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Abstract

Experimental measurements of the particle pressure were obtained for a liquid flu-
idized bed and for a vertical gravity driven liquid-solid flow. The particle, or granular,
pressure is defined as the extra pressure generated by the action of particles in a par-
ticulate multi-phase flow. Using a high-frequency-response pressure transducer, indi-
vidual collisions of particles were collected and measured to obtain a time-averaged
particle pressure. Results were obtained for a number of different particles and for
two different test section diameters. Results show that the particle pressure experi-
ences a maximum at intermediate concentrations, and that its magnitude is scaled
with the particle density and the square of the terminal velocity of the particles. The
particle pressure was found to be composed of two main contributions: one from
pressure pulses generated by direct collisions of particles against the containing walls
(direct component), and a second one from pressure pulses due to collisions between
individual particles that are transmitted through the liquid (radiated component).
The direct component of the particle pressure was studied by an analysis of particle
collisions submerged in a liquid. A simple pendulum experiment provides controlled
impacts in which measurements are made of the particle trajectories for different par-
ticles immersed in water. The velocity of the approaching particle is measured using
a high speed digital camera; the magnitude of the collision is quantified using a high
frequency response pressure transducer at the colliding surface. The measurements
show that most of the particle deceleration occurs at less than half a particle diame-
ter away from the wall. The measured collision pressure appears to increase with the
impact velocity. Comparisons are drawn between the measured pressures and the pre-
dictions by Hertzian theory. A simple control-volume model is proposed to account
for the effects of fluid inertia and viscosity. The pressure profile is estimated, and
then integrated over the surface of the particle to obtain a force. The model predicts

a critical Reynolds number at which the particle reaches the wall with zero velocity.
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Comparisons between the proposed model and the experimental measurements show
qualitative agreement.

Experiments involving binary collisions of particles were performed to investigate
the radiated component of the particle pressure. This component results from the
pressure front generated by the impulsive motion of a fluid resulting from a collision
of particles in a liquid. When the two particles come into contact, the impulsive ac-
celeration due to the elastic rebound produces a pressure pulse, which is transmitted
through the fluid. A simple dual pendulum experiment was set up to generate con-
trolled collisions. Measurements were obtained for a range of impact velocities, angles
of incidence, and distances away from the wall for different pairs of particles. The
magnitude of the impulse pressure appears to scale with the particle impact velocity
and the density of the fluid. Based on the impulse pressure theory, a prediction for
pressure generated due to the collision can be obtained. The model appears to agree
well with the experimental measurements.

The fluctuating component of the solid fraction was studied, as one of the sources
of the particle pressure. The instantaneous cross-sectional averaged solid fraction was
measured using an impedance meter. The root-mean square fluctuation of the solid
fraction signal was measured in a liquid fluidized bed and a vertical gravity-driven
flow, for different particle sizes and densities. Two types of fluctuations were iden-
tified: low-frequency large-scale fluctuations which dominate at high concentrations,
and high-frequency small-scale fluctuations which are dominant at intermediate solid
fractions. The effect of each type was isolated by filtering. When the large-scale
ﬂuctua‘tions were present, the magnitude of the rms fluctuation was found to scale
with particle diameter, but when eliminated the mean fluctuation appeared to scale

with the particle mass instead.
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Chapter 1 Introduction

1.1 Motivation and general background

A particulate flow is a two-component flow in which one of the phases, the dispersed
phase, is a solid in the form of particles; the second component, the continuous phase,
is a gas or a liquid. Examples of such flows can be found in many natural processes
like snow avalanches, slides of rock debris, erosion, submarine debris flows, sand
storms, dune formation, planetary rings, etc. Such flows can also be found in many
new technologies in the fields of mechanical, petroleum, mining, chemical and nuclear
engineering. In chemical industries alone it is estimated that 50% of the products
and 75% of the raw materials are in the form of particulates (Nedderman, 1992).

Despite the prominence of this type of flows, a poor understanding remains of
how multi-phase materials behave. Most of the industrial applications are designed
empirically and there is no general approach to study these flows. The lack of basic
understanding of such mixtures represents the most important limitation to better
designs of systems that handle two or multi-phase flows. Due to their prevalence, even
small improvements in the performance of these technologies could have an important
economic impact.

A granular material consists of discrete solid particles dispersed in a fluid. How-
ever, the term “granular material” has been adopted by researchers mainly to refer
only to dry granular materials. A distinguishing feature of a dry granular material
is that the direct interaction between particles plays the dominant role in the flow
mechanics. In this case, the effect of the interstitial fluid is negligible. In the case
of liquid-solid mixtures these simplifying assumption cannot be taken. The inter-
stitial fluid has a density of comparable magnitude to that of the solid phase, and
its non-negligible viscosity adds an extra mechanism for energy dissipation. The di-

mensionless parameter defined by Bagnold (1954) is generally used to determine the
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importance of interstitial fluid effects. Similar to the Reynolds number, the “Bagnold

number” denotes the ratio of the inertia force to the viscous force, and is defined as

_ Azp,d; (8;;)
- n

Ba

(1.1)

where A is a function of the solid fraction, p, is the particle density, d, is the particle
diameter, du,/dy is the local shear rate, and uy is the dynamic viscosity of the
fluid. Three regimes of granular flow were identified by Bagnold: the macroviscous,
the transitional, and the grain inertia regime. For Ba < 40, the flow is in the
macroviscous regime where the viscosity of the interstitial fluid is dominant in the
flow. For Ba > 450, the flow corresponds to the grain inertia regime, where the
direct interaction between particles dominate the mechanics of the flow. The flows
with a Bagnold number between the two limits are within the transitional regime,
where both interstitial fluid and collisions between particles are important. The flows

investigated in this study lie mostly in the transitional regime.

1.2 Complexity of multi-phase flows, the coupling
of the phases

To illustrate the complexity associated with solid-liquid flows, the case of a liquid flu-
idized bed can be considered. For example, to predict the mixing coefficients, many
factors have to be taken into account. Consider a simple case, in which the parti-
cles are mono-dispersed, no attraction or repulsion forces are experienced between
particles, the fluid and the particle properties are constant, and there is no heat or
mass transfer in between the phases or with the boundaries. To estimate the mixing,
a measure of the random-type motion in the mixture is needed. In such a system,
random motions can be produced by either of two mechanisms: the interactions be-
tween particles, or the interactions between particles and fluid. In the case of a dry

granular flow the random motions are generated only due to collisions between par-
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ticles and with the wall. The amount of random motions in such a case will also
be a function of the particle concentration and of the particle properties (Campbell,
1990). In the case of a liquid-solid system, the collisions of particles will not only
generate random motions of the discrete phase, but will also generate random-type
motions in the fluid (Keening, 1997). The fluid phase itself may or may not have,
depending on the Reynolds number of the flow, an inherent hydrodynamic random
motion (Clift et al. , 1978). Whether or not the presence of the particle will enhance
or reduce the levels or turbulence in the fluid is a function of the Stokes number of the
particles (Hestroni, 1989). In either case, the turbulence in the continuous phase will
affect the nature of the motion of the particles (Clift et al. , 1978). The modified rate
of particle collisions will, therefore, affect the entire cycle of production of random
motions. The prediction of the amount of mixing becomes untractable early on, even
for simple systems. This kind of coupling between the phases is one of the reasons

for the complexity associated with multi-phase systems.

1.3 Modeling of solid-liquid flows

Solid-liquid flows are usually modeled using a continuum approach that considers
the solid and fluid phases as inter-penetrating mixtures, which are coupled through
interaction terms. Separate sets of conservation equations are written for each one
of the phases that are either postulated or derived by an averaging technique. A
number of different averaging teéhniques have been used, such as ensemble averages
(Zhang & Prosperetti, 1995), mass weighted averages (Hwang & Shen, 1993), time
averages (Ishii, 1975) and volume averages (Prosperetti & Jones, 1984). The use of
different averaging techniques results in different interpretations of the obtained terms
and constitutive equations. This approach results in an incomplete set of equations,
posing a problem of closure. To close the equations the constitutive relations and the
form of the interactions terms have to be postulated or chosen in an ad hoc manner.
Only recently, a few ‘simple’ cases have been attacked in a more systematic way. Those

cases include Zhang & Prosperetti (1995) for inviscid dispersed two-phase flow, Nott
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& Brady (1994) for viscous dominated suspensions, and Sangani et al. (1996) for
dilute gas-solid suspensions.

A different approach to model liquid-solid mixtures is to model the particle phase
as the primary subject and to account for the fluid phase only through its interaction
to the particle phase (Batchelor, 1988). Although this approach reduces the number

of the unknown expressions, it also leads to terms that have to be postulated.

1.4 Thesis outline

The primary aim of this thesis is to investigate the mechanics of particulate solid-
liquid systems. The emphasis has been focused on the mechanics in the particle-level
scale, rather than in the bulk behavior of the flow. A series of simple experiments
was performed with the purpose of improving our basic understanding of individual
particle interactions. A clear understanding of these basic phenomena may help
explain the behavior of systems of greater degree of complexity.

A technique to measure the particle pressure was developed. The particle pres-
sure is the pressure exerted on the containing walls of a particulate system due to
the action of particles in the mixture. Hence, it can be considered a measure of the
momentum transport attributed to the motion of particles and their interactions.
A great deal of information can be extracted from the measurement of the parti-
cle pressure: momentum and energy exchange between phases, mixing coefficients,
constitutive behavior of the Iﬁixture, generation of the random motions of particles,
etc. The experimental setup and procedures for measuring the particle pressure are
presented in Chapter 2. A discussion and analysis of the obtained results is included.

Chapter 3 presents a study of particle collisions when immersed in a liquid. The
dynamics of the approach, contact and rebound are presented. Experimental measure-
ments of the velocities of approach and rebound, and the pressure pulses generated
by collisions of particles, are presented. A model to account for the influence of the
liquid on the particle deceleration prior to contact is proposed. The results of the

model are compared with the experimental measurements.
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In Chapter 4 the study of the fluid pressure front generated by a binary collision
of particles is presented, along with a brief review of the pressure-impulse theory. An
inviscid analysis is obtained for the sudden acceleration of a rigid particle near a wall.
Experimental measurements are presented and compared with the predictions from
impulsive pressure theory.

To further investigate the mechanisms of the particle pressure, an investigation of
the fluctuating component of the solid fraction in liquid-solid systems was performed.
The use of a high-frequency-response impedance volume fraction meter allowed the
measurement of the fluctuating component of the solid fraction in a liquid fluidized
bed and a vertical gravity driven flow. Comparisons between the measurements and
predictions are presented. The results of this investigation are presented in Chapter
5.

Chapter 6 summarizes and discusses the results obtained from this investigation.

Topics of possible future interest are discussed as well.



Chapter 2 Particle pressure in

liquid-solid flows

2.1 Introduction

The particle pressure can be defined as the pressure exerted on the containing walls
due to the presence of particles. Hence, it can be considered a measure of the mo-
mentum transport attributed to the motion of particles and their interactions. In
analogy with kinetic theory of gases, the particle pressure resembles the thermody-
namic pressure.

In many theoretical models of multi-phase flows, a separate set of equations is
usually written for each of the phases, which are coupled through an interaction term.
Pressures, P; on the dispersed phase and P, in the discrete phase, are defined and the
corresponding pressure gradient terms are included in the momentum conservation
equation. While 8P;/dz; does not impose any conceptual difficulty, the physical
meaning of P,/dz; is less clear because of the discrete nature of the solid phase.
Modeling such a pressure is problematic, due to the uncertainty in its definition and
the difficulties involved in its measurement.

The particle pressure can be defined from the trace of the particle phase stress
tensor. Hence, the physical mechanisms incorporated into the particle pressure can be
gleaned from components of the stress tensor. From rapid granular flows (Campbell,
1990), in which the effect of the interstitial fluid is negligible, two contributions to
the stress can be identified: the ‘streaming’ or Reynolds stress and the collisional
contribution to the stress. The streaming component of the stress appears as a result
of the momentum transfer due to the fluctuating velocity of the particle phase. The
collisional stress reflects the momentum transfer between particles during a collision.

In concentrated mixtures, stresses can also be generated due to enduring contacts
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between particles. Force chains appear and stresses are transmitted through the
bulk of the mixture over distances of many particles (Liu et al. , 1995). When the
interstitial fluid is not negligible, a hydrodynamic contribution to the particle stress
tensor is added to account for the drag or added mass of the particles (Nott & Brady,
1994; Balthius et al. , 1995; Tsao & Koch, 1995; Sangani et al. , 1996). Contributions
to the stress due to non-hydrodynamic interactions can occur when there are other
inter-particle forces such as colloidal forces or those due to electrostatic charging.
This Chapter describes a new technique for measuring the particle pressure in
particulate solid-liquid systems using a high-frequency-response dynamic pressure
transducer that measures the collisions of individual particles with the walls. Time
averaged pressures are measured for various flow conditions and concentrations and
for different particle sizes and densities. An estimate of the particle impact velocity

is calculated from the measurement of the collisional impulse.

2.1.1 Particle pressure models

For the past thirty years there have been several attempts to model the constitutive
behavior of two-phase mixtures including the particulate phase pressure. Early at-
tempts simply assumed the particle pressure to be equal to the fluid pressure (Wallis,
1969), or equated it to zero due to its supposed negligible effect (Jackson, 1963).
More recently, the significance of this quantity has been encountered in the context
of stability of fluidized beds. Studies have shown that the gradient of the particle
pressure is a dominant factor in determining the stability of the mixture (Jackson,
1985; Batchelor 1988; Foscolo & Gibilaro 1987; Jin 1996) because of its dependence
on the local concentration gradients within the flow. Some researchers recognized
that it could be generated by particle collisions (Needham & Merkin, 1983), but due
to a lack of experimental evidence, they assumed it to be a simple function of the

void fraction,

P,= Py (2.1)

where P, is a constant and v is the solid volume fraction of the mixture.



8

In the work by Batchelor (1988), the governing equations for the mean motion of
particles in a fluidized bed are formulated based on one-dimensional control volume
analysis. All of the parafneters within the model are linked on physical arguments
to the two dependent variables - the local solids concentration, v, and the superficial
fluid velocity, u, (referred to by Batchelor as the local mean particle velocity according
to the frame of reference used in his paper). The volume-averaged model introduces
a closure problem; hence, the term in the governing equation that involves the square
of the velocity fluctuations, (v?), must be related to the local mean velocity and the
solids concentration. Batchelor assumes that in a homogeneous bed, (v?) = F(v)uZ,
where F(v) is some function of solids fraction. The function F(v) is assumed to
approach 0 for two limiting cases: as v approaches 0, and as v approaches the close-
packed limit. The first limit is due to the absence of velocity fluctuations as the
number of particles approaches zero; the second limit for high solids concentration
results from the decrease of fluctuations as particles approach a dense state. Batchelor
also argued that the representation for (v?) would depend on the local gradients of
solids concentration and mean velocity for non-homogeneous flows. In the governing
equations the term mn(v?) , where m and n are the particle mass and number density,
corresponds to the mean normal stress in an ideal gas of molecules. Hence, Batchelor’s
representation for the collisional particle pressure in a homogeneous bed is

P, = vp, F(v)u?

(2]

(2.2)

where p,, is the density of the particles. Using the simplest representation for F(v) to

satisfy the limiting conditions on v, Batchelor suggested the following representation,

where v, is the closed packed solid fraction (v, & 0.62 for a randomly packed bed of
uniform sized particles).

Besides the work of Batchelor, the stability work by Foscolo & Gibilaro (1988)
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can also be used to find a representation for the particle pressure. They introduce
a force that is applied to the particles due to the particulate nature of the fluidized
bed. This force depends on the ‘particle phase pressure’ and is calculated from fluid
dynamic considerations. The value of the particle phase pressure can be determined
by integrating the particle phase pressure gradient given by Foscolo and Gibilaro.

Using their terminology the pressure is written as
P, = vpyul (2.3)

where u, is the ‘elastic wave velocity’ and is defined as

1

Ue = (3.2gdppp_—pf) (2.4)

Pp

where p; is the density of the fluid phase, g is the acceleration due to gravity and d,
is the diameter of a particle.

Koch (1990) and Kapbasov & Buyevich (1994) followed similar analyses to study
fluidized systems based on modifications to kinetic theory to include the effects of the
interstitial fluid. In the study by Koch, expressions for the particle phase stress, as a
function of the particle Stokes number, are obtained for the case of dilute mixtures.

The particle pressure is expressed as
P, = p,vT ' (2.5)
where T' is particle ﬂuctkuating ‘temperature’,
T = G(v) St73 (u, — uy)?

and St is the particle Stokes number defined as St = m(u, — uf)/(67rp(%’—)2), u,, and
uy are the ensembled averaged particle and fluid velocities respectively, and G(v) is

a function of the solid fraction.

The fluidized bed work by Kapbasov & Buyevich (1994) introduces a volume-
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averaged model. Similar to the work by Koch, the particle pressure is linked to the
square of the velocity fluctuations, or the granular ‘temperature’. Hence, similar to

kinetic theory, the particle pressure is equated to the fluctuation temperature, T,
P, = pyTH(v) (2.6)

where the function H(v) is the particle distribution function used in dense-gas kinetic
theory analyses, such as the Carnahan-Starling or the Enskog representations (Chap-
man, 1939). The authors solve explicitly for the normalized fluctuation temperature
as a function of the solids concentration in a macroscopically uniform mixture. The
particle pressure from this study can be written in a form similar to that developed
by Batchelor,

P, = vp, (v} (2.7

where the function H'(v) is determined from the choice of the particle distribution
function and the calculations for the particle temperature.

