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Abstract 

 
A Cu2N2 diamond core structure supported by an [SNS]¯ ligand exhibits a fully 

reversible one-electron redox process between a reduced CuICuI, {(SNS)Cu}2, and a class 

III delocalized Cu1.5Cu1.5 state, [{(SNS)Cu}2][B(C6H3(CF3)2)4] ([SNS] ¯ =  bis(2-

t-butylsulfanylphenyl)amide). The Cu⋅⋅⋅Cu distance compresses appreciably (~0.13 Å) 

upon oxidation; a metal-metal distance of 2.4724(4) Å is observed in the mixed-valence 

molecule that is nearly identical to the dicopper CuA site found in cytochrome c oxidase. 

The rate of electron self-exchange (ks) between the CuICuI and the Cu1.5Cu1.5 complexes 

was estimated to be ≥ 107 M−1s−1 by 1H NMR line-broadening analysis. The unusually 

large magnitude of ks reflects the minimal structural reorganization that accompanies 

CuICuI ↔ Cu1.5Cu1.5 interchange. 

A second generation of {(PNP)CuI}2 dimer supported by a [PNP]¯ ligand also has 

been investigated ([PNP]¯ = bis(2-(diisobutylphosphino)phenyl)amide). The highly 

emissive {(PNP)CuI}2 is characterized by a long-lived excited state (τ  > 10 μs) with an 

unusually high quantum yield (φ  > 0.65) at ambient temperature.  Removal of an electron 

from the {(PNP)CuI}2 dimer yields a nearly isostructural, Cu1.5Cu1.5 complex 

[{(PNP)Cu}2][B(C6H3(CF3)2)4]. With a highly reducing excited state reduction potential 

(~ −3.2 V vs. Fc+/Fc) as well as the availability of two reversible redox processes, these 

bimetallic copper systems may be interesting candidates for photochemically driven two-

electron redox transformations. 

Studies of Cu2N2 diamond core complexes supported by the [tBu2-PNP]¯ ligand  

revealed that the dicopper complex {(tBu2-PNP)Cu}2 can not only be oxidized by one 

electron to [{(tBu2-PNP)Cu1.5}2][B(C6H3(CF3)2)4], but also by two-electrons to [{(tBu2-
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PNP)Cu}2][SbF6]2 ([tBu2-PNP]¯ = bis(2-diisobutylphoshino-4-tbutylphenyl)amide). 

These Cu2N2 complexes show remarkably low structural reorganization for all oxidation 

states as evidenced by the solid-state molecular-structures. Based on these studies of 

[{(tBu2-PNP)Cu}2][SbF6]2, we propose a formulation of one CuI and one paramagnetic 

CuIII nuclei in compressed-tetrahedral environments in the Cu2N2 core.  Spectroscopic, 

redox, and magnetic data are consistent with a highly covalent M2N2 core supported by a 

rigid ligand scaffold.  These complexes are excellent mimics of the entatic state found in 

bimetallic copper proteins. 
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Late Transition Metal Complexes of 
 

Chelating Amido Ligands†

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

† Text taken in part from Peters, J. C.; Harkins, S. B.; Brown, S. D.; 
Day, M. W. Inorg. Chem. 2001, 40, 5083. Harkins, S. B.; Peters, J. 
C. Organometallics 2002, 21, 1753. Harkins, S. B.; Peters, J. C. J. 
Am. Chem. Soc. 2004, 126, 2885. Harkins, S. B.; Peters, J. C. J. 
Am. Chem. Soc. 2005, 127, 2030. 
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I.A. Thesis Overview and Motivation 

Here is presented the first preparation of amido-bridged Cu2N2 dicopper coordination 

complexes and the subsequent study of their rich spectroscopic and redox properties. 

These unique metal dimers are supported by chelating diaryl amido ligands that give rise 

to M2N2 diamond core configurations with overall D2 symmetry (Figure I.1).  As a result 

of this thesis work, we have demonstrated that these ligand scaffolds allow for the metal 

centers to reside in a protein like “entatic state,” which facilitates low structural 

reorganization upon oxidation or photoexcitation of the d10d10 metal complexes. Vallee 

and Williams have described the entatic state as the constrained environment of an 

enzymatic active site which allows for specific activity, while minimizing the 

reorganization energy needed to reach the transition state.1 This characteristic gives rise 

to a multitude of interesting consequences which include rapid inter- and intra-molecular 

electron transfer phenomena, intense photoluminescence, and stability in multiple 

oxidation states. All of these processes occur without changes to the coordination number 

or structural distortion of the overall molecule. As a whole, these advances have added a 

new dimension to the field of dicopper chemistry and laid the ground work for many 

further studies in the general area of late transition metal chemistry supported by amide 

ligands. 

 

 
 
 
 
 
 

 
Figure I.1. Generalized M2N2 diamond-core complex. {M = Li, Cu, Zn; L = N, O, P, S}. 

M
N

N
M

L
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Dicopper electron transfer (ET) cofactors in biology are now well established, yet the 

topic of how the site is able to minimize structural reorganization and maintain its 

coordination geometry during this process is still of interest.2, ,3 4  For example, a 

collection of spectroscopic and, more recently, structural data has revealed that 

cytochrome c oxidase accomplishes enhanced ET rates into and out of a buried CuA site 

by virtue of a highly covalent, thiolate-bridged Cu2S2 diamond-core structure (Figure 

I.2).5, ,6 7  

Amongst the various low molecular weight systems that have been developed to 

model aspects of this CuA site,8, , ,9 10 11 perhaps the most structurally relevant to the 

enzyme is Tolman’s thiolate-bridged, mixed-valence {LN3SCu1.5}2
+ diamond-core 

complex.8a This complex features an EPR signal consistent with a fully-delocalized, class 

III, diamond- core description,5b, a8  as is observed for the resting state form of the CuA 

site.5b,6 Despite this similarity, the Cu···Cu distance in the Tolman model system is much 

larger than that observed in CuA, and the complex does not reproduce the reversible 

CuICuI to Cu1.5Cu1.5 redox behavior observed for the enzyme. Several dicopper systems 

that diverge from the diamond core structural motif do show reversible redox behavior 

for a Cu1.5Cu1.5 mixed-valence state.10c,12 For example, a family of dicopper azacryptates 

that successfully bring the two copper centers into much closer proximity (~ 2.35–2.4Å) 

has been developed,12a and many of these can undergo rapid electron self-exchange (ks) 

between their oxidized and reduced forms (~ 105 M-1 s-1).12b
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S
Cu

S
CuN N NH

HN

O

S
Me

Cu Cu = ~ 2.5 Å

Figure I.2. Left, Schematic of cytochrome c oxidase from Thermus thermophilius ba3;
7 

right, Core representation of the CuA site. 
 

Diamond core copper systems that reversibly model both the reduced CuICuI and the 

delocalized Cu1.5Cu1.5 redox states observed in CuA had yet to be developed.13 Ligand 

systems that would help to minimize structural reorganization between these two redox 

forms and hold the two copper centers of a diamond core in close enough proximity to 

reproduce the short Cu-Cu bond distance observed in CuA (~2.5 Å)14 might serve as 

simplified functional models for the redox behavior of CuA.5b,c,d One avenue into this 

regime using small molecule design is to replace the thiolate bridging units inherent to 

the Cu2S2 diamond core of CuA with amido bridging units. Such a strategy should slide 

the copper centers closer together so as to better model the distance observed in CuA 

while still maintaining a Cu2X2 diamond core motif. Moreover, it was thought that such 

an approach might shed some light on whether the thiolate moiety plays a unique role in 

facilitating rapid electron transfer chemistry by bringing the two copper centers of a 

diamond core into strong electronic communication.  
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In Chapter II, this topic has been addressed through the synthesis and study of a 

Cu2N2 diamond core system supported by the tridentate amido ligand, bis(2-

tertbutylsulfanylphenyl)amido (Figure II.3). These dicopper systems were found to 

exhibit a fully reversible and very facile one electron redox process between a Cu1Cu1 

and a class III delocalized Cu1.5Cu1.5 form. Solid-state structural snapshots of both redox 

forms reveal (i) very short Cu···Cu distances akin to those in CuA, and (ii) minimal 

structural reorganization upon oxidation from the reduced Cu1Cu1 to the delocalized 

Cu1.5Cu1.5 state. These features facilitate very facile rates of electron self-exchange 

between the reduced and one electron oxidized forms of the system (≥ 107 M-1 s-1). To our 

knowledge, this is the fastest electron self-exchange rate reported for low molecular 

weight copper complexes.3a, b12  A distinct Cu···Cu compression accompanies the one 

electron oxidation process and may reflect the onset of direct Cu-Cu electronic exchange. 

Using cyclic voltammetry, this reversible one electron oxidation was found to occur at 

-250 mV vs. Fc+/Fc in THF. A marginally-reversible wave at higher potential (Epa ≈ +570 

mV), was also observed. We speculated this is an unstable dicopper(II,II) species.   

Cu Cu
N

N

S

S

S

S

tBu

tBu

tBu

tBu

2.5989(3) Å
Cu1 Cu1

2.4724(4) Å
Cu1.5 Cu1.5

N

S

S

Cu Cu
N

N

S

S

S

S

tBu

tBu

tBu

tBu

Diamond core structures display
minimal reorganization upon 
reversible 1-electron redox process

mixed-valence

Cu Cu
compression

 

Figure I.3. Schematic summary of Cu2N2 core contraction upon oxidation. 
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Optimistic at the possibility of obtaining a system that could mediate two sequential 

one-electron oxidations with nominal change to the coordination sphere, we began to 

explore the effects of ligand modification.  It was conjectured that by switching from 

thioether to more reducing alkyl phosphine chelates, an electron-rich Cu2N2 complexes 

would result. By shifting the dicopper redox potential more negative, it was thought that 

perhaps both oxidation processes would be stabilized. This was accomplished by using 

bis(2-diisobutylphosphinophenyl)amido, [PNP]¯, ligands. Similar Cu2N2 complexes were 

afforded (Figure I.4) with this new ligand and now two reversible one electron processes 

were observed by cyclic voltammetry. Surprisingly, we found that {(PNP)Cu}2 complex 

was an exceptional luminophore (Figure I.4). The photophysical properties of this 

complex are the topic of Chapter III.  Notably, {(PNP)CuI}2 is characterized by a long-

lived excited state (τ  > 10 μs) with an unusually high quantum yield (φ  > 0.65) at 

ambient temperature. 

 

 

 
Figure I.4. Left, Schematic representation of {(PNP)CuI}2; right, Photo of {(PNP)CuI}2 
in petroleum ether solution in room light and upon irradiation with 365 nm light.  
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Photoluminescent polypyridine-supported CuI systems have garnered much attention 

due to their promise as low cost organic light emitting devices.15 However, the tendency 

of CuI complexes to display weak emission and short-lived excited states is 

problematic.16 McMillin has described these weaknesses in the current systems,17 and his 

group recently reported a mononuclear complex, [Cu(dmp)(POP)]+ (dmp = 2,9-dimethyl-

1,10-phenanthroline; POP = bis[2-(diphenylphosphino)phenyl]ether)]), that exhibits both 

a relatively high quantum yield and a long-lived excited-state as compared to other 

polypyridine-Cu(I) systems.18 Incorporation of a bulky, bis(phosphine) chelate appears to 

create a rigid environment around the copper center which (i) suppresses solvent-induced 

exciplex formation, and (ii) limits problematic ligand dissociation from the excited state. 

