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- Abstract

In all attempts to emulate the considerable powers of the brain, one is struck by
both its immense size, parallelism, and complexity. While the fields of neural net-
works, artificial intelligence, and neuromorphic engineering have all attempted over-
simplifications on the considerable complexity, all three can benefit from the inherent
scalability and parallelism of optics. This thesis looks at specific aspects of three
modes in which optics, and particularly volume holography, can play a part in neural
computation.

First, holography serves as the basis of highly-parallel correlators, which are the
foundation of optical neural networks. The huge input capability of optical neural
networks make them most useful for image processing and image recognition and
tracking. These tasks benefit from the shift-invariance of optical correlators. In
this thesis, I analyze the capacity of correlators, and then present several techniques
for controling the amount of shift invariance. Of particular interest is the Fresnel
correlator, in which the hologram is displaced from the Fourier plane. In this case,
the amount of shift invariance is limited not just by the thickness of the hologram,
but by the distance of the hologram from the Fourier plane.

Second, volume holography can provide the huge storage capacity and high speed,
parallel read-out necessary to support large artificial intelligence systems. However,
previous methods for storing data in volume holograms have relied on awkward beam-
steering or on as-yet non-existent cheap, wide-bandwidth, tunable laser sources. This
thesis presents a new technique, shift multiplexing, which is capable of very high
densities, but which has the advantage of a very simple implementation. In shift
multiplexing, the reference wave consists of a focused spot a few millimeters in front
of the hologram. Multiplexing is achieved by simply translating the hologram a few
tens of microns or less. This thesis describes the theory for how shift multiplexing

works based on an unconventional, but very intuitive, analysis of the optical far-field.
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A more detailed analysis based on a path-integral interpretation of the Born approx-
imation is also derived. The capacity of shift multiplexing is compared with that of
angle and wavelength multiplexing.

The last part of this thesis deals with the role of optics in neuromorphic engi-
neering. Up until now, most neuromorphic engineering has involved one or a few
VLSI circuits emulating early sensory systems. However, optical interconnects will
be required in order to push towards more ambitious goals, such as the simulation
of early visual cortex. I describe a preliminary approach to designing such a system,
and show how shift multiplexing can be used to simultaneously store and implement

the immense interconnections required by such a project.

Advisor: Professor Demetri Psaltis
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Chapter 1 Introduction

Contents

The rapid growth in computer and information technology has been one of the
most significant aspects of the latter half of this century. Concurrent with that
growth, and largely although not entirely independent of it, there has been a stun-
ning expansion in our understanding of the mammalian brain. The recognition that
biology has solved difficult tasks such as pattern recognition, scene interpretation, and
navigation has led to several attempts to emulate the structure of biological systems
in both hardware and software. Until recently these efforts met with only limited
success, and so the fields of information processing and neurobiology evolved with
only coincidental influence upon each other.

Initial efforts in the 40s, 50s and 60s focused on the observation that brains con-
sist of multitudes of apparently simple processors with many connections between
them [1-4]. The bulk of the information processing was thought to be done through
these connections. This effort was typified by the Perceptron, what we would now
call a one-layer neural network [2]. This approach was mostly abandoned after the
publication of Perceptrons by Minsky and Papert [5], and was followed by attempts
at a more cognitive level.

The rise of artificial intelligence [AI] in the 70s was focused on the decision-making
process itself, and consisted of large databases of decision trees and concept maps. If
any property of biology could be said to have played a role in this effort, it would be
the tremendous size of human brains; in other words, human brains are really big, so
maybe if we pack enough information into a box, it will become intelligent, too. Like
all previous and successive attempts, Al research started with over-zealous optimism
only to be followed by more modest realizations.

The 80’s saw the return of the earlier efforts based on connections between many

simple neurons. This was typified by the Hopfield network [6] and the back-propagation
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algorithm [7,8]. With the aid of better algorithms and bigger, faster computers, this
generation was able to achieve some moderate successes [9,10]. While there were some
 hardware implementations of these algorithms, both in optics and in VLSI, most work
was done in software.

A new focus began in the 90s with the advent of neuromorphic engineering devel-
oped by Carver Mead and others [11]. The idea was to emulate the details of neuro-
physiology, particularly in early sensory receptors such as the retina and cochlea. By
taking inspiration from biology at this detailed level, analog VLSI sensors running
below threshold achieved large, adaptive dynamic ranges while consuming very little
power. Retinas have been developed that are capable of various types of processing,
including motion, contrast sensitivity, and automatic gain control [11-16] and cochleas
with dynamic ranges in excess of 60dB running on 0.5mW have been built [17]. This
approach to emulating the brain has been almost entirely hardware-oriented, with
a focus on using the inherent physics of devices to perform computation. It is the
approach that has and will continue to benefit most from our expanding knowledge
of biology, and is also capable of helping us to further that understanding.

Neural networks, Al, and neuromorphic engineering represent three different ap-
proaches by the engineering community to emulate the functionality of brains. This
thesis will describe some aspects of how optics can and has contributed to these three
approaches. Up to now, optics has played a role in hardware implementations of
neural networks, but has been relatively absent from the other two paradigms. It’s
lack of involvement in Al research stems from the fact that the only demand this
approach has on hardware is computational speed and memory. Optics is only now
beginning to make big differences in these areas. Optical interconnections will help
improve parallelism, and volume holographic memories are on the Verge of commercial
viability.

In this thesis I will address the use of volume holograms for data storage and
for neural networks. In addition to introducing a new technique for storing data in
holograms called shift multiplexing, I will expand upon the close relationship between

holographic memories and neural networks. That such a close relationship should
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exist is not surprising; one of the key lessons of neural network research has been
that memory and computation are inseparable in neural architectures. I will focus
attention on the trade-off between the number of output units in a given layer and
the amount of shift invariance that layer has, and I will demonstrate how various
architectures allow one to address this issue. In the last part of the thesis I will
address how optics can be used to extend the scope of neuromorphic engineering to
include large systems simulating not only early sensory mechanisms but some cortical
functions as well.

Chapters 2 and 3 introduce the basic concepts needed to understand volume holog-
raphy in the setting of angle multiplexing. I will take a lot of time with these chapters,
even though most of the work is not my own, for two reasons. One, the Computation
and Neural Systems Program includes people from many fields, and so it seems ap-
propriate to include introductory material for people not familiar with optics. Two,
Chapter 6, which deals with Shift Multiplexing, requires knowledge of the fundamen-
tals of scalar diffraction theory. It would be impossible to understand some of the more
subtle arguments, and their significance, without an understanding of the relationship
betweeen spherical waves and plane waves in scalar diffraction theory. Subsequent
chapters follow a similar analysis of capacity, parallelism, and shift invariance for
alternative multiplexing techniques. Chapter 6 addresses shift multiplexing, a new
technique which I invented as part of my thesis. Chapter 7 begins the discussion of

the role of optics in neuromorphic engineering,.



Chapter 2 Introduction to Holography

‘Contents
2.1 Scalar Diffraction Theory .. ................. 4
2.2 Holography . .......... ... .. . ... . ... ... 11
2.3 Volume Holography . .. ... .. ... ............ 15

In this chapter I will review the basic ideas behind scalar diffraction theory and
volume holography, using angle multiplexing as an example. A discussion of imaging

systems and correlators will also be included, with more details to be given in Chapter

3.

2.1 Scalar Diffraction Theory

The fundamental idea behind scalar diffraction theory is the Huygens-Fresnel prin-
ciple: a given wavefront of light can be thought of as the sum of an infinite number
of point sources all along the wavefront, each emitting its own spherical wave (see
figure 2.1). We can understand how the wave propagates through space by consid-
ering how these individual wavefronts propagate and interfere to form a secondary
wavefront [18].

This very intuitive picture is reminiscent of a Green’s function, in that the spher-
ical wave is convolved with the complex wavefront. From this intuition one can go
on to derive both the Fresnel-Kirchhoff and Rayleigh-Sommerfield scalar diffraction
formulas. The two formulas differ only in the form of the obliquity factor, which
we will soon choose to ignore. I will skip the derivations here, but recommend that
the interested reader consult Goodman’s Introduction to Fourier Optics [18]. Indeed,

most of the discussion here of scalar diffraction will follow the treatment presented
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Wavefront —>

Huygens-Fresnel
Wavelets

!

i <— New Wavefront

Figure 2.1: Huygens-Fresnel Wavelets.

by Goodman. In keeping with the intuition of the Huygens-Fresnel principle, one can

express the Rayleigh-Sommerfield formula as a superposition integral

9(@,y,2) = [[ o,y 7'y, #) f(a,y)dady (2.1)

with

1 eikr
h($>y3 .’17', yla Z,) = ‘L_X r

cos(n,r) (2.2)

in which f(z,y) is the complex field distribution across the x,y-plane, g(z',y', z')
is the field at the z’,y’-plane at some distance 2’ from f(z,y), & = 27/A, n is the
vector normal to the z,y-plane, and r is the vector joining the points (z,y) and
(z',y’) (see figure 2.2). I have assumed here and throughout the thesis that the light is
monochromatic with wavelength A. Notice that the convolution kernel h(z, y, z',y', 2')
is simply the expression for a spherical wave centered at the point (z,y) with an added
cos(n,r) factor. This cosine term is the obliquity factor that comes from the choice
of Green’s function in the Rayleigh-Sommerfield derivation. It can be thought of as

indicating the drop in amplitude for points farther off-axis. If we assume that the
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f(x.y) gx’y’,z’)

Figure’ 2.2: Rayleigh-Sommerfield diffraction.

distance 2’ is large compared to the apertures at the (z,y) and (z’,y’) planes, then
we can drop the obliquity factor altogether and use the pa,raxial approximation for
the vector r. These assumptions are known as the Fresnel approximations, and they

yield the form:

tkz

1Az

9@y, #) = = [[ Fla,y)e (- =) gy (2.3)

While the Huygens-Fresnel principle develops an intuition based on spherical
waves, an alternative point of view is to think of the wavefront at f(z,y) as a sum
of infinite plane waves. The validity of this viewpoint is readily seen by taking the

Fourier transform of the field f(z,y)

F(kzy ky) =// f(z,y)e ramtka®) dp dlyy (2.4)

where

k> = k2 + k) + k2 (2.5)
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f(x.y) Y, g(x’,y’,2F)

% Q

/

F F

Figure 2.3: Propagation to the Fourier plane.

The inverse Fourier transform is then

F(@oy) = [[ Flhay )45 dhsdk, (2.6)

But the expression ¢*s*T5%) describes a plane wave travelling in the k direction.
The quantity F (ks, k,) is sometimes referred to as the angular spectrum.

This approach has the advantage that plane waves are the eigenmodes of free-
space propagation; they do not change as they propagate through space except for a
simple multiplicative phase factor. This phase factor can be derived directly through
geometry, keeping track of the individual path lengths each angular component takes
as the wavefront propagates along the direction z. Or, since we have already derived
the convolution kernel from the Huygens-Fresnel principle, we can simply take the

Fourier transform of this kernel to arrive at the eigenvalue for free-space propagation

Az

H(ky, k) = e ar (Kt (2.7)

The intuition that a wavefront can be thought of as either a sum of infinite plane



2.1 Scalar Diffraction Theory 8

waves or as a sum of spherical waves will be very important throughout this thesis.
One other concept that will be critical is the transformation performed on a wavefront
by a simple lens with focal length F'. Although this derivation is very straightforward,
I will go through it here because it will be needed later and because the derivation
itself gives some intuition for the effects of the lens [18]. Given a wavefront f (z,y)
in the plane one focal length in front of the lens, we will solve for the wavefront
g(¢',y',2F) in the plane one focal length behind the lens (see figure 2.3).

If we propagate the wavefront from f(z,y) to a plane just in front of the lens, we

have

sz
IAF

E~(zL,yr) = /jf(z y)e ‘LF((rL—z)2+(yL—y)2)dwdy (2.8)

The lens will introduce a quadratic phase factor such that the field just after the

lens will be

ikF
E+($L,yL) - ('EAF //f(x,y)ei%f((xL—x)2+(yL—y)2)e—’i{r—F(-’E%"‘y%)dxdy (2‘9)
1
sz
T // fla,y)eRF A AR Cmt W) dody (2.10)

If we then propagate another distance F, we get an expression for g(z’,y’ )

sz sz i (g2

g(xlay’) F //( T //f ,y RS vaCany’ )e_’—(“’”"'yu)dwdy) (2_11)
2 1
. —"ﬁ((a: -z +(y’ yL)2)d~'L'LdyL (2,12)

Rearranging the order of integration yields
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ci2kF e » ,
o@) = (g [f e eren (2.13)

. /f e~ 3 F @i HE) o ixF (e ) oL+ (' L) gy dyr dzdy (2.14)

The integral over zy,yy, is in the form of a Fourier transform such that

eFFELHL) o ) femim (i) (2.15)
where
x4 _yty
YEF 0 UTF

Substituting this expression for the integral in equation 2.14 gives the final result

eiZkF

IAF

g(z',y") = // Flz,y)e 3F ) dody (2.16)

But this is just the Fourier transform of f(z,y) (with a complex scaling factor in
front of the integral that is not important here)! This is a very important result that
can be easily understood in terms of an intuitive picture. We know from high school
physics that parallel rays of light will come to a focus one focal length behind a lens
and, conversely, light from a point one focal length in front of a lens will produce rays
of parallel light after passing through the lens. In other words, spherical wavefronts are
converted (approximately) into plane waves, and vice-versa. The angular spectrum of
f(z,y), which is just the Fourier transform of f(z,y), produces a set of plane waves
that are converted by the lens into converging spherical waves. These spherical waves

come to a focus one focal distance behind the lens, in the plane referred to as the
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b 2
f(x,y) , g(x’,y’)
’
\ ‘\ / //
\ \ \ \ ! ’
\ N \ \ \ ! ! 4
\ \ \ / ; ’
\ } i \ ! 4
\ ! \ \\ ! 1 ;I / 4
\ \ \ \ \ | | ! ’ ,
\ \ \ 1 ! ! [
\ \ \ \ \ \ ! 1 ! AY
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L Voo '\
! v ! \ ! ' \
\ \ \ \ \ \ \
\ \ \ \ \ \ \
\ v ! \ \ \ s
) \ \ \ \
\ % \
\
\ Angular Spectrum Fourier Transform

Figure 2.4: Angular spectrum transformed to Fourier plane

Fourier plane. The position of the spherical wave in the Fourier plane is proportional
to the angle of the corresponding plane wave before the lens, i.e. it is proportional

to the spatial frequency of f(z,y) (see figure 2.4).

Although I will not continue with the derivation from here, it should be clear

that we can complete an imaging system by placing another lens of focal length F' a

distance F’ behind the Fourier plane of the first lens. This will, of course, produce the

Fourier transform of the Fourier plane a distance F” behind the second lens, which is
just the inverted image of f(z,y), since

F{F{f(2)}} = f(—=) (2.17)
In this case, the image of f(z,y) will be magnified by the fact‘or —F'/F with the

negative sign indicating inversion.

This system can be used for more than just imaging, however. We can place
transparencies in the Fourier plane of the imaging system to perform image pro-
cessing operations [18]. If the transparency has a complex transmission function
given by T(u,v), this function will multiply the Fourier transform of f(z,y), giv-
ing T'(u,v)F(u,v). The field at the image plane, h(z",y"), will then be the Fourier
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transform of this, or

h(z",y") = F{T(u,v)F(u,v)} (2.18)
= [ £ (=e,=p)a" =2,y = y)dady (2.19)

where
t(z,y) = F{T (v, )} (2.20)

We have just performed a convolution! Thus, this simple optical system is capable

of performing two-dimensional linear filtering almost instantaneously.

2.2 Holography

A typical holographic setup is very similar to the imaging system just described. In-
stead of a transparency, there is a holographic medium in the Fourier plane and there
is also a plane wave reference beam that is incident upon the holographic material at
an angle of 0 (see figure 2.5).

If the reference wave in the Fourier plane is give by

R = k' = ilkez'+hyy') (2.21)
then the total field will be
E(z',y)=F ¥ + R(z',y) (2.22)
9 y - )\F, AF T ] y .

