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Abstract

The aim of the first part of this thesis is to broaden the classes of linear
systems and performance measures that numerical tools for robustness analysis
can be used for. First, we consider robustness problems involving uncertain
real parameters and present several new approaches to computing an improved
structured singular value p lower bound. We combine these algorithms to yield
a substantially improved power algorithm.

Then, we show that both the worst case H, performance and the worst case
‘Ho performance of uncertain systems subject to norm bounded structured LTI
perturbations can be written exactly in terms of the skewed p. The algorithm
for the structured singular value lower bound computation, can be extended
to computing skewed p lower bound without significant loss of performance or
accuracy.

We also demonstrate how a power algorithm can be used to compute a
necessary condition for disturbance rejection of both discrete and continuous
time nonlinear systems. For the general case of a system with a non-optimal
controller this algorithm can provide us with knowledge of the worst case
disturbance.

In the second part of this thesis we explore different approaches to the
model reduction of systems. First, we show that the balancing transformation
and Galerkin projection commute. We also demonstrate that if the balanc-
ing transformation matrix is orthogonal, balanced truncation and Galerkin
projection commute.

Next, we pursue model reduction of nonlinear systems with rotational sym-
metry. We separate the movement of the wave from the evolution of the wave
shape using the “centering procedure,” and accurately approximate the shape
of the wave with just few modes. The method may be viewed as a way of
implementing the Karhunen-Loeve expansion on the space of solutions of the
given PDE modulo a given symmetry group. The methodology is quite general
and therefore should be useful in a variety of problems.
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Chapter 1

Introduction

Formulating mathematical models for physical systems is always a starting,
and maybe the most crucial, point of every engineer or scientist’s work. Mod-
els derived from first principles are usually a system of ordinary differential
equations or partial differential equations and their goal is to maximize quali-
tative correctness in representing the dynamics of a physical system. However,
models also have to be useful for their intended application. For example, in
control system design simple models of systems and controllers are preferred
since they are much easier to do analysis and synthesis with.

Given a model of a dynamical system correctly representing the system’s
dynamics, we would like to be able to formulate a model of reduced complexity
that predicts the most of system’s behavior, and is easy to work with for a
particular intended application.

Systems with the simplest possible description are linear systems, whose
properties can be expressed as functions on finite dimensional space. However,
from the early days of the development of control theory a need to take into
account uncertainty in modeling has been recognized. The small gain theorem
introduced by Zames [51] in early sixties provided a first exact robust stability
test with respect to unstructured uncertainty. That was a beginning of robust
control theory, that treats linear system with uncertainty in a systematic way.

For linear time invariant (LTI) systems with structured uncertainty, anal-
ysis of robust performance can be reduced to search for the solution of a set
of algebraic equations which give bounds on the achievable performance. One
is thus able to find computationally efficient solutions, such as the power al-
gorithm for the p lower bound, without doing an explicit parameter search

involving repeated simulation.
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On the other hand performance analysis for nonlinear systems is difficult
due to the wide variety of behavior and structures which can occur. Most
existing tools are at a theoretical level, and software for analyzing robust per-
formance is not widely available. The first serious attempt to extend linear
systems analysis methodology, given by the structured singular value frame-
work, to the nonlinear case has been successfully pursued in [41].

The aim of the first part of this thesis is to develop and refine theoretical
and computational tools for the analysis of different classes of robust linear
and nonlinear systems.

Since linear theory is quite well developed and powerful, a natural ap-
proach to the study of nonlinear systems would be to use linear spaces and
a nonlinear extensions of linear analysis. One may consider a nonlinear dif-
ferential equation on a linear state space, and Fourier representations are an
example of such a treatment. Of course there is nothing wrong in representing
solution of a nonlinear partial differential equation as a linear combination of
basis functions, but linear superposition still fails, meaning that the sum of
two solution of a nonlinear partial differential equation (PDE) is not a solution
of that same PDE, but we can still represent individual solutions via series ex-
pansions. Karhunen-Loeve expansion (KLE), one of the major existing tools
for developing a reduced order models of nonlinear systems, is also based on
linear theory and represents functions in linear spaces. Since it has been intro-
duced in the context of turbulence by Lumley [28] in the late sixties to analyze
experimental data aiming to extract dominant features and trends, which are
typically patterns in space and time, it has been widely used, especially in the
theory of turbulence.

To our knowledge, so far no thorough attempt to better understand the
nature of nonlinear system model reduction accomplished by KLE has been
made. In the second part of this thesis we review the connection between KLE
model development method and balanced truncation of a linear system state
space model, and search for a possible extension of linear systems balanced
truncation technique to nonlinear systems. As a first step, we apply Galerkin
model reduction method and balanced truncation to a system driven by a
linear PDE.

Physical systems may exhibit various types of both continuous and discrete
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symmetries. We are interested in rotational symmetry, called homogeneity in
the turbulence literature. In this case KLE will just give ordered Fourier
modes as optimal basis functions. Thus, homogeneity completely determines
the form of the modes used for the series expansion, and the models obtained
are not really of small order. In the second part of this thesis we show how
if we incorporate symmetry information in the model development, low order
models indeed can be obtained.

The work we developed in this thesis covers two important areas. We
thoroughly analyzed some aspects of nonlinear systems model development

and we also developed some computational tools for system analysis.

1.1 Previous work

The usefulness of the structured singular value y, introduced in [8], lies in
the fact that many robustness problems can be recast as problems of computing
1 with respect to some block structure.

In recent years a great deal of interest has arisen with regard to robustness
problems involving uncertain parameters that are not only norm bounded, but
also constrained to be real. This type of problem falls within the y framework
by extending the original definition of 4 to allow both real and complex uncer-
tainties in the block structure ([14]). This mixed u problem has fundamentally
different properties from the complex p problem. It is well known that the
general mixed p problem has the fundamental property of being NP hard (see
[3], for example), which has important implications for computation. Recent
results in [6] show that computing guaranteed bounds may be NP hard as well.
This strongly suggests that any scheme to compute the exact solution for the
general mixed p problem will be computationally intractable, and the best we
can hope for is to get good bounds for most problems.

A standard power algorithm (SPA) for computing a mixed p lower bound
was introduced in [48]. Each iteration of the scheme is very inexpensive,
involving only matrix-vector multiplications and vector inner products. Un-
fortunately, the lower bound power iteration does not converge on a significant
number of problems. Although one can still obtain a lower bound from the
scheme in such cases, the bound may be poor. The first effort to enhance the

performance of the SPA is presented in [44], with encouraging results.
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A single p robustness performance analysis provides a bound 8 on the
uncertainty under which stability as well as H ., performance level % are guar-
anteed. While this approach does provide a stability and performance margin,
a good estimate of the actual uncertainty bound may be available. In that
case, assuming that the uncertainty bound has been normalized, a question
of interest is whether the system is stable, whenever the uncertainty has size
less than 1, and if that is the case, what is the worst case performance for this
same uncertainty size.

A measure of the worst case H,, performance v of an uncertain system
subject to norm bounded structured LTI perturbations was introduced in [12]
for the complex uncertainty case. It was suggested that the worst case H, gain
of the uncertain system could be found via an infinite sequence of i analyses.
Thus, since p can not be computed exactly, corresponding upper and lower
bounds have to be used. An upper bound for v can be computed by solving
a quasi convex optimization problem, for which efficient algorithms exist, but
no algorithm for a v lower bound computation has been suggested.

In many cases, considering a slightly different version of previously de-
scribed system allows us to set additional robust performance questions in
the p framework. For example, the problem of computing the worst case H,
norm of an uncertain system has always been considered an important one,
since many useful performance requirements are captured by it. Many recent
publications have presented different approaches at solving this problem. (See
[15, 37] and the references therein.) However, in all cases, the results devel-
oped provide only upper bounds on the given norm when the uncertainty is
linear time invariant.

A convex condition for Robust #, performance analysis under structured
uncertainty, of a very similar nature to the corresponding condition for robust
Hoo performance, was introduced in [37]. This upper bound is shown to be
necessary and sufficient for slowly linear time varying uncertainty. However no
indication is given on its conservativeness when the uncertainty is LTI. Recent
results show that in the MIMO case the gap can be as large as the square root
of the number of inputs.

Extending ideas from linear theory onto uncertain nonlinear systems would

be extremely useful. Performance analysis for nonlinear systems is difficult due



to the wide variety of behavior and structures which can occur.

The problem of disturbance rejection can be solved by general purpose non-
linear programming algorithms. However, our experience with performance
analysis for linear systems suggests that specific algorithms can be designed
that significantly outperform the off-the-shelf ones in the sense that they give
better answers with less computational effort [32]. Recent work has shown that
this approach can be successfully extended to the study of different robustness
problems for nonlinear systems (see [41, 43].)

The most preferred approach to control design is via low order models. The
balanced truncation model reduction method was first introduced by Moore
in [30]. Applying the signal analysis to controllability and observability led
to a coordinate system in which the internally balanced model has special
properties. Kalman minimal realization theory was recast by responses to
injected signals, and working approximations of controllable and unobservable
spaces were obtained. Moore proposed using these working spaces to obtain
minimal realization of a system. This was an early attempt to use principal
component analysis, introduced in statistics by Hotelling [23], for coping with
dynamical systems. The stability properties of the reduced order model were
shown by Parnebo and Silverman in [40]. The error bound for the balanced
model reduction was shown independently by Glover in [20] and by Enns in
[10]. An excellent overview of balanced truncation method can be found in
[52].

In the case when the system is infinite dimensional, the model approxima-
tion becomes essential. The classical approach to model reduction of nonlinear
systems is using the Galerkin method and the Karhunen-Loeve expansion that
attempts to find an approximate solution of a PDE in the form of a truncated
series expansion. The mode functions generated by the KLE method are based
on empirical data. Karhunen-Loeve expansion was introduced in [24] and the
standard KLE method has been reviewed in detail in [45], [34] and [35].

Physical systems may exhibit various types of both continuous and discrete
symmetries. Sirovich in [26] has advocated an approach that assumes a system
is ergodic and uses its known symmetries to increase the size of the ensemble,
generating symmetric data set. This insures that reduced order models will

share underlying symmetry of a system. Applications of the classical approach
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to model reduction of various turbulence phenomena with known symmetries
can be found in [22].

One of the subjects of major interest to control engineers in recent years
has became the jet engine compressor system. To avoid the development of ro-
tating stall—a compressor instability causing a sudden drop in performance—
feedback control is necessary. The simplest existing model that adequately de-
scribes the basic dynamics of rotating stall is a three state nonlinear model of
Moore and Greitzer (MG3) which is a Galerkin truncation onto a first Fourier
mode of the full Moore-Greitzer model developed in [11] . The equation mod-
eling the unsteady axial flow in the compression system introduced in [29)] is
first model of a compressor system developed directly from the Navier-Stokes

equation of an inviscid flow.

1.2 Contributions and Outline of This Work

The work presented in the first part of this thesis significantly contributes
to the development of computational methods for robustness analysis of both
linear and nonlinear uncertain systems, closing some existing gaps between
theory and practice. The work we developed in the second part of this thesis
is a first step in the extension of the linear system model reduction method-
ology to model reduction of nonlinear systems. First, the widely accepted
method for linear system model reduction by balanced truncation and the
Galerkin method for model reduction of nonlinear systems are compared. For
the special class of nonlinear systems with a rotational symmetry we propose
a new computationally efficient modeling method. As opposed to standard
approaches, it captures the existing symmetry in a system and generates low
order models.

The results are organized as follows, in Chapter 2 we give a brief overview
of the main ideas in robustness analysis with an emphasis on p theory. We
introduce the notation and lexicon that is used in the first part of this thesis.

We consider the general mixed p problem, known to be an NP hard prob-
lem, in Chapter 3 and address the problem of computing a lower bound for
mixed p. We present new approaches to computing an improved u lower
bound, based on the standard power algorithm. A comparison between the

new Combined Power Algorithm (CPA) described here and previous work is



shown. These results have been reported in [32].

In Chapter 4 we consider uncertain systems with mixed structured uncer-
tainty entering as a linear fractional transformation. Given a bound on the
Ho norm of the uncertainty we try to find the worst case Ho, gain of the
uncertain system. Although the worst case gain cannot be computed exactly,
both upper and lower bounds can be computed efficiently. At each frequency
point a skewed p problem, a mixed version of v [12], is solved. An upper bound
can be computed by solving a quasi convex optimization problem, and efficient
power algorithm for the skewed-p lower bound based on the CPA algorithm
from [32] for u is developed. These results have been introduced in [19].

In Chapter 5 we consider solving the problem of computing the worst case
‘Hy norm of a system with structured linear time invariant uncertainty with
bounded H, norm. For a given MISO or SIMO uncertain system, and given a
bound on the H., norm of the uncertainty, using an extension of the structured
singular value p, both upper and lower bound for the worst case Hs gain are
developed. The computational effort to compute these bounds is similar to the
effort required to compute upper and lower bounds of the structured singular
value p in the frequency domain. The upper and lower bounds developed
are based on integration over frequency. At each frequency point a skewed-,
problem is solved. These results are introduced in [42].

A numerical algorithm for the analysis of disturbance rejection for nonlin-
ear systems is presented in Chapter 6. This algorithm seeks solutions to the
Euler-Lagrange equations and is similar to the power algorithms for a y anal-
ysis lower bound. General purpose nonlinear programming algorithms can be
used to solve this problem. However, our experience with performance analysis
for linear systems suggests that specific algorithms can be designed that sig-
nificantly outperform off-the-shelf algorithms. The newly developed algorithm
reduces to a well studied algorithm for the lower bound of y, when the system
is linear and the algorithm is guaranteed to converge to the global optimum.
The proposed analysis method is useful in generating worst case disturbances
for analyzing non optimal synthesis techniques. These results were introduced
in [18].

Development of a low order model that qualitatively captures the observa-

tions from a physical system governed by a partial differential equation model
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is the primary goal of the research conducted in the second part of this thesis.
In Chapter 7 we briefly review a classical approach to nonlinear system model
reduction using the Galerkin method and Karhunen-Loeve expansion. These
methods attempt to find an approximate solution of the PDE in the form of a
truncated series expansion, where mode functions are based on empirical data
and generated by KLE. In the case of an homogeneous system, mode functions
are actually Fourier modes and the order of the reduced model determined by
the truncation point is not always small.

Before presenting a remedy for model reduction of certain classes of homo-
geneous systems, in Chapter 8 we compare the balanced truncation method for
linear systems and Galerkin method for model reduction applied to a system
driven by a linear PDE, to see if there is common ground for extending the
balanced truncation methodology to nonlinear systems.

The investigation conducted in Chapter 7 led to the conclusion that for
any PDE having a traveling wave as a solution, the classical approach to
model reduction will not give satisfactory results. In Chapter 9 we resolve
this problem by incorporating symmetry information in the methodology. To
generate optimal basis functions, prior to performing KLE, we process the
available data set using the “centering” procedure. This involves giving an
appropriate definition of the center of a wave and moving centers of all the data
snapshots to a standard position. The eigenvalues of the covariance matrix of
“centered” data decay rapidly and we obtain a low order model. This method
may be viewed as a way of implementing the KLE on the space of solutions
of the given PDE modulo a given symmetry group. The methodology is quite
general and should be useful in variety of problems. We applied it to several
examples, and results show that centering introduces a significant improvement
when compared to the classical technique. These results were introduced in
[17].

We conclude this thesis with a summary of the work and suggestions for

the future research directions.
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Robust System Analysis
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Chapter 2

Overview of Robustness
Analysis

Robust control analysis and synthesis methods were developed to deal with
different limitations of available models. They treat a system as a set of mod-
els, making up for the incompleteness and inaccuracy of a nominal model. The
different models in the set will account for the errors and limitations of the
measurements and limitations imposed by the model structure. Depending on
noise, signal models chosen, and the nature of the class of systems studied dif-
ferent branches in robust control have been developed. In this chapter we will
review the main ideas behind the structured singular value p framework for
robust control. The i based methods have been proven to be useful for ana-
lyzing the performance and robustness properties both of linear and nonlinear
feedback systems.

The work that we will develop in the first part of this thesis shares funda-
mental ideas of this framework and because of that its notation and terminol-
ogy. Most of the material presented here is standard, and is based on [36] and
[47].

2.1 Linear Fractional Transformations

Every robust control paradigm is based on a class of plants having simple
mathematical structure, but rich enough to capture the fundamental behavior
of the real system. In the first part of this thesis we will use classes of systems
described by feedback interconnections, known as Linear Fractional Transfor-
mations (LFTs) for linear systems. Consider the system M shown in figure
2.1 with inputs u and w and outputs y and z defined by the equations
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y u
M

z w
A

Figure 2.1: LFT interconnection of system and uncertainty.

y = M11u+M12w
Z = M21u+M22w

My M
M=| 1" TR (2.1)
My My,

Let A be a set of systems A having dimensions compatible with z and w.
Then for each A € A we can define the following system

y = Myu+ Mpw
z = Mglu -+ Mggw
w = Az (2.2)

The system that maps u into y we will denote A * M, which is standard no-
tation for the Redheffer star product. The system M can be either a constant
matrix or a linear operator between signal spaces.

It is instructive to consider a “feedback” interpretation of the system shown
in figure 2.1 when M is a constant matrix. As long as I — M A is not singular,
the only solutions v and w to the loop equation are u = w = 0. However if ] —

M A is singular, then there are infinitely many solutions to the equations, and
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norms of solutions may be arbitrarily large. In connection with the stability
of systems, we call this constant matrix feedback problem “unstable” when
I—MA is singular, and systems having only zero solutions we will call “stable.”

In the more general case when M is a linear operator we say that the
system A x M is well posed if equations 2.2 have a unique solution for every u

and w. Finally we define the set of systems
AxM={AxMAecA} (2.3)

The sets of plants considered for robustness analysis will be of the form BA x
M. where the set BA is of the form

BA = {blockdiag(Ay, D, ..., Ap), |A:]] < 1} (2.4)

Each block A; will have a very simple structure, either diagonal or a full
operator, and we will refer to the structure of the elements of the set A as the

uncertainty block structure.

2.2 Structured Singular Value pu
(Notation and Preliminaries)

The structured singular value p introduced in [8] is a powerful tool for
robustness analysis. Many robustness problems can be recast as one of com-
puting g with respect to some block structure. This structure may be defined
differently for each problem depending on the uncertainty and performance
objectives of the problem. Defining the structure involves specifying: the to-
tal number of blocks, the type of each block, and their dimensions. In general
we consider two types of blocks: repeated scalar (both real and complex) and
full blocks.

The notation used here is fairly standard and is taken from [13]. Let R
and C denote the real and complex numbers respectively. For any square
complex matrix M we denote the complex conjugate transpose by M*. The
largest singular value and the structured singular value are denoted by (M)
and (M) respectively. The spectral radius is denoted p(M), and pp(M) =
max{OJ|Al : X is a real eigenvalue of M}. For any complex vector z, z*

denotes the complex conjugate transpose, and |z| the Euclidean norm,
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The definition of x is dependent upon the underlying block structure of
the uncertainties, which is defined as follows. Given a matrix M € C**® and
three non-negative integers m,, m,, and me¢ with m = m, + m. + mg < n,

the block structure K(m,, m¢, m¢) is an m-tuple of positive integers
]C = (k], sy km-,-: km,-+17 s kmy»+m¢7 km,~+m,;+l, e km) (25)

where we require ) ;" k; = n so that the dimensions are compatible. Define

the set of allowable perturbations as follows.

AK‘, = {A - blockdiag(c’)’{]kl, ey (S;“n.r Ikm,- s 5-(1"1ka+1, ey
of fzcm,.+,,l,c,A€, . .,Af;;o) :

TFe

5T € R, 68 € C,AS € Chmrtmetixbmrimesi (2.6)

Note that Ax C C**" and that this block structure is sufficiently general
to allow for repeated real scalars, repeated complex scalars, and full complex

blocks. The purely complex case corresponds to m, = 0.

Definition 1 ([8]) The structured singular value, px (M), of a matriz
M € C™™" with respect to a block structure K(my,, m., m¢) is defined
as

AcAx

prc(M) = ( min {7(A) : det(l — AM) = O}) B (2.7)

with (M) =0 if no A € Ag solves det(I — AM) = 0.

In the case of a constant matrix feedback loop, the structured singular
value (M) provides a measure of the smallest structured A that causes
“instability” as defined in section 2.1. The norm of this “destabilizing” A is
exactly lmg_"/l) We can also relate (M) to familiar linear algebra quantities

when A is one of two extreme sets as shown in the following lemma.
Lemma 1 The spectral radius p(M) of the matriz M satisfies

p(M) - H’As’

where

A, = {6I,6 € C},



and the largest singular value
6(‘7\/[) == /J’Afy

where
Ap={apA;€CVTL

We have found this lemma extremely useful in treating special cases of

robustness analysis.

