
Chapter 5

Computational Examples

This chapter demonstrates through several computational examples the efficiency, high-

order accuracy, and overall performance of the two- and three-dimensional methods dis-

cussed in this text. These examples include scatterers for which an exact solution is known,

fully inhomogeneous scatterers (non-constant m) and scatterers containing geometric singu-

larities such as discontinuities, corners and cusps. This thesis has focused on the high-order

accuracy of these methods. Hence, in each example, we have attempted to show the conver-

gence of the method over a fairly wide range of discretizations. This becomes increasingly

difficult to accomplish as the size of the scatterer (as measured in interior wavelengths)

increases because of the additional memory and linear solver iterations required. Therefore,

these examples do not accurately portray the full range of our computational methods.

Despite this fact, however, the examples in this chapter are similar in size to the existing

examples in the electromagnetics literature. The articles [41] and [51] are perhaps the most

recent results that we have found. In [41], published in 1996, the authors proposed a three-

dimensional method for scattering by inhomogeneous media. They computed the scattered

field from a layered sphere with interior wavelength diameter ≈ 2.7λ as well as from a

dielectric cube of less than one interior wavelength on a side. In [51], published in 2001, the

authors proposed a modification to the CG-FFT method in two dimensions to make use of

the non-uniform FFT. It appears that the largest scatterer they consider is a 13.3λ× 13.3λ

rectangular cylinder, where λ is the incident wavelength. However, in their example, the

wave speed is faster inside the inhomogeneity than it is outside. Hence, it appears that

the rectangular cylinder has approximate interior wavelength dimensions of 8λ × 8λ. The

examples we present in this chapter are of comparable size while at the same time achieving

very high accuracies for much more complicated scatterers.
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5.1 Two-Dimensional Computational Examples

In the following sections, we illustrate the performance of the two-dimensional algorithm for

a variety of scattering configurations. First, in Section 5.1.1, we seek to verify the conver-

gence rates predicted by Theorem 2.7. We first illustrate the convergence of the method for

two scatterers that admit analytical solutions. We then verify that the algorithm achieves

the predicted convergence rates for three scatterers of differing regularity. In Section 5.1.2,

we demonstrate the convergence of the radial integration scheme described in Section 3.1.2

for both a smooth and a discontinuous scatterer. Finally, in Section 5.1.3, we demonstrate

the performance of the method with and without the preconditioner for three rather com-

plex scatterers containing inhomogeneities, discontinuities, corners and cusps. To illustrate

the performance of the preconditioner, we present the computational time and the number

of GMRES iterations required to compute the solution with and without the use of the

preconditioner for a few of the runs in each of these examples.

In each case, we compute the near and far fields produced under plane wave incidence,

ui(x, y) = eiκx. To compute the maximum error in the near field, we interpolate the

solution computed by our method to an evenly spaced polar grid. On this grid, we compute

the maximum absolute error as compared with either the analytical solution (when it is

available) or the solution computed with a finer discretization. The maximum error in the

far field is computed similarly by interpolating to an evenly-spaced angular grid. The results

for each example are given in the accompanying figures and tables. The figures include

visualizations of q(x) = −m(x) = n2(x) − 1 and the computed near field intensity. The

tables provide values for a subset of the following: the number of modes in the approximate

solution M , the number of radial points Nr, the total number of unknowns N = O(MNr),

the approximate memory required, the number of GMRES iterations used, the wall-clock

time required and the maximum absolute errors in the near and far field denoted by εnfu and

εffu , respectively. Additionally, in many of the tables the ratios of the errors at successive

levels of discretization are listed to illustrate the convergence rates. At times the accuracy

in the computed solution reaches the accuracy of the analytical solution, the accuracy of

the radial integration or the tolerance of the linear solver. In such a case, we observe no

improvement in the error of the solution as we refine the discretization and hence, to indicate

a converged solution, we write “Conv.” in the ratio column.
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5.1.1 Verification of Predicted Convergence Rates

Our main goal in this section is to verify the convergence rates proved in Theorem 2.7. We

also seek to demonstrate the O(M logM) complexity of the angular integration method.

Theorem 2.7 does not actually address the convergence of a numerical method, but rather

focuses on the convergence of the analytical solution of an approximate integral equation to

the true solution of the scattering equation (1.6). Hence, in this section, we are primarily

concerned with the convergence in the number of Fourier modes M , rather than the con-

vergence in the number of radial points (which is discussed in Section 5.1.2). Therefore,

we fix the number of radial points Nr at a sufficiently large value and we further hold the

number of GMRES iterations fixed at a value that produces a sufficiently accurate solution

of the linear system. This isolates the dependence of the times and errors on M and allows

us to confirm the computational complexity and the predicted convergence rates. We note

that all of these results were computed using a 700MHz Pentium III Xeon workstation with

3GB of RAM.

