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Abstract

Future space missions will rely on structures with many closely spaced and
lightly damped modes. To meet the alignment performance requirements of the
missions, these structures will need to incorporate active control. Control which
does not destabilize the system requires very accurate models of all modes present
in a certain bandwidth of the structure’s response. Development of the accurate
models through system identification is significantly complicated by modes with
almost equal frequencies and dampings which appear as single peaks in the struc-
ture’s frequency response function. Similarly, difficulty in control will be increased
by changes in the system due to docking of other systems.

A structure was built at Caltech for identification and control experiments
which exhibits many of the features of large space structures. Identification, mod-
ification, and control experiments have been conducted on this system to develop
optimal controllers which are robust to system changes. This thesis presents the the-
ory and experimental results behind the modeling 'of modifications on the structure.
It also details use of Hy /u-synthesis methods for this problem. Robust controllers
have been implemented so as to remove responses of the lowest nine modes of the
structure. These controllers perform very well even when the structure is modified

by the addition of dynamics.
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Chapter 1. Introduction

The need for active control of structural systems presently is driven by pro-
posed projects such as NASA’s twenty meter large deployable reflector. This type of
system has evolved from smaller space systems which obtained significant scientific
data. Interest has shifted to data at different wavelengths, thus larger systems are
necessary. Costs for placing devices in orbit are still rising, so in order to implement
larger systems, it is necessary to make them very light. Unfortunately with struc-
tures, lower system mass generally results in greater flexibility. If the structural
system is too flexible it will not be able to perform its necessary task. For example,
deformations of surface shapes due to vibrations greatly degrade the focus quality

of parabolic dishes.

Initial work to reduce vibratory responses is directed at adding damping
to the structural components of the scientific data gathering satellites. The main
examples of damping elements are viscous fluid shock absorbers and viscoelastic
solid inserts. These devices, however, either lose their fluid or lose their elasticity
with time. Additionally, and more importantly, they allow motions which may
be too large for the system to meet performance requirements. For example, for
interferometry it will be necessary to keep relative motions in the micron range for

components that are tens of meters apart from each other.

Active control methods can be used to help meet these objectives quite effec-
tively without great increases in total system mass. The goals for feedback systems
are to minimize vibratory responses to disturbances and to improve point to point
alignment of particular sensors. Disturbances such as vibrations and static loads
will come from station keeping and from thermal and gravity gradients. Because

of the large sizes of the structures and low internal damping, the disturbances will



easily cause responses of the primary system modes which are expected to be at

frequencies below five hertz.

For effective and stable active control, very high quality models of the struc-
ture to be controlled are needed. It is very difficult, however, to obtain the necessary
model quality before the systems are deployed for several reasons. Most consequen-
tially, properties of individual components and joints between them are not known
very well. This causes inaccuracies in predictions based on tools such as finite el-
ement analysis (FEA) programs. Since FEA codes, which are the only currently
available tools for economically predicting behavior of complex structures, will not
give very accurate results, experimental identification of the deployed structure will

be required.

The flexibility of the structures further complicates the modeling procedure.
In environments with gravity, the structures will not be strong enough to support
their own weight. That is, when constructed on the ground the systems will buckle
because of their flexibility. Similarly, any support mechanisms will change the
structural behavior, thus invalidating the model. Closely spaced modes are an
additional difficulty since it may be nearly impossible to uniquely identify modes

at almost identical frequencies.

Once deployed, the first two of these two problems (structural weight and
support conditions) are no longer issues since the system will be in the configuration
for which it is designed. Close spacing of modes, however, will still be a problem.
The first approach to separating close modes is to use data acquisition systems with
very high resolutions, thereby obtaining transfer function responses with separate
peaks (in the frequency domain) for each mode. If high enough resolution data ac-
quisition is not available, closely spaced modes can still be discerned through use of
multiple excitation and multiple sensing locations, as shown in this thesis. The dif-
ferences in mode shapes are used. Finally, the predictions from numerical analyses
such as FEA codes can be used to give initial estimates for curve fit identification

procedures.

Excitation of the structures to develop models for control synthesis is done
using the control actuators. Several types of motors have been suggested. The
first type includes inertial devices such as proof mass actuators and torque wheels.

These impart force to the structure by changing their position in inertial space.
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Thus they can cause position and attitude changes of the whole system when con-
trolling flexible modes. Therefore, for internal/modal motion control the second
type of actuation is more appropriate: A technique known as active member control
uses devices such as voice coils and piezoelectric elements to impart force through

structural load paths directly. Only flexible motions are changed by this technique.

Sensing may be done with relative or absolute sensors similarly. Relative
sensors include strain gauges and laser range finders that work on point-to-point
motions within the system. These only detect internal motions. Inertial sensorssuch
as accelerometers measure both internal and rigid body motions. It is sometimes
possible to decompose these signals so that they may be used to effectively sense

for vibration reduction.

Once the base model of the system is developed, the proper control algorithm
synthesis method must be chosen. There are basically three types of algorithms
which work for structural systems: Single input single output (SISO) - which use
Nyquist or equivalent plots to determine performance and stability; Multiple input
multiple output (MIMO) loop-at-a-time - which also use SISO methods, but do not
have the same stability guarantees; and full MIMO multivariable - some of which
have complete stability and performance guarantees. The SISO techniques are the
simplest to use and implement, but do not generally have the performance levels of
the MIMO methods. Examples are gain stabilization, direct velocity feedback, and

loopshaping.

The loop-at-a-time MIMO techniques extend the SISO methods by building
up SISO controllers for sensor/actuator pairs one pair (loop) at a time. That is,
the compensators are composed of several SISO controllers working simultaneously
on various input/output transfer channels. Unfortunately, destabilizing interac-
tions between the multiple compensators are often difficult to predict, so stability

guarantees are not very strong.

Finally, multivariable MIMO algorithms such as Linear Quadratic Gaussian
(LQG) [KwS] and H s -optimal control [DGI] result in compensators which use all
actuator-sensor transfer channels simultaneously. (Letters in the square brackets
correspond to references at the end of each chapter.) While more complex than
the other techniques, these controllers can take advantage of the multiple control

paths to obtain greater performance than the SISO methods which are constrained
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to single path dynamics. (Further descriptions of all these methods are given in
Chapter 2.) Robustness and performance guarantees exist for some of these MIMO

multivariable methods.

Robustness of a feedback compensator describes how much the base system
can change without instability of the controlled system occurring. That is, the
controllers essentially add energy to the system. If added correctly, motions can be
cancelled out; however, if the energy is placed at the wrong frequency (or with the
wrong phase), the motions may be augmented to the point of destabilization of the

whole system.

Some of the newest synthesis methods have procedures which increase the
compensator robustness. To be robust to changes in the system or to errors in mod-
els, the models for controller synthesis must incorporate uncertainty/modification
models in addition to the base system model. Currently, these are developed us-
ing ad hoc methods such as estimating a certain percentage error in the model.
Good quality descriptions are needed because larger uncertainty descriptions cause
reduced controller performance. Thus, with very accurate uncertainty models, the

best performance of the controlled system can be obtained.

One type of system uncertainty or change that needs to be developed is the
alteration of structure behavior due to physical changes such as addition of dy-
namics (docking) and movement of components (robot arm configuration changes).
While these can easily be modeled with analytical techniques such as FEA, as pre-
viously discussed, these methods are not very accurate. Ideally, the most correct
model development method is to combine identified models of each subsystem in
the appropriate configuration. This is a process called response mode synthesis or
component mode synthesis. With a good model of the change to the structure, a
robust, high performance controller can then be designed for both the original and
the modified structure. That is, the modification can be precisely modeled and

treated as an uncertainty (as opposed to the ad hoc methods currently used).
1.1 Organization of this Thesis
The most important step in designing a control algorithm for active struc-

tural control is modeling or identification of the system of interest. The first part

of this thesis presents a frequency domain identification method and experiments
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carried out on a structure at Caltech [Ba2]. Through use of several single input mul-
tiple output experiments assembled as a multiple input multiple output (MIMO)
data set, lightly damped modes with nearly equal frequencies and dampings were
characterized distinctly. Results of identification experiments and estimates from
finite element models are presented. A significant difference exists between the finite

element estimates and the identified model.

The second part of this thesis presents a generalization of response mode
synthesis[Bla], [CKR], [Ewi], [Hur], [SpT] to systems where only experimental data
is available. The most difficult step in response/component mode synthesis pro-
cedures has been normalization of the experimentally determined models of the
individual components so that they are compatible with models of other systems.
This has been especially difficult when only experimental input/output information
is available. Similarly, the procedure has been limited by factors including reliance
on colocated sensor/actuator geometries and on references of the transducers to

physical quantities.

A technique is presented which uses linear fractional transformations (LFTs),
as used in feedback frameworks, to assemble substructures. LFTs are very appro-
priate for modal synthesis since they incorporate effects of each subsystem on the
others via feedback. The procedure demonstrated herein bypasses many of the
limitations of previously used response mode synthesis procedures. For example
the method is amenable to noncolocated transducer geometries, only needs input/
output experimentally measured information (no physical units on force or length
are needed), and can use acceleration sensing and locally controlled actuators. A
simple theoretical example and a complex experimental structure case are presented

to demonstrate the methodology.

The key to the technique is that two experiments must be done on each
subsystem in the assembly: The first is a straightforward modal identification; the
second involves adding a known mass to each substructure and identifying modal
parameters based on the original systems’ models and on the modified structures’
responses. The effects of the mass modification is easily modeled through an LFT.
With the modal parameters, the input/output models of the systems can be con-

nected to predict the behavior of the combined structures.
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In the numerical example, two spring-damper-mass systems are identified
separately and are connected using the suggested procedure. Then, they are theo-
retically connected using the exact expressions. The resulting models and responses
come out almost identical demonstrating that the method is theoretically correct.
Experimental results are for a very lightly damped single mode beam-like structure
which is attached to lightly damped multi-degree-of-freedom structure with closely
spaced modes. The responses predicted by the theoretical method come close to
the actual response of the combined system. A discussion is given on the sources of
the errors which include poor experimental fixturing and lack of rotational sensors.

Overall, however, the procedure seems quite successful.

The third portion of this work deals with active control of the structures.
While the control objective in this work is vibration suppression, the methods dis-
cussed extend to model matching. Several different configuration schemes and con-
trol algorithms are being tested (by other researchers) to determine the effectiveness
of active control on structures [WFC]. The most straightforward ones are classical
methods such as gain and phase stabilization using colocated sensor/actuator ge-
ometries. While these have nice robustness and high performance features, it is
not always possible to colocate the sensors and the actuators. Also these methods
can fail because finite sensor and actuator dynamics can destabilize the system.
Colocation also means that only the regions where actuation devices are placed are

controlled.

The difficulty of colocating sensing and actuation devices has led to significant
interest in methods which allow noncolocation such as linear quadratic Gaussian
(LQG) and Hs-optimal synthesis techniques. Robust optimal control methods such
as Huo/u-synthesis are used in this work. Control of flexible structures using this
method requires good models of the base structure, knowledge of the uncertainties
in these models, adequate specification of desired performance, and ideas on the
properties of the controller to be designed. Hu./pu-synthesis is a technique which
can incorporate all this information in a mathematical formulation to compute
optimal controllers. The resulting compensators overcome the many difficulties of

structural control including spillover and nonminimum phase transmission zeroes.

