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ABSTRACT

Recent progress in the fabrication of low attenuation optical
fibers raises the attractive possibility of optical communications via
these waveguides. Integration of different optical functions on one
substrate in the form of optical circuits will form ideal terminals
for such a communication network., We shall discuss the theory,
fabrication and performance of a few "building stones" of such optical
circuits. Optical directional couplers capable of coupling light from
one channel to another will be described and their use as switches will
be discussed. Distributed feedback for integrated lasers will be
analyzed. Laser action in a GaAs waveguide, in which distributed
feedback was supplied by corrugations fabricated on the surface, will
be described. Longitudinal and transverse mode control of such a laser
will also be discussed. We shall conclude with an analysis of nonlinear

interactions in thin films, pointing out new methods for phase matching

and ways to implement them,
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I. INTRODUCTION

I.1 Optical Communications

One of the first exciting applications envisioned for the
laser a decade ago was optical communication, The enormous information
carrying capability of laser beams can be well understood by noting
that at a wavelength of 1u the frequency is 3-105 GHz,

This application has not materialized yet, largely because at
the high optical frequency the laser beam is greatly attenuated in
passage through a cloudy and rainy atmosphere. Optical waveguides in
the form of small diameter (2-3 thousandths of an inch) glass fibers
have been available for quite some time. However, the attenuation of
the light propagating in those flexible fibers was so great that their
use as "optical cables" was ruled out.

Recently low loss optical fibers have been fabricated. The
fibers can be used for short distance communication systems like the
ones between a computer and its peripheral equipment, or for medium
and long distance communication systems with a repeater every several
miles., They combine small size and light weight together with large
bandwidths (several G bit/sec for a single mode fiber and several
M bit/sec for a multimode fiber). Interference and pick-up problems
are easily eliminated by coating the fiber with opaque material, and
ground loop problems do not exist in fiber optics systems.

A review of the principles of operation of these fibers, their

properties such as attenuation and bandwidth, and their input and



output devices is given by S. Somekh and A, Yariv(l). The enormous
advances in the fabrication of low loss fibers can be appreciated by
considering the spectral attenuation curve (Fig. I.1l) for a multimode
fiber fabricated by researchers at Corning Glass Works(z). There are
two important low loss attenuation spectral regions with loss as low as
4 db/km around 0.85u (aluminum gallium arsenide laser and light
emitters) and 1.06u (neodynium YAG laser).

The low attenuation in these fibers together with their large
bandwidth, revive again the hopes that optical communications will play
an important role in the telephone network and in other types of
communication networks such as the ones on aircrafts and ships, and the
ones between a computer and its peripherals. Another potential appli-
cation for fibers may very well be cable television,.

These applications of the optical fibers call also for small,
rugged and inexpensive terminals in which light will be generated and
detected, and in which information will be imposed and extracted at
high rates. It 1s also reasonable to believe that features such as
switching and filtering of optical signals will have to be carried out
at these terminals. These requirements have stimulated the work in

the field known as "Integrated Optics."
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I.2 Integrated Optics

A typical conventional "optical circuit" is described in Fig. 2,
It consists of a light source, a modulator, an electronic driver for
the modulator, polarizers and a lens. It is bulky, heavy, very often
unreliable and expensive. In addition the interface between the solid
state electronics and optics is complicated and usually limits the
performance, The desire to overcome the same kind of problems as the
ones faced by electronic circuits a decade ago has led to the development
of a new research field called "integrated optics"(s_s). The idea is
to incorporate on a small substrate all the optical components required
to make up the various optical circuits. Lasers, modulators and detectors,
along with waveguides (the "optical wires") and the analog components
to lenses, prisms, mirrors, polarizers, etc. are to be fabricated on a
single chip yielding small, rugged, rellable and inexpensive optical
circuits.

Let us examine, for example, some of the things that can be
fabricated on a chip of GaAs. This material and its alloy Aleal—XAS
are highly suitable for integrated optics purposes(u). Waveguides can
be easily constructed in GaAs; injection lasers are made of this material
and a p-n diode when reverse biased is capable of detecting light.
The electrooptic effect (change in the index n with the applied
electric field) in GaAs is among the largest, thus allowing the use of
efficient modulators. Finally, the possibility of incorporating fast

electronic circuits together with optical circuits on the same chip would

ease the interfacing problem.
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Since the field of integrated optics is in its first stages,
most of the work in the field is concentrated on providing the
building stones of the optical circuits. These building blocks include
components and devices such as guides, directional couplers(l6),

(5,10)

modulators(7>, detectors(B), surface lasers and cavities mirrors,

polarizers(ll) and so on,

Chapters II and III deal with the theory, fabrication and
performance of some of these components and devices. TFigure I.3
describes two types of dielectric channel waveguldes to be discussed.
The one on the left is an embedded guide while the other is a ridged
guide. When two guides are closely spaced so that the mode profiles
overlap, optical coupling or tunneling occurs. Figure I.4k describes
such a case, If the interaction length is appropriate, light entering
the device in one channel will completely tunnel into the other channel
and will emerge from there. This device is known as the directional
coupler, and we shall describe the first experimental demonstration of
the effect in embedded and ridged channels. Controlling the tunneling
or the coupling between the two channels by applying electric field
turns the device into a switch, capable of steering light pulses from
one channel to the other on demand. This may find an important use in
optical switching and multiplexing systems. We shall discuss this
possibility in detail and point out a way of performing it with lower
electric fields.

In our treatment of the theory we shall attempt to avoid

elaborate solutions of Maxwell equations, but rather resort to



Embedded and ridged dielectric channel waveguides

Fig. I.3



Fig. I.4 The optical directlonal coupler.
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approximations that will enhance the physical understanding.

In Chapter III we shall concern ourselves with the linear
applications of periodic structures in thin films., OQur main interest
will be in the formation of a suitable cavity for an integrated
laser. The conventional GaAs laser is cleaved on both ends, The
cleaving forms two distinct partial mirrors which have sufficient
reflection to sustain the oscillation., This however is not compatible
with the concept of integrated optical circuits, and alternatives will
be examined. We shall describe a novel alternative which uses Bragg
reflection from a mechanical corrugation on the surface of the wave-

guide as shown in Fig., I.5. When the corrugation period A satisfies:

=g
]
[NV] g

where A 1is the wavelength of the guided propagating mode 80 , the
Bragg condition is fulfilled and backward reflection occurs. The
intensities of the forward and backward propagating modes along a
distributed mirror of length L are shown in Fig. I.5.

For GaAs (A, = 0.83u, n = 3.6) a corrugation with a very

0
small period of A = 0.1150u is necessary and a method was devised to
fabricate it., If the corrugation extends along the whole length of

an amplifying medium a distributed feedback laser(g) may result, The
frequency of oscillation of this laser is related to the corrugation

period as in the last equation and can be varied by changing A .

This effect is potentially useful for a fregquency multiplexed communi-

cation network.
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Fig. I.5 Bragg reflection from a distributed mirror, made of

corrugation on the surface of the waveguide. The

input beam decays as a function of z , giving rise

to the reflected beam,.
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We shall describe the first observation of a distributed

.(10)

feedback laser in Gals and elaborate on longitudinal and transverse

mode control,

Periodic structures in thin films are also useful for phase
matching nonlinear interactions. This application will be discussed

in the next section.

1.3 Nonlinear Interactions

The important application of integrated optics to optical
communications shadows somewhat its interesting application to nonlinear
optics. In the thin film configuration where the propagating power is
confined to the guiding layer or channel, a moderate amount of total
power yields a high power density. This power is confined to the guide
and will propagate indefinitely with no diffraction, as opposed to the
bulk devices. The high power density and the long interaction length
are two factors that improve the efficiency of a nonlinear interaction
and thué make the use of integrated optics attractive for nonlinear
purposes.

Another advantage of the thin film configuration is related
to the problem of phase matching which is also required for efficient
nonlinear interactions. As an example, in the case of second harmonic
generations the interaction is phase matched if the two interacting
waves propagate with the same phase velocity. Because of material
dispersion the phase velocities are usually not the same; however, in

some cases it is possible to use the material birefringent for phase



I .

matching. This 1s usually done by picking an appropriate crystal
orientation in which the two frequencies propagate with different
polarizations but with the same phase velocities. For materials that
are not birefringent and cannot therefore be phase matched by the above
technique(lz)} thin films offer new methods for phase matching.

In Chapter IV we shall describe two new techniques for phase
matching using periodic structures. One method(ls) makes use of the
same kind of corrugations encountered in the previous section, to
generate space harmonics for each interacting wave. These space
harmonics have each a different phase velocity. Some of these phase
velocities can be matched when the period of the corrugation is
appropriate. A second, more efficient method(lu) we shall discuss,
solves the problem of phase matching by modulation of the nonlinear
coefficient of the guiding material. This method, however, is more
difficult to realize and we shall describe a scheme for performing it.
We shall conclude Chapter IV by describing the experiments performed

to date,

I.4 Fabrication of Integrated Optics Components

We shall devote a whole chapter (Chapter V) to the fabrication
of the devices we have discussed earlier, because, in my opinion, the
fabrication problems will determine the rate at which the new field of
integrated optics will develop. The dimensions of the channel guides
are, as in their microwave counterparts, of the order of the wavelength.

This means that structures with dimensions of a few microns have to be
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fabricated with high quality edge smoothness. As another example we
recall that for a distributed feedback laser in GaAs a corrugation with
a period of 0.1150u has to be fabricated on the surface of GaAs.

We have used(lE) the most sophisticated microfabrication
methods such as electron beam lithography and lon beam milling. We
have also devised new techniques, such as holographic exposure of

photoresist combined with ion milling, for the fabrication of the small

period corrugation.
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II. OPTICAL DIRECTIONAL CQUPLERS

II.1 Introduction

The optical directional coupler, analogous to the microwave
element<l) of the same name, consists of parallel channel optical
waveguides sufficiently closely spaced that energy is transferred from
one to another. For this coupling to take place cumulatively over a
substantial length, the light must propagate with the same phase
velocity in each channel, The fraction of the power coupled per unit
length is determined by the overlap of the modes in the separate channels.
Thus, it depends on the guides' separation, the mode penetration into
the substrate, and the interaction length. Figure II.1 is an example
of a multichamnel directional coupler. It shows a diagram of a large
number of coupled channel waveguides (produced by proton implantation)
and typical intensity profiles of the guided light. The incident light
is focused into a single channel at 2z = 0, but is coupled into the

adjacent guides as 1t propagates.

A theoretical analysis of the coupling between dielectric
waveguldes usually involves a formal solution of Maxwell's equations(z).
We shall attempt here to derive an expression for the coupling coefficient
and its sign from an intuitive physical point of view without resorting
to an elsborate mathematical solution. We shall also derive the power
distribution as a function of propagation distance for two coupled
guldes and an infinite number of couplec guides.

Experimental results of a dual channel directional coupler

and a multichannel coupler will be given. Thesé chanmnels were embedded
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at the surface of GaAs by proton implantation. A different type of
directional coupler suitable for ridged waveguides is also described.
We conclude with an account of the different applications of these
devices in an integrated optics circuilt, such as couplers, modulators,

multiplexers and polarizers.

11.2 Coupled Mode Formalism

Iet us consider the two waveguides shown in Fig, II.2a, The
waveguides can have an arbitrary cross section; however, for the sake
of simplicity, we consider only guides with rectangular cross sections.
The electric field of a propagating mode in a guide is described by
the complex amplitude A(z) which includes the phase term eiBZ , and

by the mode g(x,y) solved for in the absence of the other guilde.

We thus have:

B(x,y,2) = A(z) &(x,y) (11.2.1)

The mode profiles &(x,y) are always normalized to carry one unit of
power; the power carried by El(x,y,z) (where the subindex 1 denotes the

guide number), at a given z is
P.(z) = |A (z)l2 = A.(z) A*(z) (I1.2.2)
1 1 1 1 o

Employing the coupled mode formalism(l), we write the general coupled

mode equations for the amplitudes of the two modes

dAQ(Z)

- = “iBOAO(Z) + KolAl(z) (11.2.3)
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a, (2)
——— = -ip.A,(2) + K A (2) (II.2.4)

dz
BO and Bl are the propagation constants of the modes in the two
guides (an imaginary part in £ describes loss or gain that may exist
in the guides). KOl and KlO represent the coupling between the two
modes, and a great deal of the theory in this chapter will be devoted

to their derivation. Before going into that, let us consider a

theoretical and an experimental example of the coupled mode behavior.

II.3 Dual Channel Directional Coupler-Theory and Experiment

Consider the guides shown in Figure II.2a. We assume that
the guides are identical and that both have an exponential loss constan®

of « . Thus the propagation constant of the guide is given by

. O
B=p.-1i5% (I1.3.1)
As we shall see later the coupled mode equation for this case can be

written as:

an(2)
dz

-ip A (2) - iKA,(2) (11.3.2)

ah, (2)
dz

1

-ip Al(z) - iKAO(z) (1I1.3.3)

where K , the coupling coefficient, is a real quantity. We also

assume that at 2z = O light is coupled into guide "0 so that the
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Fig. ITI.2 (a) Sketch of two adjacent rectangular waveguides and their
propagating modes,

(b) Definition of the dielectric discontinuity Asl(xyz}.
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boundary conditions for the problem are given by

g

AO(O) =1 Al(o) =0 (11.3.4

The solution is described by:

Ay(z) = cos Kz o 1P2 (II.3.5)

A,(z) = -1 sin Kz 1Pz (I1.3.6)
The power flow in the guides therefore is

Po(z) = Ao(z) Az(z) = cos’kz "% (I1.3.7)

Pl(z) = Al(z) Ai(z) = sin‘kz e %2 (I1.3.8)

From II.3.7 and II.3.8 we learn that the power will oscillate back and
forth between the two guides as shown in Fig. II.3. Because of the
losses present in the guide, the power will also decay exponentially as
a function of the propagation distance, The length necessary for a
complete transfer of power from one guids to the other is given by
L =£§ (I1.3.9)
Such a directional coupler that allows the transfer of light

from one channel to another is one of the building blocks of optical

integrated circuits. We shall describe in what follows the first
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Fig, II.3 Sketch of a dual optical directional coupler showing

flow of light energy between the guides.

A &



-23-

operation of such a device in the optical regime.

The dual channel directional coupler was fabricated by proton
implantation in GaAs(S) in a fashion described in detail in Chapber V.
The channel guides were formed by implanting the protons through a
gold mask with the appropriate slit openings in it, Bombardment causes
defect centers in the material, which trap the free carriers., This
compensation of the free carriers eliminates thelr negative plasma
contribution to the index of refraction, and thus increases the index

for the samples used here (N N2 X 1018) by An = ,005 ,

substrate
The cross section of the gold mask on top of the GalAs substrate is shown
in Fig, II.ka. This way the guides embedded at the surface have &
cross section of about 3 x 3u , an index discontinuity of about
An = ,005 , and a separation of 3u between the guides.

Fig. II.5 describes three pair of such directional couplers.
On the left is the input plane of the device and the black dot indicates
the point at which the input light was focused. On the right is s
series of scans of the light distribution at the output plane taken by
the set-up described in Ref. (3). Let us confine our attention to
the directional coupler at the center. The second row from the top
shows that when the input light is coupled into the channel on the
right, it emerges at the output plane from both channels. Similarly,
the second row from the bottom indicates that the light also emerges
from both channels when it is coupled irto the left channel. Since the

intensity of the emerging light from both channels is about equal, we

can write for this sample,
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Fig. II.4  Scanning electron microscope photograph of the gold mask on the
GaAs substrate used in the fabrication of the (a) dual
directional coupler, (b) multichannel directional coupler, The
remains of the photoresist can be.seen on top of the gold stripes.
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By increasing the length of the sample by about a factor of two, a

complete transfer of power should be observed because

2
ol

This is shown in Fig., II.6. The second row from the top describes a
situation in which light coupled into the left channel emerges from
the one on the left, and the second row from the bottom shows the
transfer of power from left to right.

