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The Mechanics and Control of Robotic Locomotion
with Applications to Aquatic Vehicles
by
Scott D. Kelly
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Doctor of Philosophy

Abstract

This work illuminates the utility of a theory of locomotion rooted in geometric me-
chanics and nonlinear control. We regard the internal configuration of a deformable
body, together with its position and orientation in ambient space, as a point in a
trivial principal fiber bundle over the manifold of body deformations. We obtain
connections on such bundles which describe the nonholonomic constraints, conser-
vation laws, and force balances to which certain propulsors are subject, and contruct
and analyze control-affine normal forms for different classes of systems. We examine
the applicability of results involving geometric phases to the practical computation
of trajectories for systems described by single connections. We propose a model for
planar carangiform swimming based on reduced Euler-Lagrange equations for the
interaction of a rigid body and an incompressible fluid, accounting for the generation
of thrust due to vortex shedding through controlled coupling terms. We investigate
the correct form of this coupling experimentally with a robotic propulsor, comparing

its observed behavior with that predicted numerically.
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Chapter 1

Prolegomenon

Swim. Fishbone

1.1 Historical perspective

Since

The way of an eagle in the air,
the way of a serpent upon a rock,
The way of a ship on the high seas,

and the way of a man with a maiden

perplexed the ancient Hebrews [78], locomotion has intrigued the human mind.
Leonardo da Vinci’s anatomically informed examinations of the human body in
motion predated the landmark photographic studies of Eadweard Muybridge [74, 75]
by four centuries. According to Sir James Gray [27], however, advancements in the
quantitative description of animal locomotion were few until the present. Gray cites
Giovanni Borelli’s De motu animalium (1680), which borrowed its title from a work
of Aristotle’s, and Etienne-Jules Marey’s Machine Animale (1873) as works of rare
significance.

James Watt’s 1769 improvement to the Newcomen atmospheric engine ushered
in the age of man-made self-powered vehicles; his flyball governor is often hailed

as the first modern control system. Biologists like C. Bernard (Les phéomenes de
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la vie, 1878) and L. Frederick (who coined the term “regulatory agencies” in 1885)
were among the first to recognize the similarities between the feedback control of
steam engines and fundamental bioregulatory processes [46].

Biomimetic design pervades robotics. As early as 1940, Hutchinson and Smith
built a small robot which was able to walk and ascend obstacles on four independently-
controlled legs [35]. The General Electric Walking Truck, designed and built in the
1960s, epitomizes large legged vehicles under strictly mechanical control [71]. The
last two decades have witnessed the construction of several walking robots with two
to six legs, as well as Raibert’s hopping machines with as few as one [84, 85]. To-
movic and Karplus [95] first applied mathematical methods, including the theory of
finite states, to the analysis of legged locomotion. Hildebrand [32] and McGhee [66]
formalized the analysis of perambulatory gaits; the role of central pattern genera-
tors in dictating such gaits has been considered by Collins and Stewart [20]. Recent
research into the dynamics and control of legged machines has included McGeer’s
work on passive dynamic walking [65].

Hirose and Umetani began their work with snakelike robots, or “active cord
mechanisms,” in the 1970s. An early creation of theirs propelled itself in a ser-
pentine fashion but was confined to the plane [33]; a later robot could lift sec-
tions of its body for maneuvers which included climbing stairs [34]. The kinemat-
ics of “hyper-redundant” robot locomotion have been examined more recently by
Chirikjian and Burdick (who coined the term) [16], Krishnaprasad and Tsakiris [47],
and Ostrowski [80].

The efficiency, maneuverability, and stealth of marine animals have provided
an enticing paradigm for the design of biomimetic robots since Gray’s “paradox-
ical” 1936 study of drag reduction on dolphins. The most celebrated pisciform
robots today are arguably the MIT RoboTuna and its siblings [96], which resemble
members of the taxonomic family Carangidae in body type. Fukuda and others,
however, have developed aquatic microrobots which exploit qualitatively different
flow phenomena [25]. Untethered submersible technology currently welcomes cues

from many corners of aquatic zoology [94].



The application of gauge theory to the unassisted reorientation of deformable
bodies in vacuo began with Marsden, Montgomery, and others [57, 70, 24], inspired
in part by conspicuous feline gymnastics [36]. The navigation of deformable bodies
undergoing sinusoidal changes in shape was addressed by Murray and Sastry [73].
Lagrangian reduction was developed by Marsden and Scheurle [59, 60] and extended
to incorporate systems subject to nonholonomic constraints by Bloch et al. [13].
Kelly and Murray [41] and Ostrowski [80] integrated these ideas into a geometric
theory of robotic locomotion.

The evolution of an inviscid, incompressible fluid was first addressed as a prob-
lem in geometric mechanics by Arnol’d [6]. Ebin and Marsden probed the manifold
structure of certain diffeomorphism groups to realize theorems concerning the exis-
tence and uniqueness of solutions to classical equations of fluid flow [22]. Marsden
and Weinstein revisited inviscid flow in the context of Hamiltonian reduction [61].
A complete modern exposition of fluid mechanics appears in the recent volume of
Arnol’d and Khesin [7].

Benjamin and Ellis [9] and Saffman [87] first demonstrated that a deformable
body could accelerate from rest in an ideal fluid; Benjamin introduced Hamiltonian
formalism to this problem [8]. Benjamin and Ellis [10] and Miloh and Galper [69]
returned to the problem motivated in part by the observed behavior of sonically
irradiated air bubbles in water. The Poisson bracket structure underpinning the
motion of a finite ideal fluid with a free boundary was clarified by Lewis et al. [52].

The position controllability of a deformable body in an ideal fluid was defined by
Mahalov and Nikitin [55]. Kelly and Murray presented the equations governing the
rectilinear swimming of a deformable cylinder as a driftless nonlinear control sys-
tem [42]. Mason [64] and Andreas [4] considered the optimal control of homogeneous
and heterogeneous cylinders.

The undulatory swimming of a nearly circular cylinder at low Reynolds number
was studied first by Blake [12], anticipating his spherical envelope approach to ciliary
propulsion [11]. Shapere and Wilczek addressed the gauge theoretic nature of this

problem [90] and examined the efficiency of certain swimming strokes for cylindrical



and spherical bodies [89]. Ehlers [23] and Koiller et al. [46] have applied gauge
theoretic techniques to the swimming of a variety of microorganisms; the ability to
swim at low Reynolds number on a macroscopic scale boasts arguable advantage as
well [28]. Kelly and Murray proposed a simple interpolation between the geometric
equations governing inviscid swimming and those governing Stokesian swimming to
model the self-propulsion of an inertial body subject to viscous dissipation [42].

The dynamics and stability of a rigid vehicle immersed in an irrotational fluid
have been studied, and interpreted in a general Hamiltonian setting, by Leonard and
Marsden [51]. Ozcazang examined the dynamical interaction of a finite vortical fluid
and a free rigid container [81]. We will see that a piscimimetic vehicle is followed by
a wake with a very particular structure, which may be approximated in cross-section
by an appropriate arrangement of point vortices. Koiller has studied the coupled
motion of vortices and planar rigid bodies [45], and Aref the stability of certain
wake-like vortex patterns [5]. Langford and Zhan explored the resonance properties
of a model for the vortex-induced vibration of an elastically-mounted cylinder [49].

The biological literature addressing the swimming of fish is considerable. The
term “carangiform” was coined by Breder to signify pisciform locomotion of the sort
we review; Breder applied the term “anguilliform” to the contrasting swimming of
eels [14]. Lighthill has made theoretical contributions across the full spectrum of
aquatic locomotion [53], as has Wu [76, 99]. Recent efforts to model carangiform
swimming in a fashion amenable to control analysis include those of Harper et
al. [29, 30] and Kelly et al. [39, 40].

The most efficient carangiform swimmers sport caudal fins which are lunate
in profile; recent refinements to the analysis of their performance include those of
Karpouzian et al. [37]. Ahlborn et al. focused on the introduction and extraction
of energy to and from a structured wake by a flapping lunate tail with a single
rotational degree of freedom [2].

We note, finally, that the computational techniques applied by Martins and
Ghoniem to the intake flow in a piston-chamber device [63] seem particularly adapt-

able to the interaction of a free body and its vortex wake.
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1.2 Overview of contributions

Problems in the self-propulsion of deformable bodies invite the cooperation of tools
from geometric mechanics and nonlinear control theory. The internal configuration
of a deformable body, together with its position and orientation in ambient space,
constitutes a point in a trivial principal fiber bundle over the manifold of body
deformations. A propulsor which controls its own shape navigates this manifold to
exploit the conservation laws, nonholonomic constraints, and hydrodynamic effects
which allow it to move. Individually, each of these may often be described by a
connection on the configuration bundle.

The equivalence of a mechanical connection to the conservation of a deforming
body’s momentum was described by Marsden et al. [57]. We obtain a mechanical
connection which captures the conservation of Kelvin impulse governing the self-
propulsion of a deformable surface in an irrotational fluid. The connection underly-
ing swimming at low Reynolds number was recognized by Shapere and Wilczek [90].
We derive this connection from a dissipation function, elucidating its equivalence to
the net balance of drag on a Stokesian propulsor. This equivalence of a connection
to a force balance is not limited to the aquatic realm; we evince the limits of its
extension. We also demonstrate that the equations describing the motion of a La-
grangian system in the presence of quadratic dissipation may, in general, be realized
geometrically in terms of two connections and an evolving momentum.

The swimming of fish hinges upon the exchange of fluid vorticity for body mo-
mentum. The mechanism by which vorticity is shed gives rise to forces which elude
the theory of connections, but we are not at a loss to describe such systems geo-
metrically. Carangiform propulsors resemble, morphologically, certain members of
the fish order Percomorphi. In nature, this physical resemblance engenders a simi-
larity in high propulsive efficiency and speed [53]. We propose a planar model for
carangiform swimming based on reduced Euler-Lagrange equations for the interac-
tion of a rigid body and an incompressible fluid. We account for the generation of
thrust due to vortex shedding through controlled coupling terms. At the heart of

this coupling is an abstraction from hydrofoil theory; we investigate its applicability



to real carangiform swimming using an articulated robotic caudal mechanism. We
compare the observed behavior of our experimental apparatus to that predicted by
steady hydrodynamics.

Ultimately, we view the self-propulsion of any deformable body as a problem
in nonlinear control. We realize normal forms for systems described by one or
more connections, interpreting established tests for controllability and accessibil-
ity in terms of the properties of these connections. Locomotion problems suggest
particular nontraditional notions of controllability and accessibility; we define these
both intuitively and geometrically.

Related to the constructive demonstration of controllability is the study of gaits.
We examine the computation of geometric phases in this context, illuminating the
implications of the Ambrose-Singer theorem and an equation for the local expansion
of holonomy for certain types of locomotion systems. We explore carangiform gaits

experimentally and computationally.



Chapter 2

Mathematical Preliminaries

2.1 Notions of differentiation

Let E and F be normed spaces, U an open set in F, and ug a point in U. If

f:U — F, there exists at most one A € L(F, F') such that
ga:U—= F:uw f(uo) + A(u — ug)

is tangent to f at ug, in the sense that

i 17 = ga (]

=10.
u=uo ||u — ug|

If such an A exists, we say that f is Fréchet differentiable at ug, and define its
Fréchet derivative at ug to be D f(ug) = A. The evaluation of Df(up) on e € E'is
denoted D f(ug) - e. If f is Fréchet differentiable at every ug € U, the map

Df:U— L(E,F):u~ Df(u)

is said to be the Fréchet derivative of f.
The map f : U — F is said to be differentiable in the direction e € £ at the



point ug € U if the quantity

d
&, f(uo + te) (2.1)

exists. A function f is said to be Gdteaux differentiable at the point ug if it is
differentiable in every direction there. If f is Fréchet differentiable at wg, it is

Gateaux differentiable there and its directional derivatives are given by

% =0 f(uo +te) = Df(uo) -e.

We will sometimes write D, f(uo) for the derivative of f in the direction e.

2.2 Ideas from differential geometry

2.2.1 Lie algebras and Lie groups

We denote the space of vectors tangent to the smooth manifold M at the point z

by the symbol T, M, the dual space of covectors by Ty M, and their pairing by
() ToM x TyM — R.

We denote the tangent bundle projection by 7ps : TM - M. If f: M -+ N2y
is a smooth map between manifolds, we write T, f : T,M — T, N to denote its
tangent map at the point 2 € M. We denote the space of smooth vector fields
on M by X(M). Let f : M — R be a smooth function on M. The operation
[ ]: X (M) x X (M) — X (M) defined by

[X,Y]f=XYf-YXf for X,Y€X(M)

is called the Jacobi-Lie bracket of vector fields on M.
A Lie algebra is a vector space V together with an operation [,-]: V XV =V

such that



1. [+, ] is bilinear;
2. [v,v] =0 for every v € V;
3. [u, [v, w]]+ [v, [w, u]]+ [w, [u,v]] = 0 for all u,v,we V.

The equation specifying the third requirement is called the Jacobi identity. A Lie
algebra is said to be Abelian if the bracket operation is trivial. The Jacobi-Lie
bracket endows X (M) with the structure of a Lie algebra.

A Lie group is a manifold on which a smooth group operation is defined. A Lie
group is said to be Abelian if this operation is commutative. We denote the identity
element of the Lie group G by e. If g,h € G, left translation by h corresponds to

the map

Ly:9g— hg

and right translation by h to the map

Ry 9~ gh.

If v e T,G, we will sometimes abuse notation and write

hv=TyLpv € TpyG and vh =T Rpv € TypG.

If G is a Lie group, a vector fleld X € X (G) is said to be left invariant if

TyLnX (9) = X (hg),

and right invariant if

TyRiX (9) = X (gh),

for all g,h € G. We denote the set of left invariant vector fields on G by Xr, (G)



10

and the set of right invariant vector fields on G by X (G). If X,Y € X1, (G), then

TyLn ([X (9),Y (9)]) = [TyLrX (9) , TyLrY (9)]

= [X (hg),Y (hg)};

thus X, (G) constitutes a Lie subalgebra of X (G). The left invariance of every
X € X1 (G) implies that X, (G) and T.G are isomorphic as vector spaces. The
Jacobi-Lie bracket on X, (G) therefore determines a bracket operation on T.G given

by

[€,n] = [TeLy&, TeLgn] (e) -

We denote T.G together with this bracket operation by g, and refer to g as the
Lie algebra corresponding to G. We note that Jacobi-Lie bracket on Xg (G) also

determines a bracket operation [, -]g : TG x T.G — T.G. Indeed,

[5, 77]R = “[5,77] for all 5777 € g

It is proven in [98] that a connected Lie group is Abelian if and only if the corre-
sponding Lie algebra is Abelian.
If £ € g, it is proven in [31] that the differential equation

dg
i T.LE, g(0)=e

has a unique solution g¢ (t) € G for all t. We define the ezponential map exp : g — G
such that exp& = g¢ (1). The exponential map determines a diffeomorphism from a

neighborhood of 0 € g to a neighborhood of e € G.

2.2.2 Distributions and Frobenius’ theorem

An m-dimensional distribution D on M is the smooth assignment of an m-dimensional
subspace D (z) of T,M to every & € M. A vector field X on M is said to lie in
Dif X (z) € D(z) at every ¢ € M. The distribution D is said to be involutive if
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[X,Y] € Dforall X,Y € D.

A submanifold N C M is an integral manifold of D if D (z) = T,N at every
z € N. If D exhibits an integral manifold at every 2 € M, D is said to be integrable.
Involutivity and integrability are related by the following result.

Theorem 2.1 (Frobenius) A distribution is integrable if and only if it is involu-

tive.

Different versions of this theorem are stated and proved in [98]. If D is an m-
dimensional distribution on an n-dimensional manifold M, then M is foliated locally
by the level surfaces of (n — m) functions fi,..., fo—m : M = R.

2.2.3 Differential forms and Stokes’ theorem

A (j, k) tensor field o on a manifold M assigns to each point € M a multilinear
map (or tensor)

a(z) : (TEM) x (T,M)* = R.

The tensor product of a (0, k) tensor field & on M and a (0,/) tensor field 8 on M

is given by

(@® 8) (2) (viy- -y vegt) = () (1, -, 08) B (2) (Ok1s -+ VB1) 5

where vy, ..., vy € ToM. A (0,k) tensor field « is said to be skew symmetric if the
value of « (z) (vy,...,vx) reverses sign under odd permutations of its arguments.

The alternation operator acts on a (0, k) tensor field « such that
1
(Alt ) (z) (v1,...,v%) = 7 Z sgn (7) o (z) (v,,(l), . -an(k)) ,

where Sy is the group of permutations of the integers 1,..., k.
A real-valued differential k form on the manifold M is a skew symmetric (0, k)

tensor field M. We denote the set of all k forms on M by A* (M), and the set of
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all forms on M by A (M). If a is a k form and § an ! form on M, we define their

wedge product on M by

(k +1)!
k10!

aAf= Alt (a®f).

We note, in particular, that the wedge product of o, 3 € A (M) is given at z € M
by

(A B) (v1,v2) = @ (v1) B (v2) — @ (v2) B (1),

where v, vy € T, M. Endowed with the wedge product, A (M) forms an associative
algebra over R, known as the ezterior algebra on M. If V is a vector space, we define
a V-valued form on M to be the sum of terms of the form o ® v, where o € A (M)
and v e V.

If o is a k form and X a vector field on M, we define the interior product

1: X (M) x A (M) = A (M) such that X 1a € A¥=! (M) satisfies
(XJOJ) (Xl, - -ka—l) = Oé(X,Xl, . .,Xk_l) .