2.3 The Main Loop Theorem

To form the basis for most uses of i in linear systems robustness analysis
assume that two uncertainty structures A; and A, are given, and define a

third structure

A= Ay 0
0 A

There are three structures with respect to which we can compute p. We

Ay € Ay, A € AQ} . (2.8)

denote pa, the structured singular value computed with respect to A, pa,
the structured singular value computed with respect to Aq, and pa structured
singular value computed with respect to A. The following theorem will state

the connection between these three different structured singular values.

Theorem 1 [36] (Main Loop Theorem)

A, (Mzg) <1

pa(M) <1 &
MaXA,eBA, fa, (M * Ag) <1

To better explain the importance of this theorem we will restate it as
follows. Suppose that for a system M,y there is a property of the system and
a performance level is achieved if and only if yza (My) < 1. Then all the
plants in the set BA, * M are well posed and satisfy the property if and only
if ua(M) < 1 where A is the set

|

A 0
0 A

} DA EeE AN E Af} . (29)
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As an example, consider the discrete time linear system given by the state

space realization

Trpa)] = Az + Byuy + Bowy
yr = Crog -+ Dyug + Dipwy,
zp = Cowp + Dojug + Dopwy (210)

and the associated matrices

A B B.
Af[u = ‘ ! 2 N
Cy Dy Dy
and
A B B

4M$ 01 Dn ])12
Cy Dy Doy

As a performance measure consider the L into Ly induced gain from v to y

- - e ' _ -1
Guy = &Eg}ai-g:lgl U(D + C/(Sl([ 51A) B)

According to Theorem 1, the system is stable if
A, (A) <1
and the gain G, is less than 1

max s (M x A <1
QfEBAflAf( 11 .s)

if and only if
Hay (;Mu) <1

where

A,
Al = | 0
0 A

Now, assuming that the system has an uncertain component described by the

ASQAS,AfeAf},

following equation
W = 0,2 (2.11)

with ¢, € R and |3,| < 1. The system is well posed for all ¢, if and only if

/)(DQQ) <14 ha, (Dg;) < 1,
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where

Au = {61,4[ : 571. € C},

and the performance condition is met for all §, if and only if

¢ M) < 1.
5121{%}1{,1] ta, (6,0 M) <

Applying Theorem 1 again we see that the system given by equations 2.10
and 2.11 is stable and well posed for all §, € [—1, 1] and has induced gain from
u to y less than 1 if and only if

i, (Al) <1

with
Ay, 0 0
Ay = 0 Ay O DA EDALN EALGLER
0 0 46,7

This example is better known as state space robustness performance.

2.4 u Upper and Lower Bound

In general, it is difficult to compute u exactly (the general mixed y problem
is NP hard) so computation has focused on upper and lower bounds. An upper
bound gives a (possibly conservative) limit on the size of allowable perturba-
tions, and a lower bound yields a problem perturbation. Important issues are
then the efficient computation of the bounds, the degree to which they approx-
imate p, and techniques for refining the bounds for a better approximation.
Bounds are refined with transformations on M that do not affect ux (M), but
do affect p and 7.

A significant part of the research effort in this area has been devoted to
the development of fast and efficient algorithms for the computation of these
bounds. The work in Part 1 of this thesis concentrates on improving the
algorithm for the mixed u lower bound computation, its extension to special
classes of Hy, and H, robustness analysis, and to H,, robustness analysis of a

certain class of nonlinear systems.
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Lower bound

In order to obtain and refine a lower bound for p we define the following sets

of block diagonal matrices, which depend on the underlying block structure.

Ok ={A€Ax: 07 €[~1, 1],6°6; = LAZAY =1, ..} (2.12)

Dx = {blockdiag(e’* Dy,..., e D, , Dy 41,

ey Dmr+7nca d] Ikm,-+m.t-+u e 7dm(—,~1k,,,)
20, € [-n/2, 7/2),0 < D; = Df € Ck*ki 0 < d; € R}, (2.13)

Ba, = {A € Ag: 5(A) < 1}, (2.14)

The theoretical basis for the mixed p lower bound is the fact that the
mixed p problem may be reformulated as a real eigenvalue maximization. The

following theorem is from [48].

Theorem 2 For any matriz M € C"", and any compatible block
structure IC,
(M) = M). 2.1
pc(M) = max pr(QM) (2.15)

Note that pr(QM) = pr(MQ). Since this maximization problem is not
convex we will in general only be able to find local maxima. For any Q € O,
pr(QM) < pxc(M), so any @ € Qx immediately gives us a lower bound for
i (M). We would like this lower bound to be close to u, therefore our goal is
to find an efficient way to compute a local maximum of the function pr(QM)

over Q) € Q.
The maximization in (2.15) can be reformulated as

(M) = max {8 : det(pl, — QM) = 0}. (2.16)
QeQk

and it turns out that this maximization can often be achieved by means of a
simple power iteration which is fully described in [48]. Although this iteration
usually converges to a satisfactory equilibrium point, the convergence is not
guaranteed. However, one can still obtain a perturbation from which a lower
bound can be computed, though this need not be a local maximum. In this way
the algorithm always returns a valid lower bound, regardless of convergence.
The performance results presented in following chapters include problems of

this kind. In all tests performed no data were excluded.
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Upper bound
The whole concept of computing the upper bound for 4 is based on the

following theorem.

Theorem 3

. ‘ o -1 - R
p(M) = (Ig[é%z}i pr(QM) < min a(D,MD; ") D), D, € Dy,

171)7‘

where Dy and D, are invertible and satisfy
DlQ = QD,« VQ & Q)g.

Proof
For any Q) € Qf, and for any pair of invertible matrices D, and D,, such
that
DQ = QD;,

the following series of inequalities hold
p(QM) = p(D;*QD.M)
= p(QD,MD")
F(D,MD;").

A

Theorem 3 provides us with an upper bound to the structured singular
value in the form of a minimization problem, which has been shown in [33]
to be convex. The inequality given in the theorem can be rewritten in the
form of a Linear Matrix Inequality (LMI) as shown by the following series of

equivalent inequalities

F(D,MD) < 1

g(D,MD/") -1 < 0
w(M*D;D.M - D/D)u < 0 Vu

M*D!D.M - D;D; < 0.

For a complete development of this issue, especially further refinements
when parts of the uncertainty structure are real, we refer the reader to [47).
Software packages for solving LMIs are now commercially available and per-

form quite well.
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2.5 A Measure of the Worst Case
‘H.. Performance v

A single p robustness performance analysis provides only a bound § on
the uncertainty under which stability as well as Ho, performance level % are
guaranteed. While this approach does provide a stability and performance
margin, a good estimate of the actual uncertainty bound may be available.
In that case, assuming that the uncertainty bound has been normalized, a
question of interest is whether the system is stable, whenever the uncertainty
has size less than 1, and if that is the case, what is the worst case performance
for this same uncertainty size.

In [12] a quantity v related to p which provides answer to the following

question has been introduced.

Question 1 Determine the smallest o with the property that, for the
uncertainty bounded by 1 , the worst case Hy, performance level is better

than o,

A natural approach to answering guestion 1 will be via an infinite sequence
of 1 analyses. For any « > 0, stability of the system 2.2 is equivalent to

stability of the system M® given by

y = Myu+ aMpw

z = Myu+ aMopw

w o= H{Az. (2.17)

o
and the transfer function from u to y is equivalent for both systems. From
this it follows that the system 2.2 is stable whenever ||A|| <1 (i.e., whenever

LAl < &), with worst case performance better than «, if and only if

sup pia, (M*(jw)) < a, (2.18)
[5)
where
A 0
A, = ) A< T . 2.19
{Oéél] nn} (2.19)

Thus the answer to Question 1 is given by the infimum of those « satisfying
2.18, which can be found by the fixed point iteration
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w1 = sup pa, (M (jw)), ap > 0. (2.20)

In [12] a quantity providing an answer to question 1 in a single analysis
has been introduced.

The definition of v is dependent upon the underlying block structure of the
uncertainties. For simplicity, and without a loss of generality, we will consider
the case when block structure consists of just one performance block and one
uncertainty block.

Given a matrix M € C™" and two non-negative integers ki, and ke con-

sider the multi index
K = (ki ko) (2.21)
with k; + k2 = n, so that the dimensions are compatible. Define the set of

allowable perturbations as follows.
s = {A = blockdiag(A;, Ag) : A; € CHF ) F(A;) < 1. (2.22)

Definition 2 ([12]) The quantity vc(M), associated with a a com-
plex matriz M € C"™"* and with respect to a block structure K is defined
as

v (M) = (Argglx{a(ag) s det(] — AM) = o}) N (2.23)

with ve(M) = 0 if no A € A solves det(] — AM) = 0.

It is important to note that in the formula for v (M), the size of Ay is not min-
imized but just kept below 1, reflecting the fact that the required uncertainty
bound is fixed.

v is related to p via a recursion given by the following proposition.

Proposition 1 Suppose v(M) < oc. Then

(M) = px ([ ”’C(Ag)]’“‘ IZ ]7\/1) (2.24)

This property of v will allow us to develop eflicient algorithms for com-
puting both lower and upper bound of skewed p, which is a special case of v
‘hat includes real parameters in the uncertainty, based on the computation of

lower and upper bound of p.



21

Chapter 3

Advances in the Computation of
the 1 Lower Bound

The structured singular value p, introduced in [8], is useful because many
robustness problems can be recast as problems of computing p with respect
to some block structure. In recent years a great deal of interest has arisen
with regard to robustness problems involving uncertain parameters that are
not only norm bounded, but also constrained to be real. This type of problem
falls within the p framework by extending the original definition of u to allow
both real and complex uncertainties in the block structure [14]. This mixed u
problem has fundamentally different properties from the complex y problem
with important implications for computation.

Recent results in [3], for example, prove that the general mixed p problem
is NP hard, while [6] indicates that computing guaranteed bounds may be NP
hard as well. This strongly suggests that any scheme to compute the exact
solution for the general mixed p problem will be computationally intractable,
and the best we can hope for is to get good bounds for most problems.

This chapter addresses the problem of computing a lower bound for mixed
. A power iteration algorithm to compute a lower bound was generalized to
the mixed case in [48]. Even though each iteration of the scheme is very in-
expensive, involving only matrix-vector multiplications and vector inner prod-
ucts, its convergence properties are typically good. Unfortunately, the lower
bound power iteration does not converge on a significant number of problems.
Although one can still obtain a lower bound from the scheme in such cases,
the bound may be poor. The first effort to enhance the performance of the
standard power algorithm (SPA) is presented in [44], with encouraging results.
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In this chapter we present new approaches to computing an improved y
lower bound. The SPA from [48] will be our starting point. We develop
some new algorithms after examining the convergence properties of the SPA.
These algorithms are then combined to yield a substantially improved power
algorithm.

A comparison between the new algorithms described here and previous
work including [48] is shown in Section 3.8. The results are promising and
are the principal motivation for this exposition. Furthermore, the algorithms
described and compared here are by no means optimized, so it is reasonable
to expect that this work will lead to even better results than those in Section
3.8.

3.1 Mixed p is NP Hard

It is well known that the general mixed g problem has the fundamental
property of being NP hard (see [3], for example), which has important implica-
tions for computation. Recent results in [6] show that computing guaranteed
bounds may be NP hard as well.

It is still a fundamental open question in the theory of computational com-
plexity to determine the exact properties of NP hard problems and we refer
the reader to [16] for an in depth treatment of this subject. However, it is
generally accepted that a problem being NP hard means that it cannot be
computed in polynomial time in the worst case. Being NP hard is a property
of the problem itself, not any particular algorithm.

The fact that the mixed p problem is NP hard strongly suggests that it
is futile to pursue methods for exactly calculating g of general systems with
mixed uncertainty for other than small problems. However, these results do
not mean that one cannot develop practical algorithms to compute bounds for
problems which arise in engineering applications. Typically such algorithms
involve approximation, heuristics, branch and bound, or local search.

With this in mind, we see that proofs of convergence to the global maximum
are irrelevant. Any such proof is meaningless for any computation other than
those that are trivially small (and consequently easy). Any practical effort to
compute an NP hard problem must be measured by its performance on a large

number of typical problems, as in Section 3.8.
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3.2 Characterization of Local Maxima

Efforts to compute a lower bound for p have focused on finding a local
maximum of (2.15) rather than the NP hard problem of finding a global max-
imum. In this section we present conditions that must be satisfied at every
local maximum. Recall that by (2.15), puc(M) = maxgeo, prR(QM). The
characterization of a maximum point of pr(QM) at Q = I will be in terms of
an alignment of the right and left eigenvectors of M.

First, a bit more notation. Suppose M € C™*" has an eigenvalue A with
right and left eigenvectors z and y respectively. We partition z and y compati-
bly with the block structure, so that z,,,y,, € CFi fori € {1,...,m;}, 2, ¥, €
Chmesi for i € {1,...,mc}, and z¢,, Yo, € Chrrtmeti for i € {1,...,me}.
Furthermore, for the rest of this chapter we make a non-degeneracy assump-
tion that for every i where these subscripts are defined, y; z,, # 0,y. %, #
0, y5.xc; # 0.

For any matrix @@ € Qx define the index sets

J(@Q)={i<m, :|A| =1} (3.1)

J@Q) = {i <m,:|AT < 1} (3.2)

and define the allowable perturbation set

BA(J,J) = {A€Ax: |A]| < Lied Al <1+eie ],
A < Li=1,...,m,o(A7) S Li=1,...,mc}. (3.3)

We see that for sufficiently small e > 0, if Q € Qx and A € BA(J (@), T(Q)),
then QA € Ba, and AQ € Ba,..
The following theorem is proved in [48].

Theorem 4 Suppose the matriz M € C*" has a distinct real eigen-
value Ao > 0 with right and left eigenvectors, x and y respectively, sat-
isfying the non-degeneracy assumption. Further suppose that pr(M) =
Xo. If, for some € > 0, the function pr(QM) attains a local mazimum
over the set Q € ]E_lAE(J , J Y at @@ = I, then there emists o matriz
D € Dy, with 0; = £5 for cvery i € 7, and a real scalar i € (=%, 5)s
such that y = ¢’V Duz.
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Remark: It was shown in [48] that we have a partial converse to Theorem 4,
namely that if y = ¢/¥ Dz under the above assumptions, then no directional
derivative of the eigenvalue achieving pr(QM) over the set () € BAC(j T ) is

real and positive at (J = 1.

3.3 A Lower Bound Power Algorithm

In the first part of this section, we review the SPA, which is the starting
point for the research presented here. In the second part we show the results of
a comparison between the SPA and standard optimization code for the same
problems. These results support the assertion that the SPA is a good starting

point for the development of better algorithms.

The SPA

It was shown in [48] that the problem of computing a lower bound 3 for
(M) can be reduced to finding matrices Q) € Qx and D € Dy with §; = +%
for ¢ € J (@) and non-zero vectors b, a, z, and w such that the following set

of equations holds.

Mb = fa Mz = fw
b= Qa b=D"1w
z=Q"QDa z = Q" w. (3.4)

Finding such solutions may be attempted via the power iteration in [48].
We will not go into any of the details of the theoretical development here, but
merely present the final result.

In this section we explicitly write the formulae only for the simple block
structure with m, = m, = me¢ == 1. This is for notational simplicity only. The
formulae for an arbitrary block structure are obtained simply by repeating
the formulae for each block type appropriately. Except for equations (3.7)
and (3.9), the blocks are updated independently. Given K = (ki, ko, k3) the

appropriate scaling set becomes

Quup = {blockdiag(q" Tk, ¢ In,, Q) - ¢ € [-11),¢%¢° =1,
QU QY = Iy} (3.5)
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Partition the four vectors b, a, z, and w € C" compatibly with this block

structure as

by ay z w)
b=t |, a=]a |, z2=| 2 |, w=| ws (3.6)
by " 23 ws

where b;, a;, 2, and w; € CF. Allow these vectors to evolve via the following

power iteration:
Brrraksr = Mbe © By € RY, Jap] =1 (3.7)

Ay = Ge41Wyy

wgkazwl
T s TPy 3.8
21 1w;k dag,, ! 2k ( )
lws, |
Z. [romepe——_ g
k41 l{b3k+1l B
Bk+lzuk+1 = M 21 Bk.“ eRT, Jwp] =1 (3.9)

blwl = k410144

@ W2y
bg = —k“—————az, 3.10
o |a§k+1’w2k+1‘ o ( )
’(L3k " I
b3k " |w-3;:p11 | P
where gp41 and g evolve as
~ ~ tbl 1 *
ak*l = Sgn( k) |(11 kl I m’*w R’e(a’lk,q,.l ‘u)lk) (3'11)
L1
Grw1 = min(max(—1, k1), 1)
X N by
Gy =  SEN(Gkt1) [ ]1 ’“Il + Re(a}‘k“wlk”)
k41
Grey = min(max(—1,dx1),1).

Note that all used relationships are written in a manner that does not involve
the matrices () and D.

It was shown in [48] that if the above iteration converges to an equilibrium
point then we have a matrix Q € Qg such that QMb = 3band w*QM = Buw*,
so that max(3, §) gives us a lower bound for px(M). Furthermore if 3 = f3
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then this bound corresponds to a local maximum of (2.15). In a significant
number of cases the iteration does not converge, and the resulting guess for
Q € Qi yields a poor lower bound for p. These are precisely the cases which

need improvement.

The SPA vs. Standard Optimization

In order to examine the average computational requirements both for the
SPA implemented in Matlab! (with no .mex files) and for directly solving
(2.15) via the standard optimization techniques of N PSOL?, also implemented
in Matlab (with .mex files), we ran both algorithms 100 times on random com-
plex matrices with independent normally distributed elements, and collected

statistical data. This was repeated for problems of various sizes.

SPA vs. NPSOL
0.14 : ; , , . . . ; ;

008 P ....... ....... ...... SERRRE
0.06} R R ......... e e ........ e TRERRRRRE Y
Q.04 L ........

0.028 -t

o T
0.2

”"‘Ow 04 1 ' 1 i i . i
o 10 20 30 40 50 60 70 80 20 100

% of cases when In (ratic of lower bounds) <y

Figure 3.1: In((SPA lower bound)/(NPSOL lower bound)) for problems of size
4 through size 30. The SPA computes better bounds: its bounds are often
significantly better, and seldom significantly worse than NPSOL’s bounds.

The ratio of computed lower bounds and computational requirement ver-

sus matrix size are shown in Figure 3.1 and Figure 3.2 respectively for a block

‘Matlab is available from The MathWorks, Inc., Cochituate Place, 24 Prime Park Way,
Natick, MA 01760

2Information about NPSOL is available from the Stanford Office of Technology Licensing,
350 Cambridge Ave, Suite 250, Palo Alto, CA 94306
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structure consisting of complex scalar uncertainties. The flop count for the
SPA includes an upper bound computation, while the flop count for the stan-
dard optimization doesn’t include the .mex file flops, so the difference between
the algorithms is even more pronounced than that shown in Figure 3.2.

It can be seen that the SPA is much faster, even though the lower bound
obtained is better. This advantage becomes more significant as the size of
problem grows. Note that NPSOL is finding local maximums for these prob-
lems; the SPA computes better bounds because it tends to find larger local

maximuins.

SPA vs, NP

TTTT T

4 . . : : B

problem size

Figure 3.2: SPA flop count and a partial NPSOL flop count for problems of
size 4 through size 30. Clearly, the SPA can solve much larger problems than
NPSOL can.

3.4 The SPA Using the Rank One Solution

In this section we explain a connection between local maximums of pr(QM)
and the solution of a rank one p problem. The power iteration attempts to
force the right and left eigenvectors of QM to satisfy the alignment condition
of Theorem 4 associated with a local maximum of pr(QM). It turns out that
this alignment condition is also associated with the solution to a certain rank

one p problem formed from these vectors.
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The resulting rank one u problem leads to a new way of updating @ in
the SPA. The new algorithm is nearly as fast as the SPA and provides better

bounds. This is the simplest improvement over the SPA in this chapter.

Rank One px(M)

The rank one mixed p problem is the special case of computing px (M)
where M is a dyad. This is a much easier problem as any non-zero local maxi-
mum of pr(QM) is global ([5]). The following theorem from [46] characterizes
the solution to the rank one problem in terms of the alignment conditions of

Theorem 4.