This device can be turned into a switch by controlling X,
the coupling coefficient, with the application of an electric field
through the electrooptic effect. This exciting possibility will be

discussed in detail later.

Let us go back now and derive theoretical expressions for the

value of the coupling coefficient.

IT.4 Derivation of the Coupling Coefficient

We consider again the coupled mode equations:

da (z)
._._é?;_ = -iB AL(z) + KolAl(z) (I1.2.3)
dA_ (z)
__;;f_ = -ipyA,(z) + KlOAO(Z) (IT.2.4)

dz
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We also recall that the electric field in a guide is given by
CE(x,y,2) = A(z) &(xy) (I1.2.1)
and that the power carried by ﬁi(x,y,z)j for example, is

P.(2) = |8,(2)]% = A (2) a](z) (II.2.2)

Next we obtain the rate of power growth in mode 1 due to the coupling
from mode O, (For this purpose we assume that B 1is real.) To do

*
this we multiply II.2.h by Al(z) and the complex conjugate of II.2.h

by Al(z) . This gives

dAl(Z) . *

Al(z) —5 = —1BlAl(z) Al(z) + KlOAO(z)A (I1.4.1)
A (2) ) ip,87(2) Ay (2) + K Ac(z)A(2)  (II.h.2)
1 - T 11 10%0 o

dz

Summing the two equations thus yields

ala,(z) 47(2)]

= =2 Rel A (z) Klo o z)] (II.4.3)
Using I1I.2.2 gives
dPl(z)
T = 2 Re[A (z) ol Ao(z) ' (IT.4.4)
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We shall now obtain a different expression for the rate of
power growth in guide 1 from a simple minded physical point of view,
in the following manner. Guide O in the absence of guide 1 supports
a mode with a mode profile given by 8O(xy) . This mode, in spite of
having a long tail in the x and y directions, suffers no loss, and
propagates with a constant power. When guide 1 is introduced, the tail
of SO(xy) penetrates into guide 1 and generates additional polarization
because of the higher index inside the guide., This perturbation in the
the mod "

.
o o " o1
A0 HIVUT il gua

. . . .
polarization in turn drives

¥

The net power per unit volume expended by an electric field

on the electric polarization is given by the well known relation

Power SP .
Volume - © 3% (12.4.5)

where E is the field, P 1is the polarization, and the horizontal bar
denotes time averaging. ‘

We can thus express the power generation, due to the perturba-
tion in the polarization at a given point in guide 1, by changing the

'sign on the right of equation II.4.4 yielding

AP, ~(xyzt)
dp. 10
1 - . Yo =
= El(xyzt, ST (I1.k.6)
dv
where P is the driving polarization caused by the mode in guide O,

10
This perturbation in the polarization can be approximated by multiplying
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the electric field of mode O by the disturbance of the dielectric

constant caused by the introduction of guide 1.

Plo(xyz) = Eb(xyz) . Ael(xyz) (I1.k.7)

Over the cross section of guide 1, Asl(xyz) has a constant value,

independent of z , of

2 2
Ae = ey-€3 = so(n2 - n3)

and is zero elsewhere as shown in Fig, II.2b. Using II.2.3,

iwt

II.4.7 and time dependence of e , II.4.6 becomes:

1 -8, (2)e % (xy)ae Gy ) e (2)e % (xy)  (11.1.8)

av

Performing the time averaging yields

aP

T = %Re{Al(z)81(xy)[-iaﬂel(xy)ﬁo(xy)Ao(Z)]*} (I1.4.9)

The growth of the total power Pl carried by the mode in guide 1 can

now be derived by simply integrating over x and y . We obtain

dPl(z)
dz

= arefn, (2) e € (e ()e, " Gay)axaylag(2))

(I1.4.10)
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This can also be written as:

(z) * ¥ *
aFEl %RegAl(z)[_iaJ €1 ()b ey ()€, () docdy Ao(z)§ (IT.4.11)
dz :

A comparison of II.4.4 and II.4.11 immediately reveals that

-1 *
Ko = i J & (xy)he; (xy)€,(xy)axdy (II.4.12)
Similarly one obtains
_iw *
Koy = T J €o(xw)bey(xy)e, (xy)axdy (II.4.13)

where Aeo(xy) as opposed to Ael(xy) , is equal to Ae over the cross
section of guide O , and is zero elsewhere.
From IT.4.12 and II.4.13 it is evident that as long as Ae

is real and the guides are similar,

K=K, (II.k.1k)
As shown in Appendix II this is a general property of lossless co-
direcfional coupling. It is interesting to note that this relation
holds also for lossy propagation in which B is complex but Ae 1is
real (such a case may occur when the absorption in the guide and in the
substrate are the same, or when the lossss are caused by scattering).

In the cases we consider Ae 1is mainly real. In general a camplex

Ae will modify, for example, the solutions described in Fig. II.3 for
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two modes, by causing the two modes to carry the same power when =z
is sufficiently large(u),

Equations II.Lk.12 and II.k.13 are identical to those obtained
by Marcuse(u) who solved the Maxwell equations using perturbation
theory. They are independent of the guide geometry and can be applied
to various cross section guides once the profile of the propagating
mode is known,

The problem of coupling between the guides can be approached
from a different point of view, in which the coupling coefficient is
derived by solving for the propagation constants of the two eigenmodes
of the two guide directional coupler, as shown in Fig., II.7. The two
modes of a symmetric coupler are a symmetric one 89 and an anti-
symmetric one Sa s, with propagation consbtants Bs and Ba . If at
z = 0 light is coupled into the O guide only, the two modes are
excited equally in such a way that they add on the O guide side and
cancel over guide number 1 side, Since BS # Ba the two modes drift

out of phase as they propagate along the z direction. At a distance L

which is given by

ABL = (BS - Ba)L = 1 (11.k4,15)

the two modes are 180° out of phase, cancel over gulde number O and
add over gulde number 1, as shown in Fig. II.7. The net result is a
complete transfer of power from guide O to guide 1. From a comparison
of II,Lk.15 and II.3.9 we find that AP is related to the coupling

coefficient by

K = Az_ﬁ (II.4.16)
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guide O guide |

Fig. II1.7 The symmetric and antisymmetric eigen modes of a dual
directional coupler. Power 1s transferred from one
channel to another because of not identical propagation

constants.
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Let us obtain an expression for X by deriving AR . We
consider again the geometry shown in Fig, 2a. We recall that the modes

in the individual guides, 8O(xy) and Sl(xy) are given by the wave

equation
2
2 W 2 2
viEolxy) + = n€o(xy) = B, (xy)
> (11.4%.17)
vZe (xy) + & nfe_(xy) = BEE. (xy)
o1V L2 ) = Prs Xy
where
2 2
ve - ELE i (11.4.18)
ax Ay

and nO is the index of refraction distribution in the absence of

guide 1, while ng is the distribution in the absence of guide 0. For
effective exchange of power between the two guldes the propagation
constants must be similar. In sectlon II,10 we shall treat, from a

coupled modes point of view, a case where they are not similar. ILet us

therefore confine our attention now to a case where
By =Bl =B (II.%.19)

As will be discussed in section II.6 we can assume that the modes have
one main component of the electric field, say in the y direction, and
therefore a mode can be normalized to carry one unit of power by

imposing (see Appendix I):

=]

B 2 _ .
@_ilei(xy)l dxdy = 1 i=0,1 (II.4,20)

We now approximate the modes of the two guide directicnal

coupler by the sum and difference of the individual modes.
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8S(XY) = m [a&o(xy) + bgl(}cy)]
(II.4,21)
e, (xy) = = j 73 [0y (xy) - & (xy)]

To ensure the orthonormality of these two modes we have to assume a

small overlap of the individual modes.
[1e,Gar)e ey laxay << | |e(xy) | Paxay (11.k.22)

The orthogonality of 8S and Sa is important because it ensures the
conservation of energy, once a combination of these modes 1s excited

and propagates in the z direction.
To find the propagation constants of the above modes, BS and

By V€ insert them into the appropriate wave equation,

2
2 w2 _ A2
Vibs ¥ ;? Brrfs = Beb
5 (II.Lk.23)
w 2 e 28
Vi€ ;5 P11 = Bt
where nip is the index distribution when both guides exist and is

shown in Fig. II.2a.
Let us consider the equation for 83 . With the aid of

II.4,17 and II.4,21 we can write the upper equation in II.4.23 as

2

2
o, 2 2 o, 2 2 2 .2
Zg(nII - ng)aky + ;E(HII - n7)be; = (B - B;)(a€y + bE)) (IIL.k.2k)

We recall that (n:ztI - ng) and (niI - ni) are actually the perturba-

tions in the dielectric constant we have discussed earlier. We can thus

write



2 2
nII - no = AEl/E
2 2
- = /
nII nI Aeo,eo

where Ael is shown for example in Fig, II1.2b and €4

space dielectric constant.

(11.4.25)

is the free

Next we obtain two expressions by multiply-

* *
ing II.k.24k vy €y or €, and integrating over x and y . Using
2 1
II.4.25 and c¢” = —— we get
HEO
oo} [o0]

4

2 L [*
i ugj&er €,dxdy + o’ ua 8OA2180dxdy
00 O

o0

*
w uaj& L. 1€ odxdy + a?ubjElAs

-0

i

O8ldxdy

*
0

2_a2\f
(BS-B%) | €, (a€5+bE, axdy

(II.4.26)

[>-]

*
(Bz-ﬁz)jel(a8o+b8l)dxdy

e

(IT.4.27)

The second integrals on the left are second order terms because Asl s

for example, is different from O only where

IBOIZ is very close to

zero, Thus using II.4.22 we can write II.L.26 and II.L.27 as

©

2 1 2 2 *
w pr& Aeg€ dxdy = a(es-g )Jﬁoﬁodxiy (I1.4.28)
-0 -0
fes]
a>pad€145180dxdy = b(Bz-Bz)je e | dxdy (I1.4.29)
=0 -0
Taking the ratio of the two equations we get
aB JE Ae 8 dxdy
- (I1.4.30)

[+)

bZ * e
_lglAEO dedy

In a similar fashion, starting with the equation for 8a

we find

in II.L.23,
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8

[ %
bZ JgerlSldxdy
- = -: (IT.4,31)
a - %

JSlAeOSdedy

From II.4,30 and II.4,31 we can conclude that for the existence

of a solution in the form of II,4,21 we must require

[oe] o
e¥ne e ax P Tk
J ohe € axdy = € Ae € dxdy (11.4.32)
-0 - 00
which yields
a=b (I1.4.33)

We can now obtain B by adding II.4.28 and II.4.29. We also

assume that g _-p << p and with the help of IT.4.20 we get

_ o pfe* e
B,-B = 8-[JSOAsOEldxdy+JBlAelSdedy] (I1.4.3k4)

In the same fashion we obtain for Ba
o0

8

B -p =~ w[FB*Ae‘S Axdy+
a BLYCoREpr dxAT

s -

*
&lhe € dxdy] (I1.4.35)

8 &y

The coupling coefficient can now be obtained from IT.k, 16,

II 4,34 and ITI.4.35
B~

S a w
2 g

(=]

['e¥ae & axay+ €a
JEoRE AN

K = dxdy] (II.4.36)

01 1%

- -
The value of K 1is in agreement with the expression derived earlier.
It is reasonable to assume that II.4.36 yields a good approximation
for X also in a case where the guides are not identical and II.h,32

is violated.
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It is interesting to note that from the above point of view it
is possible to easily obtain an upper limit for the value of the
coupling coefficient K . Clearly, this value reaches its upper limit
as the two guides are brought closer and closer together. Eventually
they form one guide with twice the width. The symmetric mode turns
into the lower order mode of the wide guide and the antisymmetric mode
turns intd its higher order mode., The calculation of the propagation

constants of the new modes is straightforward and yields the upper

limit for AR .

II.5 Coupling between Planar Guides

As a first example we apply our result to the planar waveguides
shown in Fig, II.8. The mode profile of a single planar waveguide can
be derived analytically (see Appendix I)., We consider a TE mode which
has its electric field in the y direction, carries a unit power per

unit length in the y direction, and is given by(u):

L 5
80(X)= UJJ‘Z COShX,IXlS%,-mSyg_m
B(w + =) x
* (11.5.1)
1
b 2 - (1x]- 3)
8O<X) = &MZ cos hxt e % 2 ’lx[ = % , ~® Sy < e
Blw + =
Py

where kO is the free space wave number and
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Fig. II.8 Sketch of two adjacent planar guides and their

propagating modes.
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In addition, the eigenvalue equation imposes the relation for the mth

order mode (m+l is the number of extrems)

1

hw = (m+l)x - 2 tan (1I1.5.3)

w O]

A similar profile describes the mode in guide number 1, the only
difference being that the center of the mode is at x = w+s rather
than x = 0.

Knowing the mode profiles we can obtain the coupling coefficient

between the guides with the help of equation II.4.12., We note first that

Ael for this case is given by
2 2 W 3w
= - = - —-— < < P
Ael(xy) €y - E3 eo(n2 n3) for s+ z<x<s+ =
oSy s (I1.5.4)
Ael(xy) =0 , elsewhere

We thus obtain the following expression for the coupling coefficient:

_ _ zhiP -DyS
Kig = Koy = -iK = -1 X e (I1.5.5)

RN
B(W+PX)(hx+px)

In the derivation of this expression, the y integration is performed

over one unit length and we have assumed that

-p~ .l]

|p_cos h ¥ + h sin h ﬁ[ >> |p_cosh Y o h sinh Ele z
X X 7 X X 2 X X 2 X X 2

(I1.5.6)
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which is always true for well confined modes,

Equation II.5.5 1s the same as approximate expressions for the
coupling coefficient between planar waveguides given in Refs. 4,5,6.

In Ref. 5 a comparison of this expression to the exact solution

of the problem is made and a good agreement is shown.

II.,6 Coupling between Channel Guides

A rigorous solution for the mode profile at a rectangular
cross section channel waveguide requires a computer(7>. However, once
the mode profile is known, II.4.12 can be applied for the calculation
of the coupling coefficient,. Marcatili(z) has shown that it is possible
to introduce a drastic simplification in the derivation of the mode
profile which enables one to get a simple solution. Consider the
waveguide shown in Fig. II.9. Most of the power propagates in the high
index region and the fields decay exponentially in the x and y directions.
Consequently, for a reasonably confined mode only a small part of the
power propagates in the four shaded areas. This means that in matching
the boundary conditions the field along the edges of the shaded area
can be ignored.