Experimental results of implementation of optimal controllers on the Caltech
Flexible structure are presented along with discussions of theoretical and implemen-

tational issues of Ho, /pu-synthesis. It is shown that modal responses can be almost
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completely removed by active control, especially if the control actuators are in the
structural load paths. The controllers are robust to modeling errors and small

physical changes of the system.

Further, a method is presented to use the H../p-synthesis control synthesis
technique to design controllers which will remain stable for structures modified by
docking of other structures. Results of experimental implementation of this design
tool are presented showing the necessity of incorporation of uncertainties into the
controller synthesis setup. Proper controller design results in excellent performance
of the controlled structure in its original and in its modified state. Without the un-
certainties, the controlled system becomes unstable, as demonstrated. The examples
presented for the modification work represent active control of two structures which
dock to each other. Modeling of uncertainties is a current topic of research in the
control implementation fields. Here, the docking structure is treated as uncertainty

in a well understood framework.

The above topics are divided into the following chapters: Chapter 2 gives a
literature survey for structural identification, structural modification modeling, and
control theory. In Chapter 3, an identification method and experimental results on
the Caltech Flexible Structure are presented. This chapter is an extended version
of [Mos]. The use of LFTs for response mode synthesis is outlined in Chapter 4,
followed by the generalizations previously mentioned and by experimental results
of combination of structures in Chapter 5. Chapters 6 contains a description of the
procedures for Ho, /p-controller synthesis for the Caltech structure. Experimental
results of control of the Caltech Flexible Structure are given in Chapter 7. This
chapter also contains the combination of LFT structural modeling and robust con-
trol for design and implementation of controllers which are robust to docking of

structures. Chapter 8 gives some conclusions based on this work.

1.2 References for Chapter 1

Bmu: Balas, G., et al., (1991),u-Analysis and Synthesis Toolbox, MUSYN,
Inc., and The Math Works, Inc., Natick, Massachusetts.

Ba2:  Balas, G., (1990), Robust Control of Flexible Structures: Theory
and Experiments, Ph.D. Thesis, Department of Aeronautical Engineer-

ing, California Institute of Technology, Pasadena, California.



Bla:

CKR:

DGK:

Ewi:

Hur:

KwS:

Mos:

Pac:

SpT:

StF:

_8.

Blackwood, G.H., (1988), “Experimental Component Mode Synthesis of
Structures with Joint Freeplay,” Report SSL#16-88, Space Systems Labo-

ratory, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Crowley, J.R., Klosterman, A.L., Rocklin, G.T., and Vold, H., (1984), “Di-
rect Structural Modification Using Frequency Response Functions,” Pro-
ceedings of the 2" International Modal Analysis Conference, Union Col-
Y, pp- 930-936.

lege, Schenectady, T

Doyle, J., Glover, K., Khargonekar, P., and Francis, B., (1989), “State
Space Solutions to standard Hy and H,, Control Problems,” IEEE Trans-
actions on Automatic Control Vol. AC 34, pp. 831-847.

Ewins, D.J., (1983), “Modal Test Requirements for Coupled Structure
Analysis Using Experimentally Derived Component Models,” Combined

Experimental /Analytical Modeling of Dynamic Structural Sys-
tems, ASCE/ASME Mechanics Conference, AMD, Vol. 67, pp. 1-30.

Hurty, W.C., (1965), “Dynamic Analysis of Structural Systems using Com-
ponent Modes,” ATAA Journal, Vol 3, No. 4, pp. 678-685.

Kwakernaak, H., and Sivan, R., (1972), Linear Optimal Control Sys-

tems, Wiley-Interscience, New York.

Moser, A.N., and Caughey, T.K., (1991) “Some Experience with Identifi-
cation of the Caltech Experimental Space Structure.” Proceedings of the

1991 American Controls Conference, Boston, Massachusetts.

Newlin, M.P., and Smith, R.S., (1991), “Model Validation and a General-
ization of u,” Proceedings of the $0** Conference on Decision and Control,
Brighton, England.

Packard, A., (1988), “What’s New with yx,” Ph.D. Thesis, Mechanical En-
gineering Department, University of California at Berkeley, Berkeley, Cali-
fornia.

Spanos, J.T., and Tsuha, W.S., (1989), “ Multibody Dynamics: Modeling
Component Flexibility with Fixed, Free, Loaded, Constraint, and Residual

Modes,” Proceedings of the §7¢ Annual Conference on Aerospace Compu-
tational Control, JPL Publication 89-45, Pasadena, CA, pp. 761-777.

Strang, G., and Fix, G.J., (1973), An Analysis of the Finite Element
Method Prentice-Hall Inc., Englewood Cliffs, New Jersey.



_9.

WFC: Wada, B.K., Fanson, J.L., and Crawley, E.F., (1990), “Adaptive Struc-
tures,” Mechanical Engineering, Vol. 112, No. 11, pp. 41-46.



- 10 -

Chapter 2. Literature Surveys

2.1 Literature Review of Structural Identification

2.1.1. Introduction

Significant work has been done in the field of structural identification, where
the main goal is development of mathematical models of structures. These models
should be as representative of the actual system as possible. Several excellent
reviews of the field have been made over the years. For example, [Hsi] reviews the
philosophies and motives for both linear and nonlinear identification. Among the
needs cited for identified models are structural control, behavior modeling, and as
pointed out in [Sch], prediction of changes in response due to physical changes of

the system.

The types of models resulting from the identification procedures are outlined
in [Ibr], [Lju], [Nat], [Sag], and [Str], just to list a few. These papers also review
cases where different types of excitations are advantageous for use on structures.
[Sag] and [McB] include much of the above information, but also discuss many of
the statistical aspects of the resulting models. Different types of transmission zeroes
that result in systems and from the models are outlined in [Toh]. Finally, [Ibr] and
[Vol] discuss the effects of closely spaced modes on the identification procedure, and
review the types of models and identification methods necessary for identification

in these situations.

Identification of structures can basically be categorized as black box (non-
parametric), modal model based parametric, and structural parametric. The black
box nonparametric models, as reviewed in [Lju], can also be applied to systems

other than structures. These are generally limited to being either single-input
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multiple-output (SIMO) or multiple-input single-output (MISO). It is often dif-
ficult to model lightly damped modal systems or systems with closely spaced modes
with these methods, because in these cases, allowing for higher order models usu-
ally results in models that fit noise in the data rather than structural effects [BrR}.
Some examples of models developed with these techniques are, in the time domain,
the autoregressive-moving average (ARMAX), box-Jenkins, and output estimation;
and in the frequency domain, Chebyshev polynomial [Dai]. To obtain multiple-
input multiple-output models, often the goal of the identification, the SIMO or
MISO models may be assembled into MIMO form, and their orders may be reduced

by one of the various methods outlined in [Spa] and [Bmul].

When a priori information is to be incorporated into the resulting model,
modal model based parametric identification can be used. Here, a model based on
structural properties and basic physical principles is chosen. Then, the parameters
for the model form are identified. The identification procedure generally consists
of a least squares or nonlinear optimization (as outlined in many of the references).
The error to be minimized can be developed in either the time or the frequency

domain.
2.1.2. Time Domain Methods

Brief explanations of the time domain methods are given in [Bec], [Bro], [Cra],
[CrB], [Ful], [Ibr], [McB], [Nat], [Sag], and [Vol]. The basic methods are known as
the Ibrahim time domain (ITD) [Ibr], the Polyreference [Vol], the Prony method
[Ibr], and modal sweep [Bec].

The most common time domain methods (ITD, Polyreference, and Prony’s
method) use free decay data to set up a least squares minimization problem similar
to the ones used in the black-box methods. One of the advantages of these methods
is that initial estimates of parameters are not needed. The results of the least squares
minimization are in a form not related to modal properties of structures. Imposition
of modal qualities is what differentiates the methods. Numerical difficulties often
arise in the procedure to extract the modal quantities such as eigenvalues and
eigenvectors. For extracting the natural frequencies of the system, the ITD method
uses properties of the complex exponential, the Polyreference technique uses finite
rank arguments, and Prony’s method approximates the eigenvectors by polynomials
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whose roots are then found. These methods are quite effective as demonstrated in

[Vol], even with closely spaced modes.

Unfortunately, there are many situations where free decay response is not
very effective. These are caused by rapid rises in noise to signal ratios. To reduce
the effects of noise, larger initial displacements may be applied. This, however, may
excite the structure in a nonlinear range, or worse, it may damage it by causing

large deformation.

Fiillekrug [Ful] extended the principles of the above methods to accept a per-
sistent excitation. The main assumption is that the excitation is constant over the
sampling period. This should be a reasonable assumption if there is a fast enough
sampling rate. A more general methodology (from which the above methods may be
derived) is the Kalman filter [Bro][Sag]. This algorithm is implementable for real-
time state estimation. The matrices computed from here may also be processed to
obtain modal model data. The main drawback of the above time domain meth-
ods, as reported in the various cited references, is the need to sense (or synthesize)
two of the three quantities of displacement, velocity, and acceleration. Similarly,
physical knowledge of the system is not incorporated until after the least squares
minimization is done. To choose the order of the model, either the data set size

must be reduced, or a model reduction scheme must be applied.

Beck [Bec][McB] used a modal model based approach to develop a square
error in the time domain. Responses of a model are synthesized via the inverse fast
Fourier transform (FFT), and a modal sweep is done. That is, the response of a
single mode is simulated in time, an error quantity is calculated in the time domain,
a least squares nonlinear optimization is carried out on the modal parameters, and
the resulting modal behavior is subtracted from the time domain response of the
structure. With the resulting time response data, the next mode is treated. The
process is repeated until the desired accuracy of the model is obtained. Unfortu-
nately, this method requires initial estimates of parameters. The main advantage of
this method is that transfer function models may be derived for any sensing method.

Also, knowledge of the physical system may be incorporated into the model.

Another form of time domain identification is resonance testing, where an at-
tempt is made to excite pure modes of the system using multiple exciters [Cau][Nat].

By tuning the frequency of excitation and the relative phases and magnitudes of
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the exciters, excellent models of modal behavior may be obtained. These methods,
however, are extremely time consuming. Also, they may cause damage to structures

by exciting them in resonance for significant periods of time [Ibb].
2.1.3. Frequency Domain Methods

Most frequency domain methods use the FFT to convert wide frequency band
data from the time domain to the frequency domain. Data from stepped-sine testing
may also be used. The standard concept is to minimize some measure of the error
between the FF'T of the data and the synthesized frequency response of the model by
varying the model’s parameters. In [Bow], the basic parameter variation techniques
are discussed, and their computational aspects are reviewed. [McV], [Mos], [Ebe],
and [Pot] have examples of application of a standard modal model to theoretical
and experimental systems. In this type of method, the nonlinear minimization is
done by a Newton, Newton-Raphson, Levenberg-Marquartd, or other numerical
scheme. The main user decisions for effective use of these methods are good initial
estimates of parameters, selection of number of modes in the model, and choice of
the right excitation for the structure (to avoid aliasing and leakage from the FFT).
The advantages of the method are that user input regarding prior knowledge of the
system may be incorporated to develop input/output models and that any (linear in
amplitude) excitation and sensing method may be used. Variations of parameters
due to changes over time may be traced more easily since the form of the model does
not change. And finally, noise may be averaged in a modal sense by choosing models
with fewer modes. These methods often result in the smallest size descriptions of
the systems. The main drawback is that the user might have to interact with the
computational method to help improve convergence. Frequency domain versions of

the least squares time domain methods such as ITD also exist [Cra).