It is likely that through the same property of low structural reorganization energy that 

gives rise to rapid electron transfer between the oxidized and reduced forms of the 

{(SNS)Cu}2 system, highly conserved photon emission is now observed.  We have found 

these PNP supported Cu dimers are among the most emissive inorganic complexes that 

have been reported and postulate that the intense emission may result from a direct 

Cu↔Cu interaction.   

Returning to the redox chemistry of the Cu2N2 species, the chemical oxidation of 

{(PNP)CuI}2 was evaluated with the intention of developing photolytically driven two-

electron chemistry. Chapter IV details the multielectron redox processes of the PNP 

dicopper complexes. Through targeted ligand modification, dicopper complexes in three 

oxidation states with pseudo-tetrahedral geometries are described in terms of their solid-

state molecular structures, spectral and magnetic properties. The preparations of the 

isoelectronic dizinc and mixed copper-zinc dimers are also discussed. These latter 
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complexes serve to highlight the unique character of the Cu↔Cu interaction to function 

of the system. Based on our studies, it is evident that much of this stabilization results 

from delocalization across the entire molecular scaffold. 

I.B.  Summary of Group 10 metal studies 

Our initial work in the exploration of late transition metal amide chemistry focused 

on the Group 10 transition metals.  In order to build new molecular systems relevant to 

our goals of exploring small-molecule activation and uncovering novel metal-ligand 

coordination environments, robust anionic chelating ligands were pursued. Initially 

complexes based on the monoanionic chelating ligand bis(8-quinolinyl)amine, (BQA)H, 

and its structural analogues were targeted. The synthesis of (BQA)H had been first 

reported by Nielsen in 1964,19 and the first reported metallation followed in 1986, when 

Petersen published the crystal structure of the square planar complex,20 (BQA)CuIICl. 

The literature preparation of (BQA)H was achieved by condensation of 8-

hydroxyquinoline and 8-aminoquinoline in a Bucherer-type reaction.7,8  Yields were of 

less than 10% after one week of reflux which was unacceptable for producing multi-gram 

quantities of the ligand.  Thus, a catalytic cross-coupling strategy was targeted.21 Pd-

coupling of commercially available 8-aminoquinoline and 8-bromoquinoline was 

achieved under typical reaction conditions (Pd2(dba)3, toluene, 110 °C, 3 days) with 

NaOtBu as the base and rac-BINAP as the cocatalyst.22  Recrystallization of the crude 

product afforded orange crystalline solid, typically in yields in excess of 85%. 

This strategy enabled the generation of a readily prepared family of useful, 

monoanionic amido ligands, Figure I.5. Although hard amido ligands can lead to 

undesirable reduction and/or degradation of late metal complexes, the use of chelating 
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amido ligands has been shown to circumvent such problems.23  Our desire to explore the 

divalent Group 10 chemistry of (BQA)H was motivated, in part, by the following 

rationale: Square planar, monoalkyl complexes of ligand (BQA)H should adopt a 

coordination geometry in which the alkyl group is forced to occupy a coordination site 

trans to the amido nitrogen donor group. Typically, divalent group 9 and 10 complexes 

containing two strongly trans-influencing ligands adopt coordination geometries that 

place these two ligands cis to one another.24  The BQA ligand discriminates against such 

a cis preference, and our hope was that the resulting complexes would prove to be 

reactive at the site trans to the amido nitrogen donor.  In this regard, BQA-type ligands 

are conceptually related to the popular family of anionic “pincer” ligands, a class of 

ligands that now affords a rich reaction chemistry amongst metals from groups 8, 9 and 

10.25 Moreover, it was hoped the aryl organic groups attached to the amide would serve 

to “soften” otherwise hard ligands and allow for generation of  electron-rich 

organometallic complexes. 

Ar NH2

Ar Br
+ Pd0

Ar

N

Ar

H BuLi
Ar

N

Ar

[Li]
S
R

O
R

N

N

R

N

SO3

P
R2

R2

Ar =

R1

Figure I.5. Generalized ligand synthesis via Pd0 catalyzed aryl amination. 

 

 Deprotonation of (BQA)H with nBuLi in toluene affords the lithium amide complex 

{(BQA)Li}2, whose dimeric solid-state crystal structure is shown.22 Crystals of 

{(BQA)Li}2 were obtained and the dimeric structure was established by an X-ray 

diffraction study (Figure I.6). This Li2N2 complex has D2 molecular symmetry with C2 
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axis running through the two lithium atoms in the plane of the parallelepiped formed by 

N2A, LiB, N2B and LiA  (Figure I.6). The dimeric conformation is favored in the 

absence of a donor solvent and is robust by virtue of each donor arm of the [BQA]¯ 

ligand coordinating to a different lithium center. While the synthesis of {(BQA)Li}2 

provided us with a useful metathesis reagent for our Group 10 metal studies, it also gave 

us the first inkling of the potential capacity of this genre of chelating amide to support 

bridging M2N2 diamond core complexes (vide supra).  

 

C2 axis

LiA

LiB

N2B
N2A

N1A

N1B

N3B

N3A

 
Figure I.6. Displacement ellipsoid (50%) representation of [Li][BQA]. Selected bond 
distances (Å) and angles (deg) are as follows: LiA-N(1A), 2.024(4); LiA-N(2A), 
2.079(4); LiA-N(2B), 2.063(4); LiA-N(3B), 1.990(4); LiA-LiB, 2.395(5); LiB-N(1B), 
1.958(4); LiB-N(2B), 2.051(4); LiB-N(2A), 2.018(4); LiB-N(3A), 1.999(4); N(2B)-LiA-
N(2A), 107.15(18); N(2A)-LiA-LiB, 53.05(13); N(2B)-LiA-LiB, 54.16(13); N(2B)-LiA-
N(2A), 107.15(18); N(1A)-LiA-N(2A), 82.50(15); N(3B)-LiA-N(2A), 103.80(17); 
C(8A)-N(2A)-C(17A),120.37(17). 

 

Entry into the Group 10 chemistry of (BQA)H was effected by both protolytic and 

metathetical strategies. The divalent chloride complexes (BQA)PtCl, (BQA)PdCl, and 
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(BQA)NiCl were prepared and fully characterized.22 An X-ray structural study for each 

of these three complexes shows them to be well-defined, square planar complexes in 

which the auxiliary BQA ligand binds in the expected planar, η3-fashion. The 

(BQA)PtMe and (BQA)PtPh complexes were also synthesized and isolated.26  Both were 

prepared in excellent yield by transmetallation of {(BQA)Li}2 with (COD)PtMeCl and 

(COD)PtPhCl,  respectively, to afford purple microcrystalline solids.  Platinum satellites 

are easily observed in the 1H NMR for both (BQA)PtMe and (BQA)PtPh confirming the 

attachment of the R group to the Pt center.   

Our primary interest in developing these systems was to study the ability of pincer-

like amido complexes of platinum to undergo intermolecular C-H bond activation 

processes.  This process is in analogy to the first step of a Shilov-type reaction, in which 

methane is selectively oxidized to methanol.27,28  The first step of this mechanism is 

hypothesized to proceed by a d8, square planar [PtIICl4]2- reacting with methane, resulting 

in the formation of a square planar PtII-CH3 complex with HCl as the formal by-product; 

water formally acts as a Bronsted base.  By analogy, we sought to examine the activation 

of benzene by (BQA)PtCl, another robust, d8, square planar, PtII-Cl complex. A 

suspension of (BQA)PtCl in benzene was heated to 150 °C in a sealed reactor, at which 

time the complex became fully soluble, for several days, and showed no reactivity. A 

tertiary, sterically encumbering, alkyl amine base, NEtiPr2, was then added to examine 

whether a soluble base would be able to promote reactivity. Again no new Pt products 

were detected, nor was any of the expected conjugate acid,  [HNEtiPr2][Cl], evident by 

1H NMR.   
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Figure I.7. C-H bond activation by (BQA)PtIICl and (BQA)PtIIOTf complexes. 
 
 

In order to gain entry to a C-H activation system, neutral (BQA)PtOTf was 

selected because the triflate ligand was anticipated to be much more labile than the 

corresponding chloride.26 (BQA)Pt-OTf was also quite insoluble in benzene, however 

upon heating to 150°C, a red homogeneous solution developed and, after several days, no 

reactivity was observed.  When one equivalent of NEtiPr2 was added and heating was 

resumed at 150°C, the expected conjugate acid product [HNEtiPr2][OTf] became visible 

by 1H NMR after a few hours (Figure I.7).  Further heating for 36 h resulted in 

consumption of the starting material and a high yield (> 90%) of (BQA)PtPh with a 

stoichiometric equivalent of [HNEtiPr2][OTf]. (BQA)PtPh was isolated by column 

chromatography (70% yield) and identified by 1H-NMR and FAB-MS.  At lower 

temperature (~ 100°C), only 25% conversion to the phenyl product is observed after 5 

days, suggesting a very high thermodynamic barrier to the reaction. This barrier is not 

difficult to reconcile based on the observation of the microscopic reverse in which 

(BQA)PtOTf is instantly formed upon addition of a stoichiometric amount of triflic acid 

to (BQA)PtPh at ambient temperature. The (BQA)PtMe complex was also found to 

undergo oxidation by MeI which afforded the octahedral PtIV complex (BQA)Pt(Me2)I. 
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The synthesis and intriguing photoisomerization of the (BQA)PtIV complex from meridial 

to facial ligand coordination complexes is described in Appendix A. While many 

intriguing aspects of Group 10 amide chemistry remain poised for exploration, this path 

of inquiry was ultimately set aside in order to develop the Group 11 systems described 

herein.  
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II.A. Introduction 

Biological electron transfer agents that feature copper are most typically mononuclear 

in nature, as observed in the well known “blue copper” family of proteins.1, ,2 3 Such 

systems and relevant small molecule model complexes have been studied intensively to 

gain an appreciation of how the inner coordination geometry of a copper ion dictates its 

ability to mediate rapid electron transfer.4 While the issues that dictate electron transfer 

rates in copper proteins are an ongoing topic of concern,4a,5  it is widely accepted that 

structural reorganization needs to be minimized to achieve rapid rates.6

Higher nuclearity copper-based electron transfer agents, while less common, are now 

well established. For example, a collection of spectroscopic and more recent structural 

data has revealed that cytochrome c oxidase accomplishes enhanced electron transfer 

(ET) into and out of a buried CuA site by virtue of a highly covalent, thiolate-bridged 

Cu2S2 diamond core structure type.7,8 Amongst the various low molecular weight 

systems that have been developed to model aspects of this CuA site,9, , ,10 11 12 perhaps the 

most structurally relevant concerns Tolman’s thiolate-bridged, mixed-valence 

{LN3SCu1.5}2
+ diamond core complex.9a This complex features an EPR signal consistent 

with a fully delocalized class III diamond core description, b, a7 9  as observed for the resting 

state form of CuA.7b,8 Despite this similarity, the Cu···Cu distance in the Tolman model 

system is much larger than that observed in CuA, and the complex does not reproduce the 

reversible Cu1Cu1 to Cu1.5Cu1.5 redox behavior of CuA. Several dicopper systems that 

diverge from the diamond core structural motif do show reversible redox behavior for a 

Cu1.5Cu1.5 mixed-valence state.11c,13 For example, a family of dicopper azacryptates has 

been developed that successfully brings two copper centers constrained by the 
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azacryptate cage into much closer proximity (~ 2.35 – 2.4 Ǻ).13a Some of these 

complexes, which are characterized by a direct metal-metal σ bond that is quite distinct 

from the bonding situation in CuA, nonetheless exhibit very rapid electron self-exchange 

(ks) between their oxidized and reduced forms (~ 105 M-1 s-1).13b

Yet to be developed are diamond core copper systems that can reversibly model both 

the reduced CuICuI and the delocalized Cu1.5Cu1.5 redox states observed in CuA.14 Ligand 

systems that would help to minimize structural reorganization between these two redox 

forms, and hold the two copper centers of a diamond core in close enough proximity to 

reproduce the short Cu-Cu bond distance observed in CuA (~ 2.5 Å),15 might serve as 

simplified functional models for the redox behavior of CuA.7b,c,d One avenue into this 

regime using small molecule design is to replace the thiolate bridging units inherent to 

the Cu2S2 diamond core of CuA with amido bridging units. Such a strategy should slide 

the copper centers closer together so as to better model the distance observed in CuA 

while still maintaining a Cu2X2 diamond core motif. Moreover, such an approach might 

shed some light on whether thiolate plays a unique role in facilitating rapid electron 

transfer chemistry by bringing two copper centers of a diamond core into strong 

electronic communication. Herein we describe a Cu2N2 diamond core system supported 

by sulfur-rich, tridentate amido ligands that exhibits a fully reversible and very facile 1-

electron redox process between a Cu1Cu1 and a class III delocalized Cu1.5Cu1.5 form. 