The solution of the simplified problem yields modes that are
essentially of the TEM kind and can be grouped in two families, Szn
and 8%n . The first family has most of the electric field in the x
direction and the magnetic field in the y direction, while the second

family has most of the electric field in the y direction and the magnetic

field in the x, Our notation is such that m+l and n+l indicate
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the number of extrems of the fields in the x and y directions.)
Furthermore the solution of the problem indicates that mode profiles in
the x and y directions are actually given by two equations, each of
which is identical to the eigenvalue equations one obtains for a one-
dimensional (planar) waveguide. TFor example, we consider an ey

mode in the guide shown in Fig. I1I,9. The eigenvalue equation for the
x direction is identical to that of a TE mode in a symmetric planar

guide (see Appendix I). It is given by

h

how = (m+l)x - 2 tan™T _X (11.6.1)
D
X

where

2 2 _2y\.2
b+ gi = (nz--nS)k.O

The eigenvalue equation for the y direction is identical to

that of a ™ mode in an asymmetric planar guide (see Appendix I) and is

given by
.1 ng h 1 ni n
ht = (n+l)x - tan “E“"l - tan” -Er—ii (11.6.2)
n2 Py n2 qy
where
2 2 2 2\, 2 2 z 2 25,2
h.y + P = (ng-n3)kO ; h.y ta, = (nz-nl)ko (11.6.3)

The propegation constant along the z direction is therefore given by

k

2 2
B "nz

2 .2 .2 o
0" hX - hy (I1.6.4)



I

We can therefore approximate the propagating mode by regarding
only the main components of the fields and using the mode profiles as
given by II.6.2 and II.6.3. The validity of this approximation can be

determined by comparing the value of the expression

BZ_nZKB (n2_n2)k2 _ h2 _ h2
30 230 x ¥ (II1.6.5)

n2k2— 2k2 (n2_n2)k2 T

270 370 2 370

with that derived by computer calculation(7). For

B2_n2kg
-39 =2 03 : (1I1.6.6)
n2k2-n2k2

270 30

according to the figures in Ref. 2, the approximation is within a few
percent of the exacﬁ value. Equation II.6.6 also indicates what modes
are supported by the guide, because only modes for which the expression
is positive are above cutoff,

Figure II.9 shows the mode profile of the 8%0 mode, This
mode profile after the appropriate normalization can be used in
conjunction with II.4.12 to calculate the coupling coefficient,

We shall attempt to get a good estimate for the coupling
coefficient without going through the above process. We note that the
profile of the mode in the x direction is the same as that of the planar
guide we have dealt with before. The major difference is that the planar

guide and its propagating modes are independent of y. This basically
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means that Ael(xy) (which is defined for the planar guide case by
I1.5.4) has the same value for any value of y to which the modes of

the guldes extend. This would also be the case in a channel waveguide

if the modes were very well confined in the y direction <31+%— <1y,
¥
In this case Asl(xy) is defined as
2 2 W 3w
= - = - -_— < e
Agl(xy) ey - Eg so(n2 n3) for s+ z=x =82

(11.6.7)

elsewhere

1
o

ae; (xy)

Thus if the mode is very well confined in the y direction it extends
only from y =0 to y = -t which is the region at which Ae(xy)

has a constant value. For this case I1.,5.5 can be used to express the
coupling between the two channels., We can modify II.5.5 to include
coupling between modes that are not very well confined, but satisfy
II1.6.6. This is done by multiplying II.5.5 by a factor which is the
ratio of the mode power propagating between y = O and y = -t (the
region where Agl(xy) # 0) and the total mode power. This factor can

be roughly approximated by

t
. 2 (11.6.8)
t+ sinh t
( ,5/py)
1 1 . .
where -— 2> =— the penetration depths of the modes into the

y
upper and lower boundaries satisfy. The expression for the coupling

coefficient between two channel guides thus becomes:
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_p S
on? p te X
K . =K_ = -iKk = -1 X X (I1.6.9)
10 - o1 T T T e 2 2 2 T
t+ sinht w + —){h™+
( . /py)( px)( D)
For a very well confined mode
+t >> -:.1-- and w > .?__.
y pX
and 1I1.6.9 reduces to
_p S
Zhipxe *
Klo = Kol = =iK = P Tl ——— (11'6'10)
Bw(n +p?)
X X

which, aside from its negative sign, is the expression derived by

(2)

Marcatili

Before comparing the theoretical expressions for the coupling
coefficient with the experimental results, let us consider a geometry

which allows an accurate measurement of the coupling coefficient.

II.7 Multichannel Directional Coupler - Coupling Coefficient Measurement

In Section II.3 we have considered a directional coupler made
of two channels in which the power oscillates back and forth between

the channels as a function of propagation distance. We consider now an
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infinite number of identical guides each coupled to its adjacent

guides, as shown on the left of Fig. IIL.l. When light is coupled into

a central channel (defined as n = 0) it will leak to the sides.

Because of the large number of channels, it is clear that the full power
will not appear again in the central channel, but will constantly flow

to the sides.

The coupled mode eguation for the nth channel is given by:

as, ()

= = -iBAn(z) = ikAn_l(z) - ikAml(z) (Ir.7.1)

where B 1sthe propagation constant which includes the guide attenuation «
s O
5 = 6 - 1 —2— (II.?.Z)

n is the guide number (n=0, 1, +2,...), and K (a real number) is
the coupling coefficient between two adjacent guides. (The coupling
coefficient between non-adjacent guides is negligibly small). When

light is coupled into the O channel only, the boundary conditions become

AO(O) =1 An%o(o) =0 (11.7.3)
The solution of II.7.1 is

A (2) = (-1)" J_(2Ka) o162 (11.7.%)
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and the power flow in the guides therefore is:
_ + _ & -0z
Pn(z) = An(z) An(z) = Jn(ZKz) e (I1.7.5)

where Jn represents the Bessel function of nth order.

A multichannel direction coupler(8) was fabricated by proton
implantation through an appropriate gold mask on the surface of the
GaAs substrate as shown in Fig. II.Ub., The width of the embedded channels
can be estimated by the width of the notches in the mask to be about
2.4y  separated by 3.9u ., Their depth is determined by the known
penetration of the 300 KeV protons in GaAs which is 3u . The index
discontinuity as measured in a fashion described in Chapter V, is
about .005 at 1.15u and about 10% larger at 1,06y .

Figure II.l describes the multichannel directional coupler
with the input light coupled into a central guide and the output light
scanned at different sample lengths. The argument of the Bessel
functions at each of the scans was determined by fitting the square
root of the normalized intensities of the light in the different channels,
to a plot of the Bessel functions as shown in Fig. IT.10. The experiment
was performed with light having a wavelength of A = 1,15y (from a
HeNe laser) and A = 1.06p (a Nd:YAG laser). The coupling coefficient
can be deduced quite readily and accurately now, simply by plotting the
argument of the Bessel functions against the distance of propagation,

and measuring the slope.
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Fig. II.10 Sketch of various orders Bessel functions to which the

square root of the amplitudes in Fig. II.1 are fitted.
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Using II.7.4 the coupling coefficient is thus given by:
K = slope/2 (11.7.6)
A series of measurements at 1,15y and 1.06p is plotted in Fig., II.11.
By measuring the slopes we find that for the same directional coupler,

1 1

K = 0.52 £ 0.0L mm~ = 0.30 £ 0.01 mm~ (11.7.7)

1.15u K1.06u

Tt has also been found that different polarizations (E* or EY) of the
input beam had no noticeable effect on K .

Only a qualitative comparison between theory and experiment
can be made with these samples. The modes in these guides are not well
confined modes, to which the theory of Section II.6 pertains. Besides,
the dielectric discontinuity may not be uniform across the guide's
cross section and the accuracy in measuring it is not high. However,
the coupling coefficients calculated on the basis of the dimensions
given earlier in (II.6.9) are quite close to the actual values. The
theoretical results are (for both polarizations):

1

K 15 = 0.32 mm~ K o = 0-21 mm~ (11.7.8)

1.

Considering the limitations mentioned above, these results are

in good agreement with (II.7.7).

The absorption of the propagating light is relatively high in
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Slope = 2K

S=2K4

£ [mm]

Fig. II.11  Plot of the arguments of the Bessel functions

against the distance of propagation.
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these ion implanted waveguides, It amounts to about 5 cm'l which is
the same as the absorption of planar ion implanted guides(g). It is
caused by the absorption of the defect centers created by the implanta-
tion and by the free carrier absorption in the substrate, Other
methods for fabrication of directional couplers will be discussed in

Section II.9.

II.8 The Sign of the Coupling Coefficient

Let us consider again the dual directional coupler shown in
Fig. II1.3. The amplitude of the fields in the two guides are given by
I1.3.5 and II.3.6 as:

Ao(z) cos Kz e 1P? (1I1.3.5)

i

A (z) = -1 sin Kz *P? (11.5.6)

From these equations we learn that a distinct phase difference exists
between the two guides. We also find that the phase of the gulde in
which the power is increasing will always lag 90O behind the phase of
the guide in which the power is decreasing. Formally this is a direct
correspondence of the sign of the coupling as given in II.Lk.12.
Physically the reason for the time lag is the necessary phase relation
between the polarization (caused by the field in guide zero), and the
field in guide 1, if power is to be generated in guide 1. It is well
known(g) that power dissipation in a dielectric cccurs when the polari-

zation lags the field. Therefore, in our case, for power generation
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in guide 1 the field there has to lag the polarization, which is caused
by the field of guide O and has its phase, This reasoning thus gives
the same result as the above equations,

The phase relation between the two guides might be of
importance in an optical circuit in which the phase of the light as
well as its amplitude may be used to carry information. In Ref, 2
the coupling coefficient appears to have an opposite sign to the one
in IT.4.12. Such a sign will cause a time lead in guide 1 rather than
time lag. The following experiment was carried out to find whether the
phase difference is time lead or time lag.

Phase information can be acquired by interference. In this
case the interference was performed in the fashion described in Fig, II.12.
Drawing (b) describes a geometry in which the input beam is focused
with an objective into the central channel of the multichannel directional
coupler. The input face at the channels is in the focal plane of the
objective and the sﬁot size of the beam is small enocugh to couple into
one channel only. The distribution of light at the output plane,
caused by the coupling effect, is shown at the top of the drawing.

By moving the objective in or out, the focal plane will not
coincide with the input plane of the sample, the spot size will increase
and light will be coupled into the adjacent guides as well as the central
guide. When the lens is moved toward the sample, the curvature of the
phase fronts of the beam is such that the light coupled into the side

channels at the input plane has a time lead (as shown in drawing a).
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On the other hand, when the beam is moved away from the sample (drawing
c) the light coupled into the adjacent channels suffers a time lag,
This input light will interfere, as it propagates with the light
coupled into the channels from the central one. The intensity of the
light in the output plane, with respect to the central guide indicates
where this interference was a constructive or destructive one. For
example, in Fig, II.l2a we find that the intensity of the light in the
adjacent channels is close to zero, while in (c¢) it is very strong.
This indicates that there is a constructive interference in case (c)

and the light coupled via the directional coupling effect suffers a

time lag.

IT1.9 Ridged Channel Waveguides and Directional Couplers

A variety of thin films suitable for optical waveguiding has
been reported so far. These films include epitaxial layers of high
resistivity on low resistivity GaAs(lO), composite structure of GaAs-
GaAlAs(ll), composite structure ADP-KDP(lZ), and single crystal garnet
films(lg). These layers can be grown with a high degree of purity and
offer the attractive feature of modulation(lo’ll’lu).

All these layers are planar guides which confine the light in
one dimension only, and therefore as such are not compatible with the
concept of optical circuitry. To form a channel waveguide in which the
radiation is confined in the two dimensions perpendicular to the
direction of propagation, it is possible as shown earlier, to use ion

(15)

implanatation or diffusion . It is interesting to investigate the
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possibility of fabricating a channel guide by a removal of the super-
fluous sections of the epilayer (as shown in Fig, II.13). Because of
the large dielectric discontinuity the scattering losses in this guide
are very sensitive to the smoothness of its walls as well as its top
surface. For example, a 3u wide waveguide in GaAs will suffer roughly
a loss of U4 cm—l when the roughness of the walls is 5008 rms .
This rough estimate(l6> based on the Rayleigh criterion indicates that
special care has to be taken in the fabrication of these guides. An
extreme case of rough walls and top surface is shown in Fig, II.lha,
This guide (3u high, 7u wide) scattered away most of the propagating
light in a sample less than 1 mm long.

Smoother channels were fabricated by exposing the photoresist
with a better mask, and ion polishing the sample after the ion machining
(details are given in Chapter IV). Figure II.1lhb shows a channel
(1.4y high, 2 p wide) with much smoother walls,

The number of modes supported by a ridged guide, as discussed
in Section II.6, can be controlled for a given dimension by choosing
an appropriate guide substrate dielectric discontinuity or by covering
the guide with an appropriate index material.

We have discussed earlier directional couplers made of single
mode waveguldes embedded in the surface of GaAs. In that case the
coupling between two adjacent guides is caused by the overlap of the
propagating modes as shown in Fig. I1.15z. Figure II.15b shows single
mode ridged waveguides in which the modes are very well confined in the

x direction (becatse of the large dielectric discontinuity) and two
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Fig. I1.13 Channel waveguide fabrication by removal of

superfluous sections of an epilayer,



Fig. II.14 (a) An extreme example of a guide with rough walls and
top surface, (The guide is 3p high and 7u wide.)
(b) Good quality channel waveguide fabricated by using
holographically prepared mask and ion polishing.

{The guide is 1.ly high and 2u wide.)
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substrate substrate substrate

(a) T (b) (c)

Fig. II.15 Directional couplers fabricated in GaAs.

(a) Single mode embedded guides directional coupler.
(b) Two single mode ridged guides with no coupling.

(c) Ridged guides with increased degree of coupling.
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closely spaced guides will thus have a negligible coupling. To increase
the coupling between the guides, only a partial removal of the epilayer
between them was performed as shown in Fig, II.15¢c. Fig. II.16 is an
indication of the coupling. It shows the cross section of a high
resistivity GaAs epilayer (about 8u thick) that was machined down to
the substrate toform a large number of isolated channels. Light
coupled into one channel emerges at the other end of the sample from
that channel only (bottom photograph). However, when the same epilayer
is only partially machined (Fig. II.16b), light coupled into one guide

emerges from three guides.

II.10 Directional Coupler—Switch Modulsator

As mentioned earlier, one of the most exciting applications of
the directional coupler is the switch modulator in which the amount of
light coupled from one channel to the other is controlled by electric
signal applied to the guides. Such a device can be used to modulate
the light propagating in one guide or to switch light from one channel
to another, The latter property is an important mean for multiplexing
(or demultiplexing) two signals into one, or for switching light in
an opto-electronic switchboard of an optical communication network.

The merit of a modulator is determined by two factors: the
speed at which it can impose the information on the light beam and
the electrical power it consumes in order to do so, The speed of the
crystalline electrooptic modulator is determined by the response of the

electrical circuit, and this response is limited by the capacitance of
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MULTIMODE DIRECTIONAL COUPIER

Output Plane

(a) (b)

Fig. II,16 Directional coupler fabricated by ion machining in a
GaAs epilayer.

(a) Isolated channels. (b) Coupled channels,
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the device. The capacitance of a 3 x 3u rectangular guide, 1 cm
long, is about =~ 10 pF allowing subnano~second response. We shall
thus limit our attention to the relative magnitude of voltage necessary
for deriving different schemes of modulation. First we recall that for

the linear electrooptic effect

Sn <E = 8n«y (11.10.1)

where O&n 1is the index of refraction caused by the applied field E

and where V is the applied voltage. We also recall that for
polarization modulation<9) (in which the polarization of the propagating
light 1s rotated by 90° as a result of the applied field) the change

8¢ in the propagation constants of the TE and T modes must be such
that:

(GBTE - 66TM)L = % (11.10.2)

where L is the length of the modulator.