Another use of modal analysis is refinement of finite element models. In these
cases, the goal is to identify or alter the mass, stiffness, and damping matrices of the
system model. As stated in [Ber], [Cau|, and [Kie], in order to uniquely determine
these parameters, there is a minimum requirement on the number of sensors and
actuators in the system. Thus, it might be too costly to do this procedure. Also
since the behavior of a system is completely described in a given frequency range by a

modal model, it may be unnecessary to identify the individual physical parameters.

2.1.4. Parametric Model Identification
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Analogues of both the time domain methods and the frequency domain meth-
ods have been developed to do physical parameter identification. Among them are
[CrB] which extends the simultaneous frequency domain method by Coppolino, and
[Oja] which uses a least squares algorithm. Methodologies from control theory, such
as eigenstructure assignment have also been developed [Min]. Significant amounts
of both theoretical and experimental work has been done in this field, but will not

be discussed here.
2.1.5. System Excitation Methods

The choice of which excitation signal to use is strongly dependent on the
structure being tested and the excitation quantity used. For most of the time
domain methods, the only allowable excitation is an impulse [Str]. If methods
for creating large repeatable excitations are available, this often gives the cleanest
responses. However, if there are limits on system motion amplitude or if there is a

large noise to signal ratio, other methods should be employed.

In resonance methods, a harmonic excitation at a single frequency is applied,
and the structureis allowed to achieve steady state. This method can give arbitrarily
fine frequency resolution (sine-step testing), however it is very time consuming
and expensive. Multiple shakers may be used simultaneously in an attempt to
excite pure modes. The structure, unfortunately, may be damaged by being kept

in resonarnce.

Random and pseudo-random signals may also be used with single exciters
or multiple exciters[Sag]. These excitations give data with wider frequency band
content (more frequencies are represented). For systems where ambient excitation
is the only choice [Hsi][McB], by assuming that the input is Gaussian white noise,
models for the systems’ power spectra may be developed. These models, however,
will not have information on the phase shifts from inputs to outputs due to the
structure. If the excitation is controllable, pseudo-random band limited data may
be used quite effectively. The main drawback of random data is that the frequency
response functions of the excitations are not very smooth: Transfer functions might
result with discontinuities for which the structure is not responsible[Lju]. Allemang

[Sag] used multiple random excitations to obtain system models.
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When signals with smooth time and frequency domain characteristics are
desired, a chirp is a good choice [Mos]. As with random data, it may be windowed
in the time domain to to give zero starting and ending conditions thereby avoiding
leakage and aliasing with the FFT. The advantage of these methods is that all the

energy of the input signal may be concentrated in a frequency range of choice.
2.1.6. Closely Spaced Structural Modes

One of the major difficulties with transfer function identification is the pres-
ence of closely spaced modes. With single input data, unless the resolution of the
FFT is greater than a certain value related to the spacing of the modes [Ibr], it is
not possible to separate the modes. Unique identification may be done through use
of multiple exciters as shown in [Vol] and [Mos]. Here, geometric properties of the

modes (linearly independent eigenvectors) are exploited.
2.1.7. Experimental Examples

Most of the references cited herein have examples of usage of the methods on
numerical or experimental systems. Of particular note are the following: In [Vol],
the Polyreference time domain method is applied to a symmetric plate with multiple
closely spaced modes using multiple free decay experiments. Excellent identification
results were obtained on this difficult problem. Similarly, [Mos] presents a frequency
domain experimental model developed from a structure with closely spaced modes

using multiple chirp inputs.

[Sir] presents experimental analysis of a beam sensed by laser Doppler ve-
locimetry and excited with impulses. The data is then used for modeling. In [Che], a
structure is excited by both active members and a shaker. It is shown that the active
members give as good, if not better excitations than the shaker. Active members
are load carrying active devices. A commercial package was used for identification

of the frequencies and dampings, so the algorithm is unknown.
2.2 Literature Review of Structural Modification

2.2.1. Introduction
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Structural modification, or reanalysis, aims to calculate the behavior of a
modified structure based on previously computed models of the original system.
The key to an effective reanalysis technique is that it gives accurate estimates for
the new system and that it takes significantly less computational effort than would
be needed for a complete analysis of the new system. The savings in computational

effort comes about by using information from the analysis of the unmodified system.

In [Aro], [BaH], and [Brac], excellent reviews of structural reanalysis meth-
ods are given. The main methods are Component Mode Synthesis [Hur], Weis-
senburger’s localized modification [Wei], the power series expansion [Zas], and the
Receptance [CKR][SBC] /Compensator [HEN] method (also known as response
mode synthesis[Bla].) Component mode synthesis and the receptance method are
general substructure assembly methods which may be used to add dynamics to
the base structure. The others are only able to predict modifications due to mass,

stiffness, or damping changes to individual members of the system.

The basic concept these methods utilize is recombination of the natural fre-
quencies and shapes of the original systems to model the behavior of a new system.
When the recombinations are done symbolically in component mode synthesis or in
the receptance method[TsY], the resulting matrix generates the exact equations of
motion for the system. This symbolic matrix is what would result from the Holzer-
Mykelstad method [CIP] for structural analysis. As stated by Hale and Meirovitch
[HaM], convergence of the methods improves if more modes (natural frequencies
and vibration shapes) are retained for further analysis. This, however, increases

computational costs.

The choice of what shape shape functions (mode shapes) to use also affects
the rate of convergence of the method [HaM]. In cases where it is difficult to ob-
tain the exact mode shape for each substructure, polynomial or other smooth trial
functions may be used in combination with the Rayleigh-Ritz method. This, how-
ever, makes it difficult to specify the eigenproblem uniquely. Likewise, if the trial
functions do not completely satisfy conditions at the interfaces of the substructures,

accuracy decreases.

2.2.2. Component Mode Synthesis
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Component mode synthesis was introduced by Hurty [Hur]. This method
uses one or more trial polynomials for each structure, and assembles modal data
derived from the functions using energy methods. Hamilton’s principle is applied
to obtain approximate satisfaction of the interface conditions for each substructure.
Thus, proper coefficients for the polynomials are calculated at the substructure
level. For reanalysis, a new substructure is attached to the original structure us-
ing this method. Several choices exist as to what interface conditions to assume
when calculating the model for each subsystem. In [SpT], a review of the basic
choices is given: Craig and Brampton [CBr] used fixed interfaces and added con-
straint shapes; MacNeal and Rubin used free interface conditions with effects of
residual modes added in; and Benfield and Hruda used interfaces loaded by masses
and stiffnesses. The last choice gives the most accurate results, but is the most ex-
pensive computationally. In [GLM], an experimental demonstration of mass loaded
elements is given with component mode synthesis. It gave more accurate results

than unloaded members.
2.2.3. Localized Modification Methods

Weissenburger [Wei] introduced a reanalysis method based on localized mod-
ifications by point masses, scalar stiffnesses, or scalar dampers. Here, the original
eigenvalues and eigenvectors of the structure are used to develop a characteristic
equation for the new system. The characteristic equation is then solved numeri-
cally using a root finder such as the Newton-Raphson method. This can be done
successively for each modification, resulting in a series of rank 1 modifications. The
method was extended by Pomazal and Snyder [PoS] and Hallquist and Snyder [HaS]
to systems with damping, both proportional and non-proportional. Other exten-
sions and examples of this idea are given in [Jon], [Hal], [WSR], and [PoS]. Although
exact for any size modification, this technique is computationally expensive because

of the need to find the roots of the new characteristic equations.
2.2.4. Power Series Expansion Methods

In [Zas], [RHR], and several other works, a power series expansion reanaly-
sis method is described. The concept is to expand the eigenvalue and eigenvector
problems for the modified system in a power series of a modification parameter and
of the original eigenvalues and eigenvectors. Terms with equal powers in the mod-

ification parameter are equated to obtain corrections to the original values. This
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method is only good for small parameter modifications, but is relatively inexpen-
sive computationally. To determine accuracy of the corrections, sensitivity of the
eigenvalues and eigenvectors to the parameter changes may be computed using the
expressions in [FoK] and [Jez]. Noor and Whitworth [NoW] suggest a perturbation
method based on a single parameter variation to reanalyze large space structures.
The perturbation idea may also be used to select optimal locations and sizes of

modifications to obtain desired system behavior [ZWA].
2.2.5. Receptance/Compensator Methods

The receptance modification strategy [Brac] [CKR] is the most general re-
analysis method. It is also quite accurate. Here, either modal models [Brac| or
frequency response functions (FRF) [CKR] of substructures are connected using
the physical quantities they represent (such as generalized forces or displacements).
These methods are equivalent to Kron’s tearing method [SBC] and to compensator
based methods [HEN]. If the models of the systems are in state space, this method
can easily handle non-proportional damping [AOM][Bra]. Brandon [Brab] points
out the main limitation of this method: If the change is too large, in some cases the
method may fail because of inversion of a singular matrix. The main advantages
of the method are that it is relatively accurate (keeping more modes gives greater
accuracy, but larger computation time), it can be used directly with experimentally
obtained FRF’s (if good models are not available), and that it is easy to implement
computationally using the Redheffer star product [Kai]. Nice experimental demon-
strations of the method are given in [CKR| where the space shuttle was modified
theoretically and experimentally, and in [HEN] where an electrical network was
used to simulate a mechanical system to alter another mechanical system. [Fla],
[Ozg], and [Lar| give numerical examples of beams which are being connected via

the receptance method.

The major errors with the receptance method are due to joint effects [Wal,
lack of enough retained modes [Fla], noise [CKR], and closely spaced modes [SeD]. In
[Wal] a measurement of joint effects was made. These results could then be applied
to assembly of substructures. By keeping more modes in each substructure, Flashner
[Fla] showed improvement in the accuracy of two Bernoulli-Euler beams that were
connected. Because of the difficulty in obtaining models for closely spaced modes,
frequency functions may be used directly to obtain the FRF of the new structure

[SeD][CKR]. However, as pointed out in [CKR], noise may cause extraneous peaks
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in the new FRF’s. The inconsistencies may show up upon modal identification. If
good enough models are available, it is preferable to use models for the assembly.
[Bla] presents experimental connection of two beams and shows extraneous peaks

due to noise.