Theorem 5 Suppose we have M = wv*, with u,v € C" satisfying

the non-degeneracy assumptions, and a compatible block structure K.

Further suppose we have Q) € Qg with g} # 0 fori=1,...,m, such that

pr(QM) = B > 0. Then we have 3 = px(M) iff there ewists D € Dx

with 0; = £Z for |gf| <1 and ¢ € (3, §) such that v = ¢’V DQu.

The simplicity of the rank one mixed p problem is apparent in the following
graphical interpretation in the complex plane. Let M = uv*, A € Ba,, and
0 < a € R. Then

0 = det({ - él\/f) = det(1 — v*«%u)
o o

vPAY = o
My me me

<7
T % c, % * (&) .
&> E o7 Uy Uy, + E 0jUp Ue; + S ve, A ue; = o
ey gom] izl

This equation is the basis of the graphical interpretation of the rank one
mixed g problem. The problem is solved simply by choosing 47, §¢, and AY
so that vectors 6"v u,, 6°v u,, and vEA%uc add up to the largest possible
positive real number. The contributions of the complex blocks cannot be
optimal unless they are collinear; they must all have the same phase. So, we

have
M me

E 0ivg, Ue; + E vaAf‘u@ =eVLo, (3.12)

i=1 PSS
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and the rank one mixed p problem reduces to choosing real numbers §] €
[~1,1] and ¥ &€ [, 7] to maximize & where
Ty
Z Stvruy, + €V Le = a. (3.13)
iz=1
By thinking of (3.13) as a vector sum in the complex plane it is apparent
that the solution to this problem can easily be obtained geometrically.
The following algorithm is guaranteed to compute p exactly for a rank one

mixed u problem. It also gives us an optimal perturbation @ € Qk.

e Choose starting values for the real perturbations as 6] = sgn(Re(vy,uy,))
e Compute S = sgn(I(X10, 67 v} ur,))

e Rank all the components §7v* u,, by argument £(567v” u,,) in descending
2 i1 i Ty 3 g.}

order

e For the highest rank component not yet considered, assign the optimal
value of this 67 unrestricted in sign or magnitude to A,y (the optimal

value depends on L¢ and £(Sé]v7 uy,))

o If sgn(A,p) = —sgn(67) and |Agy| > 1 and this is not the last possible
component, then go back to the previous step, else proceed. In either

case, reassign of = max(—1, min(A,y, 1))

e We now have an optimal 8] and can easily compute the optimal value of

¥, and then the perturbation @)

The algorithm requires at most a search over real parameters, the cost of
which grows linearly with m,. Thus we have a closed form solution with trivial

computational requirements for both px (M) and the associated Q € Qk.

The Rank One Algorithm (ROA)

The relationship between each u problem and a corresponding rank one
1 problem is shown by the following Theorem, which connects the alignment

conditions of Theorem 4 with a particular rank one p problem.
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Theorem 6 Suppose we have the matrizc M € C™" and Q) € Qx such
that QM has a real positive eigenvalue. Further suppose that qf # 0
fori=1,...,m,., and that the corresponding right and left eigenvectors
of QM, denoted by = and y respectively, satisfy the non-degeneracy
assumption. Then there exists D € Dy with 0; = L% for |¢f] < 1 and
¢ € (%, %) such thaty = el Dz iff the matriz Q € Qx solves the rank
one p problem maxse o or(QM,1) where M,y = 2y* and & = Q 'z.

Proof By assumption we have y*z > 0 so that y*QZ > 0 and hence
pr(QM,1) > 0. The result then follows from Theorem 5. n
The resulting rank one problem is easily solved, and allows us to choose
@ € Qx which is consistent with the alignment condition. This is used to

modify the power iteration as follows

e Start with initial guesses for b,w € C"

» Update a with the power step Ba = Mb

Compute the @ € Qx that maximizes pgr(Qaw™)

Update z with z = Q*w

Update w with the power step Bw = M*z

Compute the Q € Qx that maximizes pp(Qaw™)

Update b with b = Qa

If converged, then stop, else go to »

Sometimes the rank one problem constructed from the eigenvectors of a
local maximum will have multiple solutions. Some of these solutions of the
rank one mixed yu problem might not correspond to equilibrium points of the
original problem. This can happen when two or more products wy,a,, have the
same phase or opposite phase. A procedure that chooses the correct solution

is currently being investigated.
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.5 The Wrap in Reals Algorithm (WRA)

This section presents a more substantial modification to the SPA. The prin-
cipal difficulty with the SPA is that if pp(QM) < p(QM) then the algorithm
often doesn’t converge. One way of thinking of this is that the “power” steps
(3.7) and (3.9) are increasing the component corresponding to p(QM) faster
than the rest of the steps can move towards the solution corresponding to
pr(QM). The idea in this section is to utilize the good convergence properties
of the SPA on complex blocks, while proceeding more cautiously on the real
blocks.

For the remainder of the chapter we introduce the following notation. We

separate the perturbation @) into its real and complex components, Q, and Q.,

(@ o
Q“(o QC)'

We partition the vectors a, b, z, and w and the matrix M compatibly:

Fes , b= , &= y W= 3
Gy, bc Ze W,

M = My, My ‘
My My

The following theorem, proved in [44], gives alignment conditions in terms

as follows.

of the real and complex block components in a way that allows for an algorithm

that updates the real blocks independently of the complex blocks.

Theorem 7 For a given matriz M € C*" and ¢ given uncertainty
structure KC, suppose we have @@ € Qx, non-zero vectors a, b, z, w, and a
positive scalar 3 such that I — M1Q; is nonsingular. Further assume
that b, # 0, z. # 0 and all the diagonal elements of Q, are nonzero.

Then the following conditions hold:
Mb = fa M*z = fw (3.14)

b= Qa b= D"t (3.15)
z = @Q"QDa z = w
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iff there exist non-zero vectors ae, be, ze, w, satisfying the following con-

ditions:

Mecb. = Ba, M¢ze = Pw, (3.16)
be = Qcac b, = D w, (3.17)
ze = QrQcDea, ze = Qewe
Q- (Bl — My Q) Myb, = D;7YBI - M}Qr) Mz (3.18)

where l\'{c s (]\{[22 + 1}\/[21@7-(,81 - 1\411QT)“1MD).

An iterative algorithm which separates the real and complex blocks in this

way is as follows:

e Start with some given values for b, w, 3, @),, and M
» Update a, with the power step Ba, = Mcb,

e Update 2, as in the SPA

e Update w, with the power step Bw, = Mz,

e Update b, as in the SPA

e If converged, then go to the next step, else go to »

e Compute a, = (81 — M;;Q,)" My3b, and
wy = (B — M}, Qr) 1 M3, 2,

o Update @,
e Update
* Compute ]\/fcr = (A@g g ]WQlQT(ﬁ[ - M”QT)”MH)

e If converged, then stop, else go to »

This specifies a class of algorithms, which may update @, in a variety of
ways. Additionally, we run one rank one type iteration first, in order to get
the starting values of b, w, 3, and @), needed for the WRA.
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Compared to the ROA, the WRA is computationally more expensive, but
the convergence properties are much better, even with a simple ), update.
It is thus reasonable to mix the two procedures, and only use the slower and
more reliable one in the cases where the faster scheme fails to converge.

In the SPA at a local maximum of pr(MQ), the vector a is not necessarily
in the direction of the largest eigenvalue of M), and the algorithm might not
converge if pp(MQ) < p(MQ). In the WRA, however, at a local maximum of
pr(MQ@) the vector a. always corresponds to the largest eigenvalue of Mc(Q..
The WRA may be thought of as first implementing the SPA on the complex
part of the problem with the real part fixed (the SPA has very good conver-
gence properties on complex problems), then improving the real part of the
problem with the complex part fixed. While [44] uses this idea of separating
the real and complex parts of the problem, they do not exploit the convergence
properties of the SPA on complex problems. Thus it is not surprising that the
WRA has significantly better convergence properties than both the SPA and
the algorithm in [44].

3.6 The Shift and Inverse Algorithm (SIA)

Another way to find an eigensolution that does not correspond to p(MQ)
is based on the observation that if A\x = MQz and (° is not an eigenvalue,
then

(A - %)z = (MQ — §°1)"'z.
When A and 3 are close to each other, (A — (3%)~! is a very large eigenvalue of
(MQ — B°I)™ and a power iteration based on this equation will converge to
the eigensolution Ax = M@z of MQ. Such an iteration is called a shift and
inverse iteration.

We use this idea to modify the SPA. The @) updates are as in the SPA,
except that now @ must be formed explicitly. This algorithm, called the SIA,

proceeds as follows

e Start with a ), a 3° close to an eigenvalue of M), an a close to a right

eigenvector of M@, and a w close to a left eigenvector of QM.

» Update a; and § with the inverse power step (8 — %) 'ax = (MQ —
B°I)~'ax_, with § € RT and |a;| = 1.
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Update @@ € Qx and [°.

e Update wy, and 3 with the inverse power step (3 — %) lw, = (M*Q* —
B0~ twy_; with #eR* and fwg| = 1.

Update @ € Qx and 5°.

L]

If converged, then stop, else go to » .

This algorithm converges very well when we start close to an eigensolution.
When we do not start close to an eigensolution, however, it performs very
poorly. Thus it is appropriate to use it only in conjunction with some other

algorithm that gets us near a solution first.

3.7 Combining the Algorithms

In previous sections we introduced three new algorithms for mixed u lower
bound computation. Here, we aim to combine them in a way that utilizes
their respective good qualities and avoids their bad qualities. All the algo-
rithms have enhanced convergence properties compared to the SPA, but are
also more computationally costly. Since the ROA is computationally the least
expensive—nearly as inexpensive as the SPA—we want to preserve the speed
of the ROA for those problems where the ROA converges, while improving
convergence (and therefore accuracy) for those problems where the ROA fails
to converge.

In the cases where the ROA fails to converge, we need to continue looking
for a local maximum with one of our other algorithms. Note that all our al-
gorithms start with some guess for the perturbation or the vectors as input.
If these are close to a local maximum then the algorithms perform particu-
larly well. Consequently, when we decide to switch to another algorithm in
the middle of a problem, we can take advantage of the computation already
performed. Knowing that the SIA has particularly good properties only when
we are quite close to the equilibrium point, we choose to continue with the
WRA, which works better than the SIA when we aren’t so close to an equilib-
rium point. In the case that the WRA also fails to converge—typically it just
slows down, often near the optimum (this might be remedied with a better Q,

update)—we will continue with the SIA.
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The following combination of the algorithms defines a new algorithm which
we denote by CPA, for combined power algorithm. This is the CPA algorithm

used in the next section, (i.e. this is the scheduling used).

e Run the ROA for up to 50 iterations
e If not yet converged, then run the WRA for up to 50 iterations
o If not yet converged, then run the SIA for up to 50 iterations

e If not converged, then construct a lower bound from the current pertur-

bation

This scheduling reflects experience from testing not presented here. Cer-
tainly, there is room for improvement. In particular, the scheduling should

depend on a priori knowledge of the problem.

3.8 Numerical Experience

The nature of the mixed u problem is such that the only meaningful way
to evaluate an algorithm is by testing it on a large number of representative
problems. In this section we present a comparison of several algorithms, each
run on the same type of problems. We also show how the performance of the
best algorithm depends on problem size.

For the purpose of testing algorithms it is desirable to be able to generate
nontrivial problems for which we know p. A procedure given in [50] allows
us to construct matrices where ut is equal to some specified value, and the @)
achieving the maximum of pr(QM) typically satisfies pr(QM) < p(QM). We
denote these matrices as the set Rg. We emphasize that these are particularly
difficult problems for mixed u lower bound computation. This is desirable
because existing algorithms work well on most problems; the point of this
research is to do better in the cases where existing code is inadequate.

Figure 3.3 shows a comparison between the algorithms described here and
also the algorithm in [44] which is called the APA. The SIA is not included as it
performs poorly unless it is given a good starting point; it is only meaningful in
conjunction with another algorithm. We tested the algorithms on 500 matrices

in the set Ry each with 4 real parameters, 2 scalar complex blocks and one
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Performance of The Algorithms
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Figure 3.3: Algorithm performance on 500 hard problems.

2x2 complex block in the block structure, and with 4 = 1. The results are
dramatic.

Figure 3.4 shows how the bound computation using the best algorithm,
CPA, becomes more difficult as the problem size increases. The best perfor-
mance shown is with 2 real parameters, and the worst is with 12. All problems
were hard problems from the set Rg with p = 1, and with 2 scalar complex
blocks and one 2x2 complex block in the block structure. These results further

motivate research in better bounds computation.

3.9 Conclusion

Even though the general mixed p problem is NP hard, which strongly
suggests that the exact computation for the general mixed p problem will
be computationally intractable, reasonable computation of upper and lower
bounds is possible.

Several new approaches to computing an improved p lower bound have been
presented here. These algorithms have been combined to yield a substantially
improved power algorithm. The improvement on a large set of particularly

difficult problems is shown in Figure 3.3 and is the justification for this work.
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Performance of the CPA for Varicus Sized Hard Problems
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Figure 3.4: Computation is more difficult as problem size increases from 2 to
12 real parameters. CPA on Rp matrices.

Furthermore, the algorithms described and compared here are by no means
optimized, so it is reasonable to expect that this work will lead to even better

results than those in Section 3.8.
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Chapter 4

Advances in Worst-case Ho
Performance Computation

In this chapter we consider uncertain systems with mixed structured un-
certainty entering as a linear fractional transformation and ask the following
question: given an uncertain system, and given a bound on the norm of the
uncertainty, find the worst case H,, gain. This problem was introduced in [12]
for the complex uncertainty case.

Although this worst case gain can not be computed exactly, we will show
that both upper and lower bounds on this worst case gain can be computed
efliciently. The computational effort required by these bounds is similar to the
one required to compute upper and lower bounds of the structured singular
value p in the frequency domain.

At each frequency point a skewed-u problem, a mixed version (i.e. the block
structure contains both real and complex uncertainties) of v [12], is solved. An
upper bound can be computed by solving a quasi convex optimization problem,
for which efficient algorithms exist. The main contribution of this chapter is to
show that an efficient power algorithm can be developed for the skewed-u lower
bound, based on the corresponding algorithmn for the mixed-p lower bound.
We test the algorithm extensively, both on systems generated at random, and
on systems derived from real life engineering applications.

The rest of this chapter is organized as follows: In the next section we
define the skewed structured singular value. In Section 4.2 we show how a
v lower bound can be posed as a maximization problem and generalize this
approach to the skewed u lower bound.

In Section 4.3 we explain the connection between v and y and propose the
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algorithm used for computation of the skewed p lower bound. In Section 4.4
we present the corresponding skewed p upper bound. Finally in Section 4.5 we
study the behavior of the algorithms when tested on the model of an airplane

control system during the flare phase of an automatic landing.

4.1 Skewed-u

In this section we will define the skewed structured singular value as a
mixed version (i.e. the block structure contains both real and complex un-
certainties) of » introduced in [12] and presented in Section 2.5. Given a
matrix M € CHna)x(mtne) and three non-negative integers my,, m., and me
with m = m, + m, + m¢ < n, the block structure Ky(m,, m¢, m¢ + 1) is an

(m + 1)-tuple of positive integers
Ks(me, me, me + 1) = (K(mp, me, me), ng)

where we require ) *, k; = n so that the dimensions are compatible. Define

the set of allowable perturbations as follows.
A}’Cb == {As m blockdiag(Af,A) : Af & A}L,O’(Af) <1l,AE€e Cn“x""’}. (4.1)

We partition a matrix M in accordance with A, as shown in figure 4.1.

M = Mn M,
My, My,

Definition 3 The skewed structured singular value, pi, (M), of a ma-
tric M € Ctns)ndns) - sych that (M) < 1, with respect to a block

structure KCs(m,, me,me + 1) is defined as
1
i, (M) = (Amig {7(A) : det(I — A,M) = 0, A, = blockdiag(A, A)})
AL W

with
pic, (M) =0 if no Ay € Ay solves det(] — A,M) = 0.

According to (2.18) The supremum over frequency of the skewed structured

singular value can then be used to answer the following question:
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Ay
D M
e A —
e 2|

Figure 4.1: LFT interconnection of system and uncertainty.

Question 2 What is the worst case Hy gain of the system if the

uncertainty has size 1 or less?

Definition 3 suggests that us. may be related to p . This is indeed the case as
stated in Proposition 1 which is a mixed version of the proposition from [12].

Proposition 1 Suppose pi- < co. Then

P (M), 0
pi, (M) = p ([ His (o ) ; } M) . (4.2)
ns

Proof Let p. = i (M) and let p, be the right hand side of (4.2). We show
that ps > pg, and g, > ps. The former holds trivially if puz = 0. Thus,
assume gy > 0.From the definition of 1§ (-), there exists A, = diag{A;, A} €

%, such that 7(A) = (p5; )" and

(i, (M) 0
0 A

) = (:u’)g(:g)‘ln

det(I—As;M) = det (] _ {

s (M),
e (M0, Lo,
0 I,

Since
([ a2, o0
0 A

in view of the definition of u(-), we have

8
s = M-



41

Again, py > pg holds trivially if y, = 0. Thus, assume p; > 0. Let A=
diag{A;, A} such that 7(A;) = 5(A) = (,)"! and

s (A n ,S,' A /A
;LM((J)ZI)I 0 }M) — det (I—— [ﬂh,é(lf)Af 2}]\4) = 0.

det (1 - A
I, 0

Since p, > pf , we have diag{ u;“csz&f,é&} € Ag,, and from the definition of
/"’:;QC.;() ’

M, = (@A) = ps.

4.2 The Skewed i Lower Bound

In Section 2.5 we suggested that Question 2 could be answered via an
infinite sequence of p analyses. First we will make it precise here how v can
indeed be obtained from p, and then we will show how this approach can be
generalized to obtaining skewed p from pu.

Define the function f: R — R as

. (YI;“ 0 ,
fla)=u ([ 0 I } j\/l) . (4.3)

It has been shown in [31] that the function f(«) is continuous and nondecreas-
ing.
The following proposition is taken from [12].

Proposition 2 (a) 8 > v(M) implies that f(8) < 3,
(b) 0 < B <v(M) < oo implies that () > 8.

Theorem 8 ([12]) Let {ay} be the sequence generated by the fixed
point teration
sy = flog), k=1,2,..., (4.4)

with wg any positive number. Then

lHm oy, = v(M). (4.5)

ko0
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Proof Follows directly from Proposition 2 and the continuity of f. n
The theoretical basis for the skewed-u lower bound is the fact that the p
problem may be reformulated as an eigenvalue maximization (2.15) which can

also be posed in the following form
(M) = [max {3 :det(BI, - QM) = 0}.

In order to obtain and refine a lower bound for - we define the following set

of block diagonal matrices, which depend on the underlying block structure.

Q% = {Q, = blockdiag(Q;, Q) : @y € Qx Q'Q = I, }.

According to the Theorem 2 the pi. may then be reformulated as a fol-

lowing maximization

3, 0
pr (M) = max {§:det(Blin, — Q f ) } M) =0}
‘ QeQk, "
= max {f:det(Bl4n, — QMp) =0} (4.6)
QEQy,

where

Mﬁ = ﬁln 0 M.
0 I,

Since this maximization problem is not convex we will in general only be
able to find local maxima. For any ) € @ for which exist 3 such that
det(fBlnn, — QMpg) = 0, 8 < pi_, and any such Q € Qf immediately gives us
a lower bound for ug (M). Efficient computation of a local maximum of the
function p(QMyg) over Q € Qi can be achieved by modification of the power
iteration fully described in [32).

In the following subsection we show how the power algorithm for computing
a lower bound for g can be modified to compute a lower bound for pj . This

work is based on [49], with additional improvements made by the authors.

4.3 Skewed p Lower Bound Power Algorithm

To solve the maximization problem (4.6) and compute a lower bound £ for

i, we developed an algorithm starting from a combined power algorithm for
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computing a lower bound for p. The following combination of the algorithms,
introduced and explained in detail in the previous chapter, defines a new al-
gorithm which we denote by SCPA, for skewed combined power algorithm.

e Run the ROA for up to 50 iterations
o If not yet converged, then run the WRA for up to 50 iterations
e [f not vet converged, then run the SIA for up to 50 iterations

e If not converged, then construct a lower bound from the current pertur-

bation

Every stage of SCPA consisting of a different power iteration scheme has

been modified in the following way.