The holographic medium will record the optical power, given by
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Figure 2.5: Holographic setup.
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I(y) = [F (;‘”%,f%)m(xcy') (2.23)

= F*R+ R*F+RR +FF* (2.24)

The first two terms represent the grating, while the last two terms are DC mod-
ulations of the field, which we will ignore from here on. If we block the signal beam,

F', and re-illuminate the recorded hologram with the reference beam, we will have

RF*R+ RR'F (2.25)

The second term contains both R and R*, which cancel to leave us with just F.
Thus, we have reconstructed the signal wavefront F (%, %) The first term recon-
structs the complex conjugate signal, which then travels in the opposite direction, so
we will not see this reconstruction at the output of our imaging system. In this way,
we have stored the (almost) complete information about the signal f(z,y). If we had
not used this imaging system, but had placed the holographic medium some distance
in front of object O, then we would have recorded the information about the entire
wavefront coming from object O. Reconstruction with the reference wave would then
reproduce this wavefront, with all the three-dimensional information about the object
that was present in the original wavefront. This is the idea behind 3-D holography.

Returning to the system in figure 2.5, what would happen if instead of removing
the signal and re-illuminating with the reference, we had removed the reference and

re-illuminated with the signal? In this case we would have

FF*R+ FFR” (2.26)

The first term is a field given by FF™* superimposed on the original reference
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carrier wave. If we place a lens along this direction, one focal distance away, we will
take the Fourier transform of F' F*, which we know from the convolution theorem
is the two-dimensional auto-correlation of f(z,y)! If we had reconstructed with a
different signal, g(z,y), then at the output plane we would have the two-dimensional
~cross-correlation between the new signal g(z,y) and the stored signal f(z,y)! This
is the foundation of holographic optical neural networks; the peak value of the cross-
correlation is the inner-product between the new signal and the stored signal. A
detector in the correlation plane will then respond to the power of the peak. Thus we
have a one-neuron neural network in which the weights of the neuron are stored as
the first signal, f(z,y), and the inner product between the input, g(z,y), and f(z,y)
is followed by a squaring nonlinearity. We can then electronically add additional
nonlinearities, such as a threshold.

What about the second term in equation 2.26? This term has F'F' riding on a
carrier that is the complex conjugate of the reference wave. An appropriately placed
lens would then produce the auto-convolution of f(z,y). For thin holograms, this
output could prove useful; however, we will see that for volume holograms this output
will vanish.

A central theme of this thesis is the relationship between holographic memories
and holographic correlators. I will discuss several methods for multiplexing holograms
in a volume medium, and for each method there will be geometries for holographic
data storage and for holographic correlators. It is not surprising that the same system
can be used as either a memory or as a recognition system; the processes of recognizing
someone and recalling their name are also closely related in the brain. It has been
suggested that the two processes are not the same for the brain if for no other reason
than the fact that we can recognize far more things than we can remember. Similarly,
the capacity for data storage and the capacity for pattern recognition is not the same

for holographic systems, as will be shown in Chapter 5.
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2.3  Volume Holography

In practice, we would like to be able to store more than one hologram in a given
medium. Multiple holograms could be used either as a memory [19-22], with each
individual hologram representing an entire page of data, or as multiple correlators
for use in a neural network architecture with many neurons per layer [23,24]. Each
hologram contains two dimensions worth of information (the full wavefront description
within a given 2-D plane); therefore, in order to store multiple holograms in the same
medium, we must add another dimension, i.e., we must use volume holograms.

Using the Born approximation, the volume hologram is represented as a sum
of individual thin holograms stacked together to form a volume [25]. We assume
that the diffraction efficiency of each individual thin component is weak enough that
we need only take into account primary diffraction from the illuminating wave; re-
diffraction of this light by successive holograms is assumed to be so weak as to be
negligible. For the remainder of this discussion we will limit our conversation to
plane wave interactions, since we can trivially relate these plane waves in the Fourier
plane to point sources in the object and image planes. Figure 2.6a shows the case for
Bragg-matched reconstruction of a hologram that was formed with two plane waves.
The vertical bars represent thin “layers” of the hologram, each of which produces
a diffracted plane wave. When the incident light is Bragg-matched, the diffracted
waves from each layer are all in phase, adding constructively to form the net diffracted
output from the volume hologram.

Figure 2.6b shows what happens when the angle of the incident beam is changed
slightly, producing Bragg-mismatch. In this case, the diffracted plane waves from
each “layer” no longer add up in phase. Instead, they begin to destructively interfere.
If the medium is thick enough or the angle large enough, the last half of the medium
will produce diffracted waves that are exactly m out of phase with the first half, and so
the destructive interference between these beams will lead to no net diffracted power.
This is called Bragg-mismatch. Since any wavefront can be decomposed into a sum of

plane waves, this same principle can be applied to image-bearing signal beams. The
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only difference is that perfect Bragg-mismatch can only be achieved for one plane
wave component of the signal beam at a time. We can store multiple holograms by
changing the angle of the reference beam to Bragg mismatch previous holograms, and
| then storing a new hologram at this angle. This is called angle-multiplexing, and it
'is the primary way to multiplex holograms both for holographic memories and neural
networks. In some cases, the angle change required to reach the first Bragg null, Ag,
varies as A0 = A\/L. For A\ = 500nm and L = lem, Af = 5 x 10~°radians, or about
3 x 1073 degrees. So we can store a lot of holograms this way! As many as 10,000
holograms have been stored in a single crystal [26,27].
A volume hologram maps a set of input plane waves H;(k;) to a set of diffracted

plane waves Hj(kq) with a transfer function A(ki,kq) such that [28]

Hy(kq) = / / Hi(ks) Ak, ka)dk; (2.27)

where

_ Ae(r’)ei(ki—kd)'r' .
Ak, ka) = / / / o (2.28)

Here, Ae(r’) is the perturbation to the dielectric susceptibility within the holo-
graphic material (i.e., the hologram). The derivation of this result is too long to
reproduce here. Intuitively, however, we can see that equation 2.28 is just the three-
dimensional Fourier transform of the hologram that is stored in the medium. If the
medium were infinite in all directions, the single grating would have as its Fourier
transform a delta function in three-dimensional space; only one angle of reference
beam would produce diffraction, and Bragg mismatch would happen immediately, as
soon as the angle of the beam was changed by even the smallest amount. The finite
size of the medium causes the Fourier transform of the stored grating to spread a bit

in all directions, so that small deviations in the angle of the reference beam will still
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be able to diffract from the grating.

When calculating the selectivity for real systems, two out of three of the di-
~ mensions of the holographic medium are usually taken to be infinite. These two
dimensions correspond to the transverse extent of the reference and signal beams on
the surface of the medium. Only the thickness of the medium is taken to be finite.
This is almost always a very good approximation because the phases of the diffracted
signal must build up along the path of the reconstruction, which is usually along the
thickness of the medium. With this approximation, the transverse components of
the grating vector are delta functions, §(z)d(y), but the longitudinal component is
the Fourier transform of the rect(z/L) function that describes the thickness of the
crystal, L; this is, of course, just a sinc function, given by sinc(z) = sin(rz)/(7z).
For a signal beam incident at an angle 6, and a reference beam at angle 6,, both with
respect to the z-axis, the amplitude of the diffracted signal wave as a function of the

deviation of the reconstruction beam, A#f, is [28]

. nLsin(8; —0,)
A4(A8) = sinc ( 53 cos 0. AG) (2.29)

This is best seen with a k-sphere diagram, which is a momentum, or Fourier,
space representation of the grating and the incident and diffracted waves. A k-
sphere diagram for the case of a Bragg-matched hologram that is infinite in extent
is shown in figure 2.7. The vector k, represents the k-vector of the reference wave.
The grating vector is then drawn from the end of the reference vector in the usual
fashion of vector diagrams. The grating vector is a double vector, with arrowheads in
both directions; each arrowhead represents one term from equation 2.24. The circle
represents a cross section of a sphere whose radius is k = 27/X; these are the only
allowed propogating modes since we have only monochromatic light of wavelength A
and there are no nonlinear processes to create light of another wavelength. For the
case of Bragg-matched reconstruction, the tip of the grating vector falls on the surface

of this sphere, and so we draw the vector &, from the center of the sphere to the tip
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Figure 2.7: K-sphere diagram of Bragg-matched reconstruction.

of the grating, representing the k-vector of the diffracted light. A small change in
the angle of incidence of the reference beam would shift the tip of the grating vector
off of the surface of the sphere; thus, it would not point to a propagating mode, and
there would be no diffraction.

Figure 2.8 shows the k-sphere diagram for a Bragg-mismatched grating that is
finite in the z direction. The small sinc? curve drawn at the tip of the grating vector
represents this uncertainty, or spreading, of the grating vector along the direction
of the thickness of the medium. Notice that, for the off-Bragg-matched case, the
side lobe of the sinc? curve still intersects the k-sphere, and therefore there will be a
propagating diffracted wave in this direction, but with a power given by the magnitude
of the sinc?. As the reconstructing reference beam changes its angle of incidence, the
intersection between the k-sphere and the tip of the grating vector distribution will
move out along the sinc? function. Since the sinc? distribution is along the z-axis

only, a change in the reconstructing reference angle, Af,, does not lead to an exactly
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Figure 2.8: K-sphere diagram of Bragg-mismatched reconstruction.
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Figure 2.9: K-sphere diagram of Bragg-matched reconstruction with a finite band-
width signal beam.

equal change in the diffracted signal beam angle, A8,. Rather, only the transverse
components of the angle changes, A#,, and Af,,, will remain equal. For a given
recording geometry, the change in the diffracted angle as a function of the change in

the reconstructing angle is given by

Ad, = A6, 0 (2.30)

cos 6,

The k-sphere can give us a nice intuitive picture of both holographic memories
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and correlators. In both cases, the signal beam is no longer a single plane wave; it is
an entire fan of plane waves, each from one point in the object plane (as explained
~above). Consequently, the reference beam writes an entire fan of gratings, one with
each component of the signal beam. This is represented in figure 2.9.

If we change the angle of the reference beam upon reconstruction, the entire fan
of gratingsv will move, but only one component of the signal beam can be Bragg-
mismatched exactly. The other components will all reside on either side of the null,
and so will lead to weakly diffracted reconstruction of these components. This is
referred to as cross-talk, because we would like to store another page of data at
this location, but when we try to read this page out, we will also read weakly those
components of the other hologram that are not completely Bragg-mismatched. For
this reason, rather than recording successive holograms at the first nulls of previous
holograms, we often multiplex holograms at every third, fourth, or even fifth null.
The cross-talk at these more distant nulls is significantly reduced because the power
of the sidelobes falls as 1/A6? (the selectivity curve for power is the square of the
amplitude curve).

Figure 2.9 can also demonstrate how holograms perform the correlation function.
In this case, we are using the other grating term of equation 2.24. Figure 2.9 shows
how the peak of the correlation is formed; each signal wave reads the grating it wrote
with the reference wave, and all of the diffracted beams add together in phase to
form one strong plane wave, which will produce a bright spot on the correlation
plane behind the lens. Figure 2.10 shows how the sidelobes of the correlation are
formed. In this case, individual components of the reconstructing signal beam read
out gratings that were written by neighboring components of the recorded signal
beam; these grating vectors now come to a point off of the surface of the k-sphere.
However, the angle between different components of the signal beams is very small,
so Bragg-mismatch is quite small. Consequently, there is still a diffracted beam, but
at a slightly different angle than that of the originally recorded reference beam. Each
component is reading out a grating whose strength is proportional to the strength of

a shifted version of the recorded signal. In other words, the strength of one diffracted
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Figure 2.10: K-sphere diagram of side-lobe formation in a correlator
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component, D;, is equal to the product of the reconstructing signal component, S,

and a shifted recorded component, S;_s

D; & S!S;i—s (2.31)

The total diffracted field would then be the sum

D;otar o Z SiSi-s (2.32)

There is actually a continuum of signal components, so writing equation 2.32 as

an integral and generalizing to any diffracted k-vector D(d) yields

D(5) x / S'(2)8(z — 6)dz (2.33)

which is exactly the correlation of § with S’. These equations are not precise,
because we have neglected Bragg-mismatch; Bragg-mismatch will put an extra scalar
multiplier in front of the integral that will be the usual sinc selectivity function. One
can also see from figure 2.10 that the tips of the grating vectors do not all come to
precisely the same point; this results from the fact that a change in reconstructing
angle does not lead to an exactly equivalent change in the diffracted angle. This
is greatly exaggerated in the figure, and in practice it is a negligible effect. The
main point here is the intuitive understanding of how the correlation comes about in
holography.

The k-sphere in figure 2.10 also demonstrates what happens if a shifted version of
the original signal is used. The shift in the object plane translates to a change of angle
in the Fourier plane, so the same signal fan will be present, but at a different angle.
The correlation peak now forms at a different angle, which produces a shifted peak in

the correlation plane; thus, the peak shifts to follow shifts in the input image. This is
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referred to as shift-invariance, and it is very important in many pattern recognition
applications. In practice, objects that are to be recognized can appear in any number
of locations within the scene and we want to be able to recognize them independently
of their location. In addition, shift-invariance can be used to track objects as they
move within a scene. The peak will move in proportion to shifts in the input image,
but the proportion will not be one-to-one. Rather, it will be given by equation 2.30.

If the reconstructing signal beam shifts too much, however, Bragg-effects will start
to effectively reduce the strength of the correlation peak. Eventually, the peak will
hit a null in the Bragg selectivity curve. As in the case of holographic memories, we

can use this null to record another correlator, or neuron.
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In this chapter I will continue to address the fundamentals of holographic data
storage using angle multiplexing. I will start with the 90°"¢ geometry. This willbe fol-
lowed by the disk geometry. I will conclude the chaper with a discussion of correlator

capacity.

3.1 The 90° Geometry

The basic ideas behind angle multiplexing were introduced in chapter two. Here I

will reiterate that the transfer function A(k;, kq) is given by

Al ka) = [ Ae(r')e 2]: L (3.1)

For the transmission geometry, in which both the reference and signal beams are

incident upon the same face of the medium, we take the integrations in the transverse
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directions to be infinite and the integration in the longitudinal direction to be over

the thickness L, yielding

A(ki, kd) x 5(kw — kg + kgm)é(k‘iy — kdy + kgy)LSinC (L(kiz — kg, + kgz))
(3.2)

which can be reduced to

| L nLsin(0; — 6,)
A4(Af) = sinc ( ) cos . AH) (3.3)

where Af is the change in the reference beam angle upon reconstruction [28].

However, assuming 6; = 0 (signal beam is normal to the medium), the expression
inside the sinc becomes infinite as 6, approaches 7 /2. This is also apparent from the
k-sphere. Since we have assumed that the grating is a delta function in the transverse
direction, it is clear from figure 3.1 that Bragg-mismatch will occur immediately with
any change in the reference beam angle.

Of course, it is impossible to have the signal beam on axis and the reference
beam at 90%" if the medium is infinite in the transverse direction. Therefore, this
assumption must be changed. Figure 3.2 shows the 90" geometry. In this case,
the signal and reference beams enter adjacent faces of a parellelpiped crystal. We
would still like to reduce two of the three dimensions to delta functions to make our
integration easier. Looking at figure 3.1, it is clear that the dimension parallel to
the signal axis is most important for Bragg selectivity, since the head of the grating
vector will move in this direction as the reference beam angle changes. Indeed, for
small changes in the reference beam angle, the grating vector will move approximately
orthogonally to the surface of the k-sphere; so we will take the other two dimensions
to be effectively infinite and reduce the Fourier transforms to delta functions.

Another way to justify this step is to note that the phases that build up either

constructively or destructively do so along the path of the signal beam, so it is the
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Figure 3.1: K-sphere for the 90°"¢ geometry.
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Figure 3.2: The 90° geometry

integration of the phase in this direction that really matters. This argument justifies
our considering the hologram to be infinite in the z and y directions even though
the hologram is actually the same size in all three dimensions. Note that the size of
the hologram in the z direction is not the length of the crystal, but the thickness of
the reference beam, since the hologram will only be written where the reference and
signal beams overlap.

With these approximations, the selectivity for the 90 degree geometry is

Af = (3.4)

) >

This geometry has the best possible angular selectivity for angle multiplexing. For
typical values of A and L, Af =~ 5 x 107° radians.

So far we have only looked at what happens when the reference beam angle is
rotated in the plane defined by the reference and signal beams. If we change the ref-
erence beam angle in the orthogonal direction, out of the interaction plane, equation

3.1 still holds. However, in this case we get
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Figure 3.3: K-sphere showing tangential selectivity. a) Side view. b) Top view.