The feature common to all the above reanalysis methods is use of some com-
bination of modal frequencies and shapes of an original system, or set of subsystems,
to obtain the behavior of a modified, or assembled system. The methods vary in
their accuracy and computational cost, but the above techniques are all more effi-
cient than a total analysis of the new system. Several other methods, which will
not be discussed here, have been proposed, but they have about the same efficiency
as (if not worse than) total analysis. For example, [LuM] and [StH] identify pa-
rameters from experiments to obtain a base model. A new model based on altered

parameters is then computed. This involves a new analysis of the system.
2.3 Literature Review of Structural Control
2.3.1. Introduction

Active structural control’s main purpose is reduction or alteration of modal
responses in structural systems due to external excitations. The main applica-
tions currently envisioned are large space structures (LSS) and earthquake excited
civil structures. LSS will be very light, and thus flexible, assemblies to support
experimental payloads in gravity and atmosphere free environments. Since no ex-
ternal damping (due to an atmosphere) will be available, these systems will be very
lightly damped [Bal][Fan][FaG]. For effectiveness of experiments mounted on these
systems, end to end misalignment and vibrations will have to be kept at miniscule
levels. LSS will have many closely spaced, lightly damped modes which may be
difficult to model. Because of their flexibility it will not be possible to ground test
large structures such as the large optical interferometer being designed by the Jet
Propulsion Laboratory (JPL) in Pasadena, California[FaG]. The main sources of
excitations expected on these systems are movement of payloads on the systems
(robotic arms), attitude control maneuvers, gravity and thermal gradients, and
docking with other structures[Fan][MOT].

The goal of active control on civil structures such as bridges and build-

ings will be to minimize motion, and thus damage due to earthquake excitations
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[MBC][YLW]. Earthquakes can have large enough motions that the building being
excited deforms into its plastic, or permanent deformation region. At that point

the motion of the building becomes nonlinear, thus more difficult to control.

The most common methods of reducing vibrations in structures are addition
of passive dampers (viscous fluid shock absorbers)[WiD], and strengthening of the
structural elements. Both of these methods significantly increase the weight of the
system. For LSS, since the equipment must be put in orbit, the increase in weight
dramatically increases the cost of placing the system in space. Maintaining end-to-
end alignment required on LSS is almost impossible with passive dampers because
of their softness. Also, the passive devices tend to loose their viscous fluids over
time, thus becoming useless. For civil structures, the excitations are often too rapid
for passive dampers to be as effective as desired. Active methods avoid many of
these complications by being able to add energy to the system in such a manner

that motion is minimized.

Several types of algorithms for active control have been developed. They
may be categorized as classical methods[FPE], state space methods [DGK][KwS],
and adaptive/nonlinear methods [IBA][Isi]. The classical methods depend highly
on the skill and experience of the designer for good performance. Their stability
and robustness properties are easy to verify since they are single input single out-
put (SISO) techniques. State space methods are more general, but require that the
control designer specify the problem mathematically. These techniques can be used
to design multiple input multiple output (MIMO) controllers. In these cases, sta-
bility and robustness properties are somewhat more difficult to quantify. Nonlinear
methods have varying degrees of complexity: from simple on-off (“bang-bang”) type
algorithms to fully nonlinear algorithms. Robustness and stability of these methods

also varies significantly.

The many difficulties with control of structures will be discussed below. Fol-
lowing that, a more detailed description of the various control methodologies shall
be given. Some robustness measures will be presented, and finally, a few of the

numerical and experimental demonstrations of structural control will be listed.

2.3.2. Difficulties with Structural Control
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As discussed in [BCF] and [ZLA], there are several problems that need to
be solved for good control of structures. These issues include poor mathematical
models of the systems, destabilization of the controlled system due to spillover,
actuator and sensor dynamics, modeling of exogenous inputs and system noise, and

modeling of physical changes in the structure.

Poor models of systems mainly result from inexact knowledge of physical
properties of the system such as material constants and inter-element joint behav-
ior[Bal][BCF][Fan]. Other causes include poor modeling assumptions, discretized
models of continuous systems, and lack of knowledge of the damping in and around
the system. In [SaF], a brief demonstration is given of the errors caused by choice of
beam models for truss structures. [CMV] discusses the errors caused by assuming
classical behavior in a nonclassically damped structure. Possible a priori choices of
damping in the structure are given in [FaG| and [KMC]. These choices are usually

inaccurate with respect to the actual damping in the systems.

Instability in the controlled system is most often caused by spillover [BCF]
[FaC] [ZLA], where the controller inadvertently excites poorly described, unmod-
eled, or higher frequency modes. Since LSS will often have large numbers of closely
spaced modes[KMC], it will be difficult to decide which modes should be kept for
control synthesis. It will also be difficult to improve models of these modes with
experimental data. Generally, keeping more modes increases the size and computa-

tional costs of the controller[DGK][SaF].

Higher frequency modes are often left out of models developed by methods
such as finite element analysis (FEA) because of the errors inherent in applying
a discrete modeling technique such as FEA to theoretically continuous structures.
Spillover instability may also be caused by finite actuator dynamics on a continuous
system [FaC][IBA][SiP][Zil]. [FaC] and [IBA] describe ways to analyze the interac-

tions of finite dynamic actuators and sensors with continuous structures.

The type of actuators and sensors that are used is another area of concern.
Attitude control systems incorporate actuators such as momentum exchange devices
or reaction jets. In performing rigid body motions, however, these also excite flexible
modes. Thus, for vibrations control, an actuator that does not cause coupling
between rigid and flexible motions is desired. Active members [AMF] have been

developed for this purpose. The dual problem with sensors is that accelerometers
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and rate sensors measure the combination of rigid and flexible motions. It is difficult
to separate these for proper control. Strain based and differential sensing may solve

this problem [Fan].

Locating the sensors and actuators on the structure to obtain optimal con-
trol is also important. According to [BaD], noncolocation limits the effectiveness
of the control system as the actuators must use structural load paths to induce the
desired effect. Colocation, however, is often impossible because of mission require-
ments. [NoS] gives an outline for an integer programming problem to choose the
optimal locations. [FBC]| presents a method for location selection based on energy

arguments.

Often sensors and actuators are noisy or inaccurate. If this is not accounted
for, instability may also occur. The choice of what type of noise may be expected will
affect optimality of the controller. Allowing for more noise, or more uncertainties
in the system [BCD][{BaD}[Smi] will result in a more robust controller; however, as

robustness is increased, achievable performance is decreased.

Robustness to physical changes in the structure may also be incorporated in
the controller. Some common system alterations are expenditure of fuel by reaction
jets, docking with other structures, sensor or actuator failure, and component failure
[GoC][OMT]. [HJP] showed by simulation that decreases in structural masses on
the system (fuel usage, for example) destabilize the controlled system much more
rapidly than increases in mass.

Uncertainty about the system may be reduced by increased identification of
the assembled system. This, however, may be difficult and expensive. The tradeoff
between identification and control is described mathematically in [UdF], where a

two point boundary value problem results.
2.3.3. Classical/SISO Control Methods

Classical methods have been developed and used since the 1930’s. For sys-
tems where the sensors and actuators are colocated, these methods can be designed
to have nice robustness and stability properties. Also, because of relatively simple

form, they are easy to implement. Design of these controllers is usually done using
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a trial and error approach which utilizes Bode and Nyquist plots of the controlled

system to achieve desired properties[FPE].

For general systems, the standard classical methods are gain stabilization
and phase stabilization[Rut]. For gain stabilization, the gain of the controller is
reduced at selected frequencies. This method is robust to phase uncertainty, but
its performance is not always very good. The system being controlled must have a
band in the frequency domain without any modes so that the controller’s gain may
be rolled off (reduced) without danger of destabilizing the plant.

For phase stabilization, the gain crossover is chosen at a frequency where
the amplitude of the plant’s response begins to roll off (bending frequency). This
results in a controller with a larger bandwidth and with higher performance than
a gain stabilizing one. Unfortunately these controllers are difficult to design, and

they are not very robust to uncertainty.

Structural systems are of a form where under ideal conditions direct veloc-
ity feedback (DVF) can be used to increase the system’s damping [CaG] [GCa).
According to [CaG], spillover due to unmodeled modes is beneficial for DVF, but
spillover due to finite sensor and actuator dynamics may cause instability [CaG][ZiI].
Noncolocated DVF is more difficult since wave travel speeds must be accounted for.
When multiple inputs and outputs are available for use, decentralized controllers
may be designed such that a controller is designed for each sensor/actuator pair.

Another method for structures was developed by Caughey and Goh [CaG]
[Fan]. This technique, known as positive position feedback (PPF) is also stable to
spillover. Proofs on stability and performance of this tuning filter method exist and
are stronger than those for DVF. Another nice feature is that the method has an

inherent two pole rolloff, thus it will not destabilize higher frequency modes.

When the system is modal, as lightly damped structures are assumed to be,
independent modal control may be used[ZLA]. Here, the equations of motion are
transformed to modal coordinates, and a desired eigenstructure is imposed by using
a feedback gain matrix. Unfortunately, this method requires a large number of

sensors and actuators.

2.3.4. State Space Methods
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Linear Quadratic Gaussian Control

The most often used state space control synthesis method is presently linear
quadratic Gaussian control (LQG)[KwS]. In this method, cost functions based on
the expected value of a disturbance of chosen frequency spectrum are minimized,
thereby giving the optimal controller[DGK][HJP]. The cost of actuator usage can
also be included in the cost function, thereby setting up a tradeoff between actuator

cost and achievable performance.

The standard LQG problem has no guarantees as to robustness to para-
metric/structured uncertainty in the model of the plant. It is able to handle this
type of uncertainty only if it is treated as an additive noise (unstructured uncer-
tainty)[WiG]. This however, leads to a much more conservative controller with lower

performance than if the uncertainty were treated as structured.

Several modifications have been made to the LQG problem formulation to
allow for different kinds of noise and uncertainties. [BIM] modifies the method by
adding structured uncertainty to the cost function. The technique does not have
guaranteed stability properties, but a tradeoff is set up where the controller may be
made insensitive to parameter variations. In [PaS}], set theoretic disturbances are
applied to allow for unknown, but bounded disturbances. This allows for imposition
of time-domain constraints to a problem formulated in the frequency domain. Struc-
tured and unstructured uncertainties are collapsed into the cost function in [CaB]
to reduce sensitivity of the LQG controller to structured uncertainty. [PhC] con-
tains several examples of LQG with maximum entropy/optimal projection, which
incorporates a tradeoff between sensor accuracy, controller order, and robustness,

against performance.
H,, Optimal Control

Because of the lack of guarantees of robustness of LQG controllers, in
the 1980’s H..-optimal state space methods were developed. While LQG con-
trol is designed for signals of bounded energy with known spectra, H, con-
trol has guaranteed robustness to the worst case signals of bounded magni-
tude [BHN][DGK][DGF]HJP]. When this method is combined with u-analysis

[Bal][BCD][Pac], structured uncertainties can be incorporated into the description
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of disturbances to the system. Then the controller will have guaranteed stabil-
ity to these structured uncertainties. Also, because of allowance for disturbances of
bounded amplitude, persistent excitations may also be considered for control. More

complete descriptions of u-synthesis are given in [BCD] [CMV][Pac].

[DGK] gives a synthesis procedure which results in controllers of the same
order (size in state space) as the plant to be controlled. Thus, smaller descriptions
of the structure result in smaller order controllers. This makes computation simpler.
(LQG has the same feature).

2.3.5. Nonlinear Control

There is a large number of techniques that are classifiable as nonlinear control,
but only a few of these shall be discussed here. The simplest control system is an on-
off, or bang-bang type controller[FPE][BVJ] [MBC]. For slewing maneuvers, these
methods turn an actuator on fully until the system reaches a neighborhood of the
desired position, at which time the actuator output is reversed. The actuator effort
is switched until the motion of the system stays within a particular region of the

desired configuration.