1. Start with initial guesses for b,w € C"

2. Update a with the power step fa = Mpgh
3. Compute ) € Qx

4. Update z with z = Q*w

5. Update w with the power step fw = Mjz
6. Compute @ € Qg

7. Update b with b = Qa

8. If converged, then stop, else go to 2

With every new update for 8 we actually change matrix My used in the
power iteration. This is definitely going to reduce the efliciency of the SCPA
algorithm compared to the CPA algorithm where in every power iteration we
use the same matrix M.

The nature of the skewed-u problem is such that the only meaningful way
to evaluate an algorithm is by testing it on a large number of representative
problems. In the rest of this section we present a performance analysis for the

proposed algorithm.
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For the purpose of testing the power algorithm it is desirable to be able
to generate nontrivial problems for which we know pg . A procedure given
in [50] allows us to construct matrices where p is equal to some specified
value. We denote these matrices as the set Ryz. Despite the fact that we
have no convergence guarantees, the algorithm in fact converges most of the
time. We tested the algorithm on 100 matrices in the set Rp each with k real
parameters, two complex scalar blocks and one (2 x 2) complex block in the
block structure. We fixed the size of the first £ + 2 blocks to be less than or
equal to 1, having then that uj. = 1, and varied k£ from 2 to 12. Table 4.1
shows how the percentage of cases in which our algorithm converges in less
than 100 iterations varies with the block size.

It is important to note that, even when the power algorithm does not
converge, a lower bound on uj is still obtained. Figure 4.2 shows the distri-
bution of the answers given by the power algorithm (The true value of p- is
1). The behavior of the algorithm degrades with increase of a number of real

parameters, but is still more than satisfactory.

Table 4.1: Numerical evaluation of the Power Algorithm

Size of uncertainty blocks | 2 l 4 l 6 l 8 'lO I 12
% cases that converge % 99 l 99 I 93 l 91 | 91 l 89

4.4 'The Skewed i Upper Bound

To obtain a tractable upper bound for uz. we introduce the following set
of positive definite block diagonal scaling matrices, which commute with the

elements in Ag .
Dj.. = {D, = blockdiag(Dy, D) : Dy € D, D = D* € C™*"}

Once again we use the familiar complex p upper bound technique to obtain

the following upper bound for skewed- .

pe, < inf  min {#: MjDMy — *D < 0}

T DeDy 0<feR
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Figure 4.2: Computation is more difficult as problem size increases from 2 to
12 real parameters. SCPA on Rp matrices.

I, 0
= inf min {f: M"DM - | D <0}
DeDy, 0<peR 0 AL,

Jomputationally this reduces to a Linear Matrix Inequality. The interior

point methods described in [2] can be used to efficiently compute this upper
bound.

4.5 Worst-case H,, Performance Computation
Results

We will study in this section the noise rejection capabilities of an airplane
control system during the flare phase of an automatic landing. The distur-
bances considered are gusts in the longitudinal and vertical directions. The
performance outputs are altitude and vertical speed. In this phase it is par-
ticularly important to minimize the effect of gusts on vertical speed, since
deviation from the nominal can result in impact higher than acceptable at
touchdown. The uncertainty corresponds to modeling error in certain aero-
dynamic coefficients. The system includes a 4 state longitudinal aerodynamic

model of the airplane, plus the flare control law, and Dryden filters for the
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wind gusts.

We computed pi s upper and lower bounds for the airplane closed loop
model over the [0.01, 10]H z frequency range. The model has 13 states, 5 inputs
and 5 outputs. The fixed size part of uncertainty, Ay, consists of three real
scalars, and we separately analyzed the ., norm of the system for the two
performance outputs.

Figures 4.3 and 4.4 show the results of computation. The gap between the
upper and the lower bound is very small, meaning that the computation is

very accurate.

4.6 Conclusion

We showed in this chapter that the worst case H,, gain of an uncertain
system subject to norm bounded structured LTI perturbations can be written
exactly in terms of the skewed structured singular value. Although, like u, the
skewed structured singular value can not be computed exactly, we discussed
efficient algorithm to compute corresponding upper and lower bounds.

The algorithm was shown to perform satisfactorily both for test matrices
generated artificially, and for systems derived from engineering applications.
The results presented in this chapter thus show that the enhanced algorithm
developed recently for the structured singular value, can be extended to the
problem of computing worst case gains under fixed size uncertainty, without

significant loss of performance or accuracy.
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Figure 4.3: pg_ upper and lower bound for the first output Hy gain of a
landing airplane.
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Figure 4.4: pj. upper and lower bound for the second output H., gain of a
landing airplane.
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Chapter 5

Practical Upper and Lower
Bounds for Robust Hy
Performance under LTI
Perturbations

The problem of computing the worst case H, norm of an uncertain sys-
tem has always been considered an important one, since many useful per-
formance requirements are captured by it. Many recent publications have
presented different approaches at solving this problem. (See [15, 37] and the
references therein.) However, in all cases, the results developed provide only
upper bounds on the given norm when the uncertainty is linear time invariant.

A convex condition for Robust H, performance analysis under structured
uncertainty, of a very similar nature to the corresponding condition for ro-
bust H performance, was introduced in [37]. Computationally, it reduces to
solving a Linear Matrix Inequality (LMI) as a function of frequency, plus an
integral over frequency for computing an upper bound on the s cost over a
set of plants. This upper bound is shown to be necessary and sufficient for
slowly linear time varying uncertainty. However no indication is given on its
conservativeness when the uncertainty is LTI. Recent results show that in the
MIMO case the gap can be as large as the square root of the number of inputs.

In this chapter we consider uncertain systems with structured complex
uncertainty entering as a linear fractional transformation and ask the following
question: given a MISO or SIMO uncertain system, and given a bound on the
norm of the uncertainty, find the worst case H, gain. We will show that

both upper and lower bounds on this worst case gain can be computed. The
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computation effort required by these bounds is similar to the one required to
compute upper and lower bounds of the structured singular value p in the
frequency domain.

Since these robustness results are used mainly for analysis purposes, con-
sidering only MISO or SIMO systems is not a significant restriction. In a
typical noise rejection application, for analysis purposes it is sufficient to con-
sider one output at a time. Combining the outputs in a single performance
index usually reduces the amount of information being looked at. (On the
other hand, for synthesis purposes, it is clear that the MIMO case is the most
interesting.)

The upper and lower bounds developed are based on integration over fre-
quency as in [37]. At each frequency point a complex skewed-y, a special case
of v [12] problem is solved. An upper bound can be computed by solving a
quasi convex optimization problem, for which efficient algorithms exist. In
this chapter we also show that an efficient power algorithm can be developed
for the complex skewed-y lower bound.

As an important caveat, it must be said that the conditions developed do
not impose causality on the perturbations. We are currently studying ways
of imposing the causality constraint. In particular we believe there are large
classes of problems in which the worst case perturbation, as developed in this
chapter, is causal.

The rest of this chapter is organized as follows: In the next section we
define the complex skewed structured singular value, and the algorithms used
for computation of the corresponding upper and lower bounds. In Section
5.2 we show how the complex skewed structured singular value can be used
to compute the worst case Hy norm of a MISO or SIMO system. Finally in

Section 5.3 we show some computational results.

5.1 Complex Skewed-u

In this section we will define the complex skewed structured singular value
as a special case of v presented in section 2.5. Given a matrix M € C{nFns)x(ntns)

and two non-negative integers m,, and mg with m = m, + me < n, the block
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Figure 5.1: LFT interconnection of system and uncertainty.

structure K4(m., m¢g, ns) is an (m + 1)-tuple of positive integers
,Cs(mca mg + 1) - (}C(mca mC)) ns)
= (K1, kmoy Kmt1y - -« s Ky Ts)

where we require Y .-, k; = n so that the dimensions are compatible. Define

the set of allowable perturbations as follows.
Ay = {A, =Dblockdiag(Af,A) : Ay € Ak, 0(Af) <1,A € C™ ™} (5.1)
As shown in figure 5.1 we also partition a matrix M in accordance with A;.
V- [ My My }
My M
Definition 4 [12] The complez skewed structured singular value, pg (M),

of a matriz M € Ctna)x(nine) - gych that ux(My1) < 1, with respect

to a block structure Ks(me, mg + 1) is defined as

pi (M) =0 if no A, € Af, solves det(l — A;M) = 0.

The supremum over frequency of the complex skewed structured singular

value can then be used to answer the following question:

Question 3 What is the worst case Hy gain of the system if the un-

certainty has size 1 or less?
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The Lower Bound

The complex skewed-u lower bound is a special case of an eigenvalue max-

imization (4.6) and can also be posed as

pic, (M) = Joax {8 : det(BI4n, — Q@Mpg) = 0}. (5.2)

I, 0
Mg = p M
0 I,

where

As before, since this maximization problem is not convex we will in general
only be able to find local maxima by finding matrices @ € Qf and D € Di.,

non-zero vectors b, a, z, and w such that the following set of equations holds.

Mpgb = fa Mgz = fw
b= Qa b=D"'w
z=Q"QDa z = Q" w. (5.3)

To compute a lower bound 3 for ui,  we modified the standard power
algorithm from [48] for computing a lower bound for complex p. Without
loss of generality we will explicitly write the formulae only for the simple
block structure with m, = m¢ = 1. The formulae for an arbitrary block
structure are obtained simply by repeating the formulae for each block type
appropriately. Except for equations (5.6) and (5.8), the blocks are updated
independently. Given K = (k1, ko) the appropriate scaling set becomes

Qx = {blockdiag(¢°I,, Q%) : ¢*¢° = 1,Q°*Q% = I, }. (5.4)

Partition the four vectors b, a, z, and w € C" compatibly with this block
structure as

1 e g e M I MO

where b;, a;, z;, and w; € CF:. Allow these vectors to evolve via the following

power iteration:

Bk+1ak+1 = A/Iﬂbk : /ék—i-l S R+, ]akﬂl =1 (56)
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Wy, Q1 4q
= 5.7
}w%]
o = TG
. [a‘2k+1[ Rt
By = Mgzky - Brr1 € RY, Jwp| =1 (5.8)
aI Wigpr
by, = —t Mg (5.9)
FH la‘fkﬂwlk-ul ki
b _ ]a2k+1!
2p41 2p41”
‘ 2k+1[

If the above iteration converges to an equilibrium point then we have a
matrix () € Qk such that QMgb = Gb and w'QMp = Bw*, so that max(,é, ,@)
gives us a lower bound for p (M). Furthermore if B = f then this bound
corresponds to a local maximum of (5.2). In a significant number of cases
the iteration does converge quite quickly, although it is somewhat less efficient

compared to the SPA for computing the lower bound of complex p.

Upper Bound

To obtain a tractable upper bound for pg we introduce the following set
of positive definite block diagonal scaling matrices, which commute with the

elements in Af.
Dy, = {D; = blockdiag(Dy, D) : Dy € D, D = D* € C"+*"=},

Once again we use the familiar complex p upper bound technique to obtain

the following upper bound for the complex skewed- (.

s . . . ¥ 2
pi, < Dé%f?cs OglﬂlenR{ﬁ : MgDMyg — 3°D < 0}
. - * -[n O
= _inf min {f: M*"DM — D < 0}.
0 B

DeDg, 0<feR s

Computationally this reduces to a Linear Matrix Inequality. The interior
point methods described in [2] can be used to efficiently compute this upper
bound.
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5.2 Robust H,; as a Complex Skewed u
Problem.

A standard setup for robustness analysis consists of a nominal LTI map M
and a structured LTI perturbation Af which enters the system in a feedback
fashion. In this case the closed loop system (Aj x M), where x denotes the
Redheffer star-product, is LTI also. The Hy norm of an LTI system H (jw) is
defined by

. o Crr . W Aw 2
|H > = ( | trace( (i) H(Jw))%) .

o

The system will be said to have robust H, performance if it is robustly
stable and

sup ||[(M *Ay)|l2 <1
Al <1

This appears to be a desirable design specification from both the perfor-
mance and uncertainty points of view, especially when we are interested in
rejection of white signals in the worst case.

In this chapter we will simply analyze the worst-case H, cost over a set
of perturbations for a special class of LTI plants for which (M * Ay) is SIMO
or MISO system. The main result of this chapter is given in the following
theorem. To simplify the notation we assume that (M * Ay) has n inputs and

1 output.

Theorem 9 Consider the uncertain linear time invariant system of
Figure 5.1, where Ay is LTI, for eachw, Ag(jw) is in Xk, and ||Ag|le <
1. Assume that the system M x Ay is either SIMO or MISO and well

posed for all Ay. Consider also the uncertainty structure
+ = {blockdiag(A;, A), Ay € Xk, 5(Af) <1,A € C™'}.

Then for any positive € there ezists a finite sequence of frequency points
{wi Y, such that

N N
S e, (M(jwi)*Awi—e < sup  [|MxAf|5 < i (M (jen))* Awite.
= 1A lloo<1

(5.10)

i=1
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Proof
In this case M % Ay is a row vector. Since for any vector u,

trace(u*u) = trace(uu*) = &(u)?
we will have,
trace((M * Ap)(jw)(M * Ap)*(jw)) =T (M * Af)(jw)).

We can now write the worst case gain of the system as

1
- o dw)?
sw_eade= s ([T @rapG5)
(Ao <1 1A loo<t N\ =00 T

It can be shown that, if we consider A’s both causal and noncausal we

can interchange the integral and supremum:

1

sup [|M # Ao = ( / " supa® (M + Ap)(jw)) -‘j—‘;) .

APl <1 —o0 Af

Continuity arguments, together with the existence of a bandwidth beyond
which the gain of the systems decreases rapidly, can be used to prove that for

any positive € a sequence of frequency points {w;}¥, exists such that

/Do sup o (M = Af)(jw)) g—c—;- < ngp?z (M % Ap)(jws)) Aw; + € (5.11)

—00 Af =1

> supa? (M + Ap)(jen)) A — e < [ supa? (05 A7) (1)) 5. (.12

=1 B1 —oo Of

Since A is a full complex block, the definition of the complex skewed struc-

tured singular value and the small gain theorem imply

supa” (M * Ag)(jwi)) = pic, (M (jw;))*.
Af

Substituting in Equations (5.11) and (5.12)

| supa (M + 87)(5) LY MG b e (513)
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> e (MG — e < [ supd (U580 5 (:14)

i=1 —o0 Ay

and thus

N N
3w, (M(jw)*Aw; — e < sup [|M o Aglly <Y e, (M (i) *Aw; + €.

i=1 ”(AI)HOOS1 g=1
(5.15)

n
Remark: Although the proof of this theorem does not construct the se-
quence {w;}¥,, engineering knowledge of the system can be used to select

these points.

5.3 Worst-case H,; Performance Computation
Results

2.5 T H ST L T ¥ A A A

R upper bound
lower bound

Figure 5.2: pg upper and lower bound for the second output H, gain of a
landing airplane.

To be able to determine the worst case Hy gain of an airplane in the last

phase of landing we computed ps upper and lower bounds for its model over
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the [0.01,10]H z frequency range. The model used has been introduced in
Section 4.5, and has 13 states, 5 inputs and 5 outputs. The fixed size of
uncertainty A; consists of three complex scalars, and we analyzed the H,
norm of the system for one of the outputs.

Figure 5.2 shows the results of computation. The gap between the uj
upper and the lower bound is very small, meaning that our computation is

very accurate.

5.4 Conclusion

We showed in this chapter that the worst case Hy norm of an uncertain
system subject to norm bounded structured LTI perturbations can be written
exactly in terms of the complex skewed structured singular value. Although,
like u, the complex skewed structured singular value can not be computed
exactly, we discussed efficient algorithms to compute corresponding upper and
lower bounds.

Even though computation of these bounds implies numerical integration
over frequency, we do not believe this to be a restriction in any practical sense.
Since the computational effort required to compute the bounds on the worst
case Ho performance is the same as in a frequency by frequency evaluation
of the structured singular value (the current practice for robustness analysis
in industry), this new approach can be effortlessly integrated into the current
robustness analysis tools.

The solution presented here is more accurate than the one presented in
[37] on two accounts. First it uses the true definition of the worst case H,
norm, instead of the more conservative definition used there. Second under
this formulation both upper and lower bounds can be computed. Comparisons
with other methods, such as the one presented in [15] need to be carried out, to
establish the relative merits of the different methods. Comparisons between
[37] and [15] can be found in [38], where it is shown that examples can be
constructed to favor each of the methods with respect to the other.

Still to be resolved is the issue of causality of the perturbations, and how
much conservativeness is introduced by not imposing it. It is also necessary
to investigate under which circumstances the perturbation that achieves the

worst case norm, as presented in this chapter, is causal.
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Chapter 6

Nonlinear H,, Robustness
Analysis

Robust controllers for linear systems generated with existing analysis and
synthesis computational tools provide guaranteed performance in the presence
of structured uncertainty. These tools can also find the worst case disturbances
for a given controller.

For linear time invariant (LTT) systems with structured uncertainty, anal-
ysis of robust performance can be reduced to searching for the solution of a
set of algebraic equations which give bounds on the achievable performance.
One is thus able to find computationally efficient solutions, such as the power
algorithm for the p lower bound, without doing an explicit parameter search
involving repeated simulation.

Performance analysis for nonlinear systems is difficult due to the wide vari-
ety of behavior and structures which can occur, and the most of existing tools
are at a theoretical level. OQur experience with performance analysis for linear
systems suggests that specific algorithms can be designed that significantly
outperform the off-the-shelf ones in the sense that they give better answers
with less computational effort [32]. Recent work has shown that this approach
can be successfully extended to the study of different robustness problems for
nonlinear systems (see [41, 43| for a complete discussion.)

In this chapter we will consider the problem of disturbance rejection. Gen-
eral purpose nonlinear programming algorithms can be used to solve this prob-
lem, but we adopt the methodology of [41], and develop the same type of a
power algorithm, for the performance index different from one used in [41].

This algorithm can be tested via the converse HJB method, which can gen-
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erate the worst-case disturbance for the optimal controller. For the first time
results obtained by this type of algorithm are compared with exact solutions
given by different synthesis methods.

For nonoptimal controllers there may be disturbances that are even worse
than ones obtained by the converse HJB method. The analysis method in
this chapter is useful in generating worst-case disturbances for analyzing non
optimal synthesis techniques. The results in this chapter are joint work with

Jorge Tierno and have been reported in [18].

6.1 The Disturbance Rejection Problem

Let u be the noise signal perturbing the system, and let y be the output
signal, that is the difference between the nominal and the actual trajectories.

The equations describing the system will then be

Tpyr = f(:ck,uk,k)

yr = 9(k, uk, k) 0<k<N-1 (6.1)

with given initial conditions zg.
We wish to find

max J(u, zo)

J(u,zo) = (Ilyll* = 7*llul®), (6.2)

where for a sequence y = (yo, y1, - ..) such that Y |y;]* < oo, the associated

norm is

lyll = (Z 1in2) - (6.3)

The preceding problem is a nonlinear constrained optimization problem.
However, it is in general non-convex and an exact solution is thus out of the
question: we have to settle for upper and lower bounds. In this chapter we will
show the existence of a power-type algorithm to compute a lower bound for

the performance index (6.2), based on the search for locally worst case signals.



6.2 Necessary Conditions for Worst
Case Signals

Any evaluation of the function J(u,z,), for given initial conditions and
valid values of the disturbance signal is a lower bound on (6.2). So a simple
way of getting lower bounds is through repeated simulation of the system for
different values of the uncertain signals in the model. This is at present the
state of the art of nonlinear analysis as applied in industry: good simulation
models are developed and designs are tested through extensive simulation,
usually selecting the uncertain signals at random. This approach is practical,
since it requires information from the plant that is usually available, and often
gives reasonable results. The algorithm we present in this chapter will improve
on this approach without sacrificing in simplicity or in the generality of the
information required. Instead of simulating at random points, we would look
for points that are good candidates for being local maximums. We will do this
search through a “power-like” algorithm. In order to develop this algorithm
we first have to establish the necessary conditions signals have to meet in order

to be the worst case.