Ap =4[22 (3.5)

The dependence on Ad is now quadratic, and the selectivity is consequently much
broader. The k-sphere diagram for this selectivity is shown in figure 3.3 for the 90
degree geometry; however, the analysis is similar for the transmission geometry. In
this case, the motion of the reference beam moves the grating vector tangentially
across the surface of the k-sphere. To second order, the surface of the sphere is
quadratic, hence the quadratic dependence in equation 3.5. I will refer to selectivity
in this direction as “tangential selectivity.”

Tangential selectivity, although not as good as the in-plane selectivity, is still
useful. Using 5 tangential angles and 2,000 in-plane angles in the 90 degree geometry,
10,000 holograms have been stored in a single crystal, and a large scale system capable
of storing 160,000 holograms has been demonstrated [26,27,29].

When used as a memory system, we have several choices about the design of a
90 degree geometry system. Aside from hardware choices, such as what medium to

use and what laser, there are choices about where to place the hologram. While our
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Figure 3.4: Fresnel zone holographic system.

previous analyses were all for systems in which the hologram was placed in the Fourier
plane, we could just as well place the hologram at an image plane, or at any place
else along the signal path. All that is required is that a complete imaging system is
formed from the object to the detector at an image plane, and that the hologram is
located somewhere along this path. In practice, one of two positions is used: in the
image plane or in the Fresnel zone adjacent to the Fourier plane.

An example of a system with the hologram in the Fresnel zone is shown in fig-
ure 3.4. The Fresnel zone is the region between the Fourier plane and either lens.
This system is very similar to the one we have been discussing so far; the only reason
the hologram has been shifted out of the Fourier plane is to avoid problems in the
recording process. The DC level of the data page produces a very bright spot in the
center of the Fourier plane. It is nearly impossible to record a good hologram with
such an inhomogeneous intensity distribution, because the DC power will burn out
all of the dynamic range of the material before the rest of the hologram is written,
and in photorefractive materials it can lead to intense fanning noise.

Figure 3.5 shows a typical image plane system. Notice that the system is twice
as long as the corresponding Fresnel system. The Fresnel zone geometry also has the

advantage that the defects in the material which cause noise affect a spatial frequency
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Figure 3.5: Image plane holographic system.

in the image, rather than a spot, and so the noise is spread out over the entire image
rather than concentrated at a specific spot. In addition to being more compact and
more tolerant to scattering noise in the medium, the Fresnel system usually allows

for higher capacity, as explained below.

3.2 Memory Capacity

Computation of the capacity of any holographic memory system involves many as-
sumptions about the geometry of the system, the material response, the available
hardware, cross-talk and signal-to-noise tolerances. The calculation is, in principle,
very straightforward, if lengthy. For the purpose here, we will perform a rough anal-
ysis for the sake of comparing the different forms of multiplexing. The capacity
calculations in this and the following chapters follow very closely the work of Sidney
Li [30].

The theoretical upper limit on data storage per unit volume of media for holo-
graphic data storage is tremendous. The maximum spatial frequency that can be
recorded is 2/, in the reflection geometry (reference and signal beams at 180 de-

grees). Taking this to be the bandwidth of our material, the total data stored in a
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parellelpiped of sides Ly, L,, L, is

2L, 2L, 2L, 8V
PN NP NPT

(3.6)

which, for A = 500nm, equals 8 x 10'2gratings/cm®! Intuitively, this result is very
appealing in that it is just the volume of the material, V', divided by the minimum
resolvable spot size in three dimensions, A/2 [31]. Practical limits to achieving this
high density come mostly from geometrical factors and the dynamic range of the
material. Geometrical factors refers to the fact that although the material may be
capable of storing such a huge bandwidth, it is not an easy task to actually address
this bandwidth; we need perfect imaging systems, and ways to get the reference beams
in at all of the required angles. Dynamic range is the ability of the material to store
large numbers of gratings all with sufficient diffraction efficiency to be retrieved with
reasonable accuracy and speed. The dynamic range of a material must be divided
amongst all M holograms, so if each hologram has an equal share, then the amplitude
diffraction efficiency will go like 1/M. But we can only detect power, which will fall
like 1/M?. This poses a very serious practical restraint; however, in this thesis I will
address only geometrical issues, leaving the material science to chemists.

Actually, one can trivially reach a data density of one bit per wavelength cubed
without even using holography. Taking for example a compact disk, each bit is stored
on the surface of the disk, one bit at a time. This bit can be stored as a diffraction
limited spot, and it is only as deep as a quarter wavelength. If you take the disk to
be one wavelength thick, you have will have achieved one bit per wavelength cubed!
This ignores, of course, the added area required for tracking. The point is, we can
think about data density as the product of an areal density, like on the surface of
the compact disk, and a thickness density. As the material is allowed to become
thicker, we can begin to multiplex holograms. Ideally, we would be able to multiplex
L/) holograms, while maintaining a perfect imaging system so that our areal density

remains at one bit per wavelength squared.
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Figure 3.6: Cross section of the beam paths through the hologram in the 90 degree
geometry: Image Plane.

3.2.1 Areal Density

In the example of the compact disk, it was easy to maintain an areal density of 1bit/\?
since only one bit was ever imaged at a time. For holography, entire pages of data
must be imaged. To properly address this issue would require taking into account
lens aberrations and other issues from geometrical optics as one attempts to design
a system with diffraction-limited resolution across the entire page of data. I will not
spend time on this here.

For volume holography, however, areal density is not simply a matter of the re-
solving power of the imaging system. Figures 3.6 and 3.7 show the cross section of
an imaging beam passing through a holographic medium.

Diffraction causes the beam to spread in both directions from the beam waist,
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Figure 3.7: Cross section of the beam paths through the hologram in the 90 degree
geometry: Fourier zone.
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so that the thicker the holographic medium is, the more area is required to fit the
same signal beam. Therefore, areal density actually decreases as the thickness of the
medium increases. Given a minimum feature size at the beam waist of b, the angle ¢

is

nsing 1
A b
¢ = a,rcsm(%)
~ 2
~ nb

The area A? required for the hologram is then

A = 2<§tanq§) W,

2
A? =~ (L—)‘-—I—Ws)
nb

For Fourier plane holograms, the beam waist is usually placed at one end of the

medium, so that

2
A* (2L)\ + Ws) (3.7)

nb

The number of bits is W2 /b%, giving areal densities of

W2 W2
p(Law) e (R w)

(3.8)

for imge plane and Fourier plane holograms, respectively. For an infinitely thin
medium, both expressions reduce to D = 1/b%, as expected. The value of W, and

b are obvious for image plane holograms; however, for Fourier plane holograms they
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are

W, = 2F tan(arcsin(A/p)) (3.9)
A
b= sin(arctan(d/2F")) (3:10)

where F' is the focal length of the Fourier transforming lens, p is the pixel size at
the object plane, and d is the diameter of the object plane. If we assume that d is
the maximum that will still allow proper imaging (ignoring abberations) through a

lens of diameter dr, then

d = dy, — 2F tan(arcsin(M/p)) (3.11)

Although at first glance it might appear that image plane holograms would require
less area, in fact, W, for Fourier holograms is usually so much smaller that the areal
density is actually higher. Fourier holograms are also less sensitive to noise from
defects in the medium. For image plane holograms, a defect or piece of dust at the
medium will produce a lot of noise for all of the pixels at that location, rendering an
error. For Fourier holograms, the defect produces noise at a given spatial frequency,
which then affects only slightly the image as a whole rather than éoncentrating all of

the noise power in one location.

3.2.2 Volume Density

Given the areal density of our system, calculation of the density gained by the thick-
ness of the material will give us the total volume density. In some sense, the areal
density is just a function of the imaging system, while the thickness leads to Bragg
selectivity. Ideally, this Bragg selectivity would allow for L/X holograms. Then, if we
had a perfect imaging system that could maintain the ideal areal density of A%/\%, we

could achieve a total volume density of V/A3. In practice, however, the constraints of
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the reference beam lens and other geometrical factors make it impossible to multiplex
L/ holograms.

Figure 3.6 shows the geometry for the reference beam with width Wr. From the
figure it is clear that the length of the crystal for a given Wr which is incident at

internal angles of between +6"*¢ is

W,

— max ‘12
L = Atan " + cos ez (3.12)
Combining eqations 3.8 and 3.12 yields
nb W,
L = s tan 7% - 1
(nb— X tan e,znaw) (W an bt cose;mw) (3.13)
A W,
— pmazr r A 14
A (nb — Atan 0,’]“”) (WS tan 07 + Cos 0‘;’“-”’) W, (3:14)
for image plane holograms and
nb maz W, _
L= (nb — 2 tan 0;"”) (Ws tan ;" + cos 0:"‘“’) (3.15)
2)‘ max W"
A = (nb — 2Atan H;”‘“’) (Ws tan 77 + cos 0;”‘“”) +W (3.16)

for Fourier plane holograms.
In order to pivot the reference beam around a point in the middle of the medium,
an 4-F system, similar to the one discussed in chapter 2 for imaging, is used. In this

case, §7%® is constrained by

D—-W
t amax(emt.) r
an 6 5F

) 1 D—-W
amax(mt.) . { . [ t ( r )] }
r = arcsin 4 —sin jarctan oF
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The derivation of the number of holograms that can be stored follows that of Sid
Li [30].
Assuming holograms are placed at the mth null of the adjacent hologram, the

angle between successive holograms is

mA cos 0,

6, = , 1
A nW,|sin(0; — 6,)| (3:17)
so that
|sin(8, — 0,)| A0, = mA s (3.18)
sin(0, — 6,)| A6, = —5- cos O, .

r

Summing over the total number of multiplexed holograms, Np, and taking Af to

be small enough to approximate as an integral results in

n;é cos 05(Ng — 1) (3.19)

nW;,

62
Asm@—@mm:

which yields

nW,

mA

cos(fs — 1) — cos(0, — 65)

cos B

Ny=1+

(3.20)

where the extra 1 is for the middle hologram. For the 90° geometry, 0, = 0 and
we can take #; and 6, to be m/2 £ 67™**. The total number of holograms recorded in

plane is then

2nW,

)\T sin 6% : (3.21)

No =1+

m
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In the out of plane direction, assuming we use the same total angular spread, the

number of tangentially multiplexed holograms Ng*"" is

N;*™" = Top (29;"”’ E?\W— (3.22)

where Top rounds down to the closest integer. Assuming a large number of holo-

grams, the thickness density is then

2nW, sin 6%

Dp=—"""7" Top (207‘“’ nW.

. (3.23)

mAL

The total volume density is then the product of the areal and thickness densities

W2

Dy = 32—?1)5

(3.24)

Figures 3.8 and 3.9 show the volume densities for the 90° geometry in both the
image and fresnel regions. These plots and all subsequent calculations of capacity do
not include tangential selectivity. In practice, tangential selectivity only increases the
capacity by a factor of about 5 at best, and is not critical in comparing the effective
capacities of different multiplexing schemes. The high areal densities and small beam
waists of the fresnel zone lead to much higher volume densities. As W, increases, the
interaction length increases, thus increasing the selectivity and raising the density.
As W, gets too big, however, it begins to take up more of the width of the reference
lens, and so the number of accessible angles decreases, until W, equals the reference
lens width, and the density goes almost to zero.

These and all subsequent capacity calulations in this and the following chapters
assume an SLM with 12um pixels. For the image plane, the size of the SLM is

assumed to be 2 cm on a side. For the fresnel zone, the SLM is assumed to be as
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Figure 3.8: Volume density for the 90° geometry in the image plane.
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Figure 3.9: Volume density for the 90° geometry in the fresnel zone.
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big as possible while still satisfying imaging criteria for the lens. The lenses were all
assumed to be 10cm in diameter, with a 10cm focal length. This results in a huge
SLM for the fresnel zone, and hence huge data densities. However, it is much easier
to make large SLMs or data masks than it is to make small pixels. All subsequent
calculations also assume that holograms are stored at the second null (m = 2) in
order to reduce cross-talk noise.

It is clear that, even with ideal parameters, angle multiplexing falls short of the
theoretical upper limit for volume density. The areal density is reduced by the growth
in the area with increasing thickness that is required to fit the expanding signal beam.
The thickness density is limited by the number of accessible angles, and also by the

need to the fit all of the reference beams into the medium.

3.3 The Disk Geometry

Although the 90" geometry typically has the best Bragg selectivity and the highest
volume data density, sometimes it is better to use the transmission geometry, in which
both the reference and the signal beams enter the same face of the medium. This
allows one to use a disk geometry, in which holograms are stored at one location of
the disk, and then the disk is rotated so that an entire new set of holograms can
be stored at a neighboring spot on the disk [30,32]. This is sometimes referred to
as spatial multiplexing [33-38]. In this case, the total capacity is increased because

more medium is used, albeit at a lower density.

3.3.1 Areal Density

Figure 3.10 shows the geometry for an image plane disk. The distance « is important

for calculating W,., and hence the thickness density, as well as the area of the hologram.

a=2 [%/i cos 6™ 4 (% + —M; sin Hi”t') tan(0 + gb)] (3.25)
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Figure 3.10: Geometry for holographic disk in the image plane.

where ¢ = arcsin(A\/nb).
Neighboring holograms should not overlap. Hence, they should be spaced by the
distance (3, given by

_ a Ws int. L WS . int.) int.

g = 5 + 5 Cos 6 — (2 5 sin 6" ) tan(6; o) (3.26)

and in the out-of-plane direction by
Ws + Ltan ¢ (3.27)

The total areal density is then
W2
— s 3.2

PA= GaW, + Lwand) (3.28)

For Fourier plane holograms (see figure 3.11)
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o

Figure 3.11: Geometry for holographic disk in the Fresnel zone.

a = W,cosb + W,sin 05" tan (65°" + tan(9) (3.29)

1 ,
+Ltan { arcsin | — sin(65*" + tan ¢) (3.30)
n

with ¢ = arcsin(A/b).

B = a — Lsin | arcsin { = sin §5°* ) — arcsin A (3.31)
n nb
and the areal density is still given by
W2
Dy= . .32
A7 B28(W, + Ltan ¢) (3:32)

3.3.2 Volume Density

The number of holograms are now given by
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L s—01) — 0, —
No = 14 nl |cos(f; — 01) — cos( 6,) (3.33)

mA cos 0,

tan nlL
N;™ = Top | 20" ~ (3.34)
And the thickness density by
tang.
De = MEH_ (3.35)

However, for the above equations we need a new expression for W,, which will

affect 8, and 6,.

W, =Va? + L? (3.36)
where « is whichever one is appropriate for the given geometry, as described above.

As in the case of the 90° geometry, increasing the thickness of the material in-
creases W, and improves the angular selectivity. However, it also decreases the total
available angular bandwidth, since we still have to fit the reference beam through a
lens of fixed diameter. Figures 3.12 and 3.13 plot the surface capacity versus disk
thickness, L. We plot surface capacity rather than volume density for disks in or-
der to better compare performance with standard CD-ROMs. Current CD-ROMs
are capable of approximately 1 bit/um?, with the new DVDs capable of about 20
bits/um?.
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Figure 3.12: Surface density for angle multiplexed holographic disks, image plane.
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Figure 3.13: Surface density for angle multiplexed holographic disks, fresnel zone.



3.4 Correlator Capacity _ 47

3.4 Correlator Capacity

As shown in chapter two, a correlator system is almost identical to a memory system,
except that images are used to reconstruct all of the holograms at once rather than
using a reference wave to reconstruct a single image. In practice, correlator systems
differ in that input images usually have their DC component removed in a 4-F image
processing system before the correlator. Without this step, the DC signal would
swamp everything, so that all images would correlate with all others according only
to the amount of DC power in each. For neural networks, the correlation peaks
represent hidden units that may then be presented as the input to a second layer of
weights in the form of a second correlator system.

The most important difference between a correlator and a memory system is that,
in the correlator system, a signal beam of finite, non-zero, bandwidth is used to
reconstruct the hologram. The direction of this reconstructing signal beam does not
change from hologram to hologram; only the content changes. So all of the holograms
are bragg-matched simultaneously. In this way, holographic correlators can implement
many correlations in parallel. For most systems, the amount of shift-invariance limits
the number of correlation templates that can be used. This is because a given system
will have an output plane that must be divided amongst the individual templates in
the system. If the system has too much shift-invariance, the output peak from one
correlator could shift into an area that has been reserved for a different template; in
this case, a shifted version of one object might be mistaken for a well-centered version
of a different object.