In addition to the analyses for fluidized beds, the particle pressure term has also
been encountered in studies involving turbulent solid-fluid mixtures (Abu-Zaid &
Ahmadi 1995; Ahmadi & Ma 1990; Ahmadi 1985). In the dispersed mixture work
by Abu-Zaid & Ahmadi (1995), the authors use the following relation for the mean

particle pressure,
Pfl/

1—v

P, =

(2.8)

where Py is the mean interstitial fluid pressure. This expression is applicable when
the particles are not in direct contact except during short collisional periods.
Despite the theoretical studies described above, there have been few attempts to
measure the particle pressure experimentally, primarily because of a lack of experi-
mental techniques that provide a reliable measurement of this quantity. In a study
of gas fluidized beds, Campbell & Wang (1990) used a capacitance probe, which
measured the difference between the total pressure and the gas pressure, and hence

measured the average pressure generated by the particles. They concluded that the
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granular pressure results from agitation generated by the rising bubbles that appear
in gas fluidized systems. The bubbles cause the movement of many particles towards
the container walls, thus generating a pressure. This description would not hold for
a liquid fluidized system since bubbles generally do not appear.

The first attempt to measure the particle pressure in a liquid fluidized bed was by
Kumar et al. (1990). They used a flush mounted hydrophone to record the collisions
of particles with the face of the hydrophone. The calibration of their hydrophone was
not satisfactory. However, some of the qualitative phenomena were clearly captured

in their results.

2.2 Experimental setup

Typically, collisions of particles against the wall have a duration of tens of microsec-
onds; therefore, to record such events, it is necessary to use a device with a very
high frequency response. The current experiments use a piezoelectric dynamic pres-
sure transducer manufactured by PCB Piezotronics, which can respond to changes
in pressure up to two microseconds. It has an active surface of 3.75 mm diameter.
A typical signal resulting from a collision is shown in figure 2.1. It consists of a
positive spike (of 22 us of duration in this case), followed by a decaying oscillation,
which is probably the result of the dynamics of the membrane. For the experimen-
tal measurements two differeﬁt pressure transducers with similar characteristics were
used.

Experiments were performed in the facility shown in figure 2.2. Two different
circular test sections with internal diameters of 10.16 cm and 5.08 cm were used. The
test section was fabricated out of transparent lucite to facilitate the visual observation
of the flowing mixtures. Prior to an experiment the particles were stored in a bin on
top of the working section. By setting the aperture of the controlling solids cylinder
and the downstream water valves, different flow conditions could be generated. Both
cocurrent and countercurrent flows were obtained for a wide range of solid fractions.

Also, by installing a screen and a flow straightener at the bottom of the working



12

25 ! ! r ' ! ! ! ! !

201 — e, AR e, S ] s

TSRS R - - o4 — e b

pressure [kPa]
=
T

-5 ! 1 1 i 1 I I I 1
0 20 40 60 80 100 120 140 160 180 200

time [us)

Figure 2.1: Typical pressure pulse generated by a particle collision.

section, the system was also operated as a fluidized bed. The particles employed were
all nearly monodisperse spherical particles. Properties of the particles are listed in
table 2.1. The solid fraction was monitored using an impedance volume fraction meter
(IVFM) developed by Bernier (1982) and improved by Kytomaa (1985). This device
measured the instantaneous impedance of the flowing mixture, which is proportional
to the volume fraction of the non-conducting disperse phase averaged over the cross
section; the calibration of this device was obtained as described by Kytomaa (1985).
The instrumentation is shown in figure 2.3. The liquid used for all the experiments
was filtered tap water.

The data acquisition system was started once the system had reached a steady
state. The signal obtained from the transducer was high-pass filtered and amplified
and then input to a trigger box and to a computerscope data acquisition system
mounted in a PC. Pressure fluctuations below 1 kHz were filtered out completely,
thus only the pressure pulses generated by the collisions of particles were detected
with the present setup. To eliminate the collection of background noise, a threshold
level had to be chosen, and this was set in the trigger box. When the signal from

the transducer was higher than the threshold level, the trigger box activated the data
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Material d, [mm] p,/ps u:[cm/s] Re; n

Glass + 2.06 2.54 22.7 452 2.39
Glass x 3.00 2.54 31.8 954 2.40
Glass * 3.96 2.54 36.8 1338 2.40
Glass o 6.00 2.54 47.4 2583 2.40
Steel @ 4.50 7.78 89.6 3665 2.40
Nylon ® 6.35 1.14 13.6 785  2.40
PVC @ 3.41¢ 1.43 29.69 440 2.44

%equivalent diameter, cylindrical shape

Table 2.1: Properties of particles used in experiments.

acquisition card and the signal was stored in the computer’s memory. A software
program then calculated, in real time, the maximum pressure, impulse and duration
of the collision, stored the results on disk and reset the data acquisition card. This
allowed the data acquisition system to take measurements in a continuous manner.
The event rate was measured independently with a counter that indicated the number
of times the signal exceeded the threshold level in a given time period.

As expected for large dense particles, the experiments exhibited important con-
centration fluctuations in the form of voidage waves (Harrison et al. , 1961). As the
concentration of the bed decreased, the solid fraction fluctuations became more ran-
dom, and the voidage waves were difficult to discern. A more extended analysis can
be found in Chapter 5. These waves do not contribute directly to the granular pres-
sure, though the shearing they imply may add to the production of random granular
motions.

The time average particle pressure is calculated as
P, =31, (2.9)
where s is the event rate and I, is the average impulse. The impulse is

I= /0 P(t)dt (2.10)
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where P(t) is the pressure signal produced during an individual impact, and 7 is the
duration of the collision. An estimate of the impact velocity, u;, can be calculated

from

u; = Fm/m (2.11)

where F), is the maximum force exerted on the transducer during an individual col-
lision and m is the mass of the particle. The maximum force is calculated by mul-
tiplying the measured maximum pressure P,, by the area of the sensitive surface of
the transducer. Sets consisting of at least 100 collisions were used to calculate the
average values of granular pressure and impact velocity, which were made over a time
period in the order of hundreds of seconds.

The pressure transducers were installed at different axial locations in the working
section to determine the axial variations in the particle pressure. No significant
change with axial location was detected for the flowing mixture. In the case of the
fluidized bed, some variation occurred when the transducer was less than one test
section diameter above the bottom of the bed.

The accuracy and calibration of the pressure transducer were verified by comparing
the output collision signals with predictions from the Hertzian theory of contact.
Hertzian theory (see for example Goldsmith, 1960) predicts the duration and the
maximum compression force during a collision as a function of impact velocity and

particle properties. For a sphere impacting a flat surface, the maximum compression

force is s
ubm3d
F,=0. ———F 2.12
0706(<k1+k2)2> (2.12)
where k; is
1+ o?
ki = 7rE~J (2.13)
7

where u; is the impact velocity, F; is the Young’s modulus of elasticity for material

7, and «; is the corresponding Poisson’s ratio. The collision duration is

2 2\ 1/5
m (k4 ka)” ) (2.14)

dpui

T = 7.894 (
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Therefore, the collision impulse (as defined by 2.10) is

u;m

1 =204
7 Atr

(2.15)

Hence, from Hertzian theory, the magnitude of the collision impulse does not depend
on the elastic properties of the surfaces in contact. This result is in accordance with
a simple momentum conservation analysis. From basic mechanics, the impulse can

be defined as!

It =um

where u is velocity and m is mass. For the case of the impulse as a result of a collision,

Iy = m(u; — u,)

where u, is the rebound velocity. If the collision is perfectly elastic then u, = u;;
therefore,

I; = 2mu; = [ Ay,

which is in accordance with equation 2.152.

A simple calibration device was constructed involving a pendulum consisting of
a glass particle and a fine string. The particle was positioned initially such that a
controlled direction and velocity of impact could be applied to the transducer. The
measured collision characteristics in air were compared with the Hertzian predicted
values by calculating the impact velocity from the pendulum equation (neglecting
the effect of air) and using tabulated material properties (Avalone et al. , 1986).
Figure 2.4 shows a comparison of the compression pressure as a function of impact
time for a 3 mm glass particle. The Hertzian predictions use a value of a=0.22
and E=40.4 GPa. Figures 2.5 and 2.6 present the calibration measurements of the

impact pressure and duration of collision and the comparison with the predictions

'based on the force, not the on pressure.
?the difference in the constant is the result of the approximation made by Hertzian theory to
obtain the duration of collision.
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Figure 2.4: Calibration of the pressure transducer. Direct comparison of experimental
collision in air (o) against Hertzian prediction (—). u; =75 mm/s.

from Hertzian theory. A perfect match is not expected due to the many assumptions
in the development of Hertzian theory. The Hertzian model was used to confirm
the nature and magnitude of the forces occurring during a collision. Based on these
comparisons the manufacturer’s calibration was used in the subsequent analysis of

the data.

2.3 Results

2.3.1 Liquid fluidized bed experiments

The granular pressures measured in the fluidized bed are shown in figure 2.7 as a
function of the solid fraction for glass particles with four different diameters. These
tests were all performed in the small diameter test section (5.1 cm). For a dilute
system, at low concentrations, the value of the particle pressure is low. In this regime
the particles are free to move and collide sporadically; therefore few particles collide
with the transducer per unit of time, making the event rate small. On the other
hand, at high solid fractions collisions are more likely to occur. However, due to

the high concentration, these collisions occur at very small velocities producing low
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Figure 2.6: Calibration of the pressure transducer. Duration of collision as a function
of impact velocity and particle diameter. Experimental (in air): (x) 3 mm glass bead,
() 4.2 mm glass bead. Hertzian predictions: 2 mm glass bead = - - -, 3 mm glass
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Figure 2.7: Particle pressure P, as a function of the solid fraction v for fluidized glass
particles in the 5.1 cm test section.

impulse collisions, which result in a low value of the particle pressure. At intermediate
concentrations (from 30 to 35%) the particle pressure reaches a maximum. In this
range the impact velocity is higher than in the concentrated case, and the event rate is
higher than in the dilute case. The combination of these two competing mechanisms
results in a maximum particle pressure for these intermediate concentrations.

The value of the particle pressure is a function of the particle size, being higher
for larger particle diameters. The maximum pressure is located at slightly higher
concentrations for larger particles. Figure 2.8 shows the particle pressure as a function

of the superficial velocity of the fluid u,. The velocity u, is calculated using the
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fluidized glass particles in the 5.1 cm test section.

Richardson-Zaki relation

o = u(1 — v)" (2.16)

where n is an empirically determined parameter which depends on the terminal
Reynolds number of the particle, Re;. Table 2.1 includes the values of n for the
particles used in these experiments (Kwauk, 1965). As shown in the figure, above the
minimum fluidization velocity the measured value of the particle pressure increases
rapidly. After reaching a maximum value for some intermediate velocity, the granular
pressure decreases again and tends to zero as the superficial velocity approaches the

value of the terminal velocity.
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Figure 2.9: Calculated impact velocity u;, normalized by u;, as a function of the
solid fraction v for fluidized glass particles in the 5.1 cm test section. For symbol
identification see Table 1.

A plot of the average impact velocity (normalized by the terminal velocity, u:)
as a function of the solid fraction is shown in figure 2.9 for glass particles in the 5.1
cm diameter test section. Even with substantial scatter, the smaller particles tend
to collide at higher velocities than larger particles. The impact velocity does not
appear to have a consistent trend when plotted as a function of the solid fraction. All
collision velocities are consistently below the terminal velocity.

Some of the features of fluidized systems are believed to be determined by the
geometry and dimensions of the container (Kytémaa & Brennen, 1986). To investigate
the dependency of the granular pressure on the dimensions of the bed, tests were
conducted in the two different test sections. A comparison of the granular pressures
is presented in figure 2.10 as a function of the solid fraction. To enable the comparison
the two plots are presented side by side, and only the results for glass spheres are
shown. The difference between the two cases is not significant, although the amount
of scatter is slightly higher for the larger test section. Figure 2.11 shows a comparison
of the calculated impact velocity for the two test sections. The trends seem similar.

Experiments were also performed using particles of different densities. Figure 2.12
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Figure 2.10: Particle pressure P, as a function of the solid fraction v. A comparison
of the pressures measured in a 10.2 cm test section (TS) and a 5.1 cm TS. Fluidized
glass particles. For symbol identification see Table 1.
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Figure 2.12: Particle pressure P, as a function of the solid fraction ». A comparison
of particles with different densities for fluidized steel and glass particles in the 5.1 cm
test section.

shows the particle pressure measured for steel particles of 4.5 mm diameter in a 5.1 cm
test section. For comparison, the results are presented along with the measurements
obtained for 3 mm and 4 mm diameter glass particles. Again, the more massive
particles produce higher particle pressures. In figure 2.13 measurements for nylon
spheres of 6.35 mm diameter and 3.43 cm PVC rods are shown along with the results
for 6 mm, 3 mm and 4 mm glass spheres. Clearly, the granular pressure is higher for

particles with greater density.

2.3.2 Vertical gravity driven flow

In a fluidized bed the net velocity of the particulate phase is zero and this lack
of mean motion may affect the granular pressure. To investigate this possibility,
measurements of the particulate pressure were also performed for a vertical flow in a
mixture of glass particles in water. In all cases the net velocity of the solid phase is
downwards. The motion of the liquid could be either downwards (cocurrent with the

particles) or upwards (in a countercurrent configuration).
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Figure 2.13: Particle pressure P, as a function of the solid fraction v. A comparison
of particles with different densities for fluidized plastic and glass particles in the 10.2
cm test section.

Figure 2.14 presents the granular pressure measured for a flowing mixture under
two flow conditions, cocurrent and countercurrent flows, and in both test sections.
Figure 2.15 shows the calculated impact velocities. Both the impact velocities and
the particle pressures obtained for these cases have a wider spread than in the case
of fluidized beds. Therefore the variation of the particle pressure with respect to
solid fraction is not as clear as in the case of a fluidized bed. In fact, the particle
pressure remains fairly constant over the entire range of solid fraction, reaching a
maximum around v = 0.30. Hence the net motion of the solid phase in the mixture
causes different trends in the particle pressure. The magnitude of the pressures in the
gravity driven flows is approximately the same as the maximum value found in the
fluidized bed for the same particle size. Moreover, the direction of motion of the fluid
phase does not appear to have significant influence on the magnitude of the measured

particle pressure.
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2.4 Discussion

Figures 2.12 and 2.13 show the large differences in the magnitude of the particle
pressure for particles of different density and size. For example, at a solid fraction
of 0.4, the particle pressure for the 4.5 mm steel spheres is more than 3 orders of
magnitude larger than the particle pressure for the 6.35 mm nylon spheres. Clearly
the particle pressure must increase with the ratio of the density of the particles, p,, to
that of the surrounding fluid, p;. In addition, the pressure must also depend on the
velocity of the particles. Hence, an appropriate scaling of the particle pressure would
be a particle dynamic pressure based on the particle density, p,, and a characteristic
velocity, u;. Figure 2.16 presents a plot of the particle pressure normalized by %ppuf
for all of the types of particles as a function of the solid fraction. As observed from
the figure, the difference between the normalized particle pressure for the 4.5 mm
steel spheres and the 6.35 mm nylon spheres is less than an order of magnitude at a
solid fraction of 0.4. Hence, the choice of the particle dynamic pressure appears to
be the correct scaling for the particle pressure. However, there are still considerable
differences in the normalized pressure for the different types of particles. One obser-
vation is that the higher the terminal Reynolds number, the greater the normalized
pressure at a given solid fraction. The exception to this observation, however, is the
steel spheres. This result may indicate that in addition to the solid fraction and the
terminal Reynolds number, the normalized pressure may also depend on the ratio
of the density of the solid phase to that of the fluid. This dependency is certainly
suggested in the work by Batchelor (1988).

While the measurements obtained with the vertical flow have approximately the
same magnitudes as in the fluidized bed, there are some notable differences. In
addition, there were also some experimental limitations that may have influenced
the results. It was not possible to generate highly concentrated flowing mixtures
(>45%) in the present facility, and only low concentrations were possible for the case
of countercurrent flows (< 25%). Furthermore, the number of individual collisions

collected per test was limited by the running time of the experiment since only a
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finite mass of particles could be stored in the bin. Therefore, for some conditions the
experiment could only be operated for a few minutes. These factors contributed to
the larger scatter encountered in particle pressures for the case of flowing mixtures.
In addition, the particle pressure was not affected by the direction of the fluid flow.

The differences between the vertical flow and the fluidized beds measurements,
for the same particles, are not completely understood. For concentrated mixtures
the particle pressure does not decrease significantly, when compared to the results
for fluidized beds. This The shear at the wall produced by the bulk motion of the
mixture may be the responsible mechanism. The shearing at the wall can enhance
the random motions of the particles; therefore, produce an increase of the particle
pressure (shear pressure). The dilute regime vertical flow shows also that the particle
pressure is higher than that of a fluidized bed. This difference can be attributed to an
additional fluid turbulence effect. The bulk motion of the solid phase may generate
the motion of the fluid phase in such a way that the mean random motion of the

particles increases.

2.5 Comparison with existing models

Many models have been proposed for the particle pressure. Figures 2.17 and 2.18
present a direct comparison with some of these models. To facilitate the comparison
only the results obtained for 3 mm particles in a fluidized bed are presented. The

pressure data is presented in non-dimensional form, where the pressure is normalized

by

. P
B =2

]

First, this comparison shows that five orders of magnitude are necessary to present
the calculated particle pressures from the different models indicating the poor level
of understanding of the phenomena. The qualitative behavior of the particle pressure
fof most of these models does not agree with the experimental measurements.

The model closest to the present experimental measurements is the one proposed
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by Batchelor (equation 2.2). This prediction works surprisingly well considering that
the quadratic dependence on the solid fraction was chosen to fit the two known
conditions on solid fraction.

