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Abstract

I study firms’ behaviour in markets where firms’ long-run capacity decisions, made in the

presence of uncertain demand, constrains short-run competition. In Chapter 2, I analyse

firms’ investment and pricing incentives in a differentiated products framework with un-

certain demand. Firms choose production capacities before observing demand and choose

prices after demand is realised. Unlike previous models, when firms are identical, symmet-

ric pure-strategy equilibria exist, even in the presence of very low capacity costs. Further-

more, industry capacity in these symmetric equilibria is strictly greater than the equivalent

Cournot equilibrium industry capacity for low costs, and equal to the Cournot industry

capacity for higher costs. Subsidies on capacity costs have a greater positive impact on

equilibrium capacity than an equivalent subsidy on production costs. In Chapter 3, I use

this model to analyse how the market changes when firms practice ‘withholding’. This is

when firms withdraw capacity from the market in the short-run, after demand is realised,

in the hope of making greater profits. I show that withholding is an optimal strategy for

firms in these markets, and that compared to the no-withholding case, equilibrium output

is lower in low demand states and higher in high demand states. Equilibrium capacity

strictly increases. I discuss why it is hard to find real world examples of withholding in

action, despite the increased profits. Chapter 4 looks at the specific case of the electricity

industry. Electricity markets are a good example where capacity constraints and random

demand affect competitive outcomes. However, trade in electricity is subject to additional

constraints caused by the transmission of electricity through a network. Network constraints

are well understood to cause considerable non-convexities in firms’ optimisation problems;

thus theoretical models have limited use in analysing the behaviour of electricity generating

firms. An alternative approach, economic experiments, has become an important tool to

study these markets, but questions remain on whether subjects can really imitate large

firms in the presence of such complexity. This chapter provides evidence in the affirmative,
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specifically showing that experimental subjects can understand loop flows in the presence

of Kirchoff’s Laws, a key physical constraint, and how this affects firms’ pricing decisions.

The results suggest that electricity market experiments could be scaled up successfully to

more realistic networks.
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Chapter 1

Introduction

There are many natural settings in which firms must invest in costly capacity before see-

ing the true state of demand, and then face price competition after demand is revealed.

Common examples include electricity markets, where generation is fixed in the short-run

but prices vary widely as demand changes, hotels, who face seasonal demand swings but

have only a fixed number of rooms, and indeed any industry which produces a non-storable

good or service, and faces fluctuating demand. In such markets, the nature of competition

in the short-run is heavily influenced by firms’ long-run capacity choices. Excess industry

capacity relative to demand may result in vigorous price competition and consequent de-

pressed prices and profits. Too little industry capacity has the opposite effects. Given the

uncertain demand, firms thus face a trade-off when deciding how much capacity to build.

Over-investing causes costly capacity to lie idle when demand is low, but under-investing

leaves profitable demand unserved when demand is high.

The study of these capacity-price decisions has many practical implications. Consider the

example of electricity markets. In the last twenty years, many countries have deregulated

their electricity industries, privatising generators and allowing them to sell electricity di-

rectly to retailers within a preset market structure. This is, in effect, a giant experiment,

with different countries and states introducing different market designs. The choice of

market design is of crucial importance to the economic outcomes, as the 2000-1 California

electricity crisis showed. A poor design can lead to poor outcomes, such as extremely high

or volatile prices, or blackouts caused when demand exceeds industry capacity. Thus there

is an important role for economists to play in creating better market designs, the design

of which is necessarily predicated on understanding firms’ investment incentives, and how
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these capacity choices influence short-run competition.

Since Edgeworth’s modification of Bertrand’s price game, economists have studied how

capacity constraints can change the nature of short-run competition. These studies have

tended to remain theoretical in nature. The seminal 1983 work of Kreps and Scheinkman [12]

founded a literature of what I call ‘capacity-price’ models. These models are based on two-

stage games, games where firms choose capacity at stage one, then price at stage two after all

firms observe capacity choices. The work of Kreps and Scheinkman was extended to different

rationing rules (Davidson and Deneckere [5]), uncertain demand in the short-run (Reynolds

and Wilson [14]), and to the differentiated products setting (Friedman [8]). However, most of

this work has remained fixedly theoretical, for good reason. Under Kreps and Scheinkman’s

standard assumptions, pure-strategy equilibria only exist under particular conditions, such

as assuming the efficient rationing rule. This limits the use of comparative statics in any

possible applications.1 Furthermore, in this literature, only Reynolds and Wilson tackle the

issue of uncertain demand, which is at the heart of the economic dilemma outlined above.

In the specific case of electricity, theory is even more problematic, as electricity markets

are not only subject to capacity constraints on the production of electricity, but also to

capacity constraints on its transmission. This abundance of non-linear network constraints

has seen economists turn away from theory in favour of economic experiments. Such work

is relatively new, but promising: economic experiments avoid the intractability that bedev-

ils theoreticians. However, current experiments are usually limited to three or four node

networks; hardly a good approximation of, say, the California electricity grid.

In this dissertation, I study some of these issues. I create a new capacity-price model with

uncertain demand that does have pure strategy equilibria, and use this model in an extensive

application to capacity withholding. In the specific case of electricity markets, I perform

a series of economic experiments designed to prove that human subjects can handle the

complexity of Kirchoff’s laws in electricity networks; results that imply the current small

scale experiments in the literature could be scaled up to more realistic networks. I briefly

outline each chapter.

In Chapter 2, I create a new capacity-price model with uncertain demand, with the valuable
1A notable exception is the work of Maggi [13], who modified Friedman’s work to show a nice application

to International Trade.
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property that pure-strategy equilibria exist, even in the symmetric case. In most previous

models, economists have followed Kreps and Scheinkman’s lead, assuming that the price sub-

game will be Bertrand in nature. In practice, this assumes consumers have full information

of all prices charged by all firms at all times, and are willing to switch firms instantaneously

if one firm raises or lowers its price. This is the approach of Reynolds and Wilson, whose

paper in the Journal of Economic Theory is the only example of a capacity-price model

with uncertain demand that I know of. However, an alternative assumption is available.

Friedman introduced the idea of replacing the Bertrand assumption with the differentiated

products pricing assumption in the price subgame. He showed this leads to pure strategy

equilibria in the game without uncertain demand, and the usefulness of his approach for

applied research was proved by Maggi [13]. In this chapter, I modify Friedman’s model

to allow for uncertain demand, and prove the existence of pure-strategy equilibria in the

resulting game.

Chapter 3 utilises the model created in Chapter 2 to study a form of firm behaviour I

call ‘capacity withholding’. Capacity withholding is easiest to explain with an example.

Consider the market for car ferry sailings across Lake Michigan. The market is contested by

two firms, each of whom owns one car ferry. In a single 24 hour period, the ferries can make

four and six crossings of Lake Michigan respectively. In this example, the ferries themselves

are the firm’s long-run capacity, and full capacity would be four/six daily crossings of Lake

Michigan. In summer, when demand is high, both firms do run at full capacity, however

in the off-season, they dramatically cut the number of sailings per day, while maintaining

pretty much the same prices. This is a short-run reduction in capacity, practiced by both

firms, which appears to have the net effect of maintaining higher prices and presumably

profits. In this chapter, I show it is advantageous for firms to practice withholding, and that

when firms withhold, they have an incentive to increase equilibrium capacity. However, it

is surprisingly difficult to find real world examples of withholding in action. I also show

that the successful practice of withholding requires three factors: commitment to the lower

capacity level, observable choices by each firm, and some modicum of divisibility.

The final chapter, Chapter 4, takes a different tack. Electricity is a classic example of a

non-storable good with random demand and capacity constraints. However, as I mentioned

above, electricity markets face additional constraints not allowed for by the theoretical
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model in Chapter 2. Indeed, there is little if any theoretical work on capacity-price compe-

tition on electricity networks.2 Thus in recent years, economists have turned to economic

experiments to study firm behaviour on electricity networks, and that is the approach I take

in this chapter. Since this field is relatively new, there are still many unanswered questions,

such as whether human subjects can truly imitate big electricity firms in their bidding be-

haviour on electricity networks. Do they really understand the constraints and maximise

profits? In this chapter, I show that human subjects can understand quite complicated

network externalities, specifically Kirchoff’s laws, and consistently maximise profit despite

the extra constraints imposed by these physical laws. My approach is to conduct repeated

experiments, using experienced subjects, on four different networks: two where Kirchoff’s

laws influence outcomes, and thus profits, and two where Kirchoff’s laws have no effect.

I then search for variations between the two treatments, finding no significant differences.

My results give confidence that experiments with human subjects on more complicated

networks are possible.

2There is some theoretical work on pricing in electricity networks, one example is the paper by Wu,
Variaya, Spiller, and Oren [21]. However, this assumes firms have fixed capacities.
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Chapter 2

Endogenous Investment

2.1 Introduction

There are many natural settings in which firms must invest in costly capacity before seeing

the true state of demand, and then face price competition after demand is revealed. An

example is electricity markets, where capacity decisions are fixed in the short term but

prices may vary drastically as demand varies, particularly when demand is close to industry

capacity. Firms in this market structure face a trade-off. Holding more capacity allows a

firm to serve more consumers in high demand states, but the extra capacity can drive down

prices in both high and low demand states. Such trade-offs are often studied in applied

theory using variations on the Cournot model, as in Hogendorn [11]. Yet the relationship

between the Cournot model, where firms choose capacity and the price clears the market,

and these ‘capacity-price’ models, where firms choose both capacity and price, is poorly

understood. With sufficiently high capacity costs, the equilibrium capacity predictions in

the existing capacity-price models match those of the Cournot model. However for lower

costs, capacity-price models usually have no pure-strategy equilibria, due to the assumption

of Bertrand-Edgeworth pricing, and make little or no comparison to the Cournot model. In

this chapter, I construct a new model using the differentiated products paradigm in which

firms choose capacity before the realisation of demand, and choose price afterwards. I show

that even when capacity costs are low, pure-strategy symmetric equilibria exist. In this

case, equilibrium capacity is greater than the Cournot model’s prediction.

Two-stage games where firms choose capacity, then price, are an appealing way to model

market structure. In these games, prices are determined by firms’ actions rather than the

‘invisible auctioneer’ of the Cournot model. Thus Kreps and Scheinkman’s seminal 1983
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paper [12], which showed that a capacity-price model could yield Cournot outcomes, caused

considerable interest. As Tirole [17] points out, this paper was seen as a justification of the

use of the more tractable Cournot model. The Kreps-Scheinkman model had two firms,

choosing capacity, and then price according to the Bertrand-Edgeworth paradigm. The

model assumed the efficient rationing rule. When demand was concave, marginal production

costs were zero, and capacity costs were convex, the unique equilibrium outcome matched

the Cournot outcome, both for capacity and market price.

However, Kreps and Scheinkman’s result is not robust, either to the choice of rationing rule

(Davidson and Deneckere [5]) or to the assumption that demand is known (Reynolds and

Wilson [14]). Davidson and Deneckere took the Kreps-Scheinkman model and altered the

rationing rule. They found that under alternative rationing rules, the Cournot outcome only

occurred in equilibrium when capacity costs were sufficiently high. Otherwise, they found

only mixed strategy symmetric equilibria. In a specific example, they demonstrated the

existence of an asymmetric pure-strategy equilibrium, and showed that firm capacities in this

equilibrium were significantly greater than the equivalent symmetric Cournot equilibrium.

Davidson and Deneckere concluded that

“This suggests that the equilibrium [in the capacity-price model] is more com-

petitive than the Cournot model would predict.” [p412]

Reynolds and Wilson added demand uncertainty to the Kreps-Scheinkman model.1 Again,

they discovered that for sufficiently high costs, the unique equilibrium outcomes matched

those of the equivalent Cournot output game (Cournot with random demand). For lower

costs, they proved no pure strategy symmetric Nash equilibria existed. Similar to Davidson

and Deneckere, they showed the existence of an asymmetric pure-strategy equilibrium for

a specific example. They did not compare this equilibrium to the Cournot model.

All the papers mentioned above share the assumption of Bertrand-Edgeworth pricing in the

price subgame. There are a few papers investigating similar structures under the differenti-

ated products paradigm. Friedman [8] created a model, where n firms chose capacity, then

price in a two-stage model, with known demand. Friedman found sufficient conditions for

pure-strategy equilibria to exist. He did not characterise any of these equilibria. A later
1Reynolds and Wilson added additional assumptions above and beyond those made by Kreps and

Scheinkman to prove existence.
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paper by Maggi [13] used a linear duopoly version of the same model (with an added param-

eter) in an International Trade application. Amongst his other results, Maggi pointed out

that the use of a capacity-price model had richer implications than the equivalent Cournot

model. In his model, production costs affected both firms’ reduced payoff functions directly,

whereas firm i’s capacity cost only directly affected firm i’s payoff function. Maggi argued

this implied “Output policies can do everything that capacity policies can.” [Proposition 4,

p248].2 In the equivalent Cournot model, capacity costs are identical to production costs,

and thus such distinctions cannot be studied.

I find the lack of papers assuming differentiated products pricing surprising, for two reasons.

Firstly, the use of capacity-constrained differentiated products pricing (known as Bertrand-

Edgeworth-Chamberlain equilibria) in the subgame significantly ameliorates the lack of

pure-strategy equilibria problem present when using the Bertrand-Edgeworth paradigm3.

If we are looking for tractability in a capacity-price model, surely this is an appropriate

choice. Secondly, the differentiated products paradigm is arguably applicable to a wide

variety of real world industries. Products need not even be differentiated physically to

satisfy the underlying assumptions. It is enough either that people perceive goods from

different firms as different (think imported goods versus domestically produced goods), or

that some friction exists which prevents people from switching from one firm to the other

with complete ease. A paper by Carlson and McAfee [2] gives a good example of the latter.

They create a model where consumers face search costs to find the lowest price amongst

firms selling identical goods. The resulting demand functions for each firms are in linear

differentiated products form. Bertrand pricing on the other hand, is a fairly restrictive

assumption. It implies that goods are homogeneous, and that consumers are fully rational,

have full information on all prices offered, and respond instantaneously to changes in price.

There are few industries in which one could argue all three conditions apply. The two

paradigms are mutually exclusive, and while differentiated products may not be the right

assumption for every industry, surely we should consider how it changes capacity-price

models.

I introduce demand uncertainty into Friedman’s model. I assume that at stage one, firms
2Maggi’s model does not have random demand, so the result cannot be compared to my result that

capacity policies have a stronger effect than output policies.
3Pure strategy in the B-E-C equilibrium are not guaranteed, though. Vives [20] gives more details.
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must choose capacities before seeing the true level of demand. After installing capacity,

firms observe the realisation of demand, and choose prices in the subgame. I also extend

the model to explicitly account for production costs. Unlike Reynolds and Wilson’s model, I

show that pure strategy symmetric equilibria may indeed exist when capacity costs are very

low. I prove this in two cases. The first is when capacity acts as a strategic complement.

Since I require gross substitutes in the goods market, this is somewhat restrictive, though, as

I will show, satisfied by a CES-type demand function under a certain range of parameters.

This does not mean that there are no pure strategy equilibria when capacity is not a

strategic complement, merely that the payoff functions do not satisfy concavity or decreasing

differences, properties needed to use conventional existence results. Thus I also show that

in the linear case, existence is guaranteed under additional restrictions on the distribution

of the random variable, by showing quasiconcavity of the payoff functions. Both results also

apply when costs are asymmetric.

When a symmetric equilibrium exists, and an equivalent Cournot equilibrium exists, I

make direct comparisons with the Cournot benchmark. In my model, firms facing low

demand will not choose market clearing prices, preferring to maximise profits in the price

subgame by choosing a higher price. These higher prices feed back to the capacity game,

encouraging firms to choose greater capacity levels. Unlike most previous capacity-price

models, I can characterise symmetric equilibria in my model. Using this characterisation, I

show that equilibrium capacity in my model is greater than or equal to equilibrium capacity

in the Cournot model. When capacity costs are low, this inequality is strict, becoming an

equality when capacity costs are sufficiently high. I also show that a change in capacity

costs has a stronger positive effect on equilibrium capacity (in the symmetric case) than

an equivalent change in production costs. This implies that policymakers wishing to raise

industry capacity should focus on capacity costs over production costs.

The use of the differentiated products framework, as opposed to the Bertrand-Edgeworth

framework, does carry some costs. Much as using Bertrand-Edgeworth requires assuming

a rationing rule, I must place assumptions on the demand functions specifying the substi-

tutability of the goods. Furthermore in the differentiated products framework, it is possible

for the market demand parameter to affect one firm differently from the other, as opposed

to the market demand function used by Reynolds and Wilson. To rule out such effects,



9

I assume that demand uncertainty enters the demand functions multiplicatively, so that

any exogenous change in demand affects each firm proportionally. This can be relaxed

somewhat, but at the cost of more stringent assumptions on the demand functions.

Now I turn to the details of the model.

