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Abstract

A multigrid algorithm is described that can be used to obtain the finite
element solution of linear elastic solid mechanics problems. The method is applied
to some simple two and three dimensional problems to evaluate its strengths and
weaknesses. The usefulness of the method is demonstrated by solving some large

three dimensional problems of practical interest.

When conditions of near incompressibility are encountered, the multigrid
method performs poorly due to a combination of a reduction in the smoothing
effect of the Gauss-Seidel relaxation method and coarse mesh locking. These
problems can be partially cured by using the Jacobi preconditioned conjugate
gradient method to smooth the error, and assembling the coarse mesh stiffness

matrices using a reduced integration scheme.

It is also found that the bending behavior of the linear brick and quadri-
lateral elements used in this thesis slow the convergence of the multigrid method.
This effect also causes nonuniform meshes to yield computation times that are not
proportional to the problem size; however, the linear dependence can be recovered
by increasing the refinement of the finite element meshes. It is demonstrated that
reduced integration techniques become less effective in relieving the stiffness of
the coarse mesh for nonuniform meshes as the problem size is increased. The solu-
tion of a well-conditioned three dimensional test problem shows that the multigrid
algorithm requires far less computational effort than a direct method, and that
its performance is comparable to that of the Jacobi preconditioned conjugate

gradient method.



The usefulness of the multigrid method is demonstrated by applying it to
the finite element solution of two solid mechanics problems of engineering interest:
the elastostatic state near a three dimensional edge crack, and the relationship
between the average offset and the stress drop for two and three dimensional
faults in a half-space. The features of the solution to these problems are exten-
sively discussed. It is found that the multigrid method is faster than the Jacobi
preconditioned conjugate gradient method when applied to these practical prob-

lems.

The investigations described in this thesis reveal some interesting features
of the performance of the multigrid method when it is applied to the finite element
solution of solid mechanics problems. In particular, the storage requirements
of the method are linearly proportional to the problem size. The constant of
proportionality .depends only on the dimension of the problem. The solution times
of the multigrid method are found to be linearly proportional to the problem size
if uniform meshes are used. However, this is not true for most of the problems
that are solved with nonuniformm meshes. The constant of proportionality in
the relationship between the problem size and the solution time depends on the

particular problem under consideration.
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Part I

Introduction to the Multigrid Method



Chapter 1

Introduction and Objectives

Over the last twenty years the displacement based finite element method has
become the most widely used technique for numerically solving engineering solid
and structural mechanics problems. The discretization of a particular problem
(linear or nonlinear, static or dynamic) invariably results in the generic matrix

equation

Kx =f, (1.1)

as the basic solution step, where K is an n x n generalized stiffness matrix (often
symmetric, positive definite and ill-conditioned), x is a vector of n unknown
displacements, and f is a vector of n known forces. Equation (1.1) is frequently
solved by a direct factorization method based on Gaussian elimination. The high
cost of these methods in terms of the computational effort and the storage required
makes them impractical for large problems. Iterative methods have lower storage

requirements but tend to exhibit slow convergence for ill-conditioned systems.

The objectives of this thesis are to describe the application of a multigrid
algorithm (which is essentially a fast iterative method) to the solution of equation

(1.1), to evaluate its effectiveness by applying it to some simple two and three



dimensional problems, and to demonstrate its usefulness by solving some large
three dimensional solid mechanics problems of practical interest. The history of
the multigrid method has been documented elsewhere [27,56]. Although the con-
vergence of the method has been established, applications have concentrated on
the field of fluid mechanics and have mostly used a finite difference discretization

of the relevant problems [12,25,26,27,56).

Part I of this thesis introduces the multigrid method, and shows how it can
be used to solve solid mechanics problems. Chapter 2 outlines the way in which
the finite element method is used to obtain approximate solutions to these types
of problems. A brief summary of the methods available to solve the linear matrix
equation (1.1) is given in chapter 3, together with a discussion of the problem of
ill-conditioned systems. In chapter 4, a multigrid algorithm is described that can
be used to solQe equation (1.1) that arises from the finite element discretization
of a solid mechanics problem. The method is applied to some simple two and
three dimensional solid mechanics problems in chapter 5 to evaluate its strengths
and weaknesses. The computational effort and the storage requirements of the
scheme are also compared to those of a direct factorization algorithm and another

iterative scheme (the Jacobi preconditioned conjugate gradient method).