The models proposed by Abu-Zaid & Ahmadi (equation 2.8) use the fluid pressure
Py as a reference. To compare, the reference fluid pressure is taken as Py = %p fu},
where the velocity of the fluid phase uy is calculated from the superficial fluid velocity,
U,, according to uy = u,/(1 — v). This expression overestimates the value of the
particle pressure by a factor of 2 or 3 for low solid fractions (v < 20%), and agrees well
with the experimental measurements both in magnitude and slope for intermediate
solid fractions (25% < v < 45%). However, it does not predict a significant decrease
in the value of the pressure for concentrations greater than 45%. In their analysis,
the particle pressure was considered to be only a fraction of the fluid pressure, which
was not known accurately. The approximation given by P; = %pfufc may not be
representative.

To compare with Koch’s model (equation 2.5), the mean velocity of the solid
phase, up,, was assumed to be zero, and the fluid velocity us = u,/(1 — v). Since
the model is only for dilute systems, the predicted particle pressure is shown only for
v < 0.10. Strictly speaking, the prediction is only valid for v < St~%/3, which for the 3
mm particle corresponds to v < 0.03. Accurate measurements could not be obtained
at such low concentrations; therefore, direct comparison is not possible. However, the
model appears to agree with the other models at such small solid fractions.

The work of Buyevich & Kapbasov (equation 2.6) predicts a particle pressure that
is considerably smaller than the experimental results. In this work the particle pres-
sure was obtained following a modified kinetic theory. The particles are assumed to
be massive enough to ensure that the exchange of momentum and energy is through
direct collisions. Using two different expressions to account for the dependence on con-
centration, they obtain two curves, one which predicts a maximum at a concentration
of approximately 50% (thin dashed line) and another that increases monotonically
with solid fraction (thick dashed line). Although this approach is collision-based,

some of the assumptions may not be appropriate, resulting in a poor correspondence
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with the experiments.

The model of Foscolo et al. (equation 2.3) overestimates the granular pressure
but has approximately the same slope as the measurements for solid fractions less
than 30%. For all solid fractions the model predicts a monotonic increase of the
particle pressure with increasing concentration and does not predict the existence of
a maximum particle pressure at an intermediate solid fraction.

The appearance of a maximum at an intermediate solid fraction has important
implications. The elasticity of the bed defined by Foscolo & Gibilaro (1989) would
change sign at this maximum, going from positive for dilute mixtures to negative at
high concentrations. A negative elasticity would imply a bed that is unstable to any
perturbations, contradicting the experimental evidence in liquid-fluidized beds. In
this particular case a direct comparison might not be valid. It is important to note
that the definition of particle pressure given by Foscolo et al. differs essentially from
the others. They define this quantity as a measure of the resistance to changes in con-
centration, a resistance which is visualized as result of a fluid interaction mechanism.
Since the particle pressure measurements presented in this study are the direct result
of particle collisions, it could be misleading to calculate the elasticity of the bed (as
stated from Foscolo et al. ) from these experimental results. It is interesting to note
that Buyevich et al. (1994), in the discussion of their results, discarded the model
that predicted a maximum at an intermediate solid fraction because it predicted a
negative elasticity of the bed.

A better model for the granular pressure remains to be developed. Batchelor
(1988) identified some of the questions that remain to be answered. Among them
(and of relevance for understanding the mechanisms generating the particle pressure)
is the prediction of the mean-square particle and fluid velocity fluctuations. Batchelor
postulated that, in a homogeneous fluidized bed, the mean-square particle velocity
fluctuation is a function of the solid fraction, the Reynolds number and the density
ratio, but the exact functional form is unknown. The mechanisms that generate fluc-
tuating velocities are a combination of the collisional and hydrodynamic interactions

between particles. For mixtures with massive particles, like those discussed here, it
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is not yet clear whether the particle collisions and hydrodynamic interactions would
enhance or decrease the turbulence levels in the fluid phase, and whether or not
the turbulence would promote or reduce the frequency and strength of the collisions
among particles. The experimental results presented in this paper are intended to

help refine understanding of these phenomena.

2.6 Probability density functions

A detailed statistical analysis of the measured collisions was also conducted. Sets of
1000 events (or more) were taken at a number of solid fractions to provide enough
information to construct graphs of the probability density functions (PDF), or his-
tograms of the occurrence of the individual collisional pressures, durations and im-
pulses. Figures 2.19, 2.20 and 2.21 show the normalized probability density functions
obtained for 3 mm glass particles in a 10.2 cm test section. The probability density

functions are normalized such that

/OOO p{z}dz = 1.

Although these figures show the results of just one experiment, the repeatability was
verified by taking consecutive sets of data points; once processed, the results obtained
were practically identical.

Figure 2.19 presents the PDF of the collisional pressure. Clearly, low pressure
collisions occur more frequently than high pressure collisions for all solid fractions.
The value of the lowest pressure in the plot is the threshold level chosen for that
experiment. The distribution becomes wider for lower solid fractions. In other words,
more high-pressure impacts occur in a dilute bed.

Figure 2.20 shows the PDF of the collision duration. For all the solid fractions
tested, the PDF shows a distribution with two distinct peaks. The first peak (short
duration collisions) occurs at approximately 15 us and its magnitude appears to be

a function of the solid fraction. The second peak (long duration collisions) occurs at
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Figure 2.20: Probability density function of collision duration. Fluidized glass 3 mm
particles in a 10.2 cm test section. (—) v = 0.503,(——=) v = 0.438,(— - —) v =
0.318,(- - ) v = 0.194.

approximately 37 us, and becomes narrower for lower solid fractions. During the cal-
ibration of the pressure transducer (which utilized normal impacts), only collisions of
the long duration type were encountered. The duration of the long duration collisions
is in accord with the Hertzian predictions. The short duration collision cannot be
Hertzian: if the impdct velocities were higher during the short duration collisions, the
maximum pressure would also increase. However, the experimental results indicate
that the short duration collisions are associated with low pressure collisions.

Figure 2.21 shows how the distribution of collision impulse changes with solid frac-
tion. In a concentrated bed, collisions of low impulse are predominant. As the solid
fraction decreases, the average impulse of the collision increases. The distribution

becomes wider, indicating an increase in the occurrence of higher impulse collisions.
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Figure 2.22: Probability density function of individual collision pressure. Fluidized
glass 2 mm particles in a 10.2 cm test section. (—) v = 0.4435, (——) v = 0.327,(— -
—)v=0.243,(---) v = 0.181.

2.6.1 PDF for other particles

The same phenomena and trends are found for different particle diameters and den-
sities. The magnitudes of individual collision pressures and collision impulses appear
to be scaled with the particle mass. The two distinct peaks in the PDF of the colli-
sion duration occurred for all of the particles tested. The peaks occurred at different

locations depending on the mass of the particles tested.

Different diameter glass particles

Figures 2.22, 2.23 and 2.24 show the normalized probability density functions obtained
for 2 mm glass particles in a 10.2 cm test section. It can be observed that in the PDF
of the duration of collision, the position of the two distinct peaks moved to durations
shorter than those found for the 3 mm glass particles.

Figures 2.25, 2.26 and 2.27 show the normalized probability density functions
obtained for 4 mm glass particles in a 10.2 cm test section. The results show the

same trends found in the case of 3 mm and 2 mm particles, although changes for
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Figure 2.23: Probability density function of collision duration. Fluidized glass 2 mm
particles in a 10.2 cm test section. (—) v = 0.4435,(——) v = 0.327,(— - —) v =
0.243,(---) v = 0.181.
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Figure 2.24: Probability density function of collision impulse. Fluidized glass 2 mm
particles in a 10.2 cm test section. (—) v = 0.4435,(——) v = 0.327,(— - —) v =
0.243,(- ) v = 0.181.
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Figure 2.25: Probability density function of individual collision pressure. Fluidized
glass 4 mm particles in a 10.2 cm test section. (—) v = 0.481,(——) v = 0.361,(— -
—)v=0251,(-+) v = 0.115.

different solid fractions are not as well observed as in the two previous cases. Again,
the individual pressure and collision impulse measurements scale with the particle
mass. Two distinct peaks were also found in the collision time distribution, occurring
at 20 ps and 45 ps. In this case the long duration collisions agreed with the durations
observed during the calibration tests.

The collision duration for the two types of pressure pulses (for the glass particles)

varies with particle diameter according to

sh lg
Tomm o, Tamm o amm 0 666
sh lg d )
T3mm T3mm 3mm

sh lg
Tomm ~ lemm d2mm ~ 0.5
sh ~ l ~ ~ .
Tamm 7_4.79nm d4mm

where the subscripts denote the particle diameter and the superscripts denote the

type of collision. See appendix B for more details.
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Figure 2.26: Probability density function of collision duration. Fluidized glass 4 mm
particles in a 10.2 cm test section. (—) v = 0.481,(——) v = 0.361,(— - —) v =
0.251, (- - -) v = 0.115.
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Figure 2.27: Probability density function of collision impulse. Fluidized glass 4 mm
particles in a 10.2 cm test section. (—) v = 0.481,(——) v = 0.361,(— - —) v =
0.251, (- - ) v = 0.115.



41

aceurrence
—
(=

L
10° 10 10 10°
maximum pressure [Pa]

Figure 2.28: Probability density function of individual collision pressure. Fluidized
steel 4.5 mm particles in a 5.1 cm test section. (—) v = 0.568, (——) v = 0.455, (— -
—) v =10.350,(- ) v = 0.172.

Other particle densities

Figures 2.28, 2.29 and 2.30 show the normalized probability density functions obtained
for 4.5 mm steel particles in the 5.1 cm test section.

Similar trends were observed in all of the PDF for steel particles. As expected, the
magnitudes of the collision pressures and impulse pressure were, in general, larger than
the values observed for any of the glass particles. In the case of the maximum pressure
PDF the lines corresponding to different solid fractions were not significantly distinct
from one another, as in the case of glass particles. However, it can be observed that
large pressure impacts occur more frequently for low concentrations. The duration
of the collisions were also larger than in the case of glass spheres. Two peaks were
observed, although the short duration pulses appeared more readily than in the case
of glass spheres for all solid fractions. The total number of short duration pulses
was generally larger than in the case of glass spheres. However, the threshold level
chosen determined the number of short duration pulses captured in a single run. If

the threshold level had been left at the same level as in the case of glass spheres, the
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Figure 2.29: Probability density function of collision duration. Fluidized steel 4.5
mm particles in a 5.1 cm test section. (—) v = 0.568, (——) v = 0.455,(— - —) v =
0.350,(---) v = 0.172.
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Figure 2.30: Probability density function of collision impulse. Fluidized steel 4.5
mm particles in a 5.1 cm test section. (—) v = 0.568,(——) v = 0.455,(— - —) v =
0.350, (- - -) v = 0.172.
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Figure 2.31: Probability density function of individual collision pressure. Fluidized
nylon 6.35 mm particles in a 10.2 cm test section. (—) v = 0.589, (——) v = 0.434, (—-
—) v =0.2237,(---) v = 0.134.

ﬁumber of short duration pulses would have dominated the set. This result shows the
limitations of the data acquisition system.

Figures 2.31, 2.32 and 2.33 show the normalized probability density functions
obtained for 6.35 mm nylon particles in the 10.2 cm test section.

The impulses for this case were smaller, and the duration of collisions larger, than
in the case of glass particles. This was expected from Hertzian theory considerations.
Although some of the shapes of the curves found are different than in the case of
glass spheres, most characteristic features are preserved: a greater frequency of high
impulse collisions at low solid fractions and two distinct peaks in the PDF of the
collision duration. For this case the transducer is probably stiffer than the particles;
therefore, the mechanisms producing the two distinct peaks in the collision duration
PDF can be different than the ones for the glass or steel particles.

Figures 2.34, 2.35 and 2.36 show the normalized probability density functions
obtained for 3.4 mm PVC rods in the 10.2 cm test section.

The same characteristics were observed for the rod-like PVC particles, with the

exception of the PDF of the collision duration. In this particular case, the short
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Figure 2.32: Probability density function of collision duration. Fluidized nylon 6.35
mm particles in a 10.2 cm test section. (—) v = 0.589,(——) v = 0.434,(— - =) v =
0.2237,(---) v = 0.134.
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Figure 2.33: Probability density function of collision impulse. Fluidized nylon 6.35
mm particles in a 10.2 cm test section. (—) v = 0.589,(——) v = 0.434,(— - —) v =
0.2237,(---) v = 0.134. .
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Figure 2.34: Probability density function of individual collision pressure. Fluidized
PVC 3.4 mm rods in a 10.2 cm test section. (—) v = 0.444,(——) v = 0.341,(— -
—) v =0.2945,(- - ) v = 0.771.
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Figure 2.35: Probability density function of collision duration. Fluidized PVC 3.4
mm rods in a 10.2 cm test section. (—) v = 0.444,(——) v = 0.341,(— - —) v =
0.2945,(- - -) v = 0.771.
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Figure 2.36: Probability density function of collision impulse. Fluidized PVC 3.4
mm rods in a 10.2 cm test section. (—) v = 0.444,(——) v = 0.341,(— - —) v =
0.2945, (- - +) v = 0.771.

duration events appear to decrease as solid fraction decreases (the opposite for all the
other particles tested). It is important to note that these were the only non-spherical
particles used in this investigation (the PVC rods were also the particles with the
smallest mass per particle). The reason of different behavior could not be explained.
It is probably a result of both the non-sphericity of the particle an the soft nature of

these particles. A detailed visualization® can be performed to resolve these issues.

Contribution of the different pressure pulses to the total particle pressure

Figure 2.37 shows a comparison between the total particle pressure (solid line) and
the contribution to the particle pressure from the long duration collisions (dashed
line). This plot shows typical results obtained for 3 mm glass particles in the 10.2 cm
test section. Though the short duration collisions may have occurred as frequently
as the long duration collisions, their contribution to the average particle pressure was

less than 5%, for all solid fractions.

3similar to the one presented in section 2.7
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Figure 2.37: Particle pressure as a function of solid fraction, a comparison between
the total particle pressure (—) and the particle pressure generated solely by the long
duration collisions (- -). Fluidized glass 3 mm particles in the 10.2 cm test section.

2.7 Components of the collisional particle pressure

In the analysis of the probability density functions of collision duration two different
characteristic pressure pulses were encountered: a long duration pulse whose duration
and strength corresponded to those predicted by the Hertzian theory of contact, and
a short duration pulse whose duration and strength were not in accord with Hertzian
predictions. Several features of the short duration pulses were evident from the par-
ticle pressure measurements: their strength and duration are both smaller than those
predicted by Hertzian theory; their occurrence increases as the solid fraction decreases
(for the case of a fluidized bed); they occur at least as often as the long duration col-
lisions (for the case of vertical flows); they were not observed when calibrating the
transducers.

In the gravity-flow experiments, the short-duration pressure pulses were, in gen-

eral, more frequent than in the fluidized bed experiments. The short-duration events
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constituted up to 75% of the total number of events in the gravity flow experiments
as compared to a maximum of 50% in the fluidized beds.

A number of different explanations of the origin of these short duration pulses were
explored. One early hypothesis was that the short pulses were the result of a sliding
contact of the particle against the face of the transducer. Such contact at a very acute
incidence angle would have generated lubrication forces that would act as a reaction
mechanism reducing the contact time with the transducer. Another thought was that
a particle contacting the surface with a significant amount of spin could generate a
similar lubrication reaction force at the moment of contact. Another possibility was
a multi-particle interaction mechanism. A particle in the process of contacting the
transducer could have been knocked off by another particle passing nearby, or could
have been interrupted in the process of contact by some fluctuating motion of the
fluid phase. However, for all these explanations a fairly broad distribution of such
events in the probability density functions would be expected. The discrete peaks
observed seem to contradict these thoughts.

The origin of the short duration pulses was not resolved until a detailed visual-
ization of the particles was performed. The experimental setup employed to visualize
the moving particles is shown in figure 2.38. An observation window was installed
near the pressure transducer. A high speed digital camera, able to record images as
fast as 500 frames per second, was positioned to observe the face of the transducer.
The camera was synchronized with the data acquisition system so that images of the
events occurring on the face of the transducer were filmed at the moment at which
a pressure pulse was sensed. With this setup the pressure pulse obtained could be
correlated with the motion of the particles interacting with the transducer. Clear
images of the motion of the particles interacting with the transducer could, however,
only be obtained for dilute fluidized beds. Many long and short pressure pulses were
recorded and analyzed. |

The long duration pulses were confirmed to be the result of direct contacts with
particles against the transducer. Particles were observed to collide against the face of

the transducer at many different speeds and incident angles. The strength and dura-
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~ Figure 2.38: Schematic of experimental setup used to obtain the images of the moving
particles and pressure pulses simultaneously.

tion of these collisions were confirmed to be in accordance with Hertzian predictions.
A sequence of images of a typical direct collision of a particle in a liquid fluidized bed
obtained using the high speed video camera is shown in figure 2.39. It can be observed
clearly that the particle hit the transducer on the active surface, which produced a
pressure pulse of the first kind, of long duration and high impulse. Note that the
particle is in direct contact with the transducer at ¢t = 0. A more complete study of
immersed particle collisions is presented in Chapter 3.

The short duration events were found to be produced not by actual contacts
between particles and the transducer, but rather by collisions between particles in
the bulk that occur in the vicinity of the pressure transducer without having physical
contact with it. The pressure pulse produced by the collision traveled from the point
of occurrence to the transducer through the interstitial fluid. The intensity of these
pulses appeared to be related to the impact velocity of the collision, the orientation
of the colliding particles with respect to the transducer and the distance from the

collision to the transducer. The duration of these events differ from the direct impacts
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(a) t=-4 ms (b) t=-2 ms

Figure 2.39: Sequence of images of pressure transducer obtained through view win-
dow. A typical long duration pressure pulse: a direct collision of a particle on the
surface of the transducer. 3 mm glass fluidized particles in 5.1 cm test section.

v =~ 0.05.
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because two particles are colliding rather than a single particle with a flat surface.
Figure 2.40 shows a series of images obtained when a short duration and low impulse
pressure pulse was captured. The pressure front is generated due to the impulsive
acceleration imposed to a particle during the collision event. A detailed analysis of
the nature of these pressure pulses can be found in 4.

