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Abstract

In this thesis, we introduce a new, fast, high-order method for scattering by inhomoge-

neous media in three dimensions. As in previously existing methods, the low (O(N logN))

complexity of our integral equation method is obtained through extensive use of the fast

Fourier transform (FFT) in evaluating the required convolutions. Unlike previous FFT-

based methods, however, this method yields high-order accuracy, even for scatterers con-

taining geometric singularities such as discontinuities, corners, and cusps.

We begin our discussion with a thorough theoretical analysis of an efficient, high-order

method recently introduced by Bruno and Sei (IEEE Trans. in Antenn. Propag., 2000),

which motivated the present work. This two-dimensional method is based on a Fourier ap-

proximation of the integral equation in polar coordinates and a related, generally low-order,

Fourier smoothing of the scatterer. The claim that use of this low-order approximation of

the scatterer leads to a high-order accurate numerical method generated considerable con-

troversy. Our proofs establish that this method indeed yields high-order accurate solutions.

We also introduce several substantial improvements to the numerical implementation of

this two-dimensional algorithm, which lead to increased numerical stability with decreased

computational cost.

We then present our new, fast, high-order method in three dimensions. An immediate

generalization of the polar coordinate approach in two dimensions to a spherical coordinate

approach in three dimensions appears less advantageous than our chosen approach: Fourier

approximation and integration in Cartesian coordinates. To obtain smooth and periodic

functions (which are approximated to high-order via Fourier series), we 1) decompose the

Green’s function into a smooth part with infinite support and a singular part with compact

support; and 2) replace, as in the two-dimensional approach, the (possibly discontinuous)

scatterer with its truncated Cartesian Fourier series.

The accuracy of our three-dimensional method is approximately equal to that of the
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two-dimensional method mentioned above and, interestingly, is actually much simpler than

the two-dimensional approach. In addition to our theoretical discussion of these high-order

methods, we present a parallel implementation of our three-dimensional Cartesian approach.

The efficiency, high-order accuracy, and overall performance of both the polar and Cartesian

methods are demonstrated through several computational examples.
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Chapter 1

Introduction

Scattering theory remains an active and challenging field in science, engineering, and math-

ematics. In a broad sense, the term scattering refers to any situation in which a wave

impinges on an obstacle and is thereby distorted, reflected, transmitted, or in some other

way “scattered.” Thus, a scattered wave clearly contains information about the scattering

obstacle itself. Hence, an understanding of the interactions between waves and obstacles

should allow one to extract information about an obstacle from the waves scattered by it.

This fact is one of the primary motivations behind the study of scattering phenomena.

Although most scattering problems take on similar mathematical forms, they find appli-

cation in a wide range of fields including communications, materials science, plasma physics,

biology and medicine, radar and remote sensing, etc. However, producing useful numerical

solutions to such problems remains a challenge, requiring novel mathematical approaches

and powerful computational tools. In the next two sections, we describe a number of inter-

esting engineering and scientific applications where computational wave scattering plays an

important role and we introduce the scattering equations to be used throughout this text.

1.1 Applications

As mentioned above, scattering applications are found in a wide variety of fields. Possibly

the most familiar scattering applications are in radar and other techniques of remote sensing.

These have a wide range of commercial, environmental, and military applications. For

example, radar facilities track aircraft while remote sensing satellites, using radar and other

technologies, collect atmospheric data, map the surface of the earth, and measure wind

speeds at the oceans’ surface [22]. More sophisticated mathematical and computational
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tools seek to extract even more information from the scattered waves than one can currently

obtain. This could enable, for example, detection and identification of underground or

underwater structures.

Of course, biological and medical applications are also of great practical importance.

Ultrasound and x-ray imaging as well as the more recent technique of optical coherence

tomography (OCT) are based on scattering phenomena. Like ultrasound imaging, OCT

uses interference of incoherent waves (in this case infrared light) to determine biological

microstructure [33, 43]. The combination of these techniques with new mathematical and

computational methods may lead to much more powerful imaging technologies. Such efforts

have paid dividends in the past. For example, Cormack and Hounsfield [34] developed

computerized tomography (CT) by combining the physics of x-rays with the mathematics

of tomography and efficient numerical methods. For this work, they shared the Nobel Prize

in Medicine in 1979.

Materials science, particularly in the fields of microscopy and diffractometry, contains

many important modern applications of scattering. Of course, transmission electron mi-

croscopy (TEM) and x-ray diffractometry have long been used to analyze material mi-

crostructure. More recently, techniques such as neutron diffraction and reflection high

energy electron diffraction (RHEED) have been developed to further probe the structure

of materials. In neutron diffraction, intense neutron beams interact either with nuclei or

unpaired electrons in a material giving information on its structure [27, p. 156]. RHEED

uses low-angle incident electron beams for analysis of the surface of a material [44, 50]. This

provides, for example, real-time surface structure data during semiconductor film growth

via molecular beam epitaxy (MBE).

Finally, although perhaps less familiar, the study of laser-plasma interactions is also

closely related to scattering theory. When high-intensity laser light strikes a target, the

material composing the target ablates and ionizes, producing a high-density plasma. This

plasma then interacts with subsequent laser pulses producing a variety of waves and insta-

bilities. Computational simulations can provide insight into the physics of these interac-

tions [7, 21, 35].

These examples provide a glimpse of the wide range of fields in which scattering phenom-

ena play an important role. Despite the great benefit that these techniques provide, much

more potential benefit remains to be gained through the innovative use of mathematical
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and computational tools.

1.2 Scattering Equations

Reflecting the diversity of fields in which scattering applications arise, several types of

wave equations are used to describe scattering phenomena including the acoustic wave

equation, Maxwell’s equations and the Schrödinger equation. Under the assumption of

time-harmonic scattering, many of these formulations reduce to the Helmholtz equation.

Hence, although the Helmholtz equation does not capture all scattering phenomena, it does

encompass many of the most important mathematical and computational issues arising

in scattering theory. The precise formulation of the wave equation and the associated

boundary conditions depend strongly on the type of scattering obstacle one considers. Many

numerical approaches have been developed to treat various problem classes; these include the

finite element and finite difference methods, Fourier-based methods and the fast multipole

method.

In the following paragraphs, we describe a few of the most common problem classes.

Throughout, we denote the total field by u, which is given by the sum of a given incident

field ui and a scattered field us, i.e.,

u = ui + us.

The incident field satisfies

∆ui + κ2ui = 0, (1.1)

in all of R2 or R3 where κ = 2π
λ is the wave number and λ is the wavelength of the

incident wave. To guarantee that the scattered wave is outgoing, us satisfies the following

Sommerfeld radiation conditions. In R3, us satisfies

lim
r→∞

r

(
∂us

∂r
− iκus

)
= 0, (1.2)

where r = |x| for x ∈ R3. In R2, us satisfies

lim
r→∞

√
r

(
∂us

∂r
− iκus

)
= 0, (1.3)
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where r = |x| for x ∈ R2.

The first class of problems we describe involves surface scattering by two-dimensional

perfect electrical conductors in electromagnetics and two- or three-dimensional sound-soft

obstacles in acoustics. Then, for a closed and bounded scatterer D, u satisfies the equations

∆u+ κ2u = 0, x /∈ D,

u|∂D = 0. (1.4)

Corresponding to the physical properties of the scattering object, other boundary conditions

on ∂D may need to be used, including a vanishing normal derivative or an impedance

boundary condition [17, pp. 2–7].

Another main class of scattering problems, often called volumetric scattering, involves

scattering by penetrable, inhomogeneous media including, for example, dielectric material,

biological tissue and ion-electron plasmas. In such cases we consider a bounded inhomo-

geneity with a variable refractive index n such that n(x) = 1 for x outside of some bounded

set. (Note that if n 6= 1 but is constant outside the scatterer, we can scale κ such that n = 1

outside the scatterer. Note also that n need not represent the refractive index: for exam-

ple, in acoustic scattering, n depends on the material density and in electron diffraction, n

depends on a scattering potential.) Given n(x), the total field u satisfies [17, p. 2]

∆u+ κ2n2(x)u = 0. (1.5)

Thus, the presence of the inhomogeneous scatterer results in a Helmholtz equation with a

variable coefficient.

1.3 Integral Equation Formulation

The subject of this thesis is the development and analysis of efficient, high-order compu-

tational methods for the solution of the volumetric scattering equation (1.5) in two and

three dimensions. The algorithms available for the numerical solution of this equation fall

into two broad classes. The first approach is the finite element or finite difference method.

These methods have the advantage that, unlike other methods, they lead to sparse linear
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systems. Their primary disadvantage, on the other hand, lies in the fact that in order to

satisfy the Sommerfeld radiation condition (see (1.3) and (1.2)), one must use a large com-

putational domain containing the scatterer and impose absorbing boundary conditions on

the computational boundary [20, 36, 37, 46, 52]. Clearly, this procedure gives rise to large

numbers of unknowns and correspondingly large linear systems.

A second class of algorithms is based on the use of integral equations (see (1.6)). These

approaches have the advantage that the equation must only be discretized on the scatterer

itself. Furthermore, the condition of radiation at infinity is automatically satisfied. On the

other hand, integral equation methods have the disadvantage that they lead to dense linear

systems. Therefore, a straightforward computation of the integral operator requires O(N2)

operations per iteration of an iterative linear solver. However, by reducing this complexity

to O(N logN) per iteration, integral equation methods become highly competitive with

methods based on finite elements or finite differences. Thus, in this thesis, we develop

computational methods based on a Lippmann-Schwinger integral equation of the form [17,

p. 214]

u(x) = ui(x)− κ2

∫
g(x− y)m(y)u(y)dy, (1.6)

where m = 1− n2 and g is the Green’s function for the Helmholtz equation. In two spatial

dimensions, g(x) = i
4H

1
0 (κ|x|) whereas in three dimensions, g(x) = eiκ|x|

4π|x| .

The fast multipole method (FMM) [15, 31, 47, 48] is perhaps the most widely known

method for reducing the complexity of surface integral equations. Although the FMM

has not been applied to the volumetric scattering problem (1.6), which we address in this

thesis, its popularity requires that we mention it. We choose not to pursue an FMM-

based approach, however, for the following reasons. As described several places in the

literature, the FMM exhibits numerical instabilities at subwavelength spatial scales [18, 19,

30], thus limiting the attainable accuracy of the method. The authors of [30] suggested

a low-frequency version of the FMM that is intended to be combined with the standard

FMM to address this problem. However, although this article appeared four years ago, to

our knowledge, no implementation of this approach has been developed. Finally, although

the FMM exhibits O(N logN) complexity, the large constant factor in this asymptotic

bound requires a rather large value of N before any advantage over the straightforward

O(N2) approach is observed.
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Another well-known method for reducing the complexity of integral equation methods to

O(N logN) operations per iteration is the k-space or conjugate-gradient FFT method (CG-

FFT) [9, 51, 53]. In this method, the convolution with the Green’s function is computed via

fast Fourier transforms (FFTs) and multiplication in Fourier space. Additionally, because

of the small constant factor in the asymptotic complexity bound, efficiency gains over the

straightforwardO(N2) approach are observed even for small values ofN . However, although

this method provides a reduced complexity, it is only first-order accurate. This low-order

accuracy arises because the FFT provides a poor approximation to the Fourier transform

when, as in this case, the function is not smooth and periodic.

Although our methods also use FFTs to achieve a reduced complexity, they yield, in

addition, high-order accuracy. One reasonable measure of the effectiveness of a numerical

scheme is the time required to obtain a solution for a given problem to within a given

accuracy. In problems that require a high degree of accuracy, a high-order method with

roughly the same computational complexity as available low-order methods will result in

significant time and memory savings because many fewer points are required to obtain

the given accuracy. This is especially true in three dimensions for which the number of

unknowns (and hence the time and memory) scales as n3, where n is the number of points

in each dimension. Furthermore, even when relatively low accuracy is required, high-order

methods may exhibit advantages over low-order methods for two reasons. First, as we will

show in our examples, a high-order method may obtain even a low level of accuracy with

fewer points than a low-order method. Second, to estimate the accuracy of a computed

solution, one typically compares the solution with a more accurate solution computed on a

more refined computational grid; a high-order method yields such an increase in accuracy

with only a slight increase in the number of unknowns, whereas a low-order method requires

a much larger increase in problem size.

1.4 Previous Work

Despite these advantages, to our knowledge, only limited attempts have been made to

develop high-order methods for this problem. Liu and Gedney [42] suggested a locally

corrected Nyström scheme for scattering in two dimensions. (This approach is closely related

to the high-order surface scattering method described in [14, 32].) This volumetric scattering
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method provides high-order convergence rates that are not limited by the regularity of the

scatterer. However, to achieve these rates, one must provide curvilinear cells for each level

of discretization that accurately represent boundaries in the scatterer where discontinuities

occur. Such a discretization seems rather difficult to obtain and would be even more difficult

to obtain for general scatterers in three dimensions (although the method is only presented

in two dimensions). In addition, this method, as presented, requires O(N2) operations per

iteration of the linear solver.

A fast, high-order method for smooth three-dimensional scatterers was proposed by

Vainikko [49]. In this method, the integral equation is modified to produce a periodic

solution by cutting off the Green’s function (either smoothly or discontinuously) outside a

cube that is at least twice as large as the scatterer. The solution to the modified integral

equation is smooth and periodic on this larger cube and, furthermore, it agrees with the true

solution on the support of the scatterer. Thus, for smooth scatterers, the solution is smooth

and periodic and can, therefore, be approximated to high-order with a truncated Fourier

series. As will be apparent, this method is somewhat related to our three-dimensional

approach. The convergence rates of this approach, however, lag significantly behind those of

our approach—producing only first-order convergence in the case of discontinuous scatterers.

(This difference in convergence rates results primarily from our substitution of the scatterer

by a truncated Fourier series, see Sections 1.5 and 4.3.) Vainikko introduces another,

completely different, approach for piecewise smooth (discontinuous) scatterers that produces

O(h2(1 + log h)) convergence in both the near and far fields, where h is the discretization

spacing in each direction. This approach requires that for each level of discretization, one

must approximate the volume fraction of each cell that lies on each side of a discontinuity

in the refractive index. This seems rather difficult to obtain, especially for complicated

scatterers in three dimensions. In comparison, our two-dimensional approach requires only

limited information about the geometry of the scatterer (namely, the Fourier coefficients

(mu)`(r) along with the singularity points of these coefficients, see Chapter 3). Furthermore,

our three-dimensional approach requires only the truncated Fourier series of the scatterer

(see Chapter 4 for details).
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1.5 High-Order Convergence in FFT-Based Methods

As mentioned previously, this thesis presents high-order accurate, FFT-based methods for

scattering in two and three dimensions. The efficiency and high-order accuracy of these

methods result from the following key facts. First, as is well known, for periodic integrands,

the trapezoidal rule can be used to evaluate convolution integrals and Fourier coefficients

and, in these cases, is algorithmically equivalent to the FFT. Second, the trapezoidal rule

yields high-order convergence when integrating over the period of a smooth and periodic

function and, similarly, a truncated Fourier series exhibits high-order convergence when

approximating a smooth and periodic function. Finally, the Fourier smoothing of a discon-

tinuous integrand, i.e., the replacement of a discontinuous integrand by its truncated Fourier

series, allows high-order trapezoidal rule integration. We explain each of these concepts in

more detail in the following paragraphs.

First, we consider the use of the trapezoidal rule in computing convolution integrals and

Fourier coefficients. More precisely, in one dimension, using the trapezoidal rule to evaluate

a convolution integral at N equally spaced points yields

∫ b

a
f(x− y)g(y)dy ≈ h

N−1∑
k=0

f([a+ jh]− [a+ kh])g(a+ kh)

= h
N−1∑
k=0

f((j − k)h)g(a+ kh), (1.7)

where h = (b− a)/N and k = 0, . . . , N − 1. Equation (1.7) is a discrete convolution, which

can be evaluated in O(N logN) operations by means of FFTs [45, pp. 531–537]. Similarly,

using the trapezoidal rule to evaluate Fourier coefficients yields

f` =
1

b− a

∫ b

a
f(x)e−2πi`(x−a)/(b−a)dx

≈ 1
N

N−1∑
k=0

f(a+ kh)e−2πi`k/N . (1.8)

Clearly, (1.8) is a discrete Fourier transform, which we can evaluate in O(N logN) oper-

ations by means of the FFT. Similarly, it is not difficult to see that FFTs can efficiently

evaluate a truncated Fourier series on a set of equally spaced grid points.

We now consider the high-order accuracy obtained by means of trapezoidal rule integra-
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Figure 1.1: Smooth and Periodic Function – f(x) = ecos2 x

N Abs. Error Ratio
1 4.77(-2)
2 1.19(-2) 4.03
4 2.95(-3) 4.02
8 7.36(-4) 4.01

8192 7.01(-10)

N Abs. Error Ratio
1 5.50(-1)
2 6.03(-2) 9.12
4 3.10(-4) 1.95(2)
8 7.17(-10) 4.32(5)
16 2.10(-23) 3.42(13)

(a) Convergence for
∫ π/4

0 f(x)dx (b) Convergence for
∫ 2π

0 f(x)dx

Table 1.1: Trapezoidal Rule Convergence for f(x) = ecos2 x

tion or Fourier approximation of smooth and periodic functions. The high-order accuracy

in these cases follows from the rapid decay of the Fourier coefficients of smooth and periodic

functions (see Lemma 2.4). For example, consider the integration of the analytic function

f(x) = ecos2 x (see Figure 1.1), over one quarter of its period [0, π/4] and over its full pe-

riod [0, π] (see Table 1.1(a) and (b), respectively). One easily observes the second-order

convergence when integrating over one quarter of its period and the super-algebraic conver-

gence when integrating over the full period. This high-order accuracy results because the

trapezoidal rule integrates the first N Fourier modes of the function exactly and thus, the

convergence rate depends on the decay rate of the Fourier coefficients, which is exponential

in this case.

The final key aspect of our approach is the Fourier smoothing of discontinuous scatter-

ers. Some of the integrands that we encounter in our approach contain the product of a

non-smooth (often discontinuous) scatterer and a significantly smoother periodic function.

Direct trapezoidal rule integration of this product yields only first-order accuracy. On the
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N Abs. Error
4 0.264
8 6.42(-2)
16 4.71(-2)
32 1.20(-2)
64 1.07(-2)
128 5.13(-3)
256 2.62(-3)

N F Abs. Error
4 2 6.93(-2)
8 4 4.11(-4)
16 8 4.87(-4)
32 16 3.86(-5)
64 32 4.96(-6)
128 64 7.25(-7)
256 128 6.68(-8)

(a) Convergence for
∫ 1
−1 f(x)g(x)dx (b) Convergence for

∫ 1
−1 f

F (x)g(x)dx

Table 1.2: High-Order Trapezoidal Rule Integration via Fourier Smoothing

other hand, although perhaps counterintuitive, substitution of the scatterer in the integrand

by a truncated Fourier series leads to high-order accuracy in the integration. Because this

approach has generated some controversy, we present a simple example of this fact in one

dimension. In the case of a discontinuous scatterer, the solution u ∈ C1 because of the

regularizing properties of the integral operator [24, p. 78]. Hence, consider the integral of

the product of a discontinuous function f(x) and a C1, periodic function g(x) over the

period of g. We replace f by its truncated Fourier series with the same period as g

fF (x) =
F∑

`=−F
f`e

2πi`/(b−a)x,

where the interval [a, b] is the period of g (see Figure 1.2). (Note that the Fourier coefficients

f` must be known either analytically or be computed very accurately.) Table 1.2 compares

the accuracy obtained by means of the trapezoidal rule with and without the substitution

of f by fF . As expected, without the Fourier smoothing, one obtains only first-order

convergence. With the Fourier smoothing, however, we observe approximately third-order

convergence.

This is a rather surprising result at first glance since the truncated Fourier approximation

of the discontinuous function f(x) converges quite slowly. Of course, this first intuition is

correct if one were to attempt to approximate the function (fg)(x) itself in this manner.

When approximating the integral of this product, however, this example shows that Fourier

smoothing does indeed yields high-order accuracy. (Note that the convergence rate in this

example is somewhat unsteady, perhaps due to the high-order Fourier modes of g that

appear in the error. Despite this unsteady behavior, the convergence rate exceeds third-

order in the sense of geometric mean. Somewhat similar convergence behavior is observed
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(a) Discontinuous Function f

(b) Fourier-Smoothed Function fF

(c) C1 Function g

Figure 1.2: Example of Fourier Smoothing
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in the computational results of the three-dimensional method as given in Section 5.2.)

The ideas described above form the basis for our high-order accurate, FFT-based meth-

ods. Clearly, high-order accuracy in most of these examples required smooth and periodic

functions. As initially posed, however, the scattering problem does not involve smooth and

periodic functions; on the contrary, the Green’s function is singular, the fields are not peri-

odic and the scatterer is often discontinuous. Hence, our numerical methods center around

a reformulation of the problem that allows the use of these high-order approaches.

1.6 Overview of Chapters

The main result of this thesis is a new, efficient, high-order method for volumetric scattering

in three dimensions. This method achieves high-order convergence even for scatterers con-

taining gemetric singularities such as discontinuities, corners and cusps. Before introducing

this method, we present in Chapter 2 a thorough theoretical analysis of an efficient, high-

order method in two dimensions, first introduced in [13]. This method partially motivated

our approach in three dimensions. High-order accuracy in this two-dimensional method is

obtained by representing the total field and the Green’s function as truncated Fourier series

in polar coordinates, i.e., as truncated Fourier series in the angular variable at each radius.

As will be shown, this representation implies a (generally low-order) Fourier smoothing of

the scatterer. The claim that this low-order approximation of the scatterer nonetheless leads

to a high-order accuracy numerical method generated considerable controversy. Hence, we

prove that the method indeed yields high-order convergence (at least third-order in the far

field) and relate the convergence rate to the regularity of the scatterer.