In part II, the usefulness of the multigrid method is demonstrated by apply-
ing it to the finite element solution of two solid mechanics problems of engineering
interest. An investigation of the elastostatic state near a three dimensional edge
crack is described in chapter 6. A class of linear elastic problems originating
from the field of geophysics is discussed in chapter 7. This involved computing

the relationship between the average offset and the stress drop for two and three



dimensional faults in a half-space. The work presented in part II not only shows
how the multigrid method can be used to solve real world problems, but also

gives extensive discussions of the solutions to these problems.

Part III contains some closing comments and remarks. Chapter 8 presents
a summary of the performance of the multigrid method when it was applied to
the various problems described in this thesis. The work is also placed in context
by discussing other applications of the multigrid method to the field of solid
mechanics, as well as some previously published solutions of various large solid
mechanics problems that were obtained using different numerical techniques. In
the last section of chapter 8, the performance of the multigrid method is compared
to that of another iterative scheme that has been used to solve problems in solid
mechanics, the element-by-element preconditioned conjugate gradient method.
Chapter 9 outlines some ideas for future research. Finally, chapter 10 contains

the main conclusions of the work presented in this thesis.

It should be noted that tables and figures are placed immediately after the
chapter in which they are first refered to; tables are placed before figures. For
example, table 3.1 and figure 3.1 can be found at the end of chapter 3, with table

3.1 preceding figure 3.1



Chapter 2

The Finite Element Method in Solid and

Structural Mechanics

2.1 Background

Basically, the finite element method is a general technique by which differential
equations (that are usually difficult to solve analytically) can be cast into matrix
equations. These matrix equations can then be solved using a computer to yield
an approximate numerical solution to the original differential equations. Although
the finite element method can be applied to the equations that govern many
different physical systems, it is most often used to solve problems in solid and
structural mechanics. The most popular variant of the method that is employed in
these situations is the displacement based finite element formulation (sometimes
known as the direct stiffness method), which has been extensively discussed in

the literature [6,33,55,63].

From the point of view of the engineering analyst, solid and structural
mechanics problems can be divided into two classes: linear and nonlinear. These

can each be further subdivided into static and dynamic problems. This thesis



will concentrate on the linear static case. For all classes of solid and structural
mechanics problems, the displacement based finite element method can most

easily be formulated by use of the principle of virtual work.

2.2 Formulation of the Finite Element Equilibrium Equa-

tions

Although the principle of virtual work can be used to derive the finite element
equilibrium equations for nonlinear solid and structural mechanics problems, this
section will specifically deal with those that are governed by the equations of
linear elasticity. Consider the body shown in figure 2.1 that occupies a region
R. The density and the elasticity tensor of the body will be denoted by p and
c, respectively. The body is subjected to body forces b that act throughout R,
and to surface tractions s and concentrated forces f* that act on the boundary
of the body denoted by OR,. Specified displacements can be applied to the
body on its boundary denoted by OR,;. The specified displacements and the
forces acting on the body cause displacements u, strains €, and stresses o. The
principle of virtual displacements requires that for any compatible, small virtual
displacements causing increments du (which must be zero on dR;) and ée, the
total internal virtual work is equal to the total external virtual work (i.e. the
virtual work done by b, s, f*, and the inertial forces) [6]. Applying the principle

at a particular instant of time, this can be written as

T _ T(h o T T
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where d€ and éu are the virtual strains and displacements, respectively, and the
dot denotes differentiation with respect to time. The superscript 7 denotes the

displacements or forces at the points where the concentrated nodal loads f* are

applied.

