > g4, are signif-
icant measurements in nucleation experiments. Here g is the number of
atoms or molecules in a cluster, and g4 is the instrumentally detectable size.
Such kinetic measurements provide insight into the fundamental mechanisms
involved in nucleation and growth and provide an opportunity to obtain im-
portant fundamental information on the nature of the nucleation and growth
processes. Various instrumental techniques have been available to make reli-
able kinetic measurements such as X-ray diffraction and Raman scattering.!
The high resolution modern electron microscopy is more suitable for the
single cluster studies.

However, the data evaluation and the verification of nucleation models?
against such measurements turn out to be difficult and have limited the
usefulness of data from the the various techniques.

One obvious difficulty is that previous theoretical studies have been able
only to predict the behavior at the critical cluster size for nucleation, g.
and gy is usually much smaller than that which can be detected, g4. There
is no physically consistent expression for N (g4,t), which can be compared
directly with the measurements.

The relation

N(gd7t) = N[g*at - td(g*agd)] (1)

and its variants have often been proposed to obtain N (gg,t), where t4(g«, 94)
would be the time needed for a cluster at g« to grow to gq. The underlying

assumption in Eq. [1] is that the number density of grains measured at g,
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N (g«,t), is conserved over the time to grow from g. to g4 and is equal to
the number density measured at gq, N(g4,t). However, Eq. [1] is physically
invalid. Since critical clusters of size g, have an equal average probability to
grow and decay (for a symmetrical barrier), not every cluster that reaches
size g« will subsequently grow to gq4.

In previous work, we have introduced the concept of a nucleated cluster,
which is defined as the smallest cluster for which the probability to grow is
much larger than to decay.® We have shown that the nucleated cluster size
go should satisfy

9o > g« + 6, )

where § is the half-width of the critical region defined by the difference in

free energy about the critical size,

[W(g) = W(gs)] < kT (3)
and thus
_ 1w, _, /2
“5;;51‘3&5‘] lg=g. - (4)

However, the exact size of gy remains to be determined. Our stochastic sim-
ulations of nucleation indicate that go can be taken g, + 1.16. We proposed
go = 1.5g. previously.3

The critical region is also the region where thermal fluctuations play the
dominant role in causing clusters to cross the nucleation barrier. § is related

to the Zeldovich factor Z by®

1 _
6= = =321 (5)

for a free energy expressed in the general form*

W(g) = —gAp+ s10g%/3, (6)



109

where g. = (2510/3Ap)3, 8 = s10/kT, Ap is the chemical potential differ-
ence of an atom or molecule in the amorphous phase and in the crystalline
phase, o is the specific interfacial surface free energy between the two phases,
s1 = (4m)'/3(3v1)?/3 for a spherical cluster, v; is the crystalline atomic vol-
ume, k is Boltzmann’s constant and T is temperature.

According to the definition of gg, almost all clusters at go will grow.

Thus,? one might suggest

N(g4,t) = N[go,t — ta(go, 94)] (7)

where t4(g«, gq) is the time needed for a cluster at go to grow to gq and
N (go, t) is obtained in Ref. 3. As will be shown, Eq. [7] is invalid in general
and is strictly only correct for steady-state nucleation . Even though the
cluster of size gg can grow to gg, the time t4(go, 94) is a stochastic variable
because thermal fluctuations still play a non-negligible role in determining
the growth of the cluster.

A problem common to all previous work that has the aim of obtain-
ing N(gq,t) is that N(gg,t) is obtained in a manner similar to Eq. [1] or
Eq. [7]. No result for the grain cluster size distribution function and the
flux J(gq,t) have been reported. The purpose of this work is to provide
such closed-form expressions and represent a continuation of our recent ef-
fort to systematically study the data interpretation problems in transient
nucleation and crystallization kinetic experiments.3® For example, nucle-
ation in amorphous materials may exhibit a considerable transient period,
from several seconds to hours, depending on temperature and materials,
and an understanding of the transient kinetics of nucleation is necessary to
be able to perform data extraction and model verification. The procedure

we will present is extendable to other forms of W(g) and £(g) than the



models considered in this work. Our results presented will facilitate testing
nucleation models and experiments by comparing f(gq4,t) and N(gq,t) di-
rectly with kinetic measurements at the instrumentally detectable size. For
a given nucleation model, one can obtain unknown material properties such
as the specific interfacial free energy by fitting the presently obtained f(gq4,t)
and/or N(gg4,t) with the relevant kinetic data. Thus our work will lay the
basis for one to eventually control or use the initial stage of nucleation in

processing devices and for new materials developments.

