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Abstract

I address two long-standing scicntific problems in this thesis: the
mechanism(s) of long-runout in large landslides; and the activity of water on
the surface of Mars late in its history. Long-runout landslides form
significant geologic risks. My research has aimed at understanding the
factors that control the initiation and runout of large landslides wherever
they occur. A second objective of this research has been (0 use martian
landslides to gauge the activity of liquid water on Mars' surface aver the past
quarter of its history. To achieve these objectives, I made field observations of
six moist and dry landslides in the western United States, I studied all the high-
resolution Viking Orbiter images for large landslides on Mars and 1 collated all
the available literature data on large landslides, to develop the clearest view
possible of the nature of the large landslide process. 1 then wused this
- information to evaluate all the previously published models of long runout,
and to develop my own theory when I found that none of the existing theories
provided an adequate explanation of the observations.

1 conclude that large landslides primarily slide and spread into place over
fluidized natural basal lubricants.  This concept follows upon the air-layer
lubricati_on theory of Shreve, but does mnot call upon a gas lubricant, a
possibility ruled out by the presence of Blackhawk-like long-runout landslides
on Mars. Rather, the lubricants appear to be fine-grained materials from the
substrate or from the landslide debris itself that deform plastically at the high
‘shear stresses and strain rates present beneath large rapid landslides. Large
dry landslides grade into moist debris flows as water becomes incorporated into
their fine-grained component. Moist and dry landslides differ markedly in
sedimentology and morphology, but not in a variety of quantilative relations.
Seven landslide c¢vents on Mars appear to have involved water during runout,
based on comparisons with water-bearing landslides of similar morphology
and volume on Earth. These deposits occur primarily in Valles Marineris and
indicate that liquid water has been sporadically available on Mars at various

times over the last ~1 billion years of its history.
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Chapter_ I, Introduction

Two subjects are investigated in this thesis. The mechanism(s) of "long-
runout” landslides forms the first and paramount problem. The role of water
on the martian surface as reflected in the behavior of large (>106 m3) and
giant (>109 m3) landslides comprises the second problem addressed in this

thesis.

A. Background and Motivation

The static and dynamic coefficients of friction of dry geologic materials
usually lie ncar 0.6 (tan 31°), so that mass movements whose travel is governed
by dry frictional interactions with the substrate should normally exhibit
center of gravity lines (connccting final and initial centers of gravity of the
slidemass) with slopes of about 31°. The term “long-runout landslides” refers
to rapid landslides in which the center of gravity of the slidemass travels
through an angle of less than 31° from the bcginning to the cessation of
movement. Long runout is actually characteristic of large landslides; most
landslides containing more than 106 m3 of debris exhibit center of gravity
" line slopes of less than 31°. In addition, the center of gravity lines of large
landslides generally decrease in inclination with increasing volume; larger
landslides travel farther for a given fall height than smaller slides. The
volume threshold for long runout varies for different starting malcrials.
Landslides that begin movement in a loosely aggregated condition may
experience long runoul at volumes as low as 104 m3. Long-runout landslide
deposits occur on Earth's continents, in terrestrial lakes and oceans, on Mars
and perhaps on the Moon.

Because of their great destructive potential, long-runout landslides have
received much attention in the geologic literature ever since Heim (1882)
described the characteristics of the 1881 Elm, Switzerland, landslide, a
catastrophic event that killed 116 persons. Much of the interest in these
landslides has centered on the mechanics of their high-velocity transport.
This interest has led to the publication of necarly twenty separate theories on
the mechanism of long runout in large landslides. These efforts have followed
two principal approaches: some workers have viewed all large landslides as
behaving according to a single, unique process, while others have viewed the
process on a case-by-case basis. Workers who have espoused a general

mechanism have proposed bulk fluidization models, basal lubrication models
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and a distributed mass loss thcory to explain the long runout phenomenon.
The individual-case models, in turn, have proposed either basal lubrication or
earthquake fluidization to explain the long runout of individual landslides or
small groups of slides. In the body of the thesis, T have collated both new and
previously published data to cvaluate each of these theories, and 1 have
determined that none of the proposed general theories can adequately explain
all the important characteristics of these landslides.  Specifically, 1 have ruled
out one of thc theories currently considered a prime candidate for explaining
the phenomenon: "air-layer lubrication (Shreve, 1968a).  Furthermore, I show
that the concept of acoustic fluidization as currently developed (Melosh, 1979;
1983; 1986; 1987) appears inadequate to cxplain long-runout landslides
generally. I have therefore developed my own concepts for explaining long
runout as a group phenomcnon. My concept, which is explained in Chapter VI
of this thesis, explains long runout as resulting from two processes: distributed
deposition of the brecciated landslide debris; and non-turbulent spreading of
landslide debris over naturally-occurring basal lubricants.  The latter half of
Chapter VI lists spccific field, laboratory and computer studies that should be
conducted to test my hypothesis.

Liquid water seems to have been sporadically available at the surface of
Mars th‘rough much of its geologic history. Most of the cvidence for surficial
water comes from erosive features interpreted to have been cut by flowing
water early in Mars' history. Three types of channcls occur on Mars: 1)
- runoff channels, limited to the ancient cratered terrain and probably formed
as a result of groundwater sapping; 2) outflow channels, distributed around
the piane;, and apparently formed by catastrophic floods from the rapid
extrusion of underground water onto the surface from pressurized aquifers;
and 3) fretted channels, which seem to represent runoff channels
subsequently modified by mass wasting processes (Carr, 1981). Carr (1981)
suggests that the runoff channels probably formed at the same time as the
ancient cratered terrain, roughly 3.4 to 4.0 billion years ago. In conirast, the
outflow channels formed over an extended period of time, mostly early in
Mars' history, but with late events perhaps occurring as recently as 0.5 billion
years ago (Baker, 1982). At high latitudes (>30°) on Mars, numerous features,
such as .polygonal ground, fretted terrain, patterns of impact ejecta, debris
flows, terrain softening and arrays of parallel ridges suggest the presence of

near-surface ground ice (Carr, 1986). However, theoretical studies and a lack
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of these ice-related features in the cratered uplands at low latitudes suggest
that the upper 1 km of the uplands at low latitudes is ice poor (Carr, 1936).

A number of features in Valles Marineris also appear related to ground ice
or liquid water. The walls of Valles Marineris are marked by three basic
morphologies: spur-and-gulley topography, tributary canyons and giant
slump scars (Blasius, et al.,, 1977). The slump scars generally cut through and
thus postdate the other two types of canyon-wall textures. Along with the
slump scars, Sharp (1973) interpreted the spur-and-gulley morphology as
resulting primarily from mass movement processes, while he viewed the
tributary canyons as probably resulting from sapping processes, caused either
by seepage of liquid water or sublimation of ground icc at the heads of the
tributary canyons. Subsequent to the erosion of the canyon wall rock into the
spur-and-gulley and tr