For the sake of simplicity we assume

8By = © (I1.11.3)
and that 6aTE can be written as
6BTE = on-kg (I1.10.4)

Using II.10.4 and II1.10.2 we can write that:



Sn = — (I1.10.5)

Our task now is to compare this = 6n which is required for a 100%
modulation in the polarization modulator (as well as mode conversion
modulator(l7) ) with the one needed for a directional coupler modulator,
Iet us therefore consider a typical example. It is the
directional coupler whose cross section is shown in Fig. II.1l7. The
material is assumed to be GaAs (n = 3.5). Because of the relatively
large dielectric discontinuity (An = ,01) the modes are well confined,
yielding (with the use of II.6.9 for the 3 x 3u guides) the following

value for the coupling coefficient at X = 1.15u

1

K = 0,155mm"~ (11.10.6)

We choose the modulator length to be the length necessary for complete

transfer of power. According to II.3.9

L = X2 . om ‘ (11.10.7)

Thus light entering the device at the left channel will emerge from the
one on the right. In order to turn the device into a switch modulator
Marcaliti(z) has suggested changing the coupling coefficient (by changing
the dielectric discontinuity, through the electrooptic effect) to a

new value Ki such that

(11.10.8)
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An=.0]|

Fig, II.17 Example of a directional coupler modulator.
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According to II.3.7, this will cause the light to be coupled back to
the original channel resulting in a 100% switch modulation. The coupling
coefficient can be varied by applying field to the section between the
two guides (schematically via electrode b in Fig. II.17), or alternatively
by applying the field to the guides (electrodes a and c), To obtain
the above value of Kl the dielectric discontinuity of the guide has
to be reduced from An = .01 to An = ,007. Thus the change in the
index of refraction required for switching is:
én ~ .003 = 52 1—{-1‘-3 (11.10.9)
0

The cornclusion drawn from this extreme example is very disap-
pointing. It indicates that the electrical power necessary to drive
this directional coupler modulator is 2500 times larger than the driving
power of a regular polarization modulator II.10.5. A smaller 6n can
be achieved for a given length geometry by decreasing the dielectric
discontinuity and increasing the separation between the guides. This
however reduces the confinement of the propagating modes,

In arder to devise a new scheme that will allow directional
coupling switching with less drive power, let us consider again the
coupled mode equations (II.3,2 and II.3.3), but this time allowing for

different propagation constants BO and 51 for the two guides.

()

— = -iBOAO(z) - iK Al(z) (11.10.10)
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A (2)
dz

= -ialAl(z) ~ iK‘AO(z)

Using the regular boundary conditions

0) =1 Al(O) =0

we obtain the solution:

1]

Ao(2) b3

(<o

1 -1(51+%?)Z

z) = - 1K sin 2+ i 2F €
Aa(2) (K2+(£%2)2>§' (x(3 ) )2 g

where Af 1is

ABEﬁO_Bl

(11.10.11)

(II.10.12)

l .
[cos <K2+<A—BB)2);2L" 7 - i .._A_Z__.B/i)_.z)_r sin (K2+(§2_5_)2>§Z} . e_l(Bo"'AZﬁ')
2

(I1.10.13)

(11.10.14)

(I1.10.15)

This solution becomes identical to II.3.7 and II.3.8 when AB =0 .

Going back to our previous example, where with two identical

guides (AB = 0) we had a complete transfer of power in a length L

(Al (L) = 1), it is possible by applying field to one of the guides

only to destroy the identity between the guides so that A # O any

more, According to II.10.1k if

(&« ()Y 1.,

-

(I1.10.16)
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we will get

i
O

A, (1)

|
—

Bo(D) =

This means that for such a Af there is no power transfer, and thus a
100% switch modulation is achieved, Equations II,10.16 and II.10.7
give the value of AR needed for destroying the coupling between the

guides:

ABL = V3 x (11.10.17)

and the necessary change 6én 1is thus

én x 1.73 == = 1,10 (11.10.18)
This O6n 1is much smaller than the previous one I1.10.9 and is approaching
the value required for polarization modulation, It is interesting to
note that II.10,18 applies to the ridge directional couplers described
in Section II.9 as well as the embedded ones,

A directional coupler can be made polarization sensitive by
choosing an appropriate guiding plane (for example 100 in Gads) in
which application of field causes a certain &én for TE modes but
é6n = 0 for T mode (or vice versa). Taus in our example, before the
application of the field, TE as well as T modes are coupled from one

guide to the other., However with the application of the field, the
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coupling of the TE mode is destroyed while the coupling of the TM mode
remains the same. Such a device with a D.C. electric field is capable
of separating the two polarizations of an incoming optical signal into
two different channels, As such it can turn a polarization modulator
(or a mode converter) into a directional coupler switch, as shown in
Fig. II.18a. This composite device will have a low modulating power
together with a directional coupler switch capability. Reversing the
pulse's direction of propagation (Fig. II.18b) enables the devices to
combine (multiplex) into one output channel pulse, with the appropriate
polarizations from two input channels,

We can apply electric filelds in a semiconductor(l8) guide by
back-biasing a metal-semiconductor junction (Schottky barrier), The
field is supported in a depletion region which is swept free of carriers
to a depth d , given by d = e¢E/eN, where N is the free carrier
concentration (assumed independent of depth) and E is the peak value
of the electric field. In this depletion region the fileld falls off
linearly with depth. The maximum depth to which a field can be applied
in such a Jjunction is given by the field at which the material breaks
down, In GaAs the breakdown field is roughly independent of doping
level, and has a value Ep =5 x lOSV/cm. This means that the maximum
depletion width is inversely proportional to the carrier concentration.

Numerically the maximum depth dm in microns is related to the carrier

3

concentration N in cm - by

d =3.5%x 1016/1\1 (I1.10.19)
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polarization polarization
modulator sensitive
(or mode directional
convertor) coupler

fre frm |

?

modulation

(a)

polarization

- sensitive

directional
coupler

Fig, II.18 (a)

(o)

(b)

Combination of a phase modulator and a polarization

sensitive directional coupler.

Polarization sensitive directional coupler as a

multiplexer,
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This indicates that in order to penetrate about 3u into the guiding

layer, its concentration must be lower than

N < :LOlécm—3

Unfortunafely the free carrier concentration of the proton implanted
waveguides after the anneal (which is necessary for low optical
attenuation) is about 101'7(3111_3 , thus preventing the penetration of
the field into the bulk of the gulde. GalAs epltaxial layers with low
carrier concentration have been grown(lo), but are not yet readily
available, A ridged directional coupler (Section II.9) made of such an
epitaxial layer may be a suitable candidate for a modulator,

In a GaAs guide in the (100) plane TM modes are unchanged by

the applied field. TE modes, however, experience a change in refractive

index

6n = & n (I1.10.20)

rhlE 5

where r)q is the electrooptic coefficient and n 1s the index of

refraction. Substituting the value of ), and r we get:

fn = 3-10"°.E (1I1.10.21)

where E is the applied field in V/cm.

To achleve a 8n = lO_u which is necessary for the directional

coupler switching, we need an average electric field of:



and voltage required for a 3y thick guide is thus
V = 10V

In the next section we shall discuss the use of this switch
and a similar device for multiplexing and demultiplexing of optical

pulses.,

I1.11 ILight Multiplexing by Directional Coupling

The high optical frequency of the laser radiation enables it
to carry large amounts of information. However, imposing a high rate
of information on a laser beam is a difficult matter. One of the ways
around this difficulty is to modulate the information on a number of
beams at a relatively moderate rate, and then to multiplex these beams
into one beam as shown in Fig. II.19a. We shall assume for the following
discussion that the laser radiation is in the form of very short pulses
with a period T , and that they appear in the different channels with
the appropriate shift in time so that they can be multiplexed with no
overlap between them. Such pulses can be generated, for example, by
mode locking(9)an Nd:YAG laser, and the appropriate shift in time between
the channels can be achieved by coupling the pulses to the channel via
optical fibers with different lengths., Another method is to have an
array of injection lasers on the same substrate as part of an integrated

optical circuit, where each one of these lasers is pulsed at a moderate
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rate but with an appropriate shift in time.

Let us examine the operation of the directional
coupler switch described in the previous section as a two channel
multiplexer. Figure II,19b shows the channels into which the two
already modulated (pulse code modulation-PCM) beams are coupled. In
order to combine the two beams into one that will propagate in the lower
guide, we have to see to 1t that when a pulse appears in the upper
guide it is completely coupled into the lower guide, but a T/2 seconds
later when a pulse appears in the lower guide it is not coupled into
the upper one but keeps propagating in the lower guide. This can be
accomplished by choosing the coupling coefficient and the length of
the two guides to be such that with no application of electric field a
complete transfer of power from one channel to the other is possible
(KL = %) . On the other hand to prevent the coupling of pulses from
the lower to the upper channel, we have to apply field with the appro-
priate strength for destroying the coupling whenever a pulse in the lower
guide is due. This can be done by driving the directional coupler with
a sinusoidal wave whose period is exactly T as shown in Fig. 1I1.19Db,
To perform multiplexing the same configuration can be used but the

direction of propagation of the pulses is reversed.
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Fig. II.19 (a) Multiplexing scheme for a higher rate of

information modulation,

(b) Directional coupler multiplexer.
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IITI., PERIODIC CORRUGATIONS IN OPTICAL WAVEGUIDES

IIT.1 Introduction

The interaction of radiation with man-made periodic structures
is of great importance in the microwave and optical regions. The
traveling wave tube is a good example of a device in the microwave
region which is based on this kind of interactions, In the optical
region one finds devices such as the diffraction grating, the acousto-

optic modulator and deflector, and the hologram,

In this chapter we shall discuss the interaction between periodic
corrugations on the surface of a dielectric ﬁaveguide and the wave
propagating in the guide., In Chapter V we shall describe methods
which were devised to enable us to fabricate these periodic structures,
with periods as low as 0.1lu (1100R%).

In general a wave propagating in a periodic structure consists
of space harmonics. These space harmonics have the same frequency as
the original wave but a different propagation constant B . Considering
the first order space harmonics only, we can write

21
Pspace harmonic = P £ R (II1.1.1)

where A 1is the corrugation period. The space harmonics are thus

shifted in %k space by the length of the k vector of the structure -7

il -27\’5 (I11.1.2)

il
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If the propagation constant of the space harmonic happens to coincide
with the propagation constant of a different mode, coupling of power
from one mode to the other becomes possible,

Iet us consider the guide shown in Fig. III.la; the «-B
diagram is shown in Fig. III.1b. The guide (which is discussed in
Appendix I) is assumed to support two guided modes O and 1. The propa-
gation constants of these modes at a given w , are BO and Bl .

As can be seen from the diagram (we have assumed n, > nl)
2

nky > By > By > n kg (ITI.1.3)

3

The PB's are less than nzko in order to allow the cosine or sine
variation of the modes inside the gulde along the thickness direction.
Outside the waveguide the mode profile should fall exponentially for a
guided mode. This is taken care of by requiring 8 > nBKO where n3ko
is the free wave propagation constant in the substrate.

In this waveguide it is possible to cause coupling between the

two guided modes(l) by having a corrugation whose period satisfies

== BO - Bl (III.1.4)

This condition is illustrated on the right branch of Fig. III.1b by
ﬂl . The value of the coupling coefficient which depends on the

corrugation depth, the modes' profiles and so on, will be discussed
later. If we decrease the corrugation period and thus increase the

value of its vector 1, it becomes possible to couple light from a
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Fié. IIT.1. (a) Periodically corrugated dielectric waveguide.

(b) Mode dispersion and possible interactions in the
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gulded mode, say the O mode, to a continuum of radiation modes(l).
These radiation modes have a propagation constant in the z direction
which is

B, < nkg (1II.1.5)

This means that they do not decay exponentially in the x direction and

are able to carry power away from the guide. The case is illustrated

by ﬂz in Fig. III.lb. The coupling from the O order mode will be to

a cluster of radiation modes whose propagation constant in the z direction

is close enough to

B = BO - (I11.1.6)

This effect can be used to couple light in and out of a waveguide and
(2,3)

is known as the grating coupler

If A is further decreased so that

2t =g o 28, (III.1.7)

coupling occurs between a forward propagating mode and the same backward
mode. This effect is illustrated by ﬂ3 in Pig. III.lb, It results

in a distributed mirror whose behavior was described by Fig. 1.5 and
will be considered later. The use of two such distributed mirrors
instead of two cleaved faces may help in extending the lifetime of
semiconductor injection lasers in the case where catastrophic mirror
damage 1is the dominant failure mode. When the corrugation extends

along the whole length of an amplifying medium, a distributed feedback
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laser(u> may result, In these lasers there are no discrete mirrors
and this makes them very desirable for an optical integrated circuit.

In this chapter we shall focus our attention on a laser geometry
in which the distributed feedback is supplied by surface corrugation,
elaborate on its modes, and conclude with a description of the first

(5)

observation of such a laser in Gals

111.2 Theory

The problem of coupling by surface perturbation between TE
modes in a dielectric wavegulde can be treated in the same fashion as
the time dependent perturbation in quantum mechanics. The solution for
the perturbed guide can be expanded in terms of the modes of the
unperturbed guide. Assuming that the zero order mode enters the
perturbed section of the waveguide at 2z = O (as shawn in Fig. III.2a),
one can calculate "transition rates” or coupling coefficients to dif-
ferent guided modes, to radiation modes (modes of the continuum) and
to the backward going mode., This approach was used by Marcuse(l) to
calculate mode conversions and radiation losses in waveguides.

We shall apply the same approach used in Chapter II for the
calculation of the coupling coefficient between the modes of two
adjacent guides., We start by writing the caipled mode equations for
forward (+) and backward (-) going zero order modes:

(+)
M = (-150 + Q) A(*‘)(z)' - iKe'inZAé')(z) (I1I.2.1)

dz 0
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Fig, III.2. (a) Distributed mirror of length L .

(b) Definition of the perturbation in the
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(-)

dA Z .

__sz__i_l = (ipy - @) Aé')(z) + iketT? Aé+> (III.2.2)
dz

where BO is the propagation constant of the mode, « is the gain of
the medium, and K 1is the coupling coefficient between the modes.

K appears with different signs in the two equations because the modes
carry power in opposite directions (see Appendix II)., In addition,

K is multiplied by a phase term eiiﬂz which represents the spatial
variation of the coupling perturbations. As we shall see later, )

(-)

is exactly the k vector of the perturbation. Aé+) and A

o are

the amplitudes of the modes
507 (r,2) = Al (2)e () (111.2.3)
Eé’)(y,z) = Aé’)(z)eo(y) | (II1.2.4)

The mode profile Bo(y) is normalized to carry one unit of power, so

that the power Pé+)(z) carried by Eé+)(y,z) is given by
Pé+)(z) = ]Aé+)(z)]2 (II1.2.5)

The rate of growth of Pé+)(z) because of the coupling can be derived

from ITI.2,1(we assume o = O for this purpose)

(+)
EEQEQEEE = 2 Re{Aé+)(z)[}iKe-inZAé—)(z)}*} (11I1.2.5)
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We shall derive now an expression for the power growth from a physical
point of view, and by a comparison with IIT.2.6 find expressions for
XK and T .