In the simplest analysis, we can think of the correlator as a memory system and
store successive templates with the reference wave at Bragg angle corresponding to
those that would be used for a memory [39]. In order to avoid confusion, adjacent
correlation templates would be stored such that their Bragg-nulls overlap. This means
each correlation is centered at the second null of the neighboring template. The

number of holograms that are stored in each direction is therefore given by equation

3.33 and 3.34, with m = 2.
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However, the correlations have to be detected at an output, or correlation, plane.
If we assume the correlation plane is as big as the lenses used in the system, then
nothing would really change. However, it is rare to find such a large CCD camera.
In practice, a screen is sometimes placed at the correlation plane, and a camera
captures the image of the correlation peaks off of the screen using its own imaging
lens. This arrangement is less sensitive, however, with dynamic range not being a
problem because all of the diffracted power is concentrated into one peak, rather than
being spread out over an entire image.

The above analysis, however, ignores the fact that it is the signal beam, rather than
the reference beam, that is reconstructing the hologram. So it is the Bragg selectivity
of the signal beam, not the reference beam, that determines the shift-invariance of the
system. An intuitive picture for how correlations and shift-invariance work was given
in chapter two using the k-sphere (see figures 2.9 and 2.10). The angular selectivity is
still given, to good approximation, by equation 3.3, except the roles of the reference

and signal waves must be swapped, giving the first null at

Acos b,
Af, = nLsin(6, — 65) (3:37)

However, for the transmission geometry, only the  component of this angle stays

the same for the diffracted wave giving

sin 0, — sin(0; + Af;) = sin 8, — sin(f, + A¥b,) (3.38)

which, for small angles A#, reduces to

cos 0,
Ab, = Aﬂsm (3.39)

Equations 3.37 and 3.39 determine how closely packed the reference waves can be.
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In the 90°¢ geometry one must to be careful to identify the direction of the z
axis. Since the beam that is being reconstructed is the reference beam, the z axis
should be defined as normal to the face that the reference beam enters: Equation 3.39
is then zero, or very small. This indicates that while the correlation peaks may fade
away if the input shifts too much, the peaks will never move in the in-plane direction.
Thus, the peaks can be packed very tightly in the in-plane direction.

The size of the output plane, and consequently the total angle available for output,
limits the number of holograms that can be stored. Combining equation 3.34 and

equation 3.36 gives

2\ cos 8,

Ab, = nLsin(8; — 0,)

(3.40)

as for the case of memories. Therefore, our previous derivations (equations 3.30
and 3.31) are also valid for the number of holograms that can be stored for correlator
systems.

Defining the capacity of a correlator system, however, is not as straightforward
as for the memory system. For memories, the capacity is simply the total number
of bits that can be recalled with a good signal-to noise ratio. We could similarly
define the capacity of a correlator as the number of holograms, perhaps times the
number of pixels per image stored, but this is not necessarily the most relevant metric.
Correlators and neural networks are often used for pattern recognition. The shape and
size of the shift-invariance domains of a pattern recognition system is an important
factor in its usefulness. For the case of the 90 degree geometry, the domains are
very long in the tangential direction, and very narrow in the in-plane direction. For
typical systems, there is less than one pixel’s worth of shift-invariance in the in-plane
direction. There are some applications where such domain shapes might be useful,
such as when the input images will only ever be shifted in one direction. Some tracking
problems in which the object is something that is on the ground, and hence always

at the horizontal, are examples of applications where the 90 degree geometry would
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be very useful.

While the 90" geometry can store many holograms with very asymmetric do-
mains, neighboring correlation domains could be used to store holograms of shifted
versions of the same object, thus “training in” directly the shift-invariance. This
would reduce the total number of objects that could be recognized in favor of having
greater shift-invariance. In practice, it would be better to have wider domains if that
is what the application calls for; fewer holograms would need to be stored, so less
dynamic range would be used and stronger signals could be achieved. Additionally,
neighboring correlators should have overlapping receptive fields, to avoid having areas
in which the object could not be detected. The concept of a receptive field comes
from neurobiology directly, and it refers to that area of the visual field that can affect
a given neuron. In this case, the size of the shift-invariance domain is projected in
image space. If the receptive fields did not overlap, then the object would produce no
correlation peak when it is between two domains because the peak would be at ex-
actly the bragg-nulls of each domain. So the capacity in this case would be somewhat
smaller than if the system naturally had larger shift invariance domains.

We can define another metric of capacity that takes into account the size of the
shift invariance domains. Multiplying the total number of holograms, N, by the
number of shift invariant positions, Nuif:, gives the number of different images for
which the response of the system is optimum. In order to get a metric with units of
bits, we can multiply by the number of bits in each image, M? for an M by M image.

The correlator capacity, V., is then

N, = Ngpije NnM? 3.41
f

This definition assumes that the images stored are all of the same size, M by
M, but it is trivial to extend it to a summation over images of varying size. This
definition also allows for redundancy in the stored representations. Only the area

of the input that constitutes the image to be recognized is counted; the rest of the



3.4 Correlator Capacity 51

input scene may contain anything. Therefore, some images may be subsets of other
stored images. This sort of redundancy can be very useful for fault-tolerant pattern
recognition. Indeed, there is thought to be quite a bit of redundancy in the brain.
The upper limit of our new metric is thus larger than the total number of possible

image scenes, and is given by

N N o
ij —i)(N—j5)2¥ (3.42)
shift

for a scene that is N by N binary pixels. The product ¢j represents the total
number of bits in an image that is i by j pixels. The total number of possible
such images is given by 2. The number of possible shifted positions is given by
(N —¢)(N — 7). In practice, of course, one would never want to store every possible
image subset of the scene, but this represents a hard upper bound on the correlator
capacity metric.

It is not possible to get a nice analytical form for the correlator capacity; how-
ever, we can get a feel for it by making the approximation that Af, and Af, are

approximately constant. The number of shift positions, Nspis:, is then

2nFAO, 2F X cos 9,
b ~ bLsin(6, — ;)

Nshift ~ (343)

where b is the pixel size at the input plane. Multiplying with equation 3.31 gives

2F)cosf,  nL|cos(fs — 6;) — cos(6, — 65)]

Ne bL sin(0, — 6,) . 2 cos 0, (3.44)
nF  cosf,|cos(f; — 6,) — cos(8s — 0,)]
= . 4
b sin(f, — 6;) cos 8, (3.45)

for the transmission geometry, and
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Figure 3.14: Correlator Capacity: a) k-sphere representation. The large angle be-
tween kg and k, makes Af, small even for large input shifts, Af,. b) Geometry for
greatest correlator capacity. Having the reference beam on-axis makes for the weakest
Bragg selectivity.

2FX oW, . -
N, AT sin 67 (3.46)
= Q’ZF sin ™o (3.47)

for the 90%7° geometry. Both equations assume that the shift-invariance is Bragg-
limited, as opposed to limited by the size of the aperture of the input plane. A
surprising result is that the capacity is not proportional to L, the thickness of the
material. This is because, while N}, is proportional to L, Nis: is inversely propor-
tional to L. This breaks down when L becomes small enough that the input field size
becomes the limiting factor for shift-invariance.

From equation 3.43 it is apparent that the geometry with the highest correlator

capacity in transmission has the reference beam normal to the medium and the signal
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beam at gl‘a,ncing incidence. This becomes more intuitive from the k-sphere diagram
(see figure 3.14). Storing the correlators at close to 90 degrees reduces the shift in the
output peak with shifts in the input to a minimum, wile having the reference beam
on axis decreases the Bragg selectivity as much as possible.

Although correlator capacity is a useful metric for comparing different systems, it
is not the last word. For some applications, large shift invariance is not needed, and
it is preferable to trade off some shift-invariance for increased numbers of holograms.
Keeping this in mind, the following chapters will analyze different systems for the

shape of the shift-invariance domains.
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Chapter 4 The Reflection Geometry and
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4.1 Wavelength Multiplexing

The previous chapter discussed the transmission and 90 degree geometries for angle
multiplexing of volume holograms. This chapter willlook at the reflection geometry, in
which the reference and signal beams enter opposite sides of the holographic medium.
While this geometry is very poor for angle multiplexing, it is ideal for wavelength

multiplexing, in which the wavelength of the reconstructing beam is changed [40-48].

4.1.1 Wavelength Selectivity

Figure 4.1 shows the k-sphere diagram for the reflection geometry. When the reference
and signal beams are exactly counter-propagating, Bragg mismatch is tangential in
all directions. For this reason, the reflection geometry is almost never used for angle
multiplexing. However, changing the wavelength of the reconstructing beam will move
the grating vector directly off of the surface of the k-sphere, as shown in figure 4.2.

A similar derivation to that used for angle multiplexing can be followed to derive
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Figure 4.2: K-sphere diagram for wavelength multiplexing.
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the wavelength selectivity of a given geometry; for counter-propagating waves, the

amplitude of the reconstructed beam, A,, is given by

Ay o sinc (%A)\) (4.1)

where A is the change in the reconstructing wavelength. The first zero is at

)\2

For memories, wavelength multiplexing has the advantage of requiring no moving
parts for awkward beam steering. However, there are no compact, low-cost sources
with a wide range of tunable wavelengths currently available. Wavelength multiplex-
ing also suffers from background noise problems due to the reflection of the reference
wave back along the direction of the signal beam. Even with a high-quality anti-
reflection coating, the back reflection can easily swamp the signal if a large number
of holograms are stored. Recording the beams at a slight angle, rather than exactly
counter-propagating, can sometimes avoid this problem.

The memory capacity of wavelength multiplexing can be very high. As with angle
multiplexing, the density can be broken up into the product of an areal density and

a thickness density.

4.1.2 Areal Density

The areal density is very similar to that for angle multiplexing, and if a single spot
of the medium is to be used, then the areal density is just equation 3.8 from chapter
three. However, if we use wavelength multiplexing in a disk geometry, we can do even
better. In this case, we only have to make sure that the individual beam waists do not
overlap. For angle multiplexing, each beam had to be in a separate volume so that,

upon read-out, holograms recorded with the same reference beam angle at different
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locations would not overlap at the detector array. Because the image (fourier) planes
in wavelength multiplexing are side-by-side, rather than at an angle, it is possible to
place an aperture in the system to block light from the unwanted signal. Therefore,
the areal density can be 1/b.

For image plane holograms, this means the areal density is just the inverse of the
pixel size, i.e., it is the areal density of the original data mask. For the Fourier plane,

recall that

A
b = sin(arctan(d/2F")) (43)

d = dp— 2F tan(arcsin(\/p)) (4.4)

As d approaches F, b approaches 2. So, for large images, the areal density can
approach 1/4)2.

4.1.3 Volume Density

The thickness density is very straightforward for wavelength multiplexing. Since
there is no change of angle, it is completely independant of the area of the hologram.
Following a similar treatment to that of chapter three gives the number of wavelength

multiplexed holograms, Ny, as [30]

=N
Ny = Mg

L (4.5)

where \; and ), are the shortest and longest wavelength the source can address.
Figure 4.3 shows the thickness density as a function of the full wavelength range.
Figures 4.4 and 4.5 show the surface storage density as a function of disk thickness for
full width wavelength ranges of 20nm, 40nm, and 80nm. All plots are for wavelength
ranges centered at 850nm, with the usual SLM parameters. In order to compete

with angle multiplexing, wavelength multiplexing needs a source with at least 80nm
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Figure 4.3: Thickness density for wavelength multiplexing. A = 850nm.
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full bandwidth. The center wavelength was chosen to be 850nm because the most
practical tunable source would be a GaAs laser diode. Unfortunately, such sources
are still expensive and do not have tuning ranges only on the order ‘of 20nm-40nm.
There are also currently no good materials that are sensitive in this region of the

spectrum.

4.2 Reflection Geometry Correlators

Wavelength multiplexing can be used to store different correlation templates which
can be read out sequentially [40], but this makes building a multi-layered neural net-
work difficult. The poor angular selectivity of the reflection geometry made it a poor
choice for an angle multiplexed memory; however, it can be useful as a correlator [49].
The center correlator, for which the reference beam is exactly counter-propagating
to the signal beam, has a large, symmetric domain. Correlators stored way from the
center have successively narrower domains in the radial direction. This is easy to
understand, since as the angle between the reference and signal beams becomes less
than , the geometry becomes similar to the transmission geometry, with domains
that are narrower in the plane defined by the reference and signal beams.

For the case of counter-propagating waves, we cannot use our previously derived

selectivity function

mA cos 8,

A = nL|sin(6; — 6,)|

(4.6)

since the denominator goes to zero. This result came from an approximation that
was only good to the first order in Af. In order to get a result which is valid for the
reflection geometry, we need to keep higher order terms. These are the same higher
order terms that are required to derive the out-of-plane selectivity function, since
once again a change in angle moves the tip of the grating vector tangentially across

the surface of the k-sphere.
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Ac is the grating written by the field from the stored image, fi(1,y1), and the

U ;L
reference wave e~ tksindrz’ g=ikeoshrz’ given by (see figure 4.6)

. . 1k 1 'y sk 23 .2\,
Ae= ,/./ f:(ﬂlhyl)e'F(“"'FsmoR)”e iFny gmikeostr s’ o—izpz (B1HV1 do. dyy

(4.8)

Reading out the hologram with the image f2(z2, y2) results in the diffracted output

Adia) = ([ dordys [[ dosdyafi (@1, 92) fola,vo)
. / / / e i (F-e3Hul—1)? if (mi—w2)e’! el (v —v2)’

volume

) k .
_ i .Y v Ry 3 /_ '
e L (ksind'—kg, )z 61—4&” ve L(kcost'—kg;)2 d:v'dy’dz'

where k4z, kay, and ky, are the z, y, and z components of the diffracted wave-vector
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such that

Performing the integral over the volume leads to

Agka) = //dwldyl // dzadys f1 (21, y1) fa(22, y2)

. [L.( &
- sinc 5—7; (W(mf — 22+ y?—yd)+kncosd — nkdz)}
. sinc é% (%(551 — x3) + knsind’ — nkdx)}

. Ly (&
- sinc 57% (_F_’(yl —ya) — nk'dy)]

The transverse dimensions L, and L, are large enough to approximate the last

two sinc functions as delta functions. Integrating over 2, and y yields

. iz k
Ag(ka) o / fi(zu,y)f (xl + Fsinf, — F—z-,y1 — F_Z-ii)

L. | & . kao |
smc[2 {2F2 ( (a:l—I-Fser——FT)
2 kdy
+y; — yl-—F—k— —kcosO, — kg,

Imaging the diffracted field to an output plane, z”,y" with a lens of focal length

diEl dyl

F allows us to make the following approximations:
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2"~ F%‘i (4.10)
J o P (4.11)
k
kdz ~ —k + -iﬁ(x,ﬂ + y”2) (412)
For 8, = 0 the output is
Eq(z",y") = / fi(zi, ) fa(zr — "0 — y") (4.13)
. L, "
- sinc [:\ﬁ [2"(z1 — 2") + y"(y1 — y”)]] dzidy (4.14)

The argument of the sinc now has multiple roots. Solving for the roots gives

(.’E" _ ﬂ)z + (y// . %)2 _ :1:% 1‘ y% (4.15)

The root we expect to get, which corresponds to the correlation peak, is ' =
y" = 0. The other roots describe a circle, centered at (z/2,y/2) with radius p =
V£? + y%/2, as shown in figure 4.7.

This circle represents a degeneracy in the Bragg selectivity. A given grating rep-
resents a chord across the k-sphere. However, this chord can fit inside the surface of
the sphere in many positions. Taken all together, these possibilities desribe a cylinder -
inscribed within the k-sphere as shown in figure 4.8 [50].

Normally this sort of degeneracy is not an issue because the cross section of the
cylinder through the angles subtended by the signal ray bundle is small. For the
reflection geometry, however, a large portion of this cylinder may pass through the
signal beam. In fact, figure 4.9 shows that the center pixel will read out all of the grat-
ings degenerately. Normally, individual plane-wave components of the signal beam

read out holograms written by neighboring component, thus forming the sidelobes
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Figure 4.7: Degeneracy circle for reflection correlator.

Figure 4.8: K-sphere diagram of a cylinder of degenerate gratings.
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Signal Cone

v

Figure 4.9: K-sphere diagram showing degenerate read-out of all the gratings by the
center signal component.

of the correlations as described in chapter two. Bragg selectivity acts to suppress
these sidelobes. In the case of the reflection geometry, however, these sidelobes can
be Bragg-matched at certain locations, and therefore are not supressed. In practice,
however, the sidelobes aren’t very strong, even without Bragg-selectivity. Indeed, the
affect of this Bragg degeneracy is not noticeable in normal correlator systems.