Solid-state structural snapshots of both redox forms are described that reveal (i) very 

short Cu···Cu distances akin to those in CuA, and (ii) minimal structural reorganization 

upon oxidation from the reduced Cu1Cu1 to the delocalized Cu1.5Cu1.5 state. These 

features facilitate very facile rates of electron self-exchange between the reduced and one 
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electron oxidized forms of the system (≥ 107 M-1 s-1), rates which to our knowledge are 

faster than those measured for other low molecular weight copper complexes.4a, b13  A 

distinct Cu···Cu compression accompanies the 1-electron oxidation process that may 

reflect the onset of direct Cu-Cu electronic exchange. 

 

II.B. Results and Discussion 
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Palladium(0) cross-coupling of 2-tert-butylsulfanyl bromobenzene with 2-tert-

butylsulfanyl aniline afforded bis(2-tert-butylsulfanylphenyl)amine in 87% isolated 

yield.16,17 Addition of nBuLi to the purified amine provided its lithium salt, abbreviated 

as [SNS][Li] (2.1) (Scheme II.1). Access to a diamagnetic dicopper(1,1) complex was 

accomplished by reaction of 2.1 with CuBr·Me2S in benzene.  Analytically pure yellow 
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needles were obtained by recrystallization of the crude product from dichloromethane, 

and XRD analysis established the dimeric species {[SNS][Cu]}2 (2.2) shown in Figure 

II.1. Addition of a stoichiometric amount of [Cp2Fe][B(3,5-(CF3)2C6H3)4] to 2.2 produced 

the dinuclear complex [{[SNS][Cu]}2][B(3,5-(CF3)2C6H3)4] (2.3), which exhibits a 

temperature-independent magnetic moment between 10 and 295 K (μeff = 1.54 μB at 75 K 

(SQUID)). Analytically pure 2.3 was isolated as red-brown crystals by crystallization 

from a petroleum ether/diethyl ether mixture.  Employing a Cu(II) source provided access 

to a mononuclear copper(II) complex supported by the [SNS] ligand scaffold. This was 

accomplished by stirring a slurry of 2.1 and CuCl2 in THF for 18 h, after which time the 

square-planar copper complex [SNS]CuCl (2.4) was isolated as a deep green solid. X-ray 

quality crystals were obtained by recrystallization from THF/petroleum ether at –30 ºC 

and the solid-state structure of 2.4 is shown in Figure II.2. Of note from the structure are 

the orientation of the tert-butyl groups, which are directed towards opposite faces of the 

square plane, and the canted nature of the aryl rings. These features provide the complex 

with molecular C2 symmetry. The Cu-N bond distance is 1.915(2) Å, and the Cu-S1 and 

Cu-S2 bond distances are 2.3476(7) Å and 2.3465(7) Å, respectively. Few amido 

complexes of copper(II) have been prepared for comparison of the Cu-N bond distance. 

Perhaps the most relevant complex is [BQA]CuCl (BQA = bis(8-quinolinyl)amido),18 

which features a Cu-N(amido) distance of 1.935(2) Å. The Cu-S distances in 2.4 appear 

to be typical for Cu(II) based upon an analysis of data stored in the Cambridge Structural 

Database (CSD, avg. = 2.38 Å).19 The EPR spectrum of 2.4, which is shown in Figure 

II.3, confirms its expected S = 1/2 spin state. The reduction of 2.4 by 1.05 equivalents of 

Na/Hg amalgam in THF provides an alternative synthesis of the dicopper complex 2.2. 
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Figure II.1.  Molecular representations (top) of 2.2 and 2.3 (BArF

4 = B(3,5-
(CF3)2C6H3))4. Displacement ellipsoid representations (50%) of the core atoms of 2.2 
(bottom left) and 2.3 (bottom right), and graphical overlay (center; 2.2 in red; 2.3 in blue). 
Selected bond lengths (Å) and angles (º): For 2.2 vs. 2.3: Cu1-Cu2, 2.5989(3) vs. 
2.4724(4); Cu1-N1, 2.1149(14) vs. 2.0887(16); Cu1-N2, 2.1303(14) vs. 2.1011(17); Cu2-
N1, 2.0850(14) vs. 2.0641(16); Cu2-N2, 2.1395(14) vs. 2.0568(16); Cu1-S2, 2.2730(5) 
vs. 2.2805(6); Cu1-S3, 2.2854(5) vs. 2.2805(6); Cu2-S4, 2.2735(5) vs. 2.2797(6); Cu2-
S1, 2.2853(5) vs. 2.2834(6); Cu2-N1-Cu1, 76.45(5) vs. 73.07(5); Cu1-N2-Cu2, 74.99(5) 
vs. 72.96(5); S2-Cu1-S3, 152.921(19) vs. 150.50(2); S4-Cu2-S1, 153.233(19) vs. 
150.71(2); N1-Cu1-N2, 103.88(5) vs. 105.53(6); N2-Cu2-N1, 104.59(5) vs. 108.04(5). 
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Figure II.2: Solid state molecular structure of 2.4 (50% displacement ellipsoids).  The 
protons have been removed for clarity.  Selected bond lengths (Å) and angles (º): Cu-N, 
1.915(2); Cu-Cl, 2.2068(7); Cu-S1, 2.3476(7); Cu-S2, 2.3465(7); N-Cu-Cl, 173.44(7); 
S1-Cu-S2, 167.35(3); N-Cu-S1, 86.02(6); N-Cu-S2, 86.37(6); S1-Cu-Cl, 95.89(2); S2-
Cu-Cl, 92.80(2). 

270 290 310 330 350
Field / mT

 

Figure II.3: X-band EPR spectrum (9.40 GHz) of 2.4 at 77 K in 2-
methyltetrahydrofuran. 
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The solid-state structures of complexes 2.2 and 2.3 are unique and of central interest 

in this paper. A common, dinuclear Cu2N2 diamond core structure type featuring anionic 

amido (NR2
-) bridging units is observed for each complex (Figure II.1). The four-

coordinate copper centers of both 2.2 and 2.3 are quite distorted from idealized tetrahedra 

and are perhaps better described as cis-divacant octahedra. In this latter formulation, the 

thioether donors occupy the two axial sites (avg. S-Cu-S angle: 153º for 2.2; 150.5º for 

2.3) and the amido bridges the two equatorial sites (avg. Cu-N-Cu angle: 75.8º for 2.2; 

73.0º for 2.3). The two sulfur donors common to each amido bridge bind such that each 

coordinates a different copper center, thereby providing idealized D2 symmetry to each 

system. The distinct ligand binding motifs between structures 2.2 and 2.3 and the square 

planar complex 2.4 underscore the coordinative flexibility of the [SNS]- ligand. 

The high structural similarity between the reduced and oxidized forms of 2.2 and 2.3, 

clearly evident from the graphical overlay of their cores that is shown in Figure II.1, is to 

our knowledge unprecedented in a dicopper diamond core model system. Close 

inspection of the bond distances of the core atoms of 2.2 and 2.3 does expose several 

noteworthy differences. Foremost amongst these is the marked shortening of the Cu···Cu 

distance in 2.3 (2.472 Å) by comparison to that of 2.2 (2.599 Å), a net change of 

~ 0.13 Å. The short Cu···Cu distance observed for 2.3 is nearly identical to that observed 

for the mixed-valence form of CuA in cytochrome c oxidase. The Cu-N bond distances in 

2.3 are on average slightly shorter than in 2.2 (avg. for 2.3 = 2.08 Å; avg. for 2.2 = 2.12 

Å), and the Cu-N-Cu angles become slightly more acute (by approximately 2º) as the 

copper centers slide closer together. Interestingly, despite the contraction of the Cu2N2 
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core, the Cu-S bond distances remain effectively unchanged (the average of the Cu-S 

distances for both 2.2 and 2.3 is 2.28 Å). 

Complex 2.2 exhibits a fully reversible redox process at –390 mV in CH2Cl2 (Fc+/Fc, 

0.30 M [nBu4N][PF6], 50 mV/s) that we assign as the Cu1.5Cu1.5/Cu1Cu1 redox couple 

(Figure II.4).20 The redox process is also reversible in THF solution at -250 mV (Fc+/Fc, 

0.35 M [nBu4N][PF6], 50 mV/s). An irreversible redox process21 is observed at much 

higher potential in CH2Cl2 (Epa = +560 mV) and in THF (Epa ~ +570 mV) that most likely 

reflects oxidation to an unstable dicopper(II,II) species. The large difference in the anodic 

potentials (880 mV in CH2Cl2) between these waves suggests the possibility of strong 

stabilization of the C1.5Cu1.5 form due to class III delocalization. EPR data presented 

below supports this assertion. 

Figure II.4: Cyclic voltammetry of 2.2 referenced vs. Fc+/Fc in CH2Cl2 (0.10 M 
[nBu4N][PF6]. Left, 2.2 (80 mV/s); right, 2.2 in CH2Cl2 (50 mV/s). 
 

The optical spectrum of yellow 2.2 (Figure II.5) was recorded in the range between 

24 000 and 4000 cm-1 and shows a single, fairly intense absorption at 23 000 cm-1 (ε = 

3900 M-1cm-1). The optical spectrum of 2.3 (Figure II.5) in this range is much richer. 

While its spectrum is clearly unique from that obtained for CuA and related mixed-

valence model complexes, it does contain several gross features that may be related to 
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some of the absorption features recorded for these other systems.7b For example, a low 

energy near-IR absorption at 8550 cm-1 (ε = 2050 M-1cm-1 in CD2Cl2) is observed for 2.3 

that lies slightly to the blue of a band that has been assigned as the Ψ → Ψ * transition of 

{LN3SCu1.5}2
+ (6760 cm-1 in solution).7b At slightly lower energy, an appreciably more 

intense absorption is observed (5240 cm-1; ε = 4700 M-1cm-1 in CD2Cl2) in the spectrum 

for 2.3 which appears to be unique from those spectra obtained for CuA and relevant 

model complexes. Another intriguing band of fairly low intensity is centered around 

13400 cm-1 (εmax = 600 M-1cm-1). This feature appears to be a superposition of two 

uniquely defined absorptions. Several broad features are also evident at higher energy 

between 16000 and 24000 cm-1. The optical spectrum of square planar 2.4 shows two 

broad and relatively weak transitions, one centered at 15000 cm-1 (ε = 320 M-1cm-1) and 

one at 7800 cm-1 (ε = 280 M-1cm-1). 