We first compute the scattering by two obstacles for which an analytical solution ex-

ists: (1) a cylindrically symmetric scatterer centered at the origin with piecewise-constant

refractive index, and (2) a disc centered at (1λ, 0) with constant refractive index. Closed-

form solutions for such piecewise-constant, cylindrically symmetric scatterers are found by

separation of variables.

Perhaps the best indication of the difficulty of a scattering problem is given by its size in

terms of interior wavelengths, since the numerical method must resolve these wavelengths

sufficiently to provide any accuracy. For example, a scattering disc with refractive index n

has a diameter of nd interior wavelengths, where d is the diameter in incident wavelengths.

The results for the first example are presented in Figure 5.1 and Table 5.1. Here the

inner disc has a radius equal to 1λ and a refractive index n = 2; the outer annulus has an

outer radius of 2λ and a refractive index n = 3. Thus, in terms of interior wavelengths,

this scatterer has a diameter of 10λ. For this simple geometry, the preconditioner provides

a nearly exact inverse. Hence, we require only two GMRES iterations to obtain a residual

nearing machine precision. One may also observe that the method obtains an exponential

convergence rate. This occurs despite the discontinuity in the refractive index because,

at each radius, the refractive index is a C∞ function of the angular variable. Finally, we
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
15 136 4K 3M 2 3.05s 8.50e-2 4.28e-2
30 136 8K 9M 2 3.83s 1.13e-9 7.52e+7 5.46e-13 7.83e+10
60 136 17K 14M 2 5.46s 1.68e-12 6.73e+2 4.97e-13 Conv.

Table 5.1: Convergence Rate for Radially Layered Scatterer – Diameter = 4λ

M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
15 544 17K 10M 14 7s 6.22e-2
30 544 33K 18M 14 13s 5.95e-3 10.45 1.58e-3 18.80
60 544 66K 40M 14 25s 1.13e-3 5.27 1.83e-4 8.63
120 544 131K 78M 14 49s 2.83e-4 3.99 2.27e-5 8.06
240 544 262K 168M 14 99s 5.99e-5 4.72 2.84e-6 7.99
480 544 524K 300M 14 194s 6.65e-6 9.01 3.56e-7 7.98
960 544 1047K 633M 14 386s 1.99e-6 3.34 4.42e-8 8.05
1920 544 2093K 1332M 14 808s 2.75e-7 7.24 4.21e-9 10.50

Table 5.2: Convergence for Off-Center Disc – Centered at (1λ, 0), Diameter = 1λ

observe that the memory depends linearly on the number of unknowns and the the time

required is consistent with an O(M logM) complexity.

The results for the second example are presented in Figure 5.2 and Table 5.2. Here the

disc is centered at (1λ, 0), has a diameter of 1λ and a refractive index n =
√

2. In terms

of interior wavelengths, it has a diameter of
√

2λ. As opposed to the previous example,

however, we do not observe an exponential rate of convergence despite the fact that the disc

has a constant refractive index. Since the disc is not centered at the origin, the refractive

index at each radius is actually a discontinuous function of the angular variable. Since

the analytical solution in this case is known, the off-center disc provides direct verification

of the predicted convergence rates for a discontinuous scatterer. The table shows excellent

agreement with the predicted third-order convergence in the far field. The convergence in the

near-field is less steady, but seems consistent with the predicated second-order convergence

in the near-field (see Theorem 2.7). As in the previous example, we observe that the time

and memory scale appropriately with M .

We now illustrate the convergence of the method for a series of three simple scatterers

of increasing regularity. In each case, m(x) = 1− n2(x) is given in the following form.

m(r, θ) =

 −3
2 −

1
2π

∑
|`|≥1

(
i
`

)k+2
ei`θ, for 5

2λ ≤ r ≤ 5λ

0, otherwise.
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.1: Visualizations for Radially Layered Scatterer – Diameter = 4λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.2: Visualizations for Off-Center Disc – Centered at (1λ, 0), Diameter = 1λ
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 68 8K 15M 71 27s 3.24e-2 2.07e-2
120 68 17K 30M 71 52s 4.69e-3 6.91 1.95e-3 10.62
240 68 33K 62M 71 109s 6.23e-4 7.53 2.32e-4 8.41
480 68 66K 120M 71 228s 9.71e-5 6.42 2.87e-5 8.08
960 68 133K 238M 71 458s 1.04e-5 9.34 3.53e-6 8.13
1920 68 238K 483M 71 898s 1.45e-6 7.17 3.83e-7 9.22

Table 5.3: Convergence Rate for Discontinuous Scatterer – Diameter = 10λ

Note that for each integer k, this series becomes a sine or cosine series with real coefficients.