In a similar fashion to what we did in Chapter II, we use the
perturbations in the polarization of the backward going mode, caused
by the index disturbance at the surface, to drive the forward going
mode, Coupling can take place only between TE or ™ modes but not
from TE to TM, because the driving polarization is in the same direction
as the field (we assume isotropic media), The driving polarization

caused by a TE mode is given by:

[Pé;zt(y’z’t)]y = AE(Y,Z)fEé")(y,Z,t)]y (III.2.7)

where Ae(y,z) is the perturbation in the dielectric constant and is
given in Fig. III.2b. Power generation for the (+) mode in an

infinitesimal volume 4V 1is given by:

(+) 7 (y, ,t
Yo .. Eé+)(y,z,t) pert (%% %) (11I1.2.8)
av ot

where the horizontal bar denotes time averaging. Using III.2.4 and

time dependence of emyC , III.2.8 becomes after the time averaging:

oy (+) () )7
—— = b R A" () () L-dabe(y, 1) (VA ()T (TIT.2.9)

the growth of the total power Pé+) can now be derived by simply

integrating over x and y . We obtain
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dPé+)(Z) 1 (+) ; " * RO PR
—— =t R, gAO (Z){}laliJ 8O(y)Ae(y3z)80(y)dxd%E A (z) g
(III.2.10)
Comparing III1.2.10 with III1.2.6 we find:
ke 12 _ f” 8(2)(y)Ae(y,z)dxdy (III.2.11)

-0

The integral in ITI.2.11 can be simplified if the perturbation is small
enough (a << A) s0 we can approximate Bo(y) by 80(0) . We ignore
for the time being the integral over x Dbecause we consider now a
planar guide. (The x integral will be used when we consider a channel
laser.) With the help of the mode's profile expression from Appendix I

we get after simple manipulations:

. 2
ke~ 1Mz _ h i T Sen [;os(%? zﬂ (I11.2.12)
2Bt + =+ -~
Bolt + 5+ 3
where
1 for argument >0
sgn[argument] = (II1.2.13)
-1 for argument <O
Using Fourier expansion we can rewrite II1I1.2.12 as
g u l 2
Ke-lﬂz _ h i - [; cos(%g z) - Tx cos (3 7?%) +....] (111.2.1k)
2B (t + = + =)
0 P q

Only one term from the left side of III.2.1hk will give synchronous

contribution when substituted into the coupled modes equations., For

ofn .

first order coupling from Aé+) to Aé_) which occurs when o = 28,
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we find

N = (II1.2.15)

and the coupling coefficient for this case is

4
K= 22 (II1.2.16)
B 1 1 <G
Bt + =+ =
Bolt + 5+ )
On the other hand, for third order coupling which occurs when
3 %gif ZBO , the synchronous term is the one for which
an
N=3-x (IT1I.2.17)

and the appropriate coefficient for the third order couwpling is

(III.2.18)

2.
K= T
)

- 1
3ﬂ50(t tot g

These expressions can be further simplified for a well confined zero

order mode for which

h=*% (III.2.19)
f>>2, 1 (1I1.2.20)
P q .
We can thus rewrite III.2.16 as §
na
K=7 .3 (III.2.21)

Po
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An additional contribution to the coupling coefficient may arise in a
case where the gain (or the loss) « of the medium varies periodically(B).
The Ae which represent gain variations is imaginary, and the combined

Ae Dbecomes complex:

A&:(y,Z) = A

.1
Ecorrugation(y’z) A Eg oy, z) (III.2.22)

where ko is the free space propagation constant and Aa(y,z) is the

variation in the gain. Using this expression for Ae(y,z) one has to
go back to equation III.2,11 and evaluate K , This coupling coefficient

will have the following form

(III.2.23)

. + 1K .
corrugation gain

K is the one given by II1I1.2,16,
where corrugation € one given by

Now that we have obtained the value of K and T let us
return to the coupled mode equations. To eliminate BO from the
equations we redefine Aéi)(z)

-l(ﬁo—AB)

2l (2)—=a{(z)e

(III.2.2k4)

- 1(B,-LP
Aé_)(z)-—-4>Aé )(z)e ( 0 )

where AR 1is the phase mismatch constant

AB =By - 2 2% (III1.2.25)
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Substituting all that into III.2.2 and III.2.2 we get:

anl") (z)

— (a-iAB)Aé+)(z) - iK Aé')(z) (I1I1.2.26)

) (z)

~(a-18)88 ) (2) + 1 2l (2) (I11.2.27)
dz

This pair of coupled equations will be our starting point in the next

sections, We recall that K (for a well confined zero order

mode and a << A) and AB are given by:

K - T8 ; 28 = B, -4 %; (III.2.28)

I1IT.3 Distributed Mirror

We consider now the geometry described in Fig., III.2a, The
(+) =zero order mode propagating in the guide from left to right

enters at z = 0 a corrugated section of length L, If ZBO ~ %g

reflection occurs. The (+) mode decays while the (-) mode grows
as indicated in Fig. I.5. Our aim now is to find how strong the
reflection is as a function of the guide properties, and how
selective the reflection is for different frequencies that propagate
with different propagation constant ‘BO . To do that we consider

again the coupled mode equations III.2.26 and III.2,27, taking «a = O .



-88-

an$(z)

—— - - al)(z) -1x Al (z) (I1I.2.26)

aal~)(z)

[

— iAB Aé’)(z) + iK Aé+)(z) (III.2.27)

The boundary conditions that describe the case under consideration are:

Aé+)(o) =1 Aé_)(L) =0 (III.3.1)

The solution is given by:

-iK sinh vy(L-z)
Y cosh vL + iAB sinh VYL

Aé’)(z) = (II1I1.3.2)

v cosh y(L-z) + iAB sinh y(L-z
Aé+)(z) _ ) (L-2) (111.3.3)
Y cosh yL + iAB sinh VL

where

v = (€ - (ap)?)? (I11.3.1)

Under phase matching conditions (4B = 0) the Bragg condition

a5
2o = R (111.3.5)
ig fulfilled, and we have the strongest reflection:

- sinh K(L-2z)

A( ) = -i (I11.3.6)
0] cosh KL

cosh K(L-z)

al+) (II1.3.7)

o cosh KL
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A plot of the mode powers for this case is shown in Fig. I.5. The
curves of ]Aé_)lz and ]Aé+)]2 are plotted for KL = 1,84 .
According to III.2.21, it represents the reflection of a well confined
mode in a guide with ¢ =3u n, = 3.6 X =0.80 a =500 and
L = Omm ,

The selectivity or the filtering properties of the mirror can

be described in terms of AR , We recall

21

— o ok Lft
68 = By(w) - 3 % (I11.2.23)
1t can be approximated by
n n
A8~ (0 =2 - % %g) = A =2 (I11.3.8)

C C

Thus its value represents deviation from the exact frequency for which
the Bragg condition III.3.5 is fulfilled (“bragg) . Figure III.3a de-
scribes the reflection properties of a mirror with a fixed KX and the
phase shift associated with it. The different curves represent
different lengths. As can be seen, the longer the length is, the
narrower the reflection band is. For a finite mirror length the peak
reflection is less than unity, but the peak is relatively wide. Its
width ABrefl. is given approximately by

2

= 2(K2 + %)

fi-

ABLerl, (I11.3.9)

=

An infinitely long mirror has a flat total reflection band with a width

AB of 2K , This total reflection band is the stop band of this



AR = nz/’c Aw —=
0

+K +2K +3K
T T

¥

B (w)
_—— 4 -

Fig, ITI.3. (a) Reflection intensity and phase shift from a distributed
mirror as a function of AR for different values of KL .
(b) A stop band in the mode dispersion caused by the corrugation.
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periodic structure, and is analogous to Bragg scattering of Bloch
electron wave in a crystal, from one edge of the Brillouin zone to the
other by the crystal periodicity(6). The dispersion (w - B) diagram
of the waveguide thus has a stop band and is modified at its vicinity
as shown in Fig. III.3b. The midgap frequency is the Bragg frequency
for which

Bo( @ ang) = % 2 (II1.3.10)

88

The height of the energy gap is the frequency region over which the
propagation constant becomes complex, and thus the propagation is
forbidden. (The wave is not absorbed but reflected.) The gap region

is given by

A = 2K ITI.3.11
By (111.3.11)

and if we take 6O(w) , the non-perturbed propagation constant, as

approximately:
Bo(w) » -‘fn ‘ (I1I.3.12)

we get:

c
bo o= 2K = (III.3.13)

Do

In the gap the real propagation constant is fixed and is equal to

12 . Outside the stop band the proragation constant is real, but is

= A
modified somewhat to accommodate the gap, as shown in Fig. III.3b.
Two Bragg reflectors can form a laser cavity(7). Two corrugated

mirrors can, for example, be used instead of cleaved faces to form a
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semiconductor laser cavity as shown in Fig. III.4a, The reflection of
the mirrors can be controlled by changing their length or the depth
of the corrugation to supply the appropriate feedback for oscillations
even for a low gain medium. We assume that the mirror's properties
do not change much in the presence of a low gain, and that its length
is much smaller than the laser's length (a different case where the
mirrors extend all over the laser is treated in the next section).
(I11.3.1k4)

<
Lm < L@

This means that the spectral reflectivity of the mirrors is much wider
than the spacing between the longitudinal modes of the laser. We
recall that the width of the reflectivity in E space is given by

I117.3.9
: 2
AB =28+ &)
mirror IF

m

Wi~

(II1.3.15)

For a mirror reflectivity which is close to a unity we can assume that

KL 2 (II1.3.16)

Thus a lower limit for AB . is
mirror
T
> 0 e
ABpirror ~ 2 L (I11.3.17)

On the other hand the spacing of the lcngitudinal modes is given

approximately by: (we ignore dispersion because of the gain in the
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Fig., ITI.h, (a) A laser, formed by two distributed mirrors.

ideal mode location

(b) TLongitudinal moce spectrum of the above laser.
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medium, and dispersion in the phase of the reflected beam from the
mirror which is shown in Fig. III.3a and can be ignored for Lm << L@)
7T
ABlongitudinal modes iz (I11.3.18)
The longitudinal modes distribution is shown in Fig, III.Ub,
The location of the modes with respect to the center of the mirror
reflectivity, which is important for longitudinal mode discrimination,
depends on the exact distance between the two mirrors. According to
I11.3.6 the reflected wave from the mirrors suffers a phase shift of

©

-90 This means that for a longitudinal mode to coincide with the
peak of the reflection, the distance between the mirrors has to be
such that it compensates the -90° phase shift for the Bragg frequency.

This requires that

A
L, = (2mel) —%"lg.% = (Pm+l) = (1II.3.19)

Another way to state this condition is that the relative phase of the
two corrugations has to be 180° . This requirement may be found
difficult to fulfill especially when the propagation constant under
the corrugated section may not be exactly the same as the one in the
bulk of the guide., In addition the flatness of the reflectivity curve
close to the center, reduces the ability to discriminate between
close longitudinal modes.

When the corrugation is extended over the total length of the

laser, a distributed feedback laser(u) results, and a better control
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of the longitudinal modes becomes possible,

ITII.4 Distributed Feedback ILaser

We consider now the geometry shown in Fig. III.5a, The
corrugation extends from z = —%L to z = 3L and we assume that the
waveguide has a gain of o . In the previous section we have discussed
the reflection properties of a corrugated structure. In this section
we shall discuss its lasing properties and inquire about the modes of
oscillation, their frequencies and threshold gains,

Our starting point is the coupled modes equation derived in

Section III.2.

(+)
dA Z
o 1B (-12p)a8(2)- 1l (2) (II1.2.26)
dz

dAé')(z>

i

—(a—iAB)Aé_)(z) + iKA(()+)(z) (I11.2.27)
dz

The corrugation is responsible for the coupling mechanism and the

coupling coefficient was found to be (for a well confined zero order

mode and corrugation depth a << i)

. ma
K = 3 (III.2.21)
0

where t 1s the thickness of the guide. We recall that AR is the
deviation of the unperturbed propagation constant of the guided mode

from n/A ,
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) _ , Cuide
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Fig. ITII.5. (a) A distributed feedback laser of length T, .

(b) Plot of the amplitudes of the propagating modes

in the laser.
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1 2
48 = Bolw) - 3 + (III.2.25)

From this point on we follow the original discussion of the
distributed feedback laser by Kogelnik and Shank(B). We start by
imposing the appropriate boundary conditions. Since this is an
oscillator we assume that there are no incoming waves. Thus the

boundary conditions are:

Aé+)(—%L) =0 A(_)(%L) =0 (ITI.L4.1)

A solution with such boundary conditions exists only when the following

relation is fulfilled<8)

o - iAB = vy coth(yL) (I1I.4k.2)
where
_ RN 2.5
y = [(a - 188)" + K] (II1.4.3)
The complex equation III.4.2 which can also be written as
-~y + (0-1iA
Y+ (0-188) evi _ (III.k.4)

v + (a-1ap)

determines for a given K and L the eigenvalues of AB (the shift
in the modes frequency) and the corresponding « (the threshold gain)
for which oscillations can take place. The solution for Ao(z) is
given by

Aé+)(z) = sinh v(z + 3L) (IIT.k.5)
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A(->(Z) = sinh v(z - 3L) (II1.4.6)

and is shown in Fig. III.5b. As can be seen in the figure, each wave
starts with a zero amplitude, at a different side of the laser. The
wave grows as 1t propagates because of the energy continuously fed
into it by the other wave and because of the gain which exists in the
medium,

In the experimental cases to be discussed later o > K so
we confine our attention now to this high gain situation. Thus, v,

which is given by III.L.3, can be expanded as

2

vom (- i) + — 5 (III.4.7)
2(a - iAB)

and Equation III.4.4 can be written approximately

2
K YL g (II1.4.8)

(o - iap)°
The phases of this equation give us the phase constants and
thus the frequencies of the modes of oscillation (by quantizing AR) ,
while the absolute value of this equation gives the threshold condi-
tions for the different modes (by solving for «) . The distinct

values of (Aﬁ)m for which oscillations are possible are thus given by:

2uf0p), | K (4p),T

2

= - % — 5 = (2mrl)x (I11.4.9)
O~ (8B) o+ (8B)

Z(AB)mL - arctan

where m is an integer which denotes the longitudinal mode number,
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This equation is not in a closed form because ¢ has not been
determined yet. However, if we assume that K , 4B << o we immediately

get

o

mrt + T
(4g), = ———— | (III.4,10)
L

Using III.3.8 we find that for such a laser, the spacing of the
longitudinal modes 1s approximately the same as the spacing of a regular

two-mirror laser of length L . We have

Frequency spacing of longitudinal modes = ch T (III.4k.11)
2

We also find that we do not have a mode for which 4B = 0 . This means
that the laser will not oscillate with a frequency which is exactly
the Bragg frequency. A physical explanation of this effect will be
discussed later,

The threshold gain for the mth longitudinal mode can be derived

from III.4.8 by taking the absolute value of the equation. It yields

204, L
- € s = 52_ (III1.4.12)
o (Aa)m K

The value of the gain can be found either by using the approximate value
of (AB)m (III.4.9) or, more accurately, by solving III.4 12 in
conjunction with III.4.9 for (Aa)m and o . The broken lines in

Fig. III.6 describes a specific example of a distributed feedback laser
1

of length L =1mm and K =2 cm It shows the required threshold
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gain and the deviation of different longitudinal modes from the Bragg
frequency. Since AR 1s not much smaller than o the modes do not
coincide with the c¢/2nL spacings, but are further pushed to the sides.
The selectivity of the device is evident from higher threshold gain
needed for the higher order modes,

As we have observed, the laser does not have a mode for which
AR = 0 . This can be explained in the following manner. We recall
that according to III.3.6 the reflected wave from‘a distributed mirror
suffers a phase shift of -90° , when its frequency is exactly
Qéragg(AB = 0). Thus, if we consider as an example a wave propagating
to the right, the fraction of it which is reflected backward and then
reflected again forward will suffer a total phase shift of -180° . This
means that it will interfere destructively with the original wave, and
prevent oscillation at that particular frequency.

It is interesting to note that this problem does not exist when
the coupling mechanism is provided by periodic gain variation., According
to III.2.22, in this case K is imaginary, giving rise to a zero phase
shift, and oscillation exactly at the Bragg frequency is allowed(8),
This mode, for which AP = O, would clearly have the lowest threshold
gain,

We have noted earlier that a corrugated waveguide has a stopband
of frequencies (Fig. III.Bb), in which propagation is not allowed. The
gap increases with increasing K . When it becomes comparable to the
c/2nL spacings, it starts pushing the longitudinal modes to the sides,

preventing oscillations inside the stop band. A small amount of pushing

is evident in the second example in Fig. III.6. The solid lines
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describe the modes of a laser with X = 6 cm—l and L =1mm . Also
evident are the lower threshold gains and the better selectivity of

the laser,

IIT1.5 Distributed Feedback Ilaser in GaAs - Experiment

Fundamental Bragg coupling of a waveguide laser requires a
corrugation with a period of ~ A /2n2 where A is the free space
oscillation wavelength and n, the index of refraction of the waveguide,
For n, ~ 3.6 and A = .82u the requisite period is ~ 0,11y .

A technique for the fabrication of such small period gratings
in solid substrates was developed, It consists of lon milling a .
photoresist grating into the substrate, which is GaAs in this case.