It can be concluded from these observations that the particle pressure is generated
by two distinct mechanisms: one the result of direct impacts of particles, and a
second one by pressure pulses transmitted through the fluid generated by particle

interactions. Figure 2.41 illustrates these processes diagrammatically.
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Figure 2.40: Sequence of images of pressure transducer obtained through view win-
dow. A typical short duration pressure pulse: impulsive acceleration of a particle
near the transducer. 3 mm glass fluidized particles in 5.1 cm test section. v = 0.05.
Note that at zero time the particle is not in contact with the transducer.
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Figure 2.41: Types of pressure pulses that contribute to the particle pressure. Sketch
of the collisions and type of pressure pulse recorded. The solid arrows represent the
motion before contact, and the dashed arrows, the motion after contact.
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Chapter 3 Mechanics of immersed

particle collisions

3.1 Introduction

The collisional component of the particle pressure in liquid-solid flows was found to
be the result of particle collisions with themselves and the boundaries.

The direct impact of particles against the containing walls is the most significant
contribution to the particle pressure. During a collision the approaching particle
exerts a certain force on the wall. This force is in general a function of the impact
velocity, the mass of the particle and, in the case of an immersed collision, on the
properties of the fluid.

Dry collisions have been studied since the beginning of the century (Johnson, 1985;
Goldsmith, 1960). The mechanics of contact are well established, and rebound and
energy losses can be modeled for most simple cases with few exceptions (see Tuziin
and Walton, 1992). The mechanics of liquid immersed collisions are still a matter
of current research. When a particle approaches a rigid planar surface, or another
particle, there is a fluid film that has to be drained out for contact to take place. A
pressure build up is generated due to the squeezing of the fluid in the gap between the
surfaces. In this process a certain amount of the initial kinetic energy is dissipated
or transferred to the fluid, resulting in the slowing of the particle. Depending on how
much of the kinetic energy of the particle is lost during the approach and contact
processes, the contact may or may not result in a rebound.

The purpose of this chapter is to analyze particle collisions occurring in a liquid
environment. By means of a set of relatively simple experiments, spheres of various
diameters and materials submerged in water are made to impact a wall. Measure-

ments of the particle position and velocity are obtained for various impact velocities.
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The impulse pressure produced by the particle collision is measured using a dynamic
high-frequency response pressure transducer. Additionally, a simple collision model
to account for the effect of the fluid is presented. Comparisons between the results

of the model and the experimental measurements show good agreement.

3.1.1 The impact paradox

Many researchers have studied the problem of immersed collisions. Moments before
contact the gap between the particle and the wall is very small. Presumably, in
such a situation the Reynolds number of the flow! is small. If the Reynolds is small
enough that the creeping flow approximation can be assumed, the flow can be resolved
(Happel and Brenner, 1965). By calculating the pressure profile in the gap between
the particle and the wall, the net force exerted by the fluid on the particle can be
predicted. When the gap tends to zero, the predicted force grows infinitely, therefore
predicting that direct contact never occurs. Consequently, it is not possible to predict
a rebound velocity under this assumption.

Modifications to the creeping flow approximation can be performed. If the ap-
proaching surfaces allow elastic deformation resulting from the hydrodynamic pressure
built up, an elastohydrodynamic model can be formulated (Lian et al. , 1996; Davies
et al. , 1985). In this case some of the kinetic energy is stored as elastic deforma-
tion and, therefore, rebound is possible. However, physical contact between the two
surfaces does not occur.

On the other extreme, if the flow around the particle approaching a wall could be
assumed to be inviscid and irrotational, the hydrodynamic force on the sphere can be
calculated in the form of added masses and the flow can be resolved in a non-explicit
form in terms of an infinite series of doublets (Milne-Thomson, 1950). Landweber &
Shahshashan (1992) obtained a simplification that allows the accurate calculation of
the hydrodynamic forces when the two surfaces are very close to each other. In this

case, also, the hydrodynamic force is found to grow unbounded when the distance

'based on the gap thickness
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between the two surfaces tends to zero. This effect is mainly due to the discontinuity
of the velocities between the moving particle and the stationary plane.

The question remains. What really happens when the distance between the two
surfaces tends to zero? It is expected that if the velocity of approach is small, the
viscous effects would dominate, and therefore most of the kinetic energy would be
dissipated in viscous friction. But in the case when the velocity of approach is large,
it has been experimentally observed that particles come into ‘apparent contact’ and
rebound freely (McLaughlin, 1968; Zenit & Hunt, 1997). In the case of particles
colliding immersed in a gas, the phenomena have been explored assuming that the
continuum mechanics assumptions are no longer valid when the gap distance is com-
parable with the mean free path of the gas molecules (Sundararajakumar and Koch,
1996; Hocking, 1973). In the case of a liquid, the mean free path is practically zero and
the continuum assumptions are expected to hold up to distances of tens of molecular
diameters. Some researchers have argued that contact takes place through the surface
roughnesses that stick out beyond the lubrication layer critical distance. However,
from the continuum mechanics point of view, in a liquid the characteristic length of
the roughnesses are still much larger than the mean free path of the molecules. The
contact between surface roughnesses is, therefore, also impossible.

Some studies have suggested that under the compression levels generated during
a collision, the liquid in the gap ‘locks up’ for a brief time period behaving like a solid
(Ballamudi et al. , 1994), and therefore transmitting the collision pressure between

surfaces without physical contact.

3.2 Experimental measurement of immersed colli-
sion properties

Although there have been attempts to model immersed collisions, the results obtained

have been diverse. Studies with detailed experimental measurements have been rare

(Lundberg et al. , 1992; Barnocky and Davis, 1988; McLaughlin, 1968).
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The following section describes the experiments performed to measure velocities
and collision impulses for particle-wall and particle-particle collisions immersed in a
liquid. The results obtained can be utilized to further understand the generating
mechanisms of the particle pressure, and to gain fundamental understanding of the
factors that determine particle approach and rebound in immersed situations. The
results obtained from this study could potentially be used in computer simulations of

multi-phase flows.

3.2.1 Experimental setup

To obtain measurements of the velocity and impulse of a particle approaching and
colliding with a wall, a simple pendulum experiment was built. A schematic of the
experimental setup is shown in figure 3.1. A fine string was attached to a particle
starting from rest at some initial angle, §;. On the wall, at § = 0, a high-frequency
response pressure transducer was flush mounted. A suction system was used to posi-
tion the particle and release it from rest with no rotation. Once released, the particle
accelerated towards the pressure transducer. The motion of the particle was recorded
using a high speed digital camera, able to record images as fast as 500 frames per
second. A typical multi-exposure picture is shown in figure 3.2. When the collision
was sensed by the pressure transducer, the trigger system activated the digital cam-
era. The images were digitally processed to calculate the centroid of the particle for
different times. The velocity was calculated from the displacement of the particle
centroid between consecutive images. A typical collision pressure signal is presented
in figure 3.3.

The calibration provided by the manufacturer of the high-frequency response pres-
sure transducer was used. This was corroborated by comparing the results of dry
impacts with Hertzian theory predictions (see Chapter 2). The properties of the
particles used in the experiments are presented in table 3.1.

To verify the velocity measurements obtained by this technique, calibration mea-

surements were taken for a swinging immersed pendulum with no colliding wall. A
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Figure 3.1: Experimental setup.

Figure 3.2: Typical collision (picture). 4.5 mm steel particle in water. Only approach
shown.
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Figure 3.3: Typical collision (pressure pulse). 4.5 mm steel particle in water.

Table 3.1: Properties of particles used in direct collisions experiments.

Material d,[mm] p,/pn uwfem/s]  Re;
Glass x  3.00 2.54 31.8 954
Glass *  3.96 2.54 36.8 1338
Glass o 6.00 2.54 474 2583
Steel &  4.50 7.78 89.6 3665
Nylon ® 6.35 1.14 13.6 785
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particle was released from an initial angle and photographed for part of one oscil-
lation cycle. The measurements were then compared with a prediction of a model
by Mei (1994). Mei proposed expressions for the unsteady drag on a sphere at finite
Reynolds number. The proposed form of the total unsteady drag on a moving particle

immersed in a stagnant fluid is

4

f(t) = gma(ep — py)g — brpavé(t)
¢
—6mpa® [_oo K(t— T)g—-:'d’r
2 sdv
—gPITa (3.1)

where p, and p; are the densities of the solid particle and the fluid respectively, v
is the velocity of the particle, ¢(t) is a drag force function, ‘K(t) is the history force
kernel and a is the radius of the particle. This expression was incorporated in the

equation of motion of an immersed pendulum

4 0% 4 4 , 0s
3T r = 37 (pp — ps)gsins/L + 67r,ua¢(t)a
t
—67rua2/ K(t— 7’)-88— (%) dr
— o0 T
2 30%s
—3PITE (3.2)

where s is the arc-length position, and L is the length of the pendulum string. This
equation is then solved numerically. Figure 3.4 presents a comparison of the predicted
phase plot with the experimental results obtained for a steel particle of 4.5 mm of
diameter with a pendulum length of 10.5 cm. Several experimental runs were taken
under the same nominal conditions. The experimental results are within 5% error.
Errors arise from the difficulty of determining the centroid of a particle with a discrete
number of pixels. No attempt was made to account for the drag force exerted on the
string since its effect was negligible for most of the particles.

With this prediction the maximum impact velocity, the velocity at § = 0, can be

obtained. Since the model does not account for the effects of the wall, the predicted
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Figure 3.4: Comparison of the phase plot predicted by Mei (1994) and experimental
measurements.

impact velocity is overestimated. This velocity represents a maximum value of the
impact velocity, and is a function of the initial angle of release of the particle.

The strength of the collision was measured with a high-frequency response pressure
transducer. In general, the magnitude and duration of a collision depend on the elastic
properties of the colliding surfaces, impact velocity and the mass of the particle and,
in this case, also on the fluid properties. Before actual contact between the solid
surfaces occurs, a pressure build up is generated due to the squeezing of the fluid in
the gap between the surfaces.

Figure 3.5 shows a comparison of a typical collision for a 4.5 mm steel particle
against the prediction from Hertzian theory, which is used as a reference. The predic-
tion is matched by choosing an impact velocity that would predict the same maximum
pressure. Tabulated elastic properties of the particle are used (Es; = 200GPa, oy =
0.26). The maximum pressure and the impulse predicted from Hertzian theory rep-
resent the maximum limiting values for an ideal collision in which the fluid has no

effect and the surfaces are smooth and perfectly elastic.
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Figure 3.5: Comparison of the pressure pulse generated by a steel particle with the
prediction from Hertzian theory. Data for a 4.5 mm steel particle, immersed in water.

While the Hertzian prediction is symmetric with respect to the point of maximum
pressure, the experimental pressure pulse is wider and slightly asymmetric. This
could be interpreted as the pressure build up due to the presence of the fluid. Before
the solid surfaces come into contact, a considerable hydrodynamic pressure is exerted
on the surface of the transducer. Additionally, the experimental measurement might
deviate from the prediction due to the many assumptions made in the theory of Hertz

(e.g., smooth surfaces, perfectly elastic properties, etc.).

3.3 Particle-wall collisions

3.3.1 Approach velocities

The velocity of approach was measured and compared with the predictions from the
immersed pendulum for several cases. Phase plots of three different particles are
shown in figures 3.6, 3.7 and 3.8.

Figure 3.6 presents the phase plots obtained for a 6 mm glass particle immersed

in water. The horizontal axis represents the nondimensional distance from the wall
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Figure 3.6: Phase plot for a 6 mm glass particle immersed in water. (+) 6; = 16°;
(X) 91 = 12°.

(z/d = 0 represents the position of the wall). The vertical axis represents the particle
nondimensional velocity (u/u;) along the pendulum trajectory. Two different starting
angles are shown (12° and 16°). The solid lines represent the prediction from the
pendulum model using equation 3.1. The measured velocity appears to agree well
with the prediction up to half a diameter away from the wall. The effects of the
wall can be observed at about half a diameter away from the wall, where the velocity
prediction from the pendulum equation appears to overestimate the experimental
measurements.

Figure 3.7 shows the measurements obtained for a 4.5 mm steel particle. The devi-
ation between the prediction and the experimental measurements becomes important
approximately one quarter of a diameter away from the wall.

Figure 3.8 presents results obtained for a 6.35 mm nylon particle. The exper-
imental results differ substantially from the prediction in the vicinity of the wall.
In general, the prediction from the pendulum equation is closer to the experimental
results when the particle Reynolds number, Re; (based on the terminal velocity in

water uy), is larger than 2000. The effect of the string may also become important as
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Figure 3.7: Phase plot for a 4.5 mm steel particle immersed in water. (+) 6; = 13.7%
(X) ;= 8.5°.

the mass of the particle decreases.

3.3.2 Rebound and coeflicient of restitution

Measurements of the rebound velocity were obtained. Since both the approach ve-
locity and the rebound velocity were calculated, the coefficient of restitution can be

determined. The coefficient of restitution in the normal direction is defined as

¢=——T (3.3)

Ug

where wu, is the rebound velocity and u, is the approach velocity.

It is important to note that the velocity of the particle changes significantly in the
moments before and after contact. One must be careful to decide when and where
the u, and u, velocities are measured. Figure 3.9 presents a typical result of the
particle position as a function of time. For this case the particle was a 6 mm glass

particle released from an initial angle of 15°. The slope of this curve is the velocity of
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Figure 3.8: Phase plot for a 6.4 mm nylon particle immersed in water. (4) 6; = 18.5°.
(x) 0; = 13.5°.

the particle. The curve’s maximum represents the point of collision. The slope of the
curve is nearly constant before the collision, decreasing only moments before contact.
The rebound after contact appears in the plot as a change in the sign of the slope.
Figure 3.10 shows the velocity-time history of the same experiment. The velocity
was calculated simply by measuring the displacement of the geometric center of the
particle image between consecutive frames. For this particular case the framing rate
of the imaging system is 500 frames per second; therefore, the time resolution is 2 ms.
The duration of a particle collision lasts only in the order of tens of microseconds.
Hence, the exact moment of contact cannot be captured. A very interesting feature
should be noted: after the particle has rebounded from the wall, its velocity continues
to increase. In a dry collision the maximum velocity of rebound occurs at the moment
when the particle loses contact with the wall. In the case of an immersed collision,
the fluid appears to accelerate the particle moments after it has lost contact with
the wall. It is important to mention that this particle post-rebound acceleration is

not always observed. It appears to be more noticeable in the case of higher impact
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Figure 3.9: Typical time history of a 6 mm glass particle position colliding and
rebounding against a flat surface, immersed in water.

velocities; however, if the particle velocity is too large, the time resolution of the
imaging system may not be high enough to capture the rapidly changing velocities.

Figures 3.11 to 3.14 show typical cases of particle positions and velocities as func-
tion of time. On the left, the positions are shown as a function of time, and on the
right the calculated velocities for the same data are shown. The different symbols
represent experiments starting from different initial angles.

Figure 3.11 shows the results obtained for a 4.5 mm steel particle. It can be
observed that the velocity of the particle is affected by the presence of the wall only
a couple of data points (from 2 to 4 ms) before collision occurs. The effect of the wall
appears to affect the trajectory of the particle only very few moments before and after
contact. As expected higher approach velocities produce higher rebound velocities.

Figure 3.12 shows the positions and velocities measured for the case of a 6 mm
glass particle. In this case the velocity is observed to decrease at greater distances

from the wall. The particle acceleration after losing contact with the wall is clearly
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Figure 3.11: Particle position and velocity as a function of time for a 4.5 mm steel

particle in water, for various initial release angles.
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Figure 3.12: Particle position and velocity as a function of time for a 6 mm glass
particle in water, for various initial release angles.

observed in most of the release angles tested. It should also be noted that in some
cases the measured rebound shows a fair amount of variance. Under the same nomi-
nal experimental conditions, particles approaching at approximately equal velocities
would result in rebound velocities of up to 30% difference. This behavior was observed
for all of the particles tested. The reason for this variance is unclear. Care was taken
to ensure that the surfaces were clean and that the water used was as pure as possi-
ble. The rebound may be influenced by the configuration of the surface roughnesses
at the exact point of contact. Impurities in the liquid, perhaps introduced during
the handling of the experiment, may have an effect on the nature of the contact and
rebound as well. The fluid motion all around the sphere, in the moment of collision,
may also affect the rebound.

Figure 3.13 presents the results for a 4 mm glass particle. For slowly moving
particles the finite size pixel resolution causes the error involved in the measurement
of the particle centroid displacement to increase. Noise in the velocity plots can be

clearly observed, and the differences in the rebound velocities for the different cases
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Figure 3.13: Particle position and velocity as a function of time for a 4 mm glass
particle in water, for various initial release angles.

are hard to distinguish. The position-time plot allows a clearer view of the results.
The lines with the smaller slope denote the slower approach velocities. Clearly, it
can be observed that if the approach velocity is small, the rebound velocity will be
small. In the case of the line representing the collision starting from a 4° angle, the
slope of the rebound trajectory is nearly zero. A zero slope in the rebound trajectory
represents no rebound after contact.

Figure 3.14 shows the results obtained for a 3 mm glass particle. To reduce the
error due to finite pixel resolution, the recording framing rate was reduced to allow
longer displacements between consecutive frames. For this case and the case of the
6.35 mm nylon particles the video framing rate was 250 frames per second. The
noise introduced in the particle velocity by the finite pixel size can be observed in the
velocity-time plot.

Figure 3.15 show the measurements obtained for a 6.35 mm nylon sphere. For this
case only the positions as a function of time are shown. For the case of slowly moving

particles the error in the measurement of particle displacement increases due to the
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Figure 3.14: Particle position and velocity as a function of time for a 3 mm glass
particle in water for various initial angles of release.

limitations in the pixel resolution. Since the velocity is calculated point-wise, small
variations in the measured displacement can result in large variations in the velocity.
The approaching velocities are in accordance with the initial angle of release; however,
a wider range of velocities could not be obtained. The rebound velocities for the 10°
and 5° are practically zero, in which no rebound was noticed.