If k = −1, m is discontinuous and piecewise smooth as a function of θ. Further, for

any integer k ≥ 0, m ∈ Ck,α ∩ C∞pw as a function of θ. The three examples that follow

illustrate the convergence of the method for k = −1, 0, 1. Because these scatterers are

fully inhomogeneous, their size in terms of interior wavelengths is not well defined. Note,

however, that each scatterer has a reasonably large incident wavelength diameter of 10λ.

The results for k = −1 are found in Figure 5.3 and Table 5.3. The predicted second-order

convergence in the near field is exceeded and the third-order convergence in the far field is

readily observed. The results for k = 0 are found in Figure 5.4 and Table 5.4. In this case,

the predicted third-order convergence in the near field and fifth-order convergence in the

far field are both matched quite precisely. This example clearly illustrates the interesting

jump in the far field convergence rate from third-order for a discontinuous scatterer to

fifth-order for a C0,α scatterer. Here the far field converges to the precision of the solution

before the near field does. Hence, the last two runs result in no improvement in the far

field accuracy. Finally, the results for k = 1 are found in Figure 5.5 and Table 5.5. In this

case, the predicted fourth- and seventh-order convergence rates in the near and far fields,

respectively, are obtained if not exceeded. However, because convergence is so rapid, it is

difficult to observe a definite pattern, especially in the far field convergence. In each of these

cases, we note that the memory and time scale appropriately with M . Finally, we mention

that all of these results required less than 20 minutes and less than 700MB of memory.

5.1.2 Convergence in Radial Integration

In this section, we demonstrate the high-order convergence of the radial integration method

described in Section 3.1.2. The degree of accuracy in the radial integration is determined

by the number of subintervals Ni and the number Nc of Chebyshev points per subinterval
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.3: Visualizations for Discontinuous Scatterer – Diameter = 10λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.4: Visualizations for C0,α Scatterer – Diameter = 10λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.5: Visualizations for C1,α Scatterer – Diameter = 10λ
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 102 12K 18M 44 23s 9.33e-4 7.06e-6
120 102 25K 34M 44 50s 8.91e-5 10.47 1.30e-7 54.31
240 102 50K 68M 44 105s 1.15e-5 7.75 3.86e-9 33.68
480 102 99K 138M 44 212s 1.46e-6 7.88 1.17e-10 32.99
960 102 198K 275M 44 565s 1.83e-7 7.97 1.73e-11 Conv.
1920 102 396K 548M 44 1136s 1.98e-8 9.24 1.85e-11 Conv.

Table 5.4: Convergence Rate for C0,α Scatterer – Diameter = 10λ

M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 102 12K 19M 54 36s 2.16e-5 7.33e-9
120 102 25K 39M 54 72s 4.81e-7 44.91 1.06e-11 691.51
240 102 50K 75M 54 160s 1.05e-8 45.81 4.50e-12 Conv.
480 102 99K 150M 54 331s 4.76e-10 22.06 4.52e-12 Conv.
960 102 198K 305M 54 561s 1.36e-11 35.0 4.61e-12 Conv.
1920 102 396K 609M 54 1172s 1.94e-12 Conv. 4.72e-12 Conv.

Table 5.5: Convergence Rate for C1,α Scatterer – Diameter = 10λ

used to approximate I`(r) as well as the number Ng of Gaussian points used to compute the

moment integrals (3.9) and (3.10). As mentioned in Section 3.1.2.2, we have found Ng = 8

to be sufficient in all of the examples, i.e., an increase in Ng does not lead to any increase in

the solution accuracy. In this section, we examine the dependence of the convergence rate

on the choice of Nc and Ni.

We demonstrate the convergence in two examples: 1) a disc with constant refractive

index centered at the origin, and 2) a disc with constant refractive index centered away

from the origin. As mentioned in the previous section, given an incident plane wave, the

value of the scattered field can be computed analytically for these simple scatterers. For

each set of values Nc and Ni, we compute the maximum near and far field errors. We choose

the number of modes M and the number of angular points Nθ sufficiently large so that these

errors are dominated by the error in the radial integration. The value of Nc determines the

order of the radial integration and is held fixed while Ni is increased to obtain the desired

accuracy in the computed solution. In these examples, we choose relatively small values of

Nc, for which the convergence rates are easily observed. In practice, we use significantly

larger values of Nc.