Application of this type of control to civil structures is discussed in [MBC]
where external excitation is caused by earthquakes. The author points out that
the method can be used for both linear and nonlinear structures, but continuous
monitoring of the system’s states is required. The switching of the actuator is
designed to apply forces at optimum times to keep the motion of the structure
minimized. The switching often introduces time lags which must be accounted for.

Another commonly used nonlinear strategy for structures is adaptive control
[IBA][SiN]. Here a gain on a linear control algorithm such as LQG or H is updated
often to give the optimum signal for control. [SiN] presents four adaptive control
algorithms for scheduling the gains on a proportional-integral-derivative scheme.
That is, displacement, velocity, and the integral of displacement are measured and
fed back to the actuators. Several nonlinear equations need to be solved at each
time step based on desired eigenvalues and steady state errors. [IBA] discusses
use of model-reference-adaptive control, where the main concerns are unmodeled
dynamics, input saturation, and time delay saturations. The method is described

as inherently robust to unmodeled dynamics.
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A quadratic cost for flexible structures with stochastic excitations is presented
in [YLW]. This scheme requires solution of the LQG equations at every time step.
This instantaneous optimal control is not robust to uncertainties. Unfortunately, it
also suffers from being quite expensive computationally. As with [IBA], the observer
for this system ends up being a Kalman filter. In [IBA] the filter is used for rate

estimation, while in [YLW] it is used for state estimation.

[Isi] presents theory for entirely nonlinear controllers. Robustness of these
methods is minimal, as they require inversion of the plant model, followed by ap-

plication of linear controllers.
2.3.6. Robustness Measures

One of the most important features of feedback control systems is robustness
to noise and parameter uncertainties. If proper provision is not made for these
effects, the controller’s performance will be dramatically reduced. The reduction

may be enough for the controller to cause instability of the closed loop system.

Determination of robustness of classic controllers is done using Nyquist and
Bode plots. The standard measures are gain margin and phase margin. For SISO
systems, these are generally quite good measures. For MIMO systems, however,
interaction between control inputs and outputs is not accounted for, so these quan-

tities are not informative robustness indices.

Situations can arise in SISO and MIMO systems where variation of a single
parameter would give large stability margins, but simultaneous variations of mul-
tiple parameters gives unacceptably small margins [Doya]. Thus, a measure based
on the maximum singular value of a perturbation matrix has been introduced for

robustness analysis[Pac] [Doya).

This measure, known as p [BCD], uses information about relationships be-
tween uncertain parameters (structured uncertainty) to find the worst case pertur-
bation that would destabilize a controlled system. Based on scalings used to find
these worst case signals, filters can be placed on the disturbance models specified for
the H.-synthesis to make the controller robust to parametric type uncertainties.

This gives rise to the p-synthesis procedure [Bal][Pac].
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The concepts of u-synthesis have been applied to LQG control in [BIM] and
[WiG], however, in these cases, guarantees on stability of the system do not hold. In
H, theory, the guarantees hold because the method is designed for the worst case
disturbance. In LQG, the method designs for a known spectrum of disturbance,

which 1s usually not the worst case.

Another robustness measure procedure is to test the closed loop system with
the various parameters set to the upper and lower bounds [BIM][BWG]. Based
on Kharitonov’s theorem [Sid], if all combinations of upper and lower bounds are
tested, bounds on stability of all possible combinations of parameters are developed.
Thus one only needs to test the outer limits of variation. For problems with many

parameters, this becomes very expensive computationally.

2.3.7. Demonstrations/Applications

Implementation of the above vibration reduction methods to structural sys-
tems often illustrates advantages and errors of the particular techniques. [WiD]
demonstrates passive damping on numerical simulations of the Hubble telescope

and a on truss system. Settling time was improved significantly.

In [Rut], a numerical comparison is made of classical gain and phase stabi-
lization methods with H,-optimal control on a flexible missile. Ruth [Rut] showed
that the best classical controllers achieve about the same performance levels as the

H_, designed compensator, but the state space method is more robust.

Direct velocity feedback was used in tendon control of a beam in [MOT]. This
experimental demonstration obtained some performance for low frequency modes,

but higher frequency modes were unstable due to tendon flexibility.

Control work on truss structures at the Jet Propulsion Laboratory is dis-
cussed in [BCD], [BCF], [FaG], [FaC], and [FBC]. Work began with positive po-
sition feedback on a cantilevered beam[Fan] [FaC], where 20% critical damping
was obtained by Fanson. Here, strain-based sensing and active-member actuation
were used. A truss structure was then constructed[FBC] for further experiments.
Among the control methods used, decentralized positive position feedback, decen-
tralized colocated velocity feedback, LQG, and Ho control have been applied with

varying degrees of success.
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In [PSW], Padula et al, discuss combined structure and controller optimiza-
tion using LQG methods. The goal is to minimize mass and power consumption
of the control system while constraining strength, vibration characteristics, and
damping of the structure. A numerical example is presented as a demonstration
of the procedure. [WiG] gives a numerical simulation of LQG control of a truss
structure. Persistent excitations, such as those caused by parameter uncertainties

are incorporated into the problem specification.

A set of four excellent experimental demonstrations which use an LQG algo-
rithm with increased robustness through use of maximum entropy/optimal projec-
tion method is given in [PhC]. These demonstrations were on a multi-link pendulum,
a thin plate, a multi-hex optical reflector, and a truss structure. One of the conclu-
sions the authors present is that more work needs to be done on control of sampled

data systems.

Numerical simulations of H..-optimal control are given in [Rut], as already
discussed, and in [BWG] and [HBY]. In [BWG] effects of inertia changes due to
motion of a robotic arm are discussed. In [HBY] good theoretical increases in
damping were shown on a reduced size model of a truss. When the controller
was applied to a more complete model of the system, the controller still obtained
decent performance, although it was not as good as that on the reduced order

representation.

Experimental demonstrations of H, /u-synthesis have been made at Caltech
and at JPL [Bal][BCD][BaD]. Balas demonstrated good vibration attenuation on a
lightly damped structure with very closely spaced modes using both colocated and
noncolocated sensor/actuator pairs. The parameter variations and disturbances
used to synthesize these robust controllers were developed from ad hoc judgement
methods. Much work remains on development of uncertainty models. H../u-
synthesis was also demonstrated on the JPL/AFAL hoop ring antenna structure
[BCD]. Here, several SISO and MIMO controllers were designed based on theoreti-
cal models of the system. Large amounts of uncertainty were incorporated into the
synthesis models because of poor models of the system. More performance could

have been obtained with better models.

Numerical simulations of nonlinear on-off type control are given in [MBC] and
[YLW] for civil structures and in [BVJ] for a prototype flexible structure. In [IBA],
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adaptive control is experimentally demonstrated on the JPL/AFAL structure. Good
perturbation reduction was achieved. Some of the implementation difficulties are

discussed.

In [MFXK], docking and separation of a truss with variable geometry is shown
experimentally. Here, the variable geometry of the system is used to compensate

for changes in inertia properties of the base system.
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Chapter 3. Identification of The
Caltech Flexible Structure

3.1 Introduction

As work proceeds in development of optimal control synthesis methods, the
need for good modeling and identification techniques becomes more critical. Large
space structures magnify the need for good models since they have multiple closely
spaced modes with very light damping. Omission of a mode from the control model

could easily result in system destabilization when active control is applied.

Significant work has been done on structural identification with varying de-
grees of success. Reviews are found in [Ibr], [Nat], [Sag], and [Str]. An exper-
imental demonstration of a system with closely spaced modes was presented by
[VKR], where excellent models are determined using the Polyreference technique

with impulse responses.

Here, a demonstration is made of a frequency domain identification method,
and the persistent excitation used to generate system motion is discussed. The error
minimization algorithm is also discussed since it was found to have robust conver-
gence properties. The frequency response function (FRF') for each input location
was obtained by single point excitation and multiple point sensing (single input
multiple output, or SIMO). If each SIMO FRF had been curve fit independently,
the model developed would have more states than those necessary to adequately
describe it. This would have complicated computation and implementation of the
control system. Thus, the ideal identification of a linear system is multiple input
multiple output (MIMO).
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The choice was made to use only single point excitations, although Allemang
has developed conditions for an effective multiple input excitation method [Str].
The main limitation of the multi-point excitations that were tried here is that
transmission zeroes are obscured. At a particular frequency, there may be a sensor
location which does not respond to excitation from a certain input location. This
results in a transmission zero since the sensor signal is zero. However, if there is
excitation from another location, the sensor’s output may be nonzero. Since the
computed transfer function is the quotient of the ouput and input signals (in the
frequency domain), the system’s response (to the first input) which should be zero
will appear to be nonzero. For the experiments done here, the MIMO curve fit
algorithm was applied to several SIMO experiment results assembled as a single
MIMO data set. Each actuator was used to excite the structure, and the SIMO
FRF’s were assembled appropriately. If the structure is linear, this assembly should

be equivalent to a MIMO experiment.

The main purpose of this chapter is to relate the problems and solutions
experienced using a frequency domain curve fit algorithm on a structure with closely
spaced modes. The input signals are discussed to provide a possible method for
excitations of structures assembled in space. The numerical aspects of the curve
fit method are explained since the minimization algorithms were found to be very

robust to poor initial parameter estimates.

This chapter is organized as follows. In Section 2 a description is given of
the algorithm used to perform the MIMO curve fit. As a basis for comparison,
results of the application of this method to simple numerically generated examples
are presented in Section 3. Section 4 describes the experimental system at Caltech
which supplied the data. Then, the final section presents results of finite element
models of the system, results of the curve fit, and a brief discussion of some of the

difficulties experienced because of the closely spaced modes.
3.2 Curve Fit Algorithm

For curve fit, a frequency domain modal model was chosen. This is very
similar in nature to ones used by [Mcv] and [EbI]. The idea is to model the FRF
as a sum of FRF’s of individual modes. Assume the system may be modeled by M
modes, J inputs, and I outputs. The inertance transfer function from the j* input

to the i** output at the k'® frequency sampling point wy is modeled as



M (m),(m) 2
e; b (—wi
Tiilwr) = E ! J + bl
() — (F2 —wi)+ 2V =1 mCmws 5€i (3.1)

Here, bgm) is the j* input weight, cgm) is the it output weight, f,, is the
angular frequency (in rad/sec), and (,, is the per unit critical damping for the m®*
mode. Effects of modes above the frequency band of interest are modeled as quasi-
static input and output contributions through b7 and cj. The structure is assumed
to have classical normal modes, so the parameters are taken as real. The quantity
T;;(wk ) is complex and corresponds to the Fourier transform of a system with force

inputs and acceleration sensing (inertance) [Ewi].

The fit of the curve described by T;;(wg) is to be iteratively improved, thus
an error is defined. Data taken in the time domain may be transformed to the

frequency (Fourier) domain using a fast Fourier transform giving the FRF

vij(wr) = aij(wi) + V=185(wr), (3.2)

where a;;(wg) and F;;(wy) are real quantities. The discrepancy at each frequency

point for the j** input and i'* output channel is

Eij(wr) = Tijlwr) = vij(wr)- (33)

Therefore the error is defined as the differences between the complex FRFs of the
responses of the experiment and of the model. This avoids problems with computa-
tion of amplitudes and phases of the responses. The model parameters with respect

to which we want to reduce the error may be organized as a vector

= [b§”, ey b(JM), cgn, e ,c(f"w),

N T' 4
Fooee i far Clye e Gty e BTl ] (3.4)

Ideally, correct parameter values will obtain E;;(wz) = 0 for each wy; how-
ever, due to noise and nonlinear behavior of the system, this is not possible (in real
situations). Here the choice is made to minimize the square of the absolute value
of the integral of each channels’ error.