2 New Approach for Concurrent Nucleation and
Growth

2.1 Kinetic Equation for Nucleation and Growth

The kinetic equation valid for the nucleation and growth processes can be

written as,5

0f(g,t) _ _98J(g,%) 0f Bf oW

2 o) + gy ®)

The term ;%[,B(g)%ﬁ] represents the contribution of the random thermal
fluctuations to the evolution of f(g,t) and plays a critical role in nucleation
of clusters. It is important to note that validation of the models for W(g)
and £(g) is one of the important tasks for obtaining f(g,t), g > ga and
N(gg4,t). The approach employed subsequently can be applied to obtain
the transient nucleation kinetics for other models for W(g) and £(g), even
though we will limit ourselves to considering W (g) consisting of a surface
energy term and a volume term, that is, Eq. [6] and ((g) g%/3. We will

also limit ourselves to the case of isothermal annealing.



2.2 Ouwur Previous Approach and Results for g < g

By identifying € = §/g« as the small parameter of the problem, we obtained”
a reduced equation (first-order) valid in the the left outer region, g < g« —9,
and right outer region, g > g« + 8, and a simplified equation (2nd-order) in
the critical region, g« — § < g < g« + 6. By treating the critical region as a
transitional boundary layer and using the appropriate singular perturbation
approach, two unknowns associated with the inner solution were determined
by matching the expression for the inner solution with the two known outer
solutions. In doing so, we have obtained the transient cluster size distribu-
tion function, cluster flux and the accumulated cluster concentration in the
critical region.”

The singular perturbation approach used in large part is a natural ex-
tension of the earlier analysis of the nucleation problem by Zeldovich and
others.% In particular, Feder et. al.’s graphical steady-state solution is just
a qualitative version of the more systematic approach.® Our approach is
sufficiently general to solve many complex nucleation problems such as nu-
cleation in the presence of clusters sinks,? high-dimension barrier-crossing!?,
nucleation in spatially inhomogeneous systems!! and time-dependent problems.”

In summary, no results for the cluster size distribution, the cluster flux
and the accumulated number concentration have been obtained previously

for g > go by directly solving Eq. [8], without imposing the conservation of

number density of grains, expressed by Eq. [7] and its variants.

2.3 New Approach: Direct Solution for g > go > g.

Nucleation and growth can be described by a single equation, Eq. [8], subject

to proper boundary conditions. Eq. [8] has not been solved previously in a



case where nucleation and growth proceed simultaneously.

By introducing the same small parameter €, the order of Eq. [8] valid
for g >> g. can be reduced by one and our previously obtained f(g,t) at
go can be taken as the only boundary condition needed to solve the reduced
equation. In doing so, we can solve for the cluster size distribution function
and the cluster flux valid to any larger size as long as the evolution of the
cluster size distribution results from the mechanism of growth alone. Of
course, we finally can obtain N (g4,t) from J(g,1t).

This approach on the surface appears inconsistent with that employed
to obtain the solution in the critical region? as briefly outlined above, since
the solutions valid in the critical region are obtained on the basis of the fact
that the right outer solution for f(g,t)/n(g) asymptotically approaches zero
at large sizes. In fact our previous approach for obtaining the solution in
the critical region is physically reasonable; f(g,t) in the critical region is
not affected directly by the cluster growth at far larger sizes and the present
approach proposed above relies on the fact that the evolution of the cluster
size distribution starts from that at the nucleated size.

Introducing z = ¢g/g«, Eq. [8] can be written as,

m—2/33f($,t) _ 9 f(z,1) af(x’t)[ie2—3(1—x—1/3)]—[x—4/3+2(1—3:—1/3)],‘.

ot 2 0z? Jr 3z

(9)
Since 3kT/W (g.) = €2 << 1, and the derivatives of f with respect to g for
g > go are finite, the terms containing €2 in Eq. [9] can be neglected. Thus
the reduced kinetic equation valid for g > gg is

Tx_2/38f(aa;,t) - 31— $—1/3)g_£ —[e3 + %(1 — 27135, (10)



Our previously obtained f(g,t) at go is the boundary condition,’

flg,t) = —n(g)erfC[ ), for g — go,

(11)

where 7 = 62/26(g«) and A = g_l/3 -1+ 111[01/2(5)1/3 —1)], and n(g) =
ny exp(—W(g)/kT) and n; is the number density of atoms in the nucleating

phase.