 
Figure II.5:  Electronic absorption spectrum of 2.2 (red), 2.3 (blue), and 2.4 (green) in 
methylene chloride-d2. 
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For comparison, the lowest energy band of CuA, which has been assigned as the 

Ψ→Ψ* transition, is observed at 13,400 cm-1.7b The significant energy difference in the 

Ψ→Ψ* transition between {LN3SCu1.5}2
+ and CuA has been attributed to the significant 

difference in their respective Cu-Cu distances. The distance in {LN3SCu1.5}2
+ is 2.92 Å, 

and that in CuA is ~ 2.5 Å.7b Whereas direct Cu-Cu π overlap is possible for CuA, no 

direct exchange is presumably operative in {LN3SCu1.5}2
+ owing to its much larger 

internuclear distance. Given these data, it would certainly be of interest to determine the 

origin of the bands centered at ~ 13,400 cm-1 for 2.3, or those lower energy features 

centered around 8600 cm-1 and 5240 cm-1. In particular, it is of interest to determine 

which of these, if any, arises from a Ψ→Ψ* transition given that this latter complex 

features a Cu-Cu distance that is very similar (2.4724(4) Å) to that observed in CuA. 

A geometry optimization and electronic structure calculation of 2.3 using DFT 

(JAGUAR 5.0, B3LYP/LACVP**) was performed using the crystallographically 

determined X-ray coordinates as the initial geometry guess.22 The calculation provided a 

theoretically determined structure whose geometry agreed remarkably well with the 

experimental structure. The electronic structure of 2.3 afforded by the DFT calculation 

suggests that the redox active SOMO (Figure II.6) contains significant orbital 

contributions from the four atoms of the Cu2N2 diamond core. The SOMO is antibonding 

with respect to each of the four Cu-N interactions and also the Cu-Cu interaction. This 

phase pattern is consistent with the observed Cu2N2 core expansion that occurs when this 

orbital becomes doubly occupied by reduction to the Cu1Cu1 species 2.2. The SOMO 

shown in Figure II.6 shows a phase relationship similar to that calculated for the SOMO 



 II - 12
 

 



 II - 13
 of a thiolate-bridged dicopper site of CuA.7c The next fourteen highest energy occupied 

orbitals are also shown to enhance the orbital description. 

The X-band EPR spectrum of 2.3 was obtained in 2-methyltetrahydrofuran in the 

temperature range between 5 K and 80 K (Figure II.7). The data obtained are fully 

consistent with describing the system as a class III mixed-valence species. The EPR 

signal observed, which retains its structure from 5 K to 80 K, displays 7-line hyperfine 

coupling due to the dicopper core, as expected for a system featuring one unpaired 

electron that is coupled to two copper centers. While super-hyperfine coupling to the 

bridging nitrogen nuclei of the Cu2N2 core might be anticipated, such coupling is not 

readily discerned in the X-band spectra. We attempted to simulate the experimental EPR 

spectrum for 2.3 acquired at 5.2 K and simulated the spectrum. The difficulty with 

simulating the spectrum does not appear to be due to a trace copper(II) impurity: the 

spectrum shown proved highly reproducible using samples that had been independently 

synthesized and recrystallized. Moreover, the EPR spectrum of complex 2.4 shown in 

Figure II.3 is typical of copper(II) complexes supported by the [SNS]- ligand, and similar 

features are not present in the spectrum of 2.3. The three g tensors in the spectrum of 2.3 

are poorly resolved (gx = 1.998, gy = 2.065, gz = 2.067,  Ax
Cu = 3 G, Ay

Cu = 18.4 G, Az
Cu = 

44.5 G), and this makes the simulation difficult. Acquisition of the EPR spectrum of 2.3 

at higher field strength should help to resolve the spectrum. The experimental EPR data 

and our crude simulation do nonetheless support assignment of 2.3 as an S = ½ system 

coupled to a symmetric dicopper center. 
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Figure II.7: X-band EPR spectrum (9.38 GHz) of 2.3 at 80 K , 41 K, and 5 K in 2-
methyltetrahydrofuran (black). Simulated spectrum (blue) {gx = 1.998, gy = 2.065, gz = 
2.067,  Ax

Cu = 3 G, Ay
Cu = 18.4 G, Az

Cu = 44.5 G}. 
 
 

Given the small structural reorganization that occurs upon oxidation of 2.2 to 2.3, and 

the reversibility of the process, we reasoned that unusually rapid intermolecular electron 

transfer kinetics might be observable in the present system. Whereas electron transfer 

kinetics at biological copper sites and low molecular weight copper complexes have been 

the subject of many previous studies,4, ,13 23 in part motivated by the rapid electron transfer 

rates obtained in type 1 copper sites of blue copper proteins,4b,c,d to our knowledge such 

studies have not included diamond core dicopper model systems. We therefore sought to 

measure, or at least approximate, the intermolecular self-exchange rate between 2.2 and 

2.3 directly using the technique of 1H NMR line-broadening analysis.24
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Graph II.1: Plots of line width vs. chemical shift ( ) and mole fraction vs. chemical 
shift ( ). 
 
 

A single and sharp resonance for the tert-butyl protons of 2.2 is observed at 1.23 ppm. 

For a pure sample of 2.2 its line width W2 (where line width indicates the full-width at 

half maximum for the Lorentzian-shaped line) is 1.3 ± 0.2 Hz. The 1H NMR spectrum of 

a pure sample of 2.3 features a very broad resonance centered at 6.79 ppm. This 

resonance is slightly convoluted by overlap with the aryl protons of the [B(3,5-

(CF3)2C6H3)4] counter-anion. Nonetheless its line width, W3, can be estimated as 807 ± 25 

Hz.  The addition of increasing amounts of cationic 2.3 to a solution of 2.2 in CD2Cl2 

causes the observed resonance to broaden and to shift downfield. A plot of the chemical 

shift of this resonance as a function of the mole fraction of 2.2, χ2, reveals a linear 

correlation (Graph II.1) and therefore suggests that the rate of electron-exchange between 

2.2 and 2.3 falls within the fast-exchange regime. If we assume a two-site exchange 
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system comprised of diamagnetic 2.2 and paramagnetic 2.3, and if the rate law for 

electron-transfer is first order with respect to each reactant concentration, then equation 

II.1 relating line widths and reactant lifetimes holds:25,26

W23 = χ3W3 + χ2W2 + [χ3χ2{4π(δν)2ks
-1C23

-1}]     (II.1) 

In this equation δν represents the contact shift between 2.2 and 2.3, ks represents the 

rate constant for electron self-exchange (M-1 s-1), and C23 represents the total molarity of 

the solution of 2.2 and 2.3. To obtain a reliable value for ks in the fast exchange region, it 

is necessary that W23 be considerably larger than the sum {χ3W3 + χ2W2}. When ks 

approaches very high values (>108 M-1 s-1), the third term [χ3χ2{4π(δν)2ks
-1C23

-1}] 

approaches zero and W23 converges to the sum {χ3W3 + χ2W2}. Within the error 

estimated for our line width measurements W2, W3, and W23, the magnitude of W23 is too 

close to the sum {χ3W3 + χ2W2} to accurately determine the magnitude of ks. In other 

words, small errors in our values for W2, W3, and W23 will dramatically affect the value 

predicted. Therefore the rate of the exchange process is too fast to measure accurately by 

the technique of NMR line-broadening analysis, and we must at present be satisfied with 

suggesting a conservative lower boundary limit for ks as ≥ 107 M-1 s-1. We attempted to 

slow the exchange rate down by diluting the total concentration of 2.2 and 2.3, but the 

line widths W23 obtained were still too close to the sum {χ3W3 + χ2W2} to provide 

accurate values for ks. The crude lower boundary we estimate for ks can be compared to 

that measured for Fc/[Fc][PF6] (Fc = ferrocene) by the same technique (ks = (4.3 ± 0.3) x 

106 M-1 s-1 at 298 K in CD2Cl2).24c More interesting is to consider values that have been 

measured for CuA for comparison. While electron self-exchange rates are obviously not 

available for the buried CuA site of cytochrome c oxidase, meaningful values for electron 
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transfer rates into and out of CuA domains have been measured. Perhaps the most 

meaningful value for comparison to the present model system is that determined by 

Slutter et al. using flash photolysis to initiate electron transfer between excited (2,2’-

bipyridyl)ruthenium(II) (RuII(bpy)3*) and the soluble CuA domain from the cytochrome 

ba3 of Thermus thermophilus.27 The value estimated in that study for the second-order 

ET rate constant from RuII(bpy)3* to the fully oxidized CuA site at high ionic strength 

was determined to be 2.2 x 108 M-1 s-1. Stopped flow studies with a soluble CuA domain 

and its natural partner cytochrome c550 from P. denitrificans provided rates of 1.5 x 106 

M-1 s-1.28 Electron self-exchange values determined for the oxidized and reduced forms of 

plastocyanin from Anabaena variabilis obtained by longitudinal NMR relaxation were 

1.50 ± 0.13 x 105 M-1 s-1 at 298 K in pH 7.0 H2O.29 Clearly, the lower boundary for ks we 

have proposed suggests our model system can achieve electron-transfer rates comparable 

to CuA. It is therefore of obvious interest to more accurately determine an ET value for 

the present Cu2N2 model system for direct comparison to a known value for a soluble 

CuA domain. Efforts are now underway to examine the flash photolysis methodology 

used by Slutter et. al. to determine whether this will be a viable strategy. 

To conclude, the amido-bridged Cu2N2 diamond core structures described herein 

provide an interesting structural departure from the thiolate-bridged diamond cores of 

biological CuA. Nonetheless, the {[SNS][Cu]}2
+n (n = 0, 1) system is unique amongst 

dicopper diamond cores in its ability to functionally model both the reduced and the one-

electron oxidized mixed-valence states of biological CuA. Minimal structural 

reorganization of the [SNS]- ligand framework, and the short Cu-Cu distance it supports, 

are likely important factors governing the reversible redox behavior of {[SNS][Cu]}2
+n. 
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Moreover, these same factors seem to provide access to a very facile Cu1Cu1↔Cu1.5Cu1.5 

electron self-exchange process (≥107 M-1 s-1), the lower limit of whose magnitude is to 

our knowledge unprecedented in copper model complexes. These data collectively 

suggest that amido bridges are an attractive alternative to thiolate as a bridging unit for 

dicopper diamond core systems, especially if a facile electron transfer agent is desired. 