In finite element analysis, the body is divided into discrete elements that
are connected at their nodal points. The displacements within each element are

assumed to be a function of the nodal displacements, i.e.
u® = N°a® (2.2)

where u® are the displacements within a particular element, a® are the displace-
ments at the nodes of the element, and N¢ is the element displacement interpo-
lation, or shape function, matrix. The superscript e denotes an element. Using

equation (2.2), the element strains are approximated by
e = B®a°®, (2.3)

where B° is the strain-displacement matrix that is obtained using the strain-dis-

placement relations. The stresses within an element are given by
o° =D°B*a°, (2.4)

where D° is the elasticity matrix of the element. Dividing the body into elements,

equation (2.1) can be written as
> [ seToave =3 [ ouT(bt - pri)dve

+> suTsdA® + 3 sulf, (2.5)

where Z represents summation over all of the elements in the mesh. Using the

finite element approximation given in equations (2.2), (2.3), and (2.4), equation



(2.5) becomes
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The load vector f, represents the concentrated loads. Note that the :** component
of f, is the concentrated nodal force which corresponds to the ;** degree-of-freedom

in a.

Equations for the n unknown nodal displacements a are obtained from
equation (2.6) by imposing unit virtual displacements in turn at all displacement
components [6]. The n equations (one for each unknown component, or degree-

of-freedom, a; of a) are then assembled into
Ma+Ka=f, +f, +f,. (2.7)

It is more convenient to construct the finite element equilibrium equation (2.7)

by assembling the following element matrices and vectors.

K° = /R _BTD*BdV". (2.8)
M° = /R P'NTNCdVe, (2.9)
fe = /R NThedVe. (2.10)
fe = e NeTsedAe, (2.11)

The matrices M® and K° are the mass and stiffness matrices of the element,
respectively, and are assembled into the global mass and stiffness matrices, M
and K. The load vectors f; and f¢ represent the effect of the element body forces

and the tractions acting on the surface of the element, respectively.



The above formulation holds for linear dynamic problems. The static case

is exactly the same, with the exception that the inertial term is absent.

2.3 Reduced Integration Techniques

Reduced integration is a method that is used in solid and structural mechanics
to improve the behavior of various finite elements [6,33,63]. The technique is
employed in this thesis when the four node linear quadrilateral element is used
to model a nearly incompressible material (i.e. a material whose Poisson’s ratio
is close to ;) under conditions of plane strain, and when the element is subjected

to a bending deformation.

Physical insight can be gained into an element’s behavior by examining its
modes of deformation. The linear quadrilateral element has three rigid body and
five deformation modes, which are shown in figure 2.2. If the element is used to
Ihodel a nearly incompressible material subjected to plane strain conditions, the
bending modes will become very stiff if a 2 x 2 (exact) Gauss quadrature is used
to compute the element stiffness matrix. This phenomenon, which is referred to
as locking, is caused by the considerable volumetric strain energy present in the
bending modes at the Gauss points. These modes cannot undergo lateral Poisson

straining to relieve the volumetric straining.

The element locking can be cured by using a higher order element (e.g.
an eight node quadrilateral), or by using a one point Gauss integration scheme
to compute the volumetric strain energy. This reduced integration is effective

because the volume change in the element’s bending modes is zero at this in-
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tegration point. One convenient way to implement this technique for isotropic

materials is to split the element stiffness matrix into two parts
K*= [ (B'D;B*+ B'DiB*) V", (2.12)
where the matrices D§ and D are such that
D¢ = D;, + Dj, (2.13)

and for plane strain are given by

D:=p|l0 1 0], (2.14)

and

Di=XA|110]- (2.15)

0 00

In equations (2.14) and (2.15), A (= (1+—11)Eé%——2u_)) and p (= 2({3:1,)) are the Lamé

and shear moduli of the material, respectively. Reduced integration is used to
compute the second term of equation (2.12) since it contains the locking part of

the volumetric strain energy.

The four node linear quadrilateral element performs poorly when it is sub-
jected to a bending deformation. Even though compressibility is not a problem,
the stiffness of the element’s bending modes are too high due to the absence of a
lateral normal strain and the presence of shear strains. In practice, better results
are often achieved when one point Gauss integration is employed on both the D5
and the D¢ terms of the element stiffness matrix in equation (2.12), which re-

duces the bending stiffness to zero. However, this can lead to zero energy modes
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of deformation of the mesh, which result in a singular stiffness matrix [33]. An
alternative technique, which will be used in chapter 5 to improve the bending
behavior of the quadrilateral element, is to use reduced integration on only one

of the D§ and D¢, terms in equation (2.12).