2.2 A Model of Capacity Choice

Consider two firms that produce symmetrically differentiated products. Demand for each

firm’s product is a function of both firms’ prices, and of a random variable λ representing

the level of market demand. Firms play a two-stage game. At stage one, each firm i chooses

a capacity level Ki, at a cost of ki per unit. At this stage, firms do not know the true value

of λ, but they do know that λ will be the realisation of a random variable with a particular

distribution F (λ) which is twice continuously differentiable, and whose support is contained

in
[
λ, λ

]
. At the beginning of stage two, λ is revealed, and each firm i chooses a price pi at

which it wishes to sell its product. I denote the demand for firm i ’s product given pi, p−i,

and λ by xi(pi, p−i, λ). Since λ is intended to represent market demand, I assume λ enters

demand multiplicatively. Each firm i pays a cost of ci for every unit it produces, but cannot

produce more than Ki even if its demand is higher. After stage two, each firm i realises

demand, and receives profits (pi − ci) Min [Ki, xi (pi, p−i, λ)].

I will maintain the following assumptions on the demand and cost functions throughout the

paper. These mimic Friedman’s assumptions, extended to allow explicitly for a constant

marginal cost of production and the demand level variable, λ. Assumption 1 outlines

standard regularity conditions on demand functions, and defines the cost functions for the

two firms. Assumptions 2(a - e) impose the requirement that the differentiated goods

be gross substitutes, and that a firm’s demand and marginal profit functions react more

strongly to a change in the firm’s own price than to a change in the competitor’s price.

Assumption 2(f) implies that if p−i increases, then firm i’s optimal point on it’s residual

demand curve gives rise to both a higher price and quantity in the price subgame. We

will see this assumption provides important structure, essential for Lemma 1, but not for

uniqueness in the price game.
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Assumption 1. The functions xi (pi, p−i, λ) are defined, continuous, single-valued and non-

negative for all (p1, p2) ∈ <2
+, i = 1, 2. Each firm pays a constant cost per unit produced

equal to ci > 0, and a constant cost for each unit of capacity installed equal to ki > 0.

There exists a finite, positive price, p0
i such that xi(pi, p−i, λ) = 0 for all pi ≥ p0

i , for all

p−i. Since each firm i’s demand will be zero if its price exceeds p0
i , we can limit the price

domain to Ω =
{

(p1, p2) | 0 ≤ p1 ≤ p0
1, 0 ≤ p2 ≤ p0

2

}
. Further let Ωi be the subset of Ω on

which xi(pi, p−i) > 0.

Assumption 2. The following derivatives exist and satisfy these conditions:

(a) ∂xi
∂pi

< 0 on Ωi and 0 otherwise

(b) ∂xi
∂p−i

> 0 on Ωi ∩ Ω−i and 0 otherwise

(c) ∂xi
∂pi

+ ∂xi
∂p−i

< 0 everywhere on Ωi

(d) 2∂xi∂pi
+ (pi − ci) ∂

2xi
∂p2i

< 0 everywhere on Ωi

(e) 2∂xi∂pi
+ (pi − ci) ∂

2xi
∂p2i

+
∣∣∣ ∂xi∂p−i

+ (pi − ci) ∂2xi
∂pi∂p−i

∣∣∣ < 0 everywhere on Ωi

(f)
− ∂xi
∂p−i
∂xi
∂xi

≥
−
(

∂xi
∂p−i

+(pi−ci)
∂2xi

∂pi∂p−i

)
2
∂xi
∂pi

+(pi−ci)
∂2xi
∂p2
i

everywhere on Ωi

Assumptions 1, 2(a), and 2(b) imply a natural bound on firms’ capacity levels. Firm i’s

demand is maximised when its own price is 0, the other firm charges p0
−i, and λ = λ. Define

K0
i = λxi

(
0, p0
−i
)
. K0

i is finite because p0
−i and λ are finite. Firm i will never choose

Ki greater than K0
i , because such choices lead to strictly higher capacity costs with no

possibility of any extra revenue from the excess capacity. Thus I may restrict each firm’s

capacity choice to the set
[
0,K0

i

]
.

2.2.1 Pricing Subgame

I begin by solving for the equilibrium in the pricing subgame, fixing both firms’ capacities

and λ, the demand shock. Each firm i chooses price pi to maximise its objective function

(pi − ci) Min [xi (pi, p−i, λ) ,Ki]. Fixing p−i, recall that xi (pi, p−i, λ) is decreasing in pi.

Thus when pi is high, xi < Ki and firm i’s objective function becomes (pi − ci)xi, which

is concave by assumption 2(d). For low pi, xi > Ki and firm i’s objective function reduces
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to (pi − ci)Ki, which is an increasing linear function of pi. In the latter case, firm i has

an incentive to increase the price until xi = Ki. In the former case, the objective function

(pi − ci)xi will either obtain its maximum within the region xi ∈ [0,Ki], or it must be

strictly decreasing in this region, in which case, firm i has an incentive to decrease the

price until xi = Ki. Thus, for fixed p−i, firm i has two choices. Choose the price pCi

that clears demand, i.e., pCi such that xi
(
pCi , p−i, λ

)
= Ki, or choose the price pBi equal

to argmaxpi (pi − ci)xi. Firm i’s best response is always to choose the higher of these two

prices.

The equilibrium of the price subgame is given by the intersection of the two reaction func-

tions, pi = Max
{
pCi (p−i, λ,Ki) , pBi (p−i, λ)

}
. Existence and uniqueness are guaranteed by

assumptions 1 and 2(a - e), which imply increasing best replies with slope between 0 and 1

on a compact set4.

Figure 2.1: Price equilibria for fixed spot market capacity and demand.

Figure 2.1 indicates that for fixed capacities and demand, one of four types of price equilibria

may occur. If both firms have relatively low capacity, then both firms will choose clearing

prices. I denote this case the CC equilibrium, where the first C indicates firm 1 is choosing

a clearing price, and the second C indicates firm 2 is also choosing a clearing price. If firm

1 has relatively low capacity, and firm 2 has relatively high capacity, then I denote the

resulting equilibrium the CB equilibrium. This means firm 2 is now choosing the Bertrand

price, but firm 1 is still charging the clearing price. The BB and BC equilibria are computed

symmetrically. Throughout this paper, pCCi will denote the price charged by firm i when

4A proof of this when production costs are zero may be found in Friedman [8], Theorem 2. The extension,
using my assumptions, is immediate.
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both firms are charging clearing prices, RCCi will denote short-run revenue gathered by firm

i when both firms charge clearing prices, and πCCi similarly will denote short-run profit.5

Equivalent definitions apply for the BC, CB, and BB equilibria.

For fixed K1 and K2, the type of price equilibria may change as λ changes. An increase in

λ increases demand at all capacity levels. This in turn increases the chance that demand

will exceed capacity at Bertrand prices. The effect in figure 2.1 is to push the curves up

and to the right. This change is depicted in figure 2.2, where the bold curves represent a

higher λ - λHIGH.

Figure 2.2: Changes in price equilibria for fixed capacities when demand changes.

Assume firms’ capacities are represented by the dot in figure 2.2. When λ = λHIGH ,

this point sits in the CC region, so both firms choose clearing prices in the price subgame

equilibrium. When λ = λLOW , this capacity point now lies in the BC region, where firm

1 chooses the Bertrand price in the price equilibrium. Between the two, there is a critical

value of λ where firm 1 flips from choosing the clearing price to choosing the Bertrand price.

I denote this critical value by λa. If λ continued to fall then eventually firm 2 would switch

to the Bertrand price as well. This second point I denote λaa.

If both firms have identical production costs and K1 > K2, then an increase in λ will affect

firm 2 before firm 1, causing firm 2 to switch first to the clearing price. This is the case

in figure 2.2. This is both because firm 2 has less capacity, and because λ enters demand

multiplicatively, implying that firm 2 will face a capacity constraint first. This switching
5More formally, short-run revenue here is RCCi = pCCi xi

(
pCCi , pCC−i , λ

)
, and short-run profit is πCCi =(

pCCi − ci
)
xi
(
pCCi , pCC−i , λ

)
. Since prices are functions of capacities and the demand shock, so too are

revenue and profit.
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point is λaa. As λ continues to rise, eventually firm 1 will switch too, at the point λa.

If instead K2 > K1, firm 1 would switch first, choosing the clearing price instead of the

Bertrand price in equilibrium, at a point I will call λbb, followed by firm 2, at a point I will

call λb. There are several ways to define these values of λ; the following definition is the

most convenient.

λa : pCC1 ≡ pBC1

(
⇔ pCC2 ≡ pBC2

)
λaa : pBC1 ≡ pBB1

(
⇔ pBC2 ≡ pBB2

)

λb : pCC2 ≡ pCB2

(
⇔ pCC1 ≡ pCB1

)
λbb : pCB2 ≡ pBB2

(
⇔ pCB1 ≡ pBB1

)
.

I will term these values of λ collectively as the boundary values.

When costs are asymmetric, the intuition is similar. Define g by K1 = g(K2) when λa = λaa.

Further note that when λa = λaa, pCC1 = pBB1 , and also pCC2 = pBB2 so λb = λbb and λb = λa.

Therefore all the properties of the price equilibria I described for the symmetric case carry

over to the asymmetric case, with K1 > K2 replaced by K1 > g(K2) and vice versa. For

linear demand functions, g is a linear function.

Since the BB price equilibrium occurs when both firms are unconstrained by capacity,

equilibrium prices and demands in this region are not functions of capacity. Similarly,

prices in the BC region are not dependent on K1, and prices in the CB region are not

dependent on K2. Therefore these regions will not affect firms’ respective marginal payoff

as a function of their own capacities. This implies the boundary values play a crucial role

in the firms’ expected profit functions in the capacity game.

Assumptions 1 and 2 provide a great deal of structure on the price equilibria and the

boundary values. The next lemma summarises important features of this structure; features

I will need to prove the main results of this paper.

Lemma 1. Under assumptions 1 and 2, the following holds.

(i) The derivatives of λa, λb, λaa, and λbb with respect to K1 and K2 are all positive.
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(ii) ∂λa
∂K1

> ∂λaa
∂K1

and ∂λbb
∂K1

> ∂λb
∂K1

.

Proof. See the Appendix.

Before turning to firms’ capacity choices, I briefly derive an important property of a firm’s

marginal profit in capacities in the CC equilibrium. Recall that firm 1 will choose the higher

of pC1 and pB1 in the price equilibrium. At λa, these two prices are equal. Substituting in

the first-order conditions, pC1 ≡ pB1 if and only if K1 ≡ −
(
pCC1 − c1

)
∂x1
∂p1

. Written in this

way, I now show a firm’s marginal return to capacity is negative at λa.

∂πCC1

∂K1

∣∣∣∣
(K1,K2,λa)

= pCC1 +K1
∂pCC1

∂K1
− c1

= pCC1 +−pCC1

∂x1

∂p1

∂pCC1

∂K1
+ c1

∂x1

∂p1

∂pCC1

∂K1
− c1

=
(
pCC1 − c1

)(
1−

∂x1
∂p1

∂x2
∂p2

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

)

=
(
pCC1 − c1

)( −∂x1
∂p2

∂x2
∂p1

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

)
(2.1)

The denominator in the brackets is positive by assumption 2(c). The numerator is negative

by assumption 2(b). Clearing prices are always greater than Bertrand prices (in equilibrium)

which must be greater than production costs. This confirms firm 1’s marginal return to

capacity at λa is negative. Note that when cross-price effects are zero i.e. when all firms are

monopolies, this equation reduces to zero. A monopolist will choose the cutoff point between

Bertrand and clearing prices to extract all the surplus. As the degree of competition,

represented by the cross derivatives, increases, firms choose clearing prices for more values

of λ, even though this reduces their profit. A symmetric result holds for firm 2 and λb.

2.2.2 Cournot Benchmark

Here I lay down the equivalent Cournot type model to which I will compare my model.

I will refer to this henceforth as the Cournot Benchmark. Formally, consider a Cournot

output choice game in which outputs are chosen before the demand level realisation, and

assumptions 1 and 2 above are satisfied. This is essentially my model, except firms always
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choose the CC equilibrium, even if it is not the best response for either firm to do so. Firm

i’s first order condition given K−i is

∫ λ

λ

(
∂RCCi (K1,K2, λ)

∂Ki
− ci

)
dF (λ)− ki. (2.2)

Assumptions 1 and 2 are not sufficient to guarantee existence in this Cournot game. I will

later assume a contraction condition that guarantees existence and uniqueness, primarily

to draw comparisons between my model and the Cournot benchmark. This assumption is

Assumption 3. ∂2RCCi (K1,K2,λ)

∂K2
i

+
∣∣∣∂2RCCi (K1,K2,λ)

∂Ki∂K−i

∣∣∣ < 06

Assumption 3 is the differentiated products paradigm equivalent to Reynolds and Wilson’s

Cournot benchmark case [14] (p126).

2.2.3 Symmetric Capacity Choice in the Whole Game

I now find conditions under which subgame-perfect equilibria of the whole game exist. I will

elaborate from the point of view of firm 1, noting that the argument for firm 2 is symmetric.

Firm 1’s payoff function is defined as the expectation with respect to λ over the reduced

profit functions. This payoff function is differentiable with respect to K1, but the first

derivatives are only piecewise differentiable with respect to K1, because price equilibria are

only piecewise differentiable in K1. This gives rise to a number of special cases. The most

important distinction is if K1 is greater than or less than g(K2).7 Fixing K2, first assume

K1 > g(K2). Then firm 1’s first order condition takes the form

∫ λ

λa

(
∂RCC1 (K1,K2, λ)

∂K1
− c1

)
dF (λ)− k1. (2.3)

However, if K1 is sufficiently high such that λa (K1,K2) ≥ λ, then the integral in equation

2.3 reduces to zero, and the first order condition is −k1. Conversely, if K1 is sufficiently low

such that λa (K1,K2) ≤ λ, then equation 2.3 reverts to the Cournot benchmark condition,

equation 2.2. Define Ka
1 (K2) by λa(Ka

1 ,K2) ≡ λ, and Ka
1 (K2) by λa(Ka

1 ,K2) ≡ λ, to

represent these critical points.

Suppose instead K1 < g(K2). Now firm 1’s first order condition typically takes the form
6This is taken from Vives [20], chapter 6.
7I defined g in the previous section, by K1 = g(K2) when λa = λaa. When costs are symmetric, g is the

identify function.
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∫ λ

λb

(
∂RCC1 (K1,K2, λ)

∂K1
− c1

)
dF (λ) +

∫ λb

λbb

(
∂RCB1 (K1, λ)

∂K1
− c1

)
dF (λ)− k1. (2.4)

Here again, if K1 is sufficiently high such that λbb (K1,K2) ≥ λ, then the integrals in

equation 2.4 reduce to zero, and the first order condition is −k1. Conversely, if K1 is

sufficiently low such that λb (K1,K2) ≤ λ, then equation 2.4 reverts to the Cournot type first

order condition described by equation 2.28. As above, define Kbb
1 (K2) by λbb(Kbb

1 ,K2) ≡ λ,

and Kb
1(K2) by λb(Kb

1,K2) ≡ λ. In addition, there will be a number of intermediate cases,

for example when λb > λ but λbb ∈ (λ, λ), or when λbb < λ, but λb ∈ (λ, λ). To allow for

these cases, I additionally define Kb
1(K2) and Kbb

1 (K2) in the same way. The primary reason

for this notation is to account for all possible cases in the following proofs of existence. The

extra cases take the form

∫ λ

λb

(
∂RCC1 (K1,K2, λ)

∂K1
− c1

)
dF (λ) +

∫ λb

λ

(
∂RCB1 (K1, λ)

∂K1
− c1

)
dF (λ)− k1, (2.5)

or

∫ λ

λbb

(
∂RCB1 (K1, λ)

∂K1
− c1

)
dF (λ)− k1. (2.6)

In the symmetric case (when marginal costs are the same for both firms), g is the identity

function, and if K1 = K2, equations 2.3 and 2.4 are equivalent, and simplify to the following

condition.

Z (K) =
∫ λ

λ̂

(
∂RCC1 (K1,K2, λ)

∂K1
− c
)
dF (λ)− k (2.7)

Once again, this equation will have two special cases. When K is sufficiently high, the first

order condition is −k. When K is sufficiently low, the first order condition is equation 2.2,

evaluated at K = K1 = K2.

When K1 is high enough, all the first order conditions reduce to −k1. This allows me to

restrict the region in which firms’ wish to choose capacity.
8Note by definition that when K1 < g(K2), λb > λbb.
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Lemma 2. Let A be the set defined by (K1,K2) such that 0 ≤ K1 ≤ Ka
1 and 0 ≤ K2 ≤ Kb

2.

Any point outside this set is strictly dominated by a point inside the set, for at least one of

the firms.

Proof. Any point outside this set results in at least one firm choosing the Bertrand price

for all possible values of λ. This firm thus has excess capacity in all states, so could receive

strictly higher payoffs by reducing its own capacity until demand equals capacity in at least

one state, i.e. when λ = λ, since demand is increasing in λ.

The first proposition concerns existence of equilibria for capacity choices when capacity is

a strategic complement for fixed λ. Assumptions 1 and 2 are insufficient to ensure strategic

complementarity,9 so I need a third assumption.