The results for the disc centered at the origin are given in Table 5.6. This disc has

a diameter of 2λ and a refractive index n =
√

2. We fix the number of modes M = 30
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Ni εnfu Ratio εffu Ratio
4 0.760 1.39
8 0.216 3.51 0.373 3.72
16 5.92e-2 3.66 9.47e-2 3.94
32 1.41e-2 4.18 2.38e-2 3.98
64 3.67e-3 3.85 5.95e-3 4.00
128 9.34e-4 3.93 1.49e-3 4.00

Ni εnfu Ratio εffu Ratio
4 9.77e-2 6.30e-2
8 1.24e-2 7.88 3.53e-3 17.9
16 1.98e-3 6.28 2.31e-3 1.52
32 3.83e-4 5.15 6.74e-4 3.43
64 8.73e-5 4.39 1.74e-4 3.86
128 2.05e-5 4.27 4.40e-5 3.97

(a) Nc = 2 (b) Nc = 3

Ni εnfu Ratio εffu Ratio
4 1.15e-2 4.31e-3
8 8.25e-4 18.0 6.50e-4 6.64
16 5.41e-5 15.3 4.59e-5 14.2
32 3.49e-6 15.5 2.95e-6 15.5
64 2.11e-7 16.5 1.86e-7 15.9
128 1.37e-8 15.4 1.16e-8 16.0

Ni εnfu Ratio εffu Ratio
4 1.19e-3 2.51e-4
8 4.61e-5 25.8 2.50e-5 10.1
16 1.85e-6 24.9 2.34e-6 10.7
32 9.69e-8 19.1 1.60e-7 14.7
64 5.58e-9 17.4 1.02e-8 15.7
128 3.28e-10 17.0 6.41e-10 15.9

(c) Nc = 4 (d) Nc = 5

Table 5.6: Convergence of Radial Integration for Disc Centered at Origin – 2λ Diameter

and the number of angular points Nθ = 64. Table 5.6 shows the convergence rates for

various values of Nc as Ni is increased. It is not difficult to see from these results that the

radial integrals converge as N−Nci if Nc is even and as N−(Nc−1)
i if Nc is odd. Hence, we

always choose Nc to be even. Furthermore, the computation of the radial integrals requires

O(N2
cNi) = O(NcNr) operations. At the same time, this O(N2

c ) complexity is not observed

until Nc becomes quite large. We choose Nc to balance the order of the convergence with

the efficiency of the computation. In most examples, we have found that Nc = 16 strikes

this balance quite well.

The results for the disc centered at (1λ, 0) are given in Table 5.7. In this case, the disc

has a diameter of 1λ and a refractive index of n =
√

2. As in the previous example, we fix

the number of modes and examine the convergence rates as Ni increases for various values

of Nc. In this case, since the inhomogeneity m is a discontinuous function on the domain

of integration, our computed solution converges as O(M−2) in the near field and O(M−3)

in the far field. In the case of the disc centered at the origin, on the other hand, we observe

super-algebraic convergence since the inhomogeneity is C∞ on the domain of integration.

Because the solution converges more slowly in this example, we must choose a much larger

value of M (and Nθ) so that the dependence of the error on the radial integration can be

observed. We choose M = 1920 and Nθ = 8192.
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As discussed in Section 3.1.2, since the disc centered away from the origin is a discontin-

uous scatterer, it produces singularities in I`(r), which must be resolved in order to obtain

high-order convergence. It is not difficult to show that a disc with radius R, centered at

(d, 0) has Fourier coefficients

m`(r) =


m̄α(r)
π , if ` = 0

m̄ sin(`α(r))
π` , if ` 6= 0,

(5.1)

for d−R ≤ r ≤ d+R and where m̄ = 1−n2 = 1−2 = −1 and α(r) = arccos
[
r2−(d2−R2)

2dR

]
. It

is also not difficult to see that m`(r) and, hence, I`(r) (see (2.9)) has square-root singularities

at r = d − R and r = d + R. Therefore, we make use of the change of variables (3.4) to

resolve these singularities. In Table 5.7, we give the near and far field errors obtained with

and without this change of variables. We only present results for even values of Nc

The convergence rates for this discontinuous scatterer are more erratic. It is clear that

the change of variable increases the convergence rate rather significantly. However, it is

difficult to ascertain a precise convergence rate from these numerical examples. Further-

more, although the convergence rate with the change of variable is high-order (at least in

average), there seems to be little advantage in choosing a value of Nc ≥ 4, i.e., there is only

slight improvement in the results for Nc = 8 as compared with the results for Nc = 4. This

is likely due to the rapid radial oscillations in the slowly decaying Fourier coefficients m`(r)

(see (5.1)). The more rapid convergence rates shown in Table 5.6 are only obtained when

these oscillations are sufficiently resolved by the radial discretization. Hence, when M is

large, as in this example, we observe a more moderate, albeit still high-order, convergence

rate for the radial integration.