Theorem 10 [4] For a dynamical system described by the equations:
Tky1 = f(a:k,uk) 0 _<_ k S N1 (6.4)

with zy given and performance index

N—-1
J = L(mk,uk), (65)
k=0
if the signal sequence ug,---,un_1 achieves an extremum of J, then

there exists a solution to the two point boundary value problem:

Tpy1 = f@k, ur)

af\" aL\"

v (a) e ()
T Tk
oL
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with boundary conditions:

T given

Av = 0. (6.7)

The disturbance rejection problem can be written in the form of Theorem

10. First we consider the performance condition. Define

1 .
L(we, w) = 5 (vige — 7 vhux)- (6.8)
Then optimizing ||y||? — ¥?||u||? is equivalent to optimizing the performance
index
N-1 ]
J =3 Liweu) = 5lyll* — 7?llul®), (6.9)
k=0

for the system satisfying the difference equation

T4l — f(.’l,'k, uk) (610)
where
Yk = g(SCk, Uk)

with given initial conditions z,.
This problem is in the form of equation (10). So a sequence of signals
achieves the worst case value of the performance index J only if there exists a

sequence Ay, - -+, Ay_1, satisfying

af\* g \ 7T
Ak = (:9—33—;;) Apg1 + (535; Yk (6.11)
with final state conditions
Ay =0 (6.12)

and satisfying the following alignment conditions

_1((ar\" 99 \".
U = ’—)’-2. ((51;1;) )\k+1 -+ (5{11‘;) yk) . (613)

Remarks: Equation (6.11) describes a linear time varying dynamical sys-
tem whose inputs are the outputs of the original system. We will refer to this

system as the adjoint or co-system.
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Equations (6.13) can be interpreted as an alignment condition between
the outputs of the adjoint system and the inputs to the original dynamical
system. Thus, these equations describe two dynamical systems interconnected
in a feedback loop.

If we consider both the equations for the system, co-system, and the align-
ment conditions together, we have a two point boundary value problem, i.e. a
set of difference equations with boundary conditions at two distinct instants
in time.

Several methods for solving the general two point boundary value problem
have been devised and thoroughly studied. (See for example [25], [1].) How-
ever, the standard methods are based on gradient descent. In what follows we
present a method to solve this particular instance of the two point boundary
value problem that avoids the problems of gradient descent methods. The

algorithm is a generalization of the power algorithm for the lower bound of p.

6.3 A Power Algorithm

For a trajectory that meets the necessary conditions for a critical point,
the Euler Lagrange conditions can be naturally separated into (i) a dynamical
system with initial conditions only; (ii) a dynamical system with final condi-
tions only; (iii) aligning conditions between the inputs and outputs of the two
systems.

So, if the perturbation signals achieve the necessary conditions, the follow-

ing composition of mappings yields the identity map:

e Integrate the system equations with initial conditions z,.

e Compute the co-system along the current trajectory. Integrate these

equations backwards in time with final state condition 0.

e From the alignment conditions in (6.13) compute updated values for w.

Denote this composition by
ut = ®(u). (6.14)

The following iterative algorithm searches for fixed points of ®, by evalu-

ating it repeatedly.
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1. Simulate the system with some initial u°.

2. Repeat

3. until

Remarks: If the algorithm converges, it converges to a fixed point of ®
and thus to a signal that meets the necessary conditions for a critical point.

In order to prove convergence we would have to prove that ® is a contrac-
tion around fixed points. For structured robustness analysis problems, that
has not been proved even for the simpler case when the system is linear (oth-
erwise P=NP!). However, for the disturbance rejection problem considered in
this chapter, we can easily prove global convergence in the linear case. For
the nonlinear problem, it is unlikely that we will be able to go beyond local

convergernce.

6.4 The Linear Case

Since the aim of this work is to extend the analysis methodology for linear
systems given by the structured singular value framework to nonlinear systems,
it is useful to understand the above power algorithm when specialized to linear
systems. In this case it turns out that the proposed algorithm reduces to the
standard power algorithm for y as described by Young and Doyle [48]. Because
of the special nature of the disturbance rejection problem, we can prove global
convergence for the algorithm.

By Theorem 10, for a discrete linear time invariant system, given by the

equations:

Tpr1 = Axp + Bug
yr = Cxp+ Duyg
0 < kE<N-1 (6.15)
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with given initial conditions zy and performance index of the form

N-1
J = L(s(:k,uk)
k=0
=
= 3 (Yeyr — Y upur) (6.16)
k=0
if the signal sequence ug,---,uy—; achieves an extremum of J, then there

exists a solution to the two point boundary value problem:

Tr+1 — Aa:k+Buk

yr = Cap+ Duy

e = AN+ CTye
1
up = 7 (B" Mit1 + DTy)
0 < kE<N-1 (6.17)
with boundary conditions:
T given
Av = 0. (6.18)

We can write the above power iteration for this case explicitly. For sim-
plicity, we will assume N=3, although the general case will be obvious from
this. To compute @ in (6.14), note that

Yo C D 0 0 Ug
n|=| CA |2+ CB D 0 Uy
Y2 CA? CAB CB D Ug

which we will write as
y=0b+ Mu. (6.19)

Our optimization problem is equivalent to
max J(u, z)
U
subject to (6.19) with

I, m0) = (Ilyll* = +*[lul®).
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At this point we can easily determine directly from (6.19) that the global

optimum must satisfy

Lo
u = TYEM (Mu +b) (6.20)

if it exists (if v > 6(M)). If v < (M) then the supremum is J = oo.

For the power iteration the corresponding adjoint-system is also linear time

invariant:
Ug ) DT BTCT BTATCT Yo
u | = :)/—2 0 DT BTCT Y1
Us 0 0 DT Yo
or
u = :)/1—2]\/[ *y.

In this case the algorithm reduces to a standard power iteration alternating
multiplication by M and M*, or in other words

uHD = ;iM (Mu® + b). (6.21)

If v > (M) then this iteration itself is just a stable linear discrete time sys-
tem which will exponentially converge to an equilibrium which is the globally
optimum u satisfying (6.20).

The advantage of viewing this problem as a power iteration is that the
alternating multiplication by M and M* can be done by simulation without the
need to form the matrices explicitly. It is one of the fastest general approaches

to solving this problem, especially for large N.

6.5 Continuous Time

The discussion presented in the previous sections can be easily extended
to continuous time. The equilibrium conditions will be derived from the con-
tinuous time version of Theorem 10. In this case, optimizing ||y||*> — v*||ul]® is

equivalent to optimizing the performance index

7= [ L= S0P =) (6.2

i

for the system satisfying the differential equation

&= f(z,u) (6.23)
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where
y=g(z,u)
with given initial conditions .
A signal u can achieve the worst case value of the performance index .J

only if there exists a signal A, satisfying

e (%)T)w (%)Ty (6.24)

with final state conditions
Ats) =0 (6.25)

and satisfying the following alignment conditions

u.—_%((%)TH (%)Ty). (6.26)

It can readily be seen that the algorithm in Section 6.3 can be extended to the
continuous time case. The main difficulty added by considering the system
in continuous time is the numerical integration of the differential equations.
Note that if these equations are integrated using Euler integration algorithm,
the continuous time equations reduce to the discrete time ones for the corre-

sponding discretized system.

6.6 Computational Results

Due to the nature of the results presented here, the success of the algorithm
in the nonlinear case can only be determined by gathering experience from
many different problems and making computational comparisons with other
approaches. To evaluate the proposed power algorithm convergence properties
when specialized to linear systems we performed analysis for the linear Ho,
disturbance rejection problem. Once convinced that the algorithm quickly
converges to the correct answer in the linear case, we proceeded and tested it on
nonlinear examples generated with the “converse Hamilton-Jacobi-Bellman”
method (CoHJB) as suggested in [7].
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Linear H.,

The first problem considered in this section is the linear H,, disturbance
rejection problem, where the worst case disturbance u that maximizes the
transfer function ||, || norm of a linear system is sought. From [9] we know

that for a linear system

z = Arx+Bu z(0) =1z
y = Cx

the worst case solution is )
T
Ut = —=B* X
op 72

where X satisfies following Riccati equation

MX+XA+%XmﬂX+mC=Q (6.27)

We tried to find the worst case disturbance, using our proposed power

algorithm, for the system

. [ 3 -2 1 1
T = T+ U Ty =

] 1 0 0 -1
Yy = 0 1]1‘.

Formulated in correspondence to our framework we want to find
max J (u, zg)
u
where the performance objective is

J = lyl? = 2wl

and we have chosen v = 1.

We compared the solution to this linear constrained optimization problem
obtained by our power-type algorithm, that converged after 3 iterations, to the
a priori known worst case solution u,,; obtained by solving the corresponding
Riccati equation. The evolution of our algorithm solution compared to the
H,, worst case solution is given in Figure 6.1. We denote a result of the ith

iteration u®.
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Figure 6.1: Comparison of a linear H, disturbance rejection problem solution
obtained by the power-type algorithm and the a priori known optimal solution

Uppt -

Nonlinear Examples

To generate nonlinear test examples we used the CoHJB method. Start-
ing with the cost and optimal value function V, CoHJB solves HJB PDEs
“backwards” to produce nonlinear dynamics and optimal controllers and dis-
turbances. It is computationally tractable and can generate essentially all
possible nonlinear optimal control problems. Actual design methods, which
must start with the cost and dynamics without knowledge of V' can then be
studied knowing the optimal control and disturbance. In the rest of this section
we will briefly introduce the CoHJB method.

Consider the nonlinear system, with f(0) =0

(t) = f(z(t)) + g(2(t))u(z) (6.28)
and a performance objective

sup J (u(z(1))) (6.29)

J(u) = / (aat) — o (E)u(t))dt (6.30)
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where the state z is available for the control u.

The term converse optimal control as introduced in [7] is concerned with
the problem defined as follows:

Given a performance defined as (6.30) and a storage function V' : R" —
R, find a class of nonlinear systems such that the optimal control problem
(6.29) has this as its solution.

The converse problem is characterized by the Hamilton-Jacobi-Bellman
(HJB) equation

1
Vof + ZVmggTVmT +q=0, (6.31)

and requires only solving the equation (6.31) as an algebraic equation in the
unknowns f, g with V given. The converse problem helps to construct an array
of examples which have known optimal solution. Note that almost any non-
linear optimal control problem of the type described above can be generated
with this method.

2-D Oscillator

In the following, we will consider a 2-D oscillator system

.’i?l = T9 561(0) =1

f(@) + g(z)u 25(0) = 1

I

To
and suppose that J = ||zo|* — [|[u||? and V = z? + 2. The HIB is
1
21119 + 222 f () + 1(21172)292(56) =0.

Therefore .
f(z) = -z — 3 z2(1 + g(z)?)

and the optimal solution is Uey = g(z)z2.

We have chosen g(z) = z; and compared the solution to this nonlinear
constrained optimization problem obtained by our power-type algorithm, that
converged after 6 iterations, denoted u(®_ and the a priori known optimal

solution U = x122. The result is given in Figure 6.2.
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(6)
opt
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Figure 6.2: Comparison of the 2-D oscillator disturbance rejection problem
solution obtained by the power-type algorithm and the a priori known optimal
solution Ueps

Nonlinear H,,

As a less trivial example we considered a nonlinear system

Il

1 = 2x9+ (22 — 1)1y z1(0) =1
1

Il

Gy = —211—Xo— 271+ U x2(0)
\/Q 45|
M)

and suppose that J = ||y]|? — ||u||* and V = 2z} + 23. In this case the optimal

«
i

solution 18

Uopt = T2-

We compared the solution to this nonlinear constrained optimization prob-
lem obtained by our power-type algorithm, that converged after 8 iterations,
denoted u(®, and the a priori known optimal solution u.p; = 2. The result is

given in Figure 6.3.
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(C))

Figure 6.3: Comparison of the nonlinear H,, disturbance rejection problem
solution obtained by the power-type algorithm and the a priori known optimal
solution Uep;

6.7 Conclusion

In this chapter we showed how a power algorithm can be used to compute
a necessary condition for disturbance rejection of discrete and continuous time
nonlinear systems by searching for solutions to Euler-Lagrange equations. In
the case where the system is linear we showed how the algorithm reduces to
a well studied algorithm for the lower bound of p and that the algorithm is
guaranteed to converge to the global optimum. It is important to note that
the worst case disturbances obtained by our proposed power algorithm are
very close to the worst case disturbances a priori given by other methods,
meaning that for the general case of a system with a non-optimal controller
this algorithm can provide us with knowledge of the worst case disturbance.

A deeper investigation of the numerical properties of our algorithm is

needed and future research will concentrate on this.
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Chapter 7

Overview of Nonlinear Systems
Model Reduction

Rotating stall in jet engine compressor systems is an instability causing
a sudden drop in performance. Feedback control is necessary to avoid the
development of rotating stall and the most preferred approach to control design
is to use low order models. The three state nonlinear model of Moore and
Greitzer (MG3), a Galerkin truncation onto the first Fourier mode of the
full Moore-Greitzer model developed in [11], is one of the simple models that
adequately describe the basic dynamics of rotating stall.

The classical approach to model reduction of nonlinear systems using the
Galerkin method and the Karhunen-Loeve Expansion (KLE) attempts to find
an approximate solution of a PDE in the form of a truncated series expansion

given by
N

i(z,t) = an(t)on(z),

n=1

where the mode functions ¢, (z) are based on empirical data and are gener-
ated by the standard KLE methods. For systems with rotational (periodic)
symmetry, the mode functions are Fourier modes and the order of the reduced
model determined by reasonable criteria for the truncation point is not small.
For a PDE with a traveling wave as a solution, normally this approach will
not give satisfactory results.

The disadvantage of making a Galerkin projection onto a non-propagating
function with fixed spatial shape is that it does not properly describe how the
stall cell propagates and evolves in simulations. One usually observes that the
stall cell quickly develops a square like spatial structure. There are some recent

results [29] in modeling a deep stall cell phenomena leading to the conclusion
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that stall cell is a rotating square wave. To capture this behavior with non-
propagating modes of fixed spatial shape, one needs to include many modes. A
remedy for this is to try to capture the dynamics with a family of propagating
curves.

In Chapter 9, we propose a new computationally efficient modeling method
that captures existing translation symmetry in a compression system (and
more generally for systems with a rotational symmetry) by finding an ap-
proximate solution of the governing PDE in the form of a truncated series

expansion given by

Mz

an (t)on(z + d(1)).
n=1

To generate an optimal set of basis functions ¢, (), prior to performing KLE
we process the available data set using a “centering” procedure which involves
giving an appropriate definition of the center of a wave and moving it to a
standard position. The eigenvalues of the covariance matrix of the “centered”
data decay rapidly and we obtain a low order approximate system of ODEs.
This approach has been shown to be efficient in linear and nonlinear scalar
wave equations. The method may be viewed as a way of implementing the
KLE on the space of solutions of the given PDE modulo a given symmetry
group. Viewed this way, the methodology is quite general and therefore should

be useful in a variety of problems.

7.1 Galerkin Projection

The Galerkin method is a discretization scheme for PDEs based on the sep-
aration of variables approach which attempts to find an approximate solution

in the form of a truncated series expansion given by

Z an(t )+ a(x), (7.1)

n==1

where the ¢, (z) are known as trial functions and

a(z) = lim — / u(z, t)dt.

T—o00 T
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In this way the original infinite dimensional system is approximated by
an N dimensional system. We assume that u belongs to a Hilbert space
Ly([0, 27]), the linear, infinite-dimensional, inner product space of square in-

tegrable (complex-valued) functions with inner product

2m

(fr9)=[ [Flz)g"(z)dz. (7.2)

0

Suppose we have a system governed by the PDE

%—? = D(u) wu:[0,27] x (0,00) = R

with appropriate boundary conditions and initial conditions, where D(:) is
a nonlinear operator that may involve spatial derivatives and/or integrals.
To be sure that the original PDE is satisfied as closely as possible by (7.1) we
choose time dependent coefficients a, (¢) in such a way that they minimize, with
respect to a suitable norm, the residual error produced by using (7.1) instead
of the exact solution. When the set of trial functions {¢,} is orthonormal it

is equivalent to forcing the residual

r(z,t) = %—? — D(u) (7.3)

to be orthogonal to a chosen number of trial functions, i.e.
(r(z,t),pn(z)) =0 n=1,...,N.

Substituting (7.1) into (7.3) yields,

r@,8) = 3 an(®)pn(z) = D (Z an(H)pn(c) + a(z)) .

n=1

Applying the orthogonality condition and using the orthonormality property
of the set of trial functions results in a reduced order model which is a system

of N ordinary differential equations

ai(t) = (D (Z an (t)on(z) + ﬂ(%)) ypi(z)) i=1,...,N. (7.4)

The initial conditions for the resulting system of ODEs are determined by

a second application of the Galerkin approach. We force the residual of the
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initial conditions r¢(z) = u(zx,0) — @(z,0) to also be orthogonal to the first NV

basis functions and we obtain a system of N linear equations
a;i(0) = (u(z,0) — 4(z), pi(z)) i=1,...,N. (7.5)

Note that to be able to solve the system of ODEs (7.4) and (7.5) one only
needs to select the set of trial functions {¢,} and the initial conditions of the
original system u(z,0). Any complete set of trial functions will suffice, but we

focus on those generated by the KLE.

7.2 Karhunen-Loeve Expansion

The Karhunen-Loeve Expansion (KLE) is a well known procedure for ex-
tracting a basis for a modal decomposition from an ensemble of signals, such
as data measured in the course of an experiment. Its mathematical proper-
ties, especially optimality suggest that it is the preferred basis to use in many
applications. Karhunen-Loeve expansion provides the most efficient way of
capturing the dominant components of an infinite-dimensional process with
surprisingly few modes.

In other disciplines the same procedure is known as: proper orthogonal
decomposition, principal component analysis, and singular value decomposi-
tion, and the basis functions obtained are called: empirical eigenfunctions,
empirical basis functions, and empirical orthogonal functions. The KLE was
introduced in the context of turbulence by Lumley [28] in the late sixties to
analyze experimental data. The aim was to extract dominant features and
trends, which are typically patterns in space and time.

The fundamental idea behind KLE is very pragmatic. Suppose we have an
ensemble {u(¥)} of scalar fields, each being a function u® = u*)(z) defined on
the domain 0 < z < 2. To find a good representation of members of {u(k)},
we will need to project each u*) onto candidate basis functions, so we assume
that the u's belong to a Hilbert space Ly ([0, 27]).

We want to find a basis {¢,} for L, that is optimal for the given data set

in the sense that the finite-dimensional representation of the form

W(z,t) =Y an(t)en(@) + u(z) (7.6)
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describes typical members of the ensemble better than representations of the
same dimension in any other basis. To simplify notation we introduce the
variation of u(z,t) from the mean @(z) and denote it as v(z,t). The notion of
typical implies the use of time average over an ensemble {u®} and optimality
is equivalent to maximizing the averaged normalized projection of v(z,t) onto
{en}-

In general, the existence of the expansion (7.6) is guaranteed under certain
conditions by the Karhunen-Loeve expansion theorem, that also provides us
with a method for constructing the orthonormal set of functions {¢,} and the
uncorrelated set of coefficients {a,}.

In order to proceed, we need to present some definitions and results from
the theory of second order stochastic processes. Concepts, like expectation (en-
semble average) will retain their usual meaning, i.e., E[X] = [, X (w)P(dw),

and can be computed with some further assumptions.

Definition 5 A second order random variable X is one which
satisfies E[|X|?] < co. A second order stochastic process { Xy} is a one

parameter family of second order random variables.

We can define a two parameter second order stochastic process {X; ;} to be
a two parameter family of second order random variables. From now on we will
assume that both u(z,t) and v(z,t) are second order processes. This assump-
tion is necessary for the mean, correlation function, and covariance function
to be defined. Because we are interested in measuring the spatial variation
only, we would like the spatial correlation function to be time independent.
For that reason, we assume that u(z,t) and v(z,t) are time stationary. With

all these assumptions we can write the spatial correlation function as
E[’U(l‘, t)v(y, t)] = Rv(xy y) (7.7)

a function independent of time. We have to add the assumption of continuity

for second order processes.

Definition 6 A second order process { X;} is continuous in quadratic
mean (q. m. continuous) if for every t € T E[||Xpn — Xi||*] — 0 as
h — 0.
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We will assume that u(z,t) and v(z,t) are q. m. continuous in their spatial
argument, and therefore the two-point spatial correlation function R,(z,y) is
continuous in its arguments.

Finally, we can state the Karhunen-Loeve expansion theorem which allows
one to express the continuum of random variables by a countable number of

orthonormal random variables as presented in [45].

Theorem 11 Karhunen-Loeve Theorem ([45])
Let {X;,t € [a,b]} be a q. m. continuous second order process with
covariance function R(t,s).

If {on} are the orthonormal eigenfunctions of the integral operator

with kernel R(-,-), and {\,} the corresponding eigenvalues,

b
[ RG.ons)is = rugat) t€ Lot (7.8)

then
N

X(t,s) :Al,im Z\/)\nan(s)gon(t) uniformly for t € [a,b] (7.9)
n=1

where the limit is taken in the q.m. sense and the {a,} satisfy
b
an(s) = (V)" / on()X (5, 1)t
and
Elamay,] = oma.