Assumption 4. The derivative ∂2RCCi (K1,K2,λ)
∂Ki∂K−i

exists and is positive ∀K1, K2, λ, and i =

1, 2.

When K2 increases, there are two forces at play affecting the first order conditions. The

first is conventional – for every value of λ, increasing K2 will increase firm 1’s marginal

payoff (assuming strategic complements). But an increase in K2 has a secondary effect – a

larger K2 will decrease the range of λ for which firm 2 chooses clearing prices, and it will

decrease the range of λ for which firm 1 chooses clearing prices. This effect will always have

a positive influence on firm 1’s marginal payoff. In the strategic complements case, these

two effects reinforce each other. In this case, I can show the increasing differences property

holds and an equilibrium exists quite generally.

Proposition 1. Under assumptions 1, 2, and 4, there exists a Nash equilibrium in pure

strategies in this game.

Proof. For full details see the Appendix. I show that under assumption 4, each firm’s payoff

function satisfies the increasing differences property. I then apply well-known results from

Topkis [18] to get the result.

Strategic complements is a strong assumption given that we have assumed goods are sub-

stitutes in the product market. However, there are demand functions that satisfy all three
9Linear demand functions satisfy assumptions 1 and 2, but capacity is a strategic substitute for fixed λ.
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assumptions. One such demand function is x1 = p−ε11 pε22 + η, when ε1 > 1, ε21 − ε22 − ε1 < 0

and η is a small positive real number.10

If instead capacity acted as a strategic substitute, then for fixed λ, increasing K2 would

decrease firm 1’s marginal payoff. However, this has no effect on the secondary effect

described above; this remains positive. Thus we have opposing signs. It is straightforward

to construct examples where the first outweighs the second and vice-versa, so assuming

capacity acts as a strategic substitute for fixed λ does not imply the decreasing differences

property. Therefore I cannot find the converse of Proposition 1.

However, equilibria do exist when capacity is not a strategic complement, even if the stan-

dard theorems do not apply. In the linear case, with restrictions on the distribution of λ,

I prove that payoff functions are quasiconcave, and thus an equilibrium exists. This proof

relies on the fact that the second derivatives of the first order conditions are convex in a

firm’s own capacity, under sufficient conditions on the distribution function.

Proposition 2. When demand is linear, i.e. xi = λ (a− b1pi + b2p−i), and under restric-

tions on the distribution function, there exists a Nash equilibrium in pure strategies.

Proof. See the Appendix. The exact restrictions on the distribution function are sum-

marised by equations 2.12 - 2.14, in the proof.

If both firms have the same costs, then the assumptions of Proposition 2 also imply that

the resulting symmetric equilibrium is unique.

Corollary 1. If costs are symmetric in Proposition 2, then there exists a unique symmetric

equilibrium.

Proof. Symmetric equilibria are characterised by equation 2.7. Under the conditions of

Proposition 2, equation 2.7 is a convex function on a compact interval,11 and is negative

at the upper bound of this compact interval. These two properties ensure that equation

2.7 can only cross zero once. Therefore there exists a unique symmetric equilibrium (which

could be at K = 0). Existence is guaranteed by Proposition 2.
10Vives [20] discusses this topic briefly (p96 and p151).

11Equation 2.7 is convex only if
λ̂F ′′(λ̂)
F ′(λ̂)

≥ − 2b21+b1b2
b22

∀K. This condition is precisely equation 2.12 (in

Proposition 2) evaluated at K = K1 = K2. Since Proposition 2 requires equation 2.12 to be true for all K1

and K2, it is certainly true when K1 = K2. Thus equation 2.7 is convex.



19

There is a special case of my model where existence can also be proven under an assumption

of strategic substitutes (the converse of Assumption 4). This is when the derivatives of xi

with respect to p−i are equal to zero, i.e., each firm is a monopoly. Here equation 2.1

simplifies to zero, and the derivative of pCC1 with respect to K1 equals the derivative of pCB1

with respect to K1. These results imply the secondary effect described above disappears.

2.3 Discussion

2.3.1 Comparison to the Cournot Benchmark

Several authors in the capacity-price model literature have drawn comparisons with the

Cournot outcomes against their models. In the Bertrand-Edgeworth paradigm, they gen-

erally agree that when capacity costs are high, the equilibrium outcomes will be identical

to those of the output game. For lower costs, the only symmetric equilibria in most of

these models are in mixed strategies, so direct comparisons can not be made. The Kreps-

Scheinkman model is the exception.

In my capacity-price model, the characterisation of symmetric equilibria given by equation

2.7 enables a general, intuitive comparison with the Cournot Benchmark characterisation

(equation 2.2). Consider first the symmetric linear case. Let K∗ be the unique symmetric

equilibrium in my model, and let KC be the unique symmetric Cournot equilibrium12. Then

∫ λ

λ

(
λa (b1 + b2)− (2b1 + b2)K(

b21 − b22
)
λ

− c

)
dF (λ)− k

≤
∫ λ

λ̂(K)

(
λa (b1 + b2)− (2b1 + b2)K(

b21 − b22
)
λ

− c

)
dF (λ)− k

∀K, because the integrand is increasing in λ and is negative at λ̂ (K). Since the left hand

side is decreasing in K, this inequality implies that for any K less than KC , the equilibrium

condition will be positive, thus K∗ can only lie above KC .

Notice that as k rises, K∗ decreases, so λ̂(K∗) decreases. Eventually λ̂(K∗) will decrease to
12Uniqueness in my model follows from the corollary to proposition 2. Uniqueness in the Cournot model

is verified by Vives [20]



20

λ, at which point the equilibrium condition becomes equivalent to the Cournot one. Hence

for sufficiently high k, K∗ will equal KC . This accords with previous authors using the

Bertrand-Edgeworth paradigm.

I can also place an upper bound on the equilibrium capacity. Let λ́ denote the value of λ

that sets marginal payoffs equal to zero. Then

∫ λ

λ̂(K)

(
λa (b1 + b2)− (2b1 + b2)K(

b21 − b22
)
λ

− c

)
dF (λ)− k

≤
∫ λ

λ́(K)

(
λa (b1 + b2)− (2b1 + b2)K(

b21 − b22
)
λ

− c

)
dF (λ)− k,

∀K since by rearranging equation 2.1, λ́ ≥ λ̂, the integrands are increasing in λ and are

negative at λ̂ (K). The right hand term here is strictly decreasing in K. Let KM denote

the unique K that sets the right hand equation equal to zero. By similar reasoning for the

previous inequality, KM ≥ K∗. This right hand term is best thought of as the equilibrium

condition if both firms were acting as monopolists (as if cross effects were zero).

Recall the equilibrium condition will generally not be decreasing, even in this linear case.

These two bounds however, do restrict the range of potential equilibria, since they bound

the equilibrium condition between two decreasing functions and is equal to one or the other

of them at the upper and lower limits of K.

This model has another implication that does not accord with the Cournot model. Contin-

uing with the linear case, I show that a decrease in capacity costs will increase K∗ by more

than an equivalent decrease in production costs. This is easily seen from the derivatives.

The derivative of the equilibrium condition with respect to k is simply −1. The derivative

of the equilibrium condition with respect to c is

−
(

1− F
(
λ̂
))

+
b22K

b1
(
b21 − b22

)
λ̂

∂λ̂

∂c
F ′
(
λ̂
)
.

The left hand term is negative, but greater than −1. The right hand term is positive.

Thus the sign is strictly greater than −1. This suggests that a policy maker who wishes to

increase industry capacity should target subsidies on capacity costs rather than production
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costs. The Cournot model, by contrast, makes no distinction between the two types of

costs.

All of the above results will generalise. If we know that marginal revenue in capacity under

clearing prices (a) is negative, (b) satisfies assumption 3, and (c) is increasing in λ, and if

an equilibrium exists in my model, then the above results hold. Conditions (a) and (b) are

standard; the third condition is certainly true in the linear case, and it also holds for the

CES-type function I used as an example of Proposition 1. Indeed, since λ affects demand

multiplicatively, the derivatives of price with respect to λ are positive, so I would expect

condition (c) to be satisfied more often than not.

2.3.2 Concluding Remarks

There are a couple of existing models whose intuition hews closely to mine. I have already

mentioned Reynolds and Wilson [14]. Their model is broadly similar to mine in its intu-

ition, but my model does have the advantage of a complete characterisation of symmetric

equilibria, allowing a broader discussion of comparative statics and other properties of the

equilibria. This should allow for greater use in potential applications, provided the assump-

tions on demand are met. Reynolds and Wilson do find an example where an asymmetric

equilibrium exists (with symmetric costs and demand). It would be interesting to analyse

my model to see if this is a general property of capacity-price models, or is just a function

of the discontinuities of the Bertrand-Edgeworth paradigm. The models analysed by Gab-

szewicz and Poddar, and by Grimm and Zoettl [10], are also similar to mine, except that

firms choose outputs rather than prices in the final stage subgame. While these models

still assume an ‘invisible auctioneer’, they do provide an alternative (and perhaps more

tractable) way to mimic the intuition of capacity-price models with random demand.

The Cournot model is tractable, widely used and understood. It has been used as a proxy for

pricing games, even when profit-maximising firms would not choose such prices. Previous

authors have found that the Cournot model does not match the predictions of equivalent

capacity-price models in specific examples. I extend this comparison by providing a new

capacity-price model with random demand, in which symmetric pure-strategy equilibria can

be fully characterised. I use this characterisation to show that the Cournot model indeed

predicts a less competitive (lower capacity) outcome than my model, and I derive some
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policy implications in my model that can not be shown in the Cournot model.

2.4 Appendix

Proof of Lemma 1

To simplify the following equations, let Mπi = xi + (pi − ci)∂xi∂pi
, be the marginal (uncon-

strained) profit to firm i given prices pi and p−i.

Part (i)

For all these derivatives to be positive, we need three things to be true

1. ∂pCC1
∂λ ≥

∂pCB1
∂λ

2. ∂pCC1
∂λ ≥

∂pBC1
∂λ

3. ∂pCC1
∂K1

≤ ∂pCB1
∂K1

.

The first inequality requires

∂x1
∂p2

∂x2
∂λ −

∂x1
∂λ

∂x2
∂p2

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

≥
∂x1
∂p2

∂Mπ2
∂λ − ∂x1

∂λ
∂Mπ2
∂p2

∂x1
∂p1

∂Mπ2
∂p2
− ∂x1

∂p2
∂Mπ2
∂p1

.

Note that since λ enters demand multiplicatively, and because pCB1 solves Mπ2 = 0, we

have ∂Mπ2
∂λ = 0. Using this, cross multiplying and canceling where possible, we get that the

above is true if and only if

∂x2

∂λ

(
∂x1

∂p1

∂Mπ2

∂p2
− ∂x1

∂p2

∂Mπ2

∂p1

)
≥ ∂x1

∂λ

(
−∂x2

∂p2

∂Mπ2

∂p1
+
∂Mπ2

∂p2

∂x2

∂p1

)
.

The left hand side is positive given assumptions 2(c) and 2(e). Assumption 2(f) assures us

the right hand side is negative, so this inequality is always true.

The proof of the second inequality is symmetric to that of the first inequality. The inequality

requires

∂x1
∂p2

∂x2
∂λ −

∂x1
∂λ

∂x2
∂p2

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

≥
∂x2
∂λ

∂Mπ1
∂p2
− ∂x2

∂p2
∂Mπ1
∂λ

∂Mπ1
∂p1

∂x2
∂p2
− ∂Mπ1

∂p2
∂x2
∂p1

.

Now we have ∂Mπ1
∂λ = 0 and the above inequality is true if and only if
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∂x2

∂λ

(
∂x1

∂p2

∂Mπ1

∂p1
− ∂x1

∂p1

∂Mπ2

∂p2

)
≤ ∂x1

∂λ

(
∂x2

∂p2

∂Mπ1

∂p1
− ∂Mπ1

∂p2

∂x2

∂p1

)
.

Again, the right hand side is positive by assumptions 2(c) and 2(e) and the left hand side

is negative by assumption 2(f).

The third inequality is a direct consequence of assumption 2(f). The result is true if and

only if

⇔
∂x2
∂p1

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

≤
∂Mπ2
∂p2

∂x1
∂p1

∂Mπ2
∂p2
− ∂x1

∂p2
∂Mπ2
∂p1

⇔
∂x2
∂p2

(
∂x1
∂p1

∂Mπ2
∂p2
− ∂x1

∂p2
∂Mπ2
∂p1

)
− ∂Mπ2

∂p2

(
∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

)
(
∂x1
∂p1

∂Mπ2
∂p2
− ∂x1

∂p2
∂Mπ2
∂p1

)(
∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

) ≤ 0,

assuming assumptions 2(a - e). The denominator is positive under these assumption so

(with some cancellation of common terms) this statement is true if and only if

−∂x2

∂p2

(
∂Mπ2

∂p1

)
≤ −∂x2

∂p1

(
∂Mπ2

∂p2

)
,

which is true by assumption 2(f). This proves the third statement.

Putting the three inequalities together, we have ∂λa
∂K1

> 0 and ∂λb
∂K1

> 0. The derivatives

with respect to K2 follow symmetrically.

Part (ii)

It is immediate that ∂λa
∂K1

> ∂λaa
∂K1

because the former term is positive by lemma 1(i) and the

latter is zero (since λaa is defined by pBC1 ≡ pBB1 , neither term which contains K1.

For the other case, ∂λbb
∂K1

> ∂λb
∂K1

if and only if

−∂pCB1
∂K1

∂pCB1
∂λ

>

∂pCB1
∂K1

− ∂pCC1
∂K1

∂pCC1
∂λ −

∂pCB1
∂λ

,

which can be simplified to

∂Mπ2

∂p2

∂x2

∂λ

∂x1

∂p2
< 0.
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This last equation is always true (assumption 2), giving the required result.

Proof of Proposition 1

I show that under assumptions 1, 2, and 4, this is a supermodular game.

Step 1. The set of actions is a compact lattice

Each firm can choose Ki ∈
[
0,K0

i

]
⊂ <. This is a compact subset of <, which is trivially a

compact lattice.

Step 2. Payoff functions are upper semi-continuous and supermodular in each firm’s capac-

ity

The payoff functions are differentiable and thus continuous. Since each firm chooses an

action in < when the other firm’s capacity is fixed, the payoff functions are supermodular.

(See Topkis [18] p46.)

Step 3. The payoff functions exhibit increasing differences in (K1, K2)

Consider firm 1. Suppose first that K1 ≥ g(K2) and K1 < Ka
1 . Then the cross-partial

derivative of firm 1’s payoff function is

∫ λ

λ

(
∂2RCC1 (K1,K2, λ)

∂K1∂K2

)
dF (λ) .

This integral is positive by assumption 4. If instead Ka
1 ≤ K1 < Ka

1 , then the cross-partial

derivative is of the form

∫ λ

λa

(
∂2RCC1 (K1,K2, λ)

∂K1∂K2

)
dF (λ)−

(
∂RCC1 (K1,K2, λa)

∂K1
− c1

)
F ′ (λa)

∂λa
∂K2

.

The integral on the left is again positive by assumption 4. Since F ′ (λ) > 0, ∂λa
∂K2

> 0 (by

Lemma 1) and marginal profit is negative at λa (from equation 2.1), it follows the right

hand term is also positive. Finally, if K1 ≥ Ka
1 , then the cross-partial derivative is just

zero. Thus in all possible cases, the cross-partial derivative is non-negative.

When K1 < g(K2), we must consider a few more cases. The cases K1 ≥ Kbb
1 and K1 < Kb

1

are parallel to above. For the case Kb
1 ≤ K1 < Kb

1
13 the cross-partial derivative is

13Some of these cases will be empty sets at certain values of K2.
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∫ λ

λb

(
∂2RCC1

∂K1∂K2

)
dF (λ)−K1

(
∂pCC1

∂K1
− ∂pCB1

∂K1

)
F ′ (λb)

∂λb
∂K2

.

Once again, the integral is positive. For the right hand term, it is easiest to rewrite this

expression (referring to Lemma 1) as

−K1
∂pCC1

∂K2
F ′ (λb)

∂λb
∂K1

.

The term ∂λb
∂K1

is positive (it is symmetric to ∂λa
∂K2

), and ∂pCC1
∂K2

is negative, allowing me to

sign the whole term positive.

There is another possible case where K1 > Kb
1 but K1 < Kbb

1 . In this case, the cross-

partial derivative is zero. The final possibility is K1 > Kb
1 and Kbb

1 ≤ K1 ≤ Kbb
1 . Here the

cross-partial derivative is

∫ λ

λbb

(
∂2RCC1

∂K1∂K2

)
dF (λ) ,

which is positive. Here too, all cases are non-negative.

Thus I have ∂π1
∂K1

is weakly increasing in K2, so by Topkis [18] p42, firm 1’s payoff function

has the increasing differences property. The argument for firm 2 is symmetric.

Steps 1, 2, and 3 prove this is a supermodular game, so existence of a pure strategy Nash

equilibrium is guaranteed (see Vives [20] Thm 2.5).