5.1.3 Complex Scatterers and Preconditioning

In this section, we illustrate the power and flexibility of the two-dimensional method by

considering three rather complex scatterers. The first two contain geometric singularities,

corners and cusps, respectively. The last example contains smooth indentations and pro-

trusions in a constant background, providing an example of a truly inhomogeneous, but

smooth, medium. In each example, we present the maximum near and far field errors as

we increase Ni, M and Nθ while fixing Nc = 16 and Ng = 8. Furthermore, we present the
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Ni εnfu Ratio εffu Ratio
1 2.26 4.94
2 1.50 1.51 2.01 2.46
4 0.486 3.07 0.552 3.89
8 0.156 3.12 0.180 3.06
16 4.49e-2 3.46 5.58e-2 3.23
32 1.27e-2 3.54 1.71e-2 3.27
64 4.33e-3 2.93 5.50e-3 3.10
128 1.29e-3 3.35 1.94e-3 2.84
256 4.73e-4 2.73 6.78e-4 2.86

Ni εnfu Ratio εffu Ratio
1 2.95 5.69
2 1.94 1.52 2.58 2.21
4 0.675 2.88 1.02 2.53
8 0.200 3.37 0.262 3.88
16 5.11e-2 3.92 6.85e-2 3.82
32 1.41e-2 3.62 1.73e-2 3.96
64 3.55e-3 3.98 4.34e-3 3.99
128 8.41e-4 4.22 1.09e-3 4.00
256 1.89e-4 4.46 2.72e-4 4.00

(a) Nc = 2 without change of variable (b) Nc = 2 with change of variable

Ni εnfu Ratio εffu Ratio
1 1.84 1.57
2 0.155 11.84 0.153 10.30
4 2.82e-2 5.50 2.18e-2 7.02
8 6.60e-3 4.27 6.52e-3 3.34
16 4.18e-3 1.58 2.07e-3 3.15
32 7.10e-4 5.89 6.90e-4 3.00
64 3.96e-4 1.79 2.37e-4 2.91
128 8.72e-5 4.54 8.28e-5 2.86

Ni εnfu Ratio εffu Ratio
1 1.88 4.07
2 0.795 2.36 0.550 7.39
4 3.84e-2 20.68 1.09e-2 50.56
8 2.97e-3 12.95 4.28e-4 25.45
16 4.28e-4 6.94 4.65e-5 9.20
32 2.48e-5 17.25 3.43e-6 13.55
64 7.50e-6 3.30 2.44e-7 14.05
128 4.11e-7 18.24 1.48e-8 16.43

(c) Nc = 4 without change of variable (d) Nc = 4 with change of variable

Ni εnfu Ratio εffu Ratio
1 2.73e-2 1.72e-2
2 9.35e-3 2.92 5.32e-3 3.23
4 4.16e-3 2.25 1.63e-3 3.26
8 1.13e-3 3.70 5.60e-4 2.91
16 4.72e-4 2.38 1.96e-4 2.86
32 1.81e-4 2.61 6.94e-5 2.83
64 2.89e-5 6.26 2.46e-5 2.82

Ni εnfu Ratio εffu Ratio
1 0.551 0.325
2 9.65e-3 2.36 9.94e-4 327.3
4 1.37e-3 20.68 4.46e-5 22.27
8 1.76e-4 12.95 4.80e-6 9.31
16 5.23e-5 6.94 5.49e-7 8.73
32 4.27e-6 17.25 6.15e-8 8.94
64 3.45e-7 3.30 4.24e-9 14.50

(e) Nc = 8 without change of variable (f) Nc = 8 with change of variable

Table 5.7: Convergence of Radial Integration for Disc Centered at (1λ, 0) – 1λ Diameter
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number of GMRES iterations, the memory and the time required with and without the use

of our preconditioner. These results were obtained on a 1.7GHz Pentium IV Xeon with

2GB of RAM.

The example of the square scatterer with constant refractive index in Figure 5.6 and

Table 5.8 is another example of a discontinuous scatterer like the off-center disc. The length

of the diagonal is 5λ and n = 2. Hence, in terms of interior wavelengths, the square has

a diagonal length of 10λ. The implementation of this example requires no additional care

to deal with the corners. We simply compute analytically the Fourier coefficients of m as a

function of radius, m`(r).

In this example, we divide the radial integration domain into two intervals [0, 5λ/2
√

2]

and [5λ/2
√

2, 5/2λ]. On the first interval, m is constant. It is not too difficult to see

that, on the second interval, the Fourier coefficients m`(r) have a square-root singularity at

r = 5λ/2
√

2 from the right and, hence, we use the change of variable (3.4) on this interval.