In Chapter 3, we present substantial practical improvements to the original numerical

implementation of this two-dimensional approach. For example, we make use of a much more

efficient and stable radial integration method based on Chebyshev polynomials. Further-

more, we present a new efficient preconditioner, which substantially reduces the number of

required linear solver iterations for many scattering configurations. Finally, in Appendix B,

we present an efficient and stable method for computing scaled high-order Bessel functions,

which allow us to avoid underflow and overflow errors in large computations.

In Chapter 4, we present our new, efficient, high-order method in three dimensions.

Instead of directly generalizing the two-dimensional polar coordinates approach to three-
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dimensional spherical coordinates (with the associated requirement of a fast spherical har-

monics transform), we choose to base this three-dimensional method on Fourier approxima-

tion and integration in Cartesian coordinates. High-order accuracy in this case is obtained

through a smooth decomposition of the Green’s function by means of a partition of unity

into a smooth part with infinite support and a singular part with compact support as

well as through Fourier smoothing of the scatterer as described above. Interestingly, this

Cartesian approach in three dimensions is much simpler than the two-dimensional polar co-

ordinates approach, while yielding approximately the same order of accuracy. Additionally,

we describe our fully parallel implementation of this approach.

Chapter 5 contains several computational examples to illustrate the computational com-

plexity, the high-order accuracy, and the overall performance of both the two- and three-

dimensional methods. Finally, in Chapter 6, we present brief conclusions and describe

possible future research directions.
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Chapter 2

A Fast, High-Order Method in
Two Dimensions: Theoretical
Analysis

In this chapter, we present a theoretical analysis of the efficient, high-order method intro-

duced in [13]. The high-order accuracy of this method derives from the concepts introduced

in Section 1.5. However, this theoretical analysis is not simply an academic exercise, but

rather puts to rest the considerable controversy generated by the claim of high-order ac-

curacy. Additionally, as we will describe, this analysis reveals interesting and unexpected

bounds on the convergence rates.

2.1 Approximate Integral Equation

As described in the introduction, the field scattered by an bounded inhomogeneity is given

by the solution of the Lippmann-Schwinger integral equation (1.6). Although several exis-

tence and uniqueness results are known for this problem, the existing results do not address

the full generality of the problem that we consider. Specifically, we assume that, given

m ∈ L∞, (1.6) admits a unique solution u ∈ L∞. Certainly, this is the case for m ∈ C1

as proven in [17, §8.1, 8.3]. Furthermore, it is well known that (1.6) admits a unique

solution for constant inhomogeneities by consideration of the appropriate surface integral

equation [16, pp. 100–101]; [39].

To obtain the numerical method, we construct an approximate integral equation. As

mentioned in the introduction, we approximate the Green’s function by a truncated Fourier

series. We now prove that this approximate integral equation also admits a unique solution.
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The related fact that the inverse operator for the approximate problem is uniformly bounded

provides an essential part of our proof of high-order convergence.

After changing to polar coordinates, x = aeiφ and y = reiθ, we obtain the Fourier

representation of the Green’s function by means of the addition theorem for the Hankel

function [17, p. 67]

H1
0 (κ|aeiφ − reiθ|) =

∞∑
`=−∞

J`(a, r)ei`(φ−θ),

where

J`(a, r) = H1
` (κmax(a, r))J`(κmin(a, r)). (2.1)

This allows us to expand the integral operator, Ku, (see (1.6)) in a Fourier series

(Ku)(a, φ) = − iκ
2

4

∫
H1

0 (κ|x− y|)m(y)u(y)dy =
∞∑

`=−∞
(K`u)(a)ei`φ,

where

(K`u)(a) = −iκ
2

4

∫ R1

R0

J`(a, r)
[∫ 2π

0
m(r, θ)u(r, θ)e−i`θdθ

]
rdr. (2.2)

Here R0 ≤ a ≤ R1 defines an annular region that contains the support of m.

To obtain the approximate integral equation, we truncate this Fourier series. Fur-

thermore, we also replace the incident field by its truncated Fourier series. Although not

necessary for our results, this simplifies the presentation somewhat. We thereby obtain

v(a, φ) = ui,M (a, φ) + (KMv)(a, φ), (2.3)

where

ui,M (a, φ) =
M∑

`=−M
ui`(a)ei`φ (2.4)

(KMv)(a, φ) =
M∑

`=−M
(K`v)(a)ei`φ. (2.5)

(Note: we will use superscript M throughout this text to denote the truncated Fourier series

of order M of a given function, e.g., (2.4) and (2.5).)
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Decomposing (2.3) into Fourier modes, we observe that

v`(a) =

 ui`(a) + (K`v)(a), for |`| ≤M

0, for |`| > M.

Hence,

v(a, φ) = vM (a, φ)

and solving (2.3) is equivalent to solving the following system of one-dimensional integral

equations

v`(a)− (K`v
M )(a) = ui`(a), ` = −M, . . . ,M. (2.6)

To prove existence and uniqueness for this approximate integral equation, we make use

of the following technical lemma.

Lemma 2.1. There exists a constant C > 0 depending only on R0, R1 and κ such that

∥∥∥∥∫ R1

R0

|J`(a, r)| rdr
∥∥∥∥
∞
≤ C

max{1, `2}
,

where J`(a, r) is defined in (2.1).

This lemma is proved in Appendix A.1 and allows us to prove the following lemma.

Lemma 2.2. For any m ∈ L∞,

∥∥K −KM
∥∥
∞ → 0, as M →∞,

where the operator norm is the one induced by the L∞-norm.

Proof. Let u ∈ L∞. Then,

∫ 2π

0

∣∣∣m(r, θ)u(r, θ)e−i`θ
∣∣∣ dθ ≤ 2π‖m‖∞‖u‖∞.
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Hence, for M ≥ 0,

∥∥(K −KM )u
∥∥
∞ ≤ πκ2

2
‖m‖∞‖u‖∞

∑
|`|>M

∥∥∥∥∫ R1

R0

|J`(a, r)|rdr
∥∥∥∥
∞

= O

 ∑
|`|>M

1
`2

 ‖u‖∞
= O

(
M−1

)
‖u‖∞.

Therefore,

‖K −KM‖∞ = O
(
M−1

)
→ 0,

as M →∞.

This leads to the desired uniqueness and existence result.

Theorem 2.3. Given m ∈ L∞, for M sufficiently large (2.3) admits a unique solution

v ∈ L∞ for incident field ui satisfying (1.1). Furthermore, for sufficiently large M , the

operators (I −KM )−1 exist and are uniformly bounded.

Proof. Since we have assumed that (1.6) admits a unique solution, I − K has a bounded

inverse. Since L∞ is a Banach space, Lemma 2.2 and [38, Theorem 10.1, p. 142] imply

that for all sufficiently large M the inverse operators (I −KM )−1 exist and are uniformly

bounded. Therefore, (2.3) admits a unique solution v ∈ L∞, for M sufficiently large.

2.2 Error Bounds

In summary, the approximate integral equation (2.3) is obtained by truncating the Fourier

series of both the incident field ui and the integral operator K at each radius to obtain an

approximate solution v to (1.6), which itself is a truncated Fourier series. Roughly speaking,

high-order accuracy is obtained because the integral operator Ku and the incident field ui

are smooth and periodic functions as a function of the angular variable. Therefore, their

truncated Fourier series exhibit high-order convergence. In this section we derive bounds

on the error in this approximation. Of course the full numerical implementation of the

method introduces additional errors (e.g., quadrature errors), but here we consider only the

accuracy of v, the solution of the approximate integral equation (2.3). All other errors are

considered in our discussion of the numerical implementation of this method in Chapter 3.
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2.2.1 Error in Approximated Fourier Modes

The error in the solution of the approximate integral equation (2.3) is given by

|u(x)− vM (x)| ≤ |uM (x)− vM (x)|+ |uT (x)|,

where uT is the “tail” of the Fourier series of u,

uT (a, φ) = u(a, φ)− uM (a, φ) =
∑
|`|>M

u`(a)ei`φ.

In this section, we derive a bound on the first of these two terms. Note that

uM = ui,M +KMu,

vM = ui,M +KMvM .

Hence, taking the difference of these equations we obtain

uM − vM = KM (u− vM )

= KM (uM − vM ) +KMuT .

Theorem 2.3 ensures that I−KM is invertible for M sufficiently large and that the operators

(I − KM )−1 are uniformly bounded by some B > 0, i.e.,
∥∥(I −KM )−1

∥∥
∞ ≤ B for all

sufficiently large M . Then

εM =
∥∥uM − vM∥∥∞ ≤ B ∥∥KMuT

∥∥
∞ .

Hence, we seek a bound on KMuT .

We first note that ∥∥KMuT
∥∥
∞ ≤

M∑
`=−M

∥∥K`u
T
∥∥
∞ .

Furthermore, note that

∫ 2π

0
m(r, θ)uT (r, θ)e−i`θdθ =

∑
|j|>M

m`−j(r)uj(r).
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Then we have ∥∥K`u
T
∥∥
∞ ≤

C

max{1, `2}
∑
|j|>M

‖m`−j‖∞‖uj‖∞. (2.7)

To bound this expression we use bounds on the Fourier coefficients of m and u. Let the

space Ck,αpw denote the space of functions whose kth derivative is piecewise Hölder continuous.

(Note: throughout this text we assume that 0 < α < 1.) We say that a function f is

piecewise continuous on Ω if and only if there is a finite number of open, disjoint subsets of

Ω, denoted by Ω1, . . . ,Ωn, such that
⋃n
i=1 Ωi = Ω where f |Ωi can be extended as a continuous

function to Ωi for each i = 1, . . . , n. Given these definitions, the following lemma follows

by repeated integration by parts.

Lemma 2.4. If g ∈ Ck([0, 2π] ∩ Ck+2
pw ([0, 2π]), then the Fourier coefficients of g,

|c`| =
∣∣∣∣ 1
2π

∫ 2π

0
g(θ)e−i`θdθ

∣∣∣∣
≤ C

max{1, |`|k+2}
,

for some constant C.

If g ∈ L∞([0, 2π]) ∩ C1
pw([0, 2π]), then

|c`| ≤
C

max{1, |`|}
.

To bound the discrete convolution in (2.7) we need a relationship between the regularity

of m and the regularity of u. Variations on results in [8, p. 223], [24, pp. 97, 102] and [28,

pp. 53, 56] give us the following.

Theorem 2.5. Let D be a bounded, open set. If m ∈ L∞(D), then u ∈ C1(D). Further-

more, if m ∈ Ck,α(D), k ≥ 0, then u ∈ Ck+2,α(D).

We emphasize that D is an arbitrary bounded, open set. Hence, the theorem relates the

local regularity of u to the local regularity of m.

Using these results, we obtain the necessary bounds on (2.7) by means of the following

technical lemma, whose proof is contained in Appendix A.2.
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Lemma 2.6. Define the region A = {(a, φ) : R0 ≤ a ≤ R1}. If m ∈ Ck,α(A) ∩ Ck+2,α
pw (A),

k ≥ 0, then there exists a constant C > 0 independent of ` and M such that for ` = 0, . . . ,M

∥∥K`u
T
∥∥
∞ ≤

1
Mk+4

4C
max{1, `2}

1
(M + 1− `)k+1

,

Similarly, if m ∈ L∞(A) ∩ C1,α
pw (A), then

∥∥K`u
T
∥∥
∞ ≤

2C
max{1, `2}

{
1

3M3
+

1
M2

1
(M + 1− `)

}
.

This leads us to a bound on the approximated Fourier modes.

Theorem 2.7. If m ∈ L∞(A) ∩ C1,α
pw (A), then

εM =
∥∥uM − vM∥∥ ≤ B ∥∥KMuT

∥∥ = O
(

1
M3

)
.

If m ∈ C0,α(A) ∩ C2,α
pw (A), then

εM = O
(

1
M5

)
.

If m ∈ Ck,α(A) ∩ Ck+2,α
pw (A) for k ≥ 1, then

εM = O
(

1
Mk+6

)
.

Proof. We use Lemma 2.6 to bound
∥∥KMuT

∥∥ ≤ ∑M
`=−M

∥∥K`u
T
∥∥
∞. For ` = 0 and m ∈

Ck,α(A) ∩ Ck+2,α
pw (A), we obtain

∥∥K0u
T
∥∥
∞ = O

(
1

M2k+5

)
.

For m ∈ L∞(A) ∩ C1,α
pw (A), in turn, we have

∥∥K0u
T
∥∥
∞ = O

(
1
M3

)
.

For the remaining part of the sum, it is sufficient to bound sums of the following form

M∑
`=1

1
`2

1
(M + 1− `)p

,
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for p = 1, 2, . . .. First consider p ≥ 2.

M∑
`=1

1
`2

1
(M + 1− `)p

≤
M∑
`=1

1
`2

1
(M + 1− `)2

≤ 2
dM2 e∑
`=1

1
`2

1
(M + 1− `)2

= O
(

1
M2

)
.

For p = 1, we write the summed quantity as partial fractions.

M∑
`=1

1
`2

1
(M + 1− `)

=
1

(M + 1)2

M∑
`=1

1
`

+
1

M + 1

M∑
`=1

1
`2

+
1

(M + 1)2

M∑
`=1

1
(M + 1− `)

= O
(

1
M

)
.

Combining these results, we arrive at the claims of the theorem.

Remark 2.8. Of course, there are many other conditions on m that could be proposed for

which the corresponding convergence rates could be determined. For instance, one might

remove the requirement of Hölder continuity. In every case, the convergence rates are

directly determined by the rate of decay of the Fourier coefficients of m and u. We do not

attempt to provide a comprehensive listing of all possible regularity conditions and their

corresponding convergence rates.

Remark 2.9. We have taken great care in the proof to obtain tight bounds; the resulting

convergence rates depend on k in a particularly interesting way. Proceeding with less care,

one might have expected a simpler dependence on k as follows.

εM ≤ B
∥∥KM

∥∥
∞
∥∥uT∥∥∞

= O

( ∑
`>M

1
`k+4

)
= O

(
1

Mk+3

)
.

This bound predicts second-order convergence for m ∈ L∞(A)∩C1,α
pw (A), third-order conver-

gence for m ∈ C0,α(A)∩C2,α
pw (A), and fourth-order convergence for m ∈ C1,α(A)∩C3,α

pw (A).

However, as we have proven, these simple bounds are not tight. In fact, the method

exhibits third-order convergence for m ∈ L∞(A) ∩ C1,α
pw (A), fifth-order convergence for
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m ∈ C0,α(A) ∩ C2,α
pw (A) and seventh-order convergence for m ∈ C1,α(A) ∩ C3,α

pw (A). This

rather interesting and unexpected convergence behavior can be observed in the far field

convergence rates of the computational examples in Section 5.1.1.

2.2.2 Total Error in the Interior and Exterior Fields

To this point, we have only computed the convergence rate in the approximated modes,

i.e., the first M modes. Given these convergence rates, we can now easily estimate the total

error. We make a distinction here between two types of error: the interior field error (the

error on the domain of integration A = {(a, φ) : R0 ≤ a ≤ R1}) and the exterior field error

(the error outside of A). The interior field error is simply the difference between the true

solution u(x) and the solution vM (x) of (2.3) on A. Therefore, for x ∈ A

∣∣u(x)− vM (x)
∣∣ ≤ ∣∣uM (x)− vM (x)

∣∣+
∣∣uT (x)

∣∣
≤ εM + τM (|x|),

where τM (|x|) is a bound on
∣∣uT (x)

∣∣.
The important observation here is that τM depends on the decay rate of the Fourier

modes of u at the radius |x|. Hence, even if m is discontinuous on A, if m is smooth as

a function of angle on the circle with radius |x| centered at the origin, then the Fourier

modes of u at radius |x| decay very rapidly. This result implies that, at a given point x,

the method converges at a rate that depends on a combination of the regularity of m at

the radius |x| and the regularity of m in all of A. We state this result more precisely in the

following corollary to Theorem 2.7.

Corollary 2.10 (Interior field error). Let x ∈ A. Let S denote the circle with radius

|x| centered at the origin. Let N(S) be a neighborhood of S in R2. If m ∈ Cp,α(N(S)) ∩

Cp+2,α
pw (N(S)), then the interior field error is given by

∣∣u(x)− vM (x)
∣∣ ≤ εM + τM (|x|),

where bounds on εM are given in Theorem 2.7 and

∣∣uT (x)
∣∣ ≤ τM (|x|) = O

(
1

Mp+3

)
.
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This result holds with p = −1 for m ∈ L∞(N(S)) ∩ C1,α
pw (N(S)).

Proof. We need only prove the bound on uT (x). By Theorem 2.5, u ∈ Cp+2,α(N(S)) ∩

Cp+4,α(N(S)). Hence, by Lemma 2.4,

∣∣uT (x)
∣∣ ≤ τM (|x|) =

∑
`>M

C

`p+4

= O
(

1
Mp+3

)
.

The proof for m ∈ L∞(N(S)) ∩ C1,α
pw (N(S)) is similar.

Remark 2.11. Although the approximate Fourier modes vM converge rapidly to uM , the

decay of uT dominate the maximum interior field error. For example, in the case of m ∈

L∞(A)∩C1,α
pw (A), third-order convergence of vM to uM will be dominated by second-order

decay of uT in the maximum error. At the same time, if the interior field error is evaluated

at a radius for which m is smooth, we will observe the more rapid convergence rate predicted

by Theorem 2.7.

Before we can discuss convergence rates in the exterior field, we must describe how we

extend our approximate solution vM , which we have computed only on the interior of A,

to the exterior field. Since the integration in (1.6) is performed only over the support of

m, one can easily see that given the exact solution u on the boundary of A, the solution in

the rest of R2 can be computed simply by an appropriate scaling of the Fourier modes of

u. More precisely, define A = {(r, θ) : R0 ≤ r ≤ R1}. Then,

us`(r) =


J`(κr)
J`(κR0)u

s
`(R0), if 0 ≤ r < R0

H1
` (κr)

H1
` (κR1)

us`(R1), if r > R1.

(2.8)

(Note that this result can also be obtained directly from the differential equation by means

of separation of variables.) Similarly, to extend our approximate solution vM to the exterior

of A, we simply scale its Fourier modes in the same way.

Corollary 2.12 (Exterior field error). Given x /∈ A, extend the approximate solution
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vM to the exterior of A as prescribed above. Then, the exterior field error is given by

∣∣u(x)− vM (x)
∣∣ = O (εM ) ,

where εM =
∥∥uM − vM∥∥∞ has bounds given by Theorem 2.7.

Proof. Denote the scaling factors for the given radius r = |x| by β`(r). Assume that r > R1.

The proof for 0 ≤ r < R0 is similar. We have

∣∣u(x)− vM (x)
∣∣ ≤ M∑

`=−M
|β`(r)|

∣∣∣us,M` (r)− vs,M` (r)
∣∣∣+
∣∣uT (x)

∣∣
≤ εM

M∑
`=−M

|β`(r)|+
∣∣uT (x)

∣∣ .
As before, let S denote the circle of radius r about the origin. Since r = |x| > R1, there

exists a neighborhood N(S) of S such that m|N(S) = 0. Therefore, u ∈ C∞(N(S)) and∣∣uT (x)
∣∣ ≤ C

Mp for any integer p > 0. This implies that
∣∣uT (x)

∣∣ is always dominated by εM .

To complete the proof, we use the asymptotic expressions for J` and Y` as found in [2,

p. 365], i.e., for fixed z and as `→∞ through positive real values,

J`(z) ∼
1√
2π`

(ez
2`

)`
Y`(z) ∼ −

√
2
π`

(ez
2`

)−`
.

Therefore,

|β`(r)|2 =
∣∣∣∣ Y`(κr)Y`(κR1)

∣∣∣∣2 1 +
∣∣∣J`(κr)Y`(κr)

∣∣∣2
1 +

∣∣∣J`(κR1)
Y`(κR1)

∣∣∣2
∼

(
R1

r

)2`

.

This implies that |β`(r)| is summable. Hence,
∑M

`=−M |β`(r)| is bounded for all integers

M > 0. We conclude that ∣∣u(x)− vM (x)
∣∣ = O (εM ) .
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Remark 2.13. Note that u ∈ C∞ on the exterior of A and u may be much less regular on

the interior of A (in general, u ∈ C1 for a discontinuous scatterer). Hence, the decay of uT

on the exterior of A is superalgebraic, whereas uT may decay as slowly as O(M−2) on the

interior of A. This fact is responsible for the interesting result that the method converges

more rapidly on the exterior of A than on the interior (where uT may dominate εM ).

This is particularly relevant in the evaluation of radar cross sections, an important mea-

sure in many applications. The evaluation of radar cross sections requires the computation

of the far field. Although Corollary 2.12 does not directly address the error in the far

field, we obtain an approximate far field by a scaling of the Fourier modes of vM just as in

the computation of the exterior field. As in [10, p. 6], we define the far field, u∞, by the

asymptotic representation of the scattered field as r →∞, i.e.,

us(r, φ) = ei(κr−
π
4 )
√

2
πκr

[
u∞(φ) +O(r−1)

]
.

From (2.8) and the asymptotic expression for H1
` (z) for fixed ` as z → ∞ [2, p. 364], we

obtain the Fourier modes of u∞ by a simple scaling of the Fourier modes of us.

(u∞)` =
us`(R1)

i`H1
` (κR1)

.

If we define the approximate far field v∞ by scaling the Fourier modes of vs,M in the same

way, we can prove that

‖u∞ − v∞‖ = O (εM ) .

The proof of this fact is nearly identical to the proof of Corollary 2.12.

The predicted convergence rates in both the interior field and the far field are verified

through several computational examples in Section 5.1.1.