Proof of Proposition 2

I show that for all K2, firm 1’s payoff function is quasiconcave in the set A.14 The proof

of this comprises three parts. First I give conditions under which equations 2.2 - 2.5 are

convex in K1. Then I show that for fixed K2, firm 1’s first order condition is globally convex

on the resulting compact interval in set A. Finally, I show that firm 1’s first order condition

is negative on the upper bound of this interval. The proof then follows by recognising that

a convex function on a compact interval of the real line that ends at a negative point can

only cross zero once.

Fix K2 ∈
[
0,K0

2

]
. Let Z1 (K1,K2) denote firm 1’s first order condition.

14A is defined in Lemma 2. Recall that any point outside A is dominated by a point inside A for at least
one of the firms.
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Part I

The derivatives of equations 2.2 - 2.5 respectively with respect to K1 are (in the linear case)

∫ λ

λ

−2b1(
b21 − b22

)
λ
dF (λ) (2.8)

∫ λ

λa

−2b1(
b21 − b22

)
λ
dF (λ) +

b22K1

b1
(
b21 − b22

)
λa

∂λa
∂K1

F ′ (λa) , (2.9)

∫ λ

λb

−2b1(
b21 − b22

)
λ
dF (λ) +

∫ λb

λbb

−4b1(
2b21 − b22

)
λ
dF (λ) (2.10)

+
b1b

2
2K1(

b21 − b22
) (

2b21 − b22
)
λb

∂λb
∂K1

F ′ (λb) +
b22K1

b1
(
2b21 − b22

)
λbb

∂λbb
∂K1

F ′ (λbb) ,

and

∫ λ

λb

−2b1(
b21 − b22

)
λ
dF (λ) +

∫ λb

λ

−4b1(
2b21 − b22

)
λ
dF (λ) (2.11)

+
b1b

2
2K1(

b21 − b22
) (

2b21 − b22
)
λb

∂λb
∂K1

F ′ (λb) .

The derivative of equation 2.8 with respect to K1 is zero, and thus equation 2.2 is always

convex in the linear case. When I take the derivative with respect to K1 of equations 2.9 -

2.11, the integrals disappear and I get terms involving F ′′(λa), F ′′(λb), and F ′′(λbb). With

some rearranging, I reduce these derivatives to three conditions, which, if true for all K1

and K2, guarantee the derivatives of equations 2.9 - 2.11 with respect to K1 are positive.

λaF
′′ (λa)

F ′ (λa)
≥ −2b21K1 + b1b2K2

b22K1
(2.12)

λbF
′′ (λb)

F ′ (λb)
≥ −

3
(
2b21 − b22

)
K2 + 2b1b2K1

b1b2K1
(2.13)

λbbF
′′ (λbb)

F ′ (λbb)
≥ −4b21

b22
(2.14)
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The right hand sides of each of these expressions are always negative. Clearly, any increas-

ing distribution will satisfy these conditions, as will the uniform distribution. Decreasing

distributions are fine provided the slope is not too steep (variance is sufficiently high). For

example, the exponential distribution will satisfy this for sufficiently low β.

When conditions 2.12 - 2.14 hold, equations 2.2 - 2.5 are convex. This completes Part I.

Part II

I consider three cases.

Case 1: λ̂ (g(K2),K2) < λ

First suppose K1 < g(K2). Then λb (K1,K2) < λ̂ < λ. Here Z1 is just the Cournot

condition, equation 2.2. Now suppose K1 ≥ g(K2). For g(K2) ≤ K1 < Ka
1 , Z1 is still

equation 2.2. If Ka
1 ≤ K1 ≤ Ka

1 , then Z1 equals equation 2.3. Ka
1 is the boundary of the

set A. Equations 2.2 and 2.3 are convex by Part I of this proof.

To show the function is globally convex between 0 and Ka
1 , I just need to show that the

slope of equation 2.2 is less than the slope of equation 2.3 at the boundary point where

equation 2.2 changes to equation 2.3. This point is Ka
1 . But this is trivial, because at Ka

1 ,

equation 2.9 (the derivative of equation 2.3) equals equation 2.8 (the derivative of equation

2.2) plus an extra positive term. This proves the convexity of Z1 in this case.

Case 2: λ̂ (g(K2),K2) > λ

First suppose K1 > g(K2). Then λa(K1,K2) > λ̂ > λ, so (K1,K2) lies outside the set A.

Thus we need not consider this case. Suppose instead K1 ≤ g(K2). When 0 ≤ K1 ≤ Kb
1,

Z1 is the Cournot condition (equation 2.2). If Kb
1 < K1 ≤ Kbb

1 , Z1 is equation 2.5, and if

Kbb
1 < K1 ≤ Kb

1, Z1 is equation 2.4. Kb
1 is the boundary of the set A. By Part I, equations

2.2, 2.4, and 2.5 are convex.

To show the function is convex between 0 and Kb
1, I need to show that at the points Kb

1

and Kbb
1 , the slope on the left is less than the slope on the right. At the former point, the

derivative on the right is given by equation 2.11, where λb = λ. This is the same as the

derivative of equation 2.2, plus a positive term. At the latter point, the derivative on the

right is given by equation 2.10, which at this point has an extra term than equation 2.11.

Thus the first order condition is convex on [0,Kb
1].

Case 3: λ ≤ λ̂ (g(K2),K2) ≤ λ
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First suppose K1 ≥ g(K2). When g(K2) ≤ K1 ≤ Ka
1 , Z1 equals equation 2.3. Ka

1 is the

boundary of the set A. Suppose instead that K1 < g(K2). When Kbb
1 ≤ K1 < g(K2), Z1

equals equation 2.4, and when Kb
1 ≤ K1 < Kbb

1 , Z1 equals equation 2.5. For lower K1, Z1

is equation 2.2. All of these equations are convex by Part I.

Now consider the boundary points between the regions. I have already considered most of

these in case (2) except for the boundary point at K1 = g(K2). Here, note that in the linear

case, ∂λa
∂K1

> ∂λb
∂K1

. When K1 = g(K2), λa = λb = λbb = λ̂. Thus, the difference given by

equation 2.9 - equation 2.10 is

b22K1F
′ (λa)

b1
(
b21 − b22

)
λa

(
∂λa
∂K1

− ∂λb
∂K1

)
− b22K1F

′ (λbb)
b1
(
2b21 − b22

)
λbb

(
∂λb
∂K1

− ∂λbb
∂K1

)
,

which is positive, since ∂λa
∂K1

> ∂λb
∂K1

and ∂λbb
∂K1

> ∂λb
∂K1

(the latter is proved in Lemma 1).

Therefore at K1 = g(K2), the slope of equation 2.4 is less than the slope of equation 2.3.

Part III

Finally, I show that Z1 is negative at any boundary point of A. There are two cases

Case 1: λ̂ (g(K2),K2) ≤ λ

In this case, as K1 rises, the boundary point will be given by Ka
1 . At this point, Z1 is simply

−k1, which is negative.

Case 2: λ̂ (g(K2),K2) > λ

This case is a little harder. The first order condition here looks like equation 2.6, evaluated

at the point Ka
1 . I need to show the integral is negative. Since the integrand is increasing

in λ, it is sufficient to show the integrand is negative when λ = λ, at Ka
1 . In the linear case,

making these substitutions, I can simplify the integrand to

λa
(
−2b21b2 − 2b1b22 − b32

)
− 4b21b2K2(

2b21 − b22
)2
λ

,

which is negative.

Thus, in all possible cases, the first order condition on A is a convex function, which is

negative on the boundary of A. Thus the first order condition can only cross zero once,

thus firm 1’s payoff function is quasiconcave. A symmetric argument applies to firm 2. The
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existence of a pure strategy Nash equilibrium follows by standard theorems (for example,

Vives [20] Theorem 2.1).
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Chapter 3

Capacity Withholding

3.1 Introduction

In markets with demand uncertainty, capacity constraints, and non-storable goods, firms

often end up holding excess capacity when demand is low. This excess capacity can have

a dampening effect on prices and profits in the spot market, as firms compete on price to

make a return on their costly capacity. A good example often quoted is the hotel industry.

In the off-season, hotels end up with a lot of excess capacity, and compete vigorously

on price. However, this is not true in all such industries. Consider car ferry sailings in

contested markets such as the Lake Michigan crossing or the Cook Strait crossing in New

Zealand.1 In both cases, there is a clear peak in demand during summer, when vacationers

and tourists abound, and a correspondingly lull during winter. Intriguingly, the companies

on these routes often do not change their prices at all during the off-season. Instead they

significantly cut their sailing schedule. For example, Lake Express on the Lake Michigan

crossing operates six crossings a day in summer, dropping to four during fall, and cuts

service altogether in winter. Its competitor, the S.S. Badger, offers four sailings in the

summer, two in the fall, and none in winter. I call this practice withholding capacity, after

a similar behaviour in the electricity industry. The capacity cuts practiced by both firms

in the market apparently enable firms to maintain relatively high prices.

Why might a firm choose to withhold capacity? One answer to this question is the existence

of costs with holding unused capacity in the short-run. The ferry case I introduced above

is a good example of an industry with low marginal costs of production but high costs of
1The Lake Michigan crossing between Michigan and Wisconsin is contested by a duopoly, as is the Cook

Strait crossing between Wellington and Picton in New Zealand. I do not consider the monopoly case in this
paper, although similar behaviour occurs, for example in many of the Washington State ferry routes.
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capacity in the short-run. A ferry sailing uses almost the same amount of fuel and labour

regardless of how many passengers are actually on board. Withholding capacity – cancelling

ferry sailings – in the short-run can therefore realise considerable savings. Another possible

answer is that withholding some of a firm’s capacity in the short-run could act as an

observable commitment device, which, if matched by the other firms, potentially enables

higher prices and profits if they respond in kind. This latter answer has some justification

in the economic literature. When goods are substitutes, as in my examples, Singh and

Vives [15] showed that firms prefer to compete on quantities than prices. Competition in

quantities realizes higher profits than competition in prices, because the price elasticity of

demand is greater than the quantity elasticity of demand. If withholding is an observable,

committed action, than potentially all firms in the industry can choose their preferred

quantity, which would be lower than production at that price otherwise, to realise higher

profits. In this paper, I create a model where firms choose capacity in the long-run, price

in the short-run, and have the option to withhold capacity. Using this model, I show that

both the above explanations are justified, and draw out the consequences of withholding for

equilibrium capacity and output. Finally, I explore the fundamental question raised above,

why ferry companies practice withholding but hotels do not.

There is little literature studying this type of capacity withholding. The term has been most

recently associated with capacity withholding in the electricity industry, where there is con-

siderable empirical evidence of withholding during periods of high demand. Withholding

here likely arises from discontinuous pricing caused by uniform price auctions. When de-

mand is low relative to capacity, there are equilibria in which all firms charge marginal cost,

but when demand is high relative to demand, it is possible for firms to charge an unlimited

high price. Hence there is a strong incentive to withhold when demand is high. Dechenaux

and Kovenock [6] provide a more sophisticated analysis in their recent paper. This be-

haviour contrasts with my examples, where withholding takes place only during troughs

in demand. Another use of the term appears in the literature when owners of a natural

resource withhold profitable extraction in the short-run to profit more in the long-run. See

for example the paper by Gaskins and Haring [9]. Hotels and ferry sailings are examples

that fit most naturally into a differentiated products environment, in which withholding has

not been studied, to my knowledge.
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The key to the study of withholding here is the distinction between firms’ long-run and

short-run choices. There is a substantial literature with models where firms choose capacity

in the long-run, then price or quantity in the short-run. An example of the latter is the

paper by Grimm and Zoettl [10], which does not however employ a differentiated products

environment, nor does it allow firms to choose prices. There are many examples of the

latter. In Chapter 2 of this thesis, I show in markets where firms choose capacity in the

long-run and prices in the short-run, firms will under-utilise capacity at the equilibrium in

periods of low demand, rather than choose clearing prices as in the Cournot model. This

corresponds well with casual observations of the hotel industry, but there of course firms

have no option of withholding.

In this paper, I create a differentiated products model, where firms choose capacity in the

long-run, and capacity followed by price in the short-run. I show that withholding both

reduces costs and increases revenues, making it a dominant strategy for firms provided

the assumptions of observability, commitment, and divisibility are met. In section 3.2, I

outline this model and prove existence of pure-strategy equilibria in the whole game. In

section 3.3, I compare the symmetric equilibrium to the basic capacity-price model without

withholding, showing that firms will invest in more capacity in the long-run. Finally in

section 3.4, I discuss the intuition behind capacity withholding and why we do not see more

of it in practice.

3.2 The Model

I introduce a model with demand uncertainty, where firms may choose both capacity in

the long-run, prices in the short-run, and have the option to withhold capacity in the spot

market. This is an extension of the capacity-price model in Chapter 2, modified to explicitly

allow firms to withhold capacity. I will henceforth refer to this original model as the basic

or no-withholding model, and the new model in this paper as the withholding model.

There are two firms, who produce a symmetrically differentiated non-storable product. De-

mand for each firm’s product is a function of both firms’ prices, and of a random variable λ

representing the level of market demand. In the basic model, firms play a two-stage game.

At stage one, each firm i chooses a capacity level Ki, at a cost of ki per unit. At this stage,

firms do not know the true value of λ, but they do know that λ will be the realisation
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of a random variable with a particular distribution F (λ) which is twice continuously dif-

ferentiable, and whose support is contained in
[
λ, λ

]
. At the beginning of stage two, λ is

revealed, and each firm i chooses a price pi at which it wishes to sell its product. I denote

the demand for firm i ’s product given pi, p−i, and λ by xi(pi, p−i, λ). Since λ is intended

to represent market demand, I assume λ enters demand multiplicatively. Each firm i pays

a cost ci for every unit it produces, but cannot produce more than Ki even if demand is

greater. After stage two, each firm i receives profits (pi − ci) Min [Ki, xi (pi, p−i, λ)].

I now extend the model to allow for capacity withholding, by adding a third stage to the

game. At stage one, each firm i chooses a capacity level Ki as before. The demand shock

is then revealed, and at stage two both firms now choose how much capacity they want to

make available. I denote their choices q1 and q2 respectively. Finally at stage three, both

firms choose prices, with the demand constraint now being xi ≤ qi rather than xi ≤ Ki. The

firms may incur costs at each stage. I assume henceforth that both firms face identical costs.

The production cost c remains the same as in the basic model, but I divide the capacity

cost, originally k, into two parts: kS , a non-negative cost incurred when firms need to use

capacity in the short-run – such as start-up costs, maintenance, or staffing costs, and kL, a

positive cost incurred when firms actually build capacity in the long-run. In the equivalent

basic model, firms cannot withhold, so they choose qi = Ki, and incur costs k per unit of

capacity installed. To keep the equivalence between the models, I assume kS + kL = k.

I use most of the assumptions on the demand and cost functions from Chapter 2.2 As-

sumption 5 outlines standard regularity conditions on demand functions, and defines the

cost functions for the two firms. Assumptions 6(a – e) impose the requirement that the

differentiated goods be gross substitutes, and that a firm’s demand and marginal profit

functions react more strongly to a change in the firm’s own price than to a change in the

competitor’s price. Assumption 6(f) implies that if p−i increases, then firm i ’s optimal

point on its residual demand curve gives rise to both a higher price and quantity in the

price subgame. Except for the aforementioned differences in costs, these correspond exactly

to assumptions 1 and 2 in Chapter 2.

Assumption 5. The functions xi (pi, p−i, λ) are defined, continuous, single-valued and non-
2These assumptions were themselves modified from Friedman (1988) [8] and extended to allow explicitly

for a constant marginal cost of production and the presence of the demand level variable, λ.
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negative for all (p1, p2) ∈ <2
+, i = 1, 2. Each firm pays a constant cost per unit produced

equal to c > 0, a constant cost for each unit of capacity installed equal to kL > 0, and a

constant cost per unit of capacity actually used in the spot market equal to kS ≥ 0.

There exists a finite, positive price, p0
i such that xi(pi, p−i, λ) = 0 for all pi ≥ p0

i , for all

p−i. Since each firm i’s demand will be zero if its price exceeds p0
i , we can limit the price

domain to Ω =
{

(p1, p2) | 0 ≤ p1 ≤ p0
1, 0 ≤ p2 ≤ p0

2

}
. Further let Ωi be the subset of Ω on

which xi(pi, p−i) > 0.

Assumption 6. The following derivatives exist and satisfy these conditions:

(a) ∂xi
∂pi

< 0 on Ωi and 0 otherwise

(b) ∂xi
∂p−i

> 0 on Ωi ∩ Ω−i and 0 otherwise

(c) ∂xi
∂pi

+ ∂xi
∂p−i

< 0 everywhere on Ωi

(d) 2∂xi∂pi
+ (pi − c) ∂

2xi
∂p2i

< 0 everywhere on Ωi

(e) 2∂xi∂pi
+ (pi − c) ∂

2xi
∂p2i

+
∣∣∣ ∂xi∂p−i

+ (pi − c) ∂2xi
∂pi∂p−i

∣∣∣ < 0 everywhere on Ωi

(f)
− ∂xi
∂p−i
∂xi
∂xi

≥
−
(

∂xi
∂p−i

+(pi−c)
∂2xi

∂pi∂p−i

)
2
∂xi
∂pi

+(pi−c)
∂2xi
∂p2
i

everywhere on Ωi.