Whigh

K
fij = ; Eij(.w‘k)Ei]'(wk) I~ /w IkEij(wdew (3.5)

low

where the overbar denotes complex conjugation.
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3.2.1. Choice of Norm for Minimization

At this point, a standard norm may be chosen to be minimized through
a traditional algorithm (conjugate gradient, steepest descent, Newton, etc.)
[RRR][PaW]. Philosophically, whenever a norm is taken of a matrix, detailed infor-
mation about individual components is lost. That is, all the information contained
in members of a vector or matrix is collapsed into a scalar quantity. This is the
motivation for the present algorithm. Using an iterative scheme, the goal is to find

the minima of all the elements f;; simultaneously with respect to z.

The channel errors f;; are positive definite, so progress towards their zeroes
will be in the same direction as the minima. The minimization schemes used are a
vector version of a first order Newton zero finding algorithm and a vector version
of the steepest descent idea. The values f;; are assembled as a vector F so that

iterations may be carried out to find the zeros/minima of the elements of F.
3.2.2. Newton Method

The vectorized Newton method used here is derived straightforwardly from
the Taylor series expansion.

E(z, +Az)=F(z,) +YF(z,)Az
1
+ gA;r_TE’_ZE_(;v_O)Ag + higher order terms. (3.6)

Note that F(z) is a real vector of length IJ; Y F(z) is the Jacobian of
F(z) which is a real rectangular matrix of size IJ x N, where N is the number
of parameters in z and Agz; and _V_zf_(g), the Laplacian of F(z) is a rank 3 tensor
of size (IJ) x N x N. Here only information about the vector function F(z) and
the Jacobian VF(z) are used.

The goal is to make the next iterate of the vector to be as close to zero as

possible, so it is set as such to get the scheme:

Flz, +Az)=0= F(z,) + YF(z,)Az + higher order terms.  (3.7)

Note that as defined here, all elements of F are positive semi-definite. For the

moment, the higher order terms are disregarded to obtain



VF(z,)Az = ~Flz,.) (3.8)

Since the Jacobian is rectangular in general, the Moore-Penrose pseudoin-
verse [GoV], [Bra] can be used. The Jacobian is rank deficient because of its
shape and because the parametrization chosen is not unique. (Uniqueness of the
parametrization is discussed in Chapter 4.) Denoting the pseudoinverse with the

superscript { , and the iterate number with v, the iteration procedure is

Typ1 =2y, — {Y_E(ﬁ,,)]ff_’(g,,). (3.9)

The pseudoinverse then gives the smallest two norm step Az = z,,, — z,.

The pseudoinverse is computed using singular value decomposition routines from

LINPACK[DBM].

To look at the sensitivity of the scheme, substitute back into the Taylor

expansion for F(z, + Az).
E(z, + Az) =E(z,) - YE(z,)[VE(z,)] E(g,)
+ higher order terms. (3.10)

If VE(z) were of full rank, the pseudoinverse would equal the exact inverse,
and the expression would simply leave the higher order terms. As previously stated,
the Jacobian is not full rank, so something extra needs to be done to assure con-
vergence of the algorithm and to reduce the effects of the higher order terms. For
this, a line minimization along the direction specified by Az can be implemented.
To do this minimization a scalar function is needed. Here, the l1-norm of F(z) is
chosen: ||E(z)ll: = Z{=1 Z]‘J=1 |fij(z)]. So, a bisection routine is used to find the
a which minimizes ||[E(z, + aAz)||1 along the direction Agz.

Noting the Taylor expansion of F(z, + Az),
E(z, + alz) =F(z,) + a¥E(z,)Az

1 2 :
+ aQ—Q-A_:p_TZ“E(Qo)AQ + higher order terms. (3.11)

As the iteration approaches the minimum for ||E(z)|1, the size of o gen-
erally decreases, so the size of the higher order terms also decreases. This helps

convergence of the routine.
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3.2.3. Steepest Descent

The steepest descent method used here is also a vector version of the standard
method. It is combined with line minimization as above to find a scaling which gives

the minimum || E(z)||1. The iteration direction is

Az = —a[VE(z)]"E(z). (3.12)

The two above iterative schemes are alternated to complement each other.
Experience with these problems has indicated that the best alteration scheme is
two Newton steps and one Steepest Descent step. When the procedure is started
(when the error is large), the Steepest descent method converges very slowly. Here,
the Newton method seems to work quite well. As the error becomes small, however,
the Newton method’s effectiveness is decreased: The Newton zero finder works on a
function which is positive definite because of noise. Therefore, it will jump between
parameter sets near the minimum. Here, the steepest descent method becomes

useful.
3.2.4. Initial Estimates

There are several ways that initial estimates may be obtained for z. The
most complete set of starting values comes from results of finite element analyses
of the structure in question. These give the input and output location geometric
weights, the number of modes to be fit, and estimates of the natural frequencies of
the structure. The participation weights can be scaled if there are any amplifiers
in the physical system and the amplifier gains are known accurately. Estimates for
modal damping values may be made from the FRF’s and from experience.

If finite element results are not available, estimates for all parameters may
be made from single mode SISO fits or starting values such as 1.0 for the input and
output weights may be used. In many cases, the algorithm is able to converge from

poor starting values.

To prevent divergence and lack of physical basis of the results, limits are
placed on the modal frequency and damping estimates. The user cheoses allowable
variations of these values based on experience. For example, a negative damping
value would not be physically possible for a passive structure. In this implementa-

tion, when a particular frequency value is computed to be outside the prescribed
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bounds, it is reset to the originally estimated value. Damping values are reset to a
particular limit if the algorithm pushes them beyond it. This is where user insight

1s most important.

The iterations are stopped when either the scalar error diverges for a large
number of steps, or the parameters stop changing. In most MIMO cases, the method
diverged for a few steps, and then started converging again. Thus, divergence alone

was not a sufficient reason for stopping the iterations.
3.3 Benchmark Tests of the Algorithm
3.3.1. Single Input Single Output (SISO) Tests

To verify the accuracy of the algorithm, it was applied to a single input,
single output, single mode system that was numerically generated. The system for
comparison was chosen to have a mode at 3.0 hz (18.8496 rad/sec) with per unit
critical damping of 1.66667%. For simplicity, the input-output gain was set at 1.0.
To check robustness of the algorithm, a data set was also set up with the above
system disturbed by noise in the Fourier transforms of both the real and imaginary
parts. The noise was generated as a random normal distribution with zero mean

and variance equal to 5% of the peak amplitude of response over frequency.

exact initial Final Estimate

Variable nominal estimate uncorrupted corrupted
Freq (rad/sec) 18.850 18.00 18.850 18.868
Damping 1.6667% 14.0% 1.714% 1.810%
Gain 1.000 0.30 1.028 1.166
Initial Error 916.4 1231.1
Final Error 367 237.69
Minimum possible 0.0 228.7

Computation real time (sec) 60 60
iterations i 150 150

Table 3.1 - Application of Algorithm to Theoretical System.
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The results shown in Table 3.1 did not incorporate user assistance with es-
timate choices other than the initial ones. In general, when the user alters the
estimates according to their experience, the error reduces more rapidly. Further
iterations also reduce the errors. Plots of these cases are shown in Figures 3.1 and

3.2. In state space, this data was collected as a 2 state SISO model.

102 ' — ‘ccfnpgrisop pf Tesponses_ i
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Figure 3.1 - Fit of Uncorrupted System.

The final estimate (solid) overlaps the exact (plusses) completely. The
initial estimate (dotted) could be much better.

In both cases, good agreement was obtained between the model data and
the numerical experiment. The noise changed the final estimates of the corrupted
data somewhat, but the algorithm still produced a model very close to the uncor-
rupted original one. The algorithm converged in both cases even though the initial

estimates were not very good.

3.3.2. MIMO Multiple Mode Test
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Figure 3.2 - Fit of Corrupted System.

Here, the exact data is corrupted by noise. The phase of the values with
small amplitudes varies greatly because of the corruption. The final fit
still manages to capture the modal peak quite nicely. Discrepancies
which are multiples of 27 in the plots of phase versus frequency are
due to the MATLAB routine which computes the phase. When plots
of real and imaginary part of the response versus phase are done, these
errors disappear.

The true power of this routine is its ability to handle multiple input multiple
output multiple mode systems. Thus, a test was devised with 2 inputs, 2 outputs,
and 2 modes with the parameters shown in Table 3.2. Initial and final estimates

are also shown. (The frequencies here are in radians/second.)

The plots in Figures 3.3- 3.7 show the exact solution, the initial estimates,
and the final estimates for the various channels. Note that the initial estimates for
the input and output weights are of the opposite sign from the exact solution in
some cases. These results took 150 iterations which took approximately 150 sec-
onds real time to rut; on a SUN Microsystems SPARCstation 1. Further iterations
significantly reduced the error.
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. - exact values initial estimate final estimate
Variable model | mode2 | model | mode2 | mode 1l | mode 2
sensor 1 ' 0.80 0.10 l.e-4 l.e-4 0.853 |. 0.099
sensor 2 -0.20 -1.00 l.e-4 l.e-4 -0.206 -0.998
actuator 1 1.00 1.00 1.0 1.0 1.00 1.00
actuator 2 , 0.50 -15.00 1.0 1.0 . 0.484 -15.02
Frequency 18.85 37.70 18.00 37.00 18.85 37.70
Damping (%) 0.010 0.010 0.100 0.100 0.011 0.010

Table 3.2 - MIMO Example.

- Frequency is in rad/sec. This data is not corrupted by noise.
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Figure 3.3 - MIMO Transfer Function Channel 1.

Initial estimates in all these cases have amplitudes which are too small
and dampings which are too large.

Here, as with the SISO case, the algorithm was able to obtain good estimates
of the system parameters, even though the initial estimates were quite poor. A user
with more experience could have come up with much better starting estimates if

they had desired to. The state space model for these fits has 4 states, 2 inputs, and
2 outputs.

3.4 Description of the Caltech Flexible Structure
The prototype large space structure at Caltech, which was used for the ex-

periments described in this thesis, is a 3 bay triangular cross-section hanging truss.
The top bay (referred to as the first bay) is attached to a large aluminum plate
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Figure 3.4 - MIMO Transfer Function Channel 2.
Note that for this channel the phase of the initial estimates is off by =
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Figure 3.5 - MIMO Transfer Function Channel 3.

bolted to building structural members{BaD]. The structure hangs so that frequen-
cies of the first few modes could be designed lower, and so that buckling of members
due to structure weight could be avoided. The structure is illustrated in Figure 3.7.

The structure has a total height of 2.32 metres (91.34”) and has an equilateral
triangular cross-section with each side 0.4064 m (16”). The first platform (between
bays 1 and 2) is a solid aluminum plate 0.00953m %”). The second and third plat-

forms are 0.0064m (%) thick with a triangular section with side length measuring
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Figure 3.7 - Caltech Prototype Space Structure.
The top of the structure is bolted to the ceiling.