Conversely, if X(t,s) has an expansion of the form 7.9 with

b
| enlalienia)ds = o
and
Elaman] = omn
then {pn} and {\,} must be eigenfunctions and eigenvalues respectively

of the integral operator with kernel R(-,-), i.e., satisfy equation (7.8).

In order to apply this result to our process {v;:}, we invoke the previously

stated assumption of time invariance and get the one paré;meter process v, (t)



78

with two point spatial covariance function R(z,y). Then we can expand v(z, t)

using the Karhunen-Loeve theorem,

n=1
where the limit is in the q. m. sense and

an(t) = (V) /D on(@)0(w, t)dz

and
Elam(t)an(t)] = oy,,.

The orthonormal basis functions {¢,(z)} are found via the integral equation

/D Ro(,9)¢n(y)dy = Augnl(z), @ €D.

To gain better understanding of the KLE method we will consider the case
when we want to find the best approximation to the ensemble members using a

single function. We are actually trying to perform the following maximization

procedure:
2
B(fela,), o) )
weLa([0,2r) lp(@)l®
where | - | denotes the absolute value and || - || is the Ly norm

(@) = (f(z), f(=))"/*

and E(-) stands for time averaging, i.e.,

T

B(f() = 7 Jim [ rar

The functional corresponding to this constrained variational problem is

Jlp(@)] = E(| (v(=,1),(2)) [) = Alle(@)[* = 1) (7.10)

and a necessary condition for an extrema is that the functional derivative
vanishes for all variations ¢(z) + 09(z) € Ly([0,27]),0 € R is

a5 Jlp + 09]ls=0 = 0.
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From (7.10) we have

& Jlp + 6¢]ls=o
= LB (0, + 09+ 5, 0)) — Al + 800+ 6]
= QRB[E“'U? ¢> <§09 U)) - )\«07 Qﬁ)]

B /02" UO% E(v(z,t)v* (2", 1))p(a)dz’ — Ap(2) | ¢ (2)dz
=0

where we have used the commutativity of averaging over time and integration

over z. Since () is an arbitrary variation, our condition reduces to

/0 Rz, 2)o(@)ds = o(x) (7.11)
R(z,2") = E(v(z,t)v*(',1)).

In the general case the optimal basis is given by the eigenfunctions {on} of
the integral equation (7.8) whose kernel is the averaged autocorrelation func-
tion and in the rest of the chapter they will be called empirical eigenfunctions.
If we define the mean energy projection as E[|(u, ¢,)|?], then the eigenvalues
{\.} corresponding to the empirical eigenfunctions may be interpreted as the
“the mean energy of the process u(z,t) projected on the ¢, axis in function
space.”

It has been shown in [22] that almost every member of the original ensem-
ble can be reconstructed as a linear combination of empirical eigenfunctions
having strictly positive eigenvalues. And not only that, but every empiri-
cal eigenfunction can be expressed as a linear combination of observations,
implying that any property of the ensemble members that is preserved under
linear combinations is inherited by all functions spanned by the empirical basis

functions.

Optimality

Suppose that we have a stationary random field v(z,t) in Ly([0, 27]) and

that {¢,} is the set of orthonormal empirical eigenfunctions obtained from
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time averages of v(z,t). Let

= an(t)pn()

n=1
be the decomposition with respect to this basis. Assume that the eigenvalues
{\n} corresponding to {p,} have been decreasingly ordered so that A;;; >
X; (Vi). It can be shown that if {1,} is some arbitrary set of orthonormal

basis functions in which we expand v(z,t) then for any value of N

N

> El[{pn, v)[] ZA >ZE|<wn,

n=1
Therefore, for a given number of modes N the projection on the subspace

used for modeling the flow will on average contain the most energy possible

compared to all other linear decompositions.

Method of Snapshots

The main goal of this type of data analysis is to generate optimal basis
functions for Galerkin representations of PDEs. We consider a linearly in-
dependent set of snapshot data samples {u®),u@, ... u™} which is either
the result of a performed physical experiment or generated as the numerical

solution to a scalar nonlinear PDE. The averaged snapshot is computed as

1 M
— (k)
- MZ“
k=1

and the mean adjusted snapshots are given by

g}

o) = ) g

For computational purposes, we discretize the spatial domain, which usu-
ally leads to a very large spatial correlation matrix and determining the corre-
sponding eigenvalue decomposition is extremely costly. Assuming that u(z,t)
is an ergodic process, meaning that time averages equal ensemble averages for
each fixed value of z, we can represent the averaged spatial correlation function

as
T
R(z,y) = lim —71;/ v(z, t)u(y, t)dt.
0

T-+c0
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The empirical data set is limited to a finite number of snapshots (say M
samples). Thus, we use the following approximation of the averaged correlation

function
(%)
v (z,y) M E (7.12)

We call Ry (z,y) the empirically determined spatial correlation function. Be-
cause computing the empirical basis functions is based on the integral operator

with kernel R(z,y), we examine the integral operator of the approximation
ﬁM (:U H y) .

" B )ely)dy = /Dwﬂbzv“ )0 (y)(y)dy
= 25w [T

M -
Z av® (z)
i=1

Thus, since the eigenfunctions of the integral operator with kernel RM(x, Y)

0

I

must satisfy

Z a;v'(z) = Mp(z)

the empirical eigenfunctions can be written as

r) =Y b(z) (7.13)

for some constants by, ..., by. One can conclude that the empirical eigenfunc-

tions of the integral operator with kernel RM(x, y) are linear combinations of

the data snapshots v, ..., v™)_ This justifies our previous statement that any

property of the ensemble members that is preserved under linear combination

is inherited by all functions spanned by the empirical basis functions.
Substituting equations (7.12) and (7.13) into (7.11) yields

2r 1 M ' 4 M . M
/ MZ”(z)(ﬂf)v(‘)(y)ijv(’)(y)dy = A bjuV(z)
0 , r e
M
szm Zb / OO )dy = A b (@)
=1
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which can be written as
(Cb)TV =XV,

where
1 2w . i
(C)ij = —M—/ v () (2)ds 4,5=1,...,M
0
b = [by,...,bu]"
V o= [wY),..., 0™ (). (7.14)

If we assume that data snapshots are linearly independent, and therefore
(CH)TV = MTV if and only if

Cb = Ab. (7.15)

Thus, once we find the eigenvectors f™ and corresponding eigenvalues of the
M x M matrix C, the empirical eigenfunctions are computed as linear combi-

nation of the used data snapshots by

M
on(z) = Zf,?v(k)(x) n=12,...,M. (7.16)
k=1

This approach is known as the method of snapshots and was introduced
by Sirovich in [26].

Method of Snapshots and Data Matrix
Singular Value Decomposition

Now, suppose we have a linearly independent set of snapshot data samples
{u®, u®@ . u®)} that are the result of performing a physical experiment.
For measurement purposes, we have discretized the spatial domain, so assume

that each data snapshot consists of J data samples, i.e.,
u® = [ uD(zy) ... uO(zy) ]

Using all the mean adjusted data snapshots we build a matrix

v'(z1) v'(zy)
v v (z1) ... v*(xy)
vM(zy) ... vM(xy)
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in such a way that each row is one data snapshot, and each column corresponds
to the measurement at the same spatial point. Then, if we approximate the
integral with a sum, the averaged correlation matrix given in (7.14) can be
written as

C=aVVT,
where « is a real constant. Finding the eigenvalue decomposition (7.15) is

equivalent to finding the singular value decomposition of the data matrix V.

Definition 7 Singular Value Decomposition

Any m X n matriz A can be factored into

The diagonal (but rectangular) matriz ¥ is nonnegative and its positive
entries o1, . . ., 0y, are the square roots of the nonzero eigenvalues of both
AAT and AT A. They are called the singular values of A. The columns
of Q1 are eigenvectors of AAT, and the columns of Q2 are eigenvectors
of ATA.

If we find the singular value decomposition for the data matrix V'
V = FRoT FTFP=1 ®Td=1

then the eigenvectors f™ of the matrix C defined in Section 7.2 are the scaled
columns of the matrix F' and the empirical eigenfunctions ¢, from (7.16) are
the scaled columns of ®. Thus empirical eigenfunctions span the row space of
the data matrix V.

Thus, computing the KLE from the available data snapshots is equiva-
lent to computing the singular value decomposition of the data matrix, and

developing the reduced order model is equivalent to reducing the data matrix.

7.3 Symmetry and Karhunen-Loeve Expansion

Physical systems may exhibit various types of both continuous and discrete
symmetries. To characterize the relation between underlying symmetries and
subspaces spanned by the empirical eigenfunctions we need the notions of
equivariant dynamical systems and invariant sets. The following definition is
taken from [22].
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Definition 8 Fquivariance
Let

be an n-dimensional system of ODEs and I' be a symmetry group acting
on the phase space R™, where the elements vy of I' are just nxn matrices.
The equation (7.18) is said to be equivariant under I if for every vy € T

the equation
vf(u) = fyu)
holds.

This implies that if u is a solution of (7.18), then so is yu(t).

A set S is invariant for the flow ®; generated by an equation (7.18) if, when
the initial condition u(0) lies in S, then so does the solution u(t) = ®;(u(0)),
for all . Now, we can define an attracting set A as an invariant set which
attracts all solutions starting in some open neighborhood of A, and we say an

orbit is dense in S if that orbit goes arbitrarily close to every point in S.

Definition 9 An attractor is an attracting set which contains a dense

orbit.

The requirement of a dense orbit guarantees that almost all solutions in
an attractor display the typical behavior of that attractor. The attractor is
ergodic if time averages and averages over the part of phase space containing
the attractor coincide.

While a physical system or its dynamical system model may well admit a
symmetry group, one can not expect ensembles of observations to share the
full underlying symmetry group. A simple example of this would be a system
with several distinct attractors. Then the time average of a single solution will
reproduce just one of these attractors and empirical eigenfunctions generated
by time averaging data snapshots obtained in one experimental run have less
symmetry than the original problem.

Adopting the same philosophy for the KLE concept leads to the conclusion
that if o, and ), are the empirical eigenvectors and corresponding eigenvalues
generated from a set of experiments {u(®} of a dynamical system equivariant

under a group I then a necessary condition for the system generating {u(k)} to
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be ergodic is that each of the finite dimensional eigenspaces corresponding to
a given empirical eigenvalue be invariant under I'. This can easily be checked
experimentally. An alternative approach is to assume that a system is ergodic
and use its known symmetries to increase the size of the ensemble, generating
a symmetric data set {yu®} from the available measured ensemble {u®].
This approach has been advocated by Sirovich in [26].

Because of the nature of a stall cell phenomena, we are interested in rota-
tional symmetry, called homogeneity in the turbulence literature. In this case
the averaged two point correlation function R(z,y) is homogeneous, meaning
that it depends only on the difference of the two coordinates. In the case of a
finite domain D = [0, 27|, we may develop a homogeneous R(z,y) in a Fourier

series representation
R(z,y) = R(z —y) = Y _ axe* @V (7.19)

which implies that {e®*®} are exactly the eigenfunctions of the integral equa-
tion (7.11). Conversely, if the eigenfunctions are Fourier modes then equation
(7.19) holds, leading to the conclusion that R(z,y) is homogeneous. Thus,
homogeneity completely determines the form of the empirical eigenfunctions,
whereas ordering of the eigenvalues depends on the Fourier spectrum of the
data involved.

We will present a very simple but illustrative example that justifies that
KLE is an inadequate method for model reduction when a system has rota-
tional symmetry.

Assume that we have just one impulse rotating around the annulus of the
compressor rig with an angular speed equal to the sampling rate. In that case,
at every sample time the impulse will be measured by the next sensor, and

the data matrix is

| 0 0 ... 1]
The averaged covariance matrix is C' = aJj; and all the eigenvalues are equal

/\i:a, ’Lzl,,M
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Thus it is impossible to determine a truncation point and obtain a reduced
order model. The same argument holds even when the rotating speed of an
impulse is not equal to the sampling rate.

In the case of a stall cell where we have a square like spatial structure the
disadvantage of making a Galerkin truncation of corresponding ensemble of
data onto Fourier modes is that to capture how the stall cell propagates and
evolves one needs to include a large number of modes. A natural remedy for
this is to try to capture the dynamics with a family of propagating curves. We
will concentrate on that approach in Chapter 9. In the following chapter we
will compare the balanced truncation method, and the Galerkin method for

system model reduction.
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Chapter 8

Model Reduction Technique
Comparison

In control system design simple linear models of systems and controllers
are preferred, since they are much easier to perform analysis and synthesis
on. When a system is infinite dimensional, the model approximation becomes
essential. In this chapter we consider the problem of reducing the order of a
dynamical system.

There are many ways to reduce the order of a linear system, but we will
present only one of them: the balanced truncation method which is very simple
and performs fairly well. We will present the theory of a linear system balanced
realization, based on linear system observability and controllability theory, and
widely used in the robust control. More details of this theory can be found in
[52]. Balanced truncation model reduction was introduced by Moore in [30] by
applying principal component analysis to responses of linear system models.
We will give a brief overview of his approach to model reduction.

To better understand model reduction of nonlinear systems based on the
Galerkin projection and KLE, this methodology , and the balanced truncation
method are compared by applying them to the same system driven by a linear
PDE.

8.1 Linear System Model Reduction
by Balanced Truncation

Finding reduced order models for linear systems is based on the input-
output characteristics of a system. Given a full order model of a linear dy-

namical system in the form of a transfer function G(s), we want to find a lower
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order model, say an rth order model G,, such that G and G, are close in the

following sense

inf |G - G,|!
deg%&)gr“ 7~ Grlice,

where
IGlloo = esssupd{G(jw )}.

There are infinitely many different state space realizations for a given trans-
fer matrix, but some have proven to be useful in control engineering. In this
subsection we will show the effectiveness of an approach based on balanced

realizations.

Observability operators

Consider an LTI system with zero input and non-zero initial state

x(t) - flfﬂ(t), T(O) =17y € cn
y(t) = Cua(t)

where A is a Hurwitz matrix. The solution to this system is
y(t) = Cetay, t2>0. (8.1)
Define the observability operator ¢, : C* — Ly[0, 00) by
1z — Ceag.

For all initial conditions 2y and time ¢, since A is Hurwitz, there exist positive

constants k£ and « such that

, k
llyllz = {|gomol| < '&H-’EOHZ,

meaning that ¢g is a bounded operator. Then the energy of y = ¢,z is given

by

Hy“% - <‘:b0$03¢0150>
= <$();¢Z¢a$0>

- ’L’Z; Y;,.’L'Q
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where Y, is the observability gramian defined as

Y, = ¢ig, = [ et Cetd.

0

The observability gramian is the unique positive semi-definite matrix solu-

tion to the Lyapunov equation
AY,+ Y, A+C"C=0

that determines how much energy in the output y is given by an initial state
19, and its eigenvalue decomposition provides a way to assess the relative
observability of various directions in the state space.

Let
o >092>...20, 20,

be the eigenvalues of Y, and

Viye .3 Un

corresponding unit eigenvectors. Then the eigenvalues, oy, give a notion of
“observability” of a particular direction in state space. If oy >> o; then the
output energy resulting from initial state v; is much smaller then the energy
observed when the initial condition is v;. We say that state v, is “more

observable” than state v;.

Controllability operators

Here we will present the dual idea of that pursued in the previous subsec-

tion. This time consider an LTT system with non-zero input

() = Az(t) + Buw(t), z(—00) =0 (8.2)

where A is a Hurwitz matrix. The vector z(0) is the response of this system

to an input function w € Ly[—00,0) given as

z(0) = /0 e~ Buw(t)dt. (8.3)

-0

Define the controllability operator ¢, : Ls(—00,0] — C™ by

0
w——)/ e Buw(t)dt.
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For a given unit norm state o € C" the smallest norm w € Ly(—00,0] that
solves
Pcw = Zo
is given by
Waopt = GpY, o

The energy of wey is given by

Hwopt“g = <¢2Y51$o,¢232"1$0>
= (Y 'mo, dep}Y, 'x0o)

.273)/;—1330
where Y, is called the controllability gramian defined as
Y, = ¢t = / e~ BB*e~4*(t.
0

The controllability gramian is the unique positive semi-definite matrix solution

to the Lyapunov equation
AY.+ Y. A"+ BB" =0

that determines all the possible final states xo = ¢.w that can result, given an
input ||w|lz = 1. An eigenvalue decomposition of the controllability gramian
provides a way to rank the relative controllability of various directions in the
state space.
Let
01 > 09> ...2 06, 20,

be the eigenvalues of Y, and

T1,.-.3Tp

corresponding unit norm eigenvectors. Then the eigenvalues d; give us a notion
of “controllability” of a particular direction in state space. If 6, >> d; then

state direction ry is “more controllable” than state direction r;.

Balanced Realization and Model Reduction
by Balanced Truncation

In the previous two subsections we have provided a method (in terms of
gramians) to rank directions in state space by controllability and observability.

In general we are considering the system
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(t) = Az(t)+ Bw(t), z(0) =z
y(t) = Caz(t) (8.4)

for t > 0. The goal is to find a natural basis for this state space that determines
which states dominate the system’s behavior. We have concluded that states
corresponding to small eigenvalues of the observability gramian are weakly
observable, but they can be strongly controllable, meaning that they do con-
tribute to the input-output behavior of the system. In the same manner states
corresponding to small eigenvalues of the controllability gramian are weakly
controllable, but they can be strongly observable, meaning that they also con-
tribute to the input-output behavior of the system. Intuitively, we would like
to find a realization of the system, such that strongly controllable states are
strongly observable and vice versa. Assume that we change the basis of state

space for the system (8.4). A transformed realization

A = TAT™
B = TB
C = CT !,

is constructed, where 7' is a similarity transformation. The controllability and

observability gramians associated with this new realization are
Y, = TY.T*
}A/o — (T-l)*Y;,T_l
and the eigenvalues of their product V.Y, = TY,Y,T-! are invariant under

this state transformation. In the case of a minimal realization a similarity

transformation 7" which gives the eigenvector decomposition

Y.Y, =T~'AT,
can be chosen such that ¥, = Y, = Y, where ¥ = diag(oy,09,...,0,) and

¥? = A. This new realization, having equal controllability and observability
gramians is called a balanced realization. The decreasingly ordered o; > oy >

... > 0y 2 0, are called the Hankel singular values of the system.
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Given a minimal realization of a system

#(t) = Az(t)+ Buw(t)
y(t) = Cz(t) + Duw(?),

a balanced realization can be obtained by the following procedure:

e Compute the controllability and observability gramians
Y., >0,Y,>0.

e Find a matrix R such that Y. = R*R.
e Diagonalize RY,R* to get RY,R* = UL2U*.
e Let 7! = R*UY"%. Then

TY,T* = (T")Y,T'=%

= diag(oy,09,...,0,)
and

i(t) = TAT 'i(t)+TBuw(t)
y(t) = CT '2(t) + Dw(t)

is balanced.

More generally, if the realization of a system is not minimal, then there
is a similarity transformation such that both controllability and observabil-
ity gramians are diagonal and the controllable and observable subsystem is
balanced.

Assume that we do have a balanced realization of a system and that the

Hankel singular values of the system are decreasingly ordered

0'120'2>...20n.

Suppose 0, >> 0,41. Then the states corresponding to the singular values
Opt1, - -, 0p are less controllable and observable than states corresponding to
o1,...,0,. Thus, by truncating those less controllable and less observable
states we will not loose much information about the system. This is stated

formally in the following theorem.
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Theorem 12 [52] Consider a stable system G(s) given by a balanced
realization
T](/,) = Aufﬂl (f) -+ A]Qﬁz(t) -+ B1U)(t), .‘171’(()) = T,
jlz(t) = Aglﬂfl (f) -+ Agg%z(f) -+ }32’l1)(t), iL‘z(O) = Ta,
y(t) = Cl.’L'l (1) + C’vz.’l’)z(t) + Dw(t)

with gramians ¥ = diag(Xy, La)

¥y = diag(o11s,, 0014y, ..., 0.15,)
Yo = diag(ori1 L5,y Orvolsrss - ONIsy)

and
Oy > 09 > > 0p > 0pg1 > > 0N

where o; has multiplicity s;, i =1,2,...,N and s; +52+ ...+ sy =n.