The exterior derivative do € AF+! (M) of a differential form o € A* (M) is
determined by the unique linear map d : A (M) — A (M) such that

1. df is the differential of f for any function f € A° (M);

2. d(aAB)=daA B+ (-1) aAnds for a € A% (M) and g € A (M);

3. d(de) = 0 for any a € A* (M).
If @is a k form on M and Xy, ..., Xy vector fields in X (M), then

do (Xo, ..., Xk) =§:(—1)iXi <a (Xo,...,X}-,...,Xk))



13

where X indicates that X is omitted from an argument.
An n-dimensional manifold M is said to be orientable if it admits a nonvanishing

n form. Such an n form determines a basis for A" (M) and is called a volume form.

Theorem 2.2 (Stokes) If M is a compact, oriented, n-dimensional manifold with

boundary OM, then
/ doz:/ o
M aM

for any (n — 1) form on M.

2.2.4 Actions of Lie groups

A left action of the Lie group G on the manifold M is a smooth map ® : GXM — M

such that
1. ®(e,z) =z for all z € M;
2. ®(g9,® (h,2)) =P (gh,z) forall z € M and g,h € G.

A right action is such that ® (g,® (h,z)) = & (hg,z). We consider left actions
except as noted. The symbol ®,(:) is often used in place of ® (g,-). An action of
G on M is said to be free if g — ®, () is injective forevery 2 e M. f M =V is a
vector space and each ®, a linear transformation, the action ® : G x V — V is said

to be a representation of G on V. The action defined by
Ad:G xT.G = T.G:(9,8) = TR, T Ly

is called the adjoint representation of G on g. It is sometimes realized as the

derivative of the inner automorphism

I,:G—G:hw ghg™h
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Every representation ® of a Lie group G on a vector space V determines a dual

contragredient representation ®* : G x V* — V* such that
(@52, v) = (2, Byv)

forzeV*andveV.
The infinitesimal generator of the action ® : G x M — M corresponding to

¢ € g is the vector field on M given by
Em(z)=—| P(expté,z) for z e M.
dt|,_o

The infinitesimal generator of the adjoint representation is given by
adgn=¢&n=1[n] for &neq.

It is true in general that

[&ae, ] = (€5 MM (2.3)
If, in particular, the group GG acts on itself by left multiplication

®:GXG—>G:(g,h)— Lyh,
then
§a (9) = TeRy€. (2.4)

2.2.5 Material, body, and spatial velocity

Let vy: I — G :tw g(t), where I C R, define a curve in the Lie group G. The

Lagrangian or material velocity is given by

Umaterial (t) = g (t) € Tg(t)G
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Left and right translation in G' both determine isomorphisms between T.G and

Ty1G- The convective or body velocity is given by

Vbody (1) = TyyLyg-1(1)9 () € T.G,
and the Fulerian or spatial velocity by

Vspatial (t) = Ty)Ry—1(1)d (t) € TeG.

It follows that

Uspatial (t) - Tg(t) Rg—l(t)TeLg(t)vbody (t)
= Adg(t) Ubody (t)
and
Ubody (t) = Ty(tyLg~1(t)Te Ryg(1) Uspatial (t)

= Tg"l 0 Rg(t)TeLg—l (®) Uspatial (t)

- Adg—l(t) Uspatial (t) .
It is demonstrated in [1] that if £ (t) € g, then

d

o (Adg(s) € (2)) = Adgry € (1) + Adyqey adr,, Lyt i® € ®) -

If 11 (¢) € g*, it is furthermore the case that

d * 3k . % *
'(‘i“t‘ (Adg(t) M (t)) = Adg(t) 1 (t) -+ a}dTg(t)Lg—-l(t)g'(t) Adg(i) U (t) y (2.5)

where Ad* : g* — g* denotes the contragredient coadjoint representation.

2.2.6 Rigid motion in the plane

We often work explicitly with SE(2) and its associated Lie algebra, se(2). Their

properties, as detailed below, may be derived from the properties of SE(3) and
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se(3) detailed in [72].

We may regard elements of SE(2) as matrices of the form

cosf —sinf =z
g= |sinf cosf y|,
0 0 1

so that the group operation corresponds to matrix multiplication. We will some-
times denote the corresponding elements of SE(2) by triplets (z,y,8). If g1 =
(21,91,01), 92 = (T2, Y2, 02) € SE(2), then

g1-92 = (1 + 9 cos 0y — yasin by, yy + xosin by + yacos by, 0; +63).

We may regard elements of se(2) as matrices of the form

0 —'69 5&:
g= f@ 0 ’fy 3
0 0 0

so that the bracket operation corresponds to matrix commutation. We will some-

times denote the corresponding elements of se(2) by triplets (&;,&y,&p). If & =
€2+ &yr&0) yn = (s 1y M6) € se(2), then

(&, = (&me — &omyy oM — €279, 0) (2.6)

The exponential map exp : s¢(2) — SE(2) is given by

expé = (é (=€, + &, cos € + £, sin ) g; (€4 — Eo cos g + &, sin &) ,59)

if &9 # 0, and by the Abelian exponential map (&;,&y,0) — '(fw,fy, 0)if&=0. It

follows that the infinitesimal generator of left translation corresponding to £ € se(2)
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is given by
Esp(2) = (G — Y€a, &y + 280, o) - (2.7)
The adjoint action of SE(2) on se(2) is given by
Ady & = (Excosf — &, sin 0+ &gy, Epsin 0 + &y cos 0 — &gz, &) - (2.8)
It g () = (2 (t),y (), 6(8)) is a curve in SE(2), then

g lg= (x cos@ + ysinf, ycosfd — 2sind, 0) . (2.9)

2.3 The calculus of variations

The calculus of variations characterizes the extremals of real-valued functions on
infinite-dimensional domains. Functions of this sort are sometimes called function-
als. Of particular interest are functionals on manifolds of curves joining points in
other manifolds. Let Q (g1, g2, [a, b]) denote the manifold of curves ¢ : [a,b] = @ :
t + c(t) such that c(a) = q1 and ¢ (b) = ga. The tangent space T.Q (g1, g2, [, b])
may be thought of to comprise the restrictions to the curve ¢ C @ of vector fields
on () which vanish at ¢; and ¢5.

Consider a curve ¢; : R — Q (g1, ¢2, [a,b]). Each point along ¢; is, itself, a curve
in Q. We refer to any such one-parameter family of curves in @ as a variation of

the curve ¢ = ¢g C (). For any variation c,, we define

des
dc = “d‘: o € TCQ ((.717 q2, [a, b]) .

We refer to dc as an infinitesimal variation of c.

A functional J : Q (g1, 92, [@, b]) — R has a critical point at ¢ € Q (g1, ¢2, [a, b]) if



and only if

ds |.—o

for all variations ¢, of the curve ¢ = ¢y. We abbreviate this requirement as éJ = 0.

2.4 Principal bundles and related objects

Let M be a manifold and G a Lie group. A (left) principal fiber bundle with base
space M and structure group G comprises a manifold @ and a free (left) action ®

of G on @ such that
1. M =Q/G;
2. The canonical projection mys : Q@ — M is differentiable;
3. @ = M x G locally.

We denote the image of the point ¢ under the action of h € G by hg. If Q = M x &G
globally, the bundle is said to be ¢rivial, and the action in question corresponds to
left translation in G. We denote the image of the point (r,g) € M X G under the
action of h € G by (r, hg). We use the symbol ) to denote both the bundle space
or total space and the bundle itself.

The point ¢ € () is said to lie in the fiber over mpr (¢) € M. A vector v, € T,Q
tangent to the fiber through ¢ is said to be wertical; we denote the space of all
such vectors by V,Q. A connection on the principal bundle ) is an assignment of a

complement H,Q to V,Q C T,Q at each ¢ € @ such that
1. HpoQ = T,9, H,Q;
2. H,Q depends differentiably on ¢q € Q.

Vectors in Hy(Q) are said to be horizontal. Given a connection on (), any tangent

vector vy € TyQ) may be uniquely decomposed into its corresponding horizontal and
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vertical components
vg = hor v, + ver v,

where horv, € Hy() and verv, € V, Q).
A connection may be specified on the principal bundle @ by its unique connection
one form ' : TQ — g, where g is the Lie algebra corresponding to the structure

group G. The connection one form satisfies

1. T' (&) = ¢&;
2. T'(Ty®g (vg)) = Ady T (vg);

and operates on generic vectors tangent to ¢ such that

(I' (vg)) g (9) = verv,. (2.10)

The one form I' : TQ) — g thus specifies the horizontal subspace of T,() to comprise
those vectors which it annihilates.

Given a connection on the bundle @, the tangent map T,mps : ToQ) — Trr ()M
maps the horizontal subspace at each ¢ € @ isomorphically onto 17 ;M. Given a
vector u, € T.M and a point ¢ in the fiber over r, there is a unique vector in H,()
which projects via T,mps onto u,. Given a vector field X on M, there is a unique
horizontal vector field X" on Q which projects via Twas onto X. We refer to X* as
the horizontal lift of X. If Y and Z are two vector fields on M, it is straightforward

to show that
hor[Y", z" =[v, 21", (2.11)

where [+, -] denotes the Jacobi-Lie bracket on the appropriate manifold in each case.
The following result is proven in [44] from the equivalence of the Jacobi-Lie

bracket to a Lie derivative.

Lemma 2.3 If Z is a horizontal vector field on Q and § € g, then [Z,€g) is a



20

Figure 2.1 Constructions on a principal bundle.

horizontal vector field on ().

Now consider a curve ¢ (¢) in M passing through ¢ (0) = r € M. For each point
g in the fiber over r, there is a unique curve ¢’ (t) in Q, called the horizontal lift
of ¢, which passes through ¢, projects to ¢ (t), and satisfies %ch (t) € H,Q for all
q=ct(t). Ifc(t;) = r; and ¢ (t3) = rq, each point ¢; in the fiber over r; is connected
by a unique horizontal lift of ¢ (¢) to a point ¢ in the fiber over ro. We refer to this
map from q; to g9 as parallel translation along c (t).

Given a differential form o : (TQ)"™ — g, we define its covariant exterior deriva-

tive Da: (TQ)"' — g with respect to a connection such that

Do (Xy,...,Xp41) = da(hor Xy, ..., hor X,41) .
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The curvature form DI : TQ x T'QQ — g corresponding to the connection form I' is

given by its covariant exterior derivative

DI (X,Y) =dI (hor X, horY). (2.12)

Note that (2.2) applied to the connection form I' implies that

T ([Y,Z]) = YT (2) - ZT (Y) - dT (Y, Z). (2.13)

In practice, we often compute the curvature of a connection using the following

result, known as Cartan’s structure equation.

Theorem 2.4 IfI' : TQ — g is a connection form and DI' : TQ x TQ — g the

corresponding curvature form, then

DI (X,Y) = dl (X,Y) - [T (X),T (Y)]. (2.14)

Proof: We prove the structure equation at an arbitrary point ¢ € . We define
¢,\ € gsuch that ( =T (X) and A =T (Y) at ¢; then (g = ver X and A\g = verY

at ¢. Since dI' is linear,

dl (X,Y) = dI' (hor X + ver X, horY + verY)
= dI (hor X, horY) + dT' (hor X, verY) 4 dI' (ver X, horY’)
+dT (ver X, verY')
— dT (hor X, horY) + dT (hor X, 11g) + dI" (Co, hor V) + dI" (Cg, ) -
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Using (2.13), the fact that I' (hor-) = 0, and (2.3), then

dl' (X,Y) = =T ([hor X, horY]) + hor XT (A\g) — I ([hor X, Ag]) — hor YT ((g)

T
I'([¢, hor Y]) + CoI' (A@) — AQT (¢@) — I' ([Se» AQl)

T ([hor X, hor ¥]) + hor XA — T ([hor X, Ag]) — hor Y¢
r
I'(

= I'(=[horY; (g]) + (oA — Ae¢ = T' (=[¢; AlQ)
Applying (2.13) and T (hor-) = 0 together with (2.12),

DI'(X,Y) = dI' (hor X, horY)

= —T (fhor X, hor YY)

=dl' (X, Y) +T ([hOI’X, )\Q]) -T ([hOI‘Y, CQ]) =T ([Ca A]Q) :

From the definition of the connection form,

I'([¢, M) =[¢, Al =[T'(X), T (Y)];

from Lemma 2.3,

I (fhor X, Ag]) =T ([hor Y, {g]) = 0.

Thus

DT (X,Y) =dl (X,Y) - [[(X),T (Y)].

[hor X, hor Y]) — T ([hor X, Ag]) + T (fhorY,¢g]) + I ([¢, Alg) -

The preceding result is often written in terms of a multiplicative operation de-

fined for g-valued forms in the following way. If o, 8 : TQQ — R and &,7 € g,
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then

[a®&,8@n=arfLn].
Using this notation, we may write (2.14) as
1
DI (X,Y)=dl'(X,Y) - -2—[I‘,I‘] (X,Y).
Indeed, Cartan’s structure equation is a consequence of the more general result
1
Dp = dp — 5T, pl,

where p is any equivariant g-valued one form. With the distinction between [I', '] (-, )
and [['(-),['(-)] in mind, we note that differences among authors’ definitions of the
wedge product add variety to the appearance of (2.14) in the literature.

A local trivialization @ = M X G allows us to express the connection form I' :
T(Q — g in terms of coordinates around r € M and g € G. Since (0,v) € T,M XT,G

is vertical,

I'(r,9)(0,v) =vg™"

so that
(F (T‘,g) (O’v))Q (r7g) = (Ugvl)Q (T‘,g)
=(0,(vg™") 9)
= (0,v).
Thus

I'(r,g) (u,0) =T (r,g9) ((0,v) + (u,0))
=T (r,9) (0,v) +T(r,g) (0

=vg™ + A(r,g) (u).
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Similarly,
T (r, hg) (u, hv) = hug~ A~ + A (r, hg) (u) .
But
[ (r, hg) (u, hv) = Ady T (7, g) (u, v)
= Ad,, (vg“1 +A(rg) (u))
= h (vg™ + A (r,g) (w) b~
= hvg 'Rt + hA (r,9) (W) A7,
80
A (r, hg) (u) = hA (r,9) () h™!
=Adr A (r,9) (u).
Setting h = g~1, we obtain

A(rye)(u) =Ad,—1 A(r,g) (u).
Setting A (r) = A (r, e), then

I'(r,9) (u,v) = vg™' + Ady A (r) (v)
= Ad, (g"lv + A(r) (v)).

We call the map A : TM — g the local connection one form. If (r (t),g(t)) deter-

mines a curve in @) locally, it follows that
[ (rg)=Adg (979 +A(r) 7). (2.15)
We define DA : TM x TM — g to be the local curvature form which satisfies

DI (r,g) (X", ¥*) = Ady DA (1) (X, Y) (2.16)
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for X,Y € X (M). Note that DA isn’t really a covariant exterior derivative. In

terms of the Lie bracket on g,
DA(X,Y)=dA(X,Y)-[A(X),A ()] (2.17)

for X,Y € X (M).

2.5 Geometric phases

2.5.1 Holonomy groups and bundles

Let c(t) be an oriented closed curve in M passing through the point r = mas (¢).
Parallel translation along ¢ (t) maps the point ¢ € 73/ (r) to some (possibly different)
point p € 71';,[1 (r). Since g and p lie along the same fiber over M, there exists some
g € G such that p = gg. We refer to g as the geomeiric phase, or holonomy,
associated with the curve ¢ (t). The holonomy group with reference point ¢ contains
all ¢ € GG such that gq is reachable from ¢ via parallel translation along a closed
curve in M, and is denoted by H (g). The holonomy bundle with reference point q
comprises the points in @ which are joined to ¢ by horizontal curves, and is denoted
by Qwu (q)-

If we restrict the construction of 7 (¢) to permit parallel translation only along
contractible closed curves in M, we obtain the restricted holonomy group Hyest (¢).
If we further confine this construction to consider only closed curves lying entirely
within some neighborhood U C M of r = mps (¢), and denote the resulting subgroup
of H (¢q) by Huv (q), we define the local holonomy group Hioc (¢) to be the intersection
of all such Hy (g).

The Lie algebra associated with # (g) is related to I' and Q (g) as follows.

Theorem 2.5 (Ambrose-Singer) Let() be a principal bundle with structure group
G over a connected manifold M. Let T’ be a connection form on @}, DU its curva-
ture, H (q) the holonomy group with reference point ¢ € Q, and Qy (q) the holonomy
bundle with reference point q. Then the Lie algebra § (q) associated with H (q) is
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equal to the subalgebra of g, the Lie algebra associated with G, spanned by elements
of the form DT (p) (u,v), where u,v € HyQ and p € Q1 (q).

Let my (¢), k= 0,1,..., be the subspace of g spanned by elements of the form
Zl"‘ZkDP((J) (X7Y)7 (2'18)

where X,Y, Zy, ..., Z; are horizontal vector fields on (). The infinitesimal holonomy
group Hing (¢) with reference point ¢ is generated by the union bins (¢) of all my ().
The infinitesimal holonomy group Hins (¢) is a subgroup of the local holonomy group
Hioc (q) at any ¢ € Q. If the dimension of Hins (¢) is constant throughout a neigh-
borhood of ¢ € @, then Hins (q) and Hioc (¢) are equal; if the dimension of Hins (¢)
is constant throughout @, then Hins (¢) = Hioc (¢) = Hrest (¢) for all ¢ € Q. These

facts are proven in [44].