Given equation 4.14 for the Bragg-selectivity, figure 4.10 shows the correlation
domain sizes for the reflection geometry. This figure was made assuming 8mm thick
LiNbOs.

The domains are large and symmetric in the center, as one would expect, and
narrow progressively the farther the domain is from the center. Such an arrangement
might be useful for an active vision system. In this case, the center correlations could
be used as generic “blob” finders, utilizing their large shift-invariance to search the
scene for objects of interest. This is analagous to the concept of saliency used in

psychophyics to describe the way in which some objects in a visual scene grab an
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Figure 4.10: Shift invariance domains for a reflection geometry correlator stored in
8mm thick LiNbOs.

observer’s attention automatically. Once a salient object is found using the central

correlation templates, the active vision system could then turn the camera to look

at the object. With the object now well centered, the correlators farther from the

center (which have poor shift invariance and therefore require a well-centered object)

can be used for more specific object identification.
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Chapter 5 Fresnel Correlators

Contents

Chapters two and three demonstrated how Bragg-selectivity can be used to per-
form the trade-off between shift invariance and the number of templates stored in a
holographic correlator. However, the shift domains were either long and narrow, as in
the case of the transmission and 90 degree geometries, or asymmetric and highly vari-
able, as in the reflection geometry. This is a problem since most applications require
symmetric and consistent correlation domains. The relatively weak control over the
size of the domain in the out-of-plane direction also prevents us from storing more
templates in this direction. In this chapter we present an alternative method [30,49]
for controlling the shift invariance by shifting the hologram away from the Fourier
plane, into the Fresnel region.

When the input image shifts in the optical correlator, the plane wave components
at the Fourier plane all experience the same phase shift. This property results in
shift-invariance for thin holographic correlators stored in the Fourier plane. If the
hologram is recorded away from the Fourier plane, however, the phase shift is not
uniform across all plane wave components. As a result, the various components of
a shifted input image begin to add destructively and the correlation peak eventually
disappears. The further the holographic material is from the Fourier plane, the bigger
the phase difference between the various component plane waves and the more shift
invariance is reduced.

Figure 5.1 shows the basic correlator system with the holographic material shifted
a distance z, from the Fourier plane. A transparency fi(z1,y1), illuminated by
monochromatic light of wavelength A produces the disturbance g(z,y, z) in the Fres-

nel zone given (within the paraxial approximation and assuming z is small compared

with F') by
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Figure 5.1: Basic Fresnel Correlator Arrangement

g(x, y,2) = // fl(mla y1)e_i%(xw-l-yly)ei#(ﬁ-‘-y%)zda}ldyl (5.1)

where k = 2/, F is the focal length of the lens, and z is the distance from the
Fourier plane. The refractive index, however, makes the Fourier plane appear to be

shifted from its actual position. The field inside the material is then

g(x/, y,, Z’) = // fl(xly yl)e"i%(zlfﬂ"l'ylyl)e'i#ﬁi‘(-’l’?+yf)(zl+(zc—LZ/Z)(n_l))dxldyl
(5.2)

where z, is the distance from the Fourier plane to the center of the recording
material.
A plane wave reference incident at an angle § records a hologram with the signal

beam given by
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Ieik(w’sin0'+z' cos ') + g(xl’yl, zl)‘ . (53)

where ¢’ is the angle of the reference beam inside the medium. Illuminating the
hologram with a new input image, f2(22,y2), produces the diffracted field amplitude

Ay along the wave-vector kg given (within the Born approximation) by

Agkq) = // dzidy, /] dﬂ?zdyzfl(xl,yl)fz(wz,yz)
. / / / e iser (0303412 1) (' + (e L2 [2) (n=1)) i £ (21 ~2)0” i (v1 — 12 )9/

volume
. ein(k sin 9'—kd1)m’einkdyy’ ein(k COS9’_kdz)(z,+(zc_Lz/2)(n—1))d$’dyldzl

where kyz, kqy, and kg, are the z, y, and z components of the diffracted wave-vector

such that

Performing the integral over the volume of the material with the change of vari-
ables
=2 -2z (5.5)

yields
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Aaka) = //dxldyl //dxzdy2f1($1>y1)f2($z,yz)e_i;"'%(m?_xgﬂ%_yg‘)(z'+(zc—Lz/2)(n_1))

. gtk cos ¢ —kaz)(ze+(2e—L2/2)(n—1))

| L (_F 2_ 2,2 2
- sinc [ﬂ (Qan((:cl —z54+yi —ys) + kncos @' — nky,

. | Ls [k . . L, (K
- sinc {ﬂ (}?—(wl — z3) + knsin ' — nkdx)} sinc [ﬁ (f(yl —Ya) — nkdy)]

The transverse dimensions L, and L, are large enough to approximate the last

two sinc functions as delta functions. Integrating over z,, and y; yields

Aq(Az,Ay) = // filzy,y1) fa(@ + Az, yn + Ay) (5.6)
i e‘i(2c+(zC—Lz/2)(n-—1))asinc (éL;ZOZ) dﬂ?ldy] (57)
where
k
a = 5 (azf — (21 + Az’ + 42— (g1 + Ay)z) + kncost —nkqy, (5.8)
Az = —nF(sind' — kg /k) (5.9)
Ay = —nFkglk (5.10)

Equation 5.6 is the cross-correlation between f; and f,, with a sinc term from the
Bragg-selectivity and an exponential term involving the position of the hologram, z..
Both the exponential and the sinc term act as a window function on the correlation,
attenuating the signal for non-zero values of Az and Ay, i.e., for deviations from
the center of the correlation domain. For volume holograms recorded at the Fourier
plane, the’exponential term becomes identically equal to one and only the sinc term
acts to limit shift invariance. Likewise, for thin holograms recorded away from the

Fourier plane, the sinc term becomes negligible and the exponential term becomes the
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Figure 5.2: Experimental setup.

limiting factor. The presence of this window function within the integral also acts
to sharpen the correlation peaks by suppressing the sidelobes, since they occur at
non-zero values of Az and Ay. Issues concerning shift invariance aside, the sidelobes
of the correlations place an upper limit on how tightly the correlations can be packed.
Attempting to store correlators too closely together results in the sidelobes from one
template interfering with the neighboring template, reducing both outputs to noise.
The experimental setup for the correlator is shown in Figure 5.2. An image of

random white and black rectangles, shown in Figure 5.3, was displayed on a portion

Figure 5.3: Object mask.
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of the liquid crystal spatial light modulator, which has a resolution of 640 by 480
pixels and a 24pm pixel pitch. A DC block in the Fourier plane of the first lens
edge enhances the image before correlation. The filter behind the second lens blocks
the edges of the SLM, created by the edge-enhancement process of the DC-block. If
not blocked, the SLM creates an undesirable constant DC offset to the strength of
the correlation regardless of what image is presented on the SLM. The holographic
material (a 250pm thick Li NbOs crystal) is mounted on a motorized translation stage
so as to enable computerized control of the location relative to the Fourier plane. The
signal beam is coincident with, and the reference beam at a 25° angle to, the recording
material surface normal. A lens is placed along the path of the reference beam and in
its back focal plane a CCD camera is used to capture the intensity and position of the
correlation peak. The video signal from the CCD camera is digitized and analyzed
by a computer.

For each hologram displacement distance z., a hologram of the input pattern
centered on the SLM is recorded. After recording, the reference beam is turned off
and the image on the SLM is correlated with the stored hologram. The input image
is shifted, electronically, on the SLM. The image is first shifted horizontally (the in-
plane direction) while centered vertically. For each horizontal location, the peak of
the correlation and its location on the CCD is measured. The image is then shifted
vertically (the out-of-plane direction) while centered horizontally, and again the peak
intensity and position are measured. The correlation measurements are taken under
very weak illumination to both prevent saturation of the CCD and erasure of the
hologram.

Figures 5.4 and 5.5 show typical curves of peak intensity versus image location
for both horizontal and vertical displacements. The shift-selectivity is measured as
the width of the curve when it attains half of its maximum value. Plots of the
shift-selectivity for both the in-plane and out-of-plane directions together with the
theoretical predictions are shown in figures 5.6 and 5.7 as functions of the recording
material location relative to the Fourier plane.The correlation integral derived in

the previous section was computed with a Monte Carlo technique with experimental
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values for beam angle (25°), material thickness (250pm), and index of refraction
(2.24). The experiment agrees well with the theoretical calculations over a large range
of material displacements. Theory and experiment deviate most for ou;c-of-plane shifts
close to and at the Fourier plane, where the predicted value of the shift-invariance
shoots up to 25°. The figure shown does not contain the full vertical range of the
theoretical curve so that the details of the wings would be evident.

Figures 5.8a shows the output from an array of 81 correlators stored in 250um
LiNbO5 displaced 1 cm in front of the Fourier plane. Only two different faces were
used as templates, in an alternating fashion, so that the overall array size could be
easily viewed. In this experiment the central reference beam angle was 50° and each
reference beam was separated by 0.08°. Figure 5.8b shows the output when the input
images are shifted just enough so that their correlation peaks would fall in the area
reserved for the neighboring template; the peaks have disappeared, as intended, due
to the positioning of the hologram in the Fresnel zone. Figure 5.8c shows the output
when the holograms are stored and used in the Fourier plane. In this case, the Bragg-
selectivity is not enough to prevent the sidelobes from interferifig with neighboring
templates and the output of the system is noisy even for well-centered input images.
This shows that, using the Fresnel corrrelator system, more correlators can be stored
than would be possible in the Fourier plane. Figure 5.9 shows cross sections of auto-
correlations for both the Fresnel and Fourier plane holograms. The sidelobes of the
Fresnel hologram are clearly suppressed relative to those for the Fourier hologram.

While it is possible to rely on Bragg-selectivity alone to control the shift invari-
ance of holographic correlator systems, simply recording the holograms in the Fresnel
zone allows for convenient control without the need to order material of the pre-
cise thickness necessary for agiven application. Additionally, Fresnel correlators use
thin holographic media. Currently, thin materials are available (e.g., DuPont Pho-
topolymer HRF-150) that are very sensitive with high diffraction efficiencies, and are
capable of storing permanent holograms. It is interesting to note that, for large 2,
the constraint on the size of the shift domains is dominated by the exponential term.

In other words, we can store more correlators than if we relied on Bragg selectivity
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Figure 5.8: Correlation output for 81 stored templates. a) For original input images
stored lcm into the Fresnel zone. b) For shifted input images, stored lcm into the
Fresnel zone. c) Attempt to store the same templates in the Fourier plane.
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Figure 5.9: Autocorrelation peak cross sections of a face, for holograms resorded in
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alone. However, we could not read out these correlators as independant pages of a
memory. In this case, the capacity of the correlator system is larger than a memory
system that uses the same material!l That this should be possible is partially sup-
ported by the observation that we can recognize more objects (such as faces) than we

can freely recall.
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Chapter 6 Shift Multiplexing
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Angle and wavelength multiplexing were discussed in chapters three and four. For
memories, both angle and wavelength multiplexing are capable pf very high capacities.
However, they both suffer from some practical disadvantages.

Wavelength multiplexing is usually done in the reflection geometry for the highest
densities. However, even small back-reflections of the reference wave off of the surface
of the material can result in noise that can swamp the signal if many holograms are
stored. For diffraction efficiencies in the range of 10™* to 1076, even a good antire-
flection coating may not be enough to prevent the back-reflection from swamping the
signal. This problem can be compensated in part by tilting the medium relative to the
signal and reference waves, but this is not always easy to do for very high-bandwidth

signals. Such signals require large tilts in order to move the back-reflection completely
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away from the reconstructed signal. Perhaps the most serious problem for wavelength
multiplexing is the lack of good laser sources. A good source needs to have a very
~ wide spectral tuning range, and it must be able to change lasing wavelength very
quickly. Additionally, it should be cheap and compact for use in compact, disk ar-
chitectures. Also, it needs to lase near 500nm, where current materials are sensitive.
Currently,. the best option for a wavelength tunable source is laser diodes with tun-
able Bragg reflectors. Several companies now offer such devices [51]. They can change
their lasing wavelength within 20ns, and have 10 - 20nm total bandwidth. However,
lack of demand makes them very expensive, with current prices near $20,000 a piece.
Also, they currently lase near 1.5um. Although they could probably be designed for
shorter wavelengths, it will likely be several years before they will be available in the
visible range, much less in the blue-green spectral range where current materials are
sensitive.

Angle multiplexing suffers from the requirement for awkward beam steering de-
vices [52]. Large lenses with good f/# are required to provide many angles with a
reference beam of suitable width. These lenses are very expensive and heavy. This
makes them particularly unattractive for use in disk systems. It is not possible to
build a reading head for a disk system that contains two large lenses and a mirror for
beam steering. Therefore, the tracking on the disk must be achieved by moving the
disk radially, as opposed to moving a small reading head as is done for CD-ROMs.
This arrangement causes mechanical difficulties that increase both the size and cost
of a disk system.

I have invented a technique called shift multiplexing that avoids these difficulties.
In shift multiplexing, the reference beam consists of a spherical wave with the focus
just in front of, or behind, the hologram. Multiplexing is achieved by either shifting
the hologram relative to the focused spot, or vice-versa. Typical shift distances can be
on the order of several tens of microns. This technique is particularly appropriate for
disks, in which the rotation of the disk serves as the shifting required for multiplexing.
Such a system is shown in figure 6.1. Previous authors have treated holography with

spherical reference beams [53-56]. The standard approach to volume holography is
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Figure 6.1: Shift multiplexed disk. The motion of the disk as it rotates serves to
multiplex overlapping holograms. ‘
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to represent the spherical wave as an integral of a continuum of plane waves. In this
case, a shift in the source of the spherical wave would be represented as a change in
 the relative phases of the component plane waves. In order to calculate the bragg
sensitivity to shifts in the source, one would have to do an integral over the entire
volume. This is non-intuitive, and requires many pages of algebra and assumptions
to arrive at an analytical result. Kulich [56] described the wavefront of a spherical
reference wave as being locally planar. However, he did not justify this approximation,
nor did he consider the effect of changing the position of the reconstructing spherical
wave.

In this chapter, I will first go back to the far-field approximations of Fraunhofer to
justify the concept of a “local plane wave.” I will then use this to trivially derive the
same analytical form for shift selectivity that results from an otherwise lengthy and
non-intuitive calculation. In the third section, I will go on to use the far-field concept
to further derive a refined shift selectivity that is more accurate. Although the refined
theory requires numerical integration, it only requires integration in one dimension.
Using the standard approach would require a full volume integral that would require
considerably more computational resources. In the last section of this chapter, I will
analyze the capacity of memories using shift-multiplexing, and compare it with other

techniques.

6.1 The Far-Field

To understand how shift multiplexing works, we need to go back to the Fresnel diffrac-

tion equation (see equation in chapter 2).

oY |
ga',y's ) = — A-,\ // F(z, y)e T @) i =4 g gy
TAZ

(6.1)

If we look far away from the diffracting aperture, so that z >> z?/A, then the



6.1 The Far-Field 86

Figure 6.2: Optical path difference decreases with increasing distance from f (z). The
far-field is where the optical path difference becomes < A.

quadratic exponential is approximately equal to one, and we are left with the Fraun-

hofer far-field expression

9@, v, 2) o [[ Flay)e B dady (62)

But this is just a Fourier transform! In other words, if we look at the optical
field far enough from the diffracting aperture, the field has the form of the Fourier
transform of f(z,y), scaled by Az/z. This pattern will then continue to propagate
relatively unchanged, with an ever-increasing scaling factor.

Figure 6.2 demonstrates how the Huygens-Fresnel wavelet interpretation can be
used to understand the far-field approximation. For the point close to f(z), the
optical path length difference between spherical waves from the edges of f(z) and
those from the center varies more strongly as a function of distance than for points
far from f(z). This means that the relative phases of the spherical waves from each
part of f(z) change rapidly as one moves away from the aperture. However, for large
enough distances, these phase differences change more slowly. The path difference
can be approximated as the difference between z and z cos¥, where 6 is the angle
between a wave from the outer edge of f(z) and a wave from the center of f(z). As

z grows, we can use the paraxial approximation for ¢

0~ — (6.3)
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The optical path difference, OPD, is then

z z
OPD = z(1 —cos ) = z(1 — —)) ~ — 6.4

(1 - cos ) 2(1 — cos(32)) = - (6.4)
Once z gets large enough that the phase difference is much less than a wavelength,
the pattern will cease to change since the amount of constructive and destructive

interference between each of the Huygens-Fresnel spherical waves will not change.