Then the truncated system G.(s) given by

& (t) = Ay (t) + Biw(t)
y(t) = Ciz.(t) + Dw(t)

is balanced and asymptotically stable. Furthermore

N
1G(8) = Gr(s)]low <2 Y 0. (8.5)

i=r+1
Balanced truncation of a linear system is based on the idea of preserving
the states that contribute to the behavior of the system the most, and that
concept is indirectly based on the energy distribution among the states.
Early balancing work was motivated by the principal component analysis
theory that is strongly linked to the KLE method, and in the next section we

will discuss the connection between these two methods.

8.2 Principal Component Analysis in Linear
Systems

In this section we will present the principal component analysis approach to
linear system model reduction that resulted in the development of the balanced

truncation method. The original work is presented in [30].
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Consider a plant with inputs u and outputs y operating at the equilibrium

point (zo,yo). The corresponding model

#(t) = Az(t)+ Bu(t)
y(t) = Cul(t), (8.6)

when started at rest (z(0) = 0), simulates exactly the small signal input-output

characteristics of the plant, with a coordinate system translated to (zg, yo)-

Definition 10 Let F : R — R™™ be a piecewise continuous map
represented in matriz form by F(t). The gramian

t2

W2 = / F()FT (t)dt

13
is a positive semidefinite matriz with a set of nonnegative real eigen-
values o2 > 02 > ... > 02 > 0 and corresponding mutually orthogonal
unit eigenvectors vy, vq,...,v,. The map F may be represented with

Vi, Vg, . .., Uy used as orthonormal basis vectors for R", i.e.,

F)=vfl(t) +vaff®) + ... vafr(t)

where fI(t) = vl F(t) for 1 <i < n. We refer to v; as a component
vector, o; as a component magnitude, and v;f}(t) as a principal

component.

Let F(t) be the impulse response matrix of a linear time invariant system
(8.6), and let 0; and v; be component magnitudes and vectors of F(t) over
[0,T]. Define

Y = diag(o1,09,...,04)

V = (’1)1,?}2, v ,’Un).
The following proposition shows that for §2 representing the class of all inputs
u(t) which are piecewise continuous on [0,7] and satisfy the norm bound

fo |u(t)||2dt)z < 1, the set S = {y: y = VEp,||p| = 1} corresponds to the
surface of S = {y:y = [ F(t — T)u(r)dr, t < T, u € Q}.

Proposition 2 [30] The set S can be characterized as follows

S={y:y=oqa3 e, 0<a<1}
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It can be shown, too, that the component vectors corresponding to the
nonzero principal components of eA*B span the controllable subspace, and
the component vectors corresponding to the nonzero principal components of
eATtCT span the unobservable subspace. A main problem that we want to
deal with is the fact that the internal responses e4!B, eA"*CT depend on the
internal coordinate system. The existence of small components in e4*B or
eA"tCT implies nothing about their importance with respect to input-output
properties of the model. A special coordinate system where input-output
properties are reflected by internal principal components can be derived.

The discrete time equivalent of system (8.6) obtained by sampling and

holding inputs every t; seconds is

d _ d d

d d
yy = Cup
where

F = et

G = / "’ eAlts=7) Bdr.
0
We assume that system responses are analyzed over an interval [0,7,], and
that N = % is an integer. The extended controllability and observability
matrices corresponding to (F, G, C) are:

Qc(ts) - [G FG ... FNG]

C
CF
Qo(ts) =
CFN

The matrix Q,(t,) is a data matrix closely related to eA*B, and Q,(t) is
formed by sampling CeA? every ¢, seconds over the time interval [0,T,]. We

adopt the following notation.

1. Vo = [vg ---0,), e = diag(oy, ...0.,) where v, and o, are the ith

component vector and magnitude of e**B.
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2. Vo = Vo, 0o, ], Bo = diag(o,, ...0,,) where v,, and o,, are the ith

component vector and magnitude of eATtCT,

3. VA(t)BE(ts) (U (t) = Qelts) (SVD).
4. V) Z5(t)(US)T (ts) = Qo(ts) (SVD).

The following proposition shows that the left singular vectors and cor-
responding singular values of the matrices Qc(t;) and Q,(t;) computed via
sampled data converge to the principal vectors and component magnitudes of

¢4 B and eA"tCT, respectively.
Proposition 3 (/30/) The singular values satisfy

N .1
tlsl-% ﬁ;Zc(ts) =3, tlslglo N

If the diagonal elements of X.(ts), Xo(ts) are distinct, then

e(ty) = To.

lim Va(t,) =V, lim V(t,) = V,.
ts—0 ts—0

Moore showed that there is a coordinate transformation 7" such that model
obtained has balanced internal dynamics, meaning that the controllability and
observability gramians defined in Section 8.1 are equal. The transformation
matrix T is a function of V,, X., V,, and ¥,, and is computed using their
sampled data equivalents V¢, ¢, V¢, and 2.

Assume that the system is asymptotically stable and that (A4, B,C) is

internally balanced over [0, 00), i.e.,
X0 o0
/ eABBTeA "t = / eAtCT Cettdt,
0 0
or, equivalently,
Y, =Y, =X =diag(oy,...,0n).

The diagonal entries of ¥ are decreasingly ordered.
Consider the case when oy.; < 0. The basic model reduction idea is to
partition the state variables of the internally balanced model in accordance

with the partitioning of ¥ to obtain
3531 (t) = A11$1 (t) -+ Alzfﬂg(t) + Bl’LL(t)
Si'lz (t) = Aglibl(t) -+ AQQiCQ (t) -+ BQU(t)
y(t) = Chizi(t) + Coza(t) + Dul(t).
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The subspace spanned by the first k states is a working approximation of
the controllable and observable space of the original system (8.6). The re-
sulting lower order model (A;1, By, C}) is asymptotically stable and internally
balanced.

The main idea underlying this model reduction method is to eliminate
any weak subsystem which contributes little to the impulse response matrix.
This implicitly defines the meaning of a dominant subsystem whose impulse

response matrix is close to that of the full model.

8.3 Galerkin Projection onto Linearly
Independent Set of Functions

In Section 7.1 we briefly reviewed the Galerkin discretization scheme for
PDEs based on the separation of variables approach which attempts to find

an approximate solution in the form of a truncated series expansion given by
N

i(z,1) = ) an(t)n(z) + u(x), (8.7)

n=1

where the set of trial functions {¢,(z)} is orthonormal and

i(z) = Jim /0 e, b (8.8)
To develop the mathematical machinery we need for comparison of dif-
ferent model reduction techniques, in this section we will show how one can
perform Galerkin projection onto a linearly independent set of trial functions
as explained in more detail in [21].
Suppose again, a system is governed by the PDE
du

E:D(u) u:[0,27] x (0,00) = R

with given initial, and boundary conditions, where D(-) is a linear (spatial)
differential operator. At each instant ¢, we assume that the coefficients a,(t)
are known and we seek the values for the N independent quantities a,(t) that
minimize (r(z,t),r(x,t)) where r(z,t) is the residual error produced by using
the approximate solution (8.7) instead of the exact solution. The resulting

system of N ordinary differential equations

d

7 (G i) = (D(@), pi(2)) (8.9)
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an(t)(n(z), @i(z)) = (D (Zan(t)%(ﬂ?) +ﬁ($)> , i())
N
= (Zan(t)D(@n(I))w(Pi(x))’*"

is the obtained reduced order model. This model can be written as

Fa(t) = Aa(t) + B, (8.10)
where
[ a1 (t)
a(t) = :
_aN(t)
[ (p1,01) o (1 ow)
F = : :
_<90N:(P1> o {ons on)
(p1(z), D(p1(x))) ... (¥1(z), D(pn(2)))
A = : :
| (pn(@), D(p1(2))) ... (en(z), D(en(z)))
(p1(2), D(u(x)))
B = : . (8.11)
| (on(z), D(a(2)))

Since trial functions are linearly independent, the matrix F has full rank

and the reduced order model (8.10) can be put in the following form
a(t) = F~*Aa(t) + F7'B. (8.12)

When a set of trial functions is orthonormal, F' = I, then same result as in
Section 7.1 is obtained.
The initial conditions for the resulting system of ODEs are again deter-

mined by a second application of the Galerkin approach. We choose them
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in such a way that they minimize the norm of the initial conditions residual

ro(z) = u(z,0) — @(z,0) and we obtain a system of N linear equations

u(z),

oy

N
n

N
Do

1

d
0= Gam ( v@0 =2 an0eu@) -
(7,0) = > an(0)n(w) -

u(x))

3

or

Y an(0){pi(@), pal®) = (ulx,0) - a(z), pi(x))
= (v(z,0),¢i(x)) i=1,...,N.

This is equivalent to
a(0) = F~'Vy (8.13)
where
(‘Pl (.’E), ’U(JC, 0))
Vo= : . (8.14)
(QON(:E>7 ’U(l') 0)>
It is important to note that to solve the system of ODEs (8.12) and (8.13)
one only needs to select the set of trial functions {¢, } and the initial conditions

of the original system u(z,0).

8.4 Balancing and Galerkin Commute

To better understand model reduction of a nonlinear system based on
Galerkin projection and KLE, we will compare this methodology and the bal-
anced truncation model reduction method by applying them to the same sys-
tem. This could lead to an extension of the widely accepted concept of model
reduction by the balanced truncation method for linear systems to model re-
duction for nonlinear systems.

Suppose we have a system governed by the PDE
— =D(u) wu:[0,27] x (0,00) > R (8.15)

with given initial and boundary conditions, where D(-) is a linear (spatial)
differential operator. Determining a set of trial functions {g,} by KLE ap-

plied to the available data snapshots, and performing a Galerkin projection
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onto {p,} will give an approximate solution in the form of a truncated series

expansion
a(z,t) = Y an(t)pn(@) +0(x), (Y5, 5) (pi ) = 045 (8.16)

Thus, the original infinite dimensional system (8.15) is approximated by a
system of N ODEs
a(t) = Aa(t) + B, a(0) =aq (8.17)

where
Ay = (ﬂﬂi(x)vD(%(x)»
B = (pi(z), D(i(z)))

a;(0) = {(p;i(z),u(z,0) - a(x))
ij = 1,....N.

The balanced realization of the linear system is based on its input-output
properties and we need matrices A, B and C from any state representation of
a system to obtain a balanced realization of the system. System (8.17) can be
viewed as a state space model if we assume that the input w(t) is constant and
equal to 1, but there is no equation defining the output behavior of the system.
Since for us a reduced order model is a model describing the time evolution
of time dependent coefficients {a,(t)} we will define them as outputs of the
system,

y(t) = Ina(t). (8.18)

Then we can write equations (8.17) and (8.18) in state space form as

a(t) = Aa(t)+ Buw(t), a(0)=ag
y(t) = Ina(t), (8.19)

where
w(t)=1, t>1. (8.20)

Next we will change the basis of state space by
z(t) = Ta(t) (8.21)

to obtain a balanced realization of system (8.19)
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(t) = TAT'z(t) + TBw(t)
y(t) = INT 'a(t). (8.22)

An approximate solution (8.16) can then be represented in terms of new

state space variables in the following way

p1(z)
i(,t) = @@+ @) .. av®)]]
on(z)
= a(z) +a’ (t)¥(z)
= a(z) + (T7'a(t)"¥(z)
= a(z) +a" () (T77T(z))
= a(z) + 27 (t)®(x) (8.23)
where
o1(z)
o@) = 77|
on(z)
¢1(z)

= : , o V(5,7) (di(z), ¢5(x)) # 0y (8.24)

are new trial functions.

It would be nice to know that if we have initially chosen to find an approx-
imate solution of a PDE (8.15) using a set of linearly independent functions
{¢n} in the form of

N
(z,t) = a(z) + ch (8.25)
n=1

then will we get the same system of ODEs governing the time dependent
coefficients evolution.
We have the original system (8.15) governed by the PDE and a given initial

and boundary conditions. Using Galerkin projection onto {¢,} as explained
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in the Section 8.3 will determine a reduced order model of (8.15)

¢t) = F'Act)+ F'B

c(0) = F'U (8.26)
where

Fy = (¢i(z), ¢;(2))

Azj - <¢z($)7D(¢J($))>

B; = (¢i(z), D(u(z)))

Uy = (¢i,u(z,0) —a(x))

,j = 1,...,N

To be able to determine if {z,,} and {c,} are the same we have to compare
systems (8.19) and (8.26). Let’s denote L = T~. Then

Fy = (fﬁz( ); 6i(x))

= Z sz(Pk Z ijgom
- E Z szij on ( ))
= Z LixLjy,

k=1
LL");;
_‘TT‘—l)ij (8-27)

Zn

i

I
/‘@ S~

Aij = (¢i(z), D(¢;(x)))

= (3 Lupu(a ,EL,mD (om(@)))

- ZZLikLJm(%( ), D(om(z)))

- (E,A ~)w

— (T—TAT—l)ij (828)



and

JosB

Substituting (8.27), (8.28) and (8.29) back into (8.26) yields

(¢i(2), D(a(z)(2)))
(D Lwr(x), D(a()))

ko
—

Lix{r(z), D(u(x)))

M= 1=

LBy

el

=1

T-TB),.

~—~

ét) = F~Y(Ac(t) + B)

= (T YT-TAT 'e(t) + T-TB)

= TAT 'c(t)+TB

and

c(0)

Thus we can conclude that

= F'T7Tq(0)
= (TTT) T a(0)

z(0).

z(t) = c(t).
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(8.29)

(8.30)

(8.31)

(8.32)

It is important to say that the fact that D is a linear spatial differential

operator enabled us to derive all the formulas (8.27) - (8.31). We have shown

that in this particular case we can think of balancing the reduced order model

obtained by Galerkin projection and consisting of N ODEs as just changing a

set, of trial functions used for the truncated series expansion. In other words

the balancing transformation and Galerkin projection commute. We can either

change the set of trial functions or we can change state space coordinates, using

the same transformation.
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8.5 Balanced Truncation and Galerkin Do Not
Commute

Given a balanced realization of the system (8.19)

#(t) = Ax(t)+ Bw(t), =(0)=Ta(0)

y(t) = Caf(t), (8.33)
where
A = TAT™!
B = TB
C = INT7,

an approximate solution (8.16) can then be represented in terms of new state

space variables in the following way
a(z,t) = u(z) + 27 (t)®(z). (8.34)

In the previous section we have investigated what balancing does to a
reduced order model of a linear system. Here we will go even further and
try to understand what happens once we truncate the balanced realization of
the reduced order system. State truncation is performed by a simple matrix

multiplication. Assume we want to keep just the first M states, then

Sfl(t)
z(t) = :
xM(t)
.‘1'}1(t)
ZCN(t)
= Ruz(t)

Then the truncated system is given by

(1) RARTz(t) + RB, 2(0) = Rz(0)
j = CR"z

H
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and an approximate solution represented in terms of the truncated system

output variables is

att,x) = a(z) +§ () ()

= a(z) + 27X () RCT U ()

= a(x) + 27 (t)(R®(z))

= a(z) + 27 (t)9'(z)

where
¢1(z)
dl(r) = : (8.35)

Pum(z)

are the first M trial functions obtained after balancing the original system,
as shown in (8.24). Having this reduced set of trial functions we would be
interested in seeing what reduced order model would be obtained if we use
Galerkin projection onto {(¢")"} as explained in Section 8.3 and obtain an
approximate solution

M

i(z,t) = 6(z) + Y dn(t)pn(z). (8.36)
The reduced order model is
d(t) = (FM) 2 (AMd(t) + BM), d(0) = (FM) V! (8.37)
where
Ff = (¢i(z), ¢;(2))
Al = (¢i(z), D(4(x)))
BY = (¢i(x), D(a(x)))
Vi o= <¢z, (z,0) — u(z))
i,j = 1,...,M.

Let’s denote L = T~ T. Then
Fi = <¢z~( ), ¢(2))

Z sz@k Z LngOm

i
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N
= ZLz‘ijk
k=1
= (LL")y
= (T77T™Y)y,
M = R(TTTHRT

Al = (di(x), D(¢;()))

= O Lapi(), Y LimD(om(2)))
= (L;xLT)ij i
= (I7TAT™)y
AM = R(T-TATHRT,
(8.38)

BY = (4x), D(a(x)(x)))
= (3 Lugele), D(a(x)))
k=1
= iLikBk

= (I""B);
BM = RTTB,

and

and the reduced order model can be written as

d(t) = (RT"TT'RT)™ (R(T"TAT")R"d(t) + RT""B)
d(0) = (RTTT'RT)™ RTTa(0). (8.39)
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In the case when TTT = Iy and because RRT = I, system (8.39) is

equivalent to the system

d(t) = R(TATY)RTd(t)+ RTB

= RARYd(t)+ RB
d(0) = RTa(0)
= Rxz(0)
and we can claim that
d(t) = z(t). (8.40)

Thus, as long as the initial change of state space basis 7" is an orthogonal
matrix, we have that d(t) = z(¢). Since a set of trial functions obtained by
the KLE method is an orthonormal set, if we have an orthogonal state space
transformation matrix 7', the new set of trial functions {,(x)}, corresponding
to transformed state space is also an orthonormal set of functions.

In general, we don’t have TT7T = Iy meaning that equality (8.40) does not
hold always, and we can not represent model reduction by balanced trunca-
tion just as obtaining the reduced order model by Galerkin projection onto
truncated set of trial functions corresponding to a balanced realization of a
reduced order model. In other words, balanced truncation and Galerkin do

not commute.

8.6 Conclusion

To better understand model reduction of a nonlinear systems based on
Galerkin projection and KLE, in this chapter we compared this methodology
and the balanced truncation method by applying them to the same system
driven by a linear PDE.

We have shown that in this particular case we can think of balancing the
reduced order model obtained by Galerkin projection and consisting of N
ODEs as just changing the set of trial functions used for the truncated series
expansion. Thus, one can conclude that the balancing transformation and the
Galerkin method commute.

We demonstrated that only when we have an orthogonal state space trans-

formation matrix 7', balanced truncation and the Galerkin method commute.



108

Unfortunately, balancing is in general not an orthogonal transformation.

The most important step in extending the balanced truncation methodol-
ogy to nonlinear systems will be in determining how to perform balancing of
the system. The work presented in this chapter and a review of Moore’s early
development of the balancing method do suggest how we might generalize the
method of balanced realization to nonlinear systems. It was shown by Moore
that for linear systems the gramian computed via sampled data converges to
the actual gramian as the sample rate tends to zero. To perform balancing
for nonlinear systems, we need some method for computing gramians based

on data.
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Chapter 9

Centering and Karhunen-Loeve
Expansion

9.1 Centering

Starting with this section and throughout this chapter we will concentrate
on systems with rotational symmetry. Thus we will consider systems governed
by the following type of PDE

ou du
N +w5§ =D(u) wu:[0,27] x (0,00) = R (9.1)
with periodic boundary conditions,

u(0,t) = u(2m,t)

where D(-) is a nonlinear operator that may involve spatial derivatives. In
general these PDEs have a traveling (rotating) wave solution and we would
like to obtain as few modes as necessary to accurately approximate the shape of
the propagating wave. To accomplish this, we have to separate the movement
of a solution u(z,t) from the evolution of a wave shape.

First, we define a center of each member of an available ensemble {u(®}.

Definition 11 Let f(z) be a periodic function defined on [0, 27] with

a period 2T,
f(z) = f(z+2m).
Define the center C' of a wave f(z) as

C 27
/ f@)ds= [ f@)dr
0 C
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In order to extract the propagating wave we position all data snapshots so
that their centers are at the same point. For simplicity and without loss of

generality, we have chosen to place data snapshots centers at 7 so that

/ "o —dpdr= [ fo—dds.
[4]

K

We call this procedure the centering of a wave. It is performed using the

following iterative procedure.

1. Start with snapshot u*(z) = u(t, z)

2. Compute a center C of the wave u'(z)

3. Shift the wave u’(z) to the right by |7 — C|
4. Find the center of u'(z)

5. If converged (C = 7), then stop, else go to 3

Suppose that we have an ensemble {u®} of scalar fields, each being a
function u®) = u*)(z) defined on the domain 0 < z < 27. To find a good
representation of the members of {u®}, we center each member of an ensemble
to obtain a centered data ensemble {(u¢)*)} and then project each (u¢)® onto
candidate basis functions. Because we assumed that the u’s belong to a Hilbert
space L([0,2n]), this also holds for the u®’s.