2.3 Computation of the Angular Integral

Thus we have shown that the method achieves high-order convergence even in the case of

discontinuous scatterers. However, to this point, we have not discussed any methods for

computing the required angular and radial integrals for each mode of the solution (2.6).

Since this chapter primarily addresses the theoretical aspects of the method, we leave a
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discussion of a particular efficient, high-order radial integrator to the next chapter. On the

other hand, the required Fourier coefficients of m(r, θ)vM (r, θ) can be computed efficiently

and exactly (except for round-off error). Furthermore, the approach taken in computing the

angular integrals was the primary source of controversy surrounding the method. Therefore,

we briefly discuss the angular integration here before moving on to a discussion of the

numerical implementation in the next chapter.

The required angular integrals are given by

I`(r) =
∫ 2π

0
m(r, θ)vM (r, θ)e−i`θdθ, (2.9)

where vM solves the approximate integral equation (2.3). We can express this integral in

terms of the Fourier coefficients of m and v, i.e.,

I`(r) =
∫ 2π

0

 ∞∑
j=−∞

mj(r)eijθ

( M∑
k=−M

vk(r)eikθ
)
e−i`θ

= 2π
M∑

k=−M
m`−k(r)vk(r), (2.10)

where ` = −M, . . . ,M .

Hence, we obtain a finite discrete convolution of Fourier coefficients of m and v at each

radius. Since |`| ≤ M and |k| ≤ M , we have |` − k| ≤ 2M . Thus, given the Fourier

coefficients m`(r) for |`| ≤ 2M , we can compute the required angular integrals exactly.

Furthermore, as is well known, such discrete convolutions may be evaluated (with no ap-

proximation) with the help of FFTs [45, pp. 531–537] yielding a complexity of O(M logM)

at each radial point. (As we will demonstrate in our numerical examples, Chapter 5, these

Fourier coefficients can be computed quite easily for a wide range of scatterers.)

This method of computing the angular integrals has an interesting implication. Since

the computation involves only modes m`, |`| ≤ 2M , replacing m with m2M in the integral

equation yields no additional error, i.e.,

I`(r) =
∫ 2π

0
m2M (r, θ)vM (r, θ)e−i`θdθ (2.11)

Hence, in a sense, the truncation of the Fourier series of the integral operator implies

an associated truncation of the Fourier series of the scatterer—as a result of the band-
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limited nature of the solution vM . Thus, surprisingly, the low-order approximation of a

discontinuous scatterer at each radius by its truncated Fourier series yields no more error

than our original, high-order truncation of the Fourier series of K. This illustrates the

interesting cancellation of errors that underlies the power of this approach.

Note that this discrete convolution method of computing I`(r) for ` = −M, . . . ,M

is equivalent to trapezoidal rule integration of (2.11) with a sufficiently large number of

integration points Nθ. More precisely, it is not difficult to see that the trapezoidal rule

with Nθ points integrates Fourier modes eikθ for |k| < Nθ exactly. Since the largest mode

in the integrand of (2.11) is 2M + M + M = 4M , if we choose Nθ > 4M , the trapezoidal

rule computes (2.11) exactly (assuming exact arithmetic) and the use of FFTs yields a

complexity of O(M logM). Algorithmically, this is entirely equivalent to computing the

discrete convolution (2.10) using FFTs.
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Chapter 3

A Fast, High-Order Method in
Two Dimensions: Numerical
Implementation

In this chapter, we present several significant improvements to the original numerical imple-

mentation of the two-dimensional method introduced in [13], as described in the previous

chapter. The numerical solution of the associated approximate integral equation (2.3) con-

sists of two main parts: efficient, high-order numerical quadrature rules and an efficient

linear solver.

The numerical evaluation of the integrals in (2.6) requires both angular and radial

integration. In Section 2.3, we described a method for computing the required angular

integrals (2.9), exactly by means of Fourier smoothing of the scatterer. Furthermore, this

method requires only O(M logM) operations for each radial point. (For smooth scatterers,

however, the angular integrals can instead be computed efficiently and with high-order

accuracy by direct application of the trapezoidal rule without replacing m with m2M (see

Section 3.1.1).)

On the other hand, to compute the radial integrals (K`v
M )(a) (2.2), we present an

improved scheme based on Chebyshev polynomials approximation. More precisely, we ap-

proximate I`(r) in (2.9) with Chebyshev polynomials on each of several subintervals (see

Section 3.1.2). When the integration domain contains the origin, we resolve the logarithmic

singularity in the Hankel function by integrating by parts (see Section 3.1.2.1). Then by

means of appropriate pre-computed integral moments (see Section 3.1.2.2), we obtain a

high-order approximation of the required integrals. Computation of these integrals requires

only O(N) operations.
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This high-order discretization of the required integrals in (2.6) results in a linear system

with unknowns v`(aj) for ` = −M, . . . ,M and j = 0, . . . , Nr, where an are the radial

points in the discretization. We use the Generalized Minimal Residual (GMRES) iterative

method to solve this linear system (see Section 3.2.1). The number of GMRES iterations

required to achieve a given residual tolerance increases rapidly with increasing problem size

as measured by interior wavelengths (proportional to κn(R1−R0) for a constant refractive

index). We describe a preconditioner (see Section 3.2.2) that reduces this required number

iterations for a variety of scattering configurations. We precondition the problem with

an integral equation corresponding to a piecewise constant, radially layered approximating

scatterer. By means of an equivalent partial differential equation, it can be shown that such

an approximate integral equation admits an inverse, which can be computed in closed form.

Application of this inverse requires only O(N) operations.

3.1 High-Order Numerical Integration

3.1.1 Angular Integration

We first consider the angular integration (2.9). As discussed in Section 2.3, I`(r) can be

computed exactly even for discontinuous scatterers by replacing m by m2M and choosing a

sufficient number of trapezoidal rule integration points. Direct application of the trapezoidal

rule in the case of a discontinuous inhomogeneity (without replacing m by m2M ) would yield

only first-order convergence.

For smooth inhomogeneities m, however, we can obtain high-order convergence sim-

ply through direct application of the trapezoidal rule. This follows from the fact that,

for smooth scatterers, the integrand m(r, θ)vM (r, θ) is a high-order approximation to the

smooth and periodic function m(r, θ)u(r, θ) and the trapezoidal rule yields high-order accu-

racy for smooth and periodic integrands. Hence, although I`(r) may always be computed

exactly by replacing m by m2M , for sufficiently smooth inhomogeneities, the direct appli-

cation of the trapezoidal rule is somewhat simpler (since the Fourier coefficients m`(r) are

not required) and produces nearly the same accuracy.

In this case, given the values v`(r), we first compute vM (r, θj) for θj = 2πj/Nθ, where
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Nθ is the number of trapezoidal rule integration points, i.e.,

vM (r, θj) =
M∑

`=−M
v`(r, θj)e2πij`/Nθ

for j = 0, . . . , Nθ − 1. This sum is computed in O(Nθ logNθ) operations for each radial

point r by means of an FFT, where Nθ must be chosen such that Nθ > 2M . Using the

periodicity in θ of m and vM , the trapezoidal rule gives

I`(r) ≈ INθ` (r) =
Nθ−1∑
j=0

m(r, θj)vM (r, θj)e−2πij`/Nθ , (3.1)

which we compute for ` = −M, . . . ,M by means of an FFT. Hence, given Nr radial points,

this algorithm computes the integrals I`(r) with high-order accuracy in a total ofO(N logN)

operations where N = O(NrM).

It is interesting to note the relationship between this direct trapezoidal rule approach

and the discrete convolution approach described in Section 2.3. When m is replaced by

m2M and Nθ is chosen such that Nθ > 4M , these two approaches yield identical results. In

other words, the trapezoidal rule approach described above is identical to the FFT-based

method for computing a discrete convolution (when m2M is used and Nθ > 4M) [45, pp.

531–537]. Hence, these algorithms require only a single implementation; the approach that

is actually used is determined by the choice of scatterer, either m or m2M , and the related

choice of Nθ.

3.1.2 Radial Integration

The radial integration requires the computation of two functions

F`(a) =
∫ a

R0

Y`(κa)J`(κr)I`(r)rdr

G`(a) =
∫ R1

a
J`(κa)Y`(κr)I`(r)rdr,



31

for R0 ≤ a ≤ R1. In terms of these functions, (K`v
M )(a) is given by

(K`v
M )(a) = −iκ

2

4

[∫ a

R0

H1
` (κa)J`(κr)I`(r)rdr +

∫ R1

a
J`(κa)H1

` (κr)I`(r)rdr
]

(3.2)

=
κ2

4

[
F`(a) +G`(a)− i J`(κa)

Y`(κR1)
F`(R1)

]
(3.3)

High-order accuracy in evaluating F`(a) and G`(a) requires that we treat discontinuities

and/or singularities in I`(r) appropriately. The singularities in I`(r) are due to the singu-

larities in the Fourier coefficients of the scatterer, m`(r). Thus, unless m(r, θ) is smooth

within the annulus R0 ≤ r ≤ R1, m`(r) will exhibit singularities.

Following the discussion in [13], we assume that m(r, θ) is piecewise smooth, i.e., we

assume that there are a finite number of disjoint sets Di with piecewise smooth boundaries

such that m(r, θ) is smooth on each Di. Singularities in I`(r) can occur at values of r that

correspond either to non-smooth points in the boundary of a set Di or to a point of tangency

between the circle Cr of radius r and a set Di. Non-smooth points in the boundary of a set

Di lead to corner-type singularities. Points of tangency lead to singularities of type (r−r0)α

for 0 ≤ α ≤ 1. For example, most of the examples of Section 5.1 have square-root type

singularities,
√
r − r0. Discontinuities in I`(r) may also arise, for example, when the circle

Cr intersects a set Di along a finite segment of its boundary.

Discontinuities and corner-type singularities are handled simply by subdividing the in-

tegration domain [R0, R1] at the singularity points into two or more intervals. Singularities

of the type (r − r0)α can be resolved by changing variables in the radial dimension. For

example, as suggested in [13], we resolve square-root singularities occurring at the endpoints

of the interval [a, b] with the following change of variable

cos(φ) =

√
r2 − a2

b2 − a2
. (3.4)

Of course, in order to resolve such singularities, one must first deduce the type of singularity.

However, this is not difficult to accomplish in many situations.

Thus, by breaking the integration domain [R0, R1] into multiple intervals and by ap-

propriately changing variables to resolve remaining (r − r0)α-type singularities, we are left

with a smooth I`(r) on each interval of integration. Since the extension to this fully general

setting is straightforward but also tedious, we describe only how the computation F`(a)
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and G`(a) to high-order accuracy for a single interval on which no change of variables is

required. This special case illustrates all of the major aspects of the fully general method

without unduly complicating the exposition.

We divide the integration interval [R0, R1] into several subintervals of equal length. We

then approximate I`(r) by a high-order polynomial expansion on each subinterval

I`(r) ≈
Nc−1∑
n=0

cnkpn(r), (3.5)

where cnk ∈ C, k = 1, . . . , Ni and Ni is the number of subintervals. Also, pn(r) is a

polynomial of order n. Thus, we thereby obtain a polynomial expansion of order Nc − 1.

There are several possible choices for the pn(r). In [13], Lagrange interpolating polyno-

mials are used. However, for Lagrange interpolating polynomials, the computation of the

coefficients cnk is numerically unstable for large Nc. This instability can be mitigated some-

what by using a more stable algorithm, at the cost of computational complexity. In [13],

the chosen routine requires O(N3
c ) operations.

Hence, we use Chebyshev polynomials instead. Chebyshev polynomials, Tn, provide

excellent approximation (nearly equal to the minimax polynomial [3, pp. 225–236]) while

also allowing stable evaluation of the cnk in O(N2
c ) operations. For r in the kth subinterval,

we have

I`(r) ≈
Nc−1∑
n=0

cnk`Tn(xk(r)), (3.6)

where the functions xk(r) are simply linear maps of the kth subinterval to the interval

[−1, 1], which is the standard interval of definition for the Chebyshev polynomials. More

precisely, if the kth subinterval is given by [a, b], then, for r ∈ [a, b], we have

xk(r) =
r − a
b− a

− b− r
b− a

.

We will also make use of the inverse of this map, which, for y ∈ [−1, 1], is given by

x−1
k (y) =

1
2

[(b− a)y + (b+ a)] .

The evaluation of the Chebyshev coefficients for a function defined on the standard
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interval [−1, 1] requires the function values at

yj = cos
(
π(j − 1/2)

Nc

)
, (3.7)

for j = 1, . . . , Nc. Hence, we require the value of I`(r) at the corresponding points in each

of the subintervals, i.e., at the points

ajk = x−1
k (yj) (3.8)

for j = 1, . . . , Nc and k = 1, . . . , Ni. Notice that the ajk do not include the endpoints of

each subinterval since the yj do not include the endpoints of [−1, 1]. Since we will need

these endpoints for parts of our calculation, we include the left and right endpoints of each

subinterval as a0k and aNpk, respectively, where Np = Nc + 1. (Note that by this definition

a0k = aNpk−1 for k > 1.)

Hence, these ajk are our radial discretization points giving a total of Nr = O(NpNi)

radial points. Our other discretization parameter is the number of modes M in the approxi-

mate solution vM . Hence, the total number of unknowns N = O(NrM) = O(NpNiM). The

number of points per subinterval Np determines the order Chebyshev approximation is held

fixed while the number of subintervals Ni and the number of modes M is increased to obtain

more accuracy. Given the values of I`(ajk), one can compute the Chebyshev coefficients cnk`

in O(N2
p ) operations per subinterval and per mode giving a total of O(NiN

2
pM) = O(N)

operations for all subintervals. (One can reduce the N2
p complexity for each subinterval to

O(Np logNp) by use of FFTs. However, since Np remains fixed, this does not change the

overall complexity and since we typically use a relatively small value of Np, e.g., Np = 9, 17,

we have found that this approach provides little benefit.)

Thus, given these Chebyshev approximations on each subinterval, we must only compute

the following integral moments

Pnjk` =
∫ ajk

a0k

Y`(κajk)J`(κr)Tn(xk(r))rdr (3.9)

Qnjk` =
∫ aNpk

ajk

J`(κajk)Y`(κr)Tn(xk(r))rdr. (3.10)

Since all of the functions in the integrand are known analytically, these moments are only
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computed once at the beginning of each run. The storage of these moments requires

O(NcNpNiM) = O(N) memory. These integrals are problematic because of the rapid

decay of J` for large ` near the origin as well as the logarithmic and polar singularities

in Y` at the origin. In Section 3.1.2.1, we present a method for resolving the logarithmic

singularity in Y`, which is necessary when the integration domain includes the origin, i.e.,

when R0 = 0. We then discuss our method for computing the moments in Section 3.1.2.2.

Another practical obstacle when computing these moments concerns the rapid decay

of J` and the rapid growth of Y` near the origin for large values of `. Hence, for large

values of `, J` may underflow and Y` may overflow while their product remains machine-

representable. We overcome this difficulty by computing scaled versions of J` and Y`, thus

allowing accurate computation of J`(a)Y`(b), Y`(a)/Y`(b), etc. We describe our method for

computing these scaled Bessel functions in Appendix B.

Once we have computed these moments, we can compute the values Fjk` = F`(ajk) and

Gjk` = G`(ajk). We first compute the quantities Ajk` and Bjk`, which involve integration

over a single subinterval.

Ajk` =
∫ ajk

a0k

Y`(κajk)J`(κr)I`(r)rdr

≈
Nc−1∑
n=0

cnk`Pnjk`

Bjk` =
∫ aNpk

ajk

J`(κajk)Y`(κr)I`(r)rdr

≈
Nc−1∑
n=0

cnk`Qnjk`.

Hence, given the Chebyshev coefficients, which require O(N) operations to compute, the

computation of Ajk` and Bjk` requires O(NcNpNiM) = O(N) operations. We then sum

and scale these values appropriately to compute Fjk` and Gjk`.

Fjk` =
∫ ajk

a01

Y`(κajk)J`(κr)I`(r)rdr

≈ Ajk` + αjk`FNpk−1`, for k = 2, . . . , Ni

Fj1` ≈ Aj1`,
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where αjk` = Y`(κajk)
Y`(κaNpk−1) .

Gjk` =
∫ aNpNi

ajk

J`(κajk)Y`(κr)I`(r)rdr

≈ Bjk` + βjk`G0j+1`, for k = 1, . . . , Ni − 1

GjNi` ≈ BjNi`,

where βjk` = J`(κajk)
J`(κa0j+1) . Clearly, given Ajk` and Bjk`, the computation of Fjk` and Gjk`

requires O(NpNiM) = O(N) operations.

Therefore, the total complexity of the radial integration, given the integral moments

Pnjk` and Qnjk`, is O(N). Furthermore, assuming that the integral moments are computed

with sufficient accuracy, the accuracy of the Fjk` and Gjk` is determined by the accuracy

of the Chebyshev approximation on each subinterval. Since I`(r) is smooth (or can be

made smooth by changing variables and breaking up the integration domain), the Cheby-

shev approximation is high-order accurate with the order of convergence dependent on the

value of Np, the number of points per subinterval. Thus, we obtain an efficient and high-

order accurate method for computing the radial integrals. (See the numerical examples in

Section 5.1.2.)

3.1.2.1 Resolution of Logarithmic Singularity

Besides the singularities in I`(r), which we resolve as discussed previously, the Bessel func-

tion Y`(κr) exhibits logarithmic and polar singularities at r = 0. In this section, we show

that the logarithmic singularity can be removed through integration by parts.

This method results as a slight modification of the approaches discussed above: we

evaluate Fjk` as discussed previously, but we change the computation of Gjk`. Note that

Y`(z) can be written as

Y`(z) =
2
π

log
(z

2

)
J`(z) + Y polar

` (z),

where Y polar
` (z) = O(z−`) as z → 0. Assume that R0 = 0, since otherwise the logarithmic
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singularity is not present. Integrating the logarithmic term by parts gives

∫ R1

a
log
(κr

2

)
J`(κr)I`(r)rdr = log

(κr
2

)∫ r

0
J`(κρ)I`(ρ)ρdρ

∣∣∣∣R1

a

−
∫ R1

a
dr

1
r

∫ r

0
J`(κρ)I`(ρ)ρdρ

= log
(
κR1

2

)
S`(R1)− log

(κa
2

)
S`(a)−

∫ R1

a
r−1S`(r)dr,

where S`(a) =
∫ a

0 J`(κr)I`(r)dr = F`(a)
Y`(κa) .

S`(r) vanishes to first order at r = 0 and thus, r−1S`(r) is smooth near the origin.

Furthermore, since we have computed Fjk`, i.e., the values of F`(a) at Chebyshev points

in each subinterval, the values S`(ajk) as well as the Chebyshev coefficients of r−1S`(r)

on each subinterval are easily computed. Therefore, in O(N) operations, we compute the

Chebyshev coefficients dnk` such that

r−1S`(r) ≈
Nc−1∑
n=0

dnk`Tn(xk(r)).

The Chebyshev coefficients dnk` of the integrand are easily mapped into the Chebyshev

coefficients Dnk` of its indefinite integral [45, pp. 189, 190] as

Dnk` =
dn−1k` − dn+1k`

2n

for n ≥ 1. The constant of integration D0k` is arbitrary. Clearly, this mapping requires only

O(N) operations. Furthermore, since the integral
∫ R1

a r−1S`(r)dr is smooth, the Chebyshev

approximation on each subinterval with coefficients Dnk` gives a high-order representation

of this integral.

To complete the computation of G`(ajk), we define

Glog
jk` =

∫ R1

ajk

J`(κajk)
2
π

log
(κr

2

)
J`(κr)I`(r)rdr

and

Gpolarjk` =
∫ R1

ajk

J`(κajk)Y
polar
` (κr)I`(r)rdr.

Therefore, Gjk` = Glog
jk` + Gpolarjk` . We compute Gpolarjk` exactly as we computed Gjk` in the
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previous section with Qnjk` replaced by

Qpolarnjk` =
∫ aNpk

ajk

J`(κajk)Y
polar
` (κr)I`(r)rdr. (3.11)

We compute Glog
jk` by first defining, for k = 1, . . . , Ni − 1,

Rjk` =
∫ R1

ajk

r−1S`(r)dr

= R0k+1` +
∫ aNpk

ajk

r−1S`(r)rdr

≈ R0k+1` +
Nc−1∑
n=0

Dnk`

[
Tn(xk(aNpk))− Tn(xk(ajk))

]
,

and, for k = Ni, RjNi` =
∑Nc−1

n=0 Dnk`

[
Tn(xk(aNpNi))− Tn(xk(ajk))

]
. Given the coefficients

Dnk`, computation of Rjk` for j = 0, . . . , Np, k = 1, . . . , Ni and ` = −M, . . . ,M requires

O(NcNpNiM) = O(N) operations to compute. Thus, we have

Glog
jk` ≈

2
π
J`(κajk)

[
log
(
κR1

2

)
SNpNi` − log

(κajk
2

)
Sjk` −Rjk`

]
,

where Sjk` = Fjk`
Y`(ajk) . Clearly, the computation of Glog

jk` requires only O(N) operations.

Therefore, given accurate values of the integral moments Pnjk` and Qpolarnjk` , this approach

yields high-order accurate values of the required radial integrals in O(N) operations. We

wish to emphasize that, as stated above, we need only resolve the logarithmic singularity

in Y`(κr) when the integration domain includes the origin, i.e., when R0 = 0. It is straight-

forward to generalize this approach to the case in which we resolve singularities in I`(r) by

breaking up the integration domain and/or changing variables.