Based on these observations different coeflicients of restitution can be defined. A
total coefficient of restitution, €, was calculated by measuring the approach and
rebound velocities at distances ‘far’ from the wall, where the rapid changes of veloc-
ity due to the collision are not observed. To obtain a consistent measurement, the
approach and rebound velocities were measured 10 ms before and after the point of
collision (5 data points before and after collision for a 500 frames per second data set).
The results obtained for the total coefficient of restitution are presented in figure 3.16,
as a function of the impact velocity, for all the particles tested. A certain amount
of variance in the measured coefficients can be observed; however, the general trend

is clear. The coefficient of restitution appears to increase with impact velocity and
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Figure 3.15: Particle position as a function of time for a 6.35 mm nylon particle in
water for various initial angles of release.

particle Stokes number.

A contact coeflicient of restitution could be calculated if the velocities just before
and after the contact are measured. Due the limited time resolution of the experi-
mental setup, these velocities can only be estimated. By fitting curves (second order
polynomials) to the velocities 10 ms (5 data points) before and after contact, the
impact and rebound velocities can be extrapolated. Figure 3.17 shows the calculated
restitution coefficient as a function of impact velocity for all the particles tested. The
resulting coeflicient of restitution appears to be closer to 1, as it would be expected
for a dry collision. However, the error caused by the finite pixel size introduces large

errors to the calculation of the extrapolated velocities.

3.3.3 Collision impulses

Since the collision impulse, according with Hertzian predictions, is independent of the
elastic properties of the colliding surfaces (see Chapter 2), it appears to be the most
appropriate parameter to present the collision measurements.

Figure 3.18 shows the measured collision impulse as a function of the predicted
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impact velocity for three different glass particle diameters in water. The velocity of
impact is calculated from the pendulum equation, and it does not account for the
effect of the wall. To compare, the predictions from Hertzian theory are also shown.
The experimental measurements appear to follow a trend similar to that predicted
by the Hertzian theory, that is an increase in collision impulse with particle mass and
velocity of impact. It can be argued that the difference between the ideal prediction
and the measurements is the total effect of the interstitial fluid.

Similarly, figure 3.19 shows the measured collision impulse as a function of the
predicted impulse velocity for 4.5 mm steel particles, 6.35 mm nylon particles and 4
mm glass particles. The corresponding dashed lines show the predictions of Hertzian
theory. For all these cases the measured collision impulse appears to increase with
particle mass and impact velocity. It can also be noted that the deviation from the
Hertzian prediction increases for smaller impact velocities.

Following the scaling proposed by the Hertzian theory, the collision impulse results
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are non-dimensionalized using

I

UMy

[ =

(3.4)

where [ is the measured collision impulse, u; is the predicted impact velocity and
myp is the mass of the particle. Note that, when non-dimensionalized, the collision
impulse predicted by the Hertzian theory is constant. The normalized results are
shown in figure 3.20. The data appears to come closer together, forming a single
band of values. For small impact velocities the scatter is larger, although a clear

increase of the deviation from Hertzian theory can be observed.

3.4 Modeling

In order to predict the effect of the fluid as a spherical particle approaches a flat solid
wall, a simple model based on a control volume is proposed. By calculating the mass

and momentum fluxes of the fluid in the gap between the solid wall and the particle
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an estimate of the pressure is calculated. By integrating the pressure over the surface
of the particle the net force can be calculated. This net force is then incorporated
into the equation of motion of the particle such that the velocity and deceleration of
the particle can be calculated prior to collision.

Consider a spherical particle of radius a of mass m moving towards a flat wall,
whosé center is positioned at h(t) at some instant { in time, immersed in a viscous
and incompressible fluid of density p; and viscosity p. The velocity and acceleration
of the sphere moving towards a solid boundary are therefore A and h respectively,
(see figure 3.21).

The motion of the particle in the z-direction will impose a radial velocity u, to
the fluid in the gap. For contact to take place, the fluid in between the particle and
the wall has to be displaced. Therefore, some of the kinetic energy of the particle will
be transferred to the fluid, and some will be dissipated in viscous friction. A control

volume analysis can be performed in the gap. The control volume (figure 3.22) is a



76

Figure 3.21: Schematic of the problem and coordinate system.

cylindrical shell of infinitesimal thickness dr (shaded area). Assuming that the flow
in the gap is axisymmetric (Z=0) and purely radial (¢ = (u,,0,0)), and that the
pressure field is uniform with respect to the z direction, the mass and momentum
balances for the control volume can be obtained.

The mass conservation analysis leads to
uh = *gh (3.5)

where u, is the mean radial velocity of the fluid in the gap, h(r) is particle profile
and A is the velocity at which the particle is moving. The equation obtained from

the momentum balance is

0 g, , 10 2r
ra(u,h) + E;(UT}LT') = —EE(P}LT) - ETw (36)

where P(r) is the pressure in the fluid in the gap and 7, is the wall shear stress.

Combining equations 3.5 and 3.6 and integrating over r, an explicit expression for
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the pressure P(r) in the gap is obtained

2-. . 2
pr'h P rh 2/r/ /
pry=RLT2 (M) 2 3.7
) =%% 4(h> b Jo T (3.7

To account for the effects of the wall viscous shear stress, a simple model is used.
Assuming that the effects of viscosity remain in a thin layer of fluid near the surfaces,

it can be considered

du Uy
Tw = ﬂ8;|w ~ N? (3.8)

where § represents the thickness of the viscous fluid layer.
To obtain the total force exerted by the fluid on the particle, equation 3.7 is
integrated over the projected area of the particle, assuming that the pressure outside

the gap is a constant P, (zero for convenience). Therefore,

a

F(t) = / P(r)dA = 21 / P(r)rdr
A 0
prh / e prh? pert
= 2mr—= —_—r! — 2 -
o S T )
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-2 — — —dr"| d X
7r5 A h[o ; r T (3.9)

To obtain an explicit expression for the force, it remains only to obtain an expres-

sion for the particle profile, A(r). For a spherical particle the exact profile is
h(r)=H+a —Va?—r? (3.10)

To make the integrals simpler, an approximation for the profile is used instead

2

h(r) :H+%+... (3.11)

This makes the handling of the obtained expressions tractable, yet preserves the
geometric characteristics of the curved surface.

For convenience the expressions are made non-dimensional using 7 = g,/Az = %,f =
i. Here t. is a characteristic time, not yet specified. Using these and integrating using
the simplified profile (equation 3.11), the expression obtained for the non-dimensional
force is

A A A N 22 R 2
i) = A(IDh — B(EYh — C (i)t

s (3.12)

where F(f) is normalized by p; (%)2 a® and A(H), B(H) and C(H) are functions of
H defined as

Particle equation of motion

Once an expression for the force on the particle has been obtained, it can be incorpo-

rated in the equation of motion of the particle and solved to obtain the deceleration
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of the particle prior to collision,

—F=Th
where ' is the normalized mass of the particle defined as

4n P
I'=m/(—d°p;) = 2%
[(5aps) py

Grouping terms

A

h (P + A(D) = BUDE + 0N Kch

where
ul. a

K= -,
pra*d

(3.13)

(3.14)

(3.15)

Equation 3.15 is a second order non-linear ODE, which can be solved numerically.

The characteristic time ¢, can be now specified as t. = a/izo. The set of initial

conditions is

In this case the particle has a velocity ho at a distance 2a (a diameter) away from the

wall. The coeflicient K in equation 3.15 becomes

. 2ur a 2 a
K = - = —
pr2ahgd  Regd

where Re, is the initial Reynolds number.

3.4.1 Results of the model

(3.16)

Figures 3.23 and 3.24 show some of the results obtained from this model. The vertical

axis shows the nondimensional approach velocity (h/ho) and the horizontal axis shows

the dimensionless distance from the wall, H. Figure 3.23 shows the phase plots
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Figure 3.23: Phase plot of non-dimensional velocity vs. non-dimensional distance,
inviscid case.

obtained for an inviscid case. Each line represents a different density ratio. The
particle impact velocity, e.g., the velocity at H = 0, is larger for a larger density
ratio.

Figure 3.24 shows the phase plots obtained for different Reynolds number for a

fixed density ratio (I' = 2.5). The value of the parameter K was calculated assuming

that

) 1

Z 3.17

< TR (3.17)
therefore,

K= Co (3.18)

~ V/Re, |

where C, is a constant (C, = 0.04 was chosen for these calculations, which cor-

responds to a thickness, §/a, of approximately 1/80). The figure shows that for
decreasing Reynolds number the deceleration of the particle is higher. Moreover, a
critical Reynolds number can be found for each density ratio at which the particle

reaches the wall with zero velocity. Below that critical number the particle stops
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completely before reaching the wall. The existence of this critical value of Reynolds
is in agreement with experiments performed by McLaughlin (1968).

Figures 3.25 and 3.26 show plots of the calculated critical Reynolds number, Re..
The critical Reynolds number is defined as the Reynolds number at which the particle
reaches the wall with zero velocity, and for Re, < Re,. the particle stops completely
before reaching the wall. Figure 3.25 shows the critical Reynolds number as a func-
tion of the density ratio, I'. It can be observed that as the density ratio decreases, the
critical Reynolds number decreases. This means that as the particles become lighter
the viscous forces become more dominant and therefore the stoppage Reynolds num-
ber can occur at a larger value. Figure 3.26 shows the calculated critical Reynolds

number as a function of the particle Stokes number. The Stokes number is defined as

Mptlp ldpppup _ ere
= )

St, = =
Po6mpa® 9 p 9

A solution for equation (3.15) can also be obtained analytically. Using the trans-
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formation 4 = V equation (3.15) can be re-written as,

av - A
— = B'(H)V + C'(H 3.19
o= = BNV + () (3.19)

where B'(H) = B(H)/(I' + A(H)) and C'(H) = C(H)/(T + A(H)). The solution for

this first order linear equation is

o 1 " 1Tyt TN 71T
Vo T n T(F)/ C'(HNI(Ed (3.20)

where C} is a constant that depends on the initial condition and [(ﬁ) is the integrat-
ing factor,
. . 1.\~ 2
I(fr) = (—6 P—mdrd log(l+ E)) § (3:21)
Equation 3.20 can be shown to be finite as H — 0. Therefore, the model can predict
a non-zero finite impact velocity. The models found in the literature assumed that

the flow in the gap was in the creeping regime for H < 1, which resulted in the

complete stoppage of the particle before actual contact occurred.

3.4.2 Comparisons with experiments

In an attempt to validate the predictions from the model, a comparison with the
experimental measurements is presented. The experimental measurements presented
in figures 3.18 and 3.19 are plotted using the predicted velocity from the pendulum
equation, which does not account for the presence of the wall. This predicted velocity
can be corrected using the model presented above. The velocity a diameter away
predicted from the pendulum equation can be input as the initial condition, and
therefore an approximation for the actual impact velocity can be obtained. Once
the corrected value of the impact velocity is known, a new estimate of the collision
pressure can be calculated using the Hertzian theory.

Figures 3.27 and 3.28 show the measured collision impulse as a function of the

predicted impact velocity. Figure 3.27 shows the results for 6 mm glass, and figure
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3.28, the results for 4.5 mm steel particles. The solid line shows the prediction from
Hertzian theory with the uncorrected impact velocity. The different dashed lines
show the predicted impulse when the impact velocity is corrected using the model, for
different values of the proportionality constant C,. It can be observed that when the
impact velocity is corrected with the model, the predicted collision impulse appears
closer to the experimental measurements. It appears also that the proportionality

constant C, may be itself function of the density ratio.

3.5 Binary collisions

With a slight modification, the experimental setup allowed the measurements of bi-
nary collisions of particles. An additional particle (the target particle) was suspended
in a pendulum-like fashion at rest. The two pendulum strings were aligned to en-

sure a normal head-on collision between the two particles. By releasing the original
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particle (impact particle) from rest, the two particles come into contact. A more
detailed description can be found in chapter 4. A very similar setup is used to study
the fluid pressure produced and radiated during a binary collision of particles. The
collision results in the acceleration of the target particle and the deceleration of the
impact particle. By tracking the positions of the two particles a measurement of their
velocity could be obtained, as well as the coefficient of restitution.

Figures 3.29 and 3.30 show a typical binary collision of two 6 mm glass particles.
The incoming impact velocity was approximately 90 mm/s. It can be noted that
the target particle begins to move slowly moments before contact occurs, presumably
due to the pressure disturbance created by the motion of the impact particle. When
contact occurs the velocities of both particles change abruptly. The target particle
increases its velocity significantly, while the impact particle velocity decreases. As
time progresses, the velocity of the target particle decreases slightly, while the veloc-
ity of the target particle appears to increase. This effect can be interpreted as an

attraction between the target and impact particles. The low pressure wake behind
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Figure 3.29: Typical time history of the position of two 6 mm glass particles under-
going a binary collision immersed in water.

the moving target particle appears to exert a positive force on the impact particle,
making it increase its velocity.
The coefficient of restitution can be calculated using

(utar — Uimp )7’

i = | (3.22)

Utqr — uimp)a

where uy,, is the velocity of the target particle, u;y, is the velocity of the impact
particle, the subscript 7 denotes the velocities after collision and the subscript a
the velocities before collision. It is important to establish the point at which the
velocities will be measured. The coefficients reported in this section are calculated
from the velocities immediately before and after the large velocity jump produced by
the collision.

Figures 3.31 to 3.34 show typical cases of binary collisions for different particle
densities and collision velocities. It can be observed that, in general, the coefficient

of restitution decreases with the impact velocity and the particle Reynolds number.
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Figure 3.30: Typical time history of the velocity of two 6 mm glass particles under-
going a binary collision immersed in water. €, = 0.52, (u;), = 88mm/s.

Since only a few typical cases were studied, the calculated coefficients of restitution

are shown in the captions of the respective figures.
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going a binary collision immersed in water. €y, = 0.10, (Uimp)s = 78mm/s.
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Chapter 4 Liquid pressure front

generated by particle-particle collisions

4.1 Introduction

In Chapter 2 the results of the collisional particle pressure measurements for solid-
liquid flows were presented. The particle pressure was defined as the additional pres-
sure exerted on the containing walls of a particulate system due to the presence of
the particles. The collisional particle pressure measured on a surface was found to
be composed of two contributions: direct collisions of particles against the surface,
and a pressure contribution from particle-to-particle collision that was transmitted
through the fluid.

Originally the particle pressure was thought of being solely the result of direct
collisions between particles and containing walls. However, during the analysis of the
probability density functions (see section 2.6), two different kinds of pressure pulses
were identified. One corresponded with the estimated values of a collision of an
individual particle from Hertzian theory of contact. The origin of the short duration
pulses was not resolved until a detailed visualization of the particles was performed.

The first contribution, the direct collision of particles, was studied in detail in
Chapter 3. The mechanics of the approach, contact and rebound were presented.

In this chapter a study of the second contribution of the collisional particle pres-
sure is presented. It was discovered that when a collision of two particles occurs in
the vicinity of the transducer, a pressure front is generated due to the impact and is
transmitted through the fluid. In this case the particles are not in direct contact with
the transducer at the moment when the pressure pulse is registered. The intensity of
these pulses is related to the impact velocity of the collision, the orientation of the

colliding particles with respect to the transducer and the distance from the collision
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to the transducer. The duration of these events is determined by the fact that two
particles are colliding rather than a single particle with a flat surface. The pressure
front is generated due the impulsive acceleration imposed on a particle due to a colli-
sion event. As described in Chapter 3, the velocity of a particle changes significantly
in a short time period when a collision has occurred.

The nature of these radiated pressure pulses is described in the next section, and

is characterized and corroborated experimentally in the subsequent sections.

4.1.1 Pressure-impulse theory

To determine the nature of the pressure front, a pressure-impulse analysis was ex-
plored. This approach is similar to that used by coastal engineers to determine the
strength of wave impacts (Cooker & Peregrine, 1995), and involves the initiation of
fluid motion in incompressible fluids.

The concept of impulse pressure, or impulsive pressure, is well known (Lamb, 1945;
Batchelor, 1967), although it rarely appears in the multi-phase flow literature. Its
development has been primely motivated by the study of water wave impacts against
coastal structures. Coastal engineers refer to ‘shock pressure’” when describing the
large brief pressures of a wave impact.

When a solid boundary suddenly accelerates, a change in the pressure field in the
surrounding fluid is expected. If the change of velocity is the result of an impact,
the pressure rises and falls back down in a very short period of time generating large
pressure gradients causing the velocity of the fluid to change.

Since the change of velocity during this impulsive event takes place during a short
period of time, the non-linear convective terms in the equation of motion are negligible
small compared with the time derivative. Thus, the equations of motion reduce to

o0t 1

assuming that the viscous effects are negligible. Compressibility effects may be im-

portant during the brief moment of impact, but are neglected for simplicity. Equation
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4.1 can be time-integrated through the impact time interval, [0, 7], to obtain

Gy — il = ——VI (4.2)
Ps

where [ is the impulse pressure defined as!

I= /0 " P(t)dt (4.3)

By taking the divergence of 4.2 it is obtained that the impulse pressure satisfies

Laplace’s equation

Vi =0 (4.4)
The boundary conditions to be applied to equation 4.4 can be formulated readily
1. At a free surface the pressure remains constant, zero for convenience, : [ = 0.

2. At a stationary solid boundary, in contact with the fluid, the normal velocity is

unchanged: 91/dn = 0.