2.5.2 Abelian bundles

Along a curve in @ which is everywhere horizontal, (2.15) implies that
g=—gA(r)s

in local coordinates. In general, the geometric phase associated with a closed curve

¢:[0,T] — M is given by
9(T) =g (0)expg(c),

where

[4,[A, A+ ... (2.19)
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and

This formula appears in modified form in [54]. If G is Abelian, only the first term

in this expansion is nonzero, so that

=ewp (- [a40)) 000,

where S is any oriented submanifold of M whose boundary is traced by ¢ (t) as ¢
increases from 0 to T'. This result is the area rule for Abelian bundles.

If G is Abelian, then the local curvature form satisfies
DA(X,Y) = DT (Xh, Yh>
for X,Y € X (M) by (2.16). But
DA(X,Y)=dA(X,Y)

by (2.17). Thus we have

Corollary 2.6 (Abelian Ambrose-Singer) If G is Abelian, the Lie algebra by (q)

is equal to the subalgebra of g spanned by elements of the form dA (u,v), where



u,v € T,M for anyr € M.

28



29

Chapter 3

Lagrangian Mechanics

3.1 Fundamentals

3.1.1 The Euler-Lagrange equations

The Lagrangian description of a mechanical system whose configuration is specified
by a point ¢ € () begins with a function L : TQ — R. This function, termed the
Lagrangian, represents the difference between the system’s kinetic energy and its
potential energy. We define the fiber derivative FL : T'() — T*() of the Lagrangian
L :T¢) — R such that

d
(FL (u),v)= —| L(u+4tv) for u,veT,Q
d t=0

at every ¢ € Q. Thus (FL (u),v) is the derivative of L at the point u € T,Q
in the direction v. The Lagrangian L is said to be regular, or nondegenerate, if
FL is regular at all (¢,u) € TQ. It is proven in [1] that L is regular if and only
if FL : TQ — T*Q is a local diffeomorphism. The Lagrangian L is said to be
hyperregular if FL : TQ — T*Q is a global diffeomorphism.

We define the one form 6, : T (I'Q) — R such that

01, (w) = (FL (rrqw) , T'rg (w)),
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and the two form wy, : T (TQ) x T (T'Q) — R such that
wy, = —dly,.

We refer to wy, as the Lagrange two form. We define the action A : TQ) — R such
that

A (u) = (FL (u),u) for ue€T,Q,

and refer to the difference ¥ = A — L as the energy. A Lagrangian vector field Xg
on T() satisfies

Xp lwy, =dE.

A second order equation on () is a vector field X on TQ such that T'rg o X is the
identity map on T'Q. If L : T'QQ — R is regular, then Xg exists and is second order.

History instructs us to regard Newton’s law F' = d (mv) /dt as axiomatic in the
study of mechanical systems. For conservative, unconstrained systems, this relation

is rooted in the extremization of the functional

J:/Ldt.

For finite dimensional systems, we may therefore realize equations of motion accord-

ing to the following result.

Theorem 3.1 (Hamilton’s Principle) Let L : TQQ — R be a regular Lagrangian,
and let q; and qo be points fized in ). Then the curve c : [a,b] — Q represents a

critical point of the functional

b
J:Q(ql,qz,[a,b])——)R:cr—)/a L(c(t),d () dt



if and only if

don oL _
dtdqt  dq

where ¢' are local coordinates on Q.

Proof: Recall that J has a critical point at ¢ if and only if

d

ds

for all variations ¢, of ¢ = ¢g. Since
dt

b b
oL 0 ; oL 0 .
Jreodmas [ (G o+ G i)
; d 0L
/—5 dt-l———-6q /&]dt(?’
d oL (?L
N _/a (Eé’q g’ ) o',
dJ (c) - é¢ vanishes for all variations of ¢ if and only if
brdaL  OL\
[, i) o0

vanishes for all §¢*. Thus J has a critical point at ¢ if and only if

dor_on _
dtd¢ O

along c.

Equations (3.1) are the classical Fuler-Lagrange equations in coordinate form.

Their generalization to infinite dimensions is presented in [1] as follows.

Theorem 3.2 Let X be a second order Lagrangian vector field on T'Q) correspond-

ing to L : TQ — R. If (¢(t),q(t)) represents an integral curve of Xg in a local
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chart, then

%Dﬂ’ (q(t),4 () = D1L (g(t) 4 (t)) = 0.

Here D;L (-, -) refers to the Gateaux derivative of L with respect to its ¢th argument.

3.1.2 Symmetries and momentum maps

The Lagrangian L : TQ — R determines a kinetic energy metric (-, -)xg : T,@Q X
T,Q — R at each ¢ € @ such that

{u, v)xe = (FL () ,v).

Let ® : G x Q — @ be an action of the Lie group G on the manifold ). The
Lagrangian L : TQ — R is said to be G invariant if

L (@49, Ty®4v,) = L (q,v,)

for all ¢ € @, vy € TyQ, and g € G. Given such a Lagrangian, we define the

momentum map J : T¢) — g* such that

(J (vg) ym) = (FL (vq) ,m0 (9))

= (vg: Mg (9))xE

for v, € T,Q and n € g. If L is G invariant, then ( is said to determine a symmetry
of the system given by the Euler-Lagrange equations. The relationship between

symmetries and conservation laws is specified by the following result, proven in [13].

Theorem 3.3 (Noether) If L : TQ — R is G invariant, then the momentum
J 1 TQ — g* is conserved along integral curves of the Fuler-Lagrange equations

corresponding to L.
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3.1.3 The Lagrange-d’Alembert principle

We refer to a fiber preserving map F : TQ — T*(Q) over the identity as a force field.
In the presence of a force field F : TQ — T*Q, the integral Lagrange-d’Alembert

principle for a curve ¢ (t) in () states that

5/ dt+/bp(q(t),q-<t)).w:o, (3.2)

where

b aL dL d
5 i (t = — D
[ raeiwa= [ (S + Stdir)a
0L d oL ;
- [ (5 - o) e
A force field F : TQ — T*Q determines a one form I : T (TQ) — R such that
F ()W = (F(v),TyrqW)

for v e TQ and W € T, (TQ). If L is regular, this one form determines a vector
field Yz on TQ such that

TrgYr =0
and
F=-YrJuwr.
The vector field Yz is said to be weakly dissipative if
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throughout T'Q), and dissipative if
(dE,Yr) <0

off the zero section @ x {0}. The force field F' is dissipative if and only if
(F (v),v) <0

for all nonzero v € T'Q). In Chapter 4, we will encounter dissipative force fields of the
form F'= F(—R), where R : T() — R. A function R which generates a dissipative

force field in this way is called a Rayleigh dissipation function.

3.2 Reduction on Cartesian products

In Chapter 8, we will appeal to the following result regarding Lagrangian reduction
on the Cartesian product of two Lie groups. The proposition and its proof mimic

those appearing in [60].

Proposition 3.4 Let G and ¥ be Lie groups and Q = G x U their Cartesian
product. Let L : TQ — R be invariant with respect to both the left action (g,n) —
(hg,n) of G on Q) and the right action (g,n) — (g,7¢) of ¥ on Q. Letl:gxy —- R
be the restriction of L to the space tangent to Q) at the identity (e,e) € G x V. For
a curve q(t) = (g(),n () in Q, let £(t) = g7'g and u (t) = Hon~t. Then the

following four statements are equivalent:
(1) The curve q(t) satisfies the Euler-Lagrange equations for L on Q;

(11) The variational principle 5ffL (g (t),q(t)dt = 0 holds for variations with

fized endpoints;
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(tii) The reduced Euler-Lagrange equations

dol _ .0
atog ~ "t ae
d al . Ol
aou - gy

hold;

(3.3)

(iv) The variational principle § [ 1 (£ (t) ,u (t)) dt = 0 holds on g x 9 for variations

of the form 8q = 69+ 8u = (¢ +[€,C]) + (1 + [u, w)).

Proof: We will apply this theorem to the case in which G is a matrix Lie group

but ¥ is not; the proof presented here makes these assumptions. We acknowledge,

furthermore, that different Lie brackets in (iv) can give rise to different signs in (3.3);

we have stated the result in a manner consistent with its application in Chapter 8.

We addressed the equivalence of (i) and (ii) in Section 3.1. To demonstrate the

equivalence of (ii) and (iv), we compute the infinitesimal variation 6§ + du induced

by an infinitesimal variation ¢, beginning with the variation éu alone. From the

definitions above,

su= 2 _(itenon™ (60)
= (] Liten)ort o (graen) o
- (%577) on~l(et) - (%Tn (e, t)> (T~ (e,8)) o™ (6,1) .
We define
w(e,t) = dnon~" (¢1);
then
S w(e?)




36

It follows that

6u-—1b:(~6—

S0
du = + [u, w).

The determination of 8¢ proceeds analogously, and appears explicitly in [58]. Since

¢ and w vanish at the endpoints a and b but are otherwise arbitrary,

5/ ét))dt:%EO/bl(ﬁ(e,t),u(e,t))dt
2/:(81554—-——5)

:/j( <C+ad§§> w-l—ad w))d
:Ab(("%gé ) ( oLt ad; —%) w) dt.

Thus

5/ u(et))dt=0

if and only if 3.3 holds, and (iii) and (iv) are equivalent. n
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Chapter 4

The Geometry of Locomotion

4.1 Locomotion and principal bundles

4.1.1 Connections on configuration bundles

In the context of locomotion, we regard the shape of a deformable body as a point in
a shape manifold M. A point in the configuration manifold @ = M X G represents
this shape together with the body’s position and orientation in ambient space. The
Lie group G corresponds, for a particular fixed shape, to the space of rigid motions
of the body with respect to a reference position. We think of ) = M X G as a trivial
principal bundle over M with structure group G; the action of G on @) is given by
®;, (r,g9) = (r,hg) for (r,g) € Q and h € G.

A connection on the configuration bundle @ over M provides a unique corre-
spondence between sequential changes in shape, represented by curves in M which
begin at r € M, and trajectories of the system in ¢ which begin at a configuration
g€ 77;,[1 (r). We are particularly interested in the self-propulsion of deformable bod-
ies undergoing cyclic changes in shape, represented by closed loops in M. Parallel
translation along a closed curve in M which begins and ends at r maps each point
g € 7@[1 (r) to another point p € 7@11 (r). In other words, a cyclic change in shape
may result in the net displacement or reorientation of a deforming body in space.
The element of G representing this net motion is the geometric phase corresponding

to the closed curve in M.
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It should be clear that if the self-propulsion of a deformable body is governed
by a single principal connection, at least two modes of deformation are needed
to effect fiberwise motion. To negotiate a closed loop in a one-dimensional shape
space, a propulsor must undo any sequence of deformations it has completed, thereby
generating zero geometric phase. This fact constitutes the scallop theorem, so named
in [82] for a biomimetic propulsor with a single internal degree of freedom.

In Section 4.2, we will encounter systems for which single connections cannot
provide accurate models. It will prove to be the case, however, that the notion of
a connection can still contribute to the geometrization of the equations governing
such systems. In Chapters 8 and 9, we will model a class of systems for which the

relevance of principal connections has yet to be established.

4.1.2 Kinematic and nonholonomic connections

Much terrestrial locomotion is essentially tractional. In order to pull itself along, a
propulsor must establish contact with the ground in a manner which can support
shear. The robot to be considered in Section 4.2.2 exemplifies systems for which
this contact is viscous. In many instances, however, it is reasonable to assume that
a foot or wheel makes slipless contact with the ground. A wheel which cannot slip
may still roll freely; from this idealization we distill nonholonomic constraints which
govern the motion of wheeled vehicles.

We realize a set of rolling constraints as the distribution on ) comprising al-
lowable velocities ¢ = (#,¢). If such a distribution coincides with the horizontal
subbundle of T'Q) determined by a connection I', we refer to this connection as
kinematic. We will construct a kinematic connection explicitly in Section 4.1.3.
In general, we refer to a system which evolves along curves which are horizontal
with respect to any connection as kinematic. This semiotic subtlety is intended to
acknowledge the geometric equivalence of all such systems.

It need not be the case that a set of nonholonomic constraints determines a
connection in the sense of Section 2.4. For certain systems, constraints break the

symmetries which foster traditional conservation laws without proscribing fiberwise
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Figure 4.1 The kinematic car on the plane.

drift. Given a G invariant distribution of constraints, one may study the evolution of
a G invariant generalized momentum in terms of a nonholonomic connection. This

perspective is explored in [80] and [13].

4.1.3 The kinematic car

The equations governing the planar motion of the simplified automobile depicted
in Figure 4.1 are equivalent to a kinematic connection on the configuration bundle
Q =M x G =T?x SE(2). We treat the front and rear wheel pairs as single wheels
affixed at the midpoints of their respective axles, and parametrize the shape space
M = T? = S' x S! by the steering angle ¢ and the angle of rotation ¢ of the rear
wheel. The car’s trajectory in the plane is determined by the variation of these
angles with time; we need not consider the angle of rotation of the front wheel. We
define 1 to increase as the car moves forward. We denote the radius of the wheels
by p and the distance between their centers by /.

The car’s movement is restricted at any moment by the specification that the
wheels can roll but not slip on the plane. Since neither wheel can slip transverse to

its rolling direction,

#sinf —gcosd =0
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and
&sin (6 4 @) — ycos (0 + @) — lfcosd = 0.
Since the rear wheel cannot slip along its rolling direction,
i cosf + ysin 6 — pih = 0.

We decompose the arbitrary velocity vector

K | 0 —
¥ ¥ 0
Vg= | & | = pibcos B + & — ptpcosf = horv, + very,
y pisin 6 y— pihsinf
6] Lmdtang ]| [ 6= (p/htans |

such that the component termed horizontal satisfies the constraints and that termed

vertical lies in the fiber direction. Since

0
0
(T (vg))g (@) =ver(v) = | & —picost |,
y—ppsind
| 6= (p/l) ¥ tand |

(2.7) implies that the connection one-form I' returns

& — (pcost + (p/1)y tan ¢) ¥ + yb
I'(vg)=| 4+ ((p/D)ztane — psin ) o — 26 | ,
6 — (p/1) 4 tan ¢
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or, using (2.8) and (2.9),

cosf —sinf y & cosf + ysin b — pip
I'(7,g) = |sin@ cosf —=z yycosf — zsin b

0 0 1] [ 9—(p/l)¢tanq5

cosf —sinf vy Zcosf + ysinf —,01/}
= |sinf cosf —z ycos@ — zsinf| + 0
0 0 1 0 —(p/1) Y tan é

= Ad, (g“lg + A(r) f) .

The local connection form is therefore given by

—pdi
A(r)=A($,¥) = 0
— (p/1) tan ¢pdi

4.1.4 Mechanical connections

Principal connections may also be defined to represent conservation laws and force
balances. Suppose that G acts on ) to define a principal bundle over M. If L :
TQ — R is G invariant, we define the locked inertia tensor I : g — g* at each ¢ € Q
such that

(L@) & m = (o (9) s (@)PkE- (4.1)

The locked inertia tensor may be written locally as
I(r,g) = Ad} -1 loc (r) Ady-1 . (4.2)
The mechanical connection T'yech : TG — @ is given by

I.‘mvach . (Qa Q) — I[_l (Q) J (% Q) y (43)
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where J : TQ — g* is the momentum map from Section 3.1.2. As a system evolves
along a trajectory in @ which is horizontal with respect to a mechanical connection,

the momentum
J(q,4) =0

is conserved.
We defined a principal connection in terms of a choice of horizontal subbundle
HQ to complement the vertical subbundle VQ of TQ. A connection derived from

a @ invariant Lagrangian determines H,() to be orthogonal to V,@) with respect to

(-, Ykr at each ¢ € Q.

The definition of the mechanical connection supposes the Lagrangian in question
to correspond to kinetic energy [56], but neither (4.1) nor (4.3) restricts the physical
significance of L. Given a dissipative force field F': TQ — T*Q), the equation

(F(g,9),80(q)) =0 VEeg (4.4)

represents a balance of fiberwise dissipative forces. The G invariance of a Rayleigh
dissipation function R such that F' = F(—R) allows us to define a momentum map

K :T@Q — g* such that
(K (9,9),€) = (F (2,4, (4))

and a viscosity tensor V : g — g* such that

(V& =(F((9) m(9)

and

V (r,g) = Ad} -1 Viec (r) Adg-1. (4.5)
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A trajectory in Q which is horizontal with respect to the Stokes connection

FStokes : (qa Q) — V_l (q) K (qv q)

is a trajectory which observes the force balance (4.4).

4.2 Interpolation for Rayleigh systems

4.2.1 The interpolated equations

From (2.15), (4.2), and (4.5), we obtain the local expressions

Fmech = H_IJ
= Ad, I ;L Ad} T

loc

= Adg (g_lg + Amechf')

and
I1St0kes = V_l-l{
= Ad, Vil Ad K
= Adg (g_lg + AStokesf') .
Thus
g_-lg + Amech? = ]Il_ml;pa
where

p=AdyJ
is the body momentum, and

g-—lg + AStokesi' = V_l Ad; K.

loc
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Recall the integral Lagrange-d’Alembert principle from Section 3.1.3. Choose a
function ¢ (¢, s) such that ¢ (a,s) = ¢ (b,s) = ¢ (t,0) = 0, and consider the variation

q(t,s) =exp(¢(t,8)€)q(t),

where £ € g. Substituting the corresponding infinitesimal variation

()= 5| tola)

into (3.2), we obtain

(F (0,4) 160 (0)) = S(FL (0,4) €0 (@)

d

= (57 (i), 8.