3.1.2.2 Evaluation of Integral Moments

To complete the method, we need only find an efficient and accurate method for computing

the integral moments Pnjk` and Qnjk`. As noted in the previous section, if the integration

domain contains the origin, we can resolve the logarithmic singularity in Y` independently of

the moment computation. In such a case, we compute Qpolarnjk` (see equation (3.11)) instead

of Qnjk`. However, even when the integration domain does not contain the origin, the

rapid growth of the Y` and the rapid decay of the J` makes the development of accurate
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quadrature schemes for computing the moments challenging. In particular, the Y` grow like

r−` and the J` decay like r` as either ` → ∞ or as r → 0. Since quadrature rules, for

the most part, depend on accurate polynomial interpolation, accurate integration of these

functions would seem to require a large number of integration points.

In this particular case, however, accurate values for these moments are actually not too

difficult to obtain. The key insight is that a small absolute error, as opposed to a small

relative error, is required in the computation of the moments. Since we desire a small relative

accuracy in the field vM , we require only a small absolute error in the Fourier coefficients

of the field v`—small values of v`, regardless of their relative error, contribute very little to

the value of the field vM .

Our goal, therefore, is to show that, given a maximum absolute error ε > 0 and an

initial radial discretization, we can choose the number of Gaussian quadrature points Ng

such that the absolute error in the moment integrals is less that ε for all ` and for all

subsequent refinements of the radial discretization. Near the origin or for large `, the

asymptotic behavior of J` and Y` for ` ≥ 1 are given by [2, p. 360]

J`(z) ∼
1
`!

(z
2

)`
and

Y`(z) ∼ −
(`− 1)!
π

(z
2

)−`
.

Hence, for ` > 2, the moment integrals,

P`(a, b) = Y`(κb)
∫ b

a
J`(κr)Tn(xk(r))rdr (3.12)

and

Q`(a, b) = J`(κa)
∫ b

a
Y`(κr)Tn(xk(r))rdr (3.13)

have roughly the same properties as

− 1
π`b`

∫ b

a
r`+1dr = − a2

π`(`+ 2)

[(
b

a

)2

−
(a
b

)`]
(3.14)

and
a`

π`

∫ b

a
r−`+1dr = − b2

π`(`− 2)

[(a
b

)2
−
(a
b

)`]
, (3.15)
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respectively. Thus, by considering the relatively simple quantities (3.14) and (3.15), we

gain insight into the behavior of integration rules for evaluating (3.12) and (3.13) . We will

concentrate on integration rules for (3.13) since it is the more difficult of the two moment

integrals because of the singularity in the integrand at r = 0. In addition, we restrict our

attention to the case a > 0, since for a = 0, Q`(a, b) = 0 for ` ≥ 1. (For ` = 0, the only

singularity in the integrand is the logarithmic singularity, which is resolved by integrating

by parts as described in Section 3.1.2.1.)

Gauss-Legendre integration of a function f defined on the interval [a, b] is given by [3,

pp. 276–279]

∫ b

a
f(t)dt =

(
b− a

2

)∫ 1

−1
f

(
b+ a

2
+
b− a

2
x

)
dx

≈
(
b− a

2

) Ng∑
j=1

wjf

(
b+ a

2
+
b− a

2
xj

)
, (3.16)

where the points −1 < xj < 1 are zeroes of the degree Ng Legendre polynomial on [−1, 1]

and wj > 0 are the corresponding weights. We first consider the decay of the sum (3.16)

itself for (3.15). We have

a`

`

∫ b

a
r−`+1dr ≈ b− a

2`

Ng∑
j=1

wjrj

(
a

rj

)`
≤ b(b− a)

`
, (3.17)

where rj = (b+a)
2 + (b−a)

2 xj . Here we have also used the fact that wj > 0 and that the∑Ng
j=1wj =

∫ 1
−1 dx = 2 since Gauss-Legendre quadrature integrates polynomials of degree

less than 2Ng exactly. The sum (3.17) decays with increasing ` independently of Ng. Note

that (3.15) itself also decays with ` as O(`−2). Thus, we conclude that, given an initial

discretization, there is a positive integer L such that both (3.15) and (3.17) are smaller

than ε/2 for all ` > L, independently of Ng. Therefore, the absolute error for ` > L is

smaller than ε. Crucially important in this result is the fact that the moments decay with

`. Thus, for sufficiently large `, although the computed moments may have over 100%

relative error, their absolute error remains smaller than ε.

We now consider the effect of discretization refinement. Refinement of the radial dis-

cretization is accomplished by increasing the number of subintervals Ni. (On each of these

subintervals, there is a fixed number of Chebyshev points Nc.) Hence, for two adjacent
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discretization points a = R0 + α and b = R0 + β, increasing Ni by some factor γ decreases

both α and β by the factor γ. For example, doubling Ni halves both α and β. Similarly,

b−a also decreases by the factor γ when Ni increases by the factor γ. It follows from (3.17)

that the absolute error for ` > L decays as we refine the radial discretization. Therefore, our

choice of L is not only independent of Ng, but is also independent of subsequent refinements

of the discretization.

Now we must consider the absolute error for ` ≤ L. The absolute error in the integral

of a function f as computed with Gaussian quadrature is bounded by [3, pp. 276–279]

ENg(f) ≤ π

(2Ng)!

(
b− a

2

)(
b− a

4

)2Ng

max
a≤t≤b

∣∣∣f (2Ng)(t)
∣∣∣ ,

where the bound holds asymptotically as Ng → ∞. One can then show that the absolute

error EQNg in computing (3.15) is bounded by

EQNg =
a`

π`
ENg(r

−`+1)

≤ a(b− a)
2

(
b− a

4a

)2Ng (`− 2 + 2Ng)!
`(`− 2)!(2Ng)!

≤ a(b− a)
2

(
b− a

4a

)2Ng (L− 2 + 2Ng)!
L(L− 2)!(2Ng)!

,

where we have used the fact that ` ≤ L. Hence, if we require that (b − a)/4a < 1, then

[(b− a)/4a]2Ng exhibits exponential decay while (L− 2 + 2Ng)!/(2Ng)! exhibits polynomial

growth as Ng increases. Therefore, for Ng sufficiently large EQNg < ε for ` ≤ L. Clearly, EQNg
also decays with subsequent discretization refinements. Hence, our choice of Ng depends

only on the value of L and the initial discretization.

We conclude that given an initial discretization satisfying (b − a)/4a < 1 for all points

a, b, we can choose Ng sufficiently large such that the absolute error is smaller than ε for

all ` and for all subsequent refinements of the discretization. Similar arguments obtain the

same result for the absolute error in (3.14). Note that we have only proven this fact in

the asymptotic regime of large ` or, equivalently, small a and b. However, outside of this

asymptotic regime, the Bessel functions have much milder behavior, simply oscillating with

wavenumber κ. These oscillations must be resolved by the radial discretization anyway to

obtain even minimal accuracy in solving the integral equation. Hence, computing the inte-
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gral moments in the oscillatory regime presents no significant difficulties. We do not present

any theoretical estimates of the required values of Ng for various initial discretizations and

error tolerances ε. However, the examples of Section 5.1 show that the value Ng = 8 suffices

to achieve machine precision accuracy in our solutions.

3.2 Solution of the Linear System

3.2.1 Linear Solver

The previous sections describe our efficient, high-order method for computing the integral

operator KMvM . The approximate solution vM is then obtained by solving the linear

system

v`(ajk)− (K`v
M )(ajk) = ui`(ajk), (3.18)

where ` = −M, . . . ,M , j = 0, . . . , Np and k = 1, . . . , Ni. If we denote the matrix associated

with the left-hand side by A, the unknown vector v`(ajk) by x and the right-hand side by

b, equation (3.18) becomes simply Ax = b.

In general, A is dense. Therefore, because of the large amount of memory that would

be required, we do not actually construct A in solving the linear system. Instead we use an

iterative method that requires only the value of the matrix-vector product y = Ax for any

given vector x. Thus, y is computed in O(N logN) operations by means of the integration

schemes described in this chapter.

We use the Generalized Minimal Residual (GMRES) method. This iterative method

builds a Krylov subspace associated with the matrix A and an initial guess x0. The Krylov

subspace at the kth iteration is defined as

Kk = span{r0, Ar0, A
2r0, . . . , A

kr0},

where r0 = b−Ax0. Typically, GMRES builds an orthonormal basis for this subspace using

a modified Gram-Schmidt procedure. The approximate solution to the linear system at the

kth iteration, xk = x0 + yk, is the vector that minimizes (in the least-squares sense) the

residual r = b−A(x0 + y) for y ∈ Kk [29, pp. 38–41].

We chose GMRES because of its generality (it applies to non-Hermitian matrices) and

because of its “optimal” convergence properties (optimal in the sense that it produces the
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residual with the smallest 2-norm from the Krylov subspace [29, p. 49]). On the other hand,

GMRES stores the basis vectors for the Krylov subspace and, hence, requires O(kN) mem-

ory, where k is the number of iterations and N is the number of unknowns. Furthermore,

the construction of the orthonormal basis requires O(k2N) operations. To avoid the large

memory requirement, one can restart GMRES after a specified number of iterations, which

has the side-effect of slowing the convergence.

In this context, it is useful to consider how the number of required iterations depends

on the problem size. Unlike many classical methods for finite-difference equations, in this

integral equation method, the number of iterations required to obtain a given residual

tolerance does not depend on the mesh size. On the other hand, the number of iterations

does depend on the size of the scatterer (as measured in interior wavelengths). In other

words, for a given scatterer, as we increase the frequency of the incident wave (increase κ)

and/or increase the value of m, the number of iterations required increases significantly (see

Section 3.2.2).

Of course, other methods exist for non-Hermitian matrices that do not have the memory

and complexity issues of GMRES, such as the Quasi-Minimal Residual (QMR), Biconjugate-

Gradient (BiCG), stabilized Biconjugate-Gradient (BiCGSTAB) and Conjugate-Gradient

Squared (CGS) methods [29, pp. 92–94]. In general, these methods sacrifice convergence

rates for memory and complexity, but may be preferable in some cases. (See Section 4.5 for

more discussion on these solvers.)

3.2.2 Preconditioner

In the previous sections, we described the numerical implementation of the method as well

as the linear solver. However, when the scatterer is large (κR� 1), or when the contrast is

large (|m| � 1), the linear solver may converge so slowly that it becomes infeasible to obtain

the desired residual value. We try to remedy this problem by means of a preconditioning

matrix P for the linear system. The expectation is that pre- or post-multiplication of A (as

well as the right-hand side) with an appropriate P will yield a new matrix with an eigenvalue

spectrum that allows the linear solver to converge more rapidly. Of course, if P were the

exact inverse of A, we would have PA = AP = I and the linear solver would converge in

a single iteration. Hence, roughly speaking, an effective preconditioner P will approximate

the inverse of A as closely as possible while still allowing efficient pre- or post-multiplication.
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Since our numerical method has a complexity of O(N logN) where N = NpNiM , we want

the multiplication by the preconditioner to be at least as efficient.

In this section, we introduce a preconditioner based on an approximate scatterer: we

approximate the true inhomogeneity m by a piecewise constant, radially layered inhomo-

geneity m̃. In a sense, this inhomogeneity forms a zeroth-order approximation to m in

both geometry and value. As we will show, because of the relatively simple character of

this scatterer, one can invert the associated integral equation in closed form. This inverse

operator, which we use as our preconditioner P , can be computed in O(N) operations using

radial integration methods identical to those described previously in Section 3.1.2.

As described above we define m̃ as

m̃(x) =
q∑
j=1

mjχAj (x),

where mj are constants. The sets Aj , j = 1, 2, . . . , q are the annular regions

Aj = {x : aj−1 ≤ |x| ≤ aj},

0 = a0 < a1 < · · · < aq = R1,

where χAj is the characteristic function of the set Aj . Here we have assumed that R0 = 0 to

simplify the discussion somewhat; the case forR0 > 0 proceeds similarly. The preconditioner

P is given by the inverse of the associated integral equation

v(x) + κ2
q∑
j=1

mj

∫
Aj

Φ(κ|x− y|)v(y)dy = w(x), (3.19)

where |x| ≤ R1 and Φ(z) = i/4H1
0 (z). Given the inverse P , we then left-precondition our

original equation as follows

P (I −KM )vM = Pui,M .

This linear system is solved using an iterative solver, as described previously. Since the

right-hand side of (3.19) is given by w = (I −KM )vM , w = wM .

To solve (3.19), we derive an equivalent differential equation. Define a new unknown

u = v − w, where v solves (3.19) and w is the given right-hand side. Although v is only a
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solution for |x| ≤ R1, we can define u in all of R2 by

u = −κ2
q∑
j=1

mj

∫
Aj

Φ(κ|x− y|)v(y)dy.

For x ∈ Aj , we have

(∆ + κ2n2
j )u(x) = κ2mjw, j = 1, 2, . . . , q

where mj = 1− n2
j . For |x| > R1 (and |x| < R0 when R0 6= 0),

(∆ + κ2)u(x) = 0.

Furthermore, it is not difficult to show that u satisfies the Sommerfeld radiation condition as

|x| → ∞ [17, pp. 216–217]. This yields a differential equation in all of R2 that is equivalent

to the preconditioning integral equation (3.19).

This equivalent differential equation can be solved in closed form as follows. For x ∈

Aj , we write the solution as a sum of a particular solution and a homogeneous solution,

u(x) = up(x) + uh(x). Hence, for x ∈ Aj , a particular solution to the equation is

up(x) = −κ2mj

∫
Aj

Φ(κnj |x− y|)w(y)dy.

Since w = wM , up = uMp and in polar coordinates (a, φ)

(up)`(a) = −κ2mj

[
H1
` (κnja)

∫ a

aj−1

J`(κnjr)w`(r)rdr + J`(κnja)
∫ aj

a
H1
` (κnjr)w`(r)rdr

]
,

(3.20)

for aj−1 ≤ a ≤ aj . Clearly, these integrals can be computed with high-order accuracy

and in O(N) operations using the same methods for radial integration that we discussed in

Section 3.1.2. Furthermore, since the integration methods require the value of w`(r) at the

Chebyshev points, which are exactly the values we have, application of these methods to

the computation of (up)` requires no interpolation.
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The homogeneous solution on the other hand is given by

uh(a, φ) =


∑∞

`=−∞ α
(1)
` J`(κnja)ei`φ, if j = 1,∑∞

`=−∞
[
α

(j)
` J`(κnja) + β

(j−1)
` Y`(κnja)

]
ei`φ, if j = 2, 3, . . . , q,

(3.21)

for aj−1 ≤ a ≤ aj . (If R0 6= 0, the homogeneous solution for j = 1 is given by a linear

combination of J` and Y` instead of J` alone. Furthermore, if R0 > 0, we must consider the

homogeneous solution in the additional region a < R0, which takes the same form as for

j = 1 in (3.21).) Finally, for a > R1, we have

u(a, φ) =
∞∑

`=−∞
β

(q)
` H1

` (κa)ei`φ.

Clearly, given the correct values of the coefficients α(j)
` and β

(j)
` , we can compute (uh)`(a)

for ` = −M, . . . ,M and all radial discretization points in O(N) operations. We thus obtain

a closed-form solution to the integral equation (3.19).

To compute the 2q coefficients α(j)
` and β

(j)
` , we require that u ∈ C1(R2) [28, pp. 53,

56]. Hence, by enforcing this condition at each aj , j = 1, 2, . . . , q, we obtain 2q equations,

for 2q unknowns. For j = 1,

α
(1)
` J`(κn1a1) + (up)`(a−1 ) = α

(2)
` J`(κn2a1) + β

(1)
` Y`(κn2a1) + (up)`(a+

1 )

α
(1)
` n1J

′
`(κn1a1) +

1
κ

(up)′`(a
−
1 ) = α

(2)
` n2J

′
`(κn2a1) + β

(1)
` n2Y

′
` (κn2a1) +

1
κ

(up)′`(a
+
1 )

For j = 2, 3, . . . , q − 1, we have

α
(j)
` J`(κnjaj) + β

(j−1)
` Y`(κnjaj) + (up)`(a−j ) = α

(j+1)
` J`(κnj+1aj)

+ β
(j)
` Y`(κnj+1aj) + (up)`(a+

j )

α
(j)
` njJ

′
`(κnjaj) + β

(j−1)
` njY

′
` (κnjaj) +

1
κ

(up)′`(a
−
j ) = α

(j+1)
` nj+1J

′
`(κnj+1aj)

+ β
(j)
` nj+1Y

′
` (κnj+1aj) +

1
κ

(up)′`(a
+
j )

Finally, for j = q, we have

α
(q)
` J`(κnqR1) + β

(q−1)
` Y`(κnqR1) + (up)`(R−1 ) = β

(q)
` H1

` (κR1) + (up)`(R+
1 )

α
(q)
` nqJ

′
`(κnqR1) + β

(q−1)
` nqY

′
` (κnqR1) +

1
κ

(up)′`(R
−
1 ) = β

(q)
` (H1

` )′(κR1)
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Here (up)`(a+
j ) = lima→a+

j
(up)`(a) and (up)`(a−j ) = lima→a−j

(up)`(a) with corresponding

definitions for the derivatives.

For each `, the matrix associated with this linear system is constant and banded with

five diagonals. Hence, we compute the LU -decomposition of all of these matrices in O(qM)

operations only once at the beginning of each run. In each iteration, after computing the

(up)`(a+
j ) and (up)`(a−j ) and their derivatives, we use the LU -decomposition to solve for

the values of α(j)
` and β

(j)
` for all j = 1, 2, . . . , q. This again requires a total of O(qM)

operations.

Finally, we compute (up)`(a+
j ) and (up)`(a−j ) and their derivatives. For aj−1 < a < aj ,

(up)`(a) = − iπ
2
κ2mj

[
H1
` (κnja)

∫ a

aj−1

J`(κnjr)w`(r)rdr+J`(κnja)
∫ aj

a
H1
` (κnjr)w`(r)rdr

]
.

(up)`(a+
j−1) = − iπ

2
κ2mjJ`(κnjaj−1)

∫ aj

aj−1

H1
` (κnjr)w`(r)rdr

and

(up)`(a−j ) = − iπ
2
κ2mjH

1
` (κnjaj)

∫ aj

aj−1

J`(κnjr)w`(r)rdr

Similarly,

(up)′`(a
+
j−1) = − iπ

2
κ3njmjJ

′
`(κnjaj−1)

∫ aj

aj−1

H1
` (κnjr)w`(r)rdr

and

(up)′`(a
−
j ) = − iπ

2
κ3njmj(H1

` )′(κnjaj)
∫ aj

aj−1

J`(κnjr)w`(r)rdr

These integrals are easily obtained from the values of (up)`(a) in O(qM) operations.

Thus, application of this preconditioner requires only O(N) operations per iteration.

We expect to observe the greatest benefits in using this preconditioner when the original

inhomogeneity can be approximated reasonable well by a piecewise constant radially layered

scatterer. Of course, the size of the annuli Aj as well as the approximating values mj

can be tuned to improve the convergence rate. We demonstrate the performance of the
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preconditioner through the computational examples in Section 5.1.3.
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Chapter 4

A Fast, High-Order Method in
Three Dimensions

In this chapter, we present a new, fast, high-order method in three dimensions. This method

is motivated in part by the two-dimensional polar coordinates approach discussed in the

previous two chapters. One could propose a direct generalization of the two-dimensional

approach to a three-dimensional spherical coordinates method. However, to obtain the same

O(N logN) complexity, one would need to replace the FFTs with fast spherical harmonics

transforms, robust versions of which are not readily available. Furthermore, as evidenced

by the method for radial integration in the two-dimensional method, evaluation of spe-

cial functions of high-order presents several mathematical as well as practical difficulties.

Therefore, instead of extending the two-dimensional polar coordinates approach, we present

a three-dimensional approach based on trapezoidal rule integration and Fourier series ap-

proximation in Cartesian coordinates. The fast, high-order method we obtain is actually

much simpler than the two-dimensional approach while yielding approximately the same

accuracy and efficiency.

In particular, while the polar coordinates approach in two dimensions required the iden-

tification and resolution of singularities in the Fourier coefficients (mu)`(r), this Cartesian

approach in three dimensions requires no special consideration of scatterer geometry. This

enables the construction of quite complicated scatterers containing discontinuities, corners,

and cusps by simply summing the truncated Fourier series representations of each of the

individual components of the scatterer (see Figures 5.13 and 5.14 as well as Table 5.13).

There is no need to locate and resolve singularities.

As in the two-dimensional approach, the core of the numerical method is an efficient,
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high-order scheme for computing the integral operator (Ku)(xj) (see (1.6)) at the given

discretization points xj . We thereby obtain the linear system

u(xj)− (Ku)(xj) = ui(xj), (4.1)

whose solution u(xj) approximates the total field. An iterative solver then provides the

solution at the discretization points u(xj). We discuss the advantages and disadvantages of

various iterative solvers in Section 4.5.

Let m be contained within a box Ω[a,b] with corners a, b ∈ R3, i.e., Ω[a,b] = {x : aq ≤

xq ≤ bq, q = 1, 2, 3}. Then,

(Ku)(x) = −κ2

∫
Ω[a,b]

g(x− y)m(y)u(y)dy,

where u is the solution of (1.6) in R3.

Before specifying the details of our approach, we sketch its key aspects. As mentioned

in the introduction, we decompose the Green’s function into a smooth part with infinite

support, gsmth(x), and a singular part with compact support, gcmp(x). More precisely, we

define gsmth(x) and gcmp(x) by

g(x) = g(x)(1− p(x)) + g(x)p(x) = gsmth(x) + gcmp(x),

where p(x) ∈ C∞ is a partition of unity function such that p(x) = 1 near x = 0 and p(x) = 0

outside some neighborhood of x = 0. (Of course, there are many such partition of unity

functions, and we do not specify a particular choice at this time.) It is then necessary to

compute the two convolutions

(Ksmthu)(x) = −κ2

∫
Ω[a,b]

gsmth(x− y)m(y)u(y)dy (4.2)

(Kcmpu)(x) = −κ2

∫
Ω[a,b]

gcmp(x− y)m(y)u(y)dy. (4.3)

The following two sections describe the two different high-order methods we use to

evaluate Ksmthu and Kcmpu, respectively. For both of these convolutions, the substitution

of the scatterer by an appropriate Fourier-smoothed scatterer is absolutely key in obtaining

high-order accuracy. As will be shown, the methods used to evaluate these convolutions
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require the computation of an integral of the form

∫
Ω[a,b]

m(y)w(y)dy,

where w is defined in R3. In each case, w is the product of the total field u and a known

C∞ function. Hence, the regularity of w is given by the regularity of u, which is related to

the regularity of m. In particular, if m ∈ L∞, u ∈ C1; and if m ∈ Ck,α, u ∈ Ck+2,α (see

Theorem 2.5).