3. During impact the change in normal velocity at a moving fluid-solid interface

gives:
1 01
— = Uy
prom
Consider the domain shown in figure 4.1. A spherical particle, of diameter d, is
positioned at a certain distance, b, away from a solid wall. The fluid is incompressible
and is at rest for t < 0. If at ¢ = 0 the particle is accelerated instantaneously from

rest to a velocity u,, the impulse pressure problem, e.g., V2I = 0, can be solved and

the impulse pressure field calculated. Consider the following boundary conditions:
e at the wall, 3//0z = 0,

e far away from the wall, I = 0 (0I/0z = 0, could also be considered),

lsimilarly defined in equation 2.10
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Figure 4.1: Schematic of the impulsive motion of a sphere near a wall in an inviscid
irrotational flow.

o on the surface of the particle, 0I/0z = psu, cos .

Thus the impulse generated by the impulsive motion of a body is very similar to
the velocity potential for the steady potential flow around that same body (Milne-
Thompson, 1950). For example the impulse, I, produced by a sphere of diameter d,
given a sudden change u, in its velocity in the z -direction (in an unbounded fluid),

will be given by a doublet so that

1 z+b
I= -pfu,,(d/2)3((w + b)2 + y2)3/2

; (4.5)

where the center of the sphere is at ¢ = —b,y = 0.
To obtain an approximate solution when there is a solid wall at z = 0 (as sketched
in figure 4.1), an image doublet is placed at * = +b,y = 0 in order to satisfy the

condition of zero velocity normal to the wall. Then

(4.6)

1 3 z+b v —b
I = §pfu7(d/2) («x Fb)2 + y2)3/ - ((z —b)? + y2)3/2)
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The impulse pressure distribution is shown in figure 4.2 for different b/d ratios.
In this figure the solid lines represent lines of constant impulse. The point z/d = 0
represents the position of the wall. It is important to note that the solution by mirror
images is not an exact solution for the flow of a particle approaching a wall. The image
doublet method does not precisely satisfy the boundary condition on the surface of
the sphere, specially when the two spheres are close to one another.

The magnitude of the impulse pressure depends also on the angle of the impulsive
motion with respect to the wall. Using ¢ as the angle between the impulsive motion
direction and the vector normal to the wall ( ¢ = 0 when the motion is perpendicular
to the wall, and ¢ = 7/2 when the motion is upwards parallel to the wall) equation

4.6 becomes

1 y 3 ((z+blcosg—ysing (x—b)cos¢p—ysing
I = 2pf ‘r(d/Q) ( ((m+b)2+y2)3/2 (($~b)2+y2)3/2 ) (47)

The impulse pressure distribution for different incidence angles, ¢, is shown in figure
4.3 for b/d = 1.5.

The exact solution of this problem can be obtained using a technique similar
to one used by Landweber and Shahshahan (1992), when two spheres approach each
other in an inviscid flow. By adding an infinite series of image doublets, the boundary
condition on the surface of the spheres can be satisfied exactly for any b/d. However,
this procedure requires large summations when the two particles are very close to
each other. The construction above should represent the essence of the mechanics of

the radiated pulse caused by a suddenly accelerated particle near a boundary.

4.2 Experimental setup

As described in the previous section, when the two particles come into contact, the
impulsive acceleration imposed on the particles produces an impulsive pressure pulse.
As observed in the experimental measurements, the pressure pulse is transmitted

through the fluid from moving particles to the pressure transducer. To characterize
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Figure 4.4: Experimental setup of the dual pendulum to measure the impulse pressure
produced by a collision.

the nature of this pressure front, an experimental apparatus was set up to produce
controlled binary collisions of particles.

The experimental setup is shown in figure 4.4. A simple dual pendulum was set
up to generate controlled collisions. A particle was suspended (the target particle)
at a certain distance, b, from a wall. On the wall a high-frequency-response pressure
transducer was flush mounted. A second particle (the impact particle) was released
starting from rest at some initial angle. The impact particle accelerated towards the
target particle and produced a collision. The collision produced a sudden accelera-
tion of the target particle and generated an impulsive pressure front.. The impulsive
pressure pulse was captured by the pressure transducer. The motion of both parti-
cles was recorded using a high-speed digital camera, which allowed the velocity and
acceleration to be measured moments after the impact occurred. The fluid used for
all of the experimental measurements was de-ionized water.

A typical pressure pulse of this kind is shown in figure 4.5. For this particular
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Figure 4.5: Typical pressure pulse impulse pressure produced by a collision of two 4.5
mm steel particles in water.

case the pressure pulse was generated by the collision of two 4.5 mm steel particles.
The target particle collided at approximately 13 cm/s, and the distance of the tar-
get particle to the wall was 8 mm. Note that after the initial pressure increase a
reverberation of the signal can be observed. This oscillating pressure resembles the
kind of typical oscillation found in direct collision of particles against the pressure
transducer. See appendix A for a brief discussion of these pressure oscillations.

A number of different pairs of particles were used, for a range of impact velocities,
and for various incidence angles. The properties of the spheres tested are shown in
table 4.1.

The impulse pressure was obtained by integrating the measured pressure pulses?.
The secondary oscillations were neglected in the reduction of the data. The calibration

provided by the pressure transducer manufacturer was used®.

Yollowing the formula in equation 2.10
3the calibration of the pressure transducer was verified in Chapter 2.
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Material d, [mm] p,/ps uw; [cm/s] Re;
Glass X 3.00 2.54 31.8 954
Glass * 4.10 2.54 36.8 1338
Glass o 6.00 2.54 47.4 2583
Steel @ 4.50 7.78 89.6 3665
Nylon® 635 1.4  13.6 785

Table 4.1: Properties of particles used in pressure front measurements experiments.
4.3 Results

Figure 4.6 shows the impulse measured for a 6 mm glass sphere as a function of
the initial distance from the wall b. The impact velocity for this experiment was
constant, determined by the initial angle of release. The nominal impact velocity for
the experimental set was 0.0704 m/s. The solid line is the power law fit of the data.

Similarly, figures 4.7 and 4.8 show the maximum pressure and pressure pulse du-
ration respectively, for the same data set. Clearly, the impulse and the maximum
pressure decrease as the distance from the wall increases. Not surprisingly, the du-
ration of the pressure pulse appears to remain unchanged for any distance b/d. The
power fit of the impulse data shows that the magnitude of the measured impulse
decreased approximately as (b/d)~2.

Figure 4.9 shows the measured impulse pressure as a function of the predicted
impact velocity for 6 mm glass particles. For this case the distance between the
target particle and the wall was kept fixed at b/d = 0.62. The impact velocity plotted
in the horizontal axis is the predicted velocity of approach based on the initial position
of the particle. As expected, the magnitude of the impulse increases with the impact
velocity. In this case the impulse appears to increase linearly with impact velocity.

Experimental results were obtained also for different angles of motion of the target
particle with respect with the wall. Both the distance b/d and the impact velocity were
kept constant. The incidence angle represents the angle between the normal to the
wall and the trajectory of target particle after the impact (an angle o = 0 represents

an incidence motion normal to the wall, and a = 7 /2 represents an incidence motion
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Figure 4.6: Measured impulse-pressure as a function of normalized distance from the
wall, b/d. Acceleration of the particle produced by the collision of a particle of the

same diameter and density. 6 mm glass particles immersed in water. Velocity of the
target particle after impact = 0.0704 m/s.
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the same diameter and density. 6 mm glass particles immersed in water. Velocity of
the target particle after impact =~ 0.0704 m/s.
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Figure 4.8: Measured pressure pulse duration as a function of normalized distance
from the wall, b/d. Acceleration of the particle produced by the collision of a particle
of the same diameter and density. 6 mm glass particles immersed in water. Velocity
of the target particle after impact = 0.0704 m/s.
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Figure 4.9: Measured impulse pressure as a function of impact velocity. Distance

from the wall, b/d = 0.625. 6 mm glass particles immersed in water. The solid line
shows the power law fit of the data.
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Figure 4.10: Measured impulse pressure as a function of incidence angle ¢. Distance
from the wall, b/d = 0.65, and impact velocity = 0.1093 m/s. 6 mm glass particles
immersed in water. The solid line shows the best fit of the data.

parallel to the wall). Figure 4.10 shows the measured impulse for 6 mm glass particles
as a function of the angle a. For this particular experimental case b/d = 0.65 and
the calculated impact velocity is 0.1093 m/s.

Clearly, the magnitude of the measured impulse decreases as the motion deviates
from normal incidence. Note that when the incidence angle is greater than 2/57 the
impulse is negative, which means that the pressure pulse captured by the transducer
decreased at the time of contact.

Results were obtained for particles of various diameters and densities. Impulses
as a function of b/d for three different diameters of glass spheres are shown in figure
4.11. It can be observed that the larger the particle, the larger the magnitude of
the measured impulse. However, it is important to note that the impact velocities
for these three cases are different. For the pendulum experimental setup, the control
over the impact velocities is limited to a certain range of velocities for each kind of
particle. To match velocities for different particles was not a simple task.

Figure 4.12 shows the measurements obtained for pairs of particles with different
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Figure 4.11: Comparison of the measured impulse-pressure as a function of normalized
distance from the wall, b/d, for different diameter glass particles immersed in water:
6 mm glass (o), u, = 0.0704 m/s; 4.1 mm glass (%), u, = 0.0596 m/s; 3 mm glass
(%), ur =0.0544 m/s.

densities. With the present experimental setup, it was not possible to match the
impact velocities; therefore, the results are not readily comparable.
Thus, to further compare the measured pulses for different particles, a normaliza-

tion of the impulse pressure was adopted. Following the scaling implied in 4.6,

I

[= .
prurd

(4.8)

From this normalization, the measured impulse as a function of impact velocity
(shown in figure 4.9) appears to be nearly independent of the impact velocity, which
allows direct comparison when the impact velocity is not the same.

Figure 4.13 shows the normalized impulse for all the particles tested as a function
of distance, b/d. The data appears to collapse to a single line for the “heavy” particles.
The 6 mm glass, 4 mm glass and the 4.5 mm steel particle impulses fall in the
same band of values. The “light” particles appear to deviate from this trend. The

dependence on distance for these particles appears to have a larger slope.
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Figure 4.12: Comparison of the measured impulse-pressure as a function of normalized
distance from the wall, b/d, for different density particles immersed in water: 4.1 mm
glass (%), ur = 0.0596 m/s; 4.5 mm steel (&), u, = 0.0934 m/s; 6.35 mm nylon (®),
u, = 0.0249 m/s.

4.4 Comparisons with impulse-pressure theory

Comparisons can be made between the experimental results and the predictions from
impulse-pressure theory. Equation 4.6 is re-written to express the impulse at the wall,

at (0,0), as a function of b/d, and by normalizing by p;u,d leads simply to

I, = é (%)2. (4.9)

The dashed line in figure 4.14 shows the calculated impulse from this expression,
for the same experimental parameters. The prediction slightly overestimates the
experimental measurements but follows the trend well.

In the present experiment two real particles collide and. therefore, in an approx-
imate solution, two doublets. One doublet has positive strength, psu,, at 2 = —b
and the second one has negative strength, —psu,, at £ = —(b+ d), and thus image

doublets at x = b and = = b+ d. This leads to the approximate impulse condition of
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zero velocity normal to the wall. Therefore,

z+b 3 x+b+d
(($+b)2+y2)3/2 (<$+b+d)2+y2)3/2

z—b z—b—d
T o) 00

I'= 3psus(d/2)° (

Thus, the normalized impulse at the wall reduces to

. 1 (d\ [ 24
L=z (3) s (4.11)
SN (5+1)
The dashed-dotted line in figure 4.14 shows the calculated impulse for the case
of two doublets with their respective images. The prediction appears to predict the
experimental measurements very well.

Now, examining the dependence on the angle of incidence, equation 4.7 leads to

a normalized impulse at the wall,

. 1(d\*
L,J:g(g) cos ¢. (4.12)

In figure 4.15, the dashed line shows the calculated normalized impulse as a func-
tion of the angle of incidence. The experimental data obtained for the same param-
eters is shown in the figure. The model appears to predict the magnitude of the
impulse pressure well for angles below 7 /6.

The two-particle and four-doublet approach which led to equation 4.10, leads in

the case of an oblique collision to

(z+b)cos¢p —ysing (z —b)cos¢ — ysing
(2402 +y222 — ((z = b2 +y?)?
(x4 b+ dcos¢)cos ¢ — (y — dsin ¢)sin ¢
((z 4+ b+ dcos@)? + (y — dsin ¢)?)3/2
(z —b— dcos ¢) cos ¢ — (y—dsin¢)sin¢> (4.13)
((x —b—dcos¢)? + (y — dsin ¢)?)3/2 .

I'= 3pru.(df2)’ (
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Equation 4.12 (— — —); equation 4.14 (— - —).

which leads to an impulse at the wall given by

A 1/7d : B (1+%cosq§)cos¢ )
]”“8@ C°S¢(1 (T+ fcos @) + (Fsin@)2)2 )

(4.14)

The dashed-dotted line in figure 4.15 shows the prediction from the expression
above. The model appears to predict the magnitude of the impulse better than
equation 4.12, but also over-estimates the magnitude for angles above 7 /5, and fails

to predict the ‘negative impulse’ found in the experimental measurements.

4.5 Discussion

An extra contribution to the collisional component of the particle pressure was recog-
nized. The radiated component of the collisional particle pressure was identified from
the analysis of the probability density functions and from a detailed visualization sys-

tem. The collision of two particles in the bulk of the flow produces sudden changes
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in their velocities and, as a result, a pressure front is generated which is radiated
through the interstitial fluid.

The existence of this component of the particle pressure has not been recognized
in the past. In the present chapter, a series of experimental measurements were
performed to further investigate the nature of the pressure pulse generated by a
particle collision.

By means of a series of simple experiments, the radiated pulses were reproduced
in a controlled fashion. Binary collisions were generated using a dual pendulum. One
of the particles was suspended at rest at a particular distance from the transducer,
while the other was swung from some initial angle. The collision produced an im-
pulse acceleration of the target particle, which produced a pressure front which was
transmitted from the point of contact to the surface of the transducer through the
interstitial fluid. Measurements of pressure pulses produced by binary collisions were
obtained for a variety of particles for a range of impact velocities and incident angles.
The magnitude of the radiated impulse was found to be related to the impact veloc-
ity, the diameter of the particles and the distance from the wall. When the measured

impulses are normalized using

I= pfi y (4.15)

the data appears to collapse into a single curve. Particles with small mass appear to
deviate from this trend, which may be because the range of impact velocities for these
particles is much smaller than those for any of the other particles. In this case, for
smaller velocities, the viscous effect may be more important thereby introducing other
scaling parameters to the problem. Also, since the magnitude of the pressure pulses
generated was small for the attainable velocities, measurements were only possible at
close distances from the transducer. Greater impulsive velocities for the light particles
could be achieved by using a more dense particle as the impact particle.

To further investigate the nature of these pressure pulses, an analysis was carried
out using the pressure-impulse theory (Batchelor, 1967). By neglecting both convec-

tive and viscous effects in the equation of motion and integrating through the impact
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time, if the flow is incompressible, it can be obtained that

ViI=0

where [ is the pressure impulse. Approximate expressions for the solution of the im-
pulse field of a solid sphere near a wall were obtained using superposition of doublets.
The prediction from the pressure-impulse theory appears to agree very well with
the experimental measurements. Even the simple doublet appears to follow the same
decay. When the effects of the second particle are included, the slope and magnitude
of the measurements are matched closely by the prediction. It is important to note
that even for small distances, the prediction and the experiments match well, although
the solid boundary condition on the spheres is only satisfied approximately.
Although the prediction from pressure-impulse theory shows very good agreement
with the experimental measurements for normal and small angles of motion, it fails
to predict the measured impulses for acute angles of incidence. When the angle of
incidence is taken into account in the calculation, the model predicts a reduction
of the impulse which resembles that found in the experimental measurements but
only for angles smaller than /6. For greater angles the model fails to predict the
large reduction of the impulse and also fails to predict the negative values found
in the experiments. The model is based on an inviscid approximation, therefore
the boundary condition on the surface of the sphere differs greatly from that in the
experiment, specially in non-normal angles. This may lead to the discrepancy found

between the experiment and the prediction for acute angles of incidence.
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Chapter 5 Solid fraction fluctuations in

liquid-solid flows

5.1 Introduction

In Chapter 2 measurements of the particle pressure were presented and analyzed.
Particle-wall and particle-particle collisions were studied since the particle pressure is
composed of pressure pulses generated from these events. In this chapter, by contrast,
a study of one source of the particle pressure is examined. The origin of the velocity
fluctuations that cause particles to collide is analyzed by quantifying the fluctuation
of the concentration of solid particles.

Dispersed solid-liquid mixtures are inherently unsteady. Experimental and indus-
trial applications provide evidence to show that the velocities of both the fluid and
solid phases and their respective volume fractions experience important fluctuations
around their mean values. Because of this agitation, the effective coefficients of heat
and mass transfer have extremely high values, a reason why these systems are of
interest for many engineering applications. Multiple factors determine the nature
of these fluctuations, such as the upstream and downstream conditions, the density
ratio of the phases and the mean slip velocity. The interaction between the phases is
complex, and significant momentum is transferred between the phases and with the
boundaries.

In general, the fluctuations of the solid fraction can be divided into large and
small scale fluctuations (Couderc, 1985). Large scale fluctuations include those distur-
bances related to ‘bubbles’ in fluidized beds. These large-amplitude (low-frequency)
disturbances, or waves, have been studied intensively from the stability point of view
(Batchelor, 1988). Fluctuations of this sort are strongly dependent on external con-

ditions, such as the geometry of container or characteristics of the fluid distribution



113
system, etc. Small scale fluctuations are induced by inter-phase interactions, local
hydrodynamics, and presumably particle collisions (Buyevich and Kapbasov, 1994).

Didwania & Homsy (1981) performed a detailed analysis of the flow regimes and
transitions in liquid fluidized beds. The characterization of four distinct regimes was
given in terms of the time and length scales of the particle motion measured by
optical techniques. The regimes include (in the order of decreasing solid fraction),
wavy flow, wavy flow with transverse structure, fine scale turbulent flow and bubbling
states. Comparisons of their results with the present measurements will be presented
in this chapter.