3 Nucleation and Growth in Amorphous Mate-
rials in the Case of Isothermal Annealing: An-

alytical Results for for g >> g,

3.1 Cluster Size Distribution Function

Egs. [10] and [11] can be Laplace transformed to

Prf(a,s) = =31 - s 2LEED iy 2 gy,

and
f(zg,s) = %n(mo)e"’\”(sr)! i”erfc[sCO —1

using f(z,s) = [5° f(z,t)e™*'dt.
Egs. [12] and [13] admit the following solution for f(z,s),

]

1/3

F2,5) = S, 5) exploralf - 2N ELg =Ly it =1

zo

which gives the grain size distribution valid for g > go > g«,

13, _
Flo1) = () ()L Dente 2= + exp(-2=)

where
23 -1

tf = AT =+ 7'[11}1/3 - .’173/3 +1Il W—]
1:0 -1

(12)

(13)

(14)

(15)

(16)



f(z,t) given by Eq. [15] reduces to the known result at z = zg, f(zo, t).
Eq. [15] represents the first result reported for the grain size distribu-

tion valid at g > gg, for phase transformations governed by nucleation and

growth.

Relaxation of Grain Size Distribution Function

The time t;(g) is that needed for f(g,t) for g > go to relax to its steady state
value. We see from Eq. [16] that this time is the sum of the characteristic
time to form the cluster size distribution in the critical region, A7, and
the time for a cluster to grow from gy to g, t4(go,9), determined by the

deterministic growth rate,’

0
im = -2 D), a7)
For t >> ty,
— g3 -
flo) = £.lg) = “EU DA I e 0 19)

Egs. [15] and [18] for g > go indicate that the evolution of the cluster

distribution over time is not conservative, that is that f(g,t) # f[go,t —

td(g()a g)]

The cluster size distribution function, Eq. [15] normalized by its steady-
state limit, Eq. [18], is shown in Fig. 1 for t;/7 = 2,5, 8.
Asymptotic Power-Law Cluster Size Distribution Function

Eq. [15] predicts a universal grain size distribution function in phase trans-

formations governed by nucleation and growth. For g > gg and t >> ty, Eq.



[15] can be written as,

f(g) = const. :1:_1/3($1/3 - x(l)/?’)"'l x g_2/3 =r2 (19)
- where r is the radius of a cluster. It is shown that in the region r > r( there
Is a universal power-law asymptotic limit f o r”, whose exponent depends

only on the mechanism of atom migration in forming a cluster, i.e., G(r).

We present the universal size distribution function in Fig. 2.

3.2 Transient Rate of Nucleation

The cluster flux valid at any large size, g > gg, can be obtained from J(g,t) =
ﬂ(g)%gt + 8L Brom Eq. [15], we obtain

kT 9g
J(g,t) _ n(go)y/m 3 1/3,1/3 _
()~ nfg) &0 G0 TV (20)

ez(lj/:j(l - :v(l)/g)(2a:1/3 -1)
6:1:4/3(11:1/3 —- 1)2

]erfc[zoe_ 1 + exp(-—--——_7-_——)]

+ expl- exp(-2" L) — exp(- ) - L=,
where
ti =ty +7In220 > t5, 20 = (90— 9x)/6 (21)
and
t1 =tf — 7ln| 3 1) ] < ty. (22)

ezé/3(w(l)/3 -1)
To a good approximation, n(go)/n(g«) = exp(z3), and erfc(z) ~ exp(—=22)/(v/72),

Eq. [20] can be accurately rewritten as

%{;_3 = exp[—exp(— t_th) - eXP("t —th) e —;tl] (23)

zo— 1

t—t; t—t;
—— exp[— exp(—2——) — exp(— —)].
$0—1+6exp(—%) [ ( T ) T ]

The second term in the first bracket on the RHS of Eq. [20] can be neglected

as it is much smaller than the two other terms.



Relaxation of Cluster Flux

For t >> t5, Eq. [23] reduces to

t—t; t—1

J(g,t) = Js(gx) exp[—exp(— )I[1 + exp(- )] (24)
and since t5 > t1, Eq. [23] can be approximated as,
T(9,0) = Tu(g=) expl—exp(~ ) (25)
Eq. [25] also can be obtained by using
J(g,t) = Jlg0,t — ta(g0,9)], 9> go- (26)

It is clear that Eq. [25] is only the large time limit of the more complete
result Eq. [23]. The preservation of the cluster flux over time, i.e., Eq. [26],
is established only after the cluster size distribution has attained its steady
state, since the condition for reducing Eq. [23] to Eq. [25], is t >> t; while
tj > ty.