2.4 Imposition of the Boundary Conditions

As indicated in section 2.2, there are two types of boundary conditions that
are used in solid and structural mechanics: specified displacements and specified
loads. The specified loads may result from applied nodal forces, applied tractions
along the element boundaries, or body forces acting on the elements. These loads
are represented by the terms on the right-hand side of equation (2.7); i.e. they

all contribute to the forces at the nodal points of the finite element mesh.

Specified displacements are usually dealt with by substituting them into
equation (2.7), which results in a contribution to the nodal forces and the elimina-
tion of the corresponding degrees-of-freedom. However, it will be seen in chapter
4 that this is cumbersome when using the multigrid method. A more convenient
approach is to add into equation (2.7) constraint equations that express the pre-
scribed displacement conditions [6]. If the displacement at degree-of-freedom 1 is

specified as b, i.e. a; = b, the constraint equation
ka; = kb (2.16)

is added into equation (2.7) where k > k;; (ki; is the i** diagonal term of K).
Physically, a stiff spring is added at the specified degree-of-freedom, and a large

force is applied so that the degree-of-freedom attains the prescribed value. In the
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work presented in this thesis, k¥ was chosen to be k;; x 108.

This chapter has briefly summarized the way in which the finite element
method is used to obtain the matrix equation (2.7) that approximates the partial
differential equations that govern linear solid mechanics problems. The reader is
referred to standard texts such as [6,33,63] for a more detailed discussion of the
technique. The essence of the method is that the problem is reduced to solving

equation (2.7) for the n unknown nodal displacements, or degrees-of-freedom, a.
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"and s;=s* on R,

Figure 2.1: General Three Dimensional Body.
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Chapter 3

Solution of the Finite Element Equilibrium

Equations

3.1 General Considerations

The way in which the finite element equilibrium equations are derived for linear
solid and structural mechanics problems was outlined in chapter 2. For the static

case, the equations can be written as
Ka="f. (3.1)

In this equation, K is the stiffness matrix of the system, a is a vector of n unknown
displacements, and f is a vector of n known forces. The original problem has been

reduced to numerically solving equation (3.1) for a.

An equation similar to equation (3.1) arises when the linear, dynamic
finite element equilibrium equations given in equation (2.7) are solved. If these
equations are integrated directly using Newmark’s method, the matrix equation

that has to be solved at each time step is given by [6]

{Klth-%EC+ﬁK}a(t+At)=ﬁf(t+At) + {ZEMJF——C} a(?)
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+ {AitM + (v - B)C} a(t) + {(% - B8)M + %f(v - 25)0} a(t), (3.2)

where C is the damping matrix, At is the time step, and 8 and + are the param-
eters of the method. Linear dynamic problems can also be solved by means of
the modal superposition technique. This involves obtaining the natural frequen-
cies and normal modes of the body (or structure) under consideration from the
equation

K¢ =AM ¢, (3.3)

where A and ¢ represent the eigenvalues (the square of the natural frequencies)
and the eigenvectors (the normal modes) of the system, respectively. Inverse
iteration is a common technique that is used to determine A and ¢ [6]. For
example, if this algorithm is used to obtain the first frequency and corresponding

mode of the system, a matrix equation’ of the form
Kv) = Mv(® (3.4)

has to be solved at each iteration step, where v(¥) and v(*+1) are the old and new
approximations to the first mode. It can be seen that both equations (3.2) and

(3.4) have the same form as equation (3.1).