In the basic model I used additional assumptions to establish existence of an equilibrium,

and I require the same here. Assumption 7 establishes assumptions directly on the price

functions that result when both firms charge clearing prices.

Assumption 7. The following derivatives satisfy these conditions:

(a) 2∂p
CC
i (qi,q−i,λ)

∂qi
+ qi

∂2pCCi (qi,q−i,λ)

∂q2i
<

∂pCCi (qi,q−i,λ)
∂q−i

+ qi
∂2pCCi (qi,q−i,λ)

∂qi∂q−i
< 0

(b) ∂pCCi (qi,q−i,λ)
∂λ + qi

∂2pCCi (qi,q−i,λ)
∂qi∂λ

> 0,

where pCCi is the clearing price that sets xi
(
pCCi , pCC−i

)
≡ qi.

The first of these assumptions is essentially the decreasing marginal revenue assumption

and the decreasing differences assumption (that is, capacity is a strategic substitute),3 and

the second simply says marginal revenue increases in the demand shock.
3The requirement that capacity is a strategic substitute is needed only for the proof of existence of an

equilibrium. Otherwise, cross effects may be positive, so long as in absolute value they are less than own
effects.
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Assumptions 7(a) and 7(b) are not made on the primitives of the model, the demand func-

tions, but rather on the price functions which result when firms choose prices to clear

demand. I make these assumptions for two reasons. First, the decreasing marginal rev-

enue and decreasing differences assumptions are intuitive, well-known assumptions in the

literature, and second, these are exactly the assumptions I need to complete the key proofs

in the paper. If I instead placed sufficient conditions on the demand functions to obtain

these assumptions, I would end up with conditions necessarily more restrictive. This follows

the approach of Singh and Vives [15], and Vives [19], who made assumptions both on the

demand functions and the resulting profit functions. To give an idea of what assumptions

7 might entail on the demand functions, I now outline some simple sufficient conditions.

First note that assumption 7 is not generally implied by assumptions 5 and 6. An exam-

ple that satisfies assumptions 5 and 6 but not assumption 7(a) is the CES type demand

function x1 = λp−ε11 pε22 + η, when ε1 > 1, ε21 − ε22 − ε1 < 0 and η is a small positive real

number. However, if all the second derivatives of demand with respect to price are zero,

then assumptions 5 and 6 do imply all of assumption 7.

When the second derivatives are non-zero, it is difficult to compare marginal revenues in

capacities and prices. Thus, in searching for sufficient conditions, I content myself with

looking for conditions only on the second derivatives of demand with respect to price.

Assuming all these second derivatives are negative is sufficient to ensure all of assumptions

7, except the assumption that ∂2pCCi
∂q2i

<
∂2pCCi
∂qi∂q−i

. This requires an additional assumption.

When the cross-partials are zero, this assumption is

− ∂x2

∂p2

(
∂x2

∂p2
+
∂x1

∂p2

)(
∂2x2

∂p2
1

∂x1

∂p2
− ∂2x1

∂p2
1

∂x2

∂p2

)
>
∂x2

∂p1

(
∂x1

∂p1
+
∂x2

∂p1

)(
∂2x2

∂p2
2

∂x1

∂p2
− ∂2x1

∂p2
2

∂x2

∂p2

)
.

Adding back the cross-partials puts two extra terms in the right-hand bracket on each side

of the equation.
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3.2.1 Pricing Subgame

For any fixed non-negative capacities q1 and q2, I show in Chapter 2 that under assumptions

5 and 6, there exists a unique pure strategy equilibrium in prices. This equilibrium is

characterised by firms choosing either Bertrand prices that maximise (pi − c)xi, or clearing

prices that set demand equal to capacity. This gives rise to four regions. If both firms have

relatively low capacity, then both firms will choose clearing prices in equilibrium. I call this

the CC equilibrium. If firm 1 has relatively high capacity and firm 2 relatively low capacity,

then firm 1 will choose a Bertrand price and firm 2 will choose a clearing price. This I call

the BC region. The CB and BB regions are similarly defined. I illustrate these regions in

figure 3.1.

Figure 3.1: Price equilibria for fixed spot market capacity and demand.

For fixed q2 and λ, as q1 rises, firm 1 will eventually switch from choosing clearing prices

in the subsequent price equilibrium, to choosing Bertrand prices. Define qB1 by qB1 ≡

−
(
pCC1

(
qB1 , q2, λ

)
− c
)
∂x1
∂p1

. This is the critical value of q1 that makes firm 1 indifferent

between the CC equilibrium and the BC equilibrium. Define qB2 symmetrically. Define q̂1

by q̂1 ≡ −
(
pCB1 (q̂1, λ)− c

)
∂x1
∂p1

. Depicted in Figure 3.1, this is the value of q1 that makes

firm 1 indifferent between the CB and BB equilibria.4 When q2 ≤ q̂2, firm 1 switches from

clearing to Bertrand prices at the point q1 = qB1 . When q2 > q̂2, q1 = q̂1 is this critical

point.
4(q̂1, q̂2) is also the unique intersection of the equations q1 = qB1 (q2, λ) and q2 = qB2 (q1, λ).
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3.2.2 Withholding Subgame

After the revelation of the true value of λ, each firm seeks to choose capacity qi to maximise

profit subject to the price subgame equilibria. Since there are four possible price equilibria,

this maximisation problem is potentially complicated. However, I can establish that in any

Nash equilibrium in capacities, both firms will choose clearing prices, even when there is no

cost to making spot market capacity available.

Lemma 3. Any Nash equilibrium in spot-market capacities must lie in the CC region.

Proof. Fix q2 and λ.

First consider the case q2 ≤ q̂2. In this region, when q1 ≤ qB1 , the price equilibrium is CC,

and when q1 > qB1 , the price equilibrium is BC. In the latter region, profits are decreasing

in q1 if kS > 0 and are constant in q1 if kS = 0. I now show that at q1 = qB1 , firm 1’s

marginal profit in capacity is negative, and thus firm 1’s best response is to choose a point

inside the CC region.

∂πCC1

∂q1

∣∣∣∣
(qB1 ,q2,λ)

= pCC1

(
qB1 , q2, λ

)
− c− kS + qB1

∂pCC1

∂q1

= pCC1

(
qB1 , q2, λ

)
− c− kS + qB1

(
∂x2
∂p2

∂x1
∂p1

∂x2
∂p2
− ∂x1

∂p2
∂x2
∂p1

)

= pCC1

(
qB1 , q2, λ

)
− c− kS + qB1

(
∂x1

∂p1
−

∂x1
∂p2

∂x2
∂p1

∂x2
∂p2

)−1

< pCC1

(
qB1 , q2, λ

)
− c− kS + qB1

(
∂x1

∂p1

)−1

≤ pCC1

(
qB1 , q2, λ

)
− c+ qB1

(
∂x1

∂p1

)−1

= 0 (3.1)

The inequality follows from assumption 6, and the final equality from the definition of qB1 .

Now consider the case q2 > q̂2. In this case, there are three potential price equilibria, but I

need only consider the equilibria either side of q1 = q̂1. When q1 > q̂1, the price equilibrium

is BB, in which case firm 1’s profits are weakly decreasing or constant in q1 as described
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above. When q1 < q̂1, the price equilibrium is CB. I now show that at q1 = q̂1, firm 1’s

marginal profit in capacity is negative, so firm 1’s best response is to choose a point q1 < q̂1.

∂πCB1

∂q1

∣∣∣∣
(q̂1,λ)

= pCB1 (q̂1, λ)− c− kS + q̂1
∂pCB1

∂q1

= pCB1 (q̂1, λ)− c− kS + q̂1

(
∂MR2
∂p2

∂x1
∂p1

∂MR2
∂p2

− ∂x1
∂p2

∂MR2
∂p1

)

= pCB1 (q̂1, λ)− c− kS + q̂1

(
∂x1

∂p1
−

∂x1
∂p2

∂MR2
∂p1

∂MR2
∂p2

)−1

< pCB1 (q̂1, λ)− c− kS + q̂1

(
∂x1

∂p1

)−1

≤ pCB1 (q̂1, λ)− c+ q̂1

(
∂x1

∂p1

)−1

= 0 (3.2)

The inequality follows from assumption 6, and the final equality from the definition of q̂1.

The result for firm 2 is symmetric.

Equation 3.2 implies that any point in the BB region is dominated for both firms, and

equation 3.1 implies that any point in the CB region is dominated by a point in the CC

region for firm 1, and vice-versa for firm 2. Applying iterated elimination of dominated

strategies, any Nash equilibrium in quantities will lie strictly within the CC region. This

completes the proof.

Lemma 3 implies each firm’s maximisation problem at the withholding stage can be sim-

plified. Firm i chooses qi to maximise
(
pCCi (qi, q−i, λ)− c− kS

)
qi s.t. qi ≤ Ki. By as-

sumption 7(a), the objective function is concave, so the best response function is qri ≡

argmax
(
pCCi (qi, q−i, λ)− c− kS

)
qi, except when qri exceeds Ki. In the latter case, choos-

ing qi = Ki is the best firm can do, so the best response function for the subgame is

qRi = Min {Ki, q
r
i }. Each firm is either constrained by its long-run capacity, or uncon-

strained. This leads to four possibilities for the equilibrium – either one firm is constrained,

both are, or neither are. If firms are constrained, they choose clearing prices, for which
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I have already introduced notation – pCCi . In the case that a firm is unconstrained, the

equilibrium prices will differ from the Bertrand prices in the no-withholding model. If a

firm ends up in this equilibrium, I will denote this by a ‘U’. For example, pCUi indicates

that firm 1 is choosing clearing prices, but firm 2 is choosing unconstrained prices. I will

extend this notation to firms’ revenues and profits. Define firm i’s revenue in the CC region

by RCCi = pCCi qi, and profit by πCCi = RCCi − cqi − kSqi. Similar notation extends to the

other regions.

When firms are unconstrained, assumption 7 implies the best reply functions are strictly

downwards sloping and there exists a unique pure strategy equilibrium. Adding capacity

constraints does not change this result. If one of the firms is constrained, and cannot obtain

the unconstrained equilibrium, then its best reply function becomes constant, and since the

other firm’s best reply is downward sloping, there still can be but one equilibrium.

For fixed K1 and K2, when the demand shock is low, firm i will be unconstrained, and

can choose spot market capacity to maximise profit. The resulting spot market capacity is

lower than the firm’s long-run capacity, so the firm is withholding. When the demand shock

is high, firm i’s best response is constrained by Ki. Now firm i chooses to produce at full

capacity in the subgame equilibrium. Similar to the price subgame, there exists a unique

value of λ at which firm i switches from the unconstrained best response to the constrained

best response. I will denote this point λCi . The firm with the lower long-run capacity will

be the first to be constrained as demand rises, so if K1 < K2, λC1 < λC2 .

When Ki < K−i, then these points are formally defined by

λCi : Ki ≡ −
(
pCCi

(
Ki, q−i, λ

Ci
)
− c− kS

)(∂pCCi
∂qi

)−1

, (3.3)

λC−i : K−i ≡ −
(
pCC−i

(
Ki,K−i, λ

C−i
)
− c− kS

)(∂pCC−i
∂q−i

)−1

. (3.4)

Lemma 4. λC1 and λC2 are (weakly) increasing in K1 and K2.

Proof. I calculate the derivatives implicitly. Here I show the case K1 < K2, and the reverse

case follows symmetrically.
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∂λC2

∂K2
=
−
(

2∂p
CC
2
∂q2

+K2
∂2pCC2

∂q22

)
∂pCC2
∂λ +K2

∂2pCC2
∂q2∂λ

∂λC2

∂K1
=
−
(
∂pCC2
∂q1

+K2
∂2pCC2
∂q1∂q2

)
∂pCC2
∂λ +K2

∂2pCC2
∂q2∂λ

∂λC1

∂K1
=
−
(

2∂p
CC
1
∂q1

+K1
∂2pCC1

∂q21

)
∂pCC1
∂λ +K1

∂2pCC1
∂q1∂λ

∂λC1

∂K2
= 0.

By assumption 7, the first three derivatives are all positive and the last is zero, giving the

result.

3.2.3 Capacity Choice in the Whole Game

I now find conditions under which subgame-perfect equilibria of the whole game exist. I

will elaborate from the point of view of firm 1, noting that the argument for firm 2 is

symmetric. Firm 1’s payoff function is defined as the expectation with respect to λ over the

reduced profit functions. This payoff function is differentiable with respect to K1, but the

first derivatives are only piecewise differentiable with respect to K1, because the subgame

equilibria are only piecewise differentiable in K1. The most important distinction is if K1

is greater than or less than K2. Fixing K2, first assume K1 ≥ K2. Then firm 1’s first order

condition takes the form

∫ λ

λC1

(
∂RCC1 (K1,K2, λ)

∂K1
− c− kS

)
dF (λ)− kL. (3.5)

Now suppose instead K1 < K2. Then firm 1’s first order condition takes the form

∫ λ

λC2

(
∂RCC1 (K1,K2, λ)

∂K1
− c− kS

)
dF (λ)

+
∫ λC2

λC1

(
∂RCU1 (K1, λ)

∂K1
− c− kS

)
dF (λ)− kL. (3.6)
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When K1 = K2 = K, these two equations collapse to a single equation,

E (K) ≡
∫ λ

λC(K)

(
∂RCC1 (K,K, λ)

∂K1
− c− kS

)
dF (λ)− kL, (3.7)

where λC(K) = λC2(K,K) = λC1(K,K). E (K) = 0 is the necessary condition for a

symmetric equilibrium.

I now briefly demonstrate that E (K) is decreasing in K. E′ (K) is

∫ λ

λC(K)

∂

∂K

(
∂RCC1 (K,K, λ)

∂K1

)
dF (λ)

+ F ′
(
λC
)(∂RCC1

(
K,K, λC

)
∂K1

− c− kS
)
∂λC

∂K
.

The right-hand term in this equation is zero, because marginal profit at λC is zero by

definition of λC . The integrand in the left-hand term is negative by assumptions 7(a) and

7(b). Thus, the derivative of E (K) is negative, giving the result.

Proposition 3. Under assumptions 5 – 7, there is a unique symmetric Nash equilibrium

in pure strategies in this game.

Proof. A symmetric equilibrium, K?, must satisfy E (K?) = 0. Since E (K) is decreas-

ing, uniqueness is straightforward. Under assumptions 5 – 7, firms’ payoff functions are

quasiconcave at K?, which proves uniqueness. See the Appendix for a detailed proof.

3.3 Comparison with no-withholding game

Thus far I have established that under assumptions 5 – 7 there is a unique symmetric

equilibrium, in which firms choose to withhold capacity in low demand states. One of my

interests in this paper is to compare the outcomes of a market where withholding is allowed

against one where it is banned, or impossible for some reason. The same assumptions

however, do not guarantee an equilibrium in the no-withholding model, as explained in

Chapter 2. Nonetheless, in that chapter I showed that there are cases where assumptions

5 – 7 are satisfied and a unique symmetric equilibrium does exist.5 In this section, I
5See Proposition 2 in Chapter 2.
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will proceed under the assumption that a symmetric equilibrium exists in both models. I

compare the two equilibria to establish the effect of withholding on equilibrium output,

capacity, profits, and welfare.

DenoteKW , PW , and xw to be the equilibrium capacity, price, and output in the withholding

game. Denote KN , PN , and xN to be the equilibrium capacity, price, and output in the

game without withholding. Similarly denote spot market capacity by qN and qW , where

qN = KN and qW = xW .

3.3.1 Investment in Capacity

When withholding is allowed, equilibrium capacity in the symmetric equilibrium is strictly

greater.

Proposition 4. KW > KN

Proof. KW must satisfy the necessary condition

∫ λ

λC(KW )

(
∂RCC1 (KW ,KW , λ)

∂K1
− c− kS

)
dF (λ)− kL = 0, (3.8)

where λC (K) satisfies K ≡ −
(
pCC1

(
K,K, λ̂

)
− c− kS

)
∂pCC1
∂K1

.

When withholding is not an option, the equivalent condition satisfied by KN is

∫ λ

λ̂(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c
)
dF (λ)− k = 0, (3.9)

where λ̂ (K) satisfies K ≡ −
(
pCC1

(
K,K, λ̂

)
− c
)
∂x1
∂p1

6.

I need the following property to complete the proof.

Property A

λ̂ (K) < λC (K) ,∀K.

I use assumption 7(b), that marginal revenue in capacity is increasing in λ, to prove this.

Using a similar argument to Lemma 3, I first show that marginal revenue at λ̂ is negative.