Note that the integrands in each case are quite similar to the example in Figure 1.2, with

one important exception: Although w is smooth (at least C1), it is generally not periodic.

Hence, direct substitution of the scatterer by its truncated Fourier series will not yield

high-order convergence. However, we observe that since m vanishes outside of Ω[a,b], we can

extend the domain of integration without affecting the value of the integral. Similarly, any

modification to w outside of the support of m, supp(m), does not affect the integral.

With these observations in mind, we increase the computational domain to the box

Ω[a−δ,b+δ] for some δ ∈ R3 such that the components δq > 0. This gives us u and hence,

w on Ω[a−δ,b+δ]. We then multiply w(y) by a smooth cutoff function pm(y) such that

pm ∈ C∞, pm(y) = 1 for y ∈ supp(m) and pm(y) = 0 for y /∈ Ω[a−δ,b+δ]. (Of course, as with

the partition of unity function, p, there are many such functions, pm, and we do not specify

a particular choice at this time.) This gives us

∫
Ω[a,b]

m(y)w(y)dy =
∫

Ω[a−δ,b+δ]

m(y)pm(y)w(y)dy.

Since pm(y) vanishes outside of Ω[a−δ,b+δ], one can extend pm(y)w(y) as a smooth and

periodic function. Following the example in the introduction, we can now substitute m

by its truncated Fourier series to obtain high-order accuracy when integrating with the

trapezoidal rule (see Figure 1.2 and Table 1.2), i.e., replace m by

mF (x) =
F1∑

`1=−F1

F2∑
`2=−F2

F3∑
`3=−F3

m`e
2πic`·x,

where ` = (`1, `2, `3) and the qth component of c`, (c`)q = `q/[(bq − aq) + 2δq] for q = 1, 2, 3



51

and F = (F1, F2, F3). This gives

∫
Ω[a,b]

m(y)w(y)dy ≈
∫

Ω[a−δ,b+δ]

mF (y)pm(y)w(y)dy.

Thus, we obtain high-order accuracy in such integrals essentially by replacing m by m̃ =

mF pm and by replacing Ω[a,b] by Ω[ã,b̃], where ã = a− δ and b̃ = b+ δ.

In Sections 4.1 and 4.2, we describe in more detail the evaluation of Ksmthu and Kcmpu,

respectively. In Section 4.3, we discuss a few additional details associated with this substi-

tution of m by mF . Section 4.4 briefly describes the method we use to compute the Fourier

coefficients of gcmp . Finally, in Section 4.5, we describe our parallel implementation of the

method and discuss the relative advantages of the various linear solvers.

4.1 High-Order Convolution with Smooth Part

We compute Ksmthu by means of the trapezoidal rule after substituting m by m̃ and Ω[a,b]

by Ω[ã,b̃] as described above. Given a number of discretization points N ∈ N3. Define

the discretization spacing h ∈ R3 such that hq = (b̃q − ãq)/Nq for q = 1, 2, 3. Define the

associated evenly spaced discretization points xj , yk ∈ R3 such that (xj)q = ãq + jqhq and

(yk)q = ãq + kqhq, where j and k are three-dimensional indices such that their components

satisfy 0 ≤ jq, kq ≤ Nq for q = 1, 2, 3.

Since m̃(x) vanishes on the boundary of Ω[ã,b̃] (because m̃ is smooth and compactly

supported in Ω[ã,b̃]), the trapezoidal rule gives

(Ksmthu)(xj) ≈ Prod(h)
N1−1∑
k1=0

N2−1∑
k2=0

N3−1∑
k3=0

gsmth(xj − yk)m̃(yk)u(yk),

where the notation, Prod(h), which we use throughout this chapter, stands for Prod(h) =

h1h2h3. To further simplify the notation, we denote the triple sum above as
∑N−1

k=0 , which

allows us to write

(Ksmthu)(xj) ≈ Prod(h)
N−1∑
k=0

gsmth(xj − yk)m̃(yk)u(yk)

= Prod(h)
N−1∑
k=0

(gsmth)j−km̃kuk.
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Here (gsmth)k = gsmth ( (k1h1, k2h2, k3h3) ), m̃k = m̃(yk) and uk = u(yk).

Hence, using the trapezoidal rule to evaluate this integral is algorithmically equiva-

lent to computing a discrete convolution. We compute this convolution using FFTs in

O(Prod(N) logProd(N)) operations [45, pp. 531–536]. Thus, we obtain an efficient and

high-order accurate method for computing Ksmthu.

4.2 High-Order Convolution with Singular Part

To obtain high-order accuracy in the computation of (4.3), we approximate Kcmpu by

a truncated Fourier series. As described in the introduction, a truncated Fourier series

provides high-order accuracy if the approximated function is smooth and periodic. Since

gcmp and m are both compactly supported, (Kcmpu)(x) vanishes for points x sufficiently far

from the inhomogeneity. More precisely, assume that the support of gcmp is contained in a

box Ω[−d,d]. Then, for x /∈ Ω[a−d,b+d], (Kcmpu)(x) = 0. Furthermore, since the convolution is

a smoothing operation, (Kcmpu)(x) is a smooth function, even in the case of a discontinuous

scatterer (see Theorem 2.5). Therefore, (Kcmpu) can be extended as a smooth and periodic

function on R3.

Hence, we may represent Kcmpu accurately by a truncated Fourier series if we choose a

period for the expansion that contains Ω[a−d,b+d], i.e.,

(Kcmpu)(x) ≈
M∑

`=−M
(Kcmpu)`e2πic`·(x−a), (4.4)

where (c`)q = `q
Bq−Aq and Aq ≤ aq − dq ≤ bq + dq ≤ Bq for q = 1, 2, 3. Note that according

to our convention, we have denoted the triple sum as
∑M

`=−M . We have also shifted the

Fourier basis functions by a. This simplifies the presentation somewhat.

We must now compute the Fourier coefficients (Kcmpu)`. We have

(Kcmpu)` = − κ2

Prod(B −A)

∫
Ω[A,B]

(Kcmpu)(x)e−2πic`·(x−a)dx

= − κ2

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy

∫
Ω[−d,d]

gcmp(z)e−2πic`·zdz

= −κ2(gcmp)` (mu)`,
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where

(gcmp)` =
∫

Ω[−d,d]

gcmp(z)e−2πic`·zdz

and

(mu)` =
1

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy.

Note that the coefficients (gcmp)` are computed with respect to a slightly different set of

basis functions (they are not shifted by a) and that we integrate over Ω[−d,d] instead of

Ω[A,B]. Because gcmp(x) is known analytically, we need only compute its Fourier coefficients

once at the beginning of each run. Furthermore, because of the singularity in gcmp , we must

take special care to compute these coefficients accurately. Our method for computing these

coefficients is presented in Section 4.4.

To compute the Fourier coefficients (mu)`, we again use the trapezoidal rule. As in the

previous section, we obtain high-order accuracy by substituting m by m̃

(mu)` =
1

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy

≈ 1
Prod(B −A)

∫
Ω[ã,b̃]

m̃(y)u(y)e−2πic`·(y−a)dy

≈ Prod(h)
Prod(B −A)

N−1∑
j=0

m̃juje
−2πic`·(j1h1,j2h2,j3h3).

Note that, as indicated in the second equation above, we need only integrate over the domain

Ω[ã,b̃] since this domain contains the support of m̃.

We can evaluate this expression with an FFT by choosing A = (A1, A2, A3) and B =

(B1, B2, B3) such that (Bq − Aq)/hq is an integer for each q = 1, 2, 3. In other words, the

larger domain Ω[A,B] must be exactly an integer number of cells larger than the smaller

domain Ω[ã,b̃] in each dimension. Then, defining Ñ ∈ N3 such that Ñq = (Bq − Aq)/hq for

q = 1, 2, 3, and (c`)q = `q/(Bq −Aq), we obtain

(mu)` ≈
1

Prod(Ñ)

Ñ−1∑
j=0

mjuje
−2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3),

where mjuj = 0 if jq > Nq for any q = 1, 2, 3. Hence, this discrete Fourier transform can

be evaluated by means of an FFT in O(Prod(Ñ) logProd(Ñ)) operations for |`q| ≤ Ñq/2.
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Finally, given this high-order approximation of (mu)` and the pre-computed (gcmp)`, we can

sum the Fourier series (4.4) also by means of an FFT to obtain a high-order approximation

to Kcmpu.

4.3 Fourier-Smoothed Scatterers

As we have shown, replacing m by the smooth and periodic function m̃ and enlarging

the integration domain to Ω[ã,b̃] is key in obtaining our high-order method. Table 5.11 in

Section 5.2 compares the convergence rates for a discontinuous inhomogeneity with and

without this substitution. Although we do not present here a complete theoretical analysis

of the method, we expect convergence rates similar to those proved for the two-dimensional

method (see Theorem 2.7). For example, a discontinuous, piecewise C1 scatterer is expected

to yield second- and third-order convergence on the interior and exterior of the scatterer,

respectively; a C0, piecewise C2 scatterer is expected to yield third- and fifth-order con-

vergence on the interior and exterior of the scatterer, respectively. Although gains in the

asymptotic rate of convergence may always be expected when substituting m by m̃, real

practical gains are most significant for scatterers with a low degree of regularity. (See Sec-

tion 3.1.1 for a related discussion on the two-dimensional method.) For this reason, one

need not typically perform this substitution for very smooth scatterers such as the C∞

scatterer considered in Figure 5.11 in Section 5.2. In such cases, the trapezoidal rule alone

provides high-order accuracy.

Of course when treating discontinuous scatterers, the user is relatively free to choose the

smooth cutoff function pm and the number of modes F in the truncated Fourier approxi-

mation of m. There are couple of competing issues that should figure into this decision. In

particular, the smaller δ is, the smaller h becomes for a given N . However, this does not

necessarily lead to higher accuracy because a small δ implies a relatively steep rise of pm

from 0 to 1. The more abrupt this rise, the smaller we must make h to achieve a given

accuracy, thereby increasing N . The choice of F , on the other hand, depends on the choice

of N . The value of N must be large enough to resolve the Fourier oscillations in the inte-

grand. In particular, if F is chosen to be too large, the trapezoidal rule will yield very little

accuracy in integrating the highly oscillatory modes in mF . Hence, to obtain high-order

convergence, we choose F to be a fixed fraction of N . In our experience, F = N/2 is a good
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choice.

4.4 Computation of the Fourier Coefficients of the Green’s

Function

It remains to compute the coefficients (gcmp)`, which are essentially the Fourier coefficients

of gcmp . As defined previously, gcmp(x) = g(x)p(x) where p(x) has support in Ω[−d,d] for

some d ∈ R3 with dq > 0, q = 1, 2, 3. Note that our choice of d depends on the same issues

that affect our choice of δ for the cutoff function pm as discussed in the previous section.

Of course, there are many possible choices of such partition of unity functions. Partition

of unity functions in three dimensions can be constructed from a partition of unity function

φ in one dimension as described in in [12],

φ(t) =


1, for |t| ≤ t0

exp
(

2e−1/x

x−1

)
, for t0 < |t| < t1, where x = (|t| − t0)/(t1 − t0)

0, for |t| ≥ t1.

(4.5)

For example, p(x) = φ(|x|) and p(x) = φ(x1)φ(x2)φ(x3) are both partition of unity functions

in three-dimensions that are centered at the origin. Of course, one may shift the center of

the functions to any point in R3 without difficulty.

When computing the coefficients (gcmp)`, we choose the spherically symmetric function

p(x) = φ(|x|) to simplify the computation and choose t1 = R such that R ≤ d. Changing

to spherical coordinates in the integration gives

(gcmp)` =
∫

Ω[−d,d]

gcmp(z)e−2πic`·zdz

=
∫ R

0

∫
S1

eiκρ

4πρ
p(ρ)e−2πiρc`·ẑρ2dρ dσ(ẑ)

=
∫ R

0
gcmp(ρ)j0(2π|c`|ρ)ρdρ

=
1

2π|c`|

∫ R

0
p(ρ)eiκρsin(2π|c`|ρ)dρ,

where
∫
S1 dσ(ẑ) denotes integration over the unit sphere and the second to last equality

follows from [17, p. 32].
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We wish to emphasize that the simplification hereby achieved is quite significant. The

Jacobian associated with the change to spherical coordinates cancels the ρ−1 singularity in

Green’s function. Furthermore, since the integration on the unit sphere can be performed

analytically, we are left only with a one-dimensional integral to be evaluated for various

values of |c`|.

We rewrite the required integral as follows

(gcmp)` =
1
α

∫ R

0
p(ρ)eiκρsin(αρ)dρ

=
1

2iα

[∫ R

0
p(ρ)ei(κ+α)ρdρ−

∫ R

0
p(ρ)ei(κ−α)ρdρ

]
=

1
2iα
{H[p](κ+ α)−H[p](κ− α)} , (4.6)

where α = 2π|c`| and

H[p](ω) =
∫ R

0
p(ρ)eiωρdρ. (4.7)

Note that since p(ρ) vanishes for ρ > R, H[p] is related to the Laplace transform, L[p], as

follows

H[p](ω) = L[p](−iω).

Observe that H[p](−ω) = H[p](ω) since p(ρ) is real-valued. It is important to note that we

can only use (4.6) to compute (gcmp)` when |`| 6= 0. For |`| = 0, on the other hand, it is

not difficult to see that

(gcmp)0 =
∫ R

0
ρp(ρ)eiκρdρ = H[ρ p(ρ)](κ).

Therefore, to compute (gcmp)`, we need an accurate and efficient method for computing

H[g](ω) for g(ρ) = p(ρ) and g(ρ) = ρp(ρ). This problem is not trivial since the value of

ω ≤ κ+ α can be quite large, thus producing a highly oscillatory integrand. Furthermore,

straightforward integration by means of the trapezoidal rule will give only first-order accu-

racy since p(ρ) and ρp(ρ) cannot be extended as smooth and periodic functions. We are

able to compute these integrals accurately and efficiently using a modification of the method

suggested in [45, pp. 577–584] as described in Appendix C.
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4.5 Implementation

Because of the large memory and CPU-time requirements of realistic problems in three

dimensions, an efficient parallel implementation of the numerical method is quite useful.

An advantage of the method is its relative simplicity: roughly, it requires only an efficient

(parallel) FFT implementation and an effective (parallel) iterative solver for the linear

system. We make use of the parallel FFT implementation fftw [25, 26] and the parallel

iterative solvers in PETSc [4–6]. In addition, PETSc provides excellent vector scatter and

gather routines as well as useful I/O routines. These packages make development of an

efficient parallel implementation relatively simple.

The bulk of the method lies in computing the required convolutions (see Sections 4.1

and 4.2). As described previously, we approximate the convolution with the smooth part

of the Green’s function by means the following discrete convolution

(Ksmthu)(xj) ≈ Prod(h)
N−1∑
k=0

(gsmth)j−km̃kuk,

where the components jq = 0, . . . , Nq, hq = (b̃q − ãq)/Nq for q = 1, 2, 3. This discrete

convolution requires the values of (gsmth)j−k for 0 ≤ jq ≤ Nq and 0 ≤ kq ≤ Nq − 1. Hence,

−Nq + 1 ≤ jq−kq ≤ Nq. Therefore, computing this convolution by means of FFTs requires

three-dimensional arrays with dimensions 2N , where the array containing mkuk is padded

with an appropriate number of zeroes [45, pp. 531–537]. More precisely, we first compute

(ĝsmth)` =
2N−1∑
j=0

(gsmth)j e−2πi`·(j1/2N1,j2/2N2,j3/2N3)

and

m̂u` =
2N−1∑
j=0

m̃juj e
−2πi`·(j1/2N1,j2/2N2,j3/2N3),

where (gsmth)j is defined by periodic extension for j outside the range −Nq + 1 ≤ jq ≤ Nq

and where mjuj = 0 outside the range 0 ≤ jq ≤ Nq − 1. We then use these values to

compute the discrete convolution

N−1∑
k=0

(gsmth)j−kmkuk =
2N−1∑
`=0

(ĝsmth)`m̂u`e2πi`·(j1/2N1,j2/2N2,j3/2N3),
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for jq = 0, . . . , Nq.

(Note that this straightforward approach requires a factor of 23 = 8 more memory to

store these convolution arrays than to store the unknowns uj , the smoothed inhomogeneity

m̃j and the incident field uij . If memory usage becomes the limiting factor, it is possible to

break the mjuj array into pieces and compute the convolution with each piece separately.

This saves memory, but substantially increases CPU-time. Hence, we use the straightfor-

ward approach with 2N -sized arrays.)

On the other hand, the approximation of the convolution with the singular part of the

Green’s function requires computation of the following sum

(Kcmpu)(xj) ≈
M∑

`=−M
(gcmp)` (mu)` e2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3),

where Mq < Ñq/2, jq = 0, . . . , Nq − 1 and

(mu)` ≈
1

Prod(Ñ)

Ñ−1∑
j=0

mjuj e
−2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3).

Hence, these sums may also be computed using FFTs. However, in this case, we use FFTs

of three-dimensional arrays of size Ñ .

In theory, the FFTs used to compute each of these convolutions need not be related.

In practice, however, we save both time and memory by choosing Ñ = 2N . If Ñ 6= 2N ,

we need to compute the FFT of (gcmp)` (mu)` and the FFT of (ĝsmth)` m̂u` separately.

Furthermore, we need to store (gcmp)`, `q = −Mq, . . . ,Mq and (ĝsmth)`, `q = 0, . . . , 2Nq − 1

in two separate arrays with a total of Prod(Ñ) + 8Prod(N) > 9Prod(N) elements. On the

other hand, if Ñ = 2N , our approximation for (mu)` exactly equals m̂u`. Therefore, we

need only compute a single FFT of ĝ`m̂u`, where ĝ` = (gcmp)` + (ĝsmth)`. This single array

ĝ` has size 2N and hence a total of 8Prod(N) elements.

A further savings that becomes quite significant in a parallel implementation is the

communication costs. To compute the convolutions, we must compute FFTs of sizes Ñ and

2N and then we copy a portion of the results into an array of size N . In our parallel code,

each of these arrays will, in general, be distributed differently. Hence, copying the results

to and from the array of size N involves communication between processors. Therefore, if

Ñ 6= 2N , one must first communicate the values of mu into the arrays of size Ñ and 2N
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for computation of the FFTs, and then communicate the results back from each of these

arrays into the original array of size N . On the other hand, if Ñ = 2N , roughly half the

communication is required. Hence, because of these memory and communication savings,

we choose Ñ = 2N in our computations.

Once we have implemented the method for computing the matrix-vector product, PETSc

implements a wide variety of linear solvers. However, only a few of these linear solvers are

appropriate for our linear system, which is non-symmetric and indefinite, namely GMRES,

CGS, BiCGSTAB and two different transpose-free QMR methods. Of these, only GMRES

and BiCGSTAB perform consistently well. In fact, for each of the other methods, we found

an example in which it either rapidly diverged or stagnated. At the same time, the perfor-

mance of these iterative solvers seems to be somewhat problem dependent: it is certainly

possible that there exists a scattering configuration for which BiCGSTAB may perform

less well than one of these other approaches. GMRES, on the other hand, performs con-

sistently well, at the price of increased memory requirements and increased computational

complexity.

As mentioned in Section 3.2.1, GMRES always requires fewer matrix-vector products

to converge to a given residual error than BiCGSTAB. However, at each iteration GMRES

stores a new Krylov subspace basis vector whereas BiCGSTAB does not. Hence, in problems

which require many iterations, GMRES may rapidly exhaust the system memory. Of course,

in such cases, one may restart GMRES after a given number of iterations, thereby limiting

the memory used. However, we found that restarted GMRES loses much of its advantage

over BiCGSTAB. Therefore, in problems requiring many iterations, BiCGSTAB has become

our method of choice.

As in the two-dimensional method, the number of iterations required to achieve a given

residual tolerance does not depend on mesh size. However, as the size of the scatterer is

increased (as measured in interior wavelengths), the number of required iterations increases.

Furthermore, in our numerical experiments, it appears that the number of required iter-

ations increases more for BiCGSTAB than for GMRES. Thus, BiCGSTAB loses its edge

over GMRES as the problem size increases.

The numerical examples of Section 5.2 illustrate the versatility, efficiency, and high-order

accuracy of the three-dimensional method described in this chapter. Since we have not

optimized for parallel performance, we do not present parallel speed-up results. However,
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we do include results from parallel computations, from which one can obtain some idea of

the parallel performance.
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Chapter 5

Computational Examples

This chapter demonstrates through several computational examples the efficiency, high-

order accuracy, and overall performance of the two- and three-dimensional methods dis-

cussed in this text. These examples include scatterers for which an exact solution is known,

fully inhomogeneous scatterers (non-constant m) and scatterers containing geometric singu-

larities such as discontinuities, corners and cusps. This thesis has focused on the high-order

accuracy of these methods. Hence, in each example, we have attempted to show the conver-

gence of the method over a fairly wide range of discretizations. This becomes increasingly

difficult to accomplish as the size of the scatterer (as measured in interior wavelengths)

increases because of the additional memory and linear solver iterations required. Therefore,

these examples do not accurately portray the full range of our computational methods.