In Table 5.8, we list the number of subintervals in each of these intervals (as N (1)
i /N

(2)
i ) as

well as the total number of radial points Nr. Finally, we precondition the resulting linear

system with an approximate inhomogeneity m̃, which is equal to the true value of m on

the first interval and equal to zero on the second interval. We have determined through

experiment that this configurations produces the greatest decrease in the number of GMRES

iterations required to obtain a given residual tolerance.

Note that the slight noise in the visualization of the refractive index in Figure 5.6(a)

is caused by the Gibb’s phenomenon in summing the truncated Fourier series. (This noise

can be observed in the visualizations of the other discontinuous scatterers as well.) We

emphasize that, as discussed in Section 2.3, this approximation of m by m2M does not

degrade the solution accuracy, but instead improves it by allowing efficient and exact com-

putation of the Fourier coefficients of m(r, θ)vM (r, θ). As in previous examples, we observe

second-order convergence in the near field and third-order convergence in the far field as

predicted. Note that the time and memory scale linearly with the number of unknowns

N = (Nr + 1)(2M + 1).

The star-shaped scatterer in Figure 5.7 contains cusps and, hence, would likely pose

difficulties for a boundary integral method. However, as with the square scatterer, no

special care need be taken to treat this geometry. As before, we simply compute the Fourier

coefficients for this scatterer analytically. This star-shaped scatterer is given by the region
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.6: Visualizations for Square Scatterer – Diagonal Length = 5λ
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M Nθ Ni Nr Memory Iter. Time εnfu εffu
60 256 2/2 68 13M 33M 52 218 8.56s 23.0s 6.15e-2 4.32e-2
120 512 2/3 85 31M 79M 56 226 21.4s 60.8s 1.22e-2 3.60e-3
240 1024 2/5 119 90M 228M 58 235 61.8s 181s 1.70e-3 3.21e-4
480 2048 2/10 204 311M 795M 62 238 218s 623s 4.25e-4 3.64e-5
960 4096 2/20 374 1183M 66 238s 6.72e-5 3.04e-6

Table 5.8: Convergence for Square Scatterer – Diagonal Length = 5λ

M Nθ Ni Nr Memory Iter. Time εnfu εffu
30 128 1/2 51 6M 6M 32 73 3.16s 3.46s 0.792 0.581
60 256 1/4 85 14M 15M 35 77 7.76s 8.95s 0.112 9.34e-2
120 512 1/6 119 36M 42M 37 80 19.5s 23.7s 2.02e-2 1.28e-2
240 1024 1/10 187 113M 143M 40 82 61.3s 72.7s 3.87e-3 1.65e-3
480 2048 1/18 323 403M 543M 43 85 219s 261s 9.01e-4 2.06e-4
960 4096 1/34 595 1538M 45 882s 1.50e-4 2.13e-5

Table 5.9: Convergence for Star Scatterer – Diameter = 1λ

between the four unit discs centered at (1, 1), (1,−1), (−1, 1) and (−1,−1), respectively.

It is scaled to have a diameter of 1λ and has a refractive index n = 8. Hence, in terms of

interior wavelengths, this scatterer measures 8λ in diameter.

As with the square scatterer, we divide the radial integration domain into two intervals

[0, (
√

2 − 1)/2λ] and [(
√

2 − 1)/2λ, 1/2λ]. We again use the change of variable (3.4) to

resolve the square-root singularity at the left endpoint of the second interval. In Table 5.9,

we report the number of subintervals in each of these intervals as N (1)
i /N

(2)
i . As with the

square, we precondition with the value of m itself on the inner interval and with zero on the

outer interval. In this example, the preconditioner yields only minor decreases in the time

and memory. Generally, the preconditioner’s effectiveness is diminished for inhomogeneities

that are poorly approximated by a piecewise constant, radially layered inhomogeneity (see

Section 3.2.2).

The visualization of the near field intensity, Figure 5.7(b), clearly shows the relatively

long wavelength of the field outside the scatterer as well as the relatively short wavelength

of the field inside the scatterer. Table 5.9 demonstrates the second-order convergence in the

near field and third-order convergence in the far field. We also observe the proper scaling

of the memory and time with M , Nr and the number of GMRES iterations.