6In Chapter 2, I define λ̂ from the equilibrium prices. However, this definition is equivalent, and may be
obtained directly from the first-order conditions of the price subgame.
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∂πCC1

∂K1

∣∣∣∣
(K,K,λ̂)

= pCC1

(
K,K, λ̂

)
− c− kS +K

∂pCC1

∂K1

= pCC1

(
K,K, λ̂

)
− c− kS +K

(
∂x1

∂p1
−

∂x1
∂p2

∂x2
∂p1

∂x2
∂p2

)−1

< pCC1

(
K,K, λ̂

)
− c− kS +K

(
∂x1

∂p1

)−1

≤ pCC1

(
K,K, λ̂

)
− c+K

(
∂x1

∂p1

)−1

= 0 (3.10)

The first inequality here follows immediately from assumption 6, and the final equality from

the definition of λ̂. This proves marginal profits are negative at λ̂, and are equal to zero at

λC . By assumption 7(b) marginal revenue is increasing in λ, so λC must be greater than λ̂.

Now I can show the following.

0 =
∫ λ

λ̂(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c
)
dF (λ)− k

=
∫ λ

λC(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c− kS

)
dF (λ)− kL

+
∫ λC(KN )

λ̂(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c− kS

)
dF (λ)− kS

∫ λ̂(KN )

λ
dF (λ)

<

∫ λ

λC(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c− kS

)
dF (λ)− kL

− kS
∫ λ̂(KN )

λ
dF (λ)

≤
∫ λ

λC(KN )

(
∂RCC1 (KN ,KN , λ)

∂K1
− c− kS

)
dF (λ)− kL

= E (KN ) (3.11)

The first inequality holds because marginal profits are decreasing in λ, and are zero at λC .

Thus the integral of marginal profit between λC and λ̂ is strictly negative.

I have already shown that E (K) is decreasing in K. The inequality at 3.11 proves E (KN ) >
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0, and by definition E (KW ) = 0, therefore KW > KN . Thus firms choose to hold more

capacity in equilibrium when withholding is allowed.

The intuition for this is straightforward. When withholding is not allowed, in equilibrium,

firms will make negative marginal returns to capacity for some states of demand. When

withholding is allowed, firms are able to adjust their output and prices so that they always

make a non-negative marginal return to capacity in all states. This difference accounts for

the increase in capacity in the withholding model.

3.3.2 Output

When firms have the option of withholding, in the new equilibrium they will increase output

in periods of high demand, but decrease it in times of low demand. First consider what

happens when the demand shock λ is in the range [λC(KN ), λ]. When demand is this high,

firms will choose to produce at full capacity, with or without the option of withholding.

Since KW > KN , it follows that output will be greater under the withholding option.

At the low end of demand, λ ∈ [λ, λ̂(KN )), firms will choose q to maximise marginal revenue

in quantities when withholding is allowed, but choose p to maximise marginal revenue in

prices when withholding is prohibited. The equations in Lemma 3 can be quickly modi-

fied to show that at the quantity that maximises marginal revenue in capacities, marginal

revenue in prices is strictly negative. Thus each firm wants to choose a lower price with

a correspondingly higher output. This is true for both firms’ best responses, and is thus

true at the equilibrium. I conclude that firms produce less when withholding is allowed and

demand is low.

Finally, when λ ∈ [λ̂(KN ), λC(KW )), firms in the no-withholding case will be producing at

full capacity, but firms in the withholding case will choose to withhold, and produce at less

than full capacity. At λ̂(KN ), xW < xN = KN , and at λC(KW ), xW = KW > KN . So

whereas xN = KN stays constant in this range, xW is increasing in λ (by assumption 7(b)),

until eventually output under the withholding option surpasses that of the no-withholding

option.

It is reasonable to question whether the lower costs in the withholding model drive any of
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the results for capacity and output. Note however that all my results so far include the

special case kS = 0, the case in which there are no lower costs to withholding capacity. In

particular, the crucial equations in Proposition 4, equations 3.10 and 3.11, still hold. There

are two effects present. Withholding allows firms to increase revenues and decrease costs,

so even if I take away the cost advantage, the effects on capacity and output are unchanged.

3.3.3 Profits and Welfare

When kS > 0, the differing cost structure of this withholding model from the original

capacity-price model prevents me from predicting the effects of withholding on short-run

profits, since per-unit short-run costs are different between the models. Similarly, I cannot

predict the effect on welfare. However, when kS = 0, I show that withholding increases spot

market profits in all states of demand, increases welfare when demand is high and decreases

welfare when demand is low.

Consider first spot market profits, that is, profits excluding long-run capacity costs. In the

case λ ∈ [λC(KW ), λ], firms are constrained whether or not withholding is allowed; and

since capacity is higher with withholding, and the spot market profit functions are concave,

profits too are higher.

In the low demand set, λ ≤ λ̂(KN ), withholding output is xW = qW , which is the output

that maximises spot market profit
(
pCC (xW )− c

)
xW . Since spot market profits are con-

cave, this must be greater than
(
pCC (xN )− c

)
xN . At xN < KN , the Bertrand price pN

chosen by firms is simply the clearing price that ‘clears’ xN , so this last expression is simply

short-run profit in the no-withholding case. I conclude in this case that spot market profit

is again greater.

In the remaining cases the withholding firm will be unconstrained, so still maximising profit.

The non-withholding firm will not be maximising profit, but will be forced to choose a lower

capacity at a clearing price, which must be lower.7

Since I assume constant marginal costs of production, total welfare in the short-run, mea-

sured by the sum of consumer’s surplus and firms’ profits, and excluding long-run costs,

will vary positively in proportion to actual output. When withholding is an option, out-
7At some point, the two firms will produce the same output (and make the same profit) before the

withholding firm goes on to make more profit by producing more.
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put is lower in low demand states, but higher in high demand states, and thus the same

is true of welfare. Of greater interest is how expected welfare changes between the no-

withholding and withholding models. Unfortunately, expected welfare under withholding

does not always increase or decrease compared to the no-withholding model. In the simple

case of linear demand with a uniform distribution, I can compute out the equilibria in the

two models, and find parameters for which expected welfare increases, and parameters for

which expected welfare decreases.8

3.4 Discussion

In section 3.2 I established that firms in markets with uncertain demand, non-storable goods,

and capacity constraints prefer to withhold capacity when demand is low. Underlying

this result is the intuition that firms use withholding to transform the subgame from a

competition in prices to competition in quantities. Quantity competition requires the often

implicit assumption that prices are set to clear the market, no matter what quantities

are chosen. In the model presented in this paper, firms have the option of choosing their

own prices. However, in Lemma 3, I proved that when firms had the option to withhold

capacity in the spot market, iterated elimination of dominated strategies caused each to

choose clearing prices in the subsequent price subgame equilibrium. This established that

the short-run subgame under withholding is indeed a competition in quantities. Since I

assume firms’ goods are substitutes, the elasticity of demand in quantities is lower than

the elasticity of demand in prices, therefore firms realise higher revenues and profits. osen.

In the model presented in this paper, firms have the option of choosing their own prices.

However, in Lemma 3, I proved that when firms had the option to withhold capacity in the

spot market, iterated elimination of dominated strategies caused each to choose clearing

prices in the subsequent price subgame equilibrium. This established that the short-run

subgame under withholding is indeed a competition in quantities. Since I assume firms’

goods are substitutes, the elasticity of demand in quantities is lower than the elasticity of
8When xi = λ (a− b1pi + b2p−i), choosing a = 50, b1 = 1, b2 = 0.2, c = 0, kL = 10, and kS = 0 gives

KN = 34.2241 and KW = 34.2364, which results in expected welfares equal to 2248.32 and 2248.4 in the basic
and withholding models respectively. In this case, the withholding model realises higher expected welfare.
Now change b2 to 0.5, and hold everything else constant. In this case, KN = 41.4427 and KW = 42.0552,
and expected welfares are 3526.63 and 3507.33, in the basic and withholding models respectively. Now
withholding decreases expected welfare.
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demand in prices, therefore firms realise higher revenues and profits.

Given firms’ propensity to withhold capacity, it is surprisingly hard to find real world

examples of withholding in action. In the introduction, I made a comparison between

hotels and ferry sailings – two industries that share the key characteristics of uncertain

demand, non-storable goods, and capacity constraints. Ferry companies practice capacity

withholding; hoteliers do not, at least not in a way that is easily visible to an outside

observer. Why the difference? There are three additional assumptions implicit in my

model that explanation this observation. I assume that firms can commit to withholding,

that all other firms can observe this withholding, and that capacity is divisible. The three

are related. Hotels are unable to commit to withholding capacity, precisely because it is

practically impossible to observe whether a hotel puts a wing of rooms out of service or not.

Even if it did, there is nothing stopping the firm from using those rooms in the short-run,

another unobservable action. The only credible way a hotel can commit to withholding is to

close the whole hotel. Such an action creates an all or nothing decision, a lack of divisibility

which is outside the scope of my model.

The ability to commit to a given capacity level in the spot market is crucial to the results.

Consider the alternative. If at the price stage, a firm could use all its long-run capacity

capacity at no extra cost aside from production costs, then the unique equilibrium in the

price game would be exactly the same as in the no-withholding game, since the only real

constraint is the long-run capacity constraint. In this case, the equilibrium will revert to

the no-withholding equilibrium. Thus it is critical firms be able to commit to their capacity

withholding to gain the benefits. Ferry companies use at least two commitment tactics.

One tactic is to put ferries in the dry-dock for maintenance in the off-season, or even go to

the extreme of sending them to other markets. The other tactic is prior scheduling. Ferries

publish their sailings month in advance, and it is easy to verify that the firm is indeed

sailing, or not sailing when it says it is. It is somewhat ironic that the transparency of the

operation is exactly what enables firms to perform this type of ‘tacit collusion’.

The bar for firms to successfully withhold are thus quite high. Firms in these capacity-

constrained industries with fluctuating demand would indeed prefer to practice withholding;

an option which is largely prevented by the lack of commitment mechanisms and divisibility

issues. What are the consequences for consumers? When firms are unable to withhold
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capacity, I showed in section 3.3 that industry capacity was lower. When demand has high,

this causes higher prices and lower welfare. On the other hand, as any tourist travelling in

the off-season can testify, consumers gain at times of low demand since firms cannot commit

to quantity competition. When withholding is possible, the reverse effects apply; consumers

benefit at times of high demand but lose when demand is low. Which is the dominant effect?

Since the firms’ gain at all times when withholding is allowed, my intuition suggests that

consumers are likely worse off in expectation. However, the capacity constraints cause a

counter effect. In high demand states, consumers too are better off. In section 3.4, I gave

an example above where the gain to consumers outweighs the additional deadweight losses

in expectation. Thus withholding need not universally make consumers worse off.9

I noted in the introduction that this type of capacity withholding is distinct from withhold-

ing as practiced in the electricity industry. This is confirmed in the model; electricity firms

do not withhold capacity at times of low demand. However, there is one similarity. Both

types of withholding are a form of tacit collusion, where firms have a dominant strategy to

change the game to achieve equilibria that realise higher profits. These results have another

nice interpretation. Capacity-constrained firms in reality almost always compete on price.

Yet there are many papers in the literature that assume firms compete on quantities, usu-

ally because this is the more tractable assumption. I showed in this paper that firms can

compete in quantities in the real world simply by controlling their short-run capacity. This

is a possible justification for the assumption of quantity competition, when the commitment

assumptions are met.

3.5 Appendix

Proof of Proposition 3

Let K? satisfying E(K?) = 0 be the candidate equilibrium, and let K2 = K?. Note that

such a point exists because E(K) is decreasing in K, E(0) > 0 and we can choose K such

that at λ, firms choose q < K, so at this point E(K) < 0. First suppose K1 > K2. Then

the second derivative of firm 1’s profit function is
9Compare to this to the unconstrained case studied by Singh and Vives, where, in the linear case, quantity

competition strictly decreased total welfare.
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∫ λ

λC1

∂2πCC1

(∂K1)2dF (λ) +
∂λC1

∂K1

∂πCC1

(
K1,K2, λ

C1
)

∂K1
f
(
λC1
)
. (3.12)

Since λC1 (K1) by definition is the λ that makes K1 the optimal choice for firm 1, the middle

expression in the second term is zero. The first term is negative by assumption 7(a). Thus

when K1 > K2, firm 1’s payoff function is concave.

Now suppose K1 ≤ K2. In this region, the profit function is not concave, but following the

proof of Grimm & Zoettl [10], I will show that it is quasiconcave. The following properties

will be helpful in completing the proof.

Property B
∂πCU1 (K1, λ)

∂K1
≥ 0 if λ ≥ λC1(K1)

The proof of this is intuitive. Since firm 1 is constrained (λ ≥ λC1), firm 1 would like

to produce more than K1 for all demand realisations in this region. This is not possible

however, due to the capacity constraint.

Property C

∂πCC1 (K ′1,K2, λ)
∂K1

≥ ∂πCC1 (K1,K2, λ)
∂K1

≥ 0 ∀K ′1 < K1, ∀λ ≥ λC2 (K1,K2)

The first inequality follows from concavity of the profit functions in the spot market, implied

by assumption 7(a). The second inequality is due to the fact that when both firms are

constrained and λ is sufficiently high, firm 1 would like to produce more. This is not

possible however, due to the capacity constraint.

Now I can use properties B and C, along with Lemma 4, to complete the proof of existence.
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∂π1 (K1,K2, λ)
∂K1

=
∫ λ

λC2 (K1,K2)

∂πCC1 (K1,K2, λ)
∂K1

dF (λ)

+
∫ λC2 (K1,K2)

λC1 (K1)

∂πCU1 (K1, λ)
∂K1

dF (λ)− kL

≥
∫ λ

λC2 (K1,K2)

∂πCC1 (K1,K2, λ)
∂K1

dF (λ)− kL

=
∫ λC2 (K2,K2)

λC2 (K1,K2)

∂πCC1 (K1,K2, λ)
∂K1

dF (λ)

+
∫ λ

λC2 (K2,K2)

[
∂πCC1 (K1,K2, λ)

∂K1
− ∂πCC1 (K2,K2, λ)

∂K1

]
dF (λ)

+
∫ λ

λC2 (K2,K2)

∂πCC1 (K2,K2, λ)
∂K1

dF (λ)− kL

The inequality holds by property B. In the final equation, the first term is positive by

property C and Lemma 4, the second term is positive by property C, and the third term is

zero since it is the equilibrium condition.

Thus I conclude that for all K1 ≤ K2, ∂π1(K1,K2)
∂K1

≥ ∂π1(K2,K2)
∂K1

= 0. Together with the

concavity of π1 when K1 > K2, I conclude that π1 is quasiconcave, and is maximised at

K2 = K?.
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Chapter 4

Economic Experiments and
Kirchoff’s Laws

4.1 Introduction

In the past few years, economists studying electricity markets have been turning to economic

experiments to answer questions found to be theoretically intractable. The size of electricity

networks combined with the large number of nonlinear physical constraints potentially give

experiments the edge in such research. However, experiments conducted to date have mostly

been small scale with either no network or at most three to four transmission lines. In part

this is due to the lack of complex software required to run more complicated experiments,

and in part this is due to a question of understanding. Can human subjects really imitate

firms realistically, firms that often devote whole departments to pricing? In this paper, I

examine facets of this question experimentally, using infrastructure built for the EPNES

project at Caltech.

Previous experiments on electricity networks include Chao and Plott [4], and Backerman,

Rassenti, and Smith [1]. Chao and Plott were interested in testing a new decentralised

electricity market design, based on a design by Chao and Peck [3]. They were primarily

interested in the efficiency of the mechanism. On a three node ‘triangle’ network (2 firms,

1 demand node) they found the new design to be highly efficient in the presence of a single

line constraint.1 Backerman et al. were more interested in pricing power transmission in

the presence of a line constraint. Their network was a modified radial network with three

firms either side of a single demand node termed ‘London’. They noted that one effect of
1One transmission line could potentially constrain the optimal solution when demand was sufficiently

high.
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the transmission constraint was to give a pricing advantage to the firms not affected by the

constraint.

While these experiments succeeded in proving various economic ideas on small networks, in

an ideal world economists would like to pre-test designs for electricity markets on experi-

mental replicas of the actual market networks. It would be fantastic if the new designs for

the California market could be tested experimentally by human subjects or computerised

automata on a simulated California grid, at relatively little cost, before being subjected to

the gaming of firms in real-life. In practice, experiments on electricity markets have not

moved much past the three node stage. As noted above, there is a big question mark as to

whether human subjects playing on large experimental networks can really tell us anything

about the real world performance of such networks.

At first glance, it does seem fanciful to expect subjects to make sound profit-maximising

decisions when faced with, say, the entire California network. The California grid has

hundreds of nodes and thousands of physical constraints. But such complexity is an illusion.

Many of the constraints on the system will in fact never bind, or bind only in extreme cases,

such as when demand is very high. Of the remainder, only a subset will be binding at any

given point in time, depending on the relative balance of demand and supply in the network,

which in turn depends upon market bids and pricing. This is important, because in market

designs such as the power exchange market, constraints that do not bind are economically

irrelevant. They do not affect the prices firms receive and thus do not enter the profit-

maximising decision process.

When we examine the network in this light, it becomes apparent that the binding constraints

subdivide the network into regions. For example, California is often said to divide into two

main regions, North and South. In the summer, demand is particularly high in the South,

but generation is high in the North. This implies that constraints on the transmission lines

running north to south are important. In summer, such lines are constrained, thus dividing

California into two regions. The constraint on electricity flowing from the North gives

Southern generators relative market power, and the opportunity to set higher prices. Such

a region, where demand is high and local supply is low, is called a load pocket. However

for much of the year, the constraint is not binding and thus economically irrelevant.