This happens when

2

xr
z K '3\— (6.5)

which is exactly the approximation used to derive the Fraunhofer expression.

This has a particularly interesting interpretation in the Fourier domain. Each
spatial frequency in f(z,y) leads to a plane wave in the angular spectrum. These
plane waves are, by definition, infinite in extent. However, according to the Fraunhofer
equation, the amplitude of the wavefront in the far-field at any given location is
proportional to only one plane wave component. The infinite plane wave contributes
to the amplitude of the wavefront in only one location. This seems to be a paradox.
How can it be infinite, yet appear in only one location?

Take, for example, two plane waves interfering on a screen. In this case, one
observes a sinusoidal interference pattern. The plane waves are both infinite, but
they have an effective amplitude at only certain locations. If one were to remove the
screen, and place a small obstacle in one of the nulls of the intereference pattern, the
two plane waves would propagate unaltered.

In the case of a far-field pattern, each plane wave component has an effective
amplitude in just one location on the wavefront. All of the other component plane
waves, taken together, interfere to produce a null at that location on the wavefront,

just as the two plane waves produced many nulls in the above example. So the
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amplitude of the field at one point on the wavefront in the far field is due to only one
plane wave component. Everywhere else on the wavefront, this component experiences
destructive interference with the rest of the plane waves in the angular spectrum of
the field.

We know that, if we place a small obstacle in front of the far-field wavefront, it will
cease to qudlify as a far-field pattern, and Fresnel diffraction from the obstacle will be
observed. This would seem to contradict the above arguments. However, if we think
about removing one plane wave component from the original, diffracting transparency,
the size of the pattern on the transparency would become infinite because the plane
wave is, by definition, infinite. This means that the location where our small obstacle
is placed would no longer qualify as the far-field, because the original image size, z,
has now expanded to infinity.

Thinking about the inverse problem, we can ask, what happens if we remove part
of the angular spectrum at the source? We want to remove as little as possible, while
still maintaining the aperture size so that the location of the far-field pattern does
not change. If just this one band of spatial frequencies could be removed from f(z),
the only difference in the far field would be that absence of amplitude at one location
on the wavefront. Another way to ask the same question is to ask at what location do
the various bands of the angular spectrum occupy separate portions of the wavefront.

If we imagine f(z) is an infinite pattern, followed immediately by an aperture the
size of the true f(z), then each plane wave component of the angular spectrum passes
through this aperture (see figure 6.3). The diffraction from this aperture causes each
component of the angular spectrum to be broadened as each plane wave expands due

to diffraction. The angular broadening of each component is just given by

i8]
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This defines the minimum angular bandwidth that can be removed from the spec-
trum while still maintaining the aperture size. The lowest spatial frequency in f(z)
corresponds to the DC component before the aperture. The next smallest compo-
nent of the angular bandwidth corresponds to a period of z/2 at the aperture and
propagates at an angle of 20 = 2)\/z (see figure 6.4). Since both components shown
in figure 6.4 pass through the same aperture, they are both broadened by 6 = A z.
Therefore, the minimum component of the higher spatial frequency band is parallel
to the highest component of the DC band. The distance between these components
will remain equal to z for all z, as shown in the figure. However, each band will
broaden by a factor of 220. The different bands can be considered separated when

their overlap is much smaller than their width. This occurs when

220 > =z
2z

Once again, we arrive at the same condition on z. This time by requiring that the
different bands of the angular spectrum propagate until they are spatially separated
from each other. In other words, by requiring that each spatial frequency occupies
only one location on the wavefront.

For a tightly focused spot, the far-field approximation holds even at very short
distances from the focus. If the spot size is on the order of ten wavelengths, then the
far-field condition holds for distances longer than only 100 wavelengths. For 488nm
light, this means the far-field is just 50pm away! Certainly, if we look at a small part
of the surface of a sphere, it appears to be flat (after all, it took a long time before
humans realized the Earth is round!). So, locally, a spherical wavefront looks like a
plane wave. For holography, this means that diffraction from a far-field wavefront
behaves as if it were diffraction from a plane wave propagating along the normal of

the wavefront.
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Figure 6.5: Shift as a change in angle.

6.2 Shift Selectivity

6.2.1 In-Plane Selectivity

The above arguments are the basis for shift multiplexing. Each part of the hologram
behaves as if it were made with a plane wave reference beam whose direction is
normal to the spherical wavefront. As the source of the wavefront shifts relative to
the hologram, the angle of the apparent wavefront changes. This is shown in figure 6.5.

The change in angle, Ad, is just

dx
A = — (6.6)

for z > éx. Substituting for Af in the normal Bragg selectivity curve yields

directly an expression for shift selectivity

_ zA
" Ltané,

dx (6.7)

assuming that the reference wave is normal to the hologram so that 6, = 0. If the
reference beam is not normal, then we need to divide z by cos @, to account for the
actual distance from the focused spot to the hologram. We also need to account for
the fact that the hologram is no longer shifting normal to the spherical wavefront,

but at the angle #, from normal (see figure 6.6). Therefore, our final expression for
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Figure 6.6: Geometry for shift multiplexing.

the shift selectivity is

z Acos 0,

dx = .
T = s 6, Lsin(0;—6,)

(6.8)

The selectivity for the 90 degree geometry takes a particularly appealing form. As
shown in figure 6.7, the path length that the signal takes depends on the distance, z,

from the focused spot.

From the normal Bragg expression we have

(6.9)

but now
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Figure 6.7: Geometry for shift multiplexing capacity in the 90° geometry.

L =2ztan ¢ (6.10)

where ¢ is the largest angle of the spherical wave (i.e., numerical aperture =

nsin @). Thus,

zZA

dx = ————
v 2z tan ¢

= \f/# (6.11)

In other words, the shift selectivity for the 90°"¢ geometry is just the spot size of
spherical reference wave’s focus. It is also interesting to note that the selectivity is

now independant of the distance z.

6.2.2 Out-of-Plane Selectivity

Just as ahgle multiplexing has tangential selectivity for reference beam rotations
out of the interaction plane, shift multiplexing has selectivity for shifts out of the

interaction plane. Continuing with the shift-as-angle-change analogy, the out-of-plane
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shift selectivity will just be
2\
dx o zg T (6.12)

In practice, this means we can pack our tracks on a disk system so that the
holograms between tracks actually overlap. As for angle multplexing, however, in
practice this adds only a little bit to the overall density. Since this selctivity is
similar for both systems, it will not be used in estimates of capacity, since it is not

important for the comparison with angle multiplexing.
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6.2.3 7Z Selectivity

Having examined the selectivity for shifts in the z and y directions, we can also ask
what happens if the focused spot is moved along the z axis, towardé or away from
the hologram. Once again, the k-sphere gives an immediate answer (see figure 6.8).
As the distance zo changes, locations on the wavefront see an effective angle ¢, =
/7. If the spot moves a distance §z along the z axis, the new angle will be 8, =

/(20 + 8z). The net change in angle will therefore be

X X
Ab = T (6.13)
~ b2 (6.14)
20

It is clear from equation 6.19 that the change in angle depends on the coordinate
within the hologram, . For locations at the edge of the hologram, the change in angle
will be larger, and will lead to Bragg-mismatch faster, than for locations near the
center. Indeed, the center portion of the hologram will never be Bragg-mismatched.
For these reasons, shifts in z are not useful for multiplexing. Even at the edge of the
hologram, bragg mismatch will be slow, as z < z2. However, for disk systems this
can actually be a good thing; accommodating for wobble as the disk spins would be

made more difficult if the system were too sensitive to change in the distance between

the disk and the read head.

6.3 Refined Shift Selectivity

Deriving the exact shift selectivity for a spherical reference wave with a plane wave
signal requires relaxing our approximation that the change in angle, Af, is uniform
throughout the hologram. It is neither uniform through the depth of the hologram
nor across the width of the reference beam. In order to take this non-uniformity into
account, it is necessary to re-interpret our expression for the diffracted field, Ag(ka),

as a path integral along the direction of the diffracted wave vector. We will then
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parameterize A6 along this path and perform the integral numerically.

6.3.1 The Path Integral Interpretation

Our full expression for Ag(kq) is

pff Der)eilsTk
Alks, kq) = /// s (6.15)

In chapter two I discussed how A(k;, ka) can be interpreted as the three-dimensional

Fourier transform of the hologram, Ae. However, writing the order of integration as

Y. € i
) _ 12N pikia—kaz)z' Silkiy—kay)¥' Jo! dos’ !
A(k;, ka) // Ae(a',y')e € s T— dz
(6.16)

is more reminiscent of our intuitive picture of the Born approximation, in which
successive thin slices of hologram scatter light along kg, and these scattered light
components are integrated along the length of the material in the z direction. Of
course, for most applications the transverse integrations are assumed infinite and
are performed first, leaving the integration along the z-axis for last. The first two
integrations, being infinite, lead to § functions that uniquely determine 04 in terms

of the original reference and signal angles, 0, and 6,, and the change in the reference

angle, Af,. This leads to

ik NGy sin!Gs—er! 2

cos Bg

e , .
) 1
A(ki, ka) / e (6.17)

It is clear that this is the origin of our Bragg selectivity expression for Af,. How-
ever, there is the factor of kcosf; in the denominator. We can get rid of this factor

by making a change of variables
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Figure 6.9: K-sphere diagram of the path integral interpretation.

z
= 1
#d cos By (6.18)
dz'
= 1
dza cos 04 (6.19)
making equation 6.22
Al kq) oc [ hatin@tzagy, (6.20)

Here we have illiminated the cos 8, term in the exponent because it is very close to
cos 0. What is left is just an integral along the path of the diffracted wave. In essence,
Bragg selectivity derives from an integration of the accumulated phase along the path
of the diffracted beam. In almost all cases of practical interest, this path is a straight
line within the hologram. The cos 8, term merely served to change the coordinate

frame to the z-axis. With the aid of the k-sphere (figure 6.9) we can understand
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the remaining terms in this new light. In the exponent, the Af term represents the
paraxial approximation to the distance travelled by the tip of the reference vector
k; as it rotates. The sin(f; — 6,) term represents the projection of thét motion onto
the axis of the diffracted wave, which is approximately the same as the axis of the
original signal wave. The cos 0, term in the exponent comes from the change of axis,
but represents the fact that the path of integration is actually longer than L by a
factor of approximately cosf,. We will now apply the path integral idea to a more
accurate derivation of shift-selectivity. We will start with the 90° geometry, because
it is the simplest. For the following derivations, the signal beam is assumed to be
sufficiently narrow that the effective change in angle with shift is a constant across the
diameter of the beam. For Fourier plane holograms, this is a good assumption since
the signal beam can be quite narrow. In the following examples, the experimental
configuration was chosen to push well beyond the limits of the approximate theory

in order to adequately test the refined version.

6.3.2 The 90° geometry

Figure 6.10 shows the path of two rays of light as they enter the holographic material
from the spherical reference wave from two different shift locations. We would like to
integrate the phase along the path of the signal beam, the z-axis. However, because
of Snell’s law, there is no simple way to express the change of angle at a location
in the crystal as a function of z. So we will need to perform a change of variables
to allow us to integrate the variable 85, which is the external reference beam angle

within the spherical wave. We want to compute the amplitude of the diffracted wave,

A4(AD) as

i e_ikA91 (5x,9o)w(90)—5in£z; 9_598) ?ﬁdgo (621)
009

Aq(A0) = /

mazx
90

where 07 is the maximum angle in the reference wave and 6; is the internal

angle given by Snell’s law, 6; = 1/narcsin(fp). The partial derivative of z by 6y is
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Figure 6.10: Geometry for refined shift multiplexing calculation (90° geometry).

just the Jacobian required by the change of variables.

For the 90° geometry, the trigonometry in the exponent simplifies to

s Oz

Ad(Ae) — / e—ikAal (6z,80)z(60) cos 61 __doo (622)

gmas o

If zo is the distance from the focus to the medium, and z; is the distance from the

surface of the medium to the signal beam, then

z(fp) = zo tan fp + z; tan 6;. (6.23)

From here, we can solve for Af;(éz, o) as:
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Figure 6.11: Selectivity curve for the 90° geometry. Recorded in 8mm thick LiNbOs
with zo = 2mm. The numerical aperture was 0.65.

z—6x = zotan(fo+ Abp) + z tan(0: + Aby)
Sz = zo(tanfp — tan(fy + Abp)) + 2o (tan 8, — tan(6y + Ab1))

5z cos® O cos? 0,

§2£(cos3 0, sin 20, + n cos3 0, sin 205) — (zon cos® 0y + z; cos® 6o)

Al =

Here we have dropped terms that are second order in Afy.

Figure 6.11 shows the curve for a shift multiplexed hologram in the 90%"° geometry.
The signal consists of a single plane wave, the hologram was recorded in 8mm thick
LiNbOs, and a microscope objective with numerical aperture of 0.65 was used to

focus the reference wave 2mm in front of the crystal. The location of the zeros
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Figure 6.12: Geometry for refined shift multiplexing calculation (transmission geom-
etry).

is slightly broader than the theoretical prediction, and the sidelobes are somewhat
smaller. The smaller sidelobes are probably due to a scattering noise floor, while
the underestimate of the shift distance may come from absorption by the crystal or
inaccuracies in the experimental setup. The apporoximate theory from the previous

section would predict a shift selectivity of just 285nm.

6.3.3 The Transmission Geometry

Figure 6.12 shows the geometry for a transmission hologram. In this case, the path
is diagonal, through the material. Once again, we will change variables to integrate
over the reference beam angle. We need expressions for z1(6o) to plug into equation
6.28, and we need z(f) for the integral equation 6.26.

Solving for both:
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r = Zo'tan 00 + =1 tan 01 ‘ (624)
z1(6p) = (z — xo)tan ¢, (6.25)
¢ = 2zotanfy + (z — zo)tan ¢, tan b; (6.26)

zo tan Oy — zo tan ¢, tan 6,

0
2(0o) 1 — tan ¢, tan 6,

(6.27)

where ¢, is the internal signal beam angle relative to the surface of the medium
and zo is the entrance po‘int of the signal beam. Although, ideally, the signal beam
would enter at one edge of the reference beam fan, and exit at the opposite edge, in
practice this will not always be the case. For the following experiment, the signal
beam was aligned so that it coincided with the edge of the reference beam upon

exiting the crystal, so that

L
tan ¢,

To = 2o tan 85" + L tan 67" —

(6.28)

The limits of integration for equation 6.23 are now from —8"** to arctan(zo/zo)-
Figure 6.13 shows the results for a transmission geometry, shift multiplexed holo-
gram in 8mm LiNbO; with zo = 5mm and a numerical aperture of 0.65. The signal
beam was a single plane wave, incident at an external angle of 66°, with a value of

2o = 7.3mm. The reference wave was normal to the crystal. The approximate theory

predicts the shift selectivity should be 134nm.

6.4 Memory Capacity

6.4.1 Shift Multiplexed Disk

In calculating the capacity for a shift-multiplexed disk, we must once again take into
careful consideration the physical size and shape of the hologram in the material.

In previous chapters, the capacity was divided into an areal and thickness capacity.



6.4 Memory Capacity v 103

T T J T T T T

1.0 .

0.5

Normalized Diffraction Efficiency

0.0, : — :
3.0 2.0 -1.0 0.0 10 2.0 3.0

Shift (um)

Figure 6.13: Selectivity curve for the transmission geometry. Recorded in 8mm thick
LiNbO5 with zo = 5mm and 05! = 66° the numerical aperture was 0.65, and zg =
7.3mm.

Although it is possible with shift multiplexed disks, such a division is not as relevant
because the entire disk, and hence the area occupied by each hologram, moves with
each successive hologram. It is better to calculate the bits per hologram, and the
shift distance per hologram. Deriving the bits per unit area is then just a matter of
knowing how closely packed the tracks are. Because disks can often be quite thin,
we will use the approximate shift selectivity for deriving our results, keeping in mind
that this approximation becomes poor as the shift selectivity approaches A.

The number of bits per hologram is just W2/b? for image plane, and d?/p* for
Fourier plane holograms. The shift distance is determined by the distance, z, from
the focused spot to the hologram. The focus must be far enough from the hologram
to allow the reference wave to overlap entirely with the signal beam. The smaller the
area of the hologram and the larger the numerical aperture of the spherical wave, the
smaller z can be and the better the shift selectivity, éz.