Thus K (q,¢) = J (¢, ¢) under the natural identification of g* with T7g*, and

g_lg + AStokes” = VI;(I: Ad; J.
It follows from (2.5) that

AdsJ = Ad; % (A1)

= Ad; (Adp+ ad? ¢y Adss p)
=P+ Adgady_g-155-1) Adg p

= p '+' Ad; a;dtgg._1 Ad;_l p.



Since
(Adjad®; . Adj_1 p, &) =
for any £ € g,
Ad; ad™ .
and

— (Ad’_i p,ad_
= (Ad’-. p, [~
= (Ad}-i p,[-4,9€lg™")
= —(Ad;-: p,[9,98)g7")
= —(p,Ady-1 ([3,9€)97"))

45

<a)digg..1 Ad;_l P, Adg f)
sg-1 Ady &)
a9, 9¢97Y)

—(p, 97 (9,9€1979)
—(p,[979,€))
—(p,adg-1;¢)
=

a’d "1gp7 >

-1 Ad;_l p=- ad;_lgp

Ad:J =p—adi_i,p

= Vloc (g_lg + AStokesf‘) .

Rearranging terms, we obtain

~1-

979 = —Amech? + ]Ilz,ip,

p = Vloc (AStokes -

Amech) 7+ Viec ]Ii;ip + ad;—lg p.

(4.6)

These equations describe the evolution of a system to which inertial effects and

dissipative effects both pertain. We refer to such systems as Rayleigh systems to

distinguish them from Lagrangian systems, which are conservative, and Stokesian

systems, for which inertial effects are completely overwhelmed by dissipative forces.
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In the inviscid limit, V — 0 above and (4.6) reduces to

g~—lg = ~Amech’ + l[]-;(l;p7

p = ad;_1~ .

The latter equality is simply the conservation law J = 0; if the momentum is zero
initially it remains zero and the mechanical connection completely describes the

evolution of the system

g—lg - ’“Amechf“-

-1

oo The classical Reynolds number

Premultiply the latter equality in (4.6) by I}V
represents the ratio of inertial forces to viscous forces in a fluid system; the tensor
]Iloch"o(l: extends this notion to the present situation. In the low Reynolds number

limit, then, we allow [}V, i — 0 to obtain

g_lg = —Amech” + ]Il_o(l;pa

0 = Toc (AStokes - Amech) T+ b,

or

g_lg = _AStokesf'-

The Stokes connection completely describes the evolution of the system.

4.2.2 The heavy inchworm

Consider the rectilinear motion of the inchworm-like robot depicted in Figure 4.2.
The variables [, [, and s; denote the lengths of the rear segment of the robot in
contact with the ground, the longitudinal span of the raised hump, and the arclength
of the hump, resprectively. We assume the robot to have unit length overall. The
variable z denotes the displacement of the trailing edge with respect to a point fixed

on the ground. The configuration of the system is specified as a point in a trivial
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Figure 4.2 An inchworm robot on a viscous film.

(R,+) bundle over the space of shapes (I, 1, s5) € U C R

If we assume the mass m of the robot to be concentrated at its trailing edge, its

kinetic energy is given by

The locked inertia tensor is constant and the local mechanical connection null; the
shape parameters (I, (5, s;) may vary freely in the absence of dissipation with no
effect on the displacement z. If we assume a uniformly thin, laminar, Newtonian
fluid film between the robot and the ground, the horizontal sliding of a contact
segment will be opposed by a force proportional to both the sliding velocity and the
segment’s length. The associated dissipation is captured (for a particular set of film

parameters) by the Rayleigh dissipation function
1. . 1 RN
R:§lrm2+§(1—lr—sh) (x—}—lh—-sh) .
Thus
F=F(-R) =~ (1—sp) i~ (1—1, — sp) (ih—sh)
and

V==(1-s4),
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where each map from R to R is given by multiplication with the quantity shown. It

follows that the local Stokes connection form is

(1—1.—sp)

=y (dly, — dsp) .

AStokes =

For this system, (4.6) assumes the form

. _ P
r=—
m

p=( —lr_Sh)(éh_ih)_(l_Sh)%’

mi = (1= b — 1) (35 = ) = (1= 1) &.

This is precisely the statement that the robot’s momentum changes at a rate equal
to the sum of the viscous drag forces acting upon it. We note that the viscous
interface between the robot and the ground could represent a set of wheels or tracks

exhibiting viscous damping.

4.2.3 Extension to more general forces

Given any force field F : TQ — T*Q, we may define a map V : g — g* by

(V&) ,m = (F (&) nq)- (4.7)

The addition of this force field to a system governed by a mechanical connection

leads to equations of the form

g_lg = ~Amech T + H;ip)

p =E+ Vi ]Il-;ip + a)d;—lg p-

If F is not the derivative of a Rayleigh dissipation function, however, then (4.7) need

not determine a tensorial map. The definition of the Stokes connection requires the
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invertibility of this map. It is not clear that a system which evolves according to a
general force balance may be described by a principal connection.
In Section 9.5.1, our model for the generation of lift on a moving hydrofoil will

yield a force field F': T (T? x R) — T* (T% x R) of the form
F <¢, 1/)7 é’ QL” djm)
—C <4Bq's cos ¢ + D cos ¢> (D¢ + 4B cos (¢ — 1) — 4 sin w) .

Here B, C, and D are constants, (¢, 1) € T? parametrizes the shape of a propulsor,
and F is invariant with respect to translation in the fiber variable z,, € (R,+4). The

system’s kinetic energy
. I .4
L(in)= 5MEm
is also invariant with respect to translations in 2,,. The map V:R — R given by
V=0 VEeR

is clearly not invertible. The term in which the local Stokes connection appears

in (4.6) is replaced, uninformatively, by F.
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Chapter 5

Controllability and Related Issues

5.1 Definitions and tests

Given a finite-dimensional control system
&= f(z,ul,...,u"™), z€M, (5.1)

and a particular point zo € M, we define R¥($o) to be the set of points in M
which are reachable from zg in time ¢ < T along trajectories which remain in the
neighborhood V' C M of zg. The system (5.1) is said to be locally accessible if, for
all zg € M, Rg(mo) contains a non-empty open subset of M for every choice of
T > 0 and V. The system (5.1) is said to be locally controllable if, for all z9 € M,
20 is interior to RY.(zo) for every choice of T > 0 and V.

Given a control-affine system with drift
&= f(z)+ hi(2)ul + -+ by (2)u™, (5.2)

we define the accessibility algebra € to be the smallest subalgebra of X(M) contain-
ing f,hi,..., hm. The accessibility distribution C' on M is then defined by

C(z) =span{X(z)|X € €}, =z €& M.

Theorem 5.1 If dimC(z) = dim T, M for all ¢ € M, then the system (5.2) is
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locally accesstble.

This result, a consequence of Frobenius’ theorem, is proved in [77] as the Lie algebra
rank condition for accessibility.

Now suppose that M = M; X My, and let # : M — My and Tw : TM —
TM; denote the projection onto the first component of M and its tangent map,

respectively. Define the restricted accessibility distribution TnC' at z, € My by
TrnC(z1) = span{T'rX (z)|X € €,z = 7w(z)}.

If dim T7C/(z;) = dim Ty, M; for all z; € M, we will refer to (5.2) as locally M,
accessible. Loosely speaking, this property corresponds to accessibility of the system
on My without regard for the evolution of the system on M. Clearly, if the system
on M; x M; is locally accessible, it is locally M; accessible.

If f=01in (5.2), we are left with the driftless system
&= hy(z)ul 4+ By (2)u™. (5.3)

Local controllability and local accessibility are equivalent notions in the absence of
drift, in which case Theorem 5.1 is equivalent to Chow’s theorem [18]. A driftless
system on M = M; x M which is locally M; accessible is said to be locally M

controllable.

5.2 Controllability for kinematic systems

5.2.1 Principal connections and Chow’s theorem

Suppose that the locomotion of a robotic propulsor is governed by a single principal
connection on the finite-dimensional trivial principal bundle @ = M X G, and that

this propulsor has complete authority over the rate at which it deforms. We may
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then write the equations of motion as the driftless control system

¢ = X', FEZ, i=1,...,m. (5.4)
rl

In practice, we are often concerned with a robot’s ability to position some end
effector in its environment without regard for its internal configuration. We refer
to a system on Q = M X G as totally controllable if it is locally @ controllable, and
fiber controllable if it is locally G controllable. The special form of (5.4) allows us to
restate Chow’s theorem in terms of the local connection form A and its curvature.

Thus we define

bl = Spa’n{A(Xi)}v
be = span{DA(X;, X;)},
b3 = span{ X, DA(X;, X;) — [A(Xk), DA(X:, X;)]}, (5.5)

br = Spa*n{Xif - [A(XZ)7§]7 [55?7]75 € hr-1, ne bot+ -+ bk—-l}
and realize the following result.

Proposition 5.2 The driftless system (5.4) is fiber controllable near ¢ = (r,g) € Q
if and only if

g=bi+bha+...

there, and totally controllable near ¢ € Q if and only if

g=bha+bha+...

there.

Proof: The proof amounts to computing the fiber components of the elements of
¢ at each level of Jacobi-Lie bracketing. If the projections onto T,G of the ele-
ments of C(q) span T,G, the system is fiber controllable. The base components of
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the input vector fields X; will not survive the first level of bracketing. Total con-
trollability therefore requires fiber controllability in the absence of the unbracketed
contributions to C'(q).

Note, first of all, that the Jacobi-Lie bracket

g 0
[Xi, X;] = [5;;, 6—%]

of any two input vector fields on M is null. By (2.11), then
hor[X}, X} = [X;, X;]* =0,

so [X}, X! is vertical. By (2.10), then
X, xJ) = To (X, XJ1)

it follows from (2.4), (2.13), (2.12), and (2.16) that

TralxF, X1 = (TIx}, X11) g

= (XPr(xp) - xIr(xk) - ar(xt, X)) g
= - <dF(th7X]h)> g
= —gAd,- dT (X}, XT)
= —gAd,1 DI'(X], X])

= —gAd, 1 Ad, DA(X;, X;)
= —gDA(X;, X;).
The Jacobi-Lie brackets of control vector fields X Z‘ with one another thus contribute

vertical vector fields to the accessibility algebra € whose fiber projections correspond

to elements in the range of the local curvature form.
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N e“%

P

Figure 5.1 A wheelchair on the plane.

If Z is a vertical vector field such that TngZ = —g& for some & = &(r) € g, then

TralX}, Z] = Xi(—g€) + [9AX:, 9€lLa

= —g(ng - [AXZ,f])7

where [, -]yc denotes the Jacobi-Lie bracket on X(G). If W is also a vertical vector

field such that TmgW = —gn for n = n(r) € g, then

TWG[Zv W] = [géag‘n]JLG = g[§’ 77]'

We invoke the group invariance underlying (5.4) by assuming, without loss of
generality, that ¢ = e. Thus T7G maps elements of 7}, @) to g, and the sth level

of Jacobi-Lie bracketing in the construction of C(r,e) amounts to the construction

of hiy1 C g u

5.2.2 Local and global controllability of a wheelchair

Figure 5.1 depicts a wheelchair on a flat surface. The two wheels of radius p are
separated by a distance w and rotate independently through angles ! and ¥?. The
midpoint of the axle connecting the wheels defines the point (z,y) in the plane;
the angle # measures the net rotation of the wheelchair with respect to a fixed axis.

The castors which support a real wheelchair contribute nothing to our planar model.
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This system is referred to in [41] and elsewhere as the Hilare robot.
We assume the wheels to roll on the plane without slipping. Since the velocity

of the point (z,y) must remain parallel to the wheels,
Zsinf — ycosh = 0.
Since neither wheel slips as it rotates,

(W' + %)

Zcosh+ ysinf =

N

and
p(* —4") = wh.

We derive a connection from these constraints as we derived the connection govern-
ing the motion of the car in Section 4.1.3. The local connection form A : TM —

se(3) ~ R3 is given by

~5(dy! + dy?)
A= 0 )
L(dy' - dy?)

where M = T? is covered globally by coordinate pairs (¢!, ¥%). Its range is

hy=span< A1 = |0 [,42=1] 0

The range of the local curvature form

0
DA = | Z£dy! A dy?
0
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is

<o

[S]

h2 =spanq DAy = | £
0

Since b1 + b2 = R3, the wheelchair is fiber controllable by Proposition 5.2. Since
Ay, Ay, and DAy, are all constant, (2.6) implies that no element of h2+bs+bha+. ..
can have a nonzero third component. The wheelchair cannot, therefore, be totally
controllable. Suppose that the wheelchair were to describe a circle in the plane such
that the point (z,y) travelled a distance 2mp. We define ¢ to assume positive values
for clockwise rotation. Such a maneuver would rotate the wheels through angles

s=Z(ery), aw=Z(e-3)

It is tempting to think that one could reorient the wheels arbitrarily using a sequence
of similar motions. At the completion of n such maneuvers, however, it will always

be the case that

APt — Ay? = Q%nw.

We shall see in Chapter 6 that noncontractible loops in shape space can make only

limited contributions to locomotion on an Abelian bundle.
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5.3 Accessibility for Rayleigh systems

5.3.1 Accessibility modulo momentum

The introduction of viscous dissipation to (5.4) yields the control-affine system with

drift

. - - .
r 0 0
7 er| , €m

= w4+ u™
g 0 0
2] L0 | 0]

- . -
0
+

g(_Amechf' + I[lt)(ljp)
_VlOC(AStOkeS - Amech)f + Vioe ]I]_o(lzp + ad;—lg ]

=hyul + -+ hpu™ + f(r,7,9,p). (5.6)

The expression e; refers to the ith vector in the standard basis for R™. The inputs ul
to the system are accelerations in the shape variables; we assume sufficient control
of any base dynamics through internal forces to justify this model.

In the absence of dissipation, this system reduces to the driftless system

7 e vt em V"

v 1 ot (5.7)
99 _Amechelv —Amechemvm
as described in Section 4.2. Here we view the controls v as entering at the level

of velocities in the shape variables, integrating the controls u' once with respect to

time.

Proposition 5.3 If the system without dissipation (5.7) on M x G is totally con-
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trollable, the system with dissipation (5.6) on TM x G x g* is locally TM x G

accessible, or accessible modulo momentum.

Proof: This result follows from direct examination of the algebra generated by the
vectors f, by, ..., hy in (5.6) and the projections of its elements from T'(T'M x G x g*)
to T(T'M x G). Note, first of all, that the h; have nonzero components only in the

# directions. The m vectors a; = [f, h;] take the form

€;

0
o =[f, hi] = 5
—gAmeché‘;{

*

All additional elements of the subalgebra generated by the a;, furthermore, take the

form

Xk

where the group velocities ¢ are precisely those corresponding to the Lie algebra
elements in ha+h3+.... Let € be the accessibility algebra for the system (5.6). We
define Cpech to be the subalgebra of € spanned by f, hy,..., ks, and the algebra

generated by aq, ..., ap; we define Chpecn(r, 7, 9, p) by
Cmech(rﬁ r gvp) - span{X(r, r !]yP)lX € Q:mech}-

fr:MxGxg*— MxG, clearly TrCupecn(r, 7, 9) C TnC(r, 7, g) for all (r,7,g) €
TM x G. If (5.7) is totally controllable, g = + bz +... and

dim Tﬂ‘cmech(r, T, g) = dim T(r,?‘,g) (TM X G)
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Then
dim TxC (r, i, g) = dim T, 1 oy (TM X G)
and (5.6) is locally TM x G accessible. |

5.3.2 A vehicle with two internal rotors

Consider a rigid satellite in space with internal rotors about two of its principal
axes. The orientations of the rotors with respect to the satellite body may be taken
together as a pair (¢!, ¢%) € T?; the full configuration of the satellite is specified as
a point in a trivial SO(3) bundle over the torus. We think of this as a locomotion
system in which the angular velocities of the rotors relative to the satellite are spec-
ified to effect desired satellite reorientations. The angular momentum of the system
is invariant under reorientation; conservation of momentum provides a mechanical
connection on the configuration bundle. This system is considered in this context
in [60].

Identifying so0(3) with R3 in the usual way, we may represent the span of the

range of the local connection form Amech : T(T?) — R? as

b1 = span{ey, e},

where {ej, e3, e3} is the standard basis for R3. The range of A is independent of ¢!
and ¢? because the satellite’s inertia is unchanged by the motion of the rotors. The
Lie bracket on so0(3) is equivalent to the cross product on R3, and the range of the

local curvature form is given by

b, = span{e; X e2} = span{es};
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similarly

hs = span{e; X e3, ez X €3}

= span{es, €1 }.

Since g = b3 + b3, the system is totally controllable according to Proposition 5.2.
A device similar to this satellite might be implemented as an underwater vehicle
with torque control of the rotors. It follows from Proposition 5.3 that any model
for its behavior which assumes linear drag will be accessible modulo momentum.
Standard models for underwater vehicles incorporate drag of this sort. Note also
that the attitude of an underwater vehicle has been adjusted about one principal

axis experimentally using thrusters to provide torque about the other two [50].