These regions are of interest because they dramatically simplify the network. A firm does not
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need to consider the impact of every constraint in the system, only those that could possibly

be binding, because these are the constraints that have the potential to confer market power

upon the firm. A subject performing an experiment similarly has a simple task; to identify

which constraints shape the region their firm is located in and how to manipulate, via

bidding and supply, those constraints to maximise market power, i.e., When are you in a

load pocket and how can you maximise profit accordingly? Moreover, in real life, firms bid

repeatedly on the same network, so there can be no objection to using very experienced

subjects. I argue that combining this relative simplicity with sufficient experience should

be sufficient for subjects to make good economic decisions on the network.

While there are many types of physical constraints in electricity networks, the important

ones for electricity markets are transmission limits. Constraints may arise from thermal

and/or stability limits on transmission lines or as a side-effect of a shortage of reactive

power. Typically a constraint can be expressed as a maximum megawatt flow through a

given line. The exception is thermal limits caused by reactive power in which case the

limit is fluid because it depends on the amount of reactive flow. I ignore this last type of

constraint because reactive power tends to be generated locally (it cannot be transmitted

over long distances), and is typically purchased and used separately from real flows. Thus,

in this paper, I consider only fixed megawatt limit constraints on transmission lines.

Whether a constraint will bind or not depends on the relative power flows through the trans-

mission lines. These flows in turn depend critically on Kirchoff’s laws, physical rules that

govern electricity flow in a network. It follows that any constraint in a network potentially

could affect any firm’s profit. In a three node network, it is possible to mentally compute

approximate power flows for any given inputs/outputs of electricity. In larger networks,

this rapidly becomes impossible. It is quite possible that a constraint may be economically

important, but that a subject might not recognise this importance immediately. For the

purposes of this paper, I distinguish two types of constraint. I will denote a constraint to

be simple when it affects a transmission line that links two distinct sub-networks. In this

case, there is only one way for electricity to flow from one sub-network to the other, and

that is through the potentially constrained line. Here it is relatively easy to gauge how the

constraint will affect by pricing by calculating relative demand and supply on each side.

The other type of constraint I denote Kirchoff, short for ‘Kirchoff-induced’. Here there is a
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constraint on a transmission line, but at least one alternative path for the electricity to take

between the two nodes connected by the constrained line. Kirchoff’s laws require a certain

amount of electricity to flow along each line, which can change depending upon how much

electricity flows in and out of each node. This type of constraint is a lot trickier to identify

just by looking at a network.

Therefore, the focus of this paper is deliberately narrow. I aim to (a) show that human

subjects are capable of recognising and profiting from binding constraints and (b) identify

any differences in subjects’ behaviour between simple constraints and Kirchoff constraints.

Although I present the subjects with networks containing only one relevant constraint, it is

my contention that if subjects can identify one load pocket, that they can identify multiple

load pockets, given sufficient experience on a given network.

In this paper, I present an economic experiment conducted with four firms on eight node

networks explicitly designed to test subject’s understanding of physical constraints in elec-

tricity networks. The networks I create are non-trivial, in the sense that each has two loops

and at least one transmission constraint potentially binding some of the time. Two networks

have simple constraints, and the other two have Kirchoff constraints. In each network, the

constraints are arranged in such a way as to give one subject market power. All subjects

have prior experience on similar networks before participating in the actual experiment.

The market I use in these experiments is a basic version of a power exchange market, which

is widely used around the world in various forms.2 I discuss the setup of the experiment in

sections 4.2 and 4.3, and I outline the results in section 4.4.

4.2 Model Setup

I constructed four distinct networks, each a minor variation on the next. In all networks, I

placed four firms at different nodes, along with four demand nodes, all linked by a transmis-

sion grid. All firms had the same generating capacity, 100 units, and marginal cost equal

to 10 francs per unit. Demand at each demand node was uniform random, between known

limits. For simplicity, I assumed all transmission lines to be the same length, but allowed

them to differ in their stated maximum capacity.
2Stoft [16] pp226-9 discusses various market designs, including the power exchange market.
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To test for the effect of a Kirchoff constraint versus a regular constraint, I varied this basic

network in the following way. Two of the four networks had a simple constraint which put

one firm into a load pocket, giving it considerable market power. I called this firm the

monopolist. The other two networks had a Kirchoff constraint. This constraint had the

same real effect as the simple one – one firm ended up in a load pocket, gaining monopoly

power. In both cases I set the constraints and demand values such that the monopolist had

the same expected demand with the same support, and the other firms similarly faced the

same distribution of demand. This ensured that any differences between the two networks

were purely cosmetic, and that any differences in subject behaviour could be attributed to

their understanding of Kirchoff’s laws.

In either case, I further distinguished between a high demand network and a low demand

network.3 The theory on uniform auctions has different predictions in the static game for

low versus high demand, see for example Fabra, von der Fehr and Harbord [7], and I wanted

to control for any differences in the data this might make.

On each network, firms bid in a power exchange market, which was repeated for approxi-

mately 40 periods.4 Firms were required to bid one price for all their capacity, their bids

being restricted to the set [0, 30], and further forced to bid in every period. Bids were

sealed until the end of the period, at which time the true values of demand for that period

were revealed. The price at each node was determined by the central authority, in our case

a computer algorithm, based on maximising total welfare subject to each firm receiving at

least what they bid, this being the basic premise of the power exchange market. Firms were

then paid the marginal price at their node.

In any network, if the monopolist chose to bid the maximum possible bid, 30 francs, then

the other three firms were effectively bidding against each other in a uniform auction. In

the low demand setting, I set total demand between 150 and 200 units, so that the highest

bidder out of these firms would supply nothing and make no profit. In the high demand

setting, I set demand between 200 and 260 units, so that all firms were guaranteed to supply

something, still assuming the monopolist’s bid was the highest. However, if the monopolist’s

bid was not the highest of all four firms, then the transmission constraint no longer held,
3I include diagrams of the four networks in Appendix A.
4I varied the number of periods in each treatment so that subjects would not anticipate the last period.

In the experimental literature, subjects’ behaviour can change dramatically in the last iterations of an
experiment.
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and the market became exactly equivalent to a uniform auction for all four firms. Here, in

the low demand case, total demand worked out between 210 and 280 units, so the highest

bidder was still guaranteed to supply nothing, while in the high demand case, total demand

was between 260 and 340 giving the highest bidder a 50% chance of supplying nothing.

In all cases, the nature of the constraints guaranteed the monopolist would supply a mini-

mum of 60 units, no matter what the bids were. Thus the monopolist could make a minimum

profit of 1200 francs per period, just by bidding 30. However, if another firm was bidding

27 or higher, than it became in the monopolist’s best interest to undercut that firm, to sell

all 100 units at a price 27 or greater, thus realising a higher profit.

4.3 Experimental Procedure

I ran a series of identical experiments using the four networks described above. In each

experiment, I divided the subjects into groups of four. Each subject in a group represented

one firm, labelled from 0 to 3. Each group performed the same experiment independently.

Each group participated in a basic power exchange market on each of the networks, in the

order A, C, B, D (see Appendix A).5 The firms in each network were arranged so that each

subject in a group would be the monopolist in just one of the four networks.

Subjects for the experiments were drawn from a pool of experienced subjects who had

previously participated in one, but no more than one, practice experiment. I required this

training for two reasons. As noted above, I wanted the subjects to have some minimum

level of experience, both to imitate real life more closely and to avoid randomness in the

data as the subjects learned how to bid in the market. Moreover, due to the complexity of

the network, power exchange market and other elements, the instructions took over an hour

to complete, including three quizzes to check the subjects’ understanding. Thus by pushing

the instructions to the practice experiment, I was able to complete the real experiments in

a reasonable two hours.6

5In the very first experiment, the order was intended to be A, B, C, D. However, this put the two
low-demand networks first. Relatively inexperienced subjects tended to make little or no money on these
networks, and halfway through the first network in the very first experiment, one subject asked to leave
because the other subjects were “stupid”. Therefore I altered the network order to give the subjects some
hope of making money earlier, to try to prevent further active or passive lassitude. I maintained this new
order in all subsequent experiments, and no other students asked to leave.

6The instructions, like the EPNES software, were designed to be applicable over a wide range of electricity
market experiments with minimum modification. Thus, they were longer than strictly necessary for this
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Each practice experiment involved the experimenter reading the instructions, and asking

the subjects to complete quizzes during the reading. Some of the quizzes required the use of

computer software, the same software used in the real experiment, to complete successfully.

I checked each subject’s answers and explained any mistakes they made. Following the

instructions, I asked the subjects to participate in multiple periods of bidding, on two

different networks. Subjects were paid a $15 show-up fee, plus up to another $25 possible

from profits bidding in the two networks.

During the real experiments, I kept a record on each subject, recording which subjects they

had previously been grouped with and which firm they had represented. I allowed and

encouraged subjects to attend multiple experiments. However, where possible, I did not let

subjects repeat the experiment with any subjects from their previous group(s), nor did I let

them represent the same firm twice. My purpose was to weight the experiment yet again

against collusion, including the possibility that subjects were talking to each other outside

the laboratory. In four days of experiments, there were only three cases where a pair of

subjects turned up in the same group twice, and only two cases where a subject played the

same firm twice.

In the experiment, I ran markets in each of the four networks consecutively. Before each

market opened, I gave all subjects a diagram showing the current network, then allowed

them five minutes to use the practice tool before opening the real market. Each market was

divided into periods, each period being one bidding round. On average, I allowed about

40 periods per network, which took about 25 minutes to complete. Subjects were given 40

seconds per period to place a bid, which had to be between 0 and 30 francs per unit.

At the end of each market, each subject’s profit in francs was displayed on the computer

screen. I asked subjects to record this profit on a payoff sheet. At the end of the experiment,

I had subjects total up profits from the four markets and divide by the exchange rate to find

their net earnings in dollar, with partial amounts rounded up to the nearest dollar. This

amount plus the show-up fee of $10 was the subject’s total earnings from the experiment.

The exchange rates were set at 5000 francs to the dollar for subjects playing firms 0 and 2,

and 4600 francs to the dollar for subjects playing firms 1 and 3. The difference was to due

to the fact that the former had a chance to be the monopolist in the low demand rounds,

particular experiment. See Appendix B for the full instructions.
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when the other firms could expect to be earning very little. Thus ex ante I expected these

firms to make more francs than firms 1 and 3, who played the monopolist in one of the high

demand rounds.

4.4 Results

To answer the original question, as to whether subjects could understand and incorpo-

rate network constraints into their economic decision-making, I analysed the behaviour of

the monopolists. Although the monopolists’ behaviour is superficially straightforward, my

analysis was complicated by two factors of the experiment: random demand and the sealed

simultaneous bid format. Thus to discern whether the monopolist understood the con-

straints I chose a comparative approach, comparing the monopolists’ behaviour with that

of the other firms.

If the other firms’ bids and demand were known, the monopolist would have a simple

strategy. Bid high if all the other firms bid sufficiently low, bid low if at least one of the

other firms (or at least two firms in the low demand case) bid high enough. The exact

cut-off value would depend on the exact value of demand. In reality, the monopolist must

incorporate such uncertainty into her bidding strategy, so her responses will not be as clear-

cut as the full information case. Furthermore, the monopolist’s optimal response will differ

when the group is tacitly colluding to keep prices high, as some groups did. Such issues

conspired to prevent me from directly analysing whether the monopolist was pursuing a

profit-maximising strategy.

By design however, each of the four networks I presented to subjects had one monopolist and

three other firms. The latter were identical economically speaking. Since the monopolist

was in a load pocket, she had significant market power. As a result, I expected to observe

the monopolist obtaining both higher prices and higher profits than the other firms, if she

understood the nature of the constraint. If she didn’t, there was no reason for her to behave

any differently from any of the other firms.

Prices and profits are both variables I can measure directly from the data. Profit I found

to be a poor comparative measure, because even if the monopolist behaved exactly like one

of the other firms, she would still make a higher profit, as whenever she made the highest
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bid, she would receive an allocation greater than would have been received by another firm.

Thus I use price as my measure of comparison. As noted above, the monopolist can sustain

on average a considerably higher price than the other firms, especially in the low demand

case.

Figure 4.1: Average price received by firms in low demand networks
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Figure 4.2: Average price received by firms in high demand networks

Figures 4.1 and 4.2 show an enormous difference between the average prices received by the

monopolist, and those received by the other firms. In the more competitive low demand

case, the difference was extreme. The monopolist on average rarely received a price of

less than 27 francs, while the other firms struggled to receive more than 20 francs per

unit. Even in the high demand case the monopolist sustained consistently higher prices on

average. Thus there was a sustained difference between the behaviour of the monopolist,

and that of the other firms. Since the only difference between the two was the existence of

the constraint that created the monopolist’s load pocket, I conclude that the monopolists,
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and thus subjects in general, can quickly comprehend the existence of a load pocket and

understand how it affects the prices they will receive.7

The more interesting question I designed this experiment to answer was if I could identify

any difference in subject behaviour between the simple constraint and the more complicated

Kirchoff constraint. I hypothesised, based on pilot experiments with inexperienced subjects,

that subjects would take longer to take advantage of the Kirchoff constraint, if they identified

it at all.

Once again, I compared the effect of the two constraints by analysing the monopolists’

behaviour, now comparing the Kirchoff constraint monopolists to the simple constraint

monopolists. I found that prices in this case were not a good measure. All the monopolists

in both simple and Kirchoff cases maintained average prices in the 27 to 30 franc range.

Such figures are potentially consistent with profit-maximising behaviour. Prices consistently

below 27 francs would have signalled a lack of understanding, but I did not observe this.

Thus to answer this question, I looked instead at monopolists’ profit. First I controlled

for random demand. Even if all firms make the same bids every period, the monopolist’s

profit would still vary due to random demand. Thus I recalculated every monopolist’s profit

by dividing actual profit by the actual realisation of demand. I call the resulting measure

‘Profit per available unit’. In figure 4.3 on the next page I present graphs of the monopolist’s

average profit per available unit for the high and low demand scenarios across the twelve

groups.

Figure 4.3 makes clear that there is no significant difference in average profits between the

simple and Kirchoff constraints. Although there is a lot of variation, there are no trends that

might suggest monopolists earned lower profits under one constraint that the other. The

variation that exists can easily be explained by the fact that monopolists’ profits depend

significantly upon the bids of the other players. I conclude that monopolists, and thus

experimental subjects in general, had no more trouble recognising a Kirchoff constraint

than they did a simple constraint.
7Anecdotally, the subjects I interviewed after the last experiments were well aware of the existence of

the monopolist. They called it “the sweet spot” where you could get plenty of money even in a “bad” (low
demand) situation.
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Figure 4.3: Monopolists’ profit per available unit
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4.5 Conclusion

If economic experiments on electricity markets are to provide results applicable to the

real world design of such markets, they will need to attain a level of complexity greater

than has previously been attempted. This paper shows that experimental subjects are

perfectly capable of rational profit-maximising behaviour in more complicated networks

where physical constraints including Kirchoff’s laws play a key role in determining economic

outcomes. The data is very clear. Presented with two networks that were theoretically

identical, subjects behaved almost identically on both networks. They quickly identified

the constraint and used it to their advantage. These results should spur researchers to

experiment on larger networks, testing different market mechanisms with hope that the

results will be applicable to real world markets.

This research leaves a couple of open questions. Firstly, although I went to some trouble

to write detailed instructions explaining such constraints, it is likely that some time spent

with the practice tool on the given network would be more than sufficient. The presence of

such a constraint can be inferred by the results of trying various high and low bids, without

any knowledge of how the network works at all. I designed my instructions for even more

complicated experiments, and did not test if understanding would change with fewer or no

explicit instructions.

The second question arises from the data produced by this experiment. The more expe-

rienced groups, groups containing subjects who had done the experiment several times,

showed significant signs of collusion, such as all firms bidding 30 francs each period for

instance, behaviour which contradicted standard theory for one-shot games. This was de-

spite my weighting the experiments against collusion (see section 4.2). It seems possible

that subjects were playing the Nash equilibrium of a repeated game, a result which would

have important implications for the power exchange market. I could not test this theory

adequately without obtaining more data with more experienced subjects.

4.6 Appendix A: Network Diagrams

These diagrams are the same ones seen by the experimental subjects. Each network consists

of eight nodes, labelled from 0 to 7. Some nodes are depicted with an arrow pointing in.
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These nodes represent firms, with the capacity of the firm in MW listed next to the arrow.

The other nodes (with an arrow pointing out) represent demand nodes, with the numbers

in square brackets being the minimum and maximum possible demand at that node. Nodes

are connected by transmission lines, with each line’s maximum capacity in MW labelled

next to the line.8

Figure 4.4: Network A (Simple constraint, low demand)

Figure 4.5: Network B (Kirchoff constraint, low demand)

Figure 4.6: Network C (Simple constraint, high demand)

8A more detailed description of the networks was given in the instructions, see Appendix B.
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Figure 4.7: Network D (Kirchoff constraint, high demand)

4.7 Appendix B: Instructions

Introduction

This is an experiment in the economics of market decision-making.9 In this experiment we

are going to simulate an electricity market. You will be buying and selling electricity at

different points on an electricity network, in order to make money that will be paid to you

in cash at the end of the experiment. This experiment should take about two and a half

hours.