Many questions remain to be answered for the dicopper systems discussed herein, and 

future studies will probe the spectroscopy and electron-transfer kinetics of these new 

systems in more detail. Moreover, we will explore whether synthetic access to related 

Cu2N2 structure types using other [LNL]- ligands is possible so as to probe 

structure/function relationships in such systems more thoroughly. 
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II.C. Experimental 

General.  All manipulations were carried out using standard Schlenk or glove-box 

techniques under a dinitrogen atmosphere.  Unless otherwise noted, solvents were 

deoxygenated and dried by thorough sparging with N2 gas followed by passage through 

an activated alumina column.  Non-halogenated solvents were tested with a standard 

purple solution of sodium benzophenone ketyl in tetrahydrofuran to confirm effective 

oxygen and moisture removal.  All reagents were purchased from commercial vendors 

and used without further purification unless otherwise stated.  2-tert-butylsulfanyl 

aniline,30 [Cp2Fe][B(3,5-(CF3)2C6H3)4],31 and CuCl2·0.66 THF32 were prepared 

according to literature procedures. Elemental analyses were performed by Desert 

Analytics, Tucson, AZ.   Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc. and degassed and dried over activated 3 Å molecular sieves prior to 

use. A Varian Mercury-300 or INOVA-500 NMR spectrometer was used to record 1H, 

13C, 19F NMR spectra at ambient temperature.  1H chemical shifts were referenced to 

residual solvent.  Temperature calibration of the NMR probe was accomplished using an 

anhydrous methanol standard. Line shape analysis of experimental NMR was performed 

using the Varian 6.1c software package.  GC-MS data was obtained by injecting a 

dichloromethane solution into a Agilent 6890 GC equipped with an Agilent 5973 mass 

selective detector (EI).  High-resolution EI mass spectroscopy was carried out by the 

Caltech Chemistry Mass Spectral Facility using a JEOL JMS600. UV-vis measurements 

were taken on a Cary 500 UV/Vis/NIR Spectrophotometer using a 0.1 cm quartz cell 

with a Teflon stopper.  IR measurements were obtained with a KBr solution cell using a 

Bio-Rad Excalibur FTS 3000 spectrometer controlled by Bio-Rad Merlin Software (v. 
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2.97) set at 4 cm-1 resolution. X-ray diffraction studies were carried out in the Beckman 

Institute Crystallographic Facility on a Bruker Smart 1000 CCD diffractometer. Table 

II.1 shows X-ray diffraction data for 2.2, 2.3, and 2.4. 

Table II.1: X-ray diffraction data for 2.2, 2.3, and 2.4.a

 2.2 2.3 2.4 

Chemical Formula C40H52CuN2S4 C72H64BCu2F24N4S4 · ½ (C4H10O) C20H26ClCuNS2

Formula Weight 816.206 1716.478 443.53 

T (K) 98 100 96 

λ (Å)  0.71073 0.71073 0.71073 

a (Å) 10.2263(9) 10.3179(8) 17.0807(13) 

b (Å) 10.6226(9) 19.3779(14) 12.3173(10) 

c (Å) 19.4884(17) 19.9116(15) 19.5782(15) 

α (º) 94.017(2) 74.234(1) 90 

β (º) 90.634(2) 83.222(1) 90 

γ (º) 107.305(1) 85.603(1) 90 

V (Å3) 2015.1(3) 3800.4(5) 4119.0(6) 

Space Group P-1 (#2) P-1 (#2) Pbca (#61) 

Z 2 2 8 

Dcalcd (g/cm3) 1.345 1.500 1.430 

μ (mm-1) 1.292 0.773 1.396 

R1, wR2 (I>2σ(I)) 0.0303, 0.0660 0.0393, 0.0810 0.0381, 0.0694 
a R1 = Σ ||Fo|-|Fc|| / Σ |Fo|, wR2 = {Σ[w(Fo

2-Fc
2)2]/Σ[w(Fo

2)2]}1/2 

 

Magnetic Measurements. Measurements were recorded using a Quantum Designs 

SQUID magnetometer running MPMSR2 software (Magnetic Property Measurement 

System Revision 2). Data were recorded at 5000 G. Samples were suspended in the 

magnetometer in a clear plastic straw sealed under nitrogen with Lilly No. 4 gel caps. 

Loaded samples were centered within the magnetometer using the DC centering scan at 

35 K and 5000 G.  Data were acquired at 2 – 20 K (one data point every 2 K) and 20 – 

295 K (one data point every 5 K). The magnetic susceptibility was adjusted for 

diamagnetic contributions using the constitutive corrections of Pascal’s constants. The 
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molar magnetic susceptibility (χm) was calculated by converting the calculated magnetic 

susceptibility (χ) obtained from the magnetometer to a molar susceptibility (using the 

multiplication factor {(molecular weight) / [sample weight)*(field strength)]}). Curie-

Weiss behavior was verified by a plot of χm
-1 versus T. Graph II.2 shows the plot of the 

values for χΤ vs. T.  Effective magnetic moments were calculated using equation 2.2. 

μeff  = sqrt(7.997 χm T)     (eq 2.2) 
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Graph II.2: SQUID Magnetization study of 2.3.  
 
 
EPR Measurements. X-band EPR spectra were obtained on a Bruker EMX spectrometer 

(controlled by Bruker Win EPR Software v. 3.0) equipped with a rectangular cavity 

working in the TE102 mode. Variable temperature measurements were conducted with an 

Oxford continuous-flow helium cryostat (temperature range 3.6 – 300 K). Accurate 

frequency values were provided by a frequency counter built into the microwave bridge. 

Solution spectra were acquired in toluene. Sample preparation was performed under a 

dinitrogen atmosphere in an EPR tube equipped with a ground glass joint. 
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Electrochemistry. Electrochemical measurements were carried out in a glove-box under 

a dinitrogen atmosphere in a one-compartment cell using a BAS model 100/W 

electrochemical analyzer. A glassy carbon electrode and platinum wire were used as the 

working and auxiliary electrodes, respectively. The reference electrode was Ag/AgNO3 in 

THF. Solutions (CH2Cl2) of electrolyte (0.30 M tetra-n-butylammonium 

hexafluorophosphate) and analyte were prepared in a glove-box. 

Electron self-exchange rate between 2.2 and 2.3:   1H NMR spectra were acquired in 

CD2Cl2 on a Varian Inova Spectrometer operating at 499.852 MHz at 303 K.  The data 

collection parameters were as follows: 0 s relaxation delay, 5.5 μs pulse width, and an 

89988.8 Hz sweep width.  The samples were weighed and dissolved in 1.0 mL of 

CD2Cl2, after which each sample tube was charged with ~0.5 mL of the solution.  The 

sample concentrations, mole fractions, and experimental values for W are shown in Table 

II.2 below.  The chemical shifts and line widths of the experimental spectra were 

obtained by Lorentzian line-fitting using the Varian 6.1c software package. 

 

Table II.2. Line-broadening data, concentrations, and mole fractions used to estimate 
the lower boundary of the self-exchange reaction rate between 2.2 and 2.3 in 
dichloromethane solution. See Graph II.1 for plots of (i) chemical shift versus mole 
fraction of 2.2, and (ii) W2, W3, and W23 versus χ2. 

 2.2 only 2.3 only Mix-A Mix-B Mix-C 

χ2.2 1 0 0.75 ± 0.01 0.59 ± 0.01 0.41 ± 0.01 

χ2.3 0 1 0.25 ± 0.01 0.41 ± 0.01 0.59 ± 0.01 

Total conc. (mM) - - 29 24 27 

Number of scans 100 1000 1000 1000 1000 

Chemical shift (Hz) 619 3396 1314 1766 2263 

W (Hz) 1.3 ± 0.2 807 ± 25 197 ± 15 314 ± 15 458 ± 15 
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Synthesis of 2-tert-butylsulfanyl bromobenzene.  In air, 2-bromothiophenol (25 mL, 

0.208 mol) was added dropwise to a vigorously stirred solution of tert-butyl alcohol (23 

g, 0.312 mol), H2O (150 mL), and concentrated H2SO4 (200 ml) at -10ºC in air.  

Following the addition, the reaction was allowed to come to ambient temperature and 

stirring was continued for 18 h, at which time ether (50mL) was added to the reaction 

mixture and the organic phase was washed with 1M Na2CO3 solution (100 mL), water (3 

x 100 mL), dried over Na2SO4, and the solvent removed in vacuo.  The resultant cloudy 

oil was fractionally distilled (90ºC/0.01 mmHg) affording a colorless oil. 

1H NMR (300 MHz, CDCl3): δ 7.64 (m, 2H, Ar-H), 7.24 (t, 1H, Ar-H), 7.15 (t, 1H, Ar-

H), 1.32 (s, 9 H, C(CH3)3).  13C NMR (126 MHz, CDCl3): δ 139.7, 134.4, 133.7, 132.8, 

130.3, 127.5, 48.8, 31.5.  GC-MS(M/z): 246/244[M], 190/188[M-(CH3CCH2)], 108, 109, 

82, 69, 57. 

Synthesis of bis(2-tert-butylsulfanylphenyl)amine:  A 200 mL reaction vessel equipped 

with a Teflon stopcock and stir bar was charged with Pd2(dba)3 (0.365 g, 0.399 mmol), 

bis(diphenylphosphino)ferrocene (DPPF) (0.442 g, 0.798 mmol), and toluene (30 mL) 

under a dinitrogen atmosphere. The resulting solution was allowed to stir for 5 min, after 

which time 2-tert-butylsulfanyl bromobenzene (9.77 g, 39.9 mmol), 2-tert-butylsulfanyl 

aniline (7.23 g, 39.9 mmol), and additional toluene (70 mL) were added. The subsequent 

addition of NaOtBu (5.37 g, 55.9 mmol) resulted in a brown solution that was stirred 

vigorously for 18 h at 100 °C. The solution was then allowed to cool and filtered through 

a silica plug that was then extracted with toluene to ensure complete removal of the 

desired product. Concentration of the collected extracts and removal of solvent yielded a 
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brown solid. These solid were extracted with hexanes and filtered. Purification by 

recrystallization from hexanes at –30 ºC afforded beige crystalline blocks (11.95 g, 87%). 

1H NMR (300 MHz, CD2Cl2): δ 8.30 (s, 1H, N-H), 7.52 (d, 2H, Ar-H), 7.43 (d, 2H, Ar-

H), 7.25 (t, 2H, Ar-H), 6.83 (t, 2H, Ar-H), 1.33 (s, 18 H, C(CH3)3). 13C NMR (126 MHz, 

CDCl3): δ 145.8, 140.0, 130.2, 120.5, 120.0, 115.4, 47.9, 31.3.  IR (KBr/CH2Cl2, cm-1):  

2924, 1575, 1509, 1364, 1319, 1167, 1034.  HR-EI MS: Calcd for C20H27NS2: 345.1585; 

Found: 345.1575. 

Synthesis of [Li][SNS], 2.1: In a 250 mL flask, bis(2-tert-butylsulfanylphenyl)amine 

(2.5 g, 7.25 mmol) was dissolved in petroleum ether (100 mL) and a 1.6 M solution of n-

butyl lithium in hexanes (5.9 mL, 9.43 mmol) was added dropwise with stirring at 

ambient temperature.  A pale yellow solid began precipitating immediately and stirring 

was continued for 20 min. The solids were collected on a sintered glass frit and washed 

with petroleum ether (3 x 30mL).  A spectroscopically pure off-white powder (2.5 g, 

98%) was obtained upon drying in vacuo. 