5.3.3 The heavy inchworm revisited

In order to emphasize that the conditions of Proposition 5.3 are sufficient but not
necessary for accessibility modulo momentum, we return to the inchworm robot from
Section 4.2.2. Since Apech = 0, this system clearly fails to satisfy the conditions
of Propositions 5.2 and 5.3. Straightforward application of Theorem 5.1, however,
reveals that the system is actually locally accessible, and thus accessible modulo

momentum, near any configuration for which (1 — I, — s) # 0.
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Chapter 6

Gaits for Kinematic Systems

6.1 Definitions

Propulsors which deform themselves in order to move often do so cyclically. Indeed,
it is dubious motile progress which requires a permanent change in body shape. We
define a gait to be a time-parametrized cyclic shape change, or amap v : [ — M :
t ~ r(t) from some interval / C R into a shape manifold M. Reparametrization
with respect to time constitutes an equivalence relation on a set of gaits; a gait class
[v] contains all gaits which determine the same loop in M.

In Chapter 2 we observed the parametrization invariance of the geometric phase
associated with a closed loop in the base space of a principal bundle. We use the
terms “gait” and “gait class” interchangeably in discussing kinematic systems.

Two gaits 71,72 : I — M are said to be homotopic if there exists a smooth map
H :1x][0,1] - M such that H(¢,0) = 71(¢) and H(t,1) = v2(t) for all ¢ € I.
Homotopy determines an equivalence relation [62]; the set of equivalence classes of
loops passing through r» € M constitutes the fundamental group of M with respect
to r under composition. A gait v is said to be null homotopic if it is homotopic to

a null gait go: I — M :t — 7o, where ro € M is fixed.
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6.2 Systems on Abelian bundles

Recall from Section 2.5.1 that if the dimension of the infinitesimal holonomy group
Hint(q) corresponding to a connection on a principal bundle is constant throughout
the total space @, then the holonomy groups Hint(q), Hioc(q), and Hyest (¢) are equal
throughout ). Comparing (2.18) to (5.5), we see that

Bint= b2+ b3+ ...

if g is Abelian, and we recognize the following.

Corollary 6.1 If the infinitesimal holonomy group Mn¢(q) corresponding to a con-
nection on a principal bundle has constant dimension throughout the total space
Q = M x G, and the Lie algebra g is Abelian, then the associated locomotion sys-
tem (5.4) is totally controllable near q = (r, g) if and only if Hrex(r, €) = g.

In other words, we need only consider null homotopic gaits in steering a system on

an Abelian bundle.

6.3 Inchworm gaits

We now return to the inchworm robot from Section 4.2.2. If we assume m to be zero,

self-propulsion of the robot in the 2 direction is governed by the Stokes connection

I'stokes = dz + Astokes
(1—1. - sp)

=dz +
(1—sp)

(dl), — dsp).

Three qualitatively distinct families of gaits for this robot correspond to holding
fixed each of the shape parameters [,., {;, and s;,. Figure 6.1 depicts gaits corre-
sponding to constant /. and constant lp.

Figure 6.2 depicts a “caterpillar” gait corresponding to constant s,. The robot
lifts and buckles its trailing end, replacing its hind tip with some forward displace-

ment. The arched segment then passes the length of the robot’s body to its forward
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Figure 6.
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constant [p,

1 Two types of gaits for the inchworm.
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Figure 6.2 The caterpillar gait.
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tip, and the robot re-extends in its new location. At no point does any portion
of the robot drag along or exert a tangential force upon the ground. Because our
parametrization of the robot’s shape suggests constant contact with the ground at
both ends, we regard the lifted buckling and unbuckling motions as if segments of
zero length were being dragged. We demonstrate the utility of the area rule from
Section 2.5.2 in computing the associated geometric phase.

If 2(0) = 0 and the robot assumes the sequence of configurations represented in

Figure 6.2 in time 7', the net linear displacement of its rearmost point is

z(T) = exp <-— L AStokes) .

Since

/YAStokes = /y (]_—(_i—lf—(;%h)(dlh - dSh)

1/6

= dly,
1/3
1

6

and the exponential map on (R, +) is the identity,
1
z{T) = —.
()=

Since we measure the robot’s progress in terms of the displacement of its hind tip,
the integrals corresponding to three of this maneuver’s four stages evaluate to zero
identically.

Since (R,+) is Abelian, the local curvature form is equal to the exterior deriva-
tive
(1—1, — sp)

(1—sp)
1

l
= —dlr A dlh + dlr A dSh + dlh A dSh )
1— sy 1—-sn

dAStokes =d ( > AN (dlh — dsh)
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and the geometric phase corresponding to the path shown in Figure 6.2 is indeed

z(T) = exp </S 1 —13h dl, A dlh)
1/3 2/3 g
= exp / —dl,.dl
16 Jo 2
= exp (1)
B 6

1
_6-.
6.4 Local expansion of holonomy

If v : [0,T] = M, the corresponding geometric phase may be approximated by
9(T) = g(0) exp&(v),
where
€(y) = ~3DA; L dridri + %(DAU,H- (DA, Ag) /7 dridridr®.  (6.1)

This formula is developed from (2.19) in [83]. Here

L dridri = /0 ! ( /0 v fi(t,-)dti> #(45)d (6.2)

and

L dridridrt = /0 ' ( /D * ( /D v f’i(ti)dti> N(tj)dtj> ). (6.3)

A system’s full complement of gaits is often well represented, at least qualita-
tively, by those gaits which correspond to Lissajous figures in shape space. Such
a figure may be characterized by its number of lobes. This number corresponds
loosely to the degree of the Lie bracket of input vector fields capturing the gait’s

infinitesmal character.
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If we confine ourselves to shape changes of the form

ﬂs.
Il

r(0) + R’ sinn;t
rit) = r(0)+ R’ sin n;t

rf(t) = r®(0) + RFsinngt

and set T = 2m, we compute the integrals in (6.2) and (6.3) to be

/dridrj =0
~

and
~R"R-7Rk—7%1i (n; # nj,n; = nj + ng or ng = n; +ny)
RiRijEgi (nz # nj,; = N+ n,)

/dridrjdrk =
~

~RRIRFT2  (n; = nj,np = 2n;)
0 otherwise

If, instead,

rit) = 7(0)+ Ricosn;t — R’
ri(t) = r7(0)+ RIsinn;t ,

rk(t) = rk(O) + RFsin nyt
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we obtain

. . T, 7é n;
dridr! =

t J —n.

R'Rinim n; =mn;

S~

and
/dridrjdrk =0.
v
We compute the remaining possibilities for the case n; = n; = nj to be

55 =0 CS = R'Rin
SC = -R'Rix CC=0

and

$8S =0 CSS =0
SSC =0 CSC = 2R'R RFr
SCS =0 CCS =-R'R'RFr

SCC=—-R'RRr CcCC=0

Here the acronyms are constructed such that S5, SSS, C'S, and CSS refer to the

cases already addressed.

6.5 Two-input systems

If we restrict ourselves to systems with only two shape variables, the effects of si-
nusoidal shape changes on &(y) may be elucidated by a gait table. The six columns
on the right of Table 6.1 present data generic to two-input systems; the leftmost
column specifies the terms appearing in £(v) for the wheelchair introduced in Sec-
tion 5.2.2. We note that the top two rows in the table do not really correspond to

terms appearing in £(7), but their inclusion completes the utility of the table for
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approximating the effects of noncyclic deformations.

We illustrate the use of Table 6.1 by estimating the holonomy associated with
two wheelchair gaits. Suppose the system satisfies (z,y,6) = (0,0, 0) initially, and
assume the wheels of radius p = 1/2 to be separated by a distance w = 1. If the
wheel angles vary as

1 t 0
¢ ( ) — _I_ constant termsy
V(1)

4

U=

Table 6.1 predicts a net motion in the plane

z(2m) 1/4
y(2r)| =exp |2- 77 0
6(2r) 1/2
[ 5 8in £
= [3(1 - cosE)
/5
[ 2939
R 1.09549
| 6283

If we simulate the evolution of the system numerically, we obtain these same results

with the precision shown. If, instead,

sin 2t

Sl

P(t)

¥2(2) s (cos 2t — 1)



wheelchair terms R't 0 R sin nt R! cosnt R! cosnt
example in £(¥) 0 R%t R? cosnt R?sinnt R? sin 2nt
p/2
0 —A; 2R'x 0 0 0 0
—pfw
p/2
0 —As 0 2Rx 0 0 0
plw
0
—-p2/2w -—%DAlz 0 0 —R'R’nn R'R*nm 0
0
0
P’ /2w —1iDAy 0 0 R?’R'nx —R*R'nr 0
0
3 2
p°[3w 1 (DA
3 12,1+ 1p2pl _plp2pl
[ 8 :} (DA, A1]) 0 0 0 2R*'R°R'nw R'R°R'nm
- 3 2
—p° /3w 1
s (DA 2+
0 2 { ’ 0 0 -RRR
: (D Ar2, As)) R R°R°nm 0 0
- s o
—p° /3w 1 (DA
0 3 211t 0 0 0 -R’R'R! 0
0 [D Az, Ar]) "
3 2
0 g (DAt 0 0 2R?R'R? 0 0
{ 0 } (D, 4] "

Table 6.1 Gait table for two-input systems, T = 27.
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Table 6.1 predicts a net motion

z(27) 0 0
7 7
y(2r)| = exp —‘1‘6‘@‘277 -1/8 +1—66'Ib"2 1/8
6(2r) 0 0
~1/24 1/24
LT T a0 e L T
10 100 100 100 10 100
0 0
1477 /120000
=exp | Tx/2000
0
.003848
~ | .01010 | ,
.0000

while simulation returns

z(2m)]  [.003846
y(2r)| = | .01098
6(2r) .0000
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Chapter 7

Principal Connections and Swimming

7.1 Ideal flow and the hydromechanical connection

7.1.1 Potential flow

Though we deviate from certain sign conventions therein, we are guided by the
development of potential flow theory in [68]. We realize the equations for potential
flow as a simplification of Euler’s equations for the motion of an inviscid fluid. We
will derive Euler’s equations in a moving frame as reduced Fuler-Lagrange equations
in Chapter 8.

Suppose a fluid with density p(z,t) to occupy a region F. We denote the spatial
velocity field describing the fluid’s instantaneous motion by u(z,t). Continuity of
the fluid requires that

dp

SV (pu)=0 (7.1)

at every point @ € F. Equation (7.1) is often derived from the balance of mass flux
through an arbitrary control volume. We consider only fluids of constant density. It
is worth noting that the term incompressible is applied to any fluid which satisfies

ap

at—{—u-Vp:O.
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This is true identically if p is constant. The operator

0

is called the Lagrangian derivative or material derivative in the classical fluids lit-
erature. Intuitively, it returns the rate at which a particular fluid element (rather
than a spatial point) experiences a change in some property. The classical shift from
a Lagrangian perspective to an Eulerian perspective corresponds, in the setting of
Chapter 8, to reduction with respect to a particle-relabelling symmetry.

For an incompressible fluid, continuity implies that

dp _Op

(%—i—v-(pu)_ m-l—pV-u—I—u-Vp
=pV-.u (7.2)
=0.

Thus u is divergence free, or solenoidal. In a region occupied by an inviscid, incom-
pressible fluid, the net force on an arbitrary control volume must equal the rate of
change of the linear momentum contained therein. In the absence of external forces,

this requires that

Jdu 1
TR Vu = —;Vp, (7.3)

here p(z,t) is the scalar pressure. We refer to (7.2) and (7.3) together as Fuler’s
equations for inviscid flow.

A velocity field is said to be irrotational if
V xu=0.
Using the vector identity

u-Vu:%V(u-u)—ux(qu),
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Figure 7.1 Derivation of the potential function.

we may rewrite (7.3) as

ou 1

1
:-—Q-V(u-u)—l-ux(qu)—%Vp

=—=V(u-u)— =Vp
=-V (—;—uu+lp)

in the case of irrotational flow.

Let A be a fixed point, and C an arbitrary point, in a simply connected region

F containing an irrotational fluid. Join A to C along two different paths in I, as

shown in Figure 7.1. At any point in time, by Stokes’ Theorem,

/ uds—!—/ uds:/(qu)ndS,
ABC CDA S

where S is any surface in F with ABCDA as its rim and n as its unit normal. If

the motion of the fluid is irrotational, then

/ uds::/ uds = ¢c (),
ABC ADC

where ¢¢(t) is a function of the position of C' but not of the choice of path from A

to C. Now consider a point E whose position relative to C' is given by the vector
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v. In the limit as F approaches C,

qubg(t):/ uds = vu.

CE

The velocity field may therefore be written at any point in time as
u= V¢($, t)7 (75)

where ¢(z,t) is called the velocity potential. Conversely, any velocity field which is

the gradient of a potential function must be irrotational, since
Vx(Vf)=0

for any function f:F — R.
We combine (7.4) and (7.5) to obtain

dp 1 1
V(g—t“l-gu'u'i'zp) =0,

or

06 1 1

This is called the pressure equation. Bernoulli’s theorem [68] requires this relation
to hold along each streamline in an inviscid flow; we have shown that it holds
throughout an irrotational flow.

Equations (7.2) and (7.5) combine to recover Laplace’s equation
Vip=0. (7.7)

Thus, plausable instantaneous irrotational motions of an inviscid fluid correspond to
harmonic potential functions. If the fluid evolves in the presence of solid boundaries,

it is furthermore the case that the velocity normal to any boundary must coincide
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with the normal velocity of the boundary itself. In this way we rule out cavitation
in potential flow, although the theory may be adjusted to accommodate such phe-
nomena. We allow an inviscid fluid to slip along a solid boundary; in Section 7.2.1
we will impose an adherence condition upon the flow of a viscous fluid.

So far, we have considered irrotational flow in simply connected domains. Simple
connectedness guarantees the uniqueness of the velocity potential ¢; when ¢ is
unique the corresponding potential flow is said to be acyclic. Though a flow field
u must itself be single-valued in a multiply connected domain, the corresponding
potential function satisfying (7.5) need be unique only up to an additive scalar
& satisfying V& = 0. Multiple connectedness of a domain F corresponds to the
existence of closed paths within F which are not null homotopic. The scalar &
corresponding to a particular cyclic flow in a multiply connected domain may be
identified with the circulation I' along any of a family of mutually homotopic closed
paths in F which are not null homotopic. The circulation along an oriented closed

path ¥ is defined to be

F:/uds.
)

In considering the self-propulsion of deformable bodies in planar irrotational
flow, we often encounter periphractic regions, so called because they are bounded
internally by closed surfaces. We restrict our discussion to acyclic flow in such
regions by specifying the circulation to be zero around any contour which is not null
homotopic. In Chapter 9 we will discuss the forces experienced by a hydrofoil about
which the circulation changes with time.

The total kinetic energy of the fluid with constant density p and velocity v in a

domain F is given by

KE:lp/u-udw
2" Jr

when this integral converges. If the domain F is bounded by a surface S and the
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fluid moves irrotationally and acyclicly, Stokes’ theorem implies that

KE:lp/qu-ngdx
27 Jp

1 ¢
=30 [[ 955

where d¢/0n is the velocity of the fluid normal to S on S. Several consequences

(7.8)

of this result are outlined in [68]. We note, in particular, that the acyclic irro-
tational motion of a fluid which is bounded internally by an immersed solid and
quiescent at infinity is determined uniquely by the motion of the solid. The motion
of the fluid will cease instantly if the solid ceases to move, and is unchanged by

reparametrizations of time.

7.1.2 Fluid momentum and Kelvin impluse

Suppose that a finite body with surface S moves through a fluid such that u = V¢

is acyclic. We define the Kelvin impulse of the fluid to be the vector quantity

I= /¢nds,
S

where 7 is the outward unit vector normal to S on S. This quantity is often de-
scribed as the impulsive force which would set the surface from rest into its present
motion [43, 48]. We will see that it behaves as the effective momentum of the
surface.

It is tempting to assume that the total fluid momentum

p/udac
F

would serve as the effective momentum of a translating surface. This momentum
is ill-defined, however, when the fluid fills a region of infinite extent. Consider the

fluid occupying a region V C F bounded by a surface ¥ with outward unit normal
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. In three dimensions, we may invoke the vector identity

Ludm:-;—/Vm><wdx+%/2(u(c-:c)—§(u-x)) ds.

The surface integral is bounded generically as X becomes infinitely large, but con-
tinues in this limit to depend upon the shape of X.
Using (7.6) and an identity from [88], however, we see that

dt /q§ as

= i ndS—I—/(u-n)V¢dS

:/(C(t)—lu-u——l—p) ndS-l—/(u-n)udS
s 2 P s
:/C’(t)ndS—l/pndS—l-/((u-n)u—(—l—u-u)n)dS

s pJs s 2
:0-—1—/pnd5—/u><wda:

PJs F

1
:——/pndS

P Js

for irrotational flow. The integral on the right side of this equality represents the
total force applied to the surface S by the fluid.

The Kelvin impulse couple is given by

IC:/¢xxndS,
S

and behaves as the apparent angular momentum of the surface S. The Kelvin
impulse and impulse couple are conserved as a closed surface moves through an
irrotational fluid in the absence of external forces [69]. We note that certain authors
define I and I¢ to differ in sign from the integrals above. We will use the symbol I

below to denote the impulse and impulse couple together.
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7.1.3 The hydromechanical connection

Suppose that the points in an n-dimensional manifold M correspond to deformations
of a closed flexible surface, and that this surface is immersed in an inviscid fluid
which is initially at rest. As the surface deforms, tracing a path in M, it may
displace and reorient itself with respect to its initial situation in the fluid. By
affixing a frame of reference to each deformation represented in M, we identify the
motion of the surface through its environment with a trajectory in SE(3).