Despite this fact, however, the examples in this chapter are similar in size to the existing

examples in the electromagnetics literature. The articles [41] and [51] are perhaps the most

recent results that we have found. In [41], published in 1996, the authors proposed a three-

dimensional method for scattering by inhomogeneous media. They computed the scattered

field from a layered sphere with interior wavelength diameter ≈ 2.7λ as well as from a

dielectric cube of less than one interior wavelength on a side. In [51], published in 2001, the

authors proposed a modification to the CG-FFT method in two dimensions to make use of

the non-uniform FFT. It appears that the largest scatterer they consider is a 13.3λ× 13.3λ

rectangular cylinder, where λ is the incident wavelength. However, in their example, the

wave speed is faster inside the inhomogeneity than it is outside. Hence, it appears that

the rectangular cylinder has approximate interior wavelength dimensions of 8λ × 8λ. The

examples we present in this chapter are of comparable size while at the same time achieving

very high accuracies for much more complicated scatterers.
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5.1 Two-Dimensional Computational Examples

In the following sections, we illustrate the performance of the two-dimensional algorithm for

a variety of scattering configurations. First, in Section 5.1.1, we seek to verify the conver-

gence rates predicted by Theorem 2.7. We first illustrate the convergence of the method for

two scatterers that admit analytical solutions. We then verify that the algorithm achieves

the predicted convergence rates for three scatterers of differing regularity. In Section 5.1.2,

we demonstrate the convergence of the radial integration scheme described in Section 3.1.2

for both a smooth and a discontinuous scatterer. Finally, in Section 5.1.3, we demonstrate

the performance of the method with and without the preconditioner for three rather com-

plex scatterers containing inhomogeneities, discontinuities, corners and cusps. To illustrate

the performance of the preconditioner, we present the computational time and the number

of GMRES iterations required to compute the solution with and without the use of the

preconditioner for a few of the runs in each of these examples.

In each case, we compute the near and far fields produced under plane wave incidence,

ui(x, y) = eiκx. To compute the maximum error in the near field, we interpolate the

solution computed by our method to an evenly spaced polar grid. On this grid, we compute

the maximum absolute error as compared with either the analytical solution (when it is

available) or the solution computed with a finer discretization. The maximum error in the

far field is computed similarly by interpolating to an evenly-spaced angular grid. The results

for each example are given in the accompanying figures and tables. The figures include

visualizations of q(x) = −m(x) = n2(x) − 1 and the computed near field intensity. The

tables provide values for a subset of the following: the number of modes in the approximate

solution M , the number of radial points Nr, the total number of unknowns N = O(MNr),

the approximate memory required, the number of GMRES iterations used, the wall-clock

time required and the maximum absolute errors in the near and far field denoted by εnfu and

εffu , respectively. Additionally, in many of the tables the ratios of the errors at successive

levels of discretization are listed to illustrate the convergence rates. At times the accuracy

in the computed solution reaches the accuracy of the analytical solution, the accuracy of

the radial integration or the tolerance of the linear solver. In such a case, we observe no

improvement in the error of the solution as we refine the discretization and hence, to indicate

a converged solution, we write “Conv.” in the ratio column.



63

5.1.1 Verification of Predicted Convergence Rates

Our main goal in this section is to verify the convergence rates proved in Theorem 2.7. We

also seek to demonstrate the O(M logM) complexity of the angular integration method.

Theorem 2.7 does not actually address the convergence of a numerical method, but rather

focuses on the convergence of the analytical solution of an approximate integral equation to

the true solution of the scattering equation (1.6). Hence, in this section, we are primarily

concerned with the convergence in the number of Fourier modes M , rather than the con-

vergence in the number of radial points (which is discussed in Section 5.1.2). Therefore,

we fix the number of radial points Nr at a sufficiently large value and we further hold the

number of GMRES iterations fixed at a value that produces a sufficiently accurate solution

of the linear system. This isolates the dependence of the times and errors on M and allows

us to confirm the computational complexity and the predicted convergence rates. We note

that all of these results were computed using a 700MHz Pentium III Xeon workstation with

3GB of RAM.

We first compute the scattering by two obstacles for which an analytical solution ex-

ists: (1) a cylindrically symmetric scatterer centered at the origin with piecewise-constant

refractive index, and (2) a disc centered at (1λ, 0) with constant refractive index. Closed-

form solutions for such piecewise-constant, cylindrically symmetric scatterers are found by

separation of variables.

Perhaps the best indication of the difficulty of a scattering problem is given by its size in

terms of interior wavelengths, since the numerical method must resolve these wavelengths

sufficiently to provide any accuracy. For example, a scattering disc with refractive index n

has a diameter of nd interior wavelengths, where d is the diameter in incident wavelengths.

The results for the first example are presented in Figure 5.1 and Table 5.1. Here the

inner disc has a radius equal to 1λ and a refractive index n = 2; the outer annulus has an

outer radius of 2λ and a refractive index n = 3. Thus, in terms of interior wavelengths,

this scatterer has a diameter of 10λ. For this simple geometry, the preconditioner provides

a nearly exact inverse. Hence, we require only two GMRES iterations to obtain a residual

nearing machine precision. One may also observe that the method obtains an exponential

convergence rate. This occurs despite the discontinuity in the refractive index because,

at each radius, the refractive index is a C∞ function of the angular variable. Finally, we
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
15 136 4K 3M 2 3.05s 8.50e-2 4.28e-2
30 136 8K 9M 2 3.83s 1.13e-9 7.52e+7 5.46e-13 7.83e+10
60 136 17K 14M 2 5.46s 1.68e-12 6.73e+2 4.97e-13 Conv.

Table 5.1: Convergence Rate for Radially Layered Scatterer – Diameter = 4λ

M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
15 544 17K 10M 14 7s 6.22e-2
30 544 33K 18M 14 13s 5.95e-3 10.45 1.58e-3 18.80
60 544 66K 40M 14 25s 1.13e-3 5.27 1.83e-4 8.63
120 544 131K 78M 14 49s 2.83e-4 3.99 2.27e-5 8.06
240 544 262K 168M 14 99s 5.99e-5 4.72 2.84e-6 7.99
480 544 524K 300M 14 194s 6.65e-6 9.01 3.56e-7 7.98
960 544 1047K 633M 14 386s 1.99e-6 3.34 4.42e-8 8.05
1920 544 2093K 1332M 14 808s 2.75e-7 7.24 4.21e-9 10.50

Table 5.2: Convergence for Off-Center Disc – Centered at (1λ, 0), Diameter = 1λ

observe that the memory depends linearly on the number of unknowns and the the time

required is consistent with an O(M logM) complexity.

The results for the second example are presented in Figure 5.2 and Table 5.2. Here the

disc is centered at (1λ, 0), has a diameter of 1λ and a refractive index n =
√

2. In terms

of interior wavelengths, it has a diameter of
√

2λ. As opposed to the previous example,

however, we do not observe an exponential rate of convergence despite the fact that the disc

has a constant refractive index. Since the disc is not centered at the origin, the refractive

index at each radius is actually a discontinuous function of the angular variable. Since

the analytical solution in this case is known, the off-center disc provides direct verification

of the predicted convergence rates for a discontinuous scatterer. The table shows excellent

agreement with the predicted third-order convergence in the far field. The convergence in the

near-field is less steady, but seems consistent with the predicated second-order convergence

in the near-field (see Theorem 2.7). As in the previous example, we observe that the time

and memory scale appropriately with M .

We now illustrate the convergence of the method for a series of three simple scatterers

of increasing regularity. In each case, m(x) = 1− n2(x) is given in the following form.

m(r, θ) =

 −3
2 −

1
2π

∑
|`|≥1

(
i
`

)k+2
ei`θ, for 5

2λ ≤ r ≤ 5λ

0, otherwise.
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.1: Visualizations for Radially Layered Scatterer – Diameter = 4λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.2: Visualizations for Off-Center Disc – Centered at (1λ, 0), Diameter = 1λ
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 68 8K 15M 71 27s 3.24e-2 2.07e-2
120 68 17K 30M 71 52s 4.69e-3 6.91 1.95e-3 10.62
240 68 33K 62M 71 109s 6.23e-4 7.53 2.32e-4 8.41
480 68 66K 120M 71 228s 9.71e-5 6.42 2.87e-5 8.08
960 68 133K 238M 71 458s 1.04e-5 9.34 3.53e-6 8.13
1920 68 238K 483M 71 898s 1.45e-6 7.17 3.83e-7 9.22

Table 5.3: Convergence Rate for Discontinuous Scatterer – Diameter = 10λ

Note that for each integer k, this series becomes a sine or cosine series with real coefficients.

If k = −1, m is discontinuous and piecewise smooth as a function of θ. Further, for

any integer k ≥ 0, m ∈ Ck,α ∩ C∞pw as a function of θ. The three examples that follow

illustrate the convergence of the method for k = −1, 0, 1. Because these scatterers are

fully inhomogeneous, their size in terms of interior wavelengths is not well defined. Note,

however, that each scatterer has a reasonably large incident wavelength diameter of 10λ.

The results for k = −1 are found in Figure 5.3 and Table 5.3. The predicted second-order

convergence in the near field is exceeded and the third-order convergence in the far field is

readily observed. The results for k = 0 are found in Figure 5.4 and Table 5.4. In this case,

the predicted third-order convergence in the near field and fifth-order convergence in the

far field are both matched quite precisely. This example clearly illustrates the interesting

jump in the far field convergence rate from third-order for a discontinuous scatterer to

fifth-order for a C0,α scatterer. Here the far field converges to the precision of the solution

before the near field does. Hence, the last two runs result in no improvement in the far

field accuracy. Finally, the results for k = 1 are found in Figure 5.5 and Table 5.5. In this

case, the predicted fourth- and seventh-order convergence rates in the near and far fields,

respectively, are obtained if not exceeded. However, because convergence is so rapid, it is

difficult to observe a definite pattern, especially in the far field convergence. In each of these

cases, we note that the memory and time scale appropriately with M . Finally, we mention

that all of these results required less than 20 minutes and less than 700MB of memory.

5.1.2 Convergence in Radial Integration

In this section, we demonstrate the high-order convergence of the radial integration method

described in Section 3.1.2. The degree of accuracy in the radial integration is determined

by the number of subintervals Ni and the number Nc of Chebyshev points per subinterval
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.3: Visualizations for Discontinuous Scatterer – Diameter = 10λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.4: Visualizations for C0,α Scatterer – Diameter = 10λ
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.5: Visualizations for C1,α Scatterer – Diameter = 10λ
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M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 102 12K 18M 44 23s 9.33e-4 7.06e-6
120 102 25K 34M 44 50s 8.91e-5 10.47 1.30e-7 54.31
240 102 50K 68M 44 105s 1.15e-5 7.75 3.86e-9 33.68
480 102 99K 138M 44 212s 1.46e-6 7.88 1.17e-10 32.99
960 102 198K 275M 44 565s 1.83e-7 7.97 1.73e-11 Conv.
1920 102 396K 548M 44 1136s 1.98e-8 9.24 1.85e-11 Conv.

Table 5.4: Convergence Rate for C0,α Scatterer – Diameter = 10λ

M Nr N Memory Iter. Time εnfu Ratio εffu Ratio
60 102 12K 19M 54 36s 2.16e-5 7.33e-9
120 102 25K 39M 54 72s 4.81e-7 44.91 1.06e-11 691.51
240 102 50K 75M 54 160s 1.05e-8 45.81 4.50e-12 Conv.
480 102 99K 150M 54 331s 4.76e-10 22.06 4.52e-12 Conv.
960 102 198K 305M 54 561s 1.36e-11 35.0 4.61e-12 Conv.
1920 102 396K 609M 54 1172s 1.94e-12 Conv. 4.72e-12 Conv.

Table 5.5: Convergence Rate for C1,α Scatterer – Diameter = 10λ

used to approximate I`(r) as well as the number Ng of Gaussian points used to compute the

moment integrals (3.9) and (3.10). As mentioned in Section 3.1.2.2, we have found Ng = 8

to be sufficient in all of the examples, i.e., an increase in Ng does not lead to any increase in

the solution accuracy. In this section, we examine the dependence of the convergence rate

on the choice of Nc and Ni.

We demonstrate the convergence in two examples: 1) a disc with constant refractive

index centered at the origin, and 2) a disc with constant refractive index centered away

from the origin. As mentioned in the previous section, given an incident plane wave, the

value of the scattered field can be computed analytically for these simple scatterers. For

each set of values Nc and Ni, we compute the maximum near and far field errors. We choose

the number of modes M and the number of angular points Nθ sufficiently large so that these

errors are dominated by the error in the radial integration. The value of Nc determines the

order of the radial integration and is held fixed while Ni is increased to obtain the desired

accuracy in the computed solution. In these examples, we choose relatively small values of

Nc, for which the convergence rates are easily observed. In practice, we use significantly

larger values of Nc.

The results for the disc centered at the origin are given in Table 5.6. This disc has

a diameter of 2λ and a refractive index n =
√

2. We fix the number of modes M = 30
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Ni εnfu Ratio εffu Ratio
4 0.760 1.39
8 0.216 3.51 0.373 3.72
16 5.92e-2 3.66 9.47e-2 3.94
32 1.41e-2 4.18 2.38e-2 3.98
64 3.67e-3 3.85 5.95e-3 4.00
128 9.34e-4 3.93 1.49e-3 4.00

Ni εnfu Ratio εffu Ratio
4 9.77e-2 6.30e-2
8 1.24e-2 7.88 3.53e-3 17.9
16 1.98e-3 6.28 2.31e-3 1.52
32 3.83e-4 5.15 6.74e-4 3.43
64 8.73e-5 4.39 1.74e-4 3.86
128 2.05e-5 4.27 4.40e-5 3.97

(a) Nc = 2 (b) Nc = 3

Ni εnfu Ratio εffu Ratio
4 1.15e-2 4.31e-3
8 8.25e-4 18.0 6.50e-4 6.64
16 5.41e-5 15.3 4.59e-5 14.2
32 3.49e-6 15.5 2.95e-6 15.5
64 2.11e-7 16.5 1.86e-7 15.9
128 1.37e-8 15.4 1.16e-8 16.0

Ni εnfu Ratio εffu Ratio
4 1.19e-3 2.51e-4
8 4.61e-5 25.8 2.50e-5 10.1
16 1.85e-6 24.9 2.34e-6 10.7
32 9.69e-8 19.1 1.60e-7 14.7
64 5.58e-9 17.4 1.02e-8 15.7
128 3.28e-10 17.0 6.41e-10 15.9

(c) Nc = 4 (d) Nc = 5

Table 5.6: Convergence of Radial Integration for Disc Centered at Origin – 2λ Diameter

and the number of angular points Nθ = 64. Table 5.6 shows the convergence rates for

various values of Nc as Ni is increased. It is not difficult to see from these results that the

radial integrals converge as N−Nci if Nc is even and as N−(Nc−1)
i if Nc is odd. Hence, we

always choose Nc to be even. Furthermore, the computation of the radial integrals requires

O(N2
cNi) = O(NcNr) operations. At the same time, this O(N2

c ) complexity is not observed

until Nc becomes quite large. We choose Nc to balance the order of the convergence with

the efficiency of the computation. In most examples, we have found that Nc = 16 strikes

this balance quite well.

The results for the disc centered at (1λ, 0) are given in Table 5.7. In this case, the disc

has a diameter of 1λ and a refractive index of n =
√

2. As in the previous example, we fix

the number of modes and examine the convergence rates as Ni increases for various values

of Nc. In this case, since the inhomogeneity m is a discontinuous function on the domain

of integration, our computed solution converges as O(M−2) in the near field and O(M−3)

in the far field. In the case of the disc centered at the origin, on the other hand, we observe

super-algebraic convergence since the inhomogeneity is C∞ on the domain of integration.

Because the solution converges more slowly in this example, we must choose a much larger

value of M (and Nθ) so that the dependence of the error on the radial integration can be

observed. We choose M = 1920 and Nθ = 8192.
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As discussed in Section 3.1.2, since the disc centered away from the origin is a discontin-

uous scatterer, it produces singularities in I`(r), which must be resolved in order to obtain

high-order convergence. It is not difficult to show that a disc with radius R, centered at

(d, 0) has Fourier coefficients

m`(r) =


m̄α(r)
π , if ` = 0

m̄ sin(`α(r))
π` , if ` 6= 0,

(5.1)

for d−R ≤ r ≤ d+R and where m̄ = 1−n2 = 1−2 = −1 and α(r) = arccos
[
r2−(d2−R2)

2dR

]
. It

is also not difficult to see that m`(r) and, hence, I`(r) (see (2.9)) has square-root singularities

at r = d − R and r = d + R. Therefore, we make use of the change of variables (3.4) to

resolve these singularities. In Table 5.7, we give the near and far field errors obtained with

and without this change of variables. We only present results for even values of Nc

The convergence rates for this discontinuous scatterer are more erratic. It is clear that

the change of variable increases the convergence rate rather significantly. However, it is

difficult to ascertain a precise convergence rate from these numerical examples. Further-

more, although the convergence rate with the change of variable is high-order (at least in

average), there seems to be little advantage in choosing a value of Nc ≥ 4, i.e., there is only

slight improvement in the results for Nc = 8 as compared with the results for Nc = 4. This

is likely due to the rapid radial oscillations in the slowly decaying Fourier coefficients m`(r)

(see (5.1)). The more rapid convergence rates shown in Table 5.6 are only obtained when

these oscillations are sufficiently resolved by the radial discretization. Hence, when M is

large, as in this example, we observe a more moderate, albeit still high-order, convergence

rate for the radial integration.

5.1.3 Complex Scatterers and Preconditioning

In this section, we illustrate the power and flexibility of the two-dimensional method by

considering three rather complex scatterers. The first two contain geometric singularities,

corners and cusps, respectively. The last example contains smooth indentations and pro-

trusions in a constant background, providing an example of a truly inhomogeneous, but

smooth, medium. In each example, we present the maximum near and far field errors as

we increase Ni, M and Nθ while fixing Nc = 16 and Ng = 8. Furthermore, we present the
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Ni εnfu Ratio εffu Ratio
1 2.26 4.94
2 1.50 1.51 2.01 2.46
4 0.486 3.07 0.552 3.89
8 0.156 3.12 0.180 3.06
16 4.49e-2 3.46 5.58e-2 3.23
32 1.27e-2 3.54 1.71e-2 3.27
64 4.33e-3 2.93 5.50e-3 3.10
128 1.29e-3 3.35 1.94e-3 2.84
256 4.73e-4 2.73 6.78e-4 2.86

Ni εnfu Ratio εffu Ratio
1 2.95 5.69
2 1.94 1.52 2.58 2.21
4 0.675 2.88 1.02 2.53
8 0.200 3.37 0.262 3.88
16 5.11e-2 3.92 6.85e-2 3.82
32 1.41e-2 3.62 1.73e-2 3.96
64 3.55e-3 3.98 4.34e-3 3.99
128 8.41e-4 4.22 1.09e-3 4.00
256 1.89e-4 4.46 2.72e-4 4.00

(a) Nc = 2 without change of variable (b) Nc = 2 with change of variable

Ni εnfu Ratio εffu Ratio
1 1.84 1.57
2 0.155 11.84 0.153 10.30
4 2.82e-2 5.50 2.18e-2 7.02
8 6.60e-3 4.27 6.52e-3 3.34
16 4.18e-3 1.58 2.07e-3 3.15
32 7.10e-4 5.89 6.90e-4 3.00
64 3.96e-4 1.79 2.37e-4 2.91
128 8.72e-5 4.54 8.28e-5 2.86

Ni εnfu Ratio εffu Ratio
1 1.88 4.07
2 0.795 2.36 0.550 7.39
4 3.84e-2 20.68 1.09e-2 50.56
8 2.97e-3 12.95 4.28e-4 25.45
16 4.28e-4 6.94 4.65e-5 9.20
32 2.48e-5 17.25 3.43e-6 13.55
64 7.50e-6 3.30 2.44e-7 14.05
128 4.11e-7 18.24 1.48e-8 16.43

(c) Nc = 4 without change of variable (d) Nc = 4 with change of variable

Ni εnfu Ratio εffu Ratio
1 2.73e-2 1.72e-2
2 9.35e-3 2.92 5.32e-3 3.23
4 4.16e-3 2.25 1.63e-3 3.26
8 1.13e-3 3.70 5.60e-4 2.91
16 4.72e-4 2.38 1.96e-4 2.86
32 1.81e-4 2.61 6.94e-5 2.83
64 2.89e-5 6.26 2.46e-5 2.82

Ni εnfu Ratio εffu Ratio
1 0.551 0.325
2 9.65e-3 2.36 9.94e-4 327.3
4 1.37e-3 20.68 4.46e-5 22.27
8 1.76e-4 12.95 4.80e-6 9.31
16 5.23e-5 6.94 5.49e-7 8.73
32 4.27e-6 17.25 6.15e-8 8.94
64 3.45e-7 3.30 4.24e-9 14.50

(e) Nc = 8 without change of variable (f) Nc = 8 with change of variable

Table 5.7: Convergence of Radial Integration for Disc Centered at (1λ, 0) – 1λ Diameter
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number of GMRES iterations, the memory and the time required with and without the use

of our preconditioner. These results were obtained on a 1.7GHz Pentium IV Xeon with

2GB of RAM.

The example of the square scatterer with constant refractive index in Figure 5.6 and

Table 5.8 is another example of a discontinuous scatterer like the off-center disc. The length

of the diagonal is 5λ and n = 2. Hence, in terms of interior wavelengths, the square has

a diagonal length of 10λ. The implementation of this example requires no additional care

to deal with the corners. We simply compute analytically the Fourier coefficients of m as a

function of radius, m`(r).