By experimentally measuring the variation of the solid fraction, a measure of the
fluctuation can be obtained. The instantaneous cross-section averaged solid fraction
was measured using an impedance volume fraction meter. This technique was first
used by Kytomaa (1987). Experiments were performed in a liquid fluidized bed and
in a vertical gravity-driven liquid-solid flow. The variance of the measured time-signal

was obtained for different particle densities.

5.1.1 Modeling random fluctuations in liquid-solid flows

The steady behavior of fluidized systems has received a considerable amount of atten-
tion (see Di Felice (1995) for a review article). The unsteady nature of such flows has
been attacked from different approaches, most of them dealing with the formation of
large global fluctuations, or bubbles. Less attention has been focused on the study
of the small-scale fluctuations. Buyevich and Kapvasov (1994) proposed a mathe-
matical model to study the random small-scale fluctuations of particles in a fluid in
a macroscopically uniform disperse mixture. The model assumes that momentum is
transferred mainly through direct collisions. Assuming that the fluctuations in the
system are isotropic and following an analysis inspired by thermodynamic theory of
fluctuations, an expression for the mean square number density fluctuations is ob-
tained. The mean square number density fluctuations are found to be related to the

granular temperature and the granular chemical potential. From geometric consider-
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ations, an expression for the solid fraction fluctuation as a function of the mean solid

fraction is derived. Based on a Carnahan-Starling model, it is obtained

i-v r (5.1)

V2= e

[ (1=-v)
where v is the mean value of the solid fraction, and ' is the mean square solid
fraction fluctuation. The authors then discuss the validity of the Carnahan-Starling

model for high concentrations. An alternative expression is derived based on the

Enskog model for dense gases, leading to

_ 1/3 1 (v/v )1/3 -1
2 — %201 (Ji) 14 = | Lty .
V2 =y [ +(5; H 3\ o (5.2)
where v, is the empirical value of solid fraction at close packing. The model presented

by Buyevich et al. is of great complexity and many of the assumptions made are non-

trivial.

5.2 Experiments

The experiments involve a vertical gravity driven flow using glass particles in water
(with density ratio, p,/p; = 2.5), and a liquid fluidized bed using glass, steel and
nylon particles of a range of diameters. Figure 5.1 shows a sketch of the experimental
setup. By changing downstream conditions the solid fractions can be varied from
0.02 to 0.60. An Impedance Volume Fraction Meter (IVFM) developed by Kytémaa
and Brennen (1986) and Bernier (1982) is used to measure the instantaneous volume
fraction. This non-intrusive instrument is based on the measurement of the high-
frequency electric impedance of the mixture and consists of two shielded stainless steel
electrodes laid flush with the interior surface of the tube. The meter provides a cross-
sectional average measurement of the impedance in the test section. To provide a high
frequency response, the measuring electronics use a 50 kHz excitation and a double

bridge signal processor. Due to the shielded configuration of the electrodes, the spatial
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Figure 5.1: Experimental setup to measure the fluctuations of the solid fraction signal
in a liquid solid flow.

resolution is a few centimeters. A set of two meters was placed in the test section,
such that possible passing waves could be detected and their velocity measured. All
the experiments were performed in the water loops described in Chapter 2. Sets of
electrodes were adapted for use in two different test section internal diameters, 5.08
cm and 10.19 cm.

To calibrate the IVFM a manometer was connected to the test section. The solid
fraction was determined from the hydrostatic pressure gradient in the two-component
medium obtained from the manometer reading. If A’ is the distance between points
A and B and h is the difference in the manometer levels (see figure 5.1), then in the

absence of frictional effects, the solid fraction is given by

h
= Wler 1) >

where p, is the density of the particles and py is the density of the fluid. Figure 5.2
shows a typical calibration for 3 mm glass spheres in a 10.16 cm test section. The
response of the meters is linear for the entire range of concentrations. The same linear
response was obtained for all the particles tested.

The dynamic response of the meter can be quantified by obtaining the decay time
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Figure 5.2: Typical calibration of the impedance volume fraction meters. 3 mm glass
particles in a 10.18 cm test section liquid fluidized bed.

of the autocorrelation function of the impedance-time signal of the flowing mixtures.
The dynamic response calibration is discussed in detail by Kytomaa (1987).

The root mean square (rms) fluctuation of the solid fraction, 2/, is calculated as

N
vt = J —]1\72(5 — ;)2 (5.4)

=1

where 7 is the average solid fraction. The measurements were obtained by setting
a certain sampling rate and length of sample in the data acquisition system. The
sampling rate for all the results presented was chosen to be 1 kHz. Samples of at
least 8000 data points (8 seconds at 1kHz) were used for the calculations.

The measurement of the unsteady component of the volume fraction was first
proposed and used by Kytomaa (1987). In his investigation, the solid fraction fluctu-
ations were used to measure small and large amplitude kinematic stability and wave
propagation in two and three components flows. In this chapter, the emphasis is not

on wave propagation or stability. The technique is used to measure the amount of
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agitation in solid-liquid flows in order to investigate the flow regime transitions and,

ultimately, to identify the generating mechanisms of the particle pressure.

5.3 Results

5.3.1 Liquid fluidized beds

For the first part of this study the experiment was set to operate in the form of a
liquid fluidized bed (see Chapter 2). The particles were placed in the test section and
by controlling the liquid flow, different steady state mixtures could be achieved. To
eliminate the possible presence of transients, the measurement of the solid fraction
was taken a few minutes after the steady state was reached. In most cases the
measurement was taken a number of times to ensure repeatability.

Figures 5.3 to 5.6 show typical cases of the volume fraction signals for the case
of a fluidized bed for different particle densities and diameters. The figures show, on
the left column, the solid fraction measured as a function of time for different mean
solid fractions. On the right, the frequency transformed signals are shown. A fast
Fourier transform algorithm was used to obtain the frequency domain plots. Before
the transform was applied, the mean solid fraction was subtracted in order to isolate
the fluctuating component of the solid fraction time traces. The vertical axis of the
frequency domain plots can be interpreted as the energy of the fluctuations.

Figure 5.3 shows the results obtained for 3 mm glass particles in a 5.08 cm diameter
test section. The presence of large-scale fluctuations can be readily observed at high
concentrations. These low frequency waves can be observed in the experiment as
upwards moving regions of lower concentration. As the solid fraction decreases, these
waves become more irregular as higher frequency fluctuations begin to appear. For
most concentrations the low frequency fluctuations contain the most energy. As the
concentration decreases, the fluctuation energy is distributed into a wider range of
frequencies. Note the presence of a spike at 60 Hz for all cases, most likely the result

of electronic noise.
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Figure 5.4 shows the results for four typical concentrations for the cases of 6 mm
glass spheres fluidized in a 5.08 cm test section. For the case of the highest concen-
tration, the large scale disturbances begin to appear. This concentration (51%) is
just beyond that of the incipient fluidization for this case. As concentration decreases
the large-scale fluctuations appear and seem to be of larger magnitudes than those
of the 3 mm glass case. As in the previous case, as the mean solid fraction decreases
the presence of low frequency fluctuations becomes less prominent and higher fre-
quency motions begin to appear. In the case of low concentrations, the frequencies
of fluctuation are distributed over a wide frequency range.

The results obtained for fluidized 6.35 mm nylon spheres are shown in figure 5.5.
Large scale fluctuations are observed for most concentrations, and high frequency
fluctuations appear to be less evident than in the two previous cases.

Figure 5.6 presents the measurements obtained for the 4.5 mm steel particles.
Similar to the previous cases, large-scale fluctuations can be observed in concentrated
beds. This large fluctuations were easily observed in the experiment as bands of
low concentration traveling upwards. For this type of particles, such waves could be
observed for concentrations up to 30%. The rms fluctuation values measured for this
case were the largest of all the cases tested.

The rms solid fraction fluctuation, as calculated from equation 5.4, is presented in
figure 5.7, for all the particles tested. Only the measurements obtained for the 5.08
cm diameter test section are presented. In a packed state, when the fluid velocity has
just reached the minimum fluidization velocity, the amount of fluctuation is small.
As the solid fraction decreases, the mean fluctuation increases rapidly and reaches a
local maximum at concentrations of approximately 45%. The aforementioned large-
scale fluctuations, or concentration waves, are the main cause of this rapid increase
in the fluctuation. The magnitude of the concentration waves decreases as the solid
fraction is further reduced, and the small-scale fluctuations begin to appear. Around
a solid fraction of 30%, another local maximum in the mean fluctuation appears. In
this range of concentrations, the small-scale fluctuations appear to be dominant. For

concentrations lower than 30%, the mean fluctuation decreases again. For dilute mix-
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tures the agitation and the collision frequency decreases, due to the small number of
particles. The same behavior was found for all of the particles tested. The magnitude
of the mean fluctuation appears to be larger for particles of larger diameter, with the
exception of the 4.5 mm steel particles.

To study the effects of the diameter of the test section on the mean solid fraction
fluctuation, tests were performed in two distinct test sections for the same particles.
Figure 5.8 shows comparisons of the measurements for 3 mm glass particles in a 5.08
cm and a 10.16 cm diameter test sections. Clearly, the results show that the larger
test section has no effect on the magnitude of the mean solid fraction fluctuations, at

least for this particular case.
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Figure 5.8: Mean solid fraction fluctuation as a function of the solid fraction. Liquid
fluidized 3 mm glass particles in the 5.08 cm (4) and the 10.16 cm (O) test sections.

5.3.2 Vertical gravity driven flow

As described in Chapter 2, the test section can be modified to operate in either a
vertical flow or a fluidized bed configuration. This section examines the influence of
the flow direction on the magnitude of the solid fraction fluctuations. In contrast
with the fluidized bed setup, the net velocity of the solid phase for this set of results
is not zero. Since the experiment is gravity driven, the net velocity of the particles
is always negative (negative is in the downwards direction). Depending on the valve
arrangement in the experiment, the liquid could be allowed to flow in the direction
of the particles (cocurrent flow) or in the opposite direction (countercurrent flow).

The total weight of the particles was measured before placing them in the upper
bin of the test section (see figure 2.2) prior to an experimental run. Therefore, by
measuring the total emptying time, an estimate of the velocity of the solid phase, u,,
can be obtained. The solid fraction is measured with the same set of IVFMs.

Figure 5.9 shows the measured solid fraction fluctuations as a function of the
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Figure 5.9: Mean solid fraction fluctuation as a function of the solid fraction. Vertical
flow of 3 mm glass particles in both test sections. x cocurrent flow in 5.08 cm TS, *
countercurrent flow in 5.08 cm TS. ® cocurrent flow in 10.2 cm TS, + countercurrent

flow in 10.2 cm TS.

solid fraction for the two test sections and for cocurrent flow and countercurrent flow.
The data for all the experimental sets appears to have a maximum at approximately
25% of solid fraction. For most concentrations the mean fluctuation is larger for
countercurrent flows. The measurements of the cocurrent flow in the 5.08 cm test
section appear to have the smallest value of mean fluctuation.

To analyze the influence of direction of the fluid flow on the fluctuations, the
results can be presented as a function of the fluid velocity. The mean fluid velocity
could be calculated using the generalized version of the Richardson-Zaki relationship

(equation 2.16; Kwauk, 1963). The velocity of the fluid is
up = u(1— )" +u, (5.5)

where u; is the terminal velocity of the particles, n is the experimentally determined

exponent in the Richardson-Zaki relation (n = 2.4 for this case), and u, is the mean
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velocity of the particles. Figure 5.10 shows the solid fraction fluctuations as a function
of the calculated fluid velocity. Since the particle motion is always in the downwards
direction, a negative fluid velocity implies that the fluid is moving cocurrent with
the particles. Clearly, the amount of fluctuation is larger for countercurrent flows.
countercurrent flows are expected to behave similarly to a fluidized bed. This ‘moving’
fluidized bed is expected to experience large fluctuations. It should be noted that the
fluid velocity was calculated using an empirical relation; the absolute values obtained

from it are of uncertain accuracy.

5.4 Low and high frequency fluctuations

Figures 5.3 to 5.6 clearly show the two types of fluctuations. Low frequency waves
can be considered a global phenomena of the particle ensemble, while high frequency
fluctuations can be related to local variations of the particle-scale hydrodynamics. To

study each one of these contributions to the total mean solid fraction fluctuation, a
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digital filtering analysis is performed.

To eliminate the low frequency component from the solid fraction signals, a high-
pass filtering algorithm is applied to the time-dependent traces. The digital filter
models a high pass 4** order Butterworth filter. A cut-off frequency of 3 Hz was
chosen by examining the frequency-transformed signals. Figure 5.11 shows the effect
of the filter on the volume fraction signals obtained for the 3 mm glass particles in a
fluidized bed. On the left the original time signal is shown, and on the right the signal
after the filtering. The low-frequency events appear to be completely eliminated. The
low concentration case appears not to be strongly affected by the filtering algorithm.

Figure 5.12 shows the effect of the filter on the magnitude of the calculated mean
solid fraction fluctuation, for the case of 3 mm glass fluidized particles. The mag-
nitude of the mean solid fraction fluctuation decreases as a result of the filtering.
The maximum that was observed at high concentrations disappears after the filter-
ing. The measurements preserve the presence of a maximum at a concentration of
approximately 30%.

The filtering algorithm was applied to the solid fraction traces of all the other
particles tested. The results of the calculated mean solid fraction fluctuation as
a function of solids concentrations are shown in figure 5.13. Clearly, the overall
magnitude of the mean solid fraction fluctuation for all the cases is reduced by almost
an order of magnitude, with the exception of the steel particles. Yet, the appearance
of a maximum at approximately 30% of concentration is preserved. The dependence of
the mean fluctuation on the particle size observed from the unfiltered data disappears.

However, the data for the particles of greater mass appear to have larger fluctuations.

5.5 Comparisons

The model proposed by Buyevich & Kapbasov (equations 5.1 and 5.2) considers only
the small scale fluctuations. Since the large scale fluctuations in the measurements
can be filtered out, a direct comparison of the measurements and the predictions is

possible.
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Figure 5.11: Effect of the filtering. High pass 4** order Butterworth digital filter,
with cut-off frequency of 3 Hz. The original signal is shown on the left column, the
resulting signal after the filtering. The mean solid fraction added again after filtering.
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Figure 5.12: Mean solid fraction fluctuation as a function of the solid fraction, before
filtering (+4) and after high-pass filtering (O). Results for 3 mm glass particles in the
5.08 cm and the 10.16 cm test sections.

In figure 5.13 a direct comparison of the two curves described by equations 5.1 and
5.2 and the experimental measurements are shown. The models appear to predict the
shape of the experimental measurements, but the absolute value is over-predicted by a
factor of 4 or 5 and almost by an order of magnitude for the case of light particles. Note
too, that the predictions do not depend on the particle properties. It is important
to mention that these predictions assume that the fluctuations are isotropic, which
may not be the case in the experiment. Also, the IVFM gives a cross-section average
measurement of the solid fraction rather than a point-wise measurement as used in

the models.

5.6 Discussion

By analyzing the non-steady component of the volume fraction signal obtained from

the impedance volume fraction meter (IVFM), a measure of the agitation in a liquid-
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Figure 5.13: Mean solid fraction fluctuation after high pass filtering as a function of
the solid fraction. All from a 5.08 cm test section fluidized bed. Compare with the
unfiltered measurements in figure 5.7. The lines are the predictions from equation 5.1
(solid line), equation 5.2 (dashed line).
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solid flows was obtained. The IVFM measured the cross-sectional average impedance
of the mixture that is a measure of the solid concentration of particles due to the
difference of impedance between the two phases. The IVFM was powered by a 50
kHz power supply to ensure a high frequency response. Experiments were performed
in a liquid fluidized beds for glass, steel and plastic particles, and in a vertical gravity-
driven flow for glass particles.

The value of the rms fluctuation was calculated for a wide range of concentra-
tions for all the particles tested. The solid fraction time-dependent signals showed
significant changes in the magnitude and in the nature of the fluctuations for dif-
ferent concentrations and particle properties. Two main types of fluctuations were
identified: low frequency fluctuations and high frequency fluctuations. The low fre-
quency fluctuations appeared as moving wave-like bands of low concentration. The
high frequency fluctuations were more random in nature.

When the rms fluctuation for the fluidized beds was plotted as a function of the
mean solid fraction, several regimes were observed. Between the closed packed state
and 40% solid fraction, the low frequency fluctuations dominated. A maximum was
observed at approximately 50% of solids concentration. The low-frequency traveling
bands of low density were the main contribution for the appearance of a maximum
rms fluctuation observed at 50% of concentration. For concentrations smaller than
40% the low frequency fluctuations began to loose coherence and, a higher frequency
component began to appear. The rms fluctuation decreased from its maximum value
at 50% solid fraction, reached a local minimum at around 40%. For decreasing con-
centration, the rms fluctuation began to increase again and reached a second local
maximum at approximately 30% of concentration. The increase on the value of the
rms fluctuation was attributed to the increase of high frequency fluctuations. For
concentrations lower than 30% the rms fluctuation decreased steadily until zero con-
centration.

The different regimes appear to agree with the results obtained by Didwania &
Homsy (1981). In their two-dimensional liquid fluidized bed experiments, several

flow regimes were identified for decreasing concentrations: wavy flow, wavy flow with
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transverse structure, fine-scale turbulent flow, and bubbling state. The wavy flow
regime can be identified from the minimum fluidization state until 50% of solid frac-
tion, at which the maximum rms fluctuation occurred. From 50% to 40% of mean
solid fraction, the low-concentration bands began to loose coherence, which could
be associated with the regime named wavy flow with transverse structure. The in-
crease of high frequency fluctuations for solid fraction in the 30-40% range, indicate
a turbulent-like behavior in accordance with the fine-scale turbulence regime. The
further reduction of the rms fluctuation for concentrations smaller than 30% can be
associated with the last regime, the bubbling state. The values of concentration at
which the flow transitions occur in the present experiments are close, but not exactly
the same, to those reported by Didwania & Homsy. The difference can be attributed
to the differences in experimental setups (2-D vs 3-D) and particle used.