If we suppose the interior of the swimming surface to be evacuated, the kinetic
energy shared by the swimmer and its environment is entirely contained in the fluid.
We make this assumption for simplicity’s sake; it is of little conceptual consequence
to afford a swimming body some mass of its own. Since there exists no mechanism
for the creation of vorticity in an inviscid fluid, the flow around the surface will
remain irrotational and acyclic. The spatial velocity field u will therefore constitute
the gradient of a time-varying potential function ¢. The motion of the fluid must
be determined uniquely by the motion of the surface. If r(¢) € M denotes the shape
of the surface at any point in time and g¢(t) € SE(3) its position and orientation, we

may write

¢: ¢(r)i'7gvg)'

The potential function ¢ must satisfy Laplace’s equation together with two
boundary conditions. The first, imposed by the impenetrability of the surface,
requires agreement of the velocity of the fluid normal to the surface with that of
the surface itself where they meet. The second, a consequence of the finite energy
introduced to the fluid by the swimming surface, requires that the fluid remain at
rest infinitely far away. The linearity of Laplace’s equation allows us to superpose
solutions to satisfy Neumann boundary conditions. The distribution of velocity on a

swimming surface constitutes the sum of its deformation velocity and the velocities
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of its displacement. It follows that
¢ = ga(r,7) + &i(r) (97%9)",

where g~1g is the velocity of displacement in a body-fixed frame. The function ¢gy
is called the deformation potential and the functions ¢; the Kirchhoff potentials.

The total kinetic energy

1 . 1. .1
KE=§P/FV¢(r,r,g '9) - Vo (r,i97'g) da

determines a function L : TQ — R, where Q@ = M x SE(3), which is invariant
with respect to left translation in SE(3). The Kelvin impulse and impulse couple
comprise the components of the corresponding momentum map, which takes values
in se(3)* &~ RS Their conservation is thus a consequence of Noether’s theorem. The
locked inertia tensor represents the virtual inertia of the swimming surface. Were
the surface replaced by a body with nonzero inertia of its own, this inertia would
combine with its virtual counterpart to constitute the body’s apparent inertia.

The connection
1—‘mech = ]I_II

is a true mechanical connection since it is derived from the total kinetic energy.
In considering the swimming of a body with nonzero mass, however, one must take
care not to confuse the mechanical connection obtained from the total kinetic energy
with that obtained from the kinetic energy of the body alone. It is the latter which
arose in the control analysis of the vehicle in Section 5.3.2. When there is danger

of confusion, we refer to the former as the hydromechanical connection.
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7.2 Creeping flow and the Stokes connection

7.2.1 Stokes flow

The evolution of an incompressible, viscous fluid is governed by the Navier-Stokes

equations

du

1
+u-Vu+-Vp—vViu=0, V.u=0, (7.9)
ot p

which are derived in [68] and elsewhere. The absolute viscosity of the fluid is given
by @ = pv, where v denotes its kinematic viscosity and p its density. The vector

Laplacian is given by
Viu=V(V-u)—Vx(Vxu).
Energy is dissipated from the flow of a viscous fluid in a domain F at a rate
1
R= —,u/(IDdx, (7.10)
20 Jr
where the quantity
1
= (Vxu) - (Vxu)+2V- (5V|u|2—u><V><u>

is integrated over the entire fluid. We restrict a viscous fluid in contact with a solid
boundary to move with the boundary tangentially as well as normally. In general,
Navier slip boundary conditions [21] permit some tangential motion between a vis-
cous fluid and a solid boundary. We adopt the most common, “no slip” convention.

If we allow v — 0 in (7.9), we recover Euler’s equations. If, instead, we multi-

ply (7.9) by p and neglect inertial terms, we obtain Stokes’ equations
Vp = pViu, Veu=0 (7.11)

for creeping flow. This simplification is equivalent to nondimensionalizing (7.9) and
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taking the formal limit as Re — 0, where the Reynolds number Re = UL/v is
defined in terms of a characteristic velocity U and length L [15]. The left-hand
equality in (7.11) represents the balance of pressure forces and viscous forces on

every fluid element. Note that (7.11) imply that

the distribution of pressure in an inertialess flow is harmonic. Like potential flow,
Stokes flow is characterized by the instantaneous diffusion of momentum [15]. The
applicability of Stokesian analysis to the swimming of aquatic microorganisms is
demonstrated in [53].

We often consider problems in which creeping flows exhibit one-dimensional
symmetries. A problem in which no more than two spatial variables are needed to
describe the velocity field can be solved using an appropriate stream function [19].
For planar flow, we introduce the Lagrange stream function (t) such that (in polar
coordinates)

__1o¢ _ %
=00 Y=

This velocity field will correspond to a solution of Stokes’ equations provided
Vi = 0. (7.12)
For axisymmetric flow, we introduce the Stokes stream function ¥(¢) such that (in

cylindrical coordinates, where the z axis is the axis of symmetry)

19w 190

Uy =

= Uy = .
r oz’ z r Or

This flow field will satisfy Stokes’ equations provided

EY =0,
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where

2 109 9%\
E4 = —_— e —— + .8_. .
or2  ror 022
We note that not all solutions to Stokes’ equations may be obtained from stream
functions [15]. We note, also, that these equations represent only the simplest model

for real creeping flow. A good discussion of Oseen’s improvement to this model, itself

fettered by some practical shortcomings, appears in [48].

7.2.2 The Stokes connection

Just as the flow around a surface in an irrotational fluid is determined uniquely by
the deformation and displacement of the surface, so too is the Stokes flow around
such a surface recaptured by (7.11). If r € M again denotes the shape of the surface
and g € SE(3) its position and orientation, the dissipation function defined by (7.10)
may be written as

. 1 .1
ROcivgd) = 30 [ @(r7.0715) de.

The fiber-preserving map F = F(—R) : TQ — T*Q, where Q = M x SE(3), is a
force field in the sense of Section 3.1.3. In the Stokesian limit, the absence of inertial
effects requires the net fiberwise drag on a deforming surface to remain zero at every
instant.

In two dimensions, we encounter some difficulty related to Stokes’ paradoxz, the
nonexistence of a planar Stokes flow about a translating body which tends to zero at
infinity. In attempting to compute the drag on such a body, we consider the drag per
unit length on a long cylinder translating perpendicular to its axis through a three-
dimensional medium. While this result is not well defined as the cylinder’s length
becomes infinite, we find it to remain linear through successive approximations in
the fluid velocity persistant infinitely far away [48, 53]. When studying the Stokesian

swimming of a surface in the plane, we therefore assume F': T'Q) — T™() to take the
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form
E(Qa Q) - Cij(r) U(Zov

where U, (7, 7, g~14) is the fluid velocity at infinity resulting from the body’s motion.

7.3 Squirming circles

We illustrate the hydromechanical and Stokes connections with a pair of related
examples. Consider the infinitely long, approximately circular cylinder whose time-

varying cross-section is given in polar coordinates by
r(t,0) = 1+ ¢ (k' (t) cos 20 + k*(t) cos 36)

where ¢ is a small parameter. We imagine this cylinder to “float” freely in an
infinite fluid medium with constant density p = 1. We may regard the flow in
the periphractic region around such a cylinder as two-dimensional, and study its
evolution in any plane perpendicular to the cylinder’s longitudinal axis. We assume
the interior of the cylinder to be massless, and consider the self-propulsion of the
cylinder due to appropriate time-variations in k' and k2.

It is clear from the bilateral symmetry of the problem that any such swimming
motion will be rectilinear and parallel (or antiparallel) to the ray # = 0. We define
the coordinate z to measure the displacement in this direction of the (r, #)-origin,
as shown in Figure 7.2. We regard the configuration (k', k%, z) of the system at any
moment as a point in the trivial principal bundle @ = M x (R, +), where M is the
submanifold of R? corresponding to physically reasonable pairs (k!, k?).

Suppose the cylinder to move with velocity & through an incompressible, inviscid
fluid. This velocity is determined by the mechanical connection on the bundle @

derived from the total kinetic energy of the fluid. We approximate this connection



k! cos 26

Figure 7.2 A squirming circle.

using regular perturbation theory, seeking a solution of the form

¢=co+epr +Eda ...

to the Neumann problem

V2¢ =0,
¢ = (Zcosf,—zsinb) -n + (eicl cos 20 + ¢k? cos 30, 0) - 1.
on r=R
We obtain

¢ = ¢o + e + 2 +0 (63) )
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where

Lcos®,

$o = —ar”
. 1 .
¢1::klir_lcose—%gl(2k2i——k1)r_2c0320————<3k1¢—kk2>r”3c0830
D 3
— k22r~*cos 40,

¢y = cologr —eyr~tcosf — oo — 07—77°_7 cos 70,

k‘liﬂl k’2i€2

0= T Ty
qzzyk2+3kjﬁt+5k??@
co = 4k k%,
%::_3Hkﬁx
4
_ Bk

Cqp = 4]\71]62:&,
2

25Kk e 15k2%k%:
4 4 7

cs = 3kYk? + 3kVE? +

Th2 2

6= — + 18k k%%,
49k k%

cr = ————.

4
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The total kinetic energy is therefore given by

2T
/ / |V$|? rdrdf

= — erk'z?
2

1171 (.2 1.2 . . -2
+en (kf + 1"6’“ i (K17~ K2) + S (k1R 9k2k2)> +0(e),

and is unchanged by displacement of the cylinder along its axis of propulsion. The
momentum map J : T¢) — R and the locked inertia tensor I : R — R are given by
J =ri —2enk'i + *x <k1k2 — K%k + % (5kE + 9k2kz2)> +0 (&%)
and
I (k' k%) : € € (1 — 2ek' + ; (5k'E" + 9k2k~2)> +0 (),
and the connection I'yecn : 76 — R by
Timech = 171 = dz + € (k' dk® — k* dk') 4+ O (%) .

Self-propulsion of the cylinder is governed by the requirement that its velocity on

configuration space remain horizontal with respect to this connection. Thus
i = (KB - k) +0 ().
We compute the z component of the Kelvin impulse to be

/ Py dS = —7i - 2enk'd — 7 (kliﬂ — kR4 g (5" 4 9k2k2)> +O(€%).
S

This quantity differs from the momentum J in sign only.
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We now replace the assumption of potential flow with the assumption of Stokes
flow. The velocity field u and pressure p must satisfy (7.11) together with the no-slip

condition on the cylinder’s surface. We therefore seek u =V X 9, where

Vi =0,

ulr=r = (ur, ug) = (ekl cos 26 + €k cos 36, 0> .

The solution to this Neumann problem is given to O (62) by the biharmonic function

¢:¢0+€¢1+62¢2+0(63)a

where

QbO — 03
1. ., (1
iy = §k1 sin 26 + k2 <§r"1 - %r"g‘) sin 30,
1y = ¢ (r2 — 2log r) + (clr—l + 027“) sin 8 + (03r_2 + 04r—4) sin 46

+ (esr™3 + egr™?) sin 56 + (c7r™* + csr7°) sin 66,

klkl kzkz

Co = 9 + 9 )
fet ke
cp = 1 s
Bk R
Cg = +

4 2’
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kil
Cq4 — — 8 3

kit
GB= Ty

3E1k2  2klk?
C — e —_—
6 20 5
il
8 12 3

k2k?
=T

B2 kVE?
5= T

As r — oo, the velocity field approaches

19¢y O
(urauf?)lr_.)oo - (;‘5'0—, —5;)

= ¢2 (Ucos@,-Usin®) + O (63) ,

r—o0

where
1 5. 1. 4:
= k%K1 + kK2
U 1 + 7

These are the polar components of a uniform flow with speed 2U + O (63) in the

positive z (6 = 0) direction. If the cylinder translates with velocity &, then K :
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7@ — Rand V:R — R are given by

K (kl,k%z;:l,k?,fc) = C (k' k?) Us

— () (3: L (ik%l T %M?)) L0

and
\% (kl,kQ) =C (kl,k‘2) .
The Stokes connection I'stokes : 76 — R is then given by
[stokes = d + €2 (%k2 dk! 4 %kl de) +0 (&%).

Along a trajectory in configuration space which remains horizontal with respect to

this connection,
. 2 (1,250 Liai0 3
T =—c | —k°k +-k'k —I—O(e).
4 2
Figure 7.3 illustrates the difference between I'ech and I'siokes for the gait
(kl, k2) = (1 — cost,sint)

with ¢ = 0.1.

We conclude this discussion with a comment on “conveyor-belt” locomotion
at low Reynolds number. The example above illustrates the self-propulsion of a
surface undergoing radial deformation only. Tangential surface velocities play no
role in self-propulsion through inviscid media, but the stricter boundary conditions

imposed upon creeping flow allow a cylinder to propel itself while remaining circular
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—_ potential flow
-= - creeping flow

0.1 02

Figure 7.3 Geometric phase for a particular gait.
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in cross section. A tangential surface velocity
Vglr=1 = €k (t) sin 6,
for example, produces the connection
Pstokes = do — Zdk.

A cylinder which can effect such a surface velocity will move along the ray 6 = 0

with velocity

Tangential deformation will always prove O (1/¢€) more efficient than radial deforma-
tion at low Reynolds number. There is evidence that a swimming amoeba converts
fluid endoplasm to jellylike ectoplasm at its forward end, reabsorbing ectoplasm at

its rear [3].
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Chapter 8

Rigid Bodies in Fluids

8.1 Modelling assumptions

We develop our model for carangiform locomotion in this chapter and the next. We
begin by deriving the reduced Euler-Lagrange equations (3.3) for the interaction of
the rigid body of a carangiform swimmer with an infinite surrounding fluid. This
derivation parallels the realization of unreduced Euler-Lagrange equations in [81]
for a fluid-filled spacecraft. We assume the densities of the body and fluid to be
constant and equal, both to simplify our development and to obviate the considera-
tion of buoyancy forces. It is straightforward to relax this assumption. A biological
carangid can regulate its buoyancy, and will remain approximately neutrally buoyant
when swimming in a plane perpendicular to the direction of gravity. We also assume
the fluid to be inviscid. The role of water’s viscosity in real carangiform swimming
is twofold. Clearly, it accounts for the dissipation of energy introduced to the fluid
by an undulating swimmer. More subtly, however, it enforces the Kutta condition
which prompts vortex shedding from the trailing edge of the swimmer’s caudal fin.
We take these effects to be independent and disregard the former. The predomi-
nant localization of vortex shedding to the caudal fin is a signature of carangiform
locomotion. We note that the flow around a streamlined aquatic vehicle is often
assumed to be inviscid [50, 51]. This assumption is consistent, in the large, with
boundary layer theory [68].

In the fluid’s absence, we specify the position and orientation of a rigid body
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relative to a fixed frame of reference with an element Y of SE(3). We specify the
configuration of a surrounding fluid relative to an initial state with an element of
the group of volume-preserving diffeomorphisms Diffy,) (F) of the region F occupied
by the fluid in the body frame. Each configuration of the body-fluid system, then,
corresponds to an element of the Cartesian product SE(3) x Diffy, (F).

In Section 8.2, we demonstrate that the kinetic energy of the body and fluid
together exhibits the symmetry called for by Proposition 3.4. Specifically, we show
that we can write the total kinetic energy in terms of the body velocity f =Y~y

1

and the spatial fluid velocity field v = 9o n™" in the body frame.

8.2 The reduced Lagrangian

We use the symbol X to label material particles in the reference configuration of

the body-fluid system. The total kinetic energy is given by

,
5.4

L (Y,Y,n,ﬁ) = —;—fbodﬂﬂuidp(n(){)) H%(Yn)

_P / d
2 Jbody + fluid

- (¥n)
Lo ()]
body + fluid || \ [0 1 1

nTRT Ry + T RYp+ pY Ry + pTp+ n" RT Ry

X,

or

L (R, feop,byn ) =

NI

N

body + fluid (
+ 57 Rir+ 7 BT fon + i BT+ i BT Riy) dX

N

/ (nTcZ)TLDn + an)Tv + vTon + vl + nchTf]
body + fluid

+olp+pTon+ 9 v+ 37n) dX,
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where v and w satisfy
Defining

we may rewrite this integral in a body-fixed frame as

[(v,w,u(z)) = g/Rs (mTcI)Tde + 27Ty + vToe + vTv + 270 u (2)
+olu(2) + T (2) vz +u! (@) v+ ol (2) u(2)) do

= ﬁ/ (a:TaDTLDm + 922707 (u+v)+ (u+ v)T (v + ’U)) dz.
2 Jgs

The quantity u (z) represents the spatial velocity of particles with respect to the
body frame; u = 0 within the body. In terms of the body velocity £ € se(3), where

. w v
§= )
0 0
the reduced Lagrangian is thus

(& u(z))
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8.3 The reduced equations

We now obtain the reduced Euler-Lagrange equations explicitly, beginning with the

equation

dol . ol

We will summarize our results at the end of this section. For notational convenience,

we introduce the L? inner product of vector fields on R® defined by

(ot = | plae)b@)de=p [ a@)-b(e)ds
We may then write the kinetic energy as
(0,0, (0)) = 50w, 02) + (@2,0) + 50,0} + (0w, )
+ (o, ) + 5 ().