The final example is given in Figure 5.8. This scatterer is generated by adding (or

subtracting) several smooth “bumps” with randomly generated heights, radii and centers
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.7: Visualizations for Star Scatterer – Diameter = 1λ
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M Nθ Ni Nr Memory Iter. Time εnfu εffu
30 128 3 51 5M 27M 12 439 1.38s 21.6s 1.38e-2 5.32e-3
60 256 7 119 14M 107M 15 445 5.69s 120s 2.22e-4 3.41e-5
120 512 12 204 47M 368M 20 457 22.5s 426s 5.24e-6 3.46e-7
240 1024 26 442 221M 23 468 131s 7.50e-8 2.83e-10

Table 5.10: Convergence for Bumpy Scatterer – Diameter = 5λ

to a constant refractive index in a disc. The constant background in this example has a

diameter of 5λ and a refractive index n = 2 (interior wavelength diameter = 10λ). The

bumps are simple smooth cylindrically symmetric functions as given by (4.5), which are

then multiplied by a height (positive or negative). Since the background disc with constant

refractive index is centered at the origin, we obtain a scatterer that is C∞ at each radius

as a function of the angular variable. Hence, we obtain rapid convergence in both the

radial integration and the angular integration and thus, unlike the previous examples, we

do not substitute m2M for m, but rather compute I`(r) by means of direct trapezoidal rule

integration with Nθ points (see Section 3.1.1).

Since this inhomogeneity is smooth in the integration domain, we need not resolve

any singularities. Hence, we have only a single interval for the radial integration. We

precondition by approximating the scatterer m by the background value m̃ = 1− 22 = −3.

In this case, because of the accuracy of this preconditioning approximation as well as the

relatively large size of the scatterer, Table 5.10 shows large decreases in the required time,

memory and GMRES iterations when using the preconditioner.

5.2 Three-Dimensional Computational Examples

In this section, we demonstrate the O(N logN) complexity as well as the high-order conver-

gence rate of the three-dimensional method through three computational examples. First,

we consider a piecewise-constant layered sphere scatterer, for which the analytical solution

is known. Second, we consider a 5×5×5 array of smooth potentials. Finally, we consider a

rather complex scatterer containing inhomogeneous regions as well as geometric singularities

(discontinuities, corners, and cusps). Because of the large number of unknowns required,

some of the examples are computed in parallel. We list the wall-clock time required as

well as the number of processors used as T (s)× P . Thus, although not one of the primary

goals of this paper, one can thereby obtain some idea of the parallel performance of the
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.8: Visualizations for Bumpy Scatterer – Diameter = 5λ
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method. These examples were computed on 1–16 dual processor nodes (1–32 processors) of

a Beowulf cluster. Each node consisted of two 1.7GHz Pentium IV Xeon processors and 1

GB of RAM. These nodes were connected via Myrinet.

To isolate the performance of the matrix-vector product, we hold the number of iter-

ations of the linear solver fixed. Hence, given the O(N logN) complexity, a doubling of

the unknowns in each direction should yield roughly a factor of eight increase in the time

required. This pattern is easily observed in each of the examples.

The convergence rate is illustrated by computing the maximum error in the near field

solution (εnfu ) as well as in the far field solution (εffu ). Given the near field solution u, the

far field solution u∞ is computed by means of the following integral [17, p. 223]

u∞(x̂) = −κ
2

4π

∫
Ω[a,b]

e−iκx̂·ym(y)u(y)dy,

where x̂ is a point on the unit sphere. We compute this integral with high-order accuracy

by means of the trapezoidal rule (after replacing m with m̃ and Ω[a,b] with Ω[ã,b̃]). To

illustrate the convergence rates more clearly, we also display the ratios of errors between

successive levels of discretization. When possible, we compare the computed solution with

the analytical solution; in the other cases, we compare the computed solution with the

solution at a finer discretization.

The results of the computations with the piecewise-constant layered sphere are presented

in Figures 5.9 and 5.10 as well as in Table 5.11. As discussed in Section 4.3, m is replaced

by m̃ to obtain high-order convergence in this example (see the columns labeled εsu and

εsu∞). Although the convergence rates jump around somewhat, the near field solution seems

to converge as h2 while the far field solution converges (at least in geometric average) as

h3. For the purpose of comparison, we have also included the convergence rates that one

observes when m is not replaced by m̃ (columns labeled εdu and εdu∞). In this case, the

convergence rates are significantly slower in both the near and the far fields, as expected.

Furthermore, even at rather coarse discretizations that yield relatively low accuracy, the

high-order method is clearly superior.

The results of the second example, the 5×5×5 array of smooth inhomogeneous scatterers

(potentials), are presented in Figures 5.11 and 5.12 as well as Table 5.12. Each of these

scatterers is given by a spherically symmetric partition of unity function of the form (4.5).
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.9: Visualizations for Layered Sphere – κa = 4
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Figure 5.10: Far Field Intensity (|u∞|2) for Layered Sphere – κa = 4

N T (s)× P εd,nfu εs,nfu Ratio εd,ffu εs,ffu Ratio
10× 10× 10 2.15× 1 1.47 0.250 0.647 0.146
20× 20× 20 15.6× 1 0.614 2.25(-2) 11.1 0.314 4.56(-3) 31.95
40× 40× 40 125× 1 0.167 5.70(-3) 3.96 8.42(-2) 9.55(-4) 4.78
80× 80× 80 1119× 1 5.40(-2) 1.48(-3) 3.86 2.83(-2) 5.43(-5) 17.57