The results obtained for different particle sizes and densities were compared. The
rms fluctuation appeared to be higher for larger particles. For the same concentration,
fluidized beds with larger diameter particles had a higher value of the rms fluctuation.
The only exception were the 4.5 mm steel particles, which showed the highest value
of rms fluctuation for all concentrations.

To study the influence of the container dimensions on the rms fluctuations, tests
were performed in two different test sections. The results obtained for glass particles
showed that there was no significant influence of the test section diameter on the
measured value of the rms fluctuation.

Similar measurement were performed in a vertical gravity-driven flow. Both cocur-
rent and countercurrent flows were studied. The same type of behavior was encoun-
tered in these flows. The flows in countercurrent configuration showed higher values
of the rms fluctuation. Since flows of concentrations higher than 40% were not possi-
ble to achieve with the present experimental setup, the maximum rms value observed
in highly concentrated fluidized beds was not observed in the vertical flows.

To investigate the contribution of each of the two types of fluctuations (low and
high frequency) to the total rms fluctuation, a high-pass filter was applied to the

time-dependent solid fraction signals. The low frequency fluctuations were filtered
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out using a 4th order Butterworth digital filter with a cut-off frequency of 3 Hz. The
rms fluctuation was recalculated using the filtered traces.

The recalculated value of the rms fluctuation was smaller than the original one for
all solid fractions. The maximum rms fluctuation observed at 50% of solid fraction
disappeared completely. The other local maximum observed at approximately 30%
remained unchanged. As suspected, this result indicated that the first maximum was
a result of the low-frequency fluctuations and the second maximum was produced by
the high-frequency fluctuations. It is important to note that the recalculated rms
fluctuation appeared to scale with particle mass rather than particle size (as seen in
the un-filtered rms fluctuations). For a given solid fraction, the fluidized beds with
more massive particles appeared to have higher values of the filtered rms fluctuation.

Since the effect of the high-frequency fluctuations was isolated from the total fluc-
tuation, it was appropriate to perform a direct comparison with the model proposed
by Buyevich & Kapbasov (1994). The model, in its two variations, predicted the trend
of the rms fluctuation as a function of the mean solid fraction correctly; however, the
magnitude of the rms fluctuation was overestimated by an order of magnitude. In
their model, an isotropic state of solid fraction fluctuations was assumed. In the ex-
periments performed in the present setup, the fluctuations were not isotropic. Also,
the model predicts values of the point-wise rms fluctuation, but the measurements
obtained were cross-sectional averages of the solid fraction. These differences may
have led to some of the discrepancies encountered in the comparison. The model also

failed to predict the dependence of the rms fluctuation on particle properties.
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Chapter 6 Conclusions

6.1 Summary of results

The collisional particle pressure was measured for a vertical gravity-driven liquid-
solid flow and for a liquid fluidized bed. The measurement of this property represents
the first of its kind in the field of multi-phase flows. No other similar measurement
has been found in the literature. Theoretical studies of liquid-solid flows often make
reference to the particle pressure, and up until now it was not possible to verify the
validity of the assumptions made in the construction of the models.

For concentrated mixtures the measured value of the particle pressure was small,
due the limited mobility of the particles in a packed state. On the other extreme, in
dilute mixtures the particles move freely and collide against the transducer at higher
velocities; however, the occurrence of such collisions is more sporadic resulting in a
low value of the particle pressure. The combination of these two competing mech-
anisms gives rise to a maximum value of the particle pressure at some intermediate
solid fraction, normally at approximately 30% of solid fraction. Similar results were
obtained for all the particles and test sections employed. The trends described were
observed more clearly for the case of fluidized beds. The magnitude of the measured
particle pressure was found to scale with p,u?, where p, and u; are the density and the
terminal velocity of the particles respectively. However, the results of the normaliza-
tion show that other parameters might influence the particle pressure, such as density
ratio of the phases and the particle Reynolds number. The diameter of the test sec-
tion was found not to have a significant influence on the results obtained. When the
particle pressure was measured in a vertical flow configuration, the direction of the
fluid phase did not produce a significant effect on the particle pressure.

A review of some of the existing studies that model the particle pressure was pre-

sented. Essential differences were found in the formulation of some of these models.



135

Some models predicted the particle pressure in a ad hoc manner, due to a complete
lack of evidence or physical understanding of the phenomena. Other models borrow
ideas from dry granular flows, with corrections to include the effects of the inter-
stitial fluid. A direct comparison between the experiments and the existing models
showed the significant differences between the various models and the experimental
measurements. Future theories may rely on the physical insight provided by these
measurements to construct descriptions that are closer to the true behavior of liquid-
solid mixtures.

Probability density functions were constructed for the maximum pressure, collision
duration and collision impulse. In concentrated flows low pressure and low impulse
collisions were found to occur more frequently. As the solid fraction decreases it was
observed that the probability of occurrence of higher impulse collisions increased.
The analysis of the probability density function of the duration of collisions lead to
the discovery of two distinct contributions to the particle pressure. Pressure pulses of
two distinct durations were found in the PDF of collision duration. With the help of
a visualization system, the two contributions to the particle pressure were identified
and explained. By synchronizing a high-speed digital camera‘ with the acquisition
system of the pressure transducer, the pressure pulses could be correlated with the
moving particles in the test section. The long-duration collisions were found to be the
result of direct impacts of particles against the surface of the transducer. The short
duration pulses were found to be pressure pulses generated by collisions of particles
in the vicinity of the pressure transducer. The acceleration of the fluid caused by
a colliding particle produced a pulse that was transmitted from the surface of the
particle to the transducer through the fluid. The direct contribution was found to
be the most significant contribution to the particle pressure. The existence of the
‘radiated’ contribution to the particle pressure had not been previously recognized.

A series of experiments was performed to further investigate the nature of the
two types of pressure pulses. To generate collisions in a controlled environment, an
immersed pendulum experiment was built. Controlled repeatable collisions were pro-

duced by letting a particle swing freely towards a wall, where a pressure transducer
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was flush-mounted. The motion of the particles was recorded using a high speed digi-
tal camera that was synchronized with the pressure transducer acquisition system. In
this way, the velocity and collision pressure could be measured and correlated. Vari-
ous parficle sizes and densities were employed. Measurements of the collision impulse
as a function of the impact velocity were obtained and compared with the Hertzian
theory of contact. Moments before contact the particles experience a significant de-
celeration resulting from the liquid pressure build up in the gap between the particle
and the wall. The motion of the impacting particles was found to be influenced by
the wall only at very small distances before contact. The coefficient of restitution
was measured, and found to decrease significantly for low values of approach velocity.
By comparing the measured immersed pressure impulses with those predicted by the
Hertzian theory, a quantification of the effects of the fluid was obtained that indicated
that the difference between the predicted Hertzian impulse and the measurement in-
creased as the impact velocity decreased. By calculating the pressure impulses instead
of the maximum pressures, the values of the elastic properties of the particles and
the transducer were not needed. The measurements of the pressure impulses and the
comparison with Hertzian theory had not been performed in the past for immersed
collisions. The proposed pendulum experimental setup was an inexpensive, versatile
and reliable way to study particle collisions.

A model to predict the particle deceleration before impact due to the fluid was
proposed. The model was based on a control volume approach to predict the pressure
distribution in the gap from the mass and momentum fluxes. The results obtained
appear to agree well when compared with the experimental measurements.

To study the nature of the second contribution to the particle pressure the pen-
dulum experiment was modified to operate as dual pendulum to produce binary col-
lisions of particles. Two particles of the same diameter and density were suspended
from strings and aligned. One particle, the target particle, was suspended at rest at a
certain distance from the wall, where a high-frequency response pressure transducer
was mounted. The second particle, the impact particle, was released from rest at

some initial angle. The impact particle accelerated towards the target particle and
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produced a collision. The impulsive acceleration of the target particle produced a
pressure front in the liquid that was transmitted from the surface of the particle to
the transducer. Tests were performed for a number of different particle densities and
diameters. The measured impulse pressure was found to scale with the diameter of
the particle, the density of the fluid and the velocity of impact. The magnitude of the
pulses was found to decrease for increasing distances from the wall. A model based
on the impulse pressure theory was proposed. The impulsive acceleration of a particle
near a wall is modeled as a pair of impulse-doublets in an inviscid flow. The com-
parison between the experiments and the model showed good agreement. The study
of the fluid pressure generated by particle collisions is new in the field of multi-phase
flow. In the work presented in this thesis, the contribution of collision-generated fluid
pressure pulses was recognized and modeled successfully.

To further investigate the nature of the generating mechanisms of the random
motions in solid-liquid flows and of the particle pressure, the fluctuating compo-
nent of the particle concentration was measured. Using a high-frequency response
impedance volume fraction meter, the instantaneous cross-sectional volume fraction
was measured. The volume fraction meter was flush mounted in the test section of a
fluidized bed and a vertical flow. The rms fluctuation was measured for different par-
ticle sizes and densities for the entire range of concentrations. Two different diameter
test sections were used. For the case of fluidized beds, the rms fluctuation was found
to have two local maxima when plotted as a function of the solid fraction. The first
maximum occurred at concentrated mixtures and was attributed to the effect of large-
scale fluctuations. The other maximum appeared at intermediate concentrations and
was a result of the small-scale fluctuations. The diameter of the test section was
found to have little effect on the mean value of the fluctuation. The tests performed
in a vertical gravity driven flow showed that a maximum mean fluctuation at large
concentrations did not appear. When the liquid flow was counter-current with the
particles, the amount of fluctuation was larger. Since two types of fluctuations were
observed, an analysis of their contributions to the total fluctuation was performed. By

high-pass filtering the time signals the large scale fluctuations were eliminated and the
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fluctuation recalculated. The maximum attributed to the large-scale fluctuations was
completely eliminated for the filtered data. A comparison of the measurements with
a model found in the literature was performed. Although the model predicted the
right trend in the rms fluctuations as a function of concentration, it over-predicted its
magnitude by an order of magnitude. An order of magnitude analysis was performed
to obtain a correlation between the value of the mean solid fraction fluctuation and
the mean solid velocity fluctuation. The analysis showed that the mean solid velocity

fluctuation is proportional to the mean solid fraction fluctuation.

6.2 Comments on general issues

The main objective of the investigation presented in this thesis is to shed some light
to the basic phenomena that govern the behavior of liquid-solid mixtures. The ap-
proach followed was to perform simple experiments at a particle size level to help
understand the principles that contribute to the complex behavior associated with
multi-component flows.

The measurement of the particle pressure could have important implications in
the development of future models of liquid-solid mixtures. The results may also be of
interest for more practical applications, since the particle pressure could be associated
with topics such as mixing, erosion, mass and heat transfer. The mechanics of particle-
particle and particle-wall interactions investigated in this work serve as building blocks
for theoretical models or computer simulations. The measurement of the fluctuating
component of the concentration and velocity could help researchers understand the
changes observed in the global behavior of these mixtures.

Many issues remain to be resolved. Although the particle pressure was found to
scale with psu?, the particle Reynolds number and the density ratio of the phases
appeared to influence the results. A more in depth investigation of these effects
remains to be performed.

A significant amount of variance was associated with the results obtained for

individual particle-wall and particle-particle collisions. Extreme care was taken to
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ensure that the experiments were performed under controlled conditions. Yet, results
for the same nominal parameters were found to vary, in some cases, by a factor of
2 or 3. The influence of the surface roughness and liquid properties remain to be
explored. Although physical contact appeared to occur when the surfaces collided, it
is still unknown whether the fluid is completely drained from the gap. The mechanics
of rebound were found to be dominated not only by the flow in the gap but rather by
the entire flow field around the sphere. A better model for immersed particle collisions
should include the influence of the fluid flow field around the particle. Inclined and
non-normal immersed collisions remain to be explored.

The relation between the solid fraction fluctuations and the fluctuations in the
solid and liquid phases could be further investigated. However, simultaneous ve-
locimetry of both phases appears as a great challenge for experimentalists.

The measurement techniques and instrumentation used in this thesis for the study
of liquid fluidized beds and vertical flows could be used to study other flow geometries

and, with the pertinent modifications, other particle flow regimes could be studied.
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Appendix A: Discussion on the reverberations of

the pressure pulses

During the measurements of the particle pressure (Chapter 2) a certain amount of
reverberation was observed to occur after a pressure pulse was captured. In the traces
obtained for the measurement of direct collisions in Chapter 3, the reverberations
were also present. This oscillating pressure was observed also for the case in which
the pressure pulses are transmitted through the liquid (Chapter 4). The reason for
this has been attributed to the dynamics of the membrane after the collision, but
their exact description is not clear. It is important to note that these reverberation

are not observed in dry collisions.

Direct collisions

Figure A.1 shows two typical cases of a 6 mm glass particle colliding directly against
the pressure transducer for two different impact velocities. On the left the pressure-
time signal is shown, and on the right the frequency-transformed data is shown. Note
that in this case the amount of reverberation appears to be larger for a larger collision
impulse. Figure A.2 shows two typical pressure pulses for a direct collision of a 4.5
mm steel particle. A secondary reverberation can be observed in the pulse for the

highest value of collision impulse.

Indirect collisions

The same type of reverberance was found in the liquid pressure front experiments. In
these experiments the particles do not contact the transducer and yet the reverberance
is still observed. Figure A.3 shows two typical pressure pulses resulting from the
binary collision of a pair of 6 mm glass particles, and figure A.4 shows the case of
4.5 mm steel particles. Although the steel particles collided at higher velocities, the

amount of reverberation was found to be larger for the 6 mm glass case.
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Figure A.1: Time and frequency domain pressure traces (left and right columns re-
spectively) for a direct collision of a 6 mm glass particle in water.



pressure, Pa

pressure, Pa

148

~1}+

-2

-3

1
power spectrum

time, 5

_2F

-3

power spectrum

time, s

10

(b) u;=133 mm/s,

fraquency, 1/s

tfrequency, 1/s

1=5.53 Pa.s
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Appendix B. Notes on the dependence of particle

properties on the duration, maximum pressure and
impulse of a collision

Based on the Hertzian theory of contact, a simple analysis is followed to show how
the collision pressure, duration of collision and the collision impulse depend on the
properties and size of particles.

The Hertz law of contact is a force-deformation relation which describes the static
compression of two isotropic elastic bodies whose surfaces are perfectly smooth and
can be approximated by two paraboloids in the vicinity of the contact point. The
impact of spheres can be modeled based on the Hertzian law providing the contact
process can be assumed to be quasi-static. Figure B.5 shows a sketch of the impact
problem. As soon as the spheres, in their motion towards one another, come into
contact at point O, the compressive forces F' begin to act and therefore change the
velocity of the spheres. Since the force-displacement expressions are known from the

Hertzian analysis, the particle deceleration during impact can be obtained:
&= —F/m, (B.1)

where o 1s the displacement, F' is the compressive force and m., the average mass
(m. = (mim2)/(my+my)). After some manipulation (see Johnson (1987) for details)
it can be shown that the maximum compression force during impact

:

4N

2\ 3/5
dmau ) (B.2)

Pt

where w; is the impact velocity and N is

N“‘i 1 aiag
S 3kt ke an +ay

where k; is a parameter that groups the elastic properties of sphere i (see equation
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Figure B.5: The Hertz impact problem, u; = V; — V5.

2.13). The duration of collision is given by

= 2 —-1/5 <%> B‘
T = 3.21u; N (B.3)

The collision impulse (as defined in equation 2.10) is

I =2.04Tu;m,. (B.4)

Duration of collision

Comparing the case of a collision of two particles with the same diameter and prop-
erties with the case of a particle colliding against the wall at the same velocity, the

following ratio can be formed:

2/5
Tp—p ky + kp
= (0.871 | ——=— B.
2 o7 (kp+kw) (B.5)

where the subscript p denotes the particles and w the wall. Three cases can be

considered:
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e Particles and wall with the same elastic properties

Te=p _ 0.871

Tp—w

which implies that a collision between identical spheres has a duration which
is 13% shorter than in the case of a sphere colliding with a wall with the same

properties.
e The wall is much more stiffer than the particles. In such a case E,, > E,, which

implies that k,, < k,, and therefore

Tp=p _ 1148

Tp—w

implying that a particle to particle collision is 15% longer than that of a particle

with the same properties colliding against a rigid wall.

e The particle is stiffer than the wall. For F,, < E,, k, > k,, thus

Tp—p 2k, 25
= (0.871
Tp—w kp + ky

in which case if

ky = 2k, = Tpp [ Tp—w = 0.74
ky =10k, = 7p_pp/Tp—w, = 0.44.
So, in this case particle-particle contacts are of shorter duration.

Figure B.6 shows the ratio of 7,_, to T,_, as a function of E,/E,.

Maximum compression force

Comparing the maximum compression forces for the same cases as above,

Fmyp

L\ 25
By + ”) (B.6)

= 0.574
[k

Frmy_y
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e Particles and wall with the same elastic properties,

for

kw = 2k, = Fm,_,/F,_,, = 0.675

ko = 10k, = Fm,_,/F,_,, = 1.135

e E, < E,, particle softer than the wall,

Figure B.6 shows the ratio of Fm,_, to F'm,_,, as a function of E,/E,,.

Collision Impulse

Note that the collision impulse is independent of the elastic properties of the contact-

ing surfaces. Therefore,

=0.5. (B.7)



135

1.5 T T

T T
p-p p-w
p-p p-w

0 " i 1 L ’
10° 10
E/E

P w

Figure B.6: Ratio of duration of collisions, 7, /-, as a function of ratio of elastic
properties, E,/E,, (solid line), and ratio of maximum compression forces F,_,/Fp_w
as a function of ratio of elastic properties (dashed line).