1H NMR (300 MHz, C6D6): δ 7.52 (d, 2H, Ar-H), 7.34 (d, 2H, Ar-H), 7.15 (t, 2H, Ar-H), 

6.68 (t, 2H, Ar-H), 1.11 (s, 18 H, C(CH3)3).  13C NMR (126 MHz, C6D6): δ 164.7, 139.5, 

131.0, 123.7, 121.7, 117.3, 47.4, 31.5. 

Synthesis of {[SNS]Cu}2, 2.2:  A solution of 2.1 (800 mg, 2.28 mmol) in benzene (20 

mL) was added dropwise with stirring to a suspension of CuBr·Me2S (469 mg, 2.28 

mmol) in benzene (40 mL).  The solution immediately became bright yellow in color and 

after 4 h the reaction mixture was filtered through a pad of Celite on a sintered glass frit 

and the solvent removed in vacuo.  The yellow solids were washed with petroleum ether 

(3x50 mL) and dried thoroughly which afforded spectroscopically pure product (850 mg, 
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91%).  This complex decomposes photolytically over time so efforts were made to 

minimize light exposure during synthesis and storage. Analytically pure product is 

obtained as fine yellow crystalline needles by cooling a methylene chloride solution at 

-35 ºC. 

1H NMR (300 MHz, CD2Cl2): δ 7.32 (d, 2H, Ar-H), 7.06 (t, 2H, Ar-H), 6.91 (d, 2H, Ar-

H), 6.57 (t, 2H, Ar-H), 1.23 (s, 18 H, C(CH3)3).  13C NMR (126 MHz, CD2Cl2): δ 160.8, 

136.3, 130.3, 122.9, 121.4, 116.3, 49.8, 31.1. UV/Vis/NIR (CD2Cl2, nm (M-1cm-1)): 426 

(4000).  IR (KBr pellet, cm-1): 3045 (w), 2959 (m), 2921 (w), 1573 (s), 1543  (m), 1451 

(s), 1428 (s), 1362 (m), 1312 (s), 1268 (m), 1154 (s), 1123 (w), 1031 (m), 818 (w), 743 

(s), 725 (m). Anal. Calcd. for C40H52Cu2N2S4: C, 58.86; H, 6.42; N, 3.43.  Found: C, 

58.46; H, 6.22; N, 3.28. 

Synthesis of [{(SNS)Cu}2][B(C6H3(CF3)2)4], 2.3:  In a 20 mL reaction vessel equipped 

with a Teflon stirbar, 2.2 (150.0 mg, 0.184 mmol) was suspended in diethyl ether (15 

mL) and [Cp2Fe][B(3,5-(CF3)2C6H3)4] (192.8 mg, 0.184 mmol) was added as a solid in 

one portion.  The green reaction mixture gradually became red-brown in color and after 

90 min, the solution was filtered through glass wool, and the filtrate was dried in vacuo.  

The solids were extracted with petroleum ether (3 x 30 mL) to remove the ferrocene 

byproduct, and drying under reduced pressure afforded the desired product as a burgundy 

solid (290 mg, 94%).  Analytically pure material was obtained by recrystallization from 

layering a diethylether solution with petroleum ether. 

19F NMR (282 MHz, CD2Cl2): -60.19 (s, Ar-CF3). IR (KBr pellet, cm-1): 3293 (w), 3053 

(w), 2968 (m), 1609 (m), 1578 (m), 1499, (m), 1454 (s), 1355 (s), 1279 (s), 1133 (br s), 

887 (m), 835, (m), 756 (m), 756 (m), 714 (m), 670 (m).  UV/Vis/NIR(CD2Cl2, nm (M-
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1cm-1)): 426(2500), 527(1650), 716(590), 1165(2050), 1920(4800). SQUID (solid, 

average 10-295 K): 1.52 B.M. (R2 = 0.9991). Anal. Calcd. for C72H64BCu2F24N2S4: C, 

51.49; H, 3.84; N, 1.67.  Found: C, 51.63; H, 3.80; N, 2.00. 

Synthesis of (SNS)CuCl, 2.4:  In a 50 ml round bottom flask equipped with a Teflon 

stirbar, CuCl·0.66 THF (1.00 g, 5.50 mmol), was suspended in THF (30 mL) and 2.2 

(1.93 g, 5.50 mmol) was added portionwise immediately affording a forest-green 

solution.  The reaction mixture was stirred for 18 h at ambient temperature and the 

solvent was removed in vacuo.  The resultant solid was triturated with benzene (2 x 10 

mL), extracted into benzene, filtered through Celite and dried thoroughly under reduced 

pressure to afford 2.4 (2.30 g, 94%).  Analytically pure material was obtained by 

recrystallization from THF/petroleum ether solution at -30 ºC.   

IR (KBr pellet, cm-1): 3056 (w), 2961 (w), 1573, (m), 1456 (s), 1431 (m), 1365 (m), 1321 

(s), 1240 (w), 1155 (m), 1032 (w), 767 (w), 750 (m), 740 (m).  UV/Vis/NIR (CD2Cl2, nm 

(M-1cm-1)): 606 (600), 1280 (280).  Anal. Calcd. for C20H26ClCuNS2: C, 54.16; H, 5.91; 

N, 3.16. Found: C, 54.22; H, 5.84; N, 3.08. 

Reduction of 2.4 to 2.2:  An amalgam of sodium (14.3 mg, 0.622 mmol) in mercury 

(11.1 g, 55.3 mmol) was prepared in a 20 mL reaction vessel and a solution of 2.4 (263 

mg, 0.592 mmol) in THF (10 mL) was added.  The reaction mixture was vigorously 

stirred for 6 h, filtered through Celite, and dried in vacuo.  The yellow solid was extracted 

into benzene (20 ml), lyophilized, and washed with cold petroleum ether to afford 

spectroscopically pure 2.2 (188 mg, 78%). 
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III.A. Introduction 

Photoluminescent complexes have garnered much attention due to their possible 

utilization in electrochemical devices, as sensors and biological imaging agents, and in 

solar energy conversion schemes.1 In this context, polypyridine-supported Cu(I) systems 

show promising features including the availability of low-lying charge-transfer (CT) 

excited states and the relatively low cost of copper in comparison to other transition metal 

luminophores. However, their tendency to display weak emission and short-lived excited 

states is problematic.2 McMillin has underscored these collective points,3 and his group 

recently reported a fascinating mononuclear complex, [Cu(dmp)(POP)]+ (dmp = 2,9-

dimethyl-1,10-phenanthroline; POP = bis[2-(diphenylphosphino)phenyl]ether), that 

exhibits both a relatively high quantum yield and long-lived excited-state as compared to 

other polypyridine-Cu(I) systems.4 Incorporation of a bulky, bis(phosphine) chelate 

appears to create a rigid environment around the copper center which (i) suppresses 

solvent-induced exciplex formation, and (ii) limits problematic ligand dissociation from 

the excited state. 

Herein we describe an amido-bridged bimetallic copper system, {(PNP)CuI}2 (3.2), 

derived from a chelating bis(phosphine)amide ligand, Figure III.1 ((PNP) = bis(2-

(diisobutylphosphino)phenyl)amide). This species is an exceptional luminophore in its 

own right. Aside from the absence of supporting polypyridine ligands, its combined 

quantum yield (φ > 0.65) and lifetime (τ  > 10 μs), in combination with its dinuclear 

structure and redox behavior, are without precedent. The synthesis of 3.2 was motivated 

by our recent elucidation of the dinuclear, thioether-supported Cu2N2 complex 

{(SNS)CuI}2 ((SNS)− = bis(2-tert-butylsulfanylphenyl)amide).5 {(SNS)CuI}2 exhibits a 
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reversible 1e- oxidation to form a mixed-valence [{(SNS)Cu1.5}2]+ complex, and 

electrochemical and XRD studies establish minimal structural reorganization between 

these two redox partners. While {(SNS)CuI}2 is negligibly emissive at 298 K, its 

phosphine congener 3.2 emits strongly in solution and in the solid-state when irradiated 

by visible light. 

 

 
Figure III.1: Left, Molecular representation of 3.2. Center, Space-filling representation 
of 3.2 from crystal coordinates. Right, Displacement ellipsoid representations (50%) of 
the core atoms of 3.2.   
 

III.B. Results and Discussion 

The required tridentate PNP-H ligand, 3.1, was synthesized by addition of nBuLi to 

bis(2,2'-difluorophenyl)amine in THF followed by the addition of lithium 

diisobutylphosphide.6 Heating this mixture at 45 °C for 4 days and subsequent passage of 

the crude product through silica gel afforded amine 3.1 as a spectroscopically pure 

viscous oil (75% yield), Figure III.2. Deprotonation with nBuLi affords [PNP][Li], 

{[3.1]Li}2, in good yield. Related bis(phosphino)amido ligands were first introduced by 

Fryzuk and have received the attention of several groups more recently., ,7 8 {[3.1]Li}2 

reacts rapidly with CuBr·Me2S in diethyl ether to generate a luminescent yellow solution. 
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The neutral, diamagnetic copper complex 3.2 can be subsequently isolated in pure form 

by crystallization (92%). Alternatively, complex 3.2 can be generated in good yield by 

the addition of {(2,4,6-Me3C6H2)Cu}9 to free amine 3.1, producing mesitylene upon 

metallation. 
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Figure III.2: Synthesis of 3.1, {[3.1][Li]}2, and 3.2. 
 
 

Complex 3.2 is characterized by a single resonance in its 31P NMR spectrum (−33.9 

ppm) and XRD analysis establishes the dimeric structure represented in Figure III.1. A 

short Cu⋅⋅⋅Cu bond distance of 2.6245(8) Å is observed that is similar in length to the 

Cu⋅⋅⋅Cu distance reported for {(SNS)CuI}2. The P-Cu-P angles of 132.93(5)º and 

137.69(5)º are significantly smaller than the S-Cu-S angles in {(SNS)CuI}2 (avg 153º). 
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As a result the copper centers are less severely distorted from a tetrahedral geometry than 

in {(SNS)CuI}2, which more closely approximates a cis-divacant octahedron at each 

copper site. These geometrical differences presumably arise from the different steric 

requirements of the thioether [SNS]− and diisobutylphosphine [PNP]− ligands. 

 

 

Figure III.3: Cyclic voltammetry of 3.2 referenced vs. Fc+/Fc in CH2Cl2 (0.10 M 
[nBu4N][PF6], 250 mV/sec). 
 
 

Electrochemical analysis of 3.2 in CH2Cl2 (Fc+/Fc, 0.3 M [nBu4N][PF6], 250 mV/sec, 

Fc = ferrocene) reveals two reversible waves, one centered at −550 mV and the other at 

300 mV, Figure III.3. An irreversible wave is encountered at higher potential (Epa = 860 

mV).10 The event at −550 mV is assigned to a reversible Cu1.5Cu1.5/CuICuI redox process 

by analogy to the {(SNS)CuI}2 system. The Cu1.5Cu1.5/CuICuI event is cathodically 

shifted for 3.2 in comparison to {(SNS)CuI}2 (by ~ 160 mV) due to its stronger 
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phosphine donors. The second reversible wave observed for 3.2 (E½ = 300 mV) is 

noteworthy and is distinct from {(SNS)CuI}2, for which only an irreversible redox 

process is observed at similar potential (Epa= 560 mV). Incorporation of the phosphine 

donors appears to stabilize an unusual second oxidation event in 3.2, at least on the time 

scale of the electrochemical experiment (250 mV/s). While it is tempting to assign this 

second wave to a CuIICuII/Cu1.5Cu1.5 redox process, at this stage it is equally plausible to 

suggest that a ligand-centered oxidation process is operative.11,12

 

 

Figure III.4: Left (A): Absorption spectra for 3.1 and 3.2 in cyclohexane. Right (B): 
Corrected emission spectrum (green, λex = 440 nm) and excitation spectrum (black, λem = 
560 nm) of 3.2 in cyclohexane. Inset (C): Luminescence decay measurement of 3.2 in 
cyclohexane (laser pulse at t = 0 μs, λex = 440 nm, λem = 510 nm). 
 