Let z be a vector field on R3 such that
z=0inB=R3-F, 2||0F, and V.z=0, (8.2)

where the second expression of the three indicates that z is tangent to the boundary

between the body and fluid along that boundary. Then

(%)= <_sz >
ou'”"/)  \ou’
= (2 (@e.u) + (o) + 5w )) =)

d

o (((cbx, u+ ez) + (v, u+ ez)) + %((u +ez,u+ ez)})

e=0

= (@z, 2)) + (v, 2) + (u, 2))

= / p{(wz +v+u),z)de.
R3
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Similarly

and

I
R

plwz +v+u,u,z])de
3

:/ plwe +v+u,u-Vz—z-Vu)de.
RS

Thus (8.1) becomes

/ (%(wxx+v+u)-z—(wx:v+v+u).(u.vz_z.vu)>dl.:0_
RS

We now consider the second component of this integral term by term. We make

repeated use of of the identity from vector calculus

/DV-(qu)dV:/quV'HdV—l—/DH-qudV:/aDqﬁHmdS,

where H and ¢ are vector-valued and scalar-valued functions, respectively. We note,
furthermore, that since z = 0 in B, we need only integrate each term over the region

F occupied by the fluid.
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First of all,

. Ok
[ xe) (w2 de = [ it da
_ 9 Lom k. e o 0™ o
P L‘ (-‘—“‘aw] ((Slkélmw r Z )'U/] - 52k€lmw —ax—jz U d:[;
. O™ -
— ) l k.7
= /F6zk€lmw a7 2"l dx
= —/ 5¢k5melmw ZFulde

= /&kehwlz wdz

= /F(wxu) zde.

Similarly,

o k
/Fv-(u-Vz) dx:/&ikvlu]%da:

/3933 Zkvz ujd:c

. OuF
Az = s
/FU (z-Vu)dz /&kvz e -dz

/8 2kvu zjda:
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and
. . k
/F(w x ) (z-Vu)de = Aéike}mwlxmz’ g%dx
0 oz™ .
= / (5:;; (5 kelmwla:muk> 2 — il w lmukzj) dx
/5k5me}mw Putdzs
= ——/ 5ike}jw Liukde
F
—/ 5k¢efjwlzjukd:v
F
= —/ 860 2 uFde
F

::——/F(uxw)-zda:.

The fact that 6kiefj = §j;¢;, follows from the invariance of the vector triple product

with respect to even permutations. Finally

/u.(u.vZ)dg;—/& uiuja—zkdw
o - F ik ax]
] o Out
_—_/F(—a—xj— (&kulzk) J ——&k%ujzkuo dz
ou’
_/Fg. :

:/F(u-Vu)-zdw

and

. O0uF
/Fu (2 Vu)dz = /F(Siku’z’ aTd:c
= %/Fé% 5ikuiuk) Zdx

= 0.
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Gathering terms, we are left with
/(o'.)><a:+ib+1}+u-Vu+2w><u)-zdm:0.
F

We now invoke the following result, which is proven in [17].

Theorem 8.1 (Helmholtz-Hodge) A vector field w on I’ has a unique decompo-

sition
w = wg + ws,

where wg is the gradient of a function on F and wg is solenoidal and parallel to OF

on OF.

Thus 2z = zg + 2g = zs and

/F((wXx)s+d5+@s+(u'VU)S+2(w><u)S)-zdz:

/F(wx z4+a+0+ (u-Vu)g+2(wxu)g) zdz =0,
or, since z is otherwise arbitrary,
oxzt+at+v+u-Ve+2wXxu=(u-Vu+2wXu)g. (8.3)
We define the pressure gradient
Vp=(—p(u-Vu+2wxu))g=—p - -Vu+2wx u)g
and, following [81], the gauge gradient

Vs=Vp+V (%pu%z) ;
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then (8.3) may be written as

p(wxw+d+1}+u-Vu+2w><u):V(%puﬁt)—Vs. (8.4)

We now turn to the equation

d ol , dl
- = :adA——n.
dt o€ £ 9¢

We rewrite the kinetic energy as

(60i0) = (gl + (&) Lo

where

Let v be an element of se(3), such that

N
L
for some skew-symmetric 3 x 3 matrix 4 and some column vector A. Then
(5e7) = (e Gl + () )
= & GUEra)aera)a) + ((E+ o))
= <<££, 1/£>> + (0%, @)

:/Rsp<éfﬁ-l—’&) - (97) dz.

Similarly,

<%g—§,ﬁ>:/ﬁ{sp§t(§x+u) (vz) dz
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and

<a,d’f 8—{,19> = <6ZA,a,dA1?>
585 o€ 3

Thus (8.5) becomes

or

/ (ﬂry%x + 27370 + 27476 — e T4ToTox + 2703 on + vT5 0
R3

— 25T Ty + 2ToT4Tw + w15 T — 2470w + 2TOT4Tu + 0157

+ <Z‘TLiJT vl + o7 = 2T0To — oTo - uTcC:) /\> dz = 0.

Because of the independence of y € 50(3) and A € R?, (8.5) is therefore equivalent

to the independent equations

/ (mT""chZ)x + 27374 + 27470 — 2T4T0 oz + 27074 ox + vT57 0
R3

— 2T5TeTy 4 2ToT4Ty + T4 Ty — 2T4T0Ty + o To T4 Ty + UT,S/TU> dz =0
(8.6)
and
/ )\T(cfzx—{—d—]—iy—l—d)?x—}-c&u—l-cbv)da::O. (8.7)
R3

We simplify the former of these equalities with the assistance of the following result,

easily obtained by direct calculation.
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Lemma 8.2 Let a(z),b(z),c(z), and d (z) be vector fields on R3. Then
/ (aTﬁfTb + CTS/Td) de =0
R3
for all skew-symmetric 3 X 3 matrices ¥ if and only if

/R ((baT) ¢ (dT) ) da =0,

where the subscript A denotes projection onto the skew (anti-) symmetric component

of its argument.

It follows that (8.6) is equivalent to

/R3 «émT)A +((a+0)2”) , + (©%22") , + (@ (u+0)2T),

(8.8)
+ ((ut0)a"6") , 4+ (@o0”)  + (w) ) do =0,

Since the terms appearing in the integrand are all skew-symmetric 3 X 3 matrices, we
may rewrite (8.8) in terms of the integral of a vector quantity. Up to a multiplicative

constant, (8.8) is identically
/ (waw—]cb+b><w—l§+u><v—v><(wx:c)):O, (8.9)
R3
where
I= (trace wa) id — 227
and
b=z X (u+v).

Since A is arbitrary, (8.7) is equivalent to

/Rs(c&xm—l—(d-i-ij)—!—wx(wxx)-l—wx(u+v))dw=0. (8.10)
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Equations (8.9), (8.10), and
1
p(wxx+ﬂ+b+u-Vu+2wxu):V<§puTu)—Vs (8.11)
completely describe the interaction of a homogeneous rigid body and a surrounding
fluid of equal density.

8.4 Special cases

We can readily verify the equations derived in Section 8.3 for certain limiting cases.
Suppose that the rigid body in question were not surrounded by a fluid at all.
Then (8.9) would be replaced by

/B<Iw><w—-ld)+bxw—i)——v><(wxm))dw:(), (8.12)
where b = & X v, and (8.10) by
/B(cbx:c—{—i)—!-wx(wx:u)-i—wxv)da::O. (8.13)
If we set v = 0 identically, we recover FEuler’s equation
/B (T x w — I5)de = 0 (8.14)

for the motion of a free rigid body from (8.12). Similarly, the assumption that w =0
returns Newton’s second law. In [39], we represent (8.9) and (8.10) as the traditional
rigid body equations amended by the forces and moments due to the distribution
of fluid pressure on the body’s surface.

In a fixed frame (for which w = v = 0 identically), (8.11) is equivalent to Euler’s
equation (7.3) for the motion of an incompressible fluid. Taking the curl of (8.11)

and noting the identities

Vx(axb)=a(V-b)—b(V-a)+ (b V)a—(a V)b
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and
L r
u-Vu=(Vxu)xu+V Fu U
we obtain
CHu-VE=(-Vu+2(w-Vu-w), (8.15)

where ¢ = V X u is the vorticity. In the absence of the terms involving w, this is

Helmholtz’s vorticity equation for an incompressible fluid [68].
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Chapter 9

Planar Carangiform Locomotion

9.1 The unforced equations

We espouse a planar model for carangiform locomotion. If we restrict ourselves to

the case z° = 0, (8.9), (8.10) and (8.11) become

/ (—QB (a:lml + 2%z ) — ! (i&z + 1')2) —z? (111 + i)l)
R3

+ ulo? — ol — WP (alv! +2%0%)) dz =0, (9.1)

2208 ot + ot — 2twBwd — (u2 -+ v2) w3

/R 3 do =0, 9.2)

210 + 42 + 0% + 22wBw® + (ul + vl) w3

and
23 ~1 5 1 18ul 20ul 5.2 3 p 8 (1.1 2,2\ _ 8s
Wt u v U S UGz 2utw 28931(““ +uu) )

P = )
143 1 22 | ~2 1842 20u? 1,.,3 P8 (1,1 2,2 _ 8s
Twrt e+ 0 tu g tutss +2uw 2ax2(““ +uu) 502

(9.3)

respectively.
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Figure 9.1 Silhouette and cross section of a louvar.

\
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9.2 The substitution vortex model

Figure 9.1 depicts a horizontal cross section of a louvar, a typical carangiform swim-
mer. Away from the midline of the fish, the body and caudal fin are disjoint. The
force developed on a representative section of the caudal fin is transmitted to the
body of the swimmer, but the caudal peduncle which couples them has no hydro-
dynamic impact.

The symbol I in Figure 9.1 represents the circulation about the caudal fin, which
we regard as a hydrofoil. As the velocity and effective angle of attack of the caudal
fin vary, vorticity is shed from its trailing edge, changing the circulation I'. The lift
on the fin, which is proportional in magnitude to I' and directed according to the
flow experienced by the fin, is transmitted to the body of the swimmer as thrust.

Because the caudal section is small compared with the body and separated from
the body by a distance greater than one chord length, it is reasonable to approximate
its hydrodynamic effect on the body as that of a single point vortex of appropriate
strength. We will justify this notion of a substitution vortez rigorously in Section 9.6,
following our overview in Section 9.5.1 of the role of complex variables in hydrofoil
theory. At the most abstract level, then, we model a carangiform swimmer as a
planar rigid body coupled to a controlled vortex.

We assume that a carangid’s authority over the position and shape of its caudal
fin afford effective control of the position 2, of the substitution vortex and the

circulation I" around it. Equations (9.1), (9.2), and (9.3) describe the drift behavior
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of the paired body and fluid. The controlled substitution vortex completes our
model for planar swimming.

As it moves through the fluid, the substitution vortex experiences a flow with
relative velocity u, eff = u(2,) — &,. We will see in Section 9.5.1 that, as a result, it
transmits to the body a thrust equal in magnitude to pu,.gl’. In the absence of the
drift associated with equations (9.1), (9.2), and (9.3), we can write the remaining

dynamics as the control affine system

zl 0
z2 0
r 0
d | v LT (z,y)
dt v2 o —%Ful(xv)
w3 —%I‘(w},ul(mv) + 22u? (acv))
ul 0
u? 0
1 0 0
(9.4)
0 1 0
0 0 1
0 —-£7 0
+ 4 %+ 3
d 0 0
LTl T2 0
0 0 *
0 0 *

= [(q) + h1 (@) + ha(q)T* + ha(g)7°.

Here

m:/pdm
B
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is the mass of the body,

the control inputs.

The asterisks in hs represent the effects of changes in I on the flow field u(z,t);
we do not specify them in this form here. Since changes in I' are most directly
related to the shedding of vorticity, it makes some sense to replace the velocity
field in our state vector with the vorticity field {(z,t). The unforced evolution of
the vorticity is determined by the planar version of (8.15); in the presence of the

substitution vortex we have
¢+u-VC:C-Vu+2(w-Vu—w) :f‘é(xu).

In taking the curl of (9.3), however, we lose information about the gradient compo-
nent of u. The unforced gradient projection of (9.3) then completes the forced fluid

system. We explore this perspective in [39].

9.3 Planar carangiform accessibility

We resume the discussion of gaits from Chapter 6 by interpreting the partial con-
struction of the accessibilty algebra associated with (9.4). We recognize that this
is only one component of the model we advance for carangiform locomotion. We
assume that the drift associated with with the phenomena addressed in Section 8.3
combines with the drift represented by the vector f(g) in Section 9.2 without inter-
fering, qualitatively, with with the input vector fields {h1, ho, h3}. Note that we are

not concerned, in practice, with accessibility in the fluid velocity u.
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We compute, for example,

y
lhayhs] = | ™

=
8

We infer that cyclic variations in the heave of the caudal fin and the circulation about
it, properly phased, will rotate the body and propel it forward. The circulation
about the caudal fin, we recall, depends upon its effective angle of attack as well as
its velocity. The rotation term is proportional to the lateral displacement x%lof the
susbstitution vortex; small excursions of a caudal fin extended straight back do not

generate rotation. Furthermore,

o o o O

[hla h3] = 3

3

=l
8
QS -

we infer that appropriate cyclic variations in the longitudinal extension of the caudal

fin and its effective angle of attack afford rotation and lateral motion in the body
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frame. Finally
[hl, hg] = 0

Infinitesimal cyclic variations in the thrust which involve no changes in I' provide,
to our approximation, zero propulsive effect. This result is reminiscent of the ob-
servation that a gliding kestral, maintaining constant circulation about its wings,

must alter their geometry to effect a change in course [92].

9.4 The experiment

The substitution vortex model supposes a carangiform swimmer to control the posi-
tion of its caudal fin and the circulation about it. In actuality, the swimmer controls
the fin’s position and orientation; the circulation depends upon the velocity and in-
clination of the fin relative to the fluid through which it moves. We now examine
the development of hydrodynamic lift quantitatively, comparing the numerical pre-
dictions of a mathematical model with the actual behavior of a robotic propulsor.

The fluid component of the substitution vortex model is influenced by the mo-
tion of the propulsor’s body as well as the evolution of the vortex itself. We wish
to isolate the interaction of the fin and fluid. It is an advantage rather than a
compromise, then, that our experimental fin propels a constant load with no hydro-
dynamic impact. Indeed, the propulsive mechanism detailed below need not drive a
carangiform body; its adaptability to different marine vehicle architectures remains
to explore.

Figures 9.2 and 9.3 depict the main component of our experimental apparatus
from the top and side schematically. Figures 9.4 and 9.5 provide photographic con-
trast. The actuated mechanism is intended to exemplify the tail of a carangiform
swimmer with a fin of constant section, and is suspended from a carriage which is
free to translate along the length of either of two laboratory water tanks. Figures 9.2
and 9.3 depict a two meter tank, over which the carriage slides on pillow block bear-

ings. Figures 9.4 and 9.5 depict a seven meter tank, over which the carriage slides
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Figure 9.2 The apparatus from above.
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Figure 9.3

The apparatus from the side.
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Figure 9.6 The Polhemus transmitter.

on wheels. The peduncle and fin, each .125 m in length, are submerged to a depth
of .50 m in either tank. The tank in which we collect our numerical data is .76 m
wide.

The apparatus permits independent, software-based control of the horizontal
angles ¢ and v between the direction of translation, the peduncle, and the fin.
The peduncle and fin are driven by PWM servomotors, while a Polhemus receiver
mounted on the carriage measures its displacement based on the low-frequency
magnetic field created by the stationary transmitter shown in Figure 9.6.

Figure 9.7 shows the measured displacement versus time corresponding to a
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Figure 9.7 Displacement with the peduncle and fin in phase.

family of fin oscillations of the form

¢ (t) = coswt

P (t) = & (1) + coswt.

(9.5)

The apparatus begins at rest at ¢t = 0. At lower frequencies, the plot clearly shows
the cyclic acceleration and deceleration of the carriage. The fin acts as a brake as
it swings toward each extreme of its motion, assuming the role of a thruster only
as it swings back toward the midline of the tank. As the frequency w increases, the
increased forward momentum of the carriage attenuates this effect. In every case,
the motion of the carriage settles quickly about a steady mean velocity; this mean

velocity increases with w.
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Figure 9.8 Displacement with the peduncle and fin out of phase.

Figure 9.8 depicts oscillations of the form

¢ (t) = coswt

P (t) = ¢ (t) +sinwt

9.6)

at four frequencies w. At a given frequency, the gait given by (9.5) generates greater
mean thrust than that given by (9.6). We take care not to infer the superiority of
gaits in which the peduncle and fin oscillate in phase, however. The tip of the fin
enjoys a greater maximum excursion according to (9.5) than according to (9.6).
Indeed, the peduncle of the Pacific Whitesided Dolphin—an efficient carangiform
swimmer——precedes its caudal fin by approximately 7/2 radians [99]. Overall, the
out-of-phase gaits shown in Figure 9.8 propel the platform more smoothly than

the in-phase gaits shown in Figure 9.7. The smoothness of out-of-phase gaits may
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contribute to their prevalence in nature. We omit the gait corresponding to w = 2.5
from Figure 9.7 because it exceeds the capacity of our servomotors.

In Section 9.5, we will assess our theoretical model for the experimental appa-
ratus by its ability to reproduce Figures 9.7 and 9.8. Although they illustrate only
seven gaits in all, these span the range of available frequencies at the extremes of

practical phasing.

9.5 Modelling and simulation

9.5.1 The steady flow model

The flow around the oscillating caudal fin of a carangiform propulsor is essentially
unsteady. In modelling the hydrodynamic forces acting upon our robotic fin, how-
ever, we seek the simplest theory with which to explain our data. We therefore
advance a model based on the assumption of steady flow.

We regard the thrust developed by a moving fin as a hydrodynamic lift. A
hydrofoil subject to a steady ambient flow experiences both a lift and a pitching
moment. The lift may be considered to act at the center of pressure of the foil, about
which the pitching moment is zero. The forces acting upon certain planar hydrofoils
are readily determined using complex analysis; we follow [67] in our exposition of
this approach and omit computational proofs contained therein.