Although the formulation of nonlinear solid mechanics problems was not
discussed in chapter 2, it is interesting to briefly discuss the solution of the result-
ing nonlinear matrix equations. The most frequently used solution technique is
some form of Newton-Raphson iteration [6]. For example, for a nonlinear static
problem, the equation that has to be solved at each Newton-Raphson iteration
step is

KPAa® = £ - K(a®)a®, (3.5)
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where K(a(¥)) is the nonlinear stiffness matrix, Kgfc ) is the tangent stiffness matrix,
a®) is the current approximate solution, and Aa‘*) is the correction to a*). The

matrix equation (3.5), which is similar to (3.1), has to be solved for Aa*),

Thus the fundamental problem that faces the engineering numerical ana-
lyst when a linear, nonlinear, static, or dynamic problem has to be solved is the

efficient solution of the generic matrix equation
Kx =f, (3.6)

where K is an n x n generalized stiffness matrix, x is a vector of n unknown
displacements, and f is a vector of n known forces. Future references to the
size of a problem will mean the number of unknowns, n, in equation (3.6). This
chapter will present the various approaches that have been used to solve equation

(3.6), and will highlight the advantages and disadvantages of each method.

There are basically two ways by which equation (3.6) can be solved: di-
rectly and iteratively. Direct methods are typically based on Gauss elimination;
iterative methods, such as the Gauss-Seidel or conjugate gradient methods, me-
thodically improve an initial guess to the solution of equation (3.6) until an ac-
ceptable solution has been obtained. It should be noted that the stiffness matrix
K is symmetric and usually positive definite. The symmetry property allows
only one half of the matrix to be stored. The matrix K has two other proper-
ties that result from the local nature of the finite element discretization. Since
each degree-of-freedom in a finite element mesh is connected only to its nearest
neighbors, K is sparse and, if the degrees-of-freedom are ordered appropriately,
banded. Banded means that all of the nonzero terms in the matrix are confined

to lie within a certain distance from the diagonal (i.e. they all lie inside the band-
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width of the matrix). The term sparse means that most of the numbers within
the bandwidth of K are zeroes; there are relatively few nonzero terms. The fact
that K is sparse and banded will have important implications for the solution

algorithms discussed in this chapter.

3.2 Direct Methods

This section gives a brief discussion of the more common class of solution algo-
rithms: the direct methods. Variants of the method discussed here are employed
in the large commercial finite element codes such as ADINA, NASTRAN, and
ANSYS.

The most widely used direct methods are based on Gaussian elimination.
These methods have the desirable property that the solution x to equation (3.6)
can be obtained in an amount of time that can be predicted in advance. However,
the storage requirements can be excessive. In the factorization method, K is split

into its factors,

K=L,D,U,, (3.7)

where D, is a diagonal matrix, and L, and U, are lower and upper triangular

matrices, respectively, with 1’s on their diagonals. Since K is symmetric,
L, =UT, (3.8)

and so

K = UTD,U,. (3.9)

Once K has been factored, x can be obtained in the following way.
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e Solve UIz = f for z by a forward reduction.
e Solve D,y = z for y by simple division.

e Solve U,x =y for x by a back substitution.

Since K is symmetric, only the upper half of the matrix is required. This is
usually stored in banded or skyline form. Figure 3.1 shows the differences between
these two storage methods. Generally, a large number of zero terms within the
bandwidth or skyline of K will be stored initially. This is necessary because these
zeroes will be replaced by nonzero terms of the factors of K. The storage required
for the direct methods is thus nm real numbers, where m is the bandwidth of the
stiffness matrix stored in banded form, or an average bandwidth of the matrix

stored in skyline form.

It can be shown that the number of operations required to factor K is
approximately %nm2, and the number of operations required to solve for x using
the three steps described above is approximately 2nm [6]. (One operation is de-
fined as multiplying or dividing and adding or substracting two real numbers.) It
should be noted that m is proportional to n? and n3 for two and three dimen-
sional problems with uniform meshes, respectively. Thus, for three dimensional
problems, the solution time and the storage will be proportional to n$ and n3,
respectively. It will be demonstrated in chapter 5 that these relations severely
limit the size of three dimensional problems that can be solved using a direct

method.

Many variations of the direct method described in this section have been

developed. These include blocked methods, frontal techniques, and substructur-
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ing. The reader is referred to review articles such as [42] for a more detailed
discussion of these schemes. However, they still cannot escape the high compu-
tational cost of the direct method in terms of time and storage. For example,
blocked methods reduce the amount of direct access memory that is required by
storing the stiffness matrix on disk. This results in an increase in the amount of

I/O time required to read and write the matrix to and from the disk.