In this example, we divide the radial integration domain into two intervals [0, 5λ/2
√

2]

and [5λ/2
√

2, 5/2λ]. On the first interval, m is constant. It is not too difficult to see

that, on the second interval, the Fourier coefficients m`(r) have a square-root singularity at

r = 5λ/2
√

2 from the right and, hence, we use the change of variable (3.4) on this interval.

In Table 5.8, we list the number of subintervals in each of these intervals (as N (1)
i /N

(2)
i ) as

well as the total number of radial points Nr. Finally, we precondition the resulting linear

system with an approximate inhomogeneity m̃, which is equal to the true value of m on

the first interval and equal to zero on the second interval. We have determined through

experiment that this configurations produces the greatest decrease in the number of GMRES

iterations required to obtain a given residual tolerance.

Note that the slight noise in the visualization of the refractive index in Figure 5.6(a)

is caused by the Gibb’s phenomenon in summing the truncated Fourier series. (This noise

can be observed in the visualizations of the other discontinuous scatterers as well.) We

emphasize that, as discussed in Section 2.3, this approximation of m by m2M does not

degrade the solution accuracy, but instead improves it by allowing efficient and exact com-

putation of the Fourier coefficients of m(r, θ)vM (r, θ). As in previous examples, we observe

second-order convergence in the near field and third-order convergence in the far field as

predicted. Note that the time and memory scale linearly with the number of unknowns

N = (Nr + 1)(2M + 1).

The star-shaped scatterer in Figure 5.7 contains cusps and, hence, would likely pose

difficulties for a boundary integral method. However, as with the square scatterer, no

special care need be taken to treat this geometry. As before, we simply compute the Fourier

coefficients for this scatterer analytically. This star-shaped scatterer is given by the region
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.6: Visualizations for Square Scatterer – Diagonal Length = 5λ
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M Nθ Ni Nr Memory Iter. Time εnfu εffu
60 256 2/2 68 13M 33M 52 218 8.56s 23.0s 6.15e-2 4.32e-2
120 512 2/3 85 31M 79M 56 226 21.4s 60.8s 1.22e-2 3.60e-3
240 1024 2/5 119 90M 228M 58 235 61.8s 181s 1.70e-3 3.21e-4
480 2048 2/10 204 311M 795M 62 238 218s 623s 4.25e-4 3.64e-5
960 4096 2/20 374 1183M 66 238s 6.72e-5 3.04e-6

Table 5.8: Convergence for Square Scatterer – Diagonal Length = 5λ

M Nθ Ni Nr Memory Iter. Time εnfu εffu
30 128 1/2 51 6M 6M 32 73 3.16s 3.46s 0.792 0.581
60 256 1/4 85 14M 15M 35 77 7.76s 8.95s 0.112 9.34e-2
120 512 1/6 119 36M 42M 37 80 19.5s 23.7s 2.02e-2 1.28e-2
240 1024 1/10 187 113M 143M 40 82 61.3s 72.7s 3.87e-3 1.65e-3
480 2048 1/18 323 403M 543M 43 85 219s 261s 9.01e-4 2.06e-4
960 4096 1/34 595 1538M 45 882s 1.50e-4 2.13e-5

Table 5.9: Convergence for Star Scatterer – Diameter = 1λ

between the four unit discs centered at (1, 1), (1,−1), (−1, 1) and (−1,−1), respectively.

It is scaled to have a diameter of 1λ and has a refractive index n = 8. Hence, in terms of

interior wavelengths, this scatterer measures 8λ in diameter.

As with the square scatterer, we divide the radial integration domain into two intervals

[0, (
√

2 − 1)/2λ] and [(
√

2 − 1)/2λ, 1/2λ]. We again use the change of variable (3.4) to

resolve the square-root singularity at the left endpoint of the second interval. In Table 5.9,

we report the number of subintervals in each of these intervals as N (1)
i /N

(2)
i . As with the

square, we precondition with the value of m itself on the inner interval and with zero on the

outer interval. In this example, the preconditioner yields only minor decreases in the time

and memory. Generally, the preconditioner’s effectiveness is diminished for inhomogeneities

that are poorly approximated by a piecewise constant, radially layered inhomogeneity (see

Section 3.2.2).

The visualization of the near field intensity, Figure 5.7(b), clearly shows the relatively

long wavelength of the field outside the scatterer as well as the relatively short wavelength

of the field inside the scatterer. Table 5.9 demonstrates the second-order convergence in the

near field and third-order convergence in the far field. We also observe the proper scaling

of the memory and time with M , Nr and the number of GMRES iterations.

The final example is given in Figure 5.8. This scatterer is generated by adding (or

subtracting) several smooth “bumps” with randomly generated heights, radii and centers
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.7: Visualizations for Star Scatterer – Diameter = 1λ
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M Nθ Ni Nr Memory Iter. Time εnfu εffu
30 128 3 51 5M 27M 12 439 1.38s 21.6s 1.38e-2 5.32e-3
60 256 7 119 14M 107M 15 445 5.69s 120s 2.22e-4 3.41e-5
120 512 12 204 47M 368M 20 457 22.5s 426s 5.24e-6 3.46e-7
240 1024 26 442 221M 23 468 131s 7.50e-8 2.83e-10

Table 5.10: Convergence for Bumpy Scatterer – Diameter = 5λ

to a constant refractive index in a disc. The constant background in this example has a

diameter of 5λ and a refractive index n = 2 (interior wavelength diameter = 10λ). The

bumps are simple smooth cylindrically symmetric functions as given by (4.5), which are

then multiplied by a height (positive or negative). Since the background disc with constant

refractive index is centered at the origin, we obtain a scatterer that is C∞ at each radius

as a function of the angular variable. Hence, we obtain rapid convergence in both the

radial integration and the angular integration and thus, unlike the previous examples, we

do not substitute m2M for m, but rather compute I`(r) by means of direct trapezoidal rule

integration with Nθ points (see Section 3.1.1).

Since this inhomogeneity is smooth in the integration domain, we need not resolve

any singularities. Hence, we have only a single interval for the radial integration. We

precondition by approximating the scatterer m by the background value m̃ = 1− 22 = −3.

In this case, because of the accuracy of this preconditioning approximation as well as the

relatively large size of the scatterer, Table 5.10 shows large decreases in the required time,

memory and GMRES iterations when using the preconditioner.

5.2 Three-Dimensional Computational Examples

In this section, we demonstrate the O(N logN) complexity as well as the high-order conver-

gence rate of the three-dimensional method through three computational examples. First,

we consider a piecewise-constant layered sphere scatterer, for which the analytical solution

is known. Second, we consider a 5×5×5 array of smooth potentials. Finally, we consider a

rather complex scatterer containing inhomogeneous regions as well as geometric singularities

(discontinuities, corners, and cusps). Because of the large number of unknowns required,

some of the examples are computed in parallel. We list the wall-clock time required as

well as the number of processors used as T (s)× P . Thus, although not one of the primary

goals of this paper, one can thereby obtain some idea of the parallel performance of the
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(a) Scatterer (q = −m = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.8: Visualizations for Bumpy Scatterer – Diameter = 5λ
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method. These examples were computed on 1–16 dual processor nodes (1–32 processors) of

a Beowulf cluster. Each node consisted of two 1.7GHz Pentium IV Xeon processors and 1

GB of RAM. These nodes were connected via Myrinet.

To isolate the performance of the matrix-vector product, we hold the number of iter-

ations of the linear solver fixed. Hence, given the O(N logN) complexity, a doubling of

the unknowns in each direction should yield roughly a factor of eight increase in the time

required. This pattern is easily observed in each of the examples.

The convergence rate is illustrated by computing the maximum error in the near field

solution (εnfu ) as well as in the far field solution (εffu ). Given the near field solution u, the

far field solution u∞ is computed by means of the following integral [17, p. 223]

u∞(x̂) = −κ
2

4π

∫
Ω[a,b]

e−iκx̂·ym(y)u(y)dy,

where x̂ is a point on the unit sphere. We compute this integral with high-order accuracy

by means of the trapezoidal rule (after replacing m with m̃ and Ω[a,b] with Ω[ã,b̃]). To

illustrate the convergence rates more clearly, we also display the ratios of errors between

successive levels of discretization. When possible, we compare the computed solution with

the analytical solution; in the other cases, we compare the computed solution with the

solution at a finer discretization.

The results of the computations with the piecewise-constant layered sphere are presented

in Figures 5.9 and 5.10 as well as in Table 5.11. As discussed in Section 4.3, m is replaced

by m̃ to obtain high-order convergence in this example (see the columns labeled εsu and

εsu∞). Although the convergence rates jump around somewhat, the near field solution seems

to converge as h2 while the far field solution converges (at least in geometric average) as

h3. For the purpose of comparison, we have also included the convergence rates that one

observes when m is not replaced by m̃ (columns labeled εdu and εdu∞). In this case, the

convergence rates are significantly slower in both the near and the far fields, as expected.

Furthermore, even at rather coarse discretizations that yield relatively low accuracy, the

high-order method is clearly superior.

The results of the second example, the 5×5×5 array of smooth inhomogeneous scatterers

(potentials), are presented in Figures 5.11 and 5.12 as well as Table 5.12. Each of these

scatterers is given by a spherically symmetric partition of unity function of the form (4.5).
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.9: Visualizations for Layered Sphere – κa = 4
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Figure 5.10: Far Field Intensity (|u∞|2) for Layered Sphere – κa = 4

N T (s)× P εd,nfu εs,nfu Ratio εd,ffu εs,ffu Ratio
10× 10× 10 2.15× 1 1.47 0.250 0.647 0.146
20× 20× 20 15.6× 1 0.614 2.25(-2) 11.1 0.314 4.56(-3) 31.95
40× 40× 40 125× 1 0.167 5.70(-3) 3.96 8.42(-2) 9.55(-4) 4.78
80× 80× 80 1119× 1 5.40(-2) 1.48(-3) 3.86 2.83(-2) 5.43(-5) 17.57

160× 160× 160 475× 32 2.38(-2) 2.38(-4) 6.20 4.12(-3) 7.11(-6) 7.64

Table 5.11: Convergence for Layered Sphere – κa = 4
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N T (s)× P εnfu Ratio εffu Ratio
10× 10× 10 5.65× 32 3.70 43.0
20× 20× 20 6.39× 32 1.35 2.73 10.6 4.05
40× 40× 40 15.1× 32 4.80(-2) 28.2 8.66(-2) 122
80× 80× 80 107× 32 8.28(-3) 5.79 4.47(-2) 1.94

160× 160× 160 875× 32 6.48(-5) 128 7.76(-5) 576

Table 5.12: Convergence for Array of Smooth Scatterers – 5λ× 5λ× 5λ

The centers of the scatterers are separated by 1λ and each has a radius of 1/2λ. Therefore,

the support of the array is contained in a 5λ×5λ×5λ box. Since m ∈ C∞, we do not replace

m by m̃, but instead integrate directly with the trapezoidal rule. As expected, we observe

a very rapid convergence rate. Likely due to the heterogeneity in the scatterer, which must

be sufficiently resolved, we observe a sharp dip in the convergence rate for N = (40, 40, 40)

followed by an immediate resumption of the rapid convergence.

The results of our final computational example are contained in Figures 5.13, 5.14

and 5.15 as well as Table 5.13. This scatterer is created by adding together a cube, two

spheres, two layered spheres, and six smooth, inhomogeneous scatterers (similar to those in

the previous example) to create a rather complex scatterer. More precisely, we first center

at the origin a cube with m = −1 and sides of length 4. Next, two unit spheres with m = +1

and centered at (0,−1, 0) and (0, 1, 0), respectively, are added to the interior of this cube.

This essentially cuts two spheres out of the cube. Then, two layered spheres with unit radii

are placed tangent to the two faces of the cube that are orthogonal to the y-axis. Finally,

two sets of three smooth, inhomogeneous scatterers are placed along the faces of the cube

that are orthogonal to the z-axis. Figures 5.13 and 5.14(a) display this structure with two

orthogonal slices of the scatterer.

This scatterer contains inhomogeneous regions, discontinuities, corners, and cusps. De-

spite these geometric singularities, we substitute m by

m̃(y) = pm1(y)mF
1 (y) + pm2(y)mF

2 (y) + · · · ,

where mF
j is the truncated Fourier series for the jth discontinuous component of the scat-

terer. (As in the previous example, we do not replace the C∞ components of the scatterer by

their Fourier-smoothed approximations.) One must only compute the Fourier coefficients of

each of the individual discontinuous components of the scatterer, i.e., the cube, the spheres
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.11: Visualizations for Array of Smooth Scatterers – 5λ× 5λ× 5λ
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Figure 5.12: Far Field Intensity (|u∞|2) for Array of Smooth Scatterers – 5λ× 5λ× 5λ
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Figure 5.13: Complex Scatterer – Close-Up Image of Scatterer

and the layered sphere—the corners, cusps and inhomogeneities present no additional diffi-

culties. We emphasize that no additional consideration of the scatterer geometry is required

in our three-dimensional approach, whereas the two-dimensional approach required identi-

fication and resolution of singularities in the Fourier coefficients (mu)`(r).

Note that because of the asymmetry in the scatterer, we do not use the same number of

discretization points in each direction. With κ = 4, the scatterer has an interior wavelength

size (as measured along the y-axis) of approximately 7.2λ. We again observe high-order

convergence in the near and far fields.

This illustrates one of the most powerful features of this method. We can treat quite

complicated scatterers simply by adding the Fourier coefficients of the component pieces; no

additional effort is needed to handle singularities that appear when these components are

added. Furthermore, unlike other methods, the scatterer does not need to be “remeshed”

as we refine the discretization. As demonstrated in this example, the high-order accuracy

is maintained even for such complicated scatterers.
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(a) Scatterer (q = n2 − 1)

(b) Near Field Intensity (|u|2)

Figure 5.14: Visualizations for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ
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Figure 5.15: Far Field Intensity (|u∞|2) for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ

N T (s)× P εnfu Ratio εffu Ratio
8× 16× 8 4.39× 1 3.98 13.6

16× 32× 16 10.8× 4 0.554 7.17 1.45 9.37
32× 64× 32 59.5× 4 2.99(-2) 18.5 7.02(-2) 20.6
64× 128× 64 96.0× 32 3.37(-3) 8.87 1.03(-3) 68.1

128× 256× 128 781× 32 4.04(-4) 8.34 8.64(-5) 11.9

Table 5.13: Convergence for Complex Scatterer – Size ≈ 2.5λ× 5λ× 2.5λ
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Chapter 6

Conclusions

In this thesis, we have introduced a new, fast, high-order method for scattering by inho-

mogeneous media in three dimensions. This approach was motivated in part by the fast,

high-order method in two dimensions introduced in [13]. In an attempt to allay the con-

troversy generated by the claim of high-order accuracy, we proved, in Chapter 2, that this

method indeed achieves high-order accuracy even in the case of discontinuous scatterers—

yielding, in this case, second-order convergence in the near field and third-order convergence

in the far field. We emphasized the interesting dependence of the convergence rate on the

regularity of the scatterer, i.e., the convergence rates in the far field jump from third-order

for discontinuous scatterers to fifth-order for C0,α scatterers and to seventh-order for C1,α

scatterers (assuming they are also piecewise smooth).

In Chapter 3, we presented several improvements to the numerical implementation of

this two-dimensional method. In particular, we achieved increased efficiency and stability

through a new Chebyshev-based radial integration scheme and a new preconditioner. Also,

the new method for computing scaled Bessel functions (see Appendix B) proved to be of

great practical importance.

The high-order accuracy in the two-dimensional method is based on high-order trape-

zoidal rule integration and Fourier approximation of smooth and periodic functions. These

ideas motivated the development of the three-dimensional method, as introduced in Chap-

ter 4. By decomposing the Green’s function into a smooth part with infinite support and a

singular part with compact support, we were able to make use of both high-order trapezdoial

rule integration and high-order Fourier approximation in computing the required convolu-

tions. The rather counterintuitive method of Fourier smoothing played a central role in

achieving high-order accuracy for discontinuous scatterers.
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In Chapter 5, we demonstrated the efficiency and high-order accuracy of these numerical

methods through several computational examples. These examples served to verify the

theoretical convergence rates of the two-dimensional method. We also demonstrated the

high-order convergence of the radial integration scheme. We illustrated the effectiveness of

the preconditioner. Finally, we presented results from parallel runs of the three-dimensional

method. In particular, we sought to emphasize the power and versatility of the three-

dimensional method in constructing complicated scatterers for which high-order accurate

solutions can then be computed.

Many interesting problems still remain. Perhaps one of the most important research

problems is the development of a preconditioner for the three-dimensional case. The dra-

matic growth of the number of required iterations with problem size remains one of the

most fundamental obstacles to solving realistic problems of hundreds or even thousands of

wavelengths in size.

A related issue concerns the scaling of the unknowns with the wavelength. In three

dimensions, doubling the frequency requires a doubling of the grid points in each direc-

tion, yielding a factor of eight increase in unknowns. This doubling of discretization points

is required to resolve the highly oscillatory fields. If, instead, one could factor out the

dominant, highly oscillatory modes of the solution so that one would not need to explic-

itly resolve them, then the remaining smoothly varying function could be discretized with

relatively few points. A similar approach, often called enveloping, is taken in paraxial ap-

proximations since the dominant propagation direction is known [7, 21, 23]. Also, previous

work focusing on the application of multigrid to scattering problems [11, 40] made use of

similar ideas.

Since FFT-based methods require, in general, equally spaced discretization points, it

is not straightforward to implement adaptive discretization strategies. At the same time,

there are certainly problems for which the availability of an adaptive method could save

considerable time and memory. Hence, we want to consider adaptive approaches such as

(smoothly) decomposing the scatterer into several pieces, each of which has a different

discretization level. Interactions between these pieces could be computed through use of

equivalent sources (see [12] for more details).

Finally, we are interested in extending these methods to other specific application fields

such as materials science, particularly electron diffraction. In electron diffraction, the
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Lippman-Schwinger integral equation (1.6) arises from the Schrödinger equation [27, p.

141]. In spite of similarities with the problems considered in this text, such materials sci-

ence problems give rise to important differences. In particular, a crystal lattice, because

of its size relative to the lattice spacings, is considered an infinite periodic structure. Ex-

tension of our methods to this problems is not straightforward, but the benefits of a fast,

high-order accurate method would, we believe, prove quite useful in this field.

We believe research along these lines would lead to significantly improved capabilities in

computational scattering. It is our hope that such methods in computational scattering will

play an important role in advancing scientific understanding and engineering capabilities in

a variety of fields.
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Appendix A

Technical Lemmas

Here we present the proofs of two technical lemmas, Lemmas 2.1 and 2.6, that play an

important role in the convergence rate results of Chapter 2. Neither of these results is very

difficult to obtain, but since the technical nature of the proofs obscures the essence of the

convergence rate results, we place them here in the appendix.

A.1 Bound on Fourier Coefficient of Green’s Function

To prove that solutions to the approximate integral equation (2.3) exist and to prove the

convergence rates, we need a bound on the decay rate of the Fourier coefficients of the

Green’s function, J`(a, r) as defined in (2.1). This decay rate is given in Lemma 2.1.

However, although the proof of this lemma is not difficult, it is somewhat technical. Hence,

we first derive two simple bounds that aid in the proof.

Lemma A.1. Given α > 0 and a positive integer k, there exists a constant C > 0 such

that
α`

`!
≤ C

max{1, `k}
,

for all integers ` ≥ 0.

Proof. If we let ` = 0, then we require that C ≥ 1 for the lemma to hold. Now consider

` ≥ 1. Equivalently we require that

` logα−
∑̀
p=2

log `+ k log ` ≤ logC.
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We bound the sum by the following integral

∑̀
p=2

log ` ≥
∫ `

1
log xdx = ` log `− `+ 1.

Thus, we require that

`

[
logα+ 1 + k

log `
`

]
− ` log ` ≤ logC + 1.

It is not difficult to see that the left-hand side of this equation is bounded from above for

` ≥ 1 since ` log ` eventually dominates. Hence, we can choose a constant C ≥ 1 such that

the result holds.

According to [2, p. 362], for all integers ` ≥ 0 and for any real, non-negative z,

|J`(z)| ≤
1
`!

(z
2

)`
. (A.1)

The following lemma provides a similar bound for |Y`(z)|.

Lemma A.2. For all integers ` ≥ 1 and for any real, non-negative z,

|Y`(z)| ≤
(`− 1)!
π

(z
2

)−`
e(

z
2)2

+
2
π`!

∣∣∣log
(z

2

)∣∣∣ (z
2

)`
+

2
π

(z
2

)`
e(

z
2)2

. (A.2)

For ` = 0,

|Y`(z)| ≤
2
π

∣∣∣log
(z

2

)∣∣∣+
2
π
e(

z
2)2

.

Proof. By [10, p. 51], Y`(z) for any non-negative integer ` is given by

Y`(z) =
2
π
J`(z) log

(z
2

)
− 1
π

`−1∑
k=0

(`− k − 1)!
k!

(z
2

)2k−`
− 1
π

∞∑
k=0

ψ(`+ k) + ψ(k)
(−1)kk!(k + `)!

(z
2

)2k+`
,

where ψ(0) = −γ ≈ −0.5772 and ψ(k) = −γ +
∑k

j=1
1
j for k ≥ 1.
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For ` ≥ 1,

`−1∑
k=0

(`− k − 1)!
k!

(z
2

)2k
≤ (`− 1)!

∞∑
k=0

1
k!

[(z
2

)2
]k

≤ (`− 1)!e(
z
2)2

.

Also note that for k ≥ 1, |ψ(0)| ≤ 1 and

0 ≤ ψ(k) ≤ −γ +
k∑
j=1

1

= −γ + k

≤ k.

Hence, |ψ(k)| ≤ max{1, k}.