 

The absorption spectra for ligand 3.1 and complex 3.2 are shown in Figure III.4(A), 

and the corrected emission and excitation spectrum for 3.2 (298 K in cyclohexane) is also 

shown (B).13 The optical spectrum of 3.2 is typical for Cu(I). MLCT bands at 23,800 and 



 III - 7
22,300 cm−1 give rise to its yellow color. Its emission spectrum, collected by excitation 

into its lowest energy absorption band (λex = 440 nm, ≈ 22,700 cm−1), shows a λmax at 

20,000 cm−1. Its corresponding excitation profile is also shown (λem = 560 nm, ≈17,900 

cm−1). Low temperature emission studies at 77 K of 3.2 were also attempted for a  frozen 

methylcyclohexane glass and on a single crystal of 3.2 under He, Figure III.5. While 

some enhanced vibrational structure was observed by going to lower temperature, no 

conclusions regarding the nature of the excited state could be reached.  Interestingly, a 

high energy emission band at 480 nm was found in the sample of 3.2 in a 

methylcyclohexane glass, but not for those measurements done on the single crystal. 

 
Figure III.5:  Low temperature emission of 3.2. Black: solution of 3.2 in cyclohexane 
(298 K); Blue: single crystal of 3.2 under He(g) (77 K); Red: frozen glass solution of 3.2 
in methylcyclohexane (77 K). 
 

The intensity of the emission from the excited state of 3.2, *3.2,  is quite striking to 

the eye, even at room temperature in relatively polar donor solvents such as 

tetrahydrofuran (THF). This property is consistent with the unusually high quantum yield 
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we measured for 3.2 at 298 K: φ = 0.68(2) in cyclohexane and φ = 0.67(4) in THF. These 

quantum yields were determined by established methods using a fluorescein standard (φ 

= 0.90 in 0.1 N NaOH).14 It was also of interest to determine the excited-state lifetime of 

*3.2, measured as 10.2(2) μs in cyclohexane (see inset in Figure III.4) and 10.9(4) μs in 

THF. These lifetimes were determined by a monoexponential fit to raw decay data 

collected at 510 nm upon excitation at 460 nm.  Complex 3.2 is thus a remarkably 

efficient luminophore, with a lifetime similar to that McMillin has reported for 

mononuclear [Cu(dmp)(POP)]+ and a quantum yield that is approximately four times 

greater. We also note that diffusion-limited excited state electron transfer (kQ = 1.2 x 1010 

M−1s−1) has been demonstrated by time-resolved quenching experiments using 2,6-

dichloroquinone (Graph III.1).15
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Graph III.1:  Time-resolved emission quenching of 3.2 with DCQ in THF. 

Emissive dinuclear copper systems have been reported previously, but these species 

typically feature much shorter excited-state lifetimes. Perhaps most structurally related to 

3.2 is the neutral complex {[DPT]CuI}2 (DPT = 1,3-triphenyltriazine anion), which 

features a Cu···Cu distance of 2.451(8) Å.16 This neutral d10-d10 system exhibits a 
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fluorescence maximum at 570 nm and a lifetime of only 2.23 ns at 77 K,17a 

approximately three orders of magnitude shorter than 3.2. Other CuI
2 luminophores that 

have been described are typically supported by polypyridine type ligands and have rather 

long Cu···Cu distances.b Quantum yields for these systems are small in magnitude by 

comparison to their well-studied, substituted Cu(phen)2
+ analogues.b

The unusual emission properties exhibited by 3.2 may be due to several factors. 

Foremost among these may be the relatively low structural reorganization between 3.2 

and *3.2. This assertion is at least consistent with the relatively narrow full-width at half-

maximum of its emission band shown in Figure III.4 (B) (2400 cm−1), which can be 

converted to an estimate of the total reorganization energy λ = 2600 cm-1. Also, steric 

protection afforded by the bulky PNP ligand, in addition to the absence of a net cationic 

charge for 3.2, removes the possibility of anion binding and likely renders the excited-

state complex resistant to donor solvent ligation. Each of these factors can otherwise 

contribute to undesirable exciplex quenching. Lewis acidic Cu(I) cations, such as 

Cu(phen)2
+ systems, suffer from exciplex quenching due to solvent and/or counter-anion 

binding in the excited state. The space-filling model of 3.2 shown in Figure III.1 reveals 

just how effectively the copper sites are shrouded by the surrounding phosphine ligand 

framework. 

Table III.1  Comparison of bond lengths and angles between the determined by X-ray 
diffraction for 3.2 and those calculated by DFT. 

Interatomic 
Distances (Å) 

X-ray DFT Interatomic 
Angles (deg.) 

X-ray DFT 

Cu1-Cu2 2.6245(8) 2.762 Cu1-N1-Cu2 75.10(12) 76.78 
Cu1-N1 2.127(4) 2.208 Cu1-N2-Cu2 73.03(12) 73.98 
Cu1-N2 2.191(4) 2.248 N1-Cu1-N2 107.20(14) 106.66 
Cu2-N1 2.179(4) 2.239 N1-Cu2-N2 104.44(14) 102.56 
Cu2-N2 2.219(4) 2.341    
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Figure III.6:  Geometry optimization and electronic structure calculation for 3.2 using 
DFT (JAGUAR: B3LYP/LACVP**). Contour plot (value = 0.0905, 0.088, 0.065) of the 
highest lying molecular orbitals are shown.  
 
 

A geometry optimization and electronic structure calculation of 3.2 using DFT 

(JAGUAR 5.0, B3LYP/LACVP**) was performed using the crystallographically 

determined X-ray coordinates as the initial guess for the geometry (Figure III.6).18 The 

theoretically determined structure agrees well with that determined experimental by 

X-ray diffraction (Table III.1). The electronic structure of 3.2 afforded by the DFT 

calculation suggests that the redox active HOMO (Figure III.6) contains significant 

orbital contributions from the four atoms of the Cu2N2 diamond core. The HOMO is 

antibonding with respect to each of the four Cu-N interactions and also the Cu-Cu 

interaction. This orbital configuration is consistent with the {(SNS)Cu}2 system (Chapter 

II).  The LUMO is found to be virtually devoid of metal character and almost completely 

associated with the aryl ring structure. This result could indicate that the excited state 

involves promotion of an electron from the Cu2N2 core to the outer ligand framework. 

As a final point of interest, we note that a value for E00 = 2.6 eV can be estimated 

from the intersection of the emission and excitation profiles of 3.2 (Figure III.7).  
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Subtracting this value from the reversible Cu1.5Cu1.5/Cu1Cu1 redox couple provides an 

estimated value of  −3.2 V (vs. Fc+/Fc) for the excited state reduction potential of *3.2. 

This estimated potential is unusually low, and it is possible that *3.2 will prove to be a 

potent photoreductant/photosensitizer.19 Indeed, given the presence of two reversible 

redox couples within this bimetallic copper system, there may be an opportunity to 

photochemically drive two-electron reaction processes.20

 

 

{(PNP)Cu}2

*{(PNP)Cu}2

[{(PNP)Cu}2]+

hυ abs

hυ em

λmax= 440 nm
ε = 3600

-0.56 V

τ =10.9(4) μs
φ = 0.67 ± 5%
E°° = 2.6 eV

-3.2 V

 

Figure  III.7: Diagram of the photophysical and redox properties of 3.2. 
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III.C. Experimental 

General.  All manipulations were carried out using standard Schlenk or glove-box 

techniques under a dinitrogen atmosphere. Unless otherwise noted, solvents were 

deoxygenated and dried by thorough sparging with N2 gas followed by passage through 

an activated alumina column.  Non-halogenated solvents were tested with a standard 

purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm 

effective oxygen and moisture removal.  Spectral grade THF was purchased from Aldrich 

and distilled from molten potassium prior to use. All reagents were purchased from 

commercial vendors and used without further purification unless otherwise stated. A 

volumetric solution of 0.1 N NaOH was purchased from J. T. Baker and used as received. 

[Cp2Fe][B(C6H3(CF3)2)4],21 was prepared according to literature procedure. Elemental 

analyses were performed by Desert Analytics, Tucson, AZ. Deuterated solvents were 

purchased from Cambridge Isotope Laboratories, Inc., degassed, and dried over activated 

3 Å molecular sieves prior to use. X-ray diffraction studies were carried out at the 

Beckman Institute Crystallographic Facility on a Brüker Smart 1000 CCD diffractometer 

and solved using SHELX v. 6.14. 

Electrochemistry. Electrochemical measurements were carried out in a glove-box 

under a dinitrogen atmosphere in a one-compartment cell using a BAS model 100/W 

electrochemical analyzer. A glassy carbon electrode and platinum wire were used as the 

working and auxiliary electrodes, respectively. The reference electrode was Ag/AgNO3 in 

THF. The ferrocene couple Fc+/Fc was used as an external reference. Solutions (THF) of 

electrolyte (0.35 M tetra-n-butylammonium hexafluorophosphate) and analyte were also 

prepared under an inert atmosphere. 
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Spectroscopic measurements. High-resolution EI mass spectroscopy was carried out 

by the Caltech Chemistry Mass Spectral Facility using a JEOL JMS600.  A Varian 

Mercury-300 or INOVA-500 NMR spectrometer was used to record 1H, 13C, 19F, 31P 

NMR spectra at ambient temperature. 1H and 13C chemical shifts were referenced to the 

residual solvent peaks. 19F and 31P NMR chemical shifts were referenced to external 

hexafluorobenzene (δ = -165 ppm) and phosphoric acid (δ = 0 ppm), respectively. 

Emission spectra were recorded on a Spex Fluorolog-2 spectro-fluorometer. Excitation 

for the luminescence lifetime experiments employed 8 ns pulses (at a repetition rate of 10 

Hz) from a Nd:YAG laser pumped OPO (Quanta Ray Pro, Spectra Physics).. The 

luminescence was dispersed through a monochromator (Instruments SA DH-10) onto a 

photomultiplier tube (PMT) (Hamamatsu R928). The PMT current was amplified and 

recorded with a transient digitizer (Tektronix). UV-vis measurements were taken on a 

Cary 50 UV/Vis Spectrophotometer using a 1 cm quartz cell or 500 UV/Vis/NIR 

Spectrophotometer using either a 2 cm or 1 cm quartz cell sealed with a Teflon stopper. 

Synthesis of Lithium Diisobutylphosphide. In a 500 mL Erlenmeyer flask 

diisobutylphosphine (25 g, 0.171 mol) was dissolved in 200 mL of petroleum ether and 

cooled to -80ºC, at which time at 1.6 M solution of nbutyl lithium in hexane (107 mL, 

0.171 mol) was added over 20 min. The reaction was then stirred at ambient temperature 

for 24 h, concentrated in vacuo to ca. 50 mL, and the white solids were then collected on 

a sintered-glass frit.  Washing of the solids with petroleum ether afforded a single 

phosphorous containing product (21.1 g, 81%) as by 31P NMR upon drying.  