Eq. [23] is compared with Eq. [25] in Fig. 3 for ¢ty = 57 and g =
g + 1.16. The cluster flux obtained by using Eq. [25] can significantly
deviate from its true value predicted by Eq [23].

3.3 Time Dependence of Number Density Measured at Res-
olution Limits of Instruments

We can obtain the accumulated number concentration at the instrumentally

detectable size g4 from Eq. [23],

1 @7

)

¢ t—t t—1t; t—1
N(gat) = Ju(g) [ fexpl=exp(~2"=) - exp(- =) -
0 T T T
zg—1
zg— 1+ eexp(—t—;—tf-)

t—1
exp[— exp(—2——:r——£) — exp(—



which shows that in general N(g4,t) # N{go,t — t4(g0,94)]- Thus the as-
sumption underlying all previous work in obtaining N(g4,t) using Eq. [1]

and Eq. [7] is not valid.

Asymptotic Results

For t >> ty, Eq. [25] can be used to obtain N(gg4,1),

N(gd7t) _ —t;rti _ ej/r
Dt ) _ gy (o= 5) - ma(et/, (29)

which also can be obtained® by using the conservation of number concentra-
tion at go and g4. Thus the number conservation of clusters between g and
go is only correct after the cluster concentration at gg has reached a steady
state.

For a still larger time limit of ¢ >> t;, we obtain from Eq. [28],
N (g4 t) = Js(g*)[t - Te(gd)] (29)

which is a well-known relation. The slope of N(gq4,t) vs. t at large time
limit is the steady-state rate of nucleation and the intercept of N(gq,t) vs.

t with the axis of ¢ gives the effective time lag associated with N(gg4,1t),
Te(9a) = 77 +t; + TE1(e%/7), (30)

where v = 0.5772 is Euler’s constant. Our derivation of the relation Eq.
[29] removes the uncertainty associated with using Eq. [29] in practice by
giving explicitly the condition ¢ >> t; under which Eq. [29] is obtained.
That is the linear relationship between N(ggq,t) and time t is established
only after the cluster flux has attained its steady state. Fig. [4] presents the

comparison between Eq. [27] and the asymptotic results Egs. [28] and [29].



Eq. [28] deviates obviously from the true time dependent behavior given by
Eq. [27]. Eq. [29] asymptotically approaches Eq. [28] but not Eq. [27],
since Eq. [29] is derived as a direct large time limit of Eq. [28] while Eq.
[28] is not the direct large time limit of Eq. [27]. Instead, Eq. [28] is derived
by using Eq. [25], the large time limit of Eq. [23]. This also explains why
the deviation between Eq. [28] and Eq. [27] seems to be constant with time.

The slope of N(gg4,t) is taken as the steady-state rate of nucleation,
from which nucleation models are often tested and the energy barrier for
nucleation and its temperature dependency are obtained. The arbitrary
assignment of the slope of N(gg4,t) can lead to error. With the proper
expression for N (gq4,t), the desired approach is to fit the whole time course

of N(gq4,t) to obtain the unknowns.

4 Summary and Conclusion

By solving directly the governing nucleation and growth‘ equation for a nu-
cleation energy barrier W(g) consisting of surface and volume energy terms,
and an addition rate of atoms to a cluster, 8(g) o g2/3, we have obtained
the following new results:

1. the cluster size distribution function, f(g,t), valid at g > go

2. the cluster flux, J(g,t), valid at g > go

3. the time dependence of grain number density measured at the instru-
mentally detectable size, N (gg,1).

New results provide the basis for nucleation kinetic measurements and
enable one to extract unknown material properties and thus fundamental
information for nucleation processes from the data. New results also suggest

a simpler and a more reliable strategy in conducting nucleation experiments.



Our approach can be used to obtain the relevant expressions correspond-
ing to different models for W(g) and ((g). Since the time dependencies of
f(g,t), J(g,t) and N(gq,t) are sensitive to both W(g) and B(g), results
obtained provide an excellent test of the nucleation model.

The new results show that the form for the cluster flux and cluster
number concentration measured at gg are preserved over time only after the
establishment of the steady-state cluster size distribution at gg. Previous

results for V(g4,t) obtained from N(g,t),g9 = g«, go are not correct.
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