The grating in the photoresist is formed by exposing it with an inter-
ference pattern of two laser beams, In order to achieve the small

period grating U.V. laser (HeCd A = 32508) was used and the wavelength
was further reduced by sending the beams through a prism (n = 1.5)

(the prism is attached to the photoresist with index machining oil
between them). A scanning electron microscope photograph of a corrugated
GaAs crystal is shown in Fig. III.7. The period is 0,115y . Further
details on the fabrication are given iﬁ Chapter V.

In this section we shall give a short description of the first
observation of a distributed feedback laser in GaAs(B). The data were

obtained by M, Nakamura and H. W. Yen. A more detailed description of

tn
n

the experiment and its analysis will thus be given in H., W. Yen's ths

The GaAs dielectric waveguide used in the experiment was



#ig. III.7. A Scanning Electron Micrograph of the surface corrugation

on a GaAs crystal. The period is 0.115u
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produced by growing an undoped Gal_XAles (x ~0.3) and a GaAs double
layer on a GaAs substrate. The thickness of the guiding GaAs layer was
214 . The samples were pumped optically at 77°K using a pulsed dye-
laser (Rhodamine B) tunsd to KP = 63008 . The individual pumping
pulses had a duration of 7 x 1077 sec and a peak power of ~ 2kW.
Cylindrical lenses were used to pump a rectangular strip 0.33mm wide
and of a variable length, as shown in Fig. III.8. The output beam of
the laser emerged through a side surface and was guided into a spectram-
eter,

A spectrum of the laser output is shown in Fig. III.9. The
pumping intensity was 1.1 times the threshold intensity Ith and the
length of the pumped region was 150u .

The width of the oscillation spectrum of Fig. II.9 is less than
18 and is within the resolution of the spectrometer, It corresponds to
a single longitudinal mode oscillation., By increasing the pumping
intensity and the length of the pumped region, multi-longitudinal-mode
oscillation was observed as shown in Fig., IIT.10. The length of the
pumped region was 7TOOu , and the pumping intensity was 1.4 Ith .

The existence of only one longitudinal mode in Fig., III.9
rather than the two symmetrical lowest order longitudinal modes about
5K apart, predicted by the theory (Fig. III.6) for a corrugated
structure, may indicate that there exists some sort of periodic gain
variation in the sample, which contributes to the distributed feedback,
In addition the fact that close to the center of the spectrum in Fig.

ITT.10, the modes' spacings are smaller than at the edges of the spectrum
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Ga, Alj_,As !

GaAs substrate }

Fig, III,8. Illustration of the laser crystal and the

configuration used,
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Fig. II1.9. The oscillation spectrum of a GaAs waveguide laser. The
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(after Ref. 5).
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supports the above assumption.
As discussed in the previous section the spacings between the
modes are quite similar to those of a regular laser of length L ,
For a regular laser, because of index dispersion, the longitudinal mode

spacing AN 1is given by

XZ

M g ——e
2(n - A ) L

(111.5.1)

4

where A 1is the vacuum oscillation wavelength, n is the guide's index
of refraction, and L +the length of the pumped region. If we take
n- A %% = k.5 , a value obtained from a Fabry-Perot laser using a
similar waveguide, we obtain AA ~ 1& , This agrees with the spacing
in Fig. III.10.

As we have seen earlier, in a distributed feedback laser the
wavelength of the oscillation is determined by the period of the
mechanical corrugation

L= enh (I11.5.2)

where A 1is the period of the corrugation and we have assumed
(t > 1 /nZ) .

By varying A it is possible to tune the frequency of oscillation.
A number of waveguides were thus prepared with a different corrugation
period. The measured oscillation wavelength A of the samples is
plotted as a function of the period in Fig. III.1l. The tuning range
shown is about 458 ., The mechanical period in this experiment is

three times larger than the one required by III.5.1 and the Bragg
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reflector (after Ref. 5).



-110-

reflection is provided by the third order Fourier component of corru-
gation, Fig. IIT.1l indicates that the laser feedback is indeed caused
by the corrugations and that their use leads to a stabilization of the

output wavelength.

TII.6 The Merits of Distributed Feedback Semiconductor Lasers

The previous section describes the operation of an optically
pumped GaAs distributed feedback laser. It is evident now that the
fabrication of such a laser is much more difficult than that of the
conventional one (which uses two cleave faces as mirrors). Furthermore,
it seems as if the fabrication of a distributed feedback injection
laser would be considerably more complicated.

The heterostructure GaAs lasers, which combine low threshold

(lO), are

current at room temperature(9) with relatively long life time
multilayer structures. The propagating mode is confined to the inner
layers and does not reach the surface. It is thus quite difficult to
perturb the mode by corrugating the surface, and another mean would

have to be found. Corrugating one of the inner layers by performing

the epitaxial growth of the layers in two separate steps is a possi-
bility. However this solution may tamper with the not so well understood
life time problem of these lasers.,

Because of the above reasons I would like to conclude this

chapter by discussing the advantages of the distributed feedback lzsers.
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The first advantage is the capability to predetermine the
wavelength around which the laser will oscillate. As we have discussed

earlier the laser wavelength, X , is given approximately by:

A=m2n, A (I11.5.1)

where A 1is the corrugation period and n, is the guide's index of

2
refraction. It is thus possible to vary the laser wavelength by
varying the corrugation period.

The second advantage is the discrimination of the distributed
feedback mechanism between different longitudinal modes. Figure III.6
describes mode spectrum and required threshold gain for a corrugated
distributed feedback laser., There are two symmetrical longitudinal
modes with the lowest threshold gain. The differences in the required
gain between the modes 1s a function of the parameters of the laser
and can be enhanced. In a laser where the distributed feedback is
supplied by gain variation the discrimination is even better, because
there is only one mode with the lowest threshold gain.

The limited number of longitudinal modes of the laser is
important for optical communications via optical fibers. The dispersion
which exists in these fibers tends to limit the information rate
capabilities when the bandwidth of the radiation is not narrow enough.
In a wavegulde laser the width of its radiation depends in addition to

the number of longitudinal modes on the number of lateral modes. Let

us therefore, devote our attention to these modes and their control.
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The lateral modes of a rectangular waveguide were discussed
in Chapter II. As an example Figure III.1l2a describes the (0,0) (1,0)
and (2,1) modes of a rectangular laser (the mode's notation (m,n)
is such that m+l and n+l denote the number of field extrema in the
x direction and the y direction respectively). The thickness (%)
of the guide is usually Iy or less, while the width (w) 1is a few
tens of microns or more. This means that the phase constant in the
y direction is much larger than the one in the x direction, In the
following we shall see how this large phase constant discriminates
between an (m,0) and an (m,n>0) modes. Later on we shall describe
a method that discriminates between a (0,0) and an (m>0,0) modes.,
This will allow the operation of a distributed feedback laser that
combines narrow bandwidth with lowest order transverse mode operation.
In a rectangular guide the propagation vector is given by the
vectorial sum of the phase constants in the three orthogonal directions
Xx,¥,2 . The phase constant in the z direction is p , while & h.X and
+ hy are the phase constants in the x and y directions. The absolute
value of the Kk vector in the guide is thus given by

4
2

o 2 2 2
K| = (8% + 1 + n) (121.6.2)

The vacuum wavelength of the laser radiation A , therefore is

Znn2
A = . (I11.c.2°
5 .2 P&
(B™ + h + hy)

where n, is the guide's index.
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As was discussed in the previous sections, in a distributed
feedback laser the phase constant in the z direction of the oscillating
modes, is determined by the corrugation period., The B's of the

lowest threshold modes are given approximately by:

B~ % (III1.6.3)
As we have noted above since t << w

hy >> hx (I1I.6.4)

and we can ignore h.x in ITI,6.2 and take m as being O .

Using III.6.3, III.6.4 and III.6.2 we can express the vacuum

wavelength as a function of the mode number (O,n) .

2ﬂn2

x(o,n) - [(;\z_)g . (hy)lgl]:é (I11.6.5)

(hy)n is phase constant in the y direction for a particular mode

number, which for well confined modes is given by

n+1
(b)), = i‘fglz (III1.6.6)

Substituting III.6.6 in III.6.5 immediately yields the different
oscillation wavelength of the different thickness transverse modes in

a distributed feedback laser,
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As an example we consider two transverse modes (0,0) and
(0,1) . The K  vectors diagram for that particular case is shown in

Fig. III.12b., The expressions for A(0,0) and A(0,1) are given by

I11.6.7 as

2Tfn2 2311'12
K(o,o) T 2B Mo,1) = ¢ hLx® |3
(7) + 2] )%

Using typical values such as A = 0.115. , t = 1u and n, = 3.6 we

(I11.6.8)

find

AN = x( y = 8226 - 80708 = 156R

0,0) ~ X(o,l
This separation between the two modes is larger than half the
width of the fluorescence spectrum in GaAs! If A is chosen properly

so that K(O 0) corresponds to the center of gain curve,
J

*(0,1)
will automatically be placed outside the gain curve and the (0,1)
mode will not oscillate,

It is important to realize that the effect described above
is due to the fact, that in a distributed feedback laser the phase
constant of the longitudinal mode is clamped to a value of % .
In a conventional laser, on the other hand, B can take different
values and thus allow oscillation of the (0,1) mode(ll).

The wavelength separation between two different width transverse
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modes is not large (because w >> t) , and therefore does not allow
discrimination in the fashion described above. However the wavelength
separation is enough to widen the bandwidth of the laser and should be
avoided., In addition the existence of high order transverse modes
affects the far field radiation pattern of the laser by causing the
beam to diverge strongly. We shall use another property of the
distributed feedback laser to show how it is possible to increase
the threshold gain required for higher order width transverse modes.
Let us cmsider again equation III,2,11, which expresses the
value of the coupling coefficient in terms of an overlap integral
between the propagating mode and the perturbation in the dielectric

constant, -

g o~ 1Mz _ e JJ Ae(x,y,z)&?m’o)(x,y)dxdy (III.2.11)
)

The surface corrugation thus perturbs the propagating mode the most
where it overlaps the peak of the mode's power profile, Figure III.13a
describes the power profile of well confined (0,0) , (1,0) and (2,0)
modes. As can be seen, in the (0,0) case most of the power propagates
close to the center of the laser's width, while in the higher order
modes a smaller fraction of the power propagates close to the center,
For a high mode number the power distribution tends to be uniform over
the whole width.

A corrugation extending only over a central portion, say 1/3
of the laser width, would be felt mainly by the (0,0) mode because

of its unique power distribution, This will cause the (0,0) mode to
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Flg. I111.13. (a) Power profile distribution for different
width-transverse modes,
(b) Diagram of the coupling coefficient and
threshold gain for the above modes for v =w
and Vv = w/3.
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have a higher K and thus a lower threshold gain than the rest of the

modes., A complete transverse mode control will thus be achieved,
Let us calculate now the degree of discrimination between
the modes. We first note that the mode profile in the x direction for

well confined modes is given by

1

= !

8(O,m)<x) = (2/§' j;—-—— for even m
(I1I1.6.9)
S(O,m)(x) = (é}g —-—l— for odd m

where w 1s the width of the guide and (%)ﬁ is a normalization
factor. We can express now the coupling coefficient for the different
modes in terms of X and an overlap integral in the x direction.
K is the coupling coefficient for the case where the corrugation

extends all over the guide and is given by III.2.16. We can thus write

v/2 -
= K J cos2 ﬁE&})E X | dx for even m
(m, 0) W
-v/2 -
(I11.6.10)
V/Z
( O)" 31n2 E<m+l)ﬂ dx for odd m
-V/Z
According to III.6,10 one finds that for v = % W

= 0, = 0,2K K = 0.33K III1.6.11
Ko,0) = 06K s K oy = 02K, K 4y = 0.33K  (III.6.11)
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Considering the same example discussed in section 4 (Fig. III.6) with
K=6cn" and L= lm , we can calculate now the threshold gains for
the lowest order longitudinal mode but with the different lateral modes.
The results are shown in Fig., 13b and indicate quite an effective
discrimination between the transverse modes,

The last advantage of a distributed feedback laser which
should be mentioned is its compatibility with the concept of integrated
optical circuits. The conventional GaAs laser is cleaved on both
ends, The high index of refraction of GaAs provided enough reflection
at the interface to sustain oscillations. It is difficult, however,
to incorporate this method into the fabrication of an optical circuit,
One possibility is the replacement of the cleave with a sharp step in
the guide’s thickness, which will provide enough reflection for the
oscillation, Such a step was fabricated by ion milling and is shown
in Fig. III,1k, The distributed feedback laser on the other hand has
no discrete mirrors at all and therefore is highly compatible with
optical circuits,

Figure III.l5a describes a configuration in which a large
optical cavity GaAs laser (LOC){lZ) is incorporated into a guiding
structure. The guiding layer is the AlyGal_yAs while the active
layer is the upper GaAs layer. (For this purpose we must require that
x >y and that the GaAs layer be too thin to support a guided mode
of its own,) The gain is provided in this case by the optical pumping
while the feedback is supplied by the corrugation. To avoid absorption

by the GaAs layer outside the laser area, it is removed from there by
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Fig, III.1k, A scanning electron micrograph of & 3u deep

step ion milled in GaAs.



pumping 121-

ééﬁgééé ~active

%AEXGGA_XAS S 4

channel

corrug@?ion-\

~ substrate

Fig. III.15. (a) A configuration for a distributed feedback large
optical cavity GaAs laser.

(b) The above configuration with a tapered width for
matching the elliptical output beam to a square channel

guilde.
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gradually tapering its thickness to zero. As opposed to the sharp step
discussed above and shown in Fig, III.1hk, in a taper the mode gradually
adapts itself to the variation in the thickness and does not suffer
severe reflection or loss(lB) (provided that the final thickness guide
can support that mode).

Ton milling, which is described in detail in Chapter V, can
also be used to taper the width of the laser and thus turn the ellipti-
cal output beam into a more round one. This is shown in Fig., III.15b.
The laser is a distributed feedback LOC laser, The corrugation extends
over the central portion only for transverse mode control. The width
of the laser as well as the active layer are tapered to fit the cross
section of a square channel guide. Such a configuration can incorporate
a single or two longitudinal modes together with a round lowest order
transverse mode operation.

It can thus be concluded that the advantages of the Gals
distributed feedback laser encourage an attempt to implement it in an

injection laser configuration.
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IV, NONLINEAR OPTICAL INTERACTIONS

IN PERIODIC THIN FIIMS

IV.l Introduction

Optically isotropic materials have, to date, not been used in
nonlinear optical applications because the conventional technique of
birefringent phase matching(l) cannot be applied., This has, so far,
precluded the use of many highly nonlinear materials, such as GaAs,
from practical utilization in second-harmonic generation, parametric
oscillation, and frequency upconversion.

One approach to phase matching in optically isotropic materials
involves the use of dimensional dispersion in thin-film waveguides(2>.
Another suggestion<3’u’5) utilizes periodically laminated structures.

The realization of this last approach involves a fractional wavelength
control of the lamination period and has not yet been demonstrated.