31P{1H} NMR (121.5 MHz, THF):  -91.2. 
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Synthesis of Bis(2-(diisobutylphosphino)phenyl)amine, 3.1. In a 250 mL sealable 

reaction bomb, a 1.6 M  nbutyl lithium solution (7.9 mL, 12.6 mmol) in hexanes was 

added dropwise to a solution of bis(2-fluorophenyl)amine (2.46 g, 12.0 mmol) in THF 

(20 mL). After stirring for 15 min, the solution was concentrated in vacuo to remove the 

majority of the reaction volatiles after which time a solution of lithium 

diisobutylphosphide (5.47 g, 36 mmol) in THF (40 mL) was added and the vessel was 

sealed with a Teflon plug. The reaction was heated at 45ºC for 4 days and was monitored 

by 19F NMR for the complete disappearance of the aryl fluoride resonance. The reaction 

was then quenched with methanol (5 mL) and the solution became yellow in color. 

Petroleum ether (50 mL) was added and the mixture was filtered twice through Celite to 

remove solids. Removal of the solvent in vacuo afforded an orange oil which was diluted 

in petroleum ether (30 mL) and flashed through two plugs of silica gel in a 60 mL 

sintered-glass frit. Evaporation of the solvent under reduced pressure afforded a 

spectroscopically pure, pale green oil (4.10 g, 75%). 

1H NMR(300.1 MHz, CDCl3): δ 8.03 (t, 1H), 7.52 (m, 2H), 7.33 (m, 2H), 7.26 (t, 2H), 

7.00 (t, 2H), 1.73 (m, 12H), 1.08 (d, 12), 1.03 (d, 12H). 13C{1H} NMR(75.5 MHz, 

CDCl3): δ 147.8, 131.8, 129.4, 128.0, 121.0, 119.3, 116.7, 39.4, 26.6, 24.7, 24.3. 31P{1H} 

NMR (121.5 MHz, CDCl3): δ -54.5.  UV-vis (benzene, nm(M-1cm-1)):  302 (18,700), sh 

334(5900). FAB+ MS: calcd for C28H45NP2: 457.3027.  Found: 458.3122 [M+H], 

400.2226 [M-iBu], 312.1904 [M-(iBu2P)]. 

Synthesis of {[PNP]Li}2, {[3.1]Li}2. At ambient temperature a 1.6 M nbutyl lithium 

solution (4.0 mL, 6.4 mmol) in hexanes was added dropwise to a solution of 3.1 (2.63 g, 

5.76  mmol) in petroleum ether (50 mL) over 15 min. The reaction was stirred for 30 min, 
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at which time a solid began to precipitate. The solution was concentrated to ca. 30 mL 

and cooled to -30 °C for 12 h. The resultant solids were collected on a sintered-glass frit 

as fine pale yellow powder, dried thoroughly (2.24 g, 84 %). 

1H NMR(499.9 MHz, C6D6): δ 7.21 (m, 2 H), 7.06 (m, 4 H), 6.71 (m, 2 H), 1.8-0.6 (br m, 

36 H).  13C{1H} NMR(125.7 MHz, C6D6): δ 170.6, 132.4, 131.2, 128.7, 128.1, 118.6, 

42.3, 36.2, 26.3, 25.3.  31P{1H} NMR (121.5MHz, C6D6): δ -49.4 (q, 61 Hz).  UV-vis 

(cyclohexane, nm(M-1cm-1)):  301(18,700), 357(31,400), sh 395(10,200).  Anal. Calcd. 

for C56H88Li2N2P4:  C, 72.55; H, 9.57; N, 3.02.  Found: C, 73.21; H, 9.43; N, 3.14. 

Synthesis of {(PNP)Cu}2, 3.2: A solution of {[3.1]Li}2 (1.0 g, 2.16 mmol) in diethyl 

ether (20 mL) was added to a slurry of CuBr⋅S(CH3)2 (0.466 g, 2.27 mmol) in ether (30 

mL) and stirred for 12 h. The solvent was removed in vacuo and the resultant yellow 

solids were dissolved in petroleum ether (50 ml) and filtered to remove insoluble 

materials. Removal of petroleum ether and drying the yellow solids in vacuo afforded 

analytically pure material (1.04 g, 92%). Crystals suitable for X-ray diffraction were 

obtained both by slow-evaporation of a petroleum ether solution of 3.2. 

1H NMR(499.9 MHz, CD2Cl2): δ 7.20 (m, 4H), 6.93 (m, 4H), 6.71 (br d, 4H), 6.61 (t, 

4H), 1.806 (m, 4H), 1.58 (m, 8H), 1.39 (m, 8H), 1.29 (m, 4H), 0.99 (d, 12H), 0.73 (d, 

12H), 0.70 (d, 12H), 0.60 (d, 12H). 13C{1H} NMR(125.7 MHz, CD2Cl2): δ 169.4, 131.8, 

130.5, 128.7, 125.2, 117.8, 40.2, 36.4, 26.3, 26.2, 26.0, 25.7, 25.4, 25.1. 31P{1H} NMR 

(121.5MHz, C6D6): δ -33.9.  UV-vis (cyclohexane, nm(M-1cm-1)):  298(19,300), 

314(19,900), 352(41,000), sh 387(14,300), 425(5100), sh 454(3400).  Anal. calcd. for 

C56H88Cu2N2P4: C, 64.65; H, 8.53; N, 2.69.  Found: C, 64.54; H, 8.25; N, 2.62.  
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Quantum yield experiments. A volumetric solution of 3.2 (10 μM) in either 

cyclohexane (n = 1.426)22 or tetrahydrofuran (n = 1.407) was prepared in a nitrogen-filled 

glove-box. Three cuvettes (1 cm path) were charged with this solution, sparged briefly 

with argon, and sealed with a greased ground-glass stopper. The absorption spectra were 

acquired both before and after fluorescence measurements to ensure the sample was not 

degrading. A solution of fluorescein in an aqueous 0.1 N NaOH solution was prepared 

and sparged with argon, the concentration was adjusted such that the optical density (OD) 

at 440 nm was the same as that of the individual solutions of 3.2. Fluorescent 

measurements were performed with λex = 440 nm at 298 K and corrected for detector 

response. The area under the curve of the emission spectrum was determined using 

standard trapezoidal integration methods. Quantum yields (Table III.1) were then 

calculated by the methods described by Demas and Crosby23 using equation III.1. 

 Q = (QR)(I / IR)(ODR / OD)(n2 / nR
2)      (III.1) 

 Q: quantum yield of the sample. 

 QR: quantum yield of fluorescein in aqueous 0.1 N NaOH solution (QR = 0.9). 

 I: integrated intensity of 3.2. 

 IR: integrated intensity of fluorescein sample. 

ODR: optical density of the fluorescein sample in absorption units. 

OD: optical density of 3.2 in absorption units. 

 n: index of refraction of the solvent in which 3.2 was dissolved. 

nR: index of refraction of 0.1N NaOH solution (nR = 1.3351), measured on a 

Bausch & Lomb refractometer. 
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Table III.2: Data for Quantum Yield Measurements. 

Solution OD (measured) I (measured) Q (calculated) 

Fluorescein in 0.1N NaOH 0.0398 2.4725E+09  

10 μM 3.2 in cyclohexane 0.0352 1.5000E+09 0.70 

10 μM 3.2 in cyclohexane 0.0369 1.5067E+09 0.67 

10 μM 3.2 in cyclohexane 0.0408 1.6423E+09 0.67 

  Average 0.68 

  std. deviation 0.02 

 

Solution OD (measured) I (measured) Q (calculated) 

Fluorescein in 0.1N NaOH 0.0119 6.5402E+08  

10 μM 3.2 in tetrahydrofuran 0.0174 6.6049E+08 0.69 

10 μM 3.2 in tetrahydrofuran 0.0193 6.6209E+08 0.62 

10 μM 3.2 in tetrahydrofuran 0.0137 5.3344E+08 0.71 

  Average 0.67 

  std. deviation 0.04 

 

Lifetime measurements. A solution of 3.2 (10 μM) in either cyclohexane or 

tetrahydrofuran was prepared in a nitrogen-filled glove-box. The cuvettes (1 cm path) 

were charged with this solution, sparged briefly with argon, and sealed with a greased 

ground-glass stopper. The absorption spectra were acquired both before and after the 

fluorescence measurements to ensure the sample was not degrading. Fluorescent 

measurements were performed with λex =460,  λem= 510 nm at 298 K.  A 500 nm low-

pass filter was placed in front of the PMT in order to eliminate noise due to scattered 

laser light. The emission decay was averaged over 50 laser pulses and fit to an 

exponential function from which kobs was determined (see Table III.3). 
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Table III.3: Data for Excited State Lifetime Measurements. 
Entry Solution kobs (s-1) Lifetime (1/ kobs) (μs) 

1 10 μM 3.2 in tetrahydrofuran 8.9683E+04 11.15 
2 10 μM 3.2 in tetrahydrofuran 8.9656E+04 11.15 
3 10 μM 3.2 in tetrahydrofuran 9.4984E+04 10.53 
  average 10.94 
  std. deviation 0.4 
 kradiative

a(average) 6.22E+04  
 knon-radiative

b (average) 2.93E+04  
Entry Solution kobs (s-1) Lifetime (1/ kobs) (μs) 

4 10 μM 3.2 in cyclohexanec 9.6675E+04 10.34 
5 10 μM 3.2 in cyclohexane 9.9590E+04 10.04 
  average 10.19 
  std. deviation 0.2 
 kradiative

a
 (average) 6.58E+04  

 knon-radiative
b (average) 3.24E+04  

(a) kradiative   = (Quantum Yield)/(Lifetime);  (b) knon-radiative = kobs - kradiative  (c) indicates the representative 
fit shown below 

 

Graph III.2: Fit of the Excited State Decay with Residuals for Entry 4, Table III.3. 
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Time-resolved luminescent quenching experiments.  A solution of 3.2 (20 μM) in 

tetrahydrofuran was prepared in a nitrogen-filled glove-box. Two cuvettes (1 cm path) 

were charged with 2 mL of this solution, sparged briefly with argon, and sealed with a 

rubber stopper. The initial emission decay of  2 in each cuvette was measured with  λex = 

440 nm and  λem= 500 nm prior to the introduction of the quencher. A solution of 2,6-

dichloroquinone (DCQ) (10 mM) was then sequentially added to the cuvettes via syringe 

in volumes listed in Table III.4, and the emission decay was measured. The combined 

data from the two runs is plotted in Graph III.2, and a first order rate constant of 

1.2 x 1010 M-1s-1 was determined for the emission quenching. 

 
 
Table III.4: Time-resolved Emission Quenching Measurements. 

Run 1 
μL of DCQ solution (total) μM of DCQ in sample kobs (s-1) 

0 0 2.1E+05 
4 20 4.2E+05 
20 99 1.3E+06 
40 200 2.4E+06 
80 380 4.7E+06 

Run 2 
μL of DCQ solution (total) μM of DCQ in sample kobs (s-1) 

0 0 1.1E+05 
10 50 9.7E+05 
30 150 2.0E+06 
50 240 3.2E+06 
70 340 4.4E+06 
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