0.3556m (14”) cut out. The reduction in mass of plates two and three placed the
torsional modes very close to bending modes, thus increasing the challenge of the
identification and control problems.

3.4.1. Actuators
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The system has two types of actuators, both of which provide no support if
. power is turned off. One set is the voice coil type. They are rated at +£13.46N (£31b)
at +5 Volts, and have a bandwidth of 60 Hz. They are placed so that when activated,
they support or induce all forces passing through the diagonals of the first bay.

3.4.2. Modeling of the Proof Mass Actuators

There are also three proof mass type actuators attached horizontally to the
underside of the bottom bay. They act along the directions of the sides of the
triangular base. These only impart force to the structure when in motion. Unfor-
tunately, these actuators have nonlinear response to input. At low amplitudes of
motion, stiction overwhelms the inductive force trying to move the mass. Here, a
large gain is necessary. However, as the motion of the mass increases, the relative
effect of friction decreases, so the gain is no longer necessary. Thus a nonlinear con-
troller which gives a large gain at low velocities and a small gain for large velocities
is necessary. The linear portion of the controller was designed using classical loop-
‘shaping techniques[DFT]. In [BaD] these features are discussed. The proof masses
are rated at approximately £6.5N (+1.5lb) at 5 Volts, and have an effective band-
width of approximately 5 Hz. Since these actuators are not in the structural load
paths, they are only able to add small forces to the system. At low frequencies, they
are especially ineffective because very large displacements are necessary to generate
decent size forces.

For position sensing of the proof masses, each actuator is equiped with a

linear voltage displacement transducer. These are rated as having a linear response
in the band of 0.5 Hz to 8 Hz.

_ The local controllers for the proof masses command displacements, thus ad-
ditional states were added to the transfer function models to reflect the double
differentiation between position of the proof mass and the force generated. This
results in what appears as a two zero roll up on log-log plots of magnitude versus
frequency for the appropriate transfer function channels. Additionally, the con-
trolled behavior of the proof mass actuators had to be identified. Attempts were
made to fit a standard (modal) force input-acceleration output model to the curves
generated by these va,ctuators. Because of the displacement command of the local
controllers, however, the force—é,cceleraj:ion models were very poor at the higher

frequency modes. Thus, two zeroes were added as dynamics for each proof mass
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motor. For implementation in a state space model, this required addition of two

. poles for each actuator also.

The model for the behavior from the proof mass actuators to the accelerom-
eters is then

™ p™ (~w?)

| M
Tij(wr) = | Y

Lm=1

+bjep

| mj(—wi)
[(\/——huk + p1)(vV=1wi + p2)

where the additional terms are m; for the j** actuator gain, and p; and p, as poles
to keep the model proper. The m; terms were also added to the list of parameters

to be determined by the iteration scheme.
3.4.3. Sensors

Structural behavior is sensed through 6 uniaxial Sunstrand QA 700 accelerom-
eters placed on the second and third platforms half way between the longerons. They
are oriented to be along one structure axis and at +45° to this axis. Frequency re-
sponse of the sensors is flat and has very low noise between 0 and 200 Hz. Signals
from these are conditioned by a 4 pole Butterworth filter with a 100 Hz cutoff fre-
quency before being fed into the data acquisition /control system. Because of the
high quality of these accelerometers, it was not considered necessary to explicitly

model dynamics of these devices.
3.4.4. Data Acqﬁisitioﬁ and Control System

Structure excitation and data acquisition are controlled by a Masscomp 5400
computer with digital to analog (D/A) and analog to digital (A/D) boards. Qutputs
from the D/A converters are passed through amplifiers which feed into the voice
coil and proof mass actuators. The system has been set up so that during data

acquisition or control the processor is dedicated to the control task.
3.5 Modal Properties of the Structure
.3.5.1. Excitation

To obtain ‘a frequency response function of the system the structure was

‘excited with an amplitude modulated sine sweep (chirp) with frequency between
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0.2 and 20.0 hz. The modulation is carried out by a sine squared envelope in the
- time domain. Thus, the excitations were computed as

tr

t t wy . .
sin? (77) sin(/0 wieT M@0 dt), (3.13)

where w; and wy are the initial and final frequencies of the sweep and ¢ and T are
the current time and the total sweep time. The Fourier transform of this signal is
shown in Figure 3.8.
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Figure 3.8 - Fourier Transform of Sine Sweep: .2 to 20. hz.
This signal is chosen because it is quite smooth in the time domain
and in the frequency domain (both amplitude and phase). Most of the

energy in the signal is concentrated in the region where the structure
- has modes.

With nonlinear controllers holding the proof mass actuators in their zero
positions (centered), the structure was excited through one voice coil actuator at
a time for 40.96 seconds at a sampling rate of 200hz. Similarly, the structure was
excited through the controlled proof mass actuators, with a zero voltage sent to
the voice coils. The time domain data from the six sensors and from the excitation

were then Fourier transformed.

‘ The FFT’s of the sensor outputs were then divided by the FFT’s of the
‘input signal. Thanks to the smoothness of the FFT of the excitation (Figure 3.8),
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the resulting data are quite smooth. The result of the division is taken as the
. transfer function (or FRF') from the single input. In the experiment,.each excitation
experiment was repeated three times, and the resulting transfer functions were

averaged in the frequency domain. More averaging results in smoother results.

Other excitations, such as pseudo-random noise and impulses were tested;
however, the amplitude modulated chirp gave the smoothest transfer functions.
The pseudo-random signal gave amplitude results of the same quality as the chirp,
but the phase results were of lesser smoothness. Impulses were not used because
of difficulty with reproduction of excitations. Also, there was no control with the
energy spectrum of impulse signals, whereas the chirp and the pseudo-random signal
could be tailored to place energy in certain frequency bands. Windowing for the

FFTs was not necessary since the initial and final signals of the chirp were zero.

3.5.2. Curve Fit

For creation of a MIMO problem, the SIMO FRF’s were assembled is such
a way that the curve fit program could keep track of the channel correspondences.
Initial estimates for modal frequencies and dampings were made by looking at plots
of magnitude versus frequency. Estimates for the input and output weight matrices
were made from observation of the real and imaginary vs. frequency plots. In

development of the estimates, user experience was very important.

Parameter values were improved by iterating first with a SIMO problem.
Here, the user helped the iteration by pushing values into the region where they gave
the best fit. Once a good SIMO estimate was obtained, the resulting parameters
were applied to the MIMO problem. The parameters obtained from the SIMO fit
(frequencies, dampings, input weights for one input, a full set of output weights,
and some static weights) were held constant. The only values allowed to change
were modal and quasi-static input weights for the new inputs. Once good fits had
been obtained with the restricted problem, all parameters were allowed to vary

simultaneously. This improved the curve fits further.

- Figure 3.9 presents the root mean square sums of all the response functions
“of the LSS (dashed line), of the identification model (solid line), and of the errors in
each of the 36 channels (dotted line). That is, the synthesized FRF’s from the three
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voice coil actuator and the three proof mass actuator inputs to the six accelerome-
. ter outputs were squared and added at each frequency. Magnitude versus frequency
and phase versus frequency plots for the response of a middle bay accelerometer
(#1) to one of -the voice coil actuators (#1) are also shown with the corresponding
| response of the model (Figure 3.10). The phase, as plotted, has apparently large
discrepancies, but these are due to the 27 non-uniqueness of the phase calculat-
ing procedures. When plots of real and imaginary parts of the responses versus

frequency are observed, the phase discrepancy is not seen.

RMS magnitude of Caltech LSS responses
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Figure 3.9 - RMS Responses of Structure, Model, and Error.

There are 36 channels of data compressed into each of these curves (3
voice coil inputs plus 3 proof mass actuators to 6 accelerometer out-
puts). The increase in magnitude with frequency is due to dynamics
in the proof mass actuators which are tracking commanded displace-
ments. The érror looks large because it is the RMS sum of all errors in
all channels. It can be seen that the model catches all the modes.

" The main features to note about Figure 3.10 are the appearance of only
six peaks. These fully represent nine modes. For example, the peak at 5.5 rad/
sec contains two bending modes. The transfer function response presented is for

a sensor and an actuator that are separate from the location where the second
structure is to be attached.
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Figure 3.10 - Caltech Structure and Model Response for Actuator 1 to
Accelerometer 1.

Both the peaks and the valleys of the amplitude are fit well. The phase

appears off by multiples of 27 radians because of the algorithm which

computes the phase. \

A little work was needed to find the proper placement of the poles p; and
p2 for the proof mass actuator controllers. The first estimate was that the poles
were above the frequency range of interest for the global modal structural responses.
This placement gave good quality curve fits at all modes except the last one. Upon
looking carefully at the plots of the real and imaginary parts of the experimental and
model frequency response functions due to the proof mass actuators, it was noticed
that there was a 90° phase shift between the modal system and the experiment
between modes eight and nine. By shifting one of the additional poles for the proof
mass actuator dynamics to the region between the eighth and ninth modes, the
model became able to describe this phase shift. Thus, the curve fit was significantly
improved. The cause of the phase shift is the local controllers (which roll off between

the eighth and ninth structural modes) for the proof mass actuators.
3.5.3. Finite Elemer_lt: Estimates

Finite element models (FEM) were also developed to obtain estimates of

the freqtiéncies and mode shapes. The level of discretization of these models was
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quite rough; however, there were certain features pointed out by these results. The
- main conclusion from the numerical analysis is that different FEM packages deliver
somewhat different results. For example, NASTRAN placed the first torsional mode
~at a higher frequency than the 'group of second bending modes. ABAQUS and
experiments located this mode between the first global bending and second global
bending modes. It is thought that the main reason for these discrepancies is the
differences in the beam models used by the FEM packages. The difference may
also be due to an element used in ABAQUS to model sliding members (voice coil
actuators in this case), which was not available in NASTRAN. In NASTRAN the
voice coil actuators were modeled by a constraint in the degrees of freedom of the
node such that it could only move along the axis of the actuators. Results of the

FEM analyses are compared with experimental results for the modal frequencies in

Table 3.3.

The most probable explanations for the differences in the frequencies between
the FEM results and the experiment is the boundary conditions at the joints and the
low level of discretization of the models. In the FEM implementations, the joints
were assumed to be rigid. On the structure, the rods were shrink fit and welded to
mating brackets which were then bolted to the platform plates. Although quite stiff,
these are not rigid connections. Another source of error was that flexibility of the
plates was neglected - they were modeled as lumped masses and lumped rotational

inertias. The proof mass actuators were also modeled as lumped masses.