In this chapter we wish to discuss two new approaches to phase matching
which involve a periodic corrugation of the surface of the thin-film
waveguide, or a periodic modulation of the nonlinear optical properties
of the propagation medium, The latter approach is capable, in principle,
of yielding effective nonlinear coefficients approaching the bulk value
while affecting little the propagation characteristics of the propagating

modes., Techniques for implementing both ideas in a thin dielectric

waveguide are also described.
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Iv.2 Theory

Let us consider, for the sake of simplicity, a second harmonic
generation in the dielectric waveguide shown in Fig. IV.l. The electric
t . . .
field of the n h TE guided mode, as an example, is given by the

following expression:

w Wl ilwt - p°%)
En(x,z,t) = Anen(x) e n (1Iv.2.1)

The propagation phase constant Bg as well as the lateral mode profile
8§(x) are determined by the frequency w , the mode number n (n+l

is the number of extrema), the guide index ng(w) , the substrate index
ng(w) and the guide thickness t . The mode profile 8§(x) is
normalized to carry one unit of power per unit length in the y direction,

so that the power carried by the field is:

2
4V] w
P = {An] W (1v.2.2)

where W is the width of the waveguide in the y direction. Bg varies

between its value for the bulk guide material and that of the substrate

n3(w)ko < af < n,(w) k, (1v.2.3)

where ko = Zn/xo is the free space wave number, For large t and

small mode number Sw approaches the upper limit, while the lower limit
n

is approached by reducing the thickness t or choosing a higher number

mode. The electric field of the second harmonic mth mode is given similarly:
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Fig. IV.1  The basic configuration of a dielectric waveguide and
the required phase matching condition for second

harmonic generation.
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. 20
2 20, O t -
2%, 2,) = PR (x) oH(BOF - By 2) (TV.2.4)

20

and the value for Bm is confined between the two limits

(Iv.2.5)

2w
< < b2
n3(2w) ZKO B na(bo)ZKO

The second harmonic polarization generated by the fundamental Eﬁ(x,z,t)

is taken as

PPy, 7, 1) = dNL(x)(Ag)Z[EO(x)]Zei(zam_gagé) (IV.2.6)

where dNL(x) is the appropriate bulk nonlinear tensor element. This
polarization drives the second harmonic radiation, thus the power
generation per unit volume in the mth second harmonic mode at a given

point is given by the same expression II.4.6 used in Chapter II:

200

4P 5w 3 200
dm = - B -l;—t- (IV.2.7)
v

where the horizontal bar denotes time averaging. Performing the time
averaging and integrating over x and y yields the rate of power growth

in the mth second harmonic mode:

ap-® ®

*
O = W Im J"Ei‘”(PZ‘D) dx (1v.2.8)
dz -

Substituting IV.2.4 and IvV.2.6 in 1vV.2.8 yields
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dPiw(Z) ) N2 20 - ( S-2p LT 220
— - o Im {(A)7A, (z) e f dNL(X)(8 (x))7€ "(x)ax
Z
(1Iv.2.9)

Equation IV.2.9 readily gives the two requirements needed for effective

nonlinear interaction (so we shall not switch to the coupled mode

formalism in this case). The first requirement is the well known phase

matching condition which arises from the need to eliminate the oscillating

exponential term in the differential equation IV.2.9. The condition is:
2w w

Ap=p " -28 =0 (Iv.2.10)

The second requirement for a high rate of second harmonic power growth
is a large value for the overlap integral of the fundamental intensity

mode profile and the second harmonic field profile in equation IV.2.9.

oo

[ a0 (€56)) e x) ax (1v.2.11)
Under certain conditions, namely, nz(w) > n3(2w) it is possible to
c ompensate for the normal dispersion of the material and to phase match
by choosing the right thickness t and the mode numbers n and m .
However, this usually requires accurate control of the thickness(z) and
for n #m (especially when m > 1) involves a large decrease in the
magnitude of the overlap integral IV.1.1l thus reducing the effective

nonlinear coefficient for the interaction.
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Fig. Iv.2 A waveguide with a periodic corrugation of its surface, and
the required phase matching condition for second harmonic

generation.
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To overcome the problem of AR # O 1in a thin film structure,
let us’consider the waveguide shown in Fig. IV.2(7), The corrugation
on the waveguide's boundary defines a periodic structure with a period
of A that modifies the propagating modes. The perturbed field has

a Floguet form and can be written as

i(aﬂ-ﬁi&)ag(x)a

EP(xzt) = A_e
n n

The mode, thus, consists of a number of space harmonics, each with its

phase constant
o =gt I L= %l £2... (Iv.2.13)

We assume that the period A 1s large enough so that the space harmonics
of the low orders do not couple into the continuum ("leaky") modes(6),
and the x dependence of Bn& can be ignored. Phase matched inter-
actions are thus no longer limited to the principal value of £ but can
involve the space harmonics, As an example, second-harmonic generation

can be achieved by matching the fundamental (4 = 0) space harmonic at

w to the first (4 = 1) space harmonic at 2w , so that

B = 282 + (2n/h) (1v.2.14)

The penalty for using the space harmonics is that the conversion

efficiency is reduced relative to the phase-matched interaction in the
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bulk by a factor which in the example just quoted is approximately equal

2 2
to ‘BOl

(7) (8)

An approximate and a more accurate estimate of the
factor for a typical example of second harmonic generation in Gads at
10.6u , shows an efficiency reduction around the factor of 20, This
quite large reduction in the effective nonlinearity still keeps GaAs

comparable to LiNbO one of the best phase-matchable materilals.

3 J
However, one would like to take a greater advantage of the high nonlinear
coefficient of a material such as GaAs. Let us therefore consider the

following method of phase matching in thin films.

IV.3 Phase Matching by Periodic Modulation of the Nonlinear Optical
Properties

We consider now the waveguide shown in Fig., IV.3. The non-
linear coefficient of the guiding layer is modulated periodically with
a period A , while the index of refraction is assumed to remain
unchanged. To analyze the new situation we note that the nonlinear
coefficient dNL in IV.2.9 is now a function of 2z as well as of x
We 1limit ourselves to the case where the fundamental and the second
harmonic are well confined zero order modes. This makes 1t possible to
neglect the x dependence of dNL so that IV.2.9 can be written as

2
de (z)

= & In j(A‘”)ZAE‘“(z)ﬁ(sw(x))gem(x)dx] P () (1v.3.1)
- 0”70 5 0 0 NL o

dz
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Fig. IV.3 A waveguide with a periodic modulation of the nonlinear
coefficient dNL , and the required phase matching

condition for second harmonic generation.
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If the spatial modulation period A 1is chosen equal to

- s (1v.3.2)

the fundamental component in the Fourier expansion of dNL(Z) will

provide a term with an exponential dependence of e'lABZ . This term,

by multiplying the elABZ in IV.3.1 gives rise to a synchronous con-
tribution that allows the cumulative buildup of the second harmonic
power, The amplitude of this particular term in the expansion of dNL(z)

determines the effectiveness of the interaction. To be specific,

consider an example with
d =4 , 4 =0 (1v.3.3)

where dNL is the original nonlinear coefficient of the guiding layer,

and where the period A is chosen so that IV.3.2 is satisfied. The

Fourier expansion of this rectangular form nonlinear coefficient is:

d Zd-N 27m
NL L ., 2=
dNL(z) = —E—-+~§ — sin 7" 2 (1v.3.k4)

m
m odd

Using IV.3.4 and IV.3.2 in IV.3.1 and keeping the synchronous term only

leads to
20
dp t d
O _ wi(a9a%%(z) | [(e2(x))%e2 (x)ax | —= (1v.:.5)
az 0770 0 0 s

0



~135-

The mode overlap integral reaches an optimum value when the modes are

well confined., It approaches the value

t 2,2 2 3/2
J(E0(0)) P2 ) ase = —282) (17.3.6)
0 B (B )Z £
070
Using IV.2.2 to express .Ag and Agw in terms of the respective mode

powers, IV.3.5 becomes

ot

20 5/2 3/2.W
dF, (z) 8w / H / Po Ay, (Pgd)(z)> (Iv.3.7)

BEEEw)E

dz

A solution of IV.3.6 where 5? and Bgm are assumed to be equal

to the bulk propagation constants gives in the nondepleted pump

approximation:
PPy 2ol aftf u\3/2 P®
0 _ eff 0 0 (1v.3.8)
= S — e 3.
Pg (nz(m)) n2(2w) £, (Wt)

This result is of a form identical to the bulk interaction(9) except

that here the effective nonlinear coefficient is

a
L (Iv.3.9)

d ., ==

eff T

The conversion efficiency from « to 2m» 1s seen to be proportional to

the mode power density P%V(Wt) ., Since W and t can be made comparable
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to A this power density can become very large even for small power
input. The penalty for modulating dNL in order to phase match is a
reduction of the effective nonlinear coefficient by a factor of % .

A physical picture of the way in which the spatial modulation
of dNL overcomes the problem of phase matching is the following:
When AP # O the generated second harmonic wave and the second
harmonic polarization wave driving it drift gradually (with distance)
apart in phase. When ABz = n the accumulated phase shift is /2
and power begins to flow back from the second harmonic to the fundamental.
This happens after one coherence length &c = fé . By having dNL
equal to zero between z = &c and z = 2&0 the reversal of power flow
is prevented. By z = 2£C the accumulated phase shift has returned to
the favorable region (- % <¢< g) and the nonlinear interaction is
"turned on" (dNL £ 0) again*. The reduced value of d pp @s given

by IV.3.9 reflects the fact that not all the physical length of the

structure partakes in the interaction,

IV.4 TImplementation of the Phase Matching Methods

The implementation of first method which uses surface corru-
gation‘for phase matching is relatively simple, It is possible to use

the same fabrication technique which was developed for the fabrication

*
It is clear from this picture that a reversal of the sign of dNL in

the second half of each period will lead to & doubling in the value of

deff'



-137-
of the distributed feedback laser, and which is described in detail in
Chapter V.

The implementation of the modulation of the nonlinear
coefficient method is more difficult but seems possible, since the
gulding layer extends only a few microns below the surface and therefore
is readily accessible. One approach is to use ion-milling to fabricate
a series of grooves normal to the propagation direction in a single
crystal thin film guide and then sputter-fill the grooves with a
polycrystalline form of the film material (for which dNL = 0) or with
some other material with a similar index of refraction.

Another approach is to try and deposit a thin film that will
have the above property. For example we have spubtered GaAs on the
(100) face of a hot (370°C) GaAs substrate and found the film to be in
a crystalline form. On the other hand when GalAs is sputtered on SiO2
it has a (111) preferred orientation(lo), This raises the possibility
of achieving the appropriate structure, by sputtering GaAs on a GaAs

(or AlXG _XAS which has a lower index) substrate which is covered

1
periodically with very thin stripes of SiOZ.
Experiments in both approaches are presently carried on,.
The availability of such techniques plus the fast evolving technology
of GaAlAs epitaxy should make possible the development of tunable optical

parametric oscillators, upconverters, and second-harmonic generators

using thin films.
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V. FABRICATION OF INTEGRATED OPTICS COMPONENTS

V.l Introduction

All the integrated optics components and devices which we have
discussed above demand high quality edge smoothness and high resolution
formation in dimensions down to submicron sizes. As an example we
recall that for a first order distributed feedback laser in GaAs a
corrugation with a period of 0.115. has to be fabricated on the surface
of the GaAs.

These require state of the art performances of the most
sophisticated microfabrication methods such as electron beam lithography
and ion beam milling (etching or machining). Following the description
of these methods we(l) shall detaill another method that was developed
for the fabrication of very small period corrugations in a solid
substrate. This method utilizes holographic exposure of photoresist.

The fabrication of channel waveguides (embedded and ridged) as well as

directional couplers will be discussed. We ghall also include in this

chapter a description of the use of holographic exposure and ion milling

in the fabrication of excellent wire grid polarizers for infrared radiation.
Sihce in all of these fabrications ion milling was used, we

devote the next section to the description of this process.
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*
V.2 JTon Beam Milling

The sputtering process provides a convenient method for thin
film deposition and removal which can be applied to a wide variety of
materials. The term sputtering refers to the ejection of atoms from a
target surface by bombardment with energetic particles (usually ions
with energies in the range of 0.6 to 20 keV). The ejected atoms can be
either removed from a target substrate or deposited on an opposing
substrate, Plasma sputtering is widely used in the microelectronics
industry(2> and has also been used in the fabrication of glass wave-
guides(B), The plasma is usually created in an inert gas (at lO~l to
."LO-‘3 Torr) by a dc or rf discharge and the sputtering occurs by ion
bombardment from the plasma. Ion beam sputtering is performed by
bombarding the target surface with a collimated ion beam in high vacuum,
This type of sputtering has proved to be a useful alternative in instances
where high vacuum conditions are desired for film deposition, or when
control and direction of micromachining is important(u).

For fabrication purposes an inert gas ion beam is produced
in a duoplasmatron-type ion source (as shown in Fig, V.1), accelerated
through a high vacuum chamber and directed (with or without final
focusing) to impinge on a target surface. The high energy (typically
3 to 10 keV) impact of the ions causes sputtering ejection of the

target material, By means of contact masking or by shadow masking,

patterns can be machined (milled) into the surface of the target.

¥ . . .
Also referred to as "back sputtering” or "ion beam machining."
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The directed beam permits etching of patterns which are more sharply
defined than those of chemical etching and, because no material is
impervious to the sputtering attack, high resolution patterns can be
produced in a broad variety of thin film materials.

A broad ion beam bombarding a target is used to accomplish
high vacuum deposition of the sputtered target material onto an opposing
substrate, This is illustrated by the alternate substrate position
shown in Fig, V.1l. Electrons provided by the neutralizing filament
are trapped in the potential of the ion beam and are available for
continuous neutralization of any positive surface charge which may tend
to accumulate., Therefore, dc bombardment suffices for sputtering
deposition or removal of either metallic or insulating materials.

Since the back-sputtering rate proceeds uniformly in a given
homogenous material, the three-dimensional shape of a contact mask
will be fairly well replicated in the substrate if sputtering continues
until the mask is Jjust etched away. Some distortion of the cross-
sectional detail occurs because the sputtering rate varies with the
angle of incidence. Also, the depth of etching into the substrate may
differ from the depth of the photoresist removed if the sputtering

yields of the two materials differ.

V.3 Periodic Corrugation in Optical Waveguides

Periodic structures in optical waveguides can be made by
corrugation of the waveguide surface. As we have discussed, when
choosing the right periodicity it is possible to convert power from

one mode to another,(B) or couple power between a confined guided mode
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and an unconfined radiation mode, thus forming a grating coupler(é)g
Mode conversion from a forward propagating mode to a backward
propagating mode forms a distributed mirror. This kind of a mirror
may help in extending the lifetime of semiconductor injection lasers
in the cases where mirror damage is the dominant failure mode, As was
discussed in Chapter III, if the corrugation extends along the length
of an amplifying medium a distributed feedback laser results(7),
In general, corrugating the surface of an optical thin film waveguide
produces space harmonics with phase velocities which depend on the
corrugation period. These can be used in interactions which reguire
phase matching such as in nonlinear optics experiments and devices<8)°

The periods of the corrugations needed for these applications
vary from as low as approximately 0.1y for a distributed feedback
laser in GaAs to tens of microns for the phase matching of 10.6um
second harmonic generation in GaAs.

We have employed two approaches for fabricating gratings and
found them both successful, In the first approach a computer-programmed
scanning electron microscope* (SEM) was used to "write" a grating
pattern of 0.1y wide lines with a period of 0.37¢ in a masking

material of polymethyl methacrylate (PMM). After dissolving away

(developing) the material in the exposed (or written) areas, a broad-

*We wish to express our appreciation to Dr. E. D, Wolf and W. E.

Perkins of the Hughes Research laboratories for the electron lithography

work.,
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Fig. V.2 Planar phase grating coupler with 1000 ] grooves ion-beam

machined into an optical waveguide. Periodicity is 3700 k.

(after Ref. 1)
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area argon ion beam was used to etch the grooves into the substrate
(in this case ZnS) using the PMM as a sputter mask. Figure V.2 shows
the resulting grating in a 10u wide by 2u thick waveguide of ZnS.

The depth of the etching is 5008 .

is compatible with the PMM resolution(9), it is reasonable to assume
that the 11008 period grating (which is needed for the GaAs distributed
feedback laser) can be fabriéated using this method. The area on which
such a grating can be written is limited by the depth of field of the
electron beam, This problem can be overcome by mounting the substrate
on an interferometer controlled table, and moving it in steps in order
to cover a larger area (such tables are available with resolution of

about 3008). However, the SEM writing process is relatively slow and

periodic structures had to be developed.