160× 160× 160 475× 32 2.38(-2) 2.38(-4) 6.20 4.12(-3) 7.11(-6) 7.64

Table 5.11: Convergence for Layered Sphere – κa = 4
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N T (s)× P εnfu Ratio εffu Ratio
10× 10× 10 5.65× 32 3.70 43.0
20× 20× 20 6.39× 32 1.35 2.73 10.6 4.05
40× 40× 40 15.1× 32 4.80(-2) 28.2 8.66(-2) 122
80× 80× 80 107× 32 8.28(-3) 5.79 4.47(-2) 1.94

160× 160× 160 875× 32 6.48(-5) 128 7.76(-5) 576

Table 5.12: Convergence for Array of Smooth Scatterers – 5λ× 5λ× 5λ

The centers of the scatterers are separated by 1λ and each has a radius of 1/2λ. Therefore,

the support of the array is contained in a 5λ×5λ×5λ box. Since m ∈ C∞, we do not replace

m by m̃, but instead integrate directly with the trapezoidal rule. As expected, we observe

a very rapid convergence rate. Likely due to the heterogeneity in the scatterer, which must

be sufficiently resolved, we observe a sharp dip in the convergence rate for N = (40, 40, 40)

followed by an immediate resumption of the rapid convergence.

The results of our final computational example are contained in Figures 5.13, 5.14

and 5.15 as well as Table 5.13. This scatterer is created by adding together a cube, two

spheres, two layered spheres, and six smooth, inhomogeneous scatterers (similar to those in

the previous example) to create a rather complex scatterer. More precisely, we first center

at the origin a cube with m = −1 and sides of length 4. Next, two unit spheres with m = +1

and centered at (0,−1, 0) and (0, 1, 0), respectively, are added to the interior of this cube.

This essentially cuts two spheres out of the cube. Then, two layered spheres with unit radii

are placed tangent to the two faces of the cube that are orthogonal to the y-axis. Finally,

two sets of three smooth, inhomogeneous scatterers are placed along the faces of the cube

that are orthogonal to the z-axis. Figures 5.13 and 5.14(a) display this structure with two

orthogonal slices of the scatterer.

This scatterer contains inhomogeneous regions, discontinuities, corners, and cusps. De-

spite these geometric singularities, we substitute m by

m̃(y) = pm1(y)mF
1 (y) + pm2(y)mF

2 (y) + · · · ,

where mF
j is the truncated Fourier series for the jth discontinuous component of the scat-

terer. (As in the previous example, we do not replace the C∞ components of the scatterer by

their Fourier-smoothed approximations.) One must only compute the Fourier coefficients of

each of the individual discontinuous components of the scatterer, i.e., the cube, the spheres
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.11: Visualizations for Array of Smooth Scatterers – 5λ× 5λ× 5λ
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Figure 5.12: Far Field Intensity (|u∞|2) for Array of Smooth Scatterers – 5λ× 5λ× 5λ
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Figure 5.13: Complex Scatterer – Close-Up Image of Scatterer

and the layered sphere—the corners, cusps and inhomogeneities present no additional diffi-

culties. We emphasize that no additional consideration of the scatterer geometry is required

in our three-dimensional approach, whereas the two-dimensional approach required identi-

fication and resolution of singularities in the Fourier coefficients (mu)`(r).

Note that because of the asymmetry in the scatterer, we do not use the same number of

discretization points in each direction. With κ = 4, the scatterer has an interior wavelength

size (as measured along the y-axis) of approximately 7.2λ. We again observe high-order

convergence in the near and far fields.

This illustrates one of the most powerful features of this method. We can treat quite

complicated scatterers simply by adding the Fourier coefficients of the component pieces; no

additional effort is needed to handle singularities that appear when these components are

added. Furthermore, unlike other methods, the scatterer does not need to be “remeshed”

as we refine the discretization. As demonstrated in this example, the high-order accuracy

is maintained even for such complicated scatterers.
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.14: Visualizations for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ
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Figure 5.15: Far Field Intensity (|u∞|2) for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ

N T (s)× P εnfu Ratio εffu Ratio
8× 16× 8 4.39× 1 3.98 13.6

16× 32× 16 10.8× 4 0.554 7.17 1.45 9.37
32× 64× 32 59.5× 4 2.99(-2) 18.5 7.02(-2) 20.6
64× 128× 64 96.0× 32 3.37(-3) 8.87 1.03(-3) 68.1

128× 256× 128 781× 32 4.04(-4) 8.34 8.64(-5) 11.9

Table 5.13: Convergence for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ
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