3.3 Iterative Methods

"The other class of algorithms that can be used to solve the linear matrix equation
(3.6) are the iterative methods. The main advantage these techniques have over
the direct methods is that only the nonzero terms of the stiffness matrix need
to be stored. Since K is a sparse matrix, this represents a considerable saving
in storage. However, iterative methods have a disadvantage in that it is not
possible to estimate how many cycles of iteration will be required to soive a
given matrix equation ahead of time. Many schemes require a large number of
cycles for ill-conditioned problems, which typically arise in solid and structural
1;11echanics. (Section 3.4 contains a discussion of the problem of ill-conditioning
in these applications.) Therefore iterative methods tend to be slow, and so have

been bypassed in favor of direct methods in practical applications.

Another advantage that direct methods have over iterative methods is their
ability to deal with multiple right-hand sides. The most expensive part of the
direct methods discussed in section 3.2 is the factorization of the stiffness matrix;
the back substitution and forward reduction are the only steps that involve the

force vector. Therefore only one factorization is required to analyze the behavior
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of a structure that is subjected to different loads. On the other hand, if an iterative
method is used, each loading would have to be treated as a separate problem; no
advantage would be gained from having already solved a different problem on the
same structure. This feature of direct methods makes them particularly appealing
when dynamic or nonlinear problems are considered, since they essentially consist

of a series of different load vectors applied to a generalized stiffness matrix.

The low storage requirements of iterative algorithms in general has fueled
a great deal of research aimed at developing a fast iterative method (i.e. one that
is not sensitive to the ill-conditioning of problems). An example in the area of
solid and structural mechanics is the work in [30,31,32,61], which has attempted
to develop an effective preconditioned conjugate gradient method. The work
presented in this thesis demonstrates that the multigrid method is also a fast
iterative algorithm that is not greatly affected by certain types of ill-conditioning

encountered in solid mechanics.

The aim of this section is to briefly describe some of the more popular
iterative methods that are used. Some of the algorithms will be used with, or
compared to, the multigrid method in the following chapters. The reader is

referred to [2,28,49] for more detailed discussions of the schemes discussed here.

The objective of an iterative method is: given an approximation x{¥ to

the exact solution x of equation (3.6), reduce the residual
r®) = f — Kx® (3.10)

in some way until

<e, (3.11)
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where || . || denotes the Euclidean norm of a vector and ¢ is the convergence

tolerance. It can be shown that the error,
e = x — x4, (3.12)
and the residual are related by
Ke® — po (3.13)

It is helpful to recognize that the error is a set of displacements, and that the
residual is a set of forces; the residual represents the forces that produce the

displacements given by the error.

3.3.1 Basic Iterative Methods

An important class of iterative algorithms are the linear stationary methods of

the first degree [28], and may be expressed in the form:

Given: x© k=0
Iterate over: xk+) = Gx(*® + k
» (3.14)
k=k+1
until convergence is achieved.
This can also be written as
Given: x@ k=0
Iterate over: r® = f - Kx®
BAx(®) = p(¥)
(3.15)

x(k+1) — x(k) + Ax(k)

k=k+1

until convergence is achieved.
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Note that
G=I-B 'K
(3.16)
and k = B™!f.
A necessary and sufficient condition for the convergence of this class of iterative

methods is that

p(G) < 1, (3.17)

where p( . ) denotes the spectral radius of a matrix.

It can be seen from equations (3.14), (3.15), and (3.16) that different
choices of B (which is called the splitting matrix) will yield different iteration
algorithms. If B is chosen as the stiffness matrix K, the method will converge in

one iteration. However, B is chosen so that the matrix equation
BAx®) = r® (3.18)

is easy to solve. Various methods can be generated by considering the sum de-

composition of the stiffness matrix,
K=L,+D,+ U, (3.19)

where D, is a diagonal matrix, and L, and U, are lower and upper triangular

matrices, respectively, with zeroes on their diagonals. Since K is symmetric,
L, = UZ, (3.20)

Table 3.1 lists four of the basic linear stationary methods of the first degree: the
Richardson, Jacobi, Gauss-Seidel, and succesive overrelaxation met<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>