In this new approach the grating mask pattern was produced by
laser holographic techniques. The surface of the guiding layer was
spin-coated with a photosensitive resist material (both KPR or Shipley
1350 resists were used). Argon laser (A = 4580R) beams from a
common source were projected onto the resist at an angle, as shown in
Fig. V.BQ. The interference of these two beams caused exposure with a

sinusoidal variation across the surface at a period of

*
Manufacturers are, respectively, Eastman Kodak Company and Shipley

Company, Inc.
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Fig. V.3 (a) Holographic exposure of photoresist.

(b) Ion machining of photoresist after development.
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A

d = 2 sin o

(v.3.1)

By adjusting the exposure and development parameters the
pattern is left as a partial coverage on the surface of the substrate
(Fig. V.3b). Although lower exposure and development leaves the
undulating pattern on the surface of the resist layer(lo) and, in
principle, the material can be ion machined away leaving a replica of
the undulations in the substrate surface, this épproach is difficult
to control if the resist material contains volatile components., This
is because the ion beam heats the resist material and gas evolution
causes bubbles and blisters which 1lift the pattern and stretch it to
eventual destruction. It is more desirable to &velop the pattern as
clearly defined and separated stripes which provides for local gas
evolution without bubble formation.

We have produced grating patterns with‘periods of 0.28u ,
0.35¢ , O.Mu, 1.y, and 3.0u using the holographic technique
described above. Ion beam machining was then employed to etch these
structures into the surface of silicon and GaAs substrates. The 0.4y
pattern was etched to a depth of 0.12u into the surface of GaAs as
can be seen fram the SEM cross-section photograph (Fig. V.4). Figures
V.5a and b show lower magnification photographs of the 1.lum grating,
Figure V.6 shows the smallest period grating produced in the configuration
shown in Fig, V.3a, 0.28u . This period was determined by the laser
wavelength rather than the photoresist resolution. Equation V.3.1

indicates that the lowest period possible (for a = 90 ) is A/2 .
|
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Fig. V.k  Cross section of grating pattern (0.41 um periodicity)
in GaAs. Scanning electron microscope magnification

is 75,000 X,



Fig. V.5 SEM photographs of 1.4 um grating in Gals.
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Fig. V.6 SEM photograpn of a 0.28u grating,
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The smallest wavelength continuous laser available is an HeCd (A = 32508).
Since even this wavelength is not short enough for the fabrication of

the 11004 grating, the light beam had to be sent through a quartz

block (n ~ 1.5) to further reduce the wavelength. The configuration

used is shown in Fig. V.7. HeCd laser beams incident on both sides of
the quartz block reach the photo resist by passing through an index
matching oil at the bottom of the block. This configuration has

enabled us to produce a 1150& grating which was shown in Fig. ITII.7.
(Special care had to be taken to remove the oil from the photoresist
before development by dipping in xylene.)

The exact period of a given grating was measured after the
exposure by shining a laser beam on it and calculating the period from
the laser wavelength and the diffraction angle. In the case of the
1150& grating the HeCd beam must be sent again through the quartz in
order to obtain a diffracted beam. Thus the index of the quartz
entered into the calculation and it had to be measured accurately. This
was done by first measuring the period of a grating with a medium size
period, using HeCd laser in air. Then the third order diffraction from
this 0.3465u grating was measured by shining the HeCd through the
quartz. From these measurements it was possible to derive accurately
the index of the quartz block (n = 1.54Lt), and with it the shorter
periods were determined,

The combination of ion milling and holographic exposure offers
also a very successful means for fabricating wire grid polarizers. The

wire grid polarizer consists of a pattern of fine gold lines spaced
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Fig. V.7 (a) Holographic exposure of photoresist
through a quartz block,

(b) Ion machining of photoresist after development.
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in intervals much smaller than the wavelength of the radiation to be

polarized. Such a wire grid transmits radiation which has its electric
field perpendicular to the lines, and reflects the radiation which is
polarized parallel to the wires(ls).

H. L. Garvin et al<l6) have fabricated wire grid polarizers
by depositing a gold film on an antireflection coafed CdTe substrate.
Then a photoresist mask was applied by the techniques described above,
and ion beam milling was used to etch through the exposed gold down to
the substrate material. The performance of this 1,lu wire grid
polarizer is shown in Fig, V.8. The polarizer has a transmission of
93% for the one polarization, an extinction ratio of 550, and a
reflection of more than 99% for the other polarization.

The holographic exposure offers the advantage of small periods
together with the possibility of fabrication of such a polarizer on a
curved substrate to be used as a mirror. Two such mirrors in a laser
cavity could form a tunable output coupling mechanism by rotating the
direction of one against the other. In such a case the laser will
oscillate with a polarization given by the bisector of the angle between
the direction of the two polarizers, and the strength of the output
coupling will be determined by the size of that angle. The wavelength
at which these polarizers operate can be extended to a shorter region

by the use of the super small periods described above.
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V.4 Optical Circuitry

Ion machining combined with either conventional photo-
lithography or scanning electron lithography is very useful in the
fabrication of optical circuitry. Components such as straight and
curved channel waveguldes, directional couplers, thin film analogs

(ll), etc. can be cmstructed by this technique.

of lenses and prisms
The ion beam can be used to copy structures in the exposed photoresist
(or elecffon resist) into the guiding material, or into a specific
masking material that is used whenever the guides are made by ion
implantation(12’13) or diffusion(lu). We shall describe here the
fabrication of embedded and ridged channel guides in GaAs.

Bombardment of high free carrier concentration GaAs with
protons causes defect centers in the material, which traps the free
carriers and thus produces a compensated layer. The thickness of the
lajer is related to the energy of the protons, and for the 300 keV
protons used it is 3y . The presence of charge carriers leads to a
depression of the optical dielectric constant. The difference Né - Né
in carrier density between the guide and substrate causes the dielectric
constant of the guide to exceed that of the substrate by:

2
. (NS - Né)e

Ae = (v.4,1)

* 2
m w

where NS and Ng are the carrier densities in the substrate and in
*
the guide respectively. m and e are the effective mass and charge

of the carriers and w 1is the radian optical frequency. As we shall
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see later this plasma contribution seems to dominate for wavelength
away from the bandgap of the material, Since a gold layer 1.5. thick
can completely block the 300 keV protons used, an optical circuit can
be implanted if a suitable gold mask is constructed on the surface of
the GaAs substrate,

In the fabrication of channel waveguides closely spaced so
as to allow directional coupling between them, we have used a
conventional photographic mask., A GaAs substrate was sputter coated
with a 1.8u. thick gold layer. Finally, a photoresist layer (2u)
was spin deposited and was exposed through a mask of appropriate
transparent stripes. The exposed resist was developed down to the gold,
to form stripes of resist with a ridge shape. The succeeding step was
ion machining of the clear areas of gold down to the substrate. Figures
II.4ka and II.Ub show the resulting gold stripes with the remainder of
the photoresist on top of them, The distance between the centers of
adjacent channels is about 6.3y . The clear areas between the gold
stripes are where the proton implantation takes place and the channel
waveguides are formed. After the implantation the gold was removed and
the samples annealed at BOOOC for 10 minutes in order to reduce the
optical attenuation., The optical measurements of these guides and the
coupling between them is described in Chapter II.

One of the important parameters that influences these measure-
ments is the dielectric discontinuity between the substrate and the
implanted region. An estimate for this dielectric discontinuity is the

plasma contribution given by (V.4.1). However according to it, the
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change in the index of refraction at A = 1.06u should be smaller than
at A = 1,154 . The measured values of the coupling coefficient K
(see Chapter II) contradict that, and indicate an increase in Ae

at 1.06u rather than a decrease with respect to 1.15u . Because of
that, an attempt was made to measure and compare the values of the
dielectric discontinuities at both wavelengths. Since it is quite
difficult to measure small changes in the index of refraction that take
place in such small dimensions the following method was used. The
multichannel sample shown in Fig. II.4b was polished from the substrate
side, and used as a phase grating by shining the laser light perpendicular
to the channels. The geometry and the resulting diffraction orders

are shown in Fig. V.9. Using the amplitudes of the diffraction orders
for 1.1510 and 1.06u it is possible to find the ratio between Anl.Oéu

and An It was found that

1.15u °

An
—L0G gy (V.L.2)
Any 154

This means that as the wavelength approaches the bandgap of GaAs (0.9u)
the plasma contribution is not the dominant contribution to An ,

and that additional contribution (probably because of increased bandgap
tail absorption in the implanted region) starts to increase An .

In order to derive the absolute change in the index from this measure-

ment an estimate of the channel dimensions has to be made. Using the

mask shape as shown in Fig. IIL.4kb (width 2.4y separation 3.9u) and
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An measurement

A=[.15u

X 600 X 600

Fig. V.9 An measurement by use of a multichannel directional

coupler as a phase grating.
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a penetration depth of 3u for the protons, the approximate values

for An are:

- 5.5.1073 _ -3
bny g =5.5°10 fny 15 = 5+10

while the value calculated using the plasma contribution V.hk.1l for a
8

substrate concentration of N_ = 2.10l em™>  are

- L1073 _ a3
Anl.06 = 3,7°10 Anl.lS = 4,3-10

The agreement thus is adequate for 1.15u only.

As can be seen in Fig. II.Ub the side walls of the gold
stripes are quite rough. The reason is the limited quality of the
photographic mask. A better wall definition can be achieved by using
one of the methods described earlier, namely, scanning electron litho-
graphy, or the holographic technique. The fact that the attenuation
of the channel guides is about that of planar guldes fabricated in the
same substrate (about 5 cm—l) indicates that the walls are smoothed
out by the nature of the proton implantation and the subsequent
annealing. However, rough walls are a major limitation in the fabrica-
tion of ridged guides. Therefore in the fabrication of these guides
(which is shown in Fig, V.10) a mask produced by the holographic
technigque was used to expose the photoresist on top of the Gads.
Towards the end of the machining the sample was tilted at various angles
with respect to the ion beam to ensure the effect of "ion polishing."

Two examples of ridged guides are shown in Fig. II.15, The rough
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Fig. V.10 Channel waveguide fabrication by removal of
superfluous sections of an epilayer by

ion milling.,
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channel was fabricated with a conventional mask and, as can be seen
in the photograph, with a photoresist which was not thick enough to
protect the top of the channel. Figure II1.15b on the other hand
describes a guide fabricated with the use of a holographic mask and
an "ion polish" at the end of the machining. The smoothness of the
walls in this figure as well as of the step in Fig. III.14 indicates
that ion milling can be used to fabricate optical resonators for
surface lasers and terminations for waveguides (in materials that do

not cleave too well) for input, output and coupling.
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Appendix I: The Modes of a Planar Waveguide

The modes of the waveguide are derived by solving the wave
equation and requiring the transverse components of the electric and
magnetic field to be continuous across the waveguide discontinuities.
In the case of the planar guide there are two kinds of solutions, TE in
which the electric field is transverse and ™ in which the magnetic
field is transverse. For a given frequency the guide's thickness and
dielectric discontinuity determines the number of guided modes. These
guided modes peak inside the guide and decay exponentially outside the
waveguide region. A different sort are the so-called "radiation modes”
which do not decay outside the guide, but extend from x = -® to
x = +® and are capable of carrying power away from the waveguide(l).

Iet us describe now the different guided modes of the geometry shown in

Fig. A.la.

TE Modes

The field components of these modes are Ey’ HX and Hé. The

field component Ey obeys the wave equation

2 I’li2 BZEY
v Ey = = i=1,2,3 (A.1.1)
C

We take Ey(xzt) in the form

B (x3t) =€ (x) o Hwt-p2) (A.1.2)
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Fig. A.1 (a) The basic configuration of a planar
dielectric waveguide.

(b) Mode dispersion in the above waveguide.
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The mode profile E(x) of a guided mode is taken as:

ce 0<x <e
e(x) = Clcos(hx) - % sin(hx)] -t <x <0 (A.I.3)
Clcos(ht) + % sin(ht)]ep(x+t) - < x £ -%

which applying A.I.1 to region 1,2,3, yields

2

ol

L
2

2.2 .2 2.2
h = (hjko-%) q = (B"-nyk))
(A.1T.4)
2 2. 2\% _ W
b= (B "n3ko) ko - 6
HX and HZ are given by:
i O
H =- - & g =+ 2 (A.I.5)
X g Y Z Wy X

The continuity of Ex and Hz at the interfaces requires that the

various propagation constants obey the eigenvalue equation

1 1

ht = (m+rl)x - tan” % - tan” (A.I.6)

Qs

where m 1is the mode number (m+l is the number of extrema in the mode).
We would like to normalize the mode profile in such a way that it carries

one unit of power (per unit length in the y direction). We thus write



* fo o]
1 £ EH dx = §S‘££ IE (x)|%ax = 1 (A.1.7)

-

(A.I.8)

™ Modes

The field components of these modes are Hy’ EX and EZ .

i Geng) = () L0152
i oH B '((J.)t—'B
E (xzt) = o -—ag' == Ji(x)el ipz)
i aHy
E, (xzt) = - = =

The mode profile H(x) is taken as

¢ 2 0<x <
q
#(x) = C[E cos(hx) - sin(hx)] -t =x <0 (A.I.9)
g
C[—? cos(ht) + sin(ht):l - < x < %
q
The eigenvalue equation is
ht = (m+l)r - tan™t ? - tan T B (A.1.10)
b q
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where

el
il
ja] I j»]
w ol o
ie]
KoY
Hi
[}
F’NlNFN
o

The normalization condition is again

e B = Hi(x)
=5 HE dx = — dx = 1 AI.11

(2)

This condition determines the value of C as

13
we
C=2 to
B terr
. 3408 | ¢ . ¢%+n® 1 p4n® 1
eff 3 hg En? hiq 7,2 hgp

w-B Diagram

From the above solutions it is evident that the propagation
constant in the z direction -B of a guided mode varies between the

two limits

nk <8 <nk (A.1.12)

(We have assumed that n3 > n, which is usually the case.)
B is less than nzko in order to allow the cosine or sine variation
along the x direction inside the waveguide., Outside the waveguide the

mode profile should fall exponentially and this, according to A.I.4, means

B >n3ko . The exact value of B as we have seen, 1s determined for a
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given frequency by the guide's thickness and the dielectric discontinuity.
At cutoff B equals n3k0 and as the frequency increases £ approaches
nzko . This behavior is illustrated in Fig. A.lb, for propagation in
the =%z directions.

Also described in this Figure A.lb is a continuum of

radiation modes whose B 1is less than nsko . This means that the p

1
of these modes is imaginary (p = (BZ - ng ki})g) and therefore the

mode does not decay exponentially in the x direction bub rather
oscillates from -» to +® , Any mechanism that couples power from a
guided mode into a radiation mode will thus cause a power leak from

(1)

the guide .
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Appendix II: The Relative Signs of the Coupling Coefficient

Let us consider two lossless modes a and b , whose

amplitudes A and B are related by:

dA .
o = -8 A + k B (A.I1.1)
aB .

5 = -iB B+ k A (A.II1.2)

We consider first the case where both modes carry power in the same
direction. The conservation of total power at any given 2z is

expressed by

* *
di = (A" + BB) =0 (A.II.3)
Z
where
* *
P = AA P = BB (A.II.L)
Because of the plus sign in A,IT.3, it is satisfied when
K *
b = pa (A.I1.5)

Next we consider a case in which the two modes carry power in

opposite directions. The conservation of power is described now by:

S -B8) -0 (A.II.6)

Because of the minus sign the equation is satisfied only when:

Ky = K:fa (A.II.7)