Performing KLE on the centered data set, we find a basis {¢,} for L* that

gives a finite-dimensional centered data representation of the form

N
i@z, 1) = Y an(t)n(@) + 8°(2).
n==1
The original ensemble is then approximated as

i(z,t) = w(tz+d(t))

I
M=

an(t)o(z + d(t)) + a(z + d(2)).

n=1

I

(9.2)
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9.2 Centering and Method of Characteristics

To show how centering works and how it relates to the standard method

of characteristics, we will consider a simple first order non dimensional wave

equation
Ju ou
s + we— = 0
u(z,0) = g(x), =€ [0,27]  g(0) = g(2m)
uw(0,t) = wu(2m,t), t>0. (9.3)

Assuming that z depends on time ¢, the first derivative of u(z,t) with

respect to time ¢ is
du  Ou  Oudz

—— e A4

TR T T (94)

and along characteristics, where %—”f = w holds, we can write equation (9.3) as
du Ou Ou

E———é;wLw—a—g;—O. (95)

Thus, we conclude that a solution to equation (9.5) does not change with time
along the characteristics, and for every point (zg,%p) in the (z,t¢) plane the
solution is equal to the initial condition at the point on the z-axis that lies on

the line with slope w passing through the point (zo, t9), i.e.,
u(z,t) = gz — wt). (9.6)

Now, suppose that we have an ensemble {u(¥)} of data snapshots shown
in Figure 9.2 obtained by simulation of this simple equation for w = 4 and
g(z) shown in the Figure 9.1, and we center them to obtain the centered data
snapshots shown in Figure 9.3.

We extract the mean centered snapshot shown in Figure 9.4 which is just

the initial condition rotated by some angle, i.e.
9(z) = u(z,0) = a°(z + dp)
and an approximate solution of the equation (9.3)
a(z,t) = u(z + d(t))

is equal to the exact solution. Thus, by centering, we have extracted the wave
shape g(z) and the speed of rotation —d(t), where d(t) is shown in Figure 9.5,

and that is all we need to be able to represent the solution to equation (9.3).
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Figure 9.1: Initial condition for linear wave equation.

9.3 Optimality of the KLE in the Centered
Space

We want to show that the KLE method provides an expansion of u‘(z,t)
which is optimal for modeling or reconstructing the original solution. The
eigenvalues {)\,} corresponding to the eigenfunctions {¢n(z)} of the integral

operator with kernel Ry (-, ), where
Rue(z,y) = E[v*(z,1)v(y, 1)),

may be interpreted as the mean energy of v°(z, t) projected onto the ¢, axis in
the centered function space. We have already defined mean energy projection
in (7.2) as E[|(v*(z,t), n(z))|?]. Then

B[z, 1), gi(e))P] = B / " (@, ) pu(a)d / "oy, )iy ]

I

B / ' / "oz, i) (s )iy dady]
- / ' / " ) Bl @, )0 (3, )] u(y) dady

- / oie) [ Roelau)ioity)dyda



} will contain the most average energy possible

d by {¢n

9.4 A Reduced Order Model
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Figure 9.3: Centered data snapshots for linear wave equation.
given by
N
i(w,t) =Y an(t)en(z + d(t) + 2%z + d(t)), (9.7)
n=1

where the ¢, (z) are trial functions obtained after performing KLE on the
centered data ensemble {(u¢)®}. This way the original infinite dimensional
system is again approximated by an N dimensional system.

To verify that the original PDE is satisfied as closely as possible by (9.7)
we choose time dependent coefficients a,(¢) so that the residual error produced
by using (9.7) instead of the exact solution is minimized. At any time ¢ we
want the residual

_ Od(x,t) du(z,t)

r(t,z) = o +w o — D(i(x,t)) (9.8)

to be orthogonal to a chosen set of trial functions, i.e.,

(r(t,z), pi(z +d(t)) =0 i=1,... N.

Substituting (9.7) into (9.8) yields,

Fhe) = 3 an()pnlz +d(t)) +
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Figure 9.4: Mean data snapshots for linear wave equation

(d + w)ae (z + d(t)) +
N

(d+w) > an(t)py(z +d(t)) -

el

N
D (Z au(D)pn(e + () + T(z + d(t))) .
n=zl

Applying the orthogonality condition and using the orthonormality property

of the set of trial functions results in a reduced order model which is a system
of N ordinary differential equations

w(t) = (d+w) Zan pi(z +d(1), pn(z + d(1))) +

(d+ w)(u"(:v +d(t)), @i(w + d(t))) +

(Z an(t)n(z -+ d(t)) + 4 (x + d(t))) ,0i(z 4+ d(t))).(9.9)

n=1

T'he initial conditions for the resulting system of ODEs are determined by
a second application of the Galerkin approach

. We force the residual of the
initial conditions ro(x) = u{x, 0) — 4z, 0) to be orthogonal to the first N basis

functions and we obtain a system of N linear equations

a;(0) = (u(0, z) — ut(z + d(0)), g:i(x + d(0))). (9.10)
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Figure 9.5: d(t) for linear wave equation.

Centering separates the evolution of the wave shape and movement of the
wave. The system of ODEs (9.9) and (9.10) model the the evolution of the
wave shape. We assume that propagation of the wave can be represented by
the movement of its center, and a single ODE modeling movement of the wave
center can be extracted from d(t) obtained by centering. In the case when d(t)
depends linearly on time, and that holds for all the examples considered in

this thesis, waves rotate with a constant speed and an ODE modeling d(¢) is
d(t) = do + d(t)t (9.11)

where
d(t) = —w.

Note that to solve the system of ODEs (9.9), (9.10), and (9.11) one needs
to select the set of trial functions {i,}, the initial conditions of the original
system u(z, 0), and the initial condition for d(¢). We choose trial functions gen-
erated by the KLE performed on the “centered” data snapshots, and propose
determining dy by centering the first data snapshot.
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9.5 Computational Results

Nonlinear Wave Equation

To demonstrate the method’s performance we simulated the following non
dimensional PDE

du(t,z) 48u(t, )
ot ox
and performed standard model reduction using Galerkin projection on KL

+u(t, z)? (9.12)

modes and model reduction via centering using only the first two centered KL

modes.
Figure 9.6 shows the data snapshots obtained from the PDE simulation,

and Figure 9.7 shows these data snapshots centered.

X (rad)

Figure 9.6: Used data snapshots for nonlinear wave equation

To see if we are obtaining more information from the available data by
centering it, we compare the mean snapshot of the original data ensemble
and of the centered data ensemble. They are shown in Figure 9.8. We can
immediately observe that the wave shape is captured rather well in the shape
of a mean snapshot of the centered data, whereas the mean snapshot of the
original data ensemble does not contain much information. Figure 9.9 shows
a comparison of the first two KL and centered KL (CKL) modes. From the

corresponding eigenvalues we see that the first two centered modes contain
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x (rad)

Figure 9.7: Centered data snapshots for nonlinear wave equation

more than 99% of the energy of the data ensemble. The first two KL modes
contain just slightly more than 31% of the original data ensemble energy.

Figure 9.10 shows the evolution of the first two time dependent modal
coefficients a,,(t) of a truncated series expansion using centered KL modes.

Figure 9.11 shows one of the used data snapshots and its reconstructions
ru(z,t) using the first five KL modes and its reconstructions ru(z,t) using
only the first two centered KL modes. It is obvious that we are outperforming
the classical method by the use of centering.

Centering introduces a significant improvement compared to the classical

technique.
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Figure 9.11: Original snapshot of u(t,x) and its reconstructions by 5 KL modes
ru(t, z) and by 2 centered KL modes ru‘(t, z).
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Deep stall cell phenomena

Deep stall cell is one of the stalled flow regimes in compression systems,
and is essentially two dimensional. This was observed experimentally and
summarized in the book by Pampreen [39]. In [29] a large-scale theory that
predicts the crucial features of deep stall cell dynamics was introduced. The
analysis, based on averaging of the incompressible Navier-Stokes equation,
confirmed that in the deep stall cell regime the flow in the compressor away
from the hub and casing is indeed two dimensional. It was hypothesized that
the stall instability is a consequence of a competition between flow acceleration
due to blade forces and moment redistribution due to velocity fluctuation.

The rotating stall is treated as a large-scale phenomenon, and is a feature of
the average flow. The averaging volume is extended over rotor and stator rows
and many blades, and the role of velocity fluctuation in deep stall instability
is emphasized.

In this section we will apply model reduction by centering and KLE to the
equation modeling the unsteady axial flow in the compression system intro-

duced in [29]

0 0 0?
5w = f) = (F@) + 7157, (9.13)

where v is the axial velocity, ¢ is time, z is angular variable, w is the velocity

of stall cell rotation, and the compression system characteristic function
3/ u 1/u 3
f(“)*‘fO“f‘H(l‘f“'z‘(W‘l)—“5(—W~-—1)), (9.14)

is shown in Figure 9.12 and (f(u)) is the annulus average of the characteristic

function

(F(w) = = /0 ﬂf(U)dx. (9.15)

2m

This is a non dimensional equation.

The model is not valid near the casing due to the no-slip condition. This is
a reaction-diffusion type equation, with cubic nonlinearity. The reaction term
f(u) — (f(u)) is caused by combined effects of pressure equalization at the
plenum and blade forces. The diffusion term is caused by the inviscid process
of turbulent momentum transport via Reynolds stresses.

The steady state, nonuniform solutions of the equation (9.13) are the stall

cells that rotate around the annulus with the average velocity being one half of
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Figure 9.12: Characteristic function f used in simulation.

the rotor velocity. The numerical existence of such solutions has been shown
in [29].

In this section we will show the results of simulation of the equation (9.13)
carried out with w = 0.5, fy = 0.23, H = 0.32, W = 0.18, and v = 0.01.
The evolution of a small sinusoidal disturbance superimposed on the uniform
flow for the mean flow ® = 0.3 is shown in the Figure 9.13, and this data
centered is shown in the Figure 9.14.

Figure 9.15 shows a comparison of the mean snapshot of the original data
ensemble and the mean snapshot of the centered data ensemble. The square
wave shape appears immediately in the shape of a mean snapshot of the cen-
tered data ensemble, whereas the mean snapshot of the original data ensemble
gives no helpful information about the shape of the rotating wave.

Figure 9.16 shows a comparison of the first two standard and centered KL
modes. From the corresponding eigenvalues we see that the first two centered
modes contain more than 96% of the energy of the data ensemble. The first two
KL modes contain a bit more than 67% of the original data ensemble energy.
Because the square wave develops rather quickly, most of the data snapshots
are just rotated versions of a square shape, meaning that even though the
system does not exhibit strict SO(2) symmetry, the KL modes obtained are
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Figure 9.13: Stall cell evolution, ® = 0.3 .

just Fourier modes.

Figure 9.17 shows the evolution of the first two time dependent coefficients
a,(t) of a truncated series expansion using centered KL modes. Since we model
rotating stall cell as a rotating mean square wave plus a sum of rotating modes,
these coefficients present a deviation of the approximate solution of the PDE
(9.13) around that mean square wave.

Figure 9.18 shows one of the used data snapshots and its reconstructions
ru(z,t) using the first five KL modes and its reconstructions ru‘(z,t) using
only the first two centered KL modes. It is clear that we are outperforming
the classical method by the use of centering.

Once we extracted centered KL modes, and obtained time varying ODEs
that model the deviation of the PDE solution around the mean square wave,
we would like to justify our model. Thus, we simulate the original PDE using
u(z,0) = 37 alpi(z + do) as an initial condition. In Figure 9.19 we show
a new initial condition for the Mezi¢ PDE, denoted u"(z,0), and an initial
condition for the Mezi¢ PDE that we used to calculate centered KL modes.

We project the results of the simulation onto previously extracted centered
KL modes to obtain a set of ODEs modeling the wave shape evolution, and

we simulate them. We also simulate our time varying ODE using af?, a3, and
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Figure 9.14: Centered stall cell evolution , ® = 0.3 .

dy as initial conditions, and denote the computed modal coefficients as a?(t).
In Figure 9.20 we compare the obtained modal coefficients. In Figure 9.21
we show approximate solutions when we use both sets of coefficients. The
approximate solution using a¢’s is denoted ru®(z, t).

Our reduced order model predicts system behavior rather well.



125

T

0.8 T T T i T
: : : : | — mean(u):
0‘7 .......................... ............ .. — — — mean(u) .

0.6

OBk e ot et e ¢ ek ot Y © i o B o ot e .
R : : d el e’ L :

0.4

i
{
0.3 foin +
IS
1

mass flow

02+ .- ............ ............ ............ : ............

Ob Pl TR A

-0 1 e

0.2 i

N R SR SR .| ——  KLmode ||
1 : : : - — = CKL mode

N SRR SR .| ——  KLmode |
: : ; ; - CKL mode

mode 2

Figure 9.16: Percentage of data energy captured: first KL, mode 34.66% and
first centered KL, mode 61.71% ; second KL mode 32.43% and second centered

KL mode 34.96% .



126

modal coefficients

0.8 T T T T Y T
: : : : s u(x,t)

- - = ru®0x,t)

~~~~~ ru (x,t)

0.6k - AAAAAAAAAAAA ............ e

o4l 4. L ............ ,,,,,,,,,,,, SCRERTIPPRES , ....... .

mass flow

Y R o DU T e o -

Figure 9.18: Original snapshot of u(t,x) and its reconstructions by 5 KL modes
ru(t, ) and by 2 centered KL modes ru®(t, z).



mass flow

modal coefficients

modal coefficients

Figure 9.20: Modal coefficients comparison.

127



mass flow

128

t=11.0584
iy ! S ! ? ? ;

05 S SRR s -
o4l T . R TSRS S
03k .......... i :
02k .......... R ........... . _

Ok ........... R EERRE ,,,,,,,,,,, L —

— u(x,b)
== et |4
\ - — TUO(X,t)

5 6

Figure 9.21: Model comparison.



129

9.6 Conclusion

In this chapter we considered systems governed by PDEs have a traveling
(rotating) wave solution and we showed how to obtain as few as possible modes
necessary to accurately approximate the shape of a propagating wave. We
accomplished this by separating the movement of a solution u(z,t) and the
evolution of a wave shape.

In order to extract the propagating wave we position all data snapshots in
such a way that their centers lie at the same point. For simplicity and without
loss of generality we have chosen to place data snapshots centers at w, and
we call this procedure the centering of a wave. It is performed using simple
iterative procedure.

To demonstrate the method’s performance we applied it both to a nonlinear
equation (9.12) and a PDE modeling a deep stall cell phenomena (9.13). In
both cases it was obvious that we are obtaining more information from the
available data by centering, and that we reduce the order of the models needed

significantly.



130

Chapter 10

Concluding Remarks

In this last chapter we conclude this thesis by summarizing the results

presented and by suggesting future lines of work.

10.1 Summary

The development of numerical tools for robustness analysis of linear sys-
tems has been successful. In the last two decades these tools have been widely
adopted and used for a variety of applications. The main motivation behind
the first part of this thesis is to broaden the classes of systems and types of
problems that these tools can be used for.

A great deal of interest has arisen with regard to robustness problems
involving uncertain parameters that are not only norm bounded, but also
constrained to be real. Several new approaches to computing an improved p
lower bound have been presented in Chapter 3. These algorithms have been
combined to yield a substantially improved power algorithm.

In Chapter 4 we considered a class of uncertain systems subject to norm
bounded structured LTI perturbations. We showed that the worst case Ho,
gain of a system can be written exactly in terms of the skewed structured
singular value. Although, like p, the skewed structured singular value can
not be computed exactly, we discussed an efficient algorithm to compute cor-
responding upper and lower bounds. The results presented show that the
enhanced algorithm developed recently for the structured singular value can
be extended to the problem of computing worst case gains under fixed size
uncertainty, without significant loss of performance or accuracy.

In chapter 5 we presented how the worst case Hy norm of an uncertain
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system subject to norm bounded structured LTI perturbations can be writ-
ten exactly in terms of the complex skewed structured singular value. Even
though computation of the lower and upper bound for the worst case Hy per-
formance implies numerical integration over frequency, which is the same as
in a frequency by frequency evaluation of the structured singular value (the
current practice for robustness analysis in industry), this new approach can
be effortlessly integrated into the current robustness analysis tools.

In Chapter 6 we showed how a power algorithm can be used to compute a
necessary condition for disturbance rejection of discrete and continuous time
nonlinear systems by searching for solutions to Euler-Lagrange equations. The
performance index used is different from the one considered in previous work.
In the case where the system is linear we showed how the algorithm reduces
to a well studied algorithm for the lower bound of i and that the algorithm is
guaranteed to converge to the global optimum. The worst case disturbances
obtained by our proposed power algorithm are very close to the worst case
disturbances a priori given by other methods, meaning that for the general
case of a system with a non-optimal controller this algorithm can provide us
with knowledge of the worst case disturbance.

In the second part of this thesis we explored different approaches to the
model reduction of system. First, in Chapter 8, we compared the model re-
duction of a system based on Galerkin projection to the balanced truncation
method by applying them to the same system. We have shown that in this
particular case, when the system is driven by a linear PDE, we can think
of balancing the reduced order model obtained by Galerkin projection and
consisting of N ODEs as just changing a set of trial functions used for the
truncated series expansion. Thus, the balancing transformation and Galerkin
commute.

We demonstrated that when we have an orthogonal state space transforma-
tion matrix we can represent model reduction by balanced truncation as just
obtaining the reduced order model by Galerkin projection onto a truncated
set of trial functions corresponding to a transformed realization of a reduced
order model. Only in this case do balanced truncation and Galerkin projection
commute.

In Chapter 9 we pursued model reduction of nonlinear systems with rota-
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tional symmetry by incorporating symmetry into a KLE based method. We
showed how to obtain as few modes as necessary to accurately approximate
the shape of a propagating wave. We accomplished this by separating the
movement of the wave from the evolution of the wave shape.

In order to extract the propagating wave we position all data snapshots
so that their centers are at the same point, and we call this procedure the
centering of a wave. It is performed using a simple iterative procedure. To
demonstrate the method’s performance we applied it both to a nonlinear wave
equation and the Mezi¢ PDE which models a deep stall cell phenomena. In
both cases we obtained more information from the available data by centering,

and we reduced the order of the models needed significantly.

10.2 Future Research

In the first part of this thesis we presented extensions of the standard
1 analysis methods to systems with real parametric uncertainties and norm
bounded uncertainties. We considered both the problem of computing the
worst case Ho, norm and the worst case H; norm of an uncertain system
subject to norm bounded structured LTI perturbations.

First, we showed new approaches to computing an improved mixed p lower
bound. The algorithms described and compared here are by no means opti-
mized, so it is reasonable to expect that this work will lead to even better
results. Furthermore; based on this new algorithm we developed an efficient
power algorithmn for the skewed-y lower bound. To understand bounds on
its performance, and develop improvements we need to gain more experience
from testing the algorithm on systems derived from real life engineering appli-
cations.

In chapter 5 we wrote the worst case M, norm of an uncertain system sub-
ject to norm bounded structured LTI perturbations exactly in terms of the
complex skewed structured singular value. This solution uses the true defi-
nition of the worst case H, norm and both upper and lower bounds can be
computed, and can be integrated into the current robustness analysis tools.
Comparisons with other available methods need to be carried out to establish
their relative merits. Still to be resolved is the issue of causality of the per-

turbations, and how much conservativeness is introduced by not imposing it.
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It is also necessary to investigate under which circumstances the perturbation
that achieves the worst case norm, as presented in that chapter, is causal.
We also showed how a power algorithm can be used to compute a necessary
condition for disturbance rejection of both discrete and continuous time non-
linear systems. For the general case of a system with a non-optimal controller
this algorithm can provide us with knowledge of the worst case disturbance.
A deeper investigation of the numerical properties of our algorithm is needed

and future research should concentrate on this.

As a first step in the direction of extending linear system model reduction
techniques to nonlinear systems, the work in the second part of this thesis
poses a set of new questions to be answered.

We demonstrated in Chapter 9 that only when we have an orthogonal bal-
ancing state space transforrmation matrix, balanced truncation and Galerkin
projection commute. In general, balancing is not an orthogonal transforma-
tion, and balanced truncation and Galerkin projection do not commute. Some
recent results [27] show that acknowledging this fact might lead to advance-
ment in the research of model reduction for nonlinear system.

In Chapter 9 we pursued a different approach to nonlinear system model
reduction, that incorporates an existing symmetry of the system into a KLE
based method. First, we considered model reduction for a class of nonlinear
systems with rotational symmetrv. By separation of the movement of a ro-
tating wave from the evolution of the wave shape we improved the extraction
of the shape of the propagating wave, and significantly reduced the order of a
model. The search for a generalization of this approach to higher dimensional
systems is going to constitute the main thrust in this area of research. Pro-
cedures separating complex movements from the shape evolution, equivalent
to centering in one-dimensional space, will be sought. This will allow us to

extend the scope of model reduction even further.
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