Today we will be using a simplified model of an electricity network. There will be unusual

rules for buying and selling on the network, and for determining the prices paid. These

instructions are divided into three sections. The first explains how the network works, the

second explains how to buy and sell, and the third explains how prices are determined. At

the end of each section, I will test you on your knowledge. The tests are not difficult, and

after you complete all three you should have a good idea of how to buy and sell electricity

on the network, while making money doing so.

This experiment will be divided into rounds. Each round may be conducted on a different

electricity network. Each round is divided into periods. At the beginning of each round,

you will be asked to login to the new round. Your login details are written on a sheet in

the folder in front of you. When each round finishes, your profit (loss) from the round will

be displayed on the computer screen in front of you.

The currency in these markets is francs. At the end of the experiment, your total earnings

of francs will be converted to dollars at a rate that will be given to you when the actual
9Note that the instructions were accompanied by a slideshow giving screen shots with step by step guides

as to how to make bids, and how to interpret the output in the experimental interface.
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experiment starts. Please do not show this information or information on your profits to

other experiment participants.

Network Instructions

Here I will explain how a network is modelled. Please pay attention, as your ability to

rapidly evaluate any network diagram is important for making money in this experiment.

An electricity network consists of three components.

Supply Nodes

A supply node is a node – a point on the network - where a firm who can produce electricity

is located. In the diagrams I will give you, a supply node looks like:

The number inside the circle is the ‘name’ of the node. This is node 3. Each node has a

unique number. When I refer to this firm, I would say ‘Firm 3’, meaning the firm located

at node 3. The arrow pointing in to the circle means that this node is a supply node (it is

making electricity which is flowing into the network). The number next to the arrow tells

you the capacity of the firm. The capacity of a firm is the maximum units of electricity this

firm can produce per period. This firm can produce 100 units per period.

In this experiment, each of you will control one firm on the network.

Demand Nodes

A demand node is a node where a consumer - someone who uses electricity - is located.

You can think of a demand node as a city, filled with people who are using electricity. In

the diagrams, demand nodes look like this:

This is node ‘2’. The arrow pointing out of the node indicates that this is a demand node.

This means the node is taking electricity out of the network. Demand at demand nodes

is random. The numbers inside the brackets indicate the possible range of demand in one

period for this node. In each period, we are not sure what the true value of demand is, but
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we do know it must be between these minimum and maximum values. So in this example

demand node 2 will always demand at least 50 units of electricity per period, but no more

than 100 units of electricity per period.

Transmission Lines

Finally, demand nodes and supply nodes are joined together by transmission lines. A line

looks like this:

Electricity flows along these lines, between supply nodes and demand nodes. The number

above the line gives the maximum (per period) capacity of the line. This line can only

transport up to 100 units of electricity in one period. Please note that as this a simplified

model of electricity flow, there are no transmission line losses in this model. No electricity is

lost when flowing from one node to the next. Also you should note that Kirchoff’s laws do

hold in this model. We do not expect you to know Kirchoff’s laws, or be able to calculate

them. Instead we will give you a computer tool that will work out flows for you. If you

want more information, I have included a note about Kirchoff’s laws at the end of these

instructions to give you some intuition.

Electricity Network

Supply nodes, demand nodes and transmission lines are joined together to form an electricity

network. For example:

There is one more important piece of information you need to know about the network,

and that is how much it costs each firm to produce electricity. Each firm has a fixed per

unit cost that it must pay every time it makes one unit of electricity. If the cost is 12, and
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the firm makes 20 units, it must pay 12 × 20 = 240 francs to produce the electricity. If it

makes 55 units, it must pay 12 × 55 = 660 francs to produce the electricity. The cost of

each firm is shown to you in a table next to the diagram. For example, the cost table in

the above example might look like:

Notice that the firms in the example above are located at nodes 1, 4 and 5. Firm 1 must

pay 12 francs for each unit of electricity it makes. Firm 4 must pay 10.5 francs per unit,

and firm 5 must pay 14 francs per unit.

Every period, every firm will get a chance to sell their electricity via an auction process that

I will describe later. After the auction, each firm is told how much electricity to make, and

what price per unit of electricity they will get paid. Firms make profits when the price

they get paid for their electricity is greater than the cost they pay to make the electricity.

Profit is given by q × (p − c), where p is the price you are paid, c is the cost you pay to

make the electricity, and q is the amount you are asked to make.

During the experiment, you will see a number of different networks. You will control one

firm in each network, but the identity (node number) of your firm may change. For each

Round, the firm you control is written on your login sheet. For example:

If you have any questions, please raise your hand now.

Some Notes on Kirchoff’s Laws

Suppose there is a firm at node 0 and it wants to send 100 units of electricity to a consumer

at node 2. Ignore firm 1 – pretend it produces nothing. Then electricity must flow from

0→2, but also down the lines 0→1 and 1→2. Because the flow from 0→1 and 1→2 is twice
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as long as 0→2 directly, Kirchoff’s laws say the flow of electricity is only half as much. In

this case, the real flows are:

In general if there are two lines that electricity can take to get from a supply node to a

demand node, than the amount of electricity that flows on each path is inversely proportional

to the length of the path.

Bidding Instructions

Here I will explain the rules of the market - the process by which you, the firms, can sell

your electricity. I will give you examples and a chance to practice as we go through these

instructions. All examples will be based upon the following network.

Each firm on the network is controlled by one person in this room. Remember that demand

at each demand node is random between a lower and upper limit in each period. Firms do

NOT sell their electricity directly to demand nodes. Instead they sell their electricity to

a third entity called the Market Maker. Every period, the Market Maker buys electricity
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from the firms and sells it to the demand nodes. Because demand is random, and not

observable until the end of the period, the Market Maker asks firms to make bids. A bid

is the minimum amount the firm wants to be paid before it is willing to produce electricity.

After demand is revealed, the Market Maker will then buy enough electricity from the firms

to satisfy all demand, according to a specific formula.

1) A period starts.

2) Every firm enters a bid. You cannot see the other firms’ bids until the end of the

period. Your bid has to be between 0 and 30 francs, and can have up to 3 decimal

places. You will have 40 seconds in which to choose your bid. You may change your

bid while the bidding period is open. Once you are happy with your bid, press the

confirm button. The bidding period will end when every firm presses the confirm

button, or when 40 seconds is up, whichever comes first. (If you don’t make a bid

after 40 seconds the computer will submit the bid from your last period. If it is the

first period, the computer will choose a random number between 0 and 30 for you.)

3) The true value of demand at each demand node is realised. This means the computer

generates a random number at each demand node.

4) The Market Maker takes the firms’ bids and the true value of demand. It must buy

enough electricity from the firms equal to the total amount of electricity demanded

by all the demand nodes. It decides how much electricity each firm will produce (the

‘allocation’) and what price each firm will be paid, according to a formula that we

will discuss later.

5) The price each firm gets will always be greater than the bid that firm made!

6) The period ends. Each firm makes a profit (or loss) equal to q× (p− c), where q is the

number of units you are asked to make, p is the price you get, and c is the cost you

pay per unit for making electricity. You make money when the price you get is higher

than the cost you pay. Remember that the price you get is always higher than the

bid you make, so if your bid is higher than your cost, you cannot lose money.

7) Now each firm can see all the other firms’ bids and prices, the true value of demand

at each demand node, and the actual amount of electricity produced by each firm.
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We will now make some bids to get comfortable with the software. You should be looking

at the login screen, which looks like this:

In your folder, pull out the sheet with the login details. Please log into the round labelled

“Electricity Bidding Instructions Practice” at the top of your sheet, using the Round name,

password and player number written in the box. Remember your player number is the

number of the firm you will control for this round.

If you have logged in correctly, you should see “Waiting for next period to start” written

on the screen, similar to the screenshot at the top of the next page. If you do not see this,

please raise your hand.

Once everyone is logged in, we will start the period. Please do not touch the keyboard or

mouse yet. You are now looking at the ‘Bidding screen’. It should look like the second

screenshot on the next page.

First look at the top left corner of the screen. This tells you the Round you are in and the

Player number you are. The Round tells you which network you are playing on and the

Player number tells you which firm (node) you are at.

Now look at the top right corner of the screen. The timer there tells you how much time is
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left in the period. In this practice round you are allowed 15 minutes per period in which to

decide on your bid. In the real experiment you will only have 40 seconds.

Now notice the ‘Practice’ button on the left upper side of the screen. This takes you to a

practice area where you can enter pretend bids and see what kind of price and allocation

you would get. We will use this tool more later on.

In the middle of your screen is a box where you can make your bid. Please make a bid

now. Press enter or ‘create’ when you are done. Then press the confirm button. When

you have done this you will see a notice “Waiting for all players to finish submitting bids”.

When everyone has finished submitting a bid, the screen will change and say “Waiting for

next period to start”.

While you are waiting, take a look at the box at the bottom of the screen. There is a lot of

valuable information in this box that tells you how much money you are making, and how

the other firms are bidding. Each period this information will be updated, so that you will

have a complete history of the market during the round. From left to right, you can see the

following. The first box is the period number. The next boxes are the bid you made, the

price you received, the number of units you were asked to make, your profit in that period

and your balance (total profit) in the round up to that period. The following box shows all

the bids made by all the firms. This box is always sorted by increasing firm number, from

lowest to highest. The firm with the lowest number made the bid given in the first entry

of this list and so forth. The boxes containing ‘All Prices’ and ‘All units sold’ information

are similarly sorted. It is important that you can easily see which firms bid what and how

much they made. Finally the last box shows you how many units were demanded in reality

at each of the demand nodes for that particular period. Once again, these are sorted by

increasing order by node number.

Notice that the other firms’ bids will affect the price you receive! (We’ll discuss how later.)

Now a new period will start. Try making another bid . Press confirm. When the period

ends, notice how the record of each period accumulates in the bottom box. The most recent

period’s results is at the top of the list.
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The Practice Tool

The Practice Tool is an important tool for helping you make good bids. Here you get a

chance to enter fake bids for all firms and see what kind of profit you might make. You can

access it by pressing the ‘Practice’ button on the main bidding screen. Press the Practice

button now. This will take you to a screen that looks like this:

Remember what the network looks like in this example (at the top of these instructions).

First enter some values of demand (called ‘Consumer Node Fields’ on the screen). Your

choices of demand have to be within the minimum and maximum bounds on the network

diagram. Now enter a fake bid for each firm. Press enter and the computer will tell you

the results. Take a look at the results. It is important you can comprehend them quickly.

The prices, allocations and profits for each firm are given in a table listed by firm number.

The line flows are given in a table below that. Remember that a positive line flow in one

direction can also be shown as a negative line flow in the other direction. If you want to

make another practice bid, scroll down and enter new information.

Now we are going to do a second test. This will test your ability to use the practice tool

and understand the output it gives you. If you have any questions, please raise your hand
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now.

Market Instructions

In this section I will explain how the Market Maker determines prices and allocations given

the bids firms make. There is a two step process to determine prices. The allocation (how

much electricity each firm makes) is determined first, then the prices are determined in a

second step. Remember that the Market Maker is just a computer.

Step 1

The Market Maker takes all of the firms’ bids and the actual values of demand and runs an

optimisation algorithm. The goal is to minimise the cost to the Market Maker of purchasing

enough electricity to satisfy demand assuming that the Market Maker will pay each firm

what it bid per unit of electricity. This algorithm finds an optimal solution and returns the

amount of electricity each firm should make. This is the optimal ‘allocation’. The Market

Maker also works out the total cost it has to pay for this allocation. We will call this cost

C.

Step 2

To determine the actual price each firm gets paid, the computer uses the following process.

It takes a firm and pretends that that firm has an extra unit of electricity available at 0

cost. So, if a firm bid

the computer will pretend that the firm bid

Now the computer repeats Step 1 with this firm making this new bid, and all other firms

making their original bids. It finds the new total cost D it has to pay now. Note that
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the new cost D must be less than or equal to the original cost C because now this firm is

offering a free unit! The difference D – C is the amount this firm gets paid.

This process is repeated for each firm to find how much each firm gets paid. If a firm was

allocated nothing in Step 1, then the price for that firm is set equal to 0.

Note that if a firm is given a free unit, the computer will always take this unit which means

that another firm will lose one unit (because demand must equal supply). Therefore the

firm will usually (but now always) get a price equal to the bid of the firm who lost that

unit. This will usually be the firm with the highest bid, but may not be if line constraints

prevent this.

I will now go through several examples to help you understand the pricing rule.

One important consequence of this algorithm is that if none of the line constraints in the

network are binding, then all firms must receive the same price equal to the highest bid of

those firms who are producing electricity. This is because if you give any firm a free unit,

then the computer will automatically take one unit away from the firm with the highest

bid. The difference in the total cost is then equal to that firm’s bid.

Let’s look at an example. Suppose we have four firms, each with capacity of 100 units of

electricity, in an unconstrained network (none of the line constraints will ever be binding).

Suppose the bids are as follows.

If total demand was 220, the price would be 22.4 francs for all firms, except firm 4. To

compute this, first work out the allocation. The minimum cost is to have firm 2 produce

100, then firm 1 produce 100 and finally firm 3 produce 20. This is the optimal allocation.

Now work out prices. If you give any firm one free unit, what will the Market Maker do?

The Market Maker can minimize total cost by taking away one unit from firm 3, because

firm 3’s bid was the highest amongst the those firms with positive allocation. Notice that

firm 3 must get a price of at least 22.4 (this is what it bid). Therefore firms 1 and 2 must
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also get a price of at least 22.4. As firm 4 is not producing anything, it gets a price of 0.

Now let’s look at a trickier example to see when prices might be different amongst firms.

Consider the following network.

Suppose the true value of demand is 240, and suppose the bids for the three firms are as

follows.

As normal, the allocation is decided first. Firm 0 has the lowest bid , so it gets to supply

100. Unfortunately, a capacity constraint on the line restricts it to 80 units. Firm 2 has the

second lowest bid , it can supply 100 units. Finally firm 3 supplies the remaining 60 units.

Firm 3 has the highest bid out of the firms that are given a positive allocation, so firm 3

must receive a price of 20.1, equal to its bid.

Notice what happens if you give firm 0 an extra free unit. Which firm loses a unit? It must

be firm 1, because there is a line constraint of 80 between node 0 and node 1 (the demand

node). If firm 0 gets an extra free unit, it is now producing 81 units, which violates the line

constraint. Therefore, the only way to make the solution feasible is to take one unit away

from firm 0 – this unit would cost 11.2, so D – C equals 11.2. There are no line constraints

between firms 2 and 3, and node 1 however. So if you give either firm 2 or firm 3 a free

unit, the computer will take 1 unit off firm 3 (the firm with the highest bid) so the price

for firms 2 and 3 is 20.1.

Now here is a really interesting example. Consider the modified network below. Suppose

again that demand is 200 and suppose that the bids are as given.
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First we will work out the allocation. Kirchoff’s laws make the allocation complicated at this

point so during the experiment you should rely on the practice tool to compute allocations.

But to give you some intuition, I will indicate how it works.

Firm 2 gets first allocation because it has the lowest bid. The electricity firm 2 produces

must flow to node 1, because that is the only demand node. By Kirchoff’s laws, two-thirds

of the electricity it makes will flow on the line 2→1, and the other one-third will flow from

2→3 and 3→1. So firm 2 will initially get allocated 75 units. Next firm 0 gets an allocation,

and can produce 100 units. This leaves firm 3. Firm 3 can produce nothing – but now

notice that if firm 2 produces 50, then firm 3 can also produce 50. As the Market Maker

needs 200 units total, it will do this, so the final allocation is firm 0 gets 100, and firms 2

and 3 get 50. Now look at the prices.

If firm 0 can produce 1 more unit (for free), which firm loses an extra unit? Firm 3 is the

obvious pick, but notice that if firm 3 loses an extra unit, then firm 2 can make an extra

one-third of a unit but then firm 3 should lose this one-third of a unit (because it is more

expensive) and so forth until we find the new optimal solution is to give firm 0 101 units,

firm 2 gets 51 units and firm 3 gets 48 units. So take off 16×2 and add 12 to find the new

total cost which is 20 francs less! So the price for firm 0 is 20. This price is not equal to

any of the firms’ bids! For firms 2 and 3, because the line 2→1 is constrained, the free unit

replaces one of their units, so their price is what they bid.
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The moral of the story is that differences in price are caused when transmission lines are at

full capacity at the optimal allocation. Kirchoff’s laws can make it tricky to identify exactly

what the price should be so you need to rely on the practice tool to help you guess prices

and profits in any given situation.

In event of a tie in bids, the computer will try and give each firm an allocation that is

proportional to their capacity. If constraints prevent this, the computer will try to find an

allocation as close to this as possible.

We will now do a final quiz to gain some intuition on how prices are calculated. If you have

any questions, please raise your hand now.
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