Figure 6.14 shows the configuration for a shift multiplexed disk with the focus
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Figure 6.14: Geometry for shift multiplexing capacity for the disk geometry

in front of the disk with a numerical aperture = sin$. Although the configuration
shown is for the image plane, the distance « is the same as was computed in chapter
three (see equations 3.25 and 3.29) and depends on whether it is a Fourier plane or

image plane hologram. The figure shows

a+pB = ztan(f, + ¢) (6.29)
B = ztan(#, —¢)+ Ltan {arcsin [—3; sin(8, — ¢)]} (6.30)

Subtracting gives

a= z[tan(f, + ¢) — tan(0, — ¢)] — Ltan {arcsin [% sin(f, — gb)]}
(6.31)

Solving for z results in
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o+ Ltan {arcsin [% sin(6, — ¢)]}
tan(, + ¢) — tan(6, — ¢)

z =

(6.32)

The refractive index of the material, however, will make the focus actually appear
to be farther away than it really is. Although the apparent distance will vary across
the aperture due to Snell’s law, we will approximate it by analyzing the central ray
of the reference wave. In this case, the apparent distance from the center of the

hologram to the focus, 2/, is

L .
5 (6.33)

%41'_
% — gext) T

where 62t and 6" are the external and internal central reference beam angles

such that nsin 6 = sin 0°**. The shift selectivity is then

Sz = 2'Acos O,
"~ nLcos?0,sin(6, — 0,)

(6.34)

Figure 6.15 shows the shift selectivity for image and fresnel zone disks as a function
of thickness, L. The shift selectivity is better for fresnel zone holograms because they
have a smaller area, so zp can be smaller.

Figures 6.16 and 6.17 show the surface densities for the image and fresnel zone
disks. Plots of the surface densities for angle and wavelength multiplexing are included
for comparison. Shift multiplexing achieves higher densities than angle multiplexing
in two ways. First, the holograms all overlap so there is no “dead volume” in between
holograms as in the angle multiplexing case. This effect is more pronounced for the
fresnel zone disk because the “dead volume” is bigger. Second, shift multiplexing uses
the entire’ba,ndwidth of the reference lens, whereas angle multiplexing loses angular

bandwidth because it needs to fit the width of the reference beam into the lens.
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Figure 6.15: Shift selectivity for image and Fresnel holographic disks
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Figure 6.16: Surface density for image plane holographic disks.
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Figure 6.17: Surface density for Fresnel zone holographic disks.

For these calculations, the same reference lens was used for both the angle and shift

multiplexed disks. Again, the external reference and signal beam angles were assumed

to be +40°.

6.4.2 The 90° geometry

For the 90° geometry, we cannot use the approximate solution. Therefore, we will use
the results from the refined theory, and assume a numerical aperture of 0.65 giving
a shift selectivity of 500 nm. We will assume, again, that holograms are stored at
the second null. The derivation of the area required for the signal beam is the same
as for angle multiplexing, and is given by equation 3.7 in chapter three. Here, L is
no longer a function of other paramters and is taken to be the length of the crystal
along the signal axis. In the case of shift multiplexing, however, we need to fit extra
area on top of and below the signal beam in order to assure that the reference beam
overlaps the entire signal. This is shown in figure 6.18.

In this case, the height, H, of the hologram is given by
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Figure 6.18: Area required for signal beam and reference wave to overlap for shift
multiplexing in the 90° geometry. The signal beam is propagating into the page, with
the reference beam as shown.

H = A+ 2tan(¢) (6.35)

where A is the width of the signal beam entering the crystal as given in chapter
three, and ¢ is the internal maximum angle of the reference wave. The areal densities
for the fresnel and image plane holograms are shown in figures 6.19 and 6.20. As for
angle multiplexing, the areal density is much higher for the Fresnel zone than for the
image plane. Again, this is because we can use large SLMs but there are no SLMs
available with very small pixels.

The thickness density for shift mutliplexing would be just 1/dz, except that we
need to take into account the added length required at the ends to accomodate the
reference beam. As in the case of figure 6.18, the added length is just 2tan(¢$). The
thickness ‘density, D, is then
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Figure 6.19: Areal density for shift multiplexing in the 90° geometry at the image
plane.
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Figure 6.20: Areal density for shift multiplexing in the 90° geometry in the Fresnel
zone.
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Figure 6.21: Thickness density for shift multiplexing in the Fresnel and image planes.

(6.36)

_L—2Atan(¢) 1
~ méx méz

Dr= mézL
where we will take m = 2. Figure 6.21 shows the curves for both the Fresnel and

image plane geometries. As L increases, the edge effects become more negligible, and

2 i+% tan ¢
nb L an

the density saturates. The saturation value is
1 2
Dsa,t. - {1 =/ 3
L mox ( + nb) (6.37)

The saturation value decreases with decreasing pixel size. For thinner materials,
the cross section of the Fresnel holograms is smaller than for image plane holograms;
however, as the thickness increases the rapidly diverging Fresnel beam becomes wider

than the image beam, and so the thickness density becomes slightly less.
Multiplying the areal and thickness densities give us the volume densities as shown

in figures 6.22 and 6.23.
Although shift multiplexing achieves slightly lower densities than angle multiplex-

ing in the 90° geometry, it is capable of higher surface densities for disks. The real



6.4 Memory Capacity 111

0.0050

—— Shift
ST~ ——~ Angle

0.0040 -

-~ 0.0030 -

um

bits/)

0.0020

0.0010 -

0.0000 L : . .
0.0 2.0 40 6.0 8.0 10.0
L (cm)

Figure 6.22: Volume density for shift multiplexing in the image plane.
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Figure 6.23: Volume density for shift multiplexing in the Fresnel zone.



6.4 Memory Capacity 112

advantage of shift multiplexing is in its simplicity. It allows for small, cheap, very
high angular bandwidth reference lenses, which facilitates tracking of the disk and

improves overall system cost and reliability.
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The previous chapters focused on holography for data storage and for correlators.
Mass data storage is needed for Al approaches, and correlators form the basis for neu-
ral networks. However, neuromorphic engineering, which may be the most powerful
form of neurally inspired computation, may also be the form which benefits the most
from optics. Neuromorphic engineering involves emulating certain aspects of neuro-
physiology [11], as opposed to the overly-broad charicatures used by neural networks
and Al To date, most neuromorphic engineering has involved early sensory systems,
such as artificial retinas and cochleas [11-17]. These examples have achieved tremen-
dous dynamic ranges, with robust gain control, while consuming very low power.
They consist mostly of sub-threshold, analog VLSI circuits, and they take advantage
of the naturally exponential response of subthreshold transistors. This response fa-
cilitates the implementation of nicely behaving, saturating nonlinearities, which are
common in nature. Efforts have been successful in early sensory systems because
we know far more details about the early sensory systems than we do about higher
systems, and early sensory systems lend themselves well to single-chip implementa-
tion. However, even a full artifical cochlea requires the integration of three chips [17],
and vision chips typically compute only one function, such as simple motion or edge
extraction. Asynchronous protocols have been developed to alleviate the bandwidth

problem in attempting to put together multi-chip systems; however, this solution may
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not be applicable to the very large scales of integration that would be necessary for
implementation of higher level systems, such as early visual cortex. Optical intercon-
nects are necessary in order to achieve the connectivity necessary for implementation
of higher systems, as well as to facilitate the implementation of multi-chip versions
of early sensory systems.

The design of optical interconnects is a large field, and I will not attempt to
elaborate too much on it here. My main purpose is to demonstrate how some of the
concepts from this thesis, particularly shift multiplexing, can be used to implement
interconnects, and to show how one might go about constructing a neuromorphic

system to implement the functionality of the early visual system.

7.1 Primate Vision and Cortex

Information in the primate visual system is transduced at the retina, where initial
processing begins. The retina has four different receptor types: three different cone
types and one rod type. The cones have three different pigment types for color vision;
they are specialized for day vision, having high temporal and spatial resolution with
low gain that saturates only in intense light. The rods are specialized for low-light level
vision, with very high gain but poor temporal and spatial resolution. Rods saturate
in normal daylight. The output from these receptor cells are processed by a two-
layer neural circuit consisting of feed-forward bipolar cells and lateral connections by
horizontal and amacrine cells. The output cells of the retina are the retinal ganglion
cells. Ganglion cells have on-center or off-center response properties, and are classified
as either magnocellular or parvocellular. The magnocellular cells respond to motion
in the visual field, while the parvocellular cells are more concerned with the fine details
of the visual scene, including color. This segregation of the motion signal from the
“form” signal is consistent throughout the visual system [57].

After passing through the lateral geniculate nucleus of the thalamus, the infor-
mation goes to the visual cortex. The first area of cortex to receive visual input is

V1. From here, the information passes through many layers of heirarchy, including
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areas V2, V3, V4, MT and IT [58,59]. While neuromorphic engineering has already
made strides in emulating the functionality of the retina, it has, to date, made no
real attempts at simulating cortex. The immense connectivity of cortex mandates the
use of optics in any attempt at emulation. I will therefore concentrate on describing
cortex and how one might use cortex as a model for developing an optoelectronic
system.

The neocortex of man is a folded sheet about 2000 cm? in area and 3-4mm
thick [60,61]. There are about 10'° neurons making a total of about 10** synapses.
One of the most striking aspects of cortical architecture is that while each area of
cortex seems to serve a different function, from speech to vision to motor control and
higher cognitive functions, all of cortex seems to have the same general structure.
This has prompted Rodney Douglas to hypothesize a “canonical cortical circuit” [62].
The idea is that the same basic microcircuitry exists throughout cortex, with each
area representing only minor changes to the same basic plan. If this is true, then an
understanding of how one area of cortex works can rapidly lead to the understanding
of other, seemingly disparate areas. Development of a neuromorphic cortex may then
lead rapidly to applications in many areas, from artificial vision and speech to motor
control and perhaps even higher levels of cognition. It makes sense to concentrate
initial efforts in vision since more is known about the visual system than any other
modality.

Cortex is horizontally organized into six layers and vertically organized into groups
of neurons linked synaptically across the layers. These groups of neurons lie in a
cylindrical volume oriented perpendicular to the surface of the cortex and are often
refered to as “cortical columns.” Each column represents a basic functional unit which
is approximately 30pum across and contains 80-150 neurons. Each neuron in a column
responds strongly to roughly similar stimuli. The horizontal layers are numbered
I-VI, with layer I being closest to the skull (see figure 7.1). Layer IV is the main
input layer, with some inputs also entering at layers II and III. Layers V and VI
output to subcortical structures, with layer VI outputting mostly to thalamus. It is

interesting to note that the thalamus sends and receives input from all areas of cortex,
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Figure 7.1: The six layered structure of cortex.

but it receives an order of magnitude more input fibers than it sends as output fibers.
This massive feedback, and indeed the precise role of the thalamus itself, is not well
understood. Layers II and III send output to other cortical areas, and layer I is
composed mostly of fibers carrying information between cortical areas. There are
very few cell bodies in layer I.

In primary visual cortex (V1), each column contains neurons that respond best
to lines oriented in a particular direction, at a particular location in the visual field,
being presented to a particular eye [63,64]. Groups of columns whose receptive fields
occupy the same general area of the visual field are referred to as hypercolumns.
These hypercolumns are arranged retinotopically within most visual areas. A given
hypercolumn within V1 can be broken up into occular dominance bands; cells within
a particulvar occular dominance band all respond to input from the same eye. The
occular dominance bands are composed of individual columns, each of which responds

to stimuli from the same area of the visual field, presented to the same eye, but the
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Figure 7.2: Hypercolumn, occular dominance bands, and orientation columns in V1.

orientation and size of the line segment that best stimulates a given column varies
gradually from neighboring column to neighboring column (see figure 7.2).

Columns in cortex send and receive four major types of connections(see figure 7.3).
The shortest range connections are typically on the order of 250um, and are mostly
inhibitory [65-67]. For example, columns within a hypercolumn are thought to inhibit
their neighbors within the hypercolumn. However, very short connections, such as
those that remain within the confines of a single column and its immediate neighbors,
may be excitatory [68,69]. These short range interactions may form a local, winner-
take-all type of network, so that the column containing the best response to the
stimulus in the local receptive field area will suppress all the other columns.

Pyramidal neurons also send out long range excitatory connections over horizontal
distances of up to 3mm. These connections are “patchy” and terminate in discrete
domains approximately 250um apart [65,70,71]. In visual cortex, these long range
connections may include excitation between columns with similar ieceptive field prop-

erties within different hypercolumns.
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Figure 7.3: The four major connection types for cortical columns.

In addition to the horizontal connections, there are also large feedforward and
feedback connections to other cortical areas [72].

All areas of cortex have reciprocal connections with the thalamus [73]. The amount
of feedback to thalamus, however, is typically an order of magnitude larger than the
number of fibers in the feedforward path. The role of this massive feedback is not
well understood.

All told, a typical pyramidal neuron in cortex receives between 1,000 and 10,000
connections. There are approximately 1.5 million retinal ganglion cells, and a similar
number of cortical columns in area V1 [74]. From the computer vision perspec-
tive, simulating V1 alone is a massive undertaking. The benefits, however, would be
tremendous. The primate visual system is capable of complex texture segmentation,
figure-ground segmentation, saliency and top-down attentional mechanisms, bright-
ness and color constancies, motion analysis, and depth analysis from stereoscopic and
other clues. All of these abilities are greatly facilitated, and in some cases largely
accomplished, by the computations that take place in V1. Moving beyond V1, to
include simulations of higher cortical areas, will eventually serve to make an even

more robust and powerful vision system.
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7.2 Neuromorphic Cortex

It is clear from the above description that any attempt to emulate cortex will require
massive amounts of interconnections. It is important to determine at what level to
‘mimic biology. Given that the cortical microanatomy is still not well understood, it
seems reasonable to assume a rougher scale simulation would be more appropriate.
There have been numerous studies, both in neurophysiology and psychophysics, that
relate to the functions of individual cortical columns. The classical, and to some
extent the non-classical, receptive field properties of columns in visual cortex have
been extensively studied, and new studies are revealing the nature of the nonlinear
interactions between columns. Also, the anatomy of connections between columns
have been fairly well elucidated. The level of the cortical column, then, would be the
best level at which to attempt biological mimicry.

While the response properties of each cell in a column are similar, they are not
identical. Multiple neurons are probably needed in order to perform the function of
the column, and neurons within different layers perform differenf input and output
functions, as described previously. However, given the variety and number of cell
responses within a column, it is reasonable to assume each column should be modeled
as more than one, but less than 100, functional units. A good compromise would be
10 units per column. These 10 units each represent slight variations of the average
receptive field profile of neurons within a column. Biology uses such redundancy
throughout the visual system to achieve tremendous robustness. This is important
for our hardware implementation, because large, wafer scale integration can often
have process yields which are significantly less than one [75]. Designing a system
which is robust to failures of individual elements is therefore not only helpful, but
necessary.

Given the huge fan-out and -in at each column, the best strategy is to take ad-
vantage of the modular architecture that is already present. Each unit can perform

local computations, with all communication occurring optically.
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7.2.1 The Learning Architecture

One question of importance in deciding the form of the optical interconnect is whether
or not the weights of the interconnections, or synapses, will be stbred electrically or
as the strength of the optical connection itself. Although it is possible to train optical
weights, experience has shown that it is not easy. It is difficult to develop effective
training algorithms, because one cannot record a hologram without affecting all of
the other hologram strengths. Additionally, the relative phase between the signal and
reference beams needs to be maintained. Otherwise, when the system is attempting
to strengthen a weight, it may actually be weakening it, and vice-versa.

Given the difficulties with real-time updating of holographic weights, and the
ever-shrinking dimensions of DRAM, the best choice is to store information about
the synapse strengths in a local DRAM cache. The idea is to time multiplex all com-
munication. Each computational unit takes turns broadcasting its output according
to a fixed clock cycle. When not broadcasting, each unit receives input from the
currently active unit via a global optical bus. This input is mulfiplied by a weight,
which is stored in a local DRAM, and accumulated until all inputs have been received
and the output is computed. This strategy takes advantage of the high bandwidth of
silicon, which can reach 1 GHz, in comparison with the slow rate of neural compu-
tation, which is around 100 Hz. A global optical bus takes advantage of the massive
parallelism afforded by optics, while local DRAM uses the huge advances in silicon
technology for a task that would be very difficult to implement in optics. Thus, this
architecture uses each component in a way that fits its greatest strength.