Now observe that |ψ(`+ k) + ψ(k)| ≤ 2 max{1, `+ k} and

|ψ(k)|
k!

≤ 1,

for k ≥ 0. Therefore, for ` ≥ 0

∞∑
k=0

|ψ(`+ k) + ψ(k)|
k!(k + `)!

(z
2

)2k
≤ 2

∞∑
k=0

1
k!

(z
2

)2k

≤ 2e(
z
2)2

.

Hence, by these individual bounds and (A.1) we obtain the desired result.

With these two results in hand, we turn to the proof of the main lemma.

Proof of Lemma 2.1. First note that

∫ R1

R0

|J`(a, r)| rdr = |H1
` (κa)|

∫ a

R0

|J`(κr)|rdr + |J`(κa)|
∫ R1

a
|H1

` (κr)|rdr

≤ |J`(κa)|
∫ R1

R0

|J`(κr)|rdr + |J`(κa)|
∫ R1

a
|Y`(κr)|rdr

+ |Y`(κa)|
∫ a

R0

|J`(κr)|rdr

≤ IJ,J + IJ,Y + IY,J ,



96

where

IJ,J = |J`(κa)|
∫ R1

0
|J`(κr)|rdr,

IJ,Y = |J`(κa)|
∫ R1

a
|Y`(κr)|rdr,

IY,J = |Y`(κa)|
∫ a

0
|J`(κr)|rdr.

Note that |J−`(z)| = |(−1)`J`(z)| = |J`(z)| and similarly |Y−`(z)| = |Y`(z)|. Hence, it

suffices to bound these integrals for ` ≥ 0.

We use (A.1) as well as Lemmas A.1 and A.2 to bound each of these integrals. For ` ≥ 0

IJ,J ≤ 1
(`!)2

R2
1

(
κR1

2

)2l

≤
CJ,J

max{1, `2}
,

where the last inequality follows from Lemma A.1 and CJ,J depends only on κ and R1.

The bound for IJ,Y consists of three parts from each of the three terms in (A.2). For

` > 2,

κ`

2``!
a`
∫ R1

a

2`(`− 1)!
πκ`

r−`+1e(κr
2

)2
dr ≤ R1

2

π`(`− 2)
e(
κR1

2
)2

((
a

R1

)2

−
(
a

R1

)`)

≤
C

(1)
J,Y

max{1, `2}
.

For ` = 0 this term does not appear in (A.2) and for ` = 1, 2, a similar argument yields the

same bound. Continuing with the next term in (A.2)

(κa)`

2``!

∫ R1

a

2κ`

π2``!

∣∣∣log
(κr

2

)∣∣∣ r`+1dr ≤
(
κR1

2

)2` 2R1

π(`!)2

∫ R1

0

∣∣∣log
(κr

2

)∣∣∣ dr
≤

C
(2)
J,Y

max{1, `2}
,

by Lemma A.1 and since
∫ R1

0

∣∣log
(
κr
2

)∣∣ dr is bounded. Finally, by similar arguments one

can show that the third term is similarly bounded.
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We also bound IY,J by considering the three terms in (A.2). For ` ≥ 1,

2`(`− 1)!
πκ`

a−`e(
κa
2 )2

∫ a

0

κ`

2``!
r`+1dr ≤ 1

π`(`+ 2)
e(

κa
2 )2

R1
2

≤
C

(1)
Y,J

max{1, `2}
.

Continuing with the second term,

2
π`!

∣∣∣log
(κa

2

)∣∣∣ (κa
2

)` ∫ a

0

1
`!

(κr
2

)`
rdr ≤ 1

π(`!)2

(
κR1

2

)2`

a2
∣∣∣log

(κa
2

)∣∣∣
≤

C
(2)
Y,J

max{1, `2}
,

since a2
∣∣log

(
κa
2

)∣∣ is bounded for 0 ≤ a ≤ R1. The bound for the last term also takes this

form and can be obtained similarly. Hence,

IJ,J + IJ,Y + IY,J ≤
C

max{1, `2}
,

for some constant C > 0 that depends only on κ and R1.

A.2 Bound on Integral Operator

In this section, we prove the bound on K`u
T as given in Lemma 2.6, which plays a primary

role in our derivation of the convergence rates. As mentioned previously, some care is

required to obtain tight bounds on the convergence rates. Hence, the proof of the lemma is

somewhat technical.

Proof of Lemma 2.6. Define the annular region A = {(a, φ) : R0 ≤ a ≤ R1}. Then (2.7),

Lemma 2.4 and Theorem 2.5 imply that if m ∈ Ck,α(A)∩Ck+2,α
pw (A), then u ∈ Ck+2,α(A)∩

Ck+4,α
pw (A) and there exists a constant C > 0 such that

∥∥K`u
T
∥∥
∞ ≤ C

max{1, `2}
∑
|j|>M

1
max{1, |`− j|k+2}

1
max{1, |j|k+4}

=
C

max{1, `2}
∑
j>M

1
jk+4

(
1

(j − `)k+2
+

1
(j + `)k+2

)
≤ 2C

max{1, `2}
∑
j>M

1
jk+4

1
(j − |`|)k+2

, (A.3)
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for ` = −M, . . . ,M . This expression also holds for m ∈ L∞(A) ∩ C1,α
pw (A) with k = −1.

Clearly, we need only consider ` = 0, . . . ,M .

∑
j>M

1
jk+4

1
(j − `)k+2

≤ 1
(M + 1)k+4

1
(M + 1− `)k+2

+
∫ ∞
M+1

1
xk+4

1
(x− `)k+2

=
1

(M + 1)k+4

1
(M + 1− `)k+2

+
1

2k + 5
1

(M + 1)2k+5
F

(
k + 2, 2k + 5; 2k + 6;

`

M + 1

)
,

where F is the hypergeometric function [2, p. 556]

F (a, b; c; z) ≡ 2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt

=
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)

zn

n!
,

for |z| < 1.

We need a few simple bounds on F in order to obtain the final result. It is easily verified

that for positive integers a, b,

F (a, b; b; z) =
∞∑
n=0

(a+ n− 1)!
(a− 1)!n!

zn = (1− z)−a.

Using this result, if a > 1 and b > 0 are integers and a ≤ b+ 1, then

F (a, b; b+ 1; z) =
b

a− 1

∞∑
n=0

a+ n− 1
b+ n

(a+ n− 2)!
(a− 2)!n!

zn

≤ b

a− 1
(1− z)−(a−1).

Finally, for integers a = 1 and b > 0, we have

F (1, b; b+ 1; z) = b
∞∑
n=0

1
b+ n

zn

≤ 1− b log(1− z).
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Hence, for k ≥ 0 and ` = 0, . . . ,M , we obtain

∑
j>M

1
jk+4

1
(j − `)k+2

≤ 1
(M + 1)k+4

1
(M + 1− `)k+2

+
1

k + 1
1

(M + 1)k+4

1
(M + 1− `)k+1

≤ 2
Mk+4

1
(M + 1− `)k+1

. (A.4)

For k = −1 and ` = 0, . . . ,M ,

∑
j>M

1
j3

1
j − `

≤ 1
(M + 1)3

1
M + 1− `

+
1

3(M + 1)3
+

1
(M + 1)3

log
(

M + 1
M + 1− `

)
≤ 1

3M3
+

1
M2

1
M + 1− `

, (A.5)

where we have used the fact that log x ≤ x. Combining (A.3) with (A.4) and (A.5) give the

desired results for m ∈ L∞(A) ∩ C1,α
pw (A) and m ∈ Ck,α(A) ∩ Ck+2,α

pw (A), respectively.

Remark A.3. Finally, we note that the bounds for m ∈ L∞(A)∩C1,α
pw (A) and m ∈ C0,α(A)∩

C2,α
pw (A) can be obtained more simply as follows.

∥∥K`u
T
∥∥ ≤ 2C

max{1, `2}
∑
j>M

1
jk+4

1
(j − |`|)k+2

≤ 2C
max{1, `2}

1
(M + 1− |`|)k+2

∑
j>M

1
jk+4

≤ Ĉ

max{1, `2}
1

(M + 1− |`|)k+2

1
Mk+3

,

for some constant Ĉ > 0. However, this simple bound does not capture the interesting

convergence rate jumps in the results of Theorem 2.7 for m ∈ Ck,α(A) ∩ Ck+2,α
pw (A), k ≥ 1.



100

Appendix B

Accurate and Efficient
Computation of Scaled Bessel
Functions

As explained in Section 3.1.2, the rapid decay of the J`(z) and the rapid growth of the Y`(z)

as ` increases produces factors that underflow and overflow, respectively, but whose product

is machine-representable. We overcome these and other related issues by computing scaled

versions of the Bessel functions. The leading order asymptotic behavior of J`(z) and Y`(z)

near the origin are given respectively by

J`(z) ∼
1
`!

(z
2

)`
and

Y`(z) ∼ −
(`− 1)!
π

(z
2

)−`
for ` > 0. Thus, we scale the Bessel functions by their asymptotic representations, i.e., for

` > 0

J̃`(z) = `!
(z

2

)−`
J`(z), (B.1)

Ỹ`(z) = − π

(`− 1)!

(z
2

)`
Y`(z). (B.2)

We use these scaled Bessel functions to compute products and quotients of J`, Y` and H1
`

in many combinations. For example, we can compute the product J`(z1)Y`(z2) for ` > 0 as

J`(z1)Y`(z2) = − 1
π`
J̃`(z1)Ỹ`(z2). (B.3)
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Typically, the unscaled Bessel functions are computed by means of their recurrence

relations

J`+1(z) =
2`
z
J`(z)− J`−1(z), (B.4)

Y`+1(z) =
2`
z
Y`(z)− Y`−1(z). (B.5)

Note that these recurrence relations are identical, signifying the fact that the underlying

difference equation has linearly independent solutions J`(z) and Y`(z) for each z. Hence, in

theory, given either J0(z) and J1(z) or Y0(z) and Y1(z), these recurrence relations allow us

to obtain J`(z) or respectively Y`(z) for all `. In practice, this works well for Y`(z). However,

this procedure works for J`(z) only if z > `. Unfortunately, when computing J`(z) for z < `

(in which we are primarily interested), since Y`(z) is an exponentially growing solution,

the recurrence relation is numerically unstable for increasing `, i.e., the round-off error in

J0(z) and J1(z) is rapidly amplified by the recurrence. On the other hand, this instability

for increasing ` also implies that the recurrence relation is stable when computing J`(z)

for decreasing `, i.e., the round-off error in the starting values is quickly damped by the

recurrence. Thus, we can begin the downward recurrence with two arbitrary values and the

recurrence will rapidly converge to αJ`(z) where α is an unknown normalization constant.

Finally, to obtain the correct values of J`(z), we compute α by means of the relationship

1 = J0(z) + 2
∞∑
n=1

J2n(z). (B.6)

This sum is not difficult to approximate accurately since J`(z) decays exponentially for

z < ` (for more details, see [45, pp. 173–175]).

Hence, when computing Y`(z) for arbitrary z and ` or when computing J`(z) for z > `,

we first compute Y0(z) and Y1(z) or, respectively, J0(z) and J1(z) (perhaps by means of an

asymptotic expansion). We then use the recurrence relation with increasing ` to compute

Y`(z) or J`(z). For z < `, on the other hand, we iterate several times through the downward

recurrence with two arbitrary starting values to converge onto the correct sequence of αJ`(z).

Then, in the process of the downward recurrence, we collect the sum (B.6) and normalize

the sequence by the result.

To compute the scaled Bessel functions, we derive a new set of recurrence relations
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related to the recurrence relations (B.4) and (B.5). From the definitions (B.1) and (B.2),

and using (B.4) and (B.5), we obtain

J̃`+1(z) = `(`+ 1)
(

2
z

)2 [
J̃`(z)− J̃`−1(z)

]
, (B.7)

Ỹ`+1(z) = Ỹ`(z)−
1

`(`+ 1)

(z
2

)2
Ỹ`−1. (B.8)

In this case, as a result of the scaling, neither J̃`(z) or Ỹ`(z) grows (or decays) exponentially.

It is not difficult to show by means of a few numerical experiments that the recurrence for J̃`

is unstable and the recurrence for Ỹ` is stable for increasing `. Hence, after computing Y0(z)

and Y1(z) as done previously, we then scale these values and use the recurrence relation (B.8)

to compute Ỹ`(z). To compute J̃`(z), we use a downward recurrence and the normalization

sum (B.6) as before.

The implementation of this algorithm involves only relatively simple modifications to

any existing algorithm for computing Bessel functions J`(z) or Y`(z). In our application,

we modified the Fortran77 routines rjbesl and rybesl, which one can easily obtain from the

Netlib repository [1].



103

Appendix C

High-Order Evaluation of Fourier
Integrals

Given a smooth, compactly supported, real-valued function g(t) for t ∈ R, we seek to

compute the integral

I(ω) =
∫ b

a
g(t)eiωtdt

for various values of ω ∈ [ωmin, ωmax]. Clearly, since g(t) is real-valued, I(−ω) = I(ω) and,

therefore, we may restrict our attention to ωmin ≥ 0.

We present a modified version of the method suggested in [45, pp. 577–584]. Through

appropriate combinations of Lagrange interpolating polynomials of order q, we obtain a

high-order approximation of g(t). In particular, there exist piecewise smooth interpolating

polynomials ψ(s) of order q where −q ≤ s ≤ q such that ψ(0) = 1 and ψ(s) = 0 for integer

values s = −q, . . . , q. To further simplify the approach, we consider only even functions

ψ(s). (We describe specific choices of ψ(s) for q = 2, 4 in the following sections.) Thus, we

can construct a high-order approximation of g(t) as

g(t) ≈
N+(q−1)∑
k=−(q−1)

gkψ

(
t− tk
δ

)
,

where δ = (b − a)/N , tk = a + kδ and gk = g(tk). Note that this approximation requires

knowledge of g outside of the interval [a, b]. This presents no difficulties in our application

since the integrands p(ρ) and ρ p(ρ) are given by analytic expressions.

After some simplification, the integral becomes

I(ω) ≈ δeiωa
[
W (θ)S(θ) + ν(θ) + eiω(b−a)µ(θ)

]
,
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where θ = ωδ,

S(θ) =
N∑
k=0

gke
iθk,

W (θ) =
∫ p

−p
ψ(s) cos(θs)ds,

ν(θ) = g0γ0(θ) +
q−1∑
k=1

[
gkγk(θ)− g−kγk(θ)

]
,

µ(θ) = gNγ0(θ) +
q−1∑
k=1

[
gN−kγk(θ)− gN+kγk(θ)

]
,

and

γk(θ) = eiθk
∫ q

k
ψ(s)eiθsds.

Thus, the computation involves a simple sum of N + 1 terms, S(θ), the quantity W (θ) and

a relatively small number of endpoint corrections, ν(θ) and µ(θ). Furthermore, since ψ(s)

is known analytically, W (θ) and γk(θ) can be computed exactly for each choice of ψ.

The only approximation in the method to this point is the high-order interpolation

of g(t). Thus, we require only enough points to accurately approximate g(t) instead of

the highly oscillatory function g(t)eiωt. Furthermore, since we only approximate g(t), the

accuracy of the approximation is independent of ω. Hence, given any ε > 0, we can choose

N sufficiently large so that the error in I(ω) is less than ε, uniformly in ω.

Note that to decrease the error one may either increase the number of interpolation

points N or increase q (thereby increasing the order of the interpolation). As can be easily

demonstrated, the order of the method depends on q in much the same way as with Newton-

Cotes integration methods. More precisely, for q odd, the error decays like O(N−(q+1)) and

for q even, the error decays like O(N−(q+2)). Hence, we most generally choose q = 2 (fourth-

order convergence) or q = 4 (sixth-order convergence). The values of W (θ) and γk(θ) for

q = 2 and q = 4 are found in Sections C.1 and C.2, respectively.

In general, we may need to evaluate I(ω) for many different values of ω. (In our ap-

plication, ω = κ ± 2π|c`| with (c`)q = `q/(Bq − Aq) and where |`q| ≤ Ñq/2.) This is not

difficult to obtain for W (θ), ν(θ) and µ(θ) since they involve only a few of the gk. How-

ever, straightforward evaluation of the sum S(θ) has quadratic complexity. To reduce the

complexity, we use an FFT to compute S(θ) at θn = 2πn/NF for n = 0, . . . , NF − 1, where
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NF > N . More precisely,

S(θ) =
N∑
k=0

gke
iθnk =

NF−1∑
k=0

gke
2πikn/NF ,

where we set gk = 0 for k > N . Since S(θ) is periodic in θ with period 2π, we thereby

obtain the value of the S(θ) at θ = θn + 2πr, r ∈ Z.

Thus, given an arbitrary θ = ωδ, we interpolate to find S(θ), which together with W (θ),

ν(θ) and µ(θ) give us I(ω). The number of interpolation points Np determines the order

of the interpolation. While a large value of Np yields high-order accuracy, it is well known

that choosing Np too large can lead to numerical instabilities. Hence, we generally choose

Np ≤ 10. Furthermore, although increasing the value of NF also increases the accuracy of

the interpolated value S(θ), the actual value of NF is less important than the ratio NF /N ,

called the oversampling rate β. This is the number of points per wavelength with which

the most oscillatory mode in S(θ) is sampled. We have found that for a partition of unity

p(ρ) with t0 = 1/2 and t1 = 1 (see (4.5)) the values q = 4, N = 1024, β = 128, Np = 10 as

well as q = 2, N = 8192, β = 128, Np = 10 give us nearly full double precision accuracy.

The choice between these two possibilities depends on the problem size. When q = 4, the

FFT is faster since NF = βN is smaller. When q = 2, the interpolation is faster since the

endpoint corrections, ν and µ, are simpler. Hence, in smaller problems, we prefer the q = 4

values, and in larger problems, we prefer the q = 2 values.

C.1 Second-Order Interpolating Polynomials

For the case of q = 2, ψ(s) is given by a sum of second-order Lagrange interpolating

polynomials. More precisely, define

ψ1(s) =


(s+2)

2
(s+1)

1 , if −2 ≤ s ≤ 0

0, otherwise,

ψ2(s) =


(s+1)

1
(s−1)
−1 , if −1 ≤ s ≤ 1

0, otherwise,

ψ3(s) =


(s−1)
−1

(s−2)
−2 , if 0 ≤ s ≤ 2

0, otherwise.
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Notice that ψ1 and ψ3 form the usual piecewise second-order Lagrange interpolation scheme

when the point s = 0 lies on the boundary of two subintervals. On the other hand, ψ2 is

the usual Lagrange interpolating polynomial when the point s = 0 lies at the center of the

subinterval. Addition and normalization leads to

ψ(s) =
1
2

[ψ1(s) + ψ2(s) + ψ3(s)] .

The functions W (θ) and γk(θ) can now be obtained:

W (θ) =
4 sin3 (θ/2) [2 cos (θ/2) + θ sin (θ/2)]

θ3
,

γ0(θ) = −2i+ (3 + 4iθ)θ − 4(θ + i)eiθ + (θ + 2i)e2iθ

4θ3
,

γ1(θ) = −
eiθ
[
−2i+ θ + (2 + it)eiθ

]
4θ3

.

It is important to note that for θ � 1 the numerical evaluation of these functions can

produce a significant amount of cancellation error. To avoid this problem, for sufficiently

small θ, we approximate W (θ) and γk(θ) with a power series. Through experiment, we

determine the value of θ at which to switch (for approximately double precision accuracy)

from one method to the other. For example, for the function W (θ) above, we switch to the

power series method for θ < 10−4; and for γ1(θ), we switch for θ < 8/10.
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C.2 Fourth-Order Interpolating Polynomials

For q = 4, we similarly construct ψ(s) as a sum of fourth-order Lagrange interpolating

polynomials. Define

ψ1(s) =


(s+4)

4
(s+3)

3
(s+2)

2
(s+1)

1 , if −4 ≤ s ≤ 0

0, otherwise,

ψ2(s) =


(s+3)

3
(s+2)

2
(s+1)

1
(s−1)
−1 , if −3 ≤ s ≤ 1

0, otherwise,

ψ3(s) =


(s+2)

2
(s+1)

1
(s−1)
−1

(s−2)
−2 , if −2 ≤ s ≤ 2

0, otherwise,

ψ4(s) =


(s+1)

1
(s−1)
−1

(s−2)
−2

(s−3)
−3 , if −1 ≤ s ≤ 3

0, otherwise,

ψ5(s) =


(s−1)
−1

(s−2)
−2

(s−3)
−3

(s−4)
−4 , if 0 ≤ s ≤ 4

0, otherwise.

Then, as with q = 2, ψ(s) is given by the normalized sum of these piecewise smooth

polynomials

ψ(s) =
1
4

5∑
j=0

ψj(s).

In this case for W (θ) and γk(θ), we obtain

W (θ) =
4 sin5( θ2)

3θ5

{
2θ
[
12− θ2 + 3(6− θ2) cos θ

]
sin
(
θ

2

)
+ (12 + θ2) cos

(
θ

2

)
+ (12− 11θ2) cos

(
3θ
2

)}
,
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γ0 = 1
48θ5

[(
12i+ 30θ − 35iθ2 + 25θ3 − 48iθ4

)
+
(
−48i− 108θ + 104iθ2 + 48θ3

)
eiθ

+
(
72i+ 144θ − 114iθ2 − 36θ3

)
e2iθ +

(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ

+
(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ1 = 1
48θ5

[(
−36i− 66θ + 33iθ2 − 29θ3

)
eiθ +

(
72i+ 144θ − 114iθ2 − 36θ3

)
e2iθ

+
(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ +

(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ2 = 1
48θ5

[(
36i+ 42θ + 3iθ2 + 7θ3

)
e2iθ +

(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ

+
(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ3 = 1
48θ5

[(
−12i− 6θ − iθ2 − θ3

)
e3iθ +

(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
.
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