Continuity of two-dimensional incompressible flow in the (z,y) plane requires
that

Ougy  Ouy
5z T oy 0

we define a continuous stream function ¢ such that

_ %
-5

oy

— . (9.7)

Uy and Uy =

Note that (7.5) and (9.7) imply that the potential function ¢ and the stream function



121

1 satisfy the Cauchy-Riemann equations

% _ 9% and 9¢ _ —6¢

oz~ dy 9y~ Oz

If ¢ (z) and ¥ (2) denote the velocity potential and stream function corresponding
to steady irrotational flow about a cylinder with contour C' in the complex z plane,
we refer to the function w (2) = ¢ (2) +1¢ (2) as the corresponding complex potential

and apply the following result.

Theorem 9.1 (Blausius) If z = z + iy, then the forces X and Y acting upon the

cylinder in the  and y directions are given by

. 1, dw\?
X—zY_izp/C(E> dz

and the pitching moment about the origin z = 0 by

1, dw\
M = real part of — —ip | z| — ] d=z.
2 C dz
The quantity

. dw
U o— G = e

dz

is called the complex velocity corresponding to the complex potential w(z). If a
hydrofoil (about which there may be circulation) is placed at an angle & to a uniform

flow with speed U, we may expand the complex velocity for large |z| in the form

dw ior A B
———=-Ue*+ =4+ —+....
dz Z oz

The complex potential is then

w:Ueio‘z—Alogz—{—g—l—...
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and the circulation I' must satisfy

_al
oo’

Choosing our contour of integration C to be a circle of sufficiently large radius, we

apply Blausius’ theorem to obtain
X — Y = pUTe!(5+)
and
M = real part of 2ripBUe™.

The first of these equations suggests the following result, discovered by its two

namesakes independently.

Theorem 9.2 (Kutta-Joukowski) A hydrofoil subject to the uniform relative flow

of a fluid with density p and speed U ezperiences a lift
L=pUT

perpendicular to the direction of flow. A vector in the direction of the lift is obtained
by rotating a vector in the direction of the flow through a right angle opposite the

sense of the circulation.

The net absence of drag in two-dimensional inviscid flow is termed d’Alembert’s
paradoz.

Suppose that the complex potential w = f(z) corresponds to the planar flow
of an inviscid fluid in the absence of rigid boundaries. The first circle theorem [68]
states that the introduction of the cylinder with impenetrable contour |z| = a alters

the flow to that with complex potential
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The complex potential corresponding to a uniform flow in the z direction takes the
form w = Uz. The complex potential corresponding to the flow around the contour
|2| = @ with added circulation I is therefore

i

Py log z. (9.8)

w=Uz+4+U a_; +

Suppose that the exterior of a circle centered at the origin in the ¢ plane is
mapped conformally to the exterior of a hydrofoil in the z plane. Then we can
determine the complex potential corresponding to flow about the hydrofoil from (9.8)
and the form of the conformal map. A variety of practical hydrodynamic profiles
may be realized in this way. Kdrmdn-Trefftz profiles are determined by conformal

maps which satisfy

z—kl _ (¢C-)F
s (DY

where k£ > 2. Kdrmén-Trefftz profiles for which k£ = 2 are called Joukowski profiles;

the Joukowski transformation is more frequently written as

Karmén-Trefftz profiles belong to the more general class of von Mises profiles, all of
which feature cusps at their trailing points. Cuspless profiles, such as the Carafoli
profiles, may also be obtained by conformal mapping [67].

Suppose that we wish to construct the complex potential corresponding to the
flow about a Joukowski profile with a given angle of attack relative to a given
uniform incident flow. It remains for us to specify the circulation I' about the
profile. Joukowski’s hypothesis restricts the flow speed at a foil’s trailing point to
remain finite, effectively requiring the circulation about the foil to adjust so that
the fluid stagnates there.

Since an inviscid fluid can exert no tangential force upon a solid surface element,

one might expect the net force on a flat plate with nonzero angle of attack to act in
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a direction perpendicular to the plate. According to the Kutta-Joukowski theorem,
however, the lift upon a flat plate must act in a direction perpendicular to the
ambient fluid flow. The drag on the plate, which acts parallel to the ambient flow,
is cancelled by a leading edge suction which results from the vanishing radius of the
plate’s forward edge.

We obtain the flow around a flat Joukowski profile of length F' from the flow

around a circle of radius ¢ = F/4 using the transformation

a2

z=(+ c

It is shown in [38] that the circulation about the profile is given, consequently, by
I' = #FU sin o,
and the lift by
L = npFU?sin o

The lift experienced by a moving plate depends upon the relative velocity of fluid
incident to the plate. We assume the fin which propels our experimental apparatus
to encounter only quiescent fluid; disturbances due to the fin’s excursion remain
largely downstream. The torso of a biological carangid precedes its caudal fin as it
swims; the flow incident to the caudal fin may incorporate vorticity shed from the
pectoral fins and other physical structures upstream. The role of the caudal fin in
this context is to modify nonzero incident flow to effect propulsion. This point of
view is addressed in [93].

As our experimental fin translates and rotates, different points along its length
describe different velocities relative to the laboratory frame. In computing the lift
developed on the fin, we assign to every point along its length the instantaneous
velocity of the quarter-chord point. Were we so inclined, we might instead compute

an effective camber from the distribution of velocities along the fin’s length.
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Figure 9.9 The simulated experiment.

We simulate the motion of the system depicted in Figure 9.9. The position of

the quarter-chord point relative to the origin O is
F . F
(zqc,yqc) = | 2m + Pcos ¢+ ZCOS¢7PSIH¢+ —4—sm1,b
and its velocity
voqe = —U = | & — Psingg — Z—sm P, Pcos ¢ + Zcos v | .
The leading edge of the fin points in the direction
le = — (cos,sin).
We denote with an overbar the inclusion of planar vectors into R3, so that
tgc = (vqc, 0), le = (le,0) € R3.

As long as the fin’s angle of attack « remains in the interval [37/2,7/2], in order
that the leading edge and trailing edge remain as such, the lift developed on the fin

is given by
f’a small = TpF ('l_JQC X 1_6) X Qe

If the angle of attack lies in the interval (7/2,37/2), the fin’s leading edge and
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trailing edge reverse roles. We therefore compute the lift in general to be
L = sgn (cos (atan2le — atan2 vqc)) mpF (T)QC X l?e) X Uq,

where atan2 () denotes the four-quadrant inverse tangent of its argument.
Since the system is constrained to translate in the z direction, we are concerned
only with the corresponding component L, of the lift. The equations we simulate,

then, are
mim = Lo (6%, 6%, ) -

9.5.2 Simulation and validation

In the theoretical absence of dissipative effects, our simulation overestimates the
acceleration of the platform. We attentuate the predicted thrust developed by the
fin with a viscous drag term [86], tuning a single gain until our numerical and
experimental data agree over the range of gaits considered.

Figures 9.10 and 9.11 reproduce Figures 9.7 and 9.8 from the model developed
in Section 9.5.1. The apparent mean curvature of the experimental trajectories
corresponding to faster gaits may reflect some imperfection of the rails along which
our platform translates. The model predicts the mean velocity of the platform
consistently over the range of gaits considered, but does not reflect the smoothing

effect of higher speeds.

9.6 The substitution vortex revisited

In Section 9.5.1, we outlined the construction of the flow around different hyrofoils in
the complex z plane from the flow around the contour |(| = a using transformations

of the form

a=C+ 242y (9.9)

¢ ¢
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Figure 9.10 Steady flow model for in-phase gaits.
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For sufficiently large |(|, such transformations leave z ~ (, so that streamlines far

enough from the origin approximate concentric circles. Suppose, for example, that

FZ
al:az:-ig and a2:a3:--.:0,

as for a flat plate. Then

a?

z-¢l _ 1%l
|2| z
F2
|2
P
16 |2||¢]”
If z = Re¥, then
_ R R g F?
=5 VT T 16
and
I 2
lzlI¢] ) s
R Rezﬁ + R2e210 _ FTz
_ 2
R2|eif 4 [e2i8 _ :1%2_2_
so that
|z —¢] F? 1
2| S8R
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If R> F, then

p-¢l 1 1

Thus, at distances greater than one chord length F from a flat plate, our error
in treating the flow as that around a point vortex amounts to less than one part
in sixteen. Figure 9.12 depicts the deformation of circles in the z plane by the

transformation

1
2> 24—,
z

The complex potential for a vortex of strength k at the point zy subject to a
uniform flow with angle of incidence o may be written as
w=Uez + %log (z — 20)
ia il il 20
=Ue""z+ %logz—t— %log (1— ;)
. ) 2
=Ue"z + £logz—I—O % .
27 22
The complex potential for the flow around a hydrofoil is given (as for & = 0 in (9.8))
by

a?

tor —ta a3
w=Ue"C+Ue C+27TlogC,

where ¢ may be obtained from z by reversing (9.9) to yield

¢=:(1-%-..).

22
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Figure 9.12 Flow around a flat plate with circulation.
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Thus

271 —ia i 1
20 = TU (aze —aje O‘) +0 (2—2)

provides the position of the substitution vortex.

For a flat plate with chord length F, a = F/4 and a; = F?/16 so that

omi_(F? _, F? .
o=y (___e_m m)

r\16° ~16°
_ o2
-4PUF sin o

up to O (;15) Since Joukowski’s hypothesis requires that
I' = n FU sin &

for a flat plate, the corresponding substitution vortex is situated at the quarter

chord point

SE

20 =

9.7 Flow visualization

Commercially available Kalliroscope fluid is a colloidal suspension of reflective, ob-
long guanine platelets which, when added to an aqueous flow, align with instanta-
neous streamlines. A 0.2% solution provides opacity and reflectivity to the water
in our smaller tank, allowing us to photograph flow patterns with ordinary cameras
and lighting. Figure 9.13 (best viewed at arm’s length) depicts the inverted Karman
vortex street left behind by our robotic fin. Figure 9.14 depicts the vortex pair shed

by an abrupt quarter-stroke.
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9.8 Carangiform gaits

Unlike the propulsors addressed in Chapter 6, a carangiform swimmer describes
gaits which are sensitive in their efficacy to time reparametrization. A variety of
dimensionless parameters are used to index the similitude of viscous fluid flows; we
have already encountered the Reynolds number Re = UL/v. The two degrees of
internal freedom enjoyed by our experimental propulsor afford us two frequencies
with which to characterize gaits, the phase between them a third.

A single caudal frequency w (in rad/s) is typically ascribed to the swimming of
a biological carangid [53], combining with the body length Lpedy and characteristic

swimming velocity U to provide the reduced frequency
0 = wlpody/U.
A related parameter is the Strouhal number
St = wE/U,

where E denotes the width of the caudal fin’s excursion. Species as diverse as the
goldfish, dace, trout, and bream beat their caudal fins such that £~ 0.2Lp0qy [53].
The efficient swimming of marine animals is characterized by Strouhal numbers
between 1.5 and 2.2 [96]. We note that the Strouhal number is sometimes defined
in terms of the frequency f = w/27 in Hertz.

The single-frequency gaits depicted in Chapter 9 represent Strouhal numbers
between 9.5 and 15.0. We are limited by the speed at which the motors driving
our experimental fin can respond; an increase in w forces a decrease in E. Because
we command the positions of the motors directly, however, we do not observe the
presumed inefficiency of these gaits.

Our experiments focus on forward motion because the platform which supports
our experimental fin can move only longitudinally. The model developed in Sec-

tion 9.5, however, is readily adjusted to accommodate full planar motion. Consider
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Figure 9.15 A planar carangiform robot.

the aquatic robot shown in Figure 9.15. We ascribe to the body apparent masses
(mq, m;) corresponding to longitudinal and transverse motion and an apparent in-

ertia /. For an ellipse with semimajor axes a and b, where ¢ > b,
2 2 1 2 22y2
m; = mpa‘, my = 7p b, and Izgﬂ'p(a - b%)

per unit depth [68]. Since P = F = .125 m for our experimental apparatus, we
simulate a robot with these parameters and an elliptical body measuring 2a¢ =
;750 m by 2b = .125 m in water with planar density p = 1000 Kg/m?.
Figure 9.16 depicts several snapshots of the robot as it executes the gait
¢(t) = cos 2t

$(t) = $(t) + sin 2t.

" The Jacobi-Lie brackets computed in Section 9.3 suggest that a gait of the form

o(t) = ¢o + coswt
P(t) = ¢(t) + sinwt

will, for ¢g # 0, rotate and advance the robot simultaneously. Figure 9.17 depicts
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Figure 9.16 An out-of-phase drive gait.

0.25

Figure 9.17 An out-of-phase drive-and-rotate gait

the gait

@(t) = .25 + cos 2t
P(t) = () + sin 2¢.
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Chapter 10

Future Work

The preceding pages suggest a great many topics for future investigation; we ack-
owledge only a few of these here.

The fluid mechanics providing for the connections in Section 7.3 were distilled
from the Navier-Stokes equations by physical assumption. A comprehensive theory
of the swimming of deformable bodies should encompass the idiosyncrasies of ideal
flow and creeping flow mathematically. The momentum map corresponding to the
particle relabelling symmetry of an ideal fluid in a domain F takes values in the
space dual to the Lie algebra of vector fields on F which are solenoidal and parallel
to OF on OF. If F is the periphractic region complemeting a body about which the
flow is acyclic, this space is naturally identified with the space of vorticity fields on
F [61]. The assumption of irrotational flow therefore corresponds to restriction to
the preimage of a momentum level set. This restriction, together with reduction,
should recapture the Kirchhoff potentials from the Euler-Lagrange equations. This
remains to be shown explicitly.

In order to simultaneously realize Stokes’ equations via reduction, we must begin
with a geometric model for viscous flow. Parametric dependence of an accompanying
Navier slip boundary condition upon fluid viscosity and Reynolds number is only
one apparent requirement of a pandectic formulation.

The end product of the Lagrangian analysis of Chapter 8 was a set of equations

indicating the overall conservation of certain quantities shared by a rigid body and
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a surrounding fluid. The nonholonomic connection governing the motion of certain
terrestrial vehicles [80, 13] speaks to dynamics which are essentially nonconservative,
their symmetry broken by equations of constraint. Considered together, however,
a vehicle and the Earth to which it is coupled may be modelled a conservative
system. Symmetry is lost when the Earth’s large inertial reservoir is assumed to be
infinite. A similar assumption regarding an infinite fluid’s capacity to absorb the
vorticity shed from a natant surface may allow us to synthesize a structure like the
nonholonomic connection. We anticipate a complete theory of composite Lagrangian
systems which will unify conceptually the swimming of undulating surfaces and the
negotiation of large inertial bodies by wheeled mobile robots. Specialization of
results like Noether’s theorem to such systems should guide the development of the
general theory.

Indeed, the implicit nature of the drift derived in Chapter 8 has prevented us,
thusfar, from interleaving the pieces of the model we proposed in Chapters 8 and 9
for carangiform swimming. Our cursory assessment of controllability drew conclu-
sions from a fragment of this model; proper control analysis will follow our realization
of its complete form.

From a Hamiltonian point of view, the conservative interconnection of mechan-
ical systems may be studied in the context of Dirac structures [97]. We note only
the availability of this formalism, citing an assessment of its utility as an objective
for the future.

The experimental apparatus detailed in Chapter 9 is constrained to translate
rectilinearly. Its displacement reflects one component of the lift developed by the
caudal fin, but neither the other nor the yawing moment to which a real carangid is
subject. Subsequent generations of the experiment will provide full SE(2) mobility
to the peduncle and fin, replacing the lateral reistance of the bearings on the rails
with the apparent load of a submerged body.

The longitudinal translation of an elliptical body in an irrotational flow is un-
stable [68]. A fish, however, will coast forward with apparent stability after ceasing

to generate thrust with its tail. This stability may be the result of a continued but
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subtle control effort on the fish’s part, or a consequence of the damping inherent
to real hydrodynamic systems. The cross-sectional signature of rectilinear carangi-
form swimming is a wake resembling an inverted Kérman vortex street. The notion
of image vorticity permits extension of the Hamiltonian theory of planar vortices
to the advection of free surfaces by vortex systems. This context could illuminate
stabilizing properties of conservative wakes, particularly if physical maneuvers of in-
terest were to correspond to relative equilibria of constrained vortex systems. Were
this the case, a technique like the energy-momentum method [56] could be applied
to evaluate the stability of ﬁhese relative equilibria. Models for the interaction of
vortex patches [91] may also prove adaptable to the interaction of rigid bodies and
structured vortex wakes.

The autonomy of piscimimetic vehicles requires the integration of appropriate
sensors and feedback laws. The nature of the lateral line sensor common to many
fish is the subject of ongoing biological research. Results from that field could
motivate artificial sensor design; an understanding of the data needed to negotiate
a fluid environment could guide the zoological community in its efforts.

Efficient numerical schemes which allow vortex shedding to be decoupled from
other viscous phenomena can validate theoretical results more adaptably than any
experimental platform. Modifications of Chorin’s method, which supposes a discrete
distribution of vorticity, are particularly suited to abstractions of carangiform swim-
ming based on the substitution vortex. Ready simulation will speed the assessment
of gaits for hyperarticulated marine propulsors.

The classification of nonlinear control systems according to their feedback equiv-
alence to certain canonical systems is tantamount to the identification of pertinent
invariant differential forms. Locomotion systems are, compatibly, distinguished by
adherent connections, curvatures, and related forms. It remains to develop a taxon-
omy of locomotion systems based on equivalence under feedback transformations.
Cartan’s method of equivalence [26, 79] may provide the tools to geometrize feedback

design for locomotion.
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