The basic unit in silicon is represented in figure 7.4. All optical inputs and outputs
will use a GaAs layer which is bonded to the silicon by the input and output vias, as
discussed below. Each unit is connected to approximately 10,000 other units, with
each unit taking turns broadcasting its output. To run at 100Hz requires a clock rate
of 100Hz /unit x10,000 units = 1MHz. Analog communication would be too noisy at
this rate, so a digital, pulse code must be used. Even with a pulse code, the system

would still only need to run at 10MHz, well below the limit for optical communication
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Figure 7.4: Silicon circuit for one unit of artificial cortex

(which can be as high as 10GHz).

With digital communications and local digital memory, digital logic would seem
the obvious choice. However, much work has been done in simulation of neural cir-
cuits using subthreshold, analog circuitry. Sub-threshold circuitry also has a power
advantage; given the enormous scale of a project that is designed to emulate cor-
tex, power consumption is a very important concern. The trade-off in silicon area
required for analog versus digital implementations is not obvious, and depends upon
the specific function to be implemented. Digital circuits tend to require more transis-
tors. However, the size of these transistors can be kept small; anolog designs can be
sensitive to transistor mismatch and therefore can require large transistors in some
parts of some circuits. An analog circuit would require quite a bit of digital to analog
conversion, and analog to digital. However, this might not be as expensive in area as
it first appears. Although a full digital to analog conversion needs to be made on the
weights from memory, the update of these weights can be a simple threshold function
to increment or decrement the weights, and therefore may only be a 1 bit analog to
digital conversion. It may be possible to perform the mode conversions for the data

input and output in the GaAs layer, if there is extra room, thus reducing the total
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area of silicon required.

Figure 7.4 also shows a small cache associated with the logic circuit. This rep-
resents a small working memory for whatever computation the circuit must do, and
would probably take very little area. The size and form of cache necessary would
again depend on the speciﬁés of the circuit.

The total area of silicon required will most likely be dominated by the DRAM.
The size of a DRAM cell will soon be down to 0.5um on a side [76]. Assuming we
need about 4Kbytes per unit, the total area for the DRAM will be less than 100pm
on a side. Assuming 0.175um technology, the total unit size should be approximately
2004m-400pm on a side, depending on the aggressiveness of the design. For 10,000,000
units to simulate all of striate cortex, the total silicon area required is from 60 x 60cm?
to 1.2 x 1.2m2. Obviously, even with wafer scale integration, such a system will need
to occupy multiple chips.

Being a direct-bandgap semiconductor, silicon has no capacity for efficient light
emitters. We therefore need to use GaAs to build our optical interface. Current tech-
nology involves flip-chip bonding of thinned GaAs wafers containing vertical cavity
surface emitting lasers (VCSELs) and detectors to silicon substrates. The VCSELs
can be made to emit out the top, or down through the bottom, passing through the
silicon at transparent wavelengths. The yield for a wafer scale integration of GaAs
flip chips would be far too low to be practical. Technology is under development,
however, that would allow small pieces of GaAs to “find” their proper locations on
the silicon using DNA assisted assembly [77]. Using these techniques, large scale in-
tegrations should be possible. Each piece of GaAs would contain the VCSEL emitter
(our “axon”) as well as a detector and the appropriate driver circuitry for the laser.

The optical architecture must be shift invariant, so that a single, or very few,
gratings can be used to do all of the interconnects. Otherwise, the diffraction efliciency
would be too small. The architecture should also be modular, so that higher level
of cortex could eventually be integrated, complete with the massive feedback and
feedforward connections. Figure 7.5 shows an architecture that meets these criteria.

Each Si:GaAs wafer is connected to every other wafer via the diffractive element and
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Figure 7.5: Modular architecture for artificial cortex with adaptable interconnection
strengths.

four passes through a beamsplitter. Each wafer could be a part of a model striate
cortex, or each wafer could represent a different cortical area. Although no single
wafer is big enough to implement a cortical area in its entirety, implementing a small
portion could be very fruitful, especially if it enables the implementation of several
cortical areas at once. This cortical module is also able to output the combined

activity of all the wafers, and to receive input, as shown in figure 7.5.

7.2.2 The Fixed Architecture

Although the above architecture can be very useful, it will not be very compact.
Also, the integration of GaAs with Silicon is still under development, and large scale
fabrication may prove to have yields that are too low, even for neural architectures.
In some cases, however, one might be able to learn the appropriate synapse strengths
off-line, through large scale, albeit very slow, computer simulations on large super-

computers. Or, if one were to build the above, adaptable architecture, one might then
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read off the weights from the local DRAM and still desire to build a more compact

implementation.

The Implementation Architecture

Figure 7.6 shows such an architecture. In this case, since we do not need adaptable
weights, we can store the weights as analog connection strengths in a volume holo-
gram. The entire system, in fact, can be analog. This drastically reduces the amount
of silicon area required. In order to avoid the complexities of GaAs integration, liquid
crystal modulators can be used. In this case, an external laser source is used to illu-
minate the wafer, and analog liquid crystal devices, which have been integrated with
the silicon, are used to modulate the light. There is no need for time multiplexing,
since each unit has its own output wights stored in the volume hologram. All units
emit their output at all times. Since each emitter is a point source, the weights are
shift-multiplexed in the volume hologram adjacent to the silicon wafer.

The silicon unit, shown in figure 7.7, is reduced to one liquid crystal pad, four
detectors, and the nonlinear analog circuitry. While the exact number of detectors
required might depend on the details of the design, four is a good estimate for two

reasons. First, there are four basic types of connections as described above: local
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Figure 7.7: Circuit for one unit of the fixed architecture

inhibition, long range excitation, feedforward, and feedback connections. Secondly,
there are four basic, signed operations we might want to implement: additive and
multiplicative excitation, subtractive and divisive inhibition. Both arguments lead to
the conclusion that four detectors will be required.

In calculating the area of silicon per unit, we must estimate the size of the detectors
and the liquid crytsal pad. Again, the actual circuitry will make a relatively minor
contribution to the area for a 0.174 um analog process. The size of the liquid crystal
pad determines the numerical aperture of the output beam. Because we are using shift
multiplexing, the numerical aperture of the input beams to the detectors cannot be
larger than the numerical aperture of the output beam; the diameter of the hologram is
limited by the output beam. Therefore, the detectors should not be made any smaller
than the liquid crystal pad, since the input spot size cannot be made any smaller (see
below). The minimum size for a liquid crystal pad, with a very aggressive design, is
5um [78]. Therefore, each detector must also be 5um on a side. The minimum unit
size would then be approximately 25 x 25um. The entire striate cortex could therefore

be implemented in a wafer that is less than 8cm on a side. This is very impressive,
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Figure 7.8: Architecture for recording shift multiplexed, fixed-weight interconnects

given that columns of primate cortex are about 30um in diameter. Of course, primate
cortex will still be far more powerful than our neuromorphic approximation.

As mentioned above, the optical interconnections will be shift-multiplexed, so that
no lenses will be required in the system, and the volume hologram can be attached
directly on top of the wafer. This brings about two questions: how to record the

holograms, and what will the selectivity be?

The Recording Architecture

Figure 7.8 shows an architecture for recording the weights in the volume hologram.
The biggest dificulty in recording the interconnect pattern is that the light from any
emitter diverges into a cone that takes up only a fraction of the entire medium. The
hologram must be contained only within this volume. If one were to attempt to
record a regular, reflection geometry hologram, the light for detectors far from the
emitter would not overlap, and so no connection would be made. In the architecture
of figure 7.8, the interconnect pattern, f(z), is placed after a focusing lens. This
brings all the light from f(z) into the small volume occupied be the emitter cone.
The reference wave is a beam focused in the plane of f(z), at the location where the
emitter will be. The holograms will then be read out with the phase-conjugates of
the reference waves, thus producing the phase conjugates of the interconnect mask,

which will serve to connect the emitter to detectors in the same plane. The field
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at the focus of the transforming lens due to the mask is the Fourier transform of
f(z). The width of the Fourier transform is 2Az/Az, where Az is the detector size
and z is the distance from the interconnect mask, f(z). The width of the reference
beam at z is approximately 2Az/Az’, where Az’ is the width of the emitter. For the
best overlap between the reference and signal waves, Az = Az’. In other words, the

detectors should be the same size as the emitters.

Shift Selectivity

The fixed architecture shown in figure 7.6 has no lenses in order to make it as compact
as possible. This requires that the holographic interconnections are shift multiplexed
with the holographic material virtually in direct contact with the silicon wafer. In
order to compute the shift selectivity for the reflection geometry, we must use the
refined, path integral theory from chapter 6. In this case, the path will be along the
z axis. Because the numerical aperture is relatively small, we will assume that the
effective change in angle, A, with shift dz is a constant across the lateral dimensions.
However, because the source will be extremely close to the hologram, essentially in
direct contact, it is impossible to approximate the change in angle with a single zo.
Instead, A = §z/z, were z is the distance from the emitter.

For the reflection geometry, the path integral becomes

Ay = /ei2k(1—cos(A6))de. (71)

This can easily be seen from the k-sphere diagram in figure 7.9. The z component
of the tilted reference beam is just k cos(A8). The tip of the grating vector therefore
moves away form the surface of the sphere by the distance k(1 — cos Af). But the
curvature of the surface of the k-sphere moves away from the grating tip by the same
amount, so that the total distance from the grating vector tip to the k-sphere surface

becomes 2k(1 — cos A9).

In chapter 6, the inhomogenous illumination of the spherical reference wave was
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Figure 7.9: K-sphere for the reflection geometry

ignored. The recording rate for the hologram was assumed not to vary significantly,
since the signal wave could be made strong and relatively homogeneous. For the
present case, however, both the reference and signal waves can be strongly diverging.
The writing of a hologram follows an exponential growth so that the strength of a

hologram, A, is given approximately by

A= Ag(l —e ™) (7.2)

where Ag is the saturation grating strength and 7, is the recording rate. The
recording rate is proportional to the total intensity. For the case of counter-propagating
spherical waves with a common focus at zo, the strength of the recorded hologram

can be calculated using

t  gI(L)

. I(2)

(7.3)
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where I(L) is the intensity value at the face of the hologram opposite to the
focal point of the sphercal waves and ¢ is a constant that must be fit to the writing
~ curve. The beam intensities can be solved assuming they are approximately gaussian.
While this might not be the case for the liquid crystal implementation, it is of more
general interest and matches more closely the experiment described below. It is a
good enough approximation for our purposes here. The strength of the on-axis field

for a gaussian beam, E(z), is given by

Wo .
= F —ilkz—n(2)] .
E(z) (2] e (7.4)

where

wo = Sii . (7.5)
2 = m‘f" (7.6)
w(z) = | (1+%) (7.7)
n(z) = arctan (zio) (7.8)

Here, 6 is the beam divergence angle and wy is known as the beam waist because
it is the width of the beam at its narrowest point. The coordinate z is measured
from the beam waist. Figure 7.10 shows a plot of the relative hologram strength as a
function of z for g=7.7.

We can now combine equations 7.1 and 7.4 to get

M el o (1-con () )
Ay = / (1—e 9E@F e )] d (7.9)
Lmin(dx)

where we have changed coordinates so that z' = 0 at the center of the hologram.



7.2 Neuromorphic Cortex 130

1.0

0.6 -

Relative Hologram Strength

0.2 r

0.0 : !
0.0 2.0 4.0 6.0 8.0

z (mm)

Figure 7.10: Hologram strength as a function of depth for the reflection geometry
with a numerical aperture of 0.11 and g=7.7.
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Figure 7.11: Ly, begins where the new read-out beam first overlaps with the stored
hologram.
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Figure 7.12: Selectivity curve for the reflection geometry. Recorded in 8mm thick

LiNbOs with z5 = 0. The numerical aperture was 0.11.

The lower limit, Li»(87), is a function of where the reference beam begins to overlap

with the recorded hologram as §z varies. This is shown in figure 7.11 and is given by

L oz
Linin(62) 9 T 2 tan (arcsin(sin 6/n)) (710

In order to test the validity of equation 7.9, I stored a hologram in the reflection
geometry using counterpropagating spherical beams with numerical apertures of 0.11
in 8mm thick LiNbOs. This represents, in the case of optical interconnects, one unit
which has been connected to itself via the hologram. For more distant holograms,
the angle between the reference and signal beams will be smaller, which will increase
the shift selectivity. On the other hand, the overlap between the reference and signal
beams will also decrease, making the effective length of the hologram shorter. The
balance of these effects is hard to know without a more specific design. However,

this experiment should at least provide us with a general feel for the amount of
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shift selectivity, as well as another confirmation of the theory. Figure 7.12 shows
one half of the selectivity curve, as well as the matching theory. There is excellent
agreement between theory and experiment. In this case, the parameter g was fit to
a value of 7.7. The slight roughness to the theory curve in the wings was due to
the working precision of the integration routine. The data was taken with a slow
stage, and therefore only one side of the symmetric selectivity curve is shown. From
the plot, it is clear that there will be some cross-talk between interconnect patterns
for neighboring units of the little piece of cortex if they are only 25um apart. This
crosstalk may not be significant, however, given the robustenss that is inherent to
neural architectures. Additionally, the strength of interconnections for neighboring
units may not be totally independant; since their receptive field properties would be

similar, it is likely that their interconnection patterns would be similar as well.

7.3 Conclusion

Neuromorphic engineering may be the most exciting development yet in the quest to
mimic the computational power of the brain. While Al and neural networks could
have developed without the involvment of optics, neuromorphic engineering needs
optics in order to progress to larger scale systems. Shift multiplexing allows for very
compact architectures and may eventually lead to the implementation of an artifical
V1. Such a development would not only be a tremendous engineering achievement, it
would help to further our understanding of how cortex works by creating a platform

on which new computational theories of the brain could be tested.
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Chapter 8 Conclusion

In this thesis, I have addressed the use of holography for optical correlators, optical
memories, and optical interconnects.

The capacity of correlators for pattern recognition is a function of the geometry
of the signal and reference waves. The optimal geometry is with the reference wave
normal to the hologram, and the signal beam to be as oblique as possible. The
best geometry is with the reference and signal beams 90° apart. Once the geometry
is determined, the trade-off between shift-invariance and the number of templates
required determines the final system characteristics. This trade-off is important for
pattern recognition, and is dependant upon the task. For active vision systems, a
few generic templates with large shift-invariance my be required to find objects of
interest. The remaining correlators would require relatively little shift-invariance,
since the object would be well centered in the visual field by the active vision system.
The reflection geometry provides such a heterogenous system. However, it has a
relatively low capacity according to the metric developed in chapter 3. The benefits
of the heterogenous shift-invariance domains may outweigh considerations of total
capacity in some applications.

Fresnel correlators were described in chapter 5. It is very easy to control the size
of the shift-invariance domains for this system; one need only move the hologram into
the Fresnel zone. Since this system does not rely on Bragg selectivity, it is feasible to
use thin materials such as polymers. Some polymers, such as DuPont’s HRF 150, are
much more sensitive and have a larger dynamic range than photorefractive crystals.
In this thesis, I demonstrated the basic principles behind the Fresnel correlator. The
next step for this project is to develop a large system that takes advantage of the
very large number of correlators that can be stored.

Shift multiplexed memories were described in chapter 6. I believe this technique

has enormous commercial potential. The simple implementation allows for a robust
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and inexpensive design. One potential problem, however, is that as a disk spins
past the reference beam, the reconstructed data page will shift across the imaging
electronics. A possible way around this problem is the use of a pulsed laser with a fast-
frame photodiode array. One could also try using large pixels. Although larger pixels
will decrease the density somewhat, they will make tracking easier. Additionally, large
pixels will make the system less sensitive to lens abberations in the signal arm. Both
effects will help lead to a cheaper, more robust system at the cost of some loss in data
density. Future work should analyze this trade-off against the practical constraints of
a commercial product. The most important area for improvement in holographic data
storage, however, is in the materials. New holographic materials that are sensitive
enough for fast recording and have large dynamic ranges are necessary for commercial
success.

Shift multiplexing can also be used for chip-to-chip interconnects and the con-
struction of large neuromorphic systems. Chapter 7 only began to outline to first
details of such a system; much work remains to be done in this area. For example,
VCSEL technology needs to continue to improve, in order to provide lasers with stable
polarization and wavelength. Dynamic range is also likely to be an issue for the fixed
architecture described in chapter 7. Integration of GaAs and silicon is a very active
area of research, and needs to continue in order to enable large scale integration of
such systems. Finally, algorithms for vision need to be studied and developed. The
better our understanding of primate vision is, the better we will be able to model it

and develop sophisticated vision systems.
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