Mode FEM Package Freq. (:‘f Experimental Mode
No. | NASTRAN | ABAQUS Frequency (22 Damping Shape

1 4.784 5.0301 5.557 1.18% Bending

2 4,784 5.0301 5.602 1.07% Bending

3 11.563 11.943 ‘ 10.2577 1.11% Torsion

4 10.852 12.239 14.04 1.90% Bending

5 10.852 12.239 14.50 1.90% Bending

6 21.34 22.52 22.81 1.86% Torsion

7 - 26.02 26.58 _ 24.75 1.32% Bending

8 26.02 26.58 24.88 1.35% Bending

9 51.58 54.401 39.99 1.51% Torsion

Table 3.3 - Identified ahd Finite Element Frequencies and Dampings.
The finite element estimates vary in quality. Notice that the NAS-

TRAN estimates place the first torsional frequency above the second
bending modes '
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3.5.4. Closely Spaced Modes

The biggest difficulty in the identification was finding the frequencies and
mode shapes for modes 1 and 2. Because of discrepancies between finite element
models and experiments such as deviations from symmetry of the experimental
setups, it was first thought that there was a mode at 5.6 rad/sec and one at 6.1
rad/sec. These estimates were made because of the presence of a large bump at 5.6
rad/sec and a small one at 6.1 rad/sec in the FRFs. After many iterations, several
of the curve fit channels looked as good as those for Channel 3 in Figure 3.11 for
modes 1 and 2. However, other channels still looked like Channel 2 in Figure 3.11,
where the fit is nowhere nearly as good.

Several attempts were made to improve the estimate using the 5.6 and 6.1
rad/sec frequencies, but they failed. The modes were then isolated, and a trial
was made with two modes at 5.6 rad/sec. After some variations in the input and
output weights, the program converged, and the fits of all the input/output channels
‘resulted as well as those for Channel 3 in Figure 3.12. Note that Channel 2 is
presented in both Figure 3.11 and Figure 3.12, although in Figure 3.12 it has a
much better fit. The fit for the Channel 3 in Figure 3.12 also improved with the
overlapping modal frequencies.

To check the robustness of this result, the frequency of one of these modes was
moved back to 6.1 rad/sec. After a few iterations, the frequency moved back to
about 5.60 rad/sec.

The input weights were then used to excite the structure. Multiple point
excitations of pure sinusoids scaled by the ratios determined by the curve fits were
used for all modes. With the input weights and frequencies from the overlapping
frequency fit, the modes were very cleanly and distinctly excited. As expected for
the model with the slightly separated frequency fit, one mode was excited cleanly
but the other was not. :

3.6 Conclusions

Identification of modes with practically the same frequency but with differ-
 ent mode shapes _cari be carried out in experimental settings. Using multiple input
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Figure 3.11 - Transfer Functions 2 and 3: Modes at 5.60 and 6.23 rad/

sec.

In the model for transfer function 2 (left), the phase is off by 7 radians,
while the fit is good for transfer function 3 (right).

multiple output data, distinct modes whose FRF’s appear single peaks can be dis-
tinguished from their input and oufput weights. When the peak is modeled with
a single mode, some input/output channels may have good peaks, but others will
not. Addition of more modes, and use of multiple input data results in good fits for

all channels if indeed the system behaves in a linear modal manner. These results

were obtained experimentally on the Caltech structure.
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Chapter 4. Response Mode Syn-
thesis using Linear Fractional
Transformations and Identified

Models

4.1 Introduction

With the development of optimal control methodologies|[DGK], the most sen-
sitive step in structural controller synthesis has become development of a good model
of the structure. Without accurate models, performance and stability of the actively

controlled structure are greatly decreased.

Usually the control designers will have models generated using the finite ele-
ment method (FEM), but because of insufficient knowledge of material properties,
nonlinearities, and other quantities, this model will be inaccurate. When the struc-
ture is built, its behavior will differ from that predicted by the finite element method
model. The structure may be experimentally identified, and the FEM model can
be modified to better match the structure’s behavior. However, because of lack of
uniqueness in identifiable parameters ([Ber], [Cau]), the changes made to the model
might not correspond to what is really happening to the system. There are several

possible parameter values for the FEM model that will give the same behavior.

The alterations made to the model will not degrade performance of the pre-
dictions until information about more modes or alterations of the structure are

needed. Since the analyst will have a good idea of how they want to change the
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system, the FEM model is usually changed to reflect these desired changes. How-
ever, the lack of correlation between the altered FEM model and the actual system

may lead to an incorrect prediction of the modified structure.

If instead, the experimental model (transfer functions) can be changed to ac-
count for the modifications, it should be possible to obtain the model that is closest
to reality with the minimum effort. On structural systems, this is possible using
linear fractional transformations (LFT), which are the equations that result from
feedback between two systems. The method presented here results in a 2n-space ver-
sion of response mode synthesis ([Bla], [CKR], [Dok], [GLM], [HEN], [Hur], [SBC])
which fits nicely with current optimal robust control synthesis methodologies. It
has the traits deemed desirable by Craig [Cra] and Ewins [Ewi] in their reviews
of the various substructure assembly methods, and it points out particular values
that need to be identified carefully. The approach is similar to (but possibly more
general than) the mechanical impedance method proposed by [Sku]. (An extensive
review of previous theoretical and experimental results of response mode synthesis

may be found in [Bla]).

This chapter presents LETs as a general tool for structural dynamics work.
The LFTs in state space format ([DGK], [Kai], [KwS]) allow change of identi-
fied models of structures without theoretical knowledge of the system. For one-
dimensional or chain-type structures, this application of LFTs is straightforward
and exact. For more complex systems, there are restrictions that could be difficult
to meet, and there are required parameters which might be difficult to identify ex-
actly. The main advantages of the proposed method are
i) non-colocated sensor-actuator (S/A) geometries can be used,
ii) there is no need to obtain generalized displacements from accelerometer data[Bla],
ii1) conversions from voltages to physical parameters are not needed, that is, this
is a purely input/output method, (compatibility of individual component models is
easily obtained) and
iv) locally controlled actuators may be used without direct knowledge of the forces
the actuators apply to the structure.

The main motivation of this work is synthesis of controllers for modified struc-
tures. For example, during docking of two actively controlled structures, the current

approach involves shutting off the controller on each structure during docking. Once
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the systems have combined. a new controller based on the coupled behavior is ap-
plied. With robust optimal control synthesis techniques such as H.. /u-synthesis
[Bmu], [DFT]. [DGK] it is possible to design a controller which works for both the
separate systems and the docked system. This makes it possible to keep the system
actively controlled during the entire mating procedure. Controller synthesis theory
and experimental results for combined structures will be presented in Chapters Gand

7.

Section 2 of this Chapter presents the basic theory of LETs. Section 3 applies
the state space LT method to modifications of a spring-damper-mass system, and
shows the equivalence to basic equations of motion. More complex multidimen-
sional systems and some of the limitations of the method due to rotational motions
are discussed in Section 4. Section 5 gives a summary of the advantages of using
LFTs for structural assembly. Numerical and experimental results are presented
in Chapter 5, along with recommendations for improvement of the experimental

portions of the procedure.
4.2 Linear Fractional Transformations - Basic Definition

The linear fractional transformation used herein is a multivariable extension
of the standard LFT used in complex analysis. In this setting, the LFT is the
result of applying one system to another, such as a controller connected to a plant.

Working in the frequency domain using transfer functions, the LFT

Fi(G, K) = Gui(s) + Gua(s)K(8)[I — Gaa(s) K ()] Gau(s), (4.1)

(where s = jw, j = /-1, w is frequency,) is equivalent to the block diagram in
Figure 4.1. The subscript { (for lower) in F;(G, ) denotes that the fractional
transformation connects the last set of inputs and outputs of GG system to the out-

puts and inputs of { as in Figure 4.1.

Each transfer matrix GG;; can be represented in state space by the quadruple

A B;
C; I Dy;
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GM(S) Glg(s)
G21(5> Ggg(&)

@

[

K(s)

Figure 4.1 - Basic LFT Structure.

such that Gi;(s) = Ci(sI — A)™'B; + D;;. C; contains the ith output/sensor
participation factors, B; is a matrix of the j** input/actuator participation factors,
A is the dynamic behavior matrix, and D;; has the static behavior information from

inputs j to outputs . In the time domain, this realization represents the system

z=Az+ Bjﬂ.j
Ciz + Diju;

I

Yi

where z is the state vector, u; denotes the j th vector of inputs, y, represents the ith
output signal vector, and the dot superscript symbolizes differentiation with respect

to time.

The main feature of LFTs is that addition of signals, cascading of systems,
and feedback set-ups are easily constructed. Straightforward matrix multiplications
and linear algebra are the only operations necessary to obtain models for these linear

time invariant system operations [Bmu], [Kai].
4.3 Spring-Damper-Mass System

A series of simple spring-damper-mass (SDM) systems can be assembled
using the LE'T concepts in a very straightforward manner. A simple SDM system
is modeled by the equation m& + di + kx = f(¢). In state space form this is shown

as in Figure 4.2.

Outputs may be chosen as comprised of displacement z, velocity Z, or acceleration
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z 0 1 T 0
() ) Li% -ff:} () R
displacement 1 0 0
velocity =y = 0 1 (3’) +[ o] f0
acceleration — }% 4 x T_ln_

0 1 0
_k _4 L
0 1 0 c| b
k4 L

Figure 4.2 - State Space for Spring-Damper-Mass System.

The equations of motion for two SDM systems in series are
midy + didy + da(21 — 22) + kizy + ka(zy — 22) = f1(t)
Moy + do(d2 — &1) + ko(22 — 21) = fa(?). (4.2)

—
R

k 2
Ve i
e 2
g :JWF
7 m
g =
“ d
- d
~ ! )

Figure 4.3 - Two Spring-Damper-Mass Systems in Series.
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Supposing that the two systems have been independently identified, they can
be assembled in the configuration in Figure 4.3 by feeding the displacement and
velocity from each system into the other as follows. First, transform the equations
of motion so that only the simple SDM system equations appear on the left side of
the equation:

myiy + didy + ke = —ky(zy — xg) — da(21 — 22) + f1(2)

maZe + data + koxy = —koxy — dady + fa(t). (4.3)
0 1 l 0 0
kA S
my e my LL3) SN
i ko _dy 1 1 -— fi(t)
iy iy i my
kz dz 0 0 kg(l‘z - 1'1\4-
. L —— ;e P
kyxy + daty dy(To — )
A
mae ma 1y iy
e —— k2 ds -1 0
ke da S T
;‘IE-Z me ma my my fz(t)

Figure 4.4. - Two SDM Systems Attached via an LEFT.
For construction of these systems, it is necessary to know the stiffness and damping
of springs and dampers connecting the subsystems.

Then the appropriate outputs from each system may be fed to the other
one as shown in Figure 4.4. The connection of these systems looks like a feedback
connection, widely used in control theory. This technique can be extended to any

length series of SDM systems using the element in Figure 4.5.

Note that during identification of each system, the values 1/m;, k;/
m;, and d;/m; must be found. From these, m;, k;, and d; can be derived. Deriva-
tion of these values, however, may be quite sensitive to the quality of the identifi-

cation.
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Figure 4.5. - General Series Spring-Damper-Mass Block.
These can be cascaded with any number of SDM systems. Computation
of the resulting model is quite straightforward.

More commonly, there will be a need to alter an identified system by the
addition of a mass, damping, or stiffness element. It is quite easy to do this using
the above technique. For the addition of mass, the equation of motion is

(m +mg)E +dz + kx = f(1), (4.4)

which is transformed to

mi + di + kr = f(t) — maZ. (4.5)
0 1 I 0 0
k4 1
m m m k214
T o _k _4d 11 — ft)
_E _4 T I
5o k113 m m - ~m()x

Figure 4.6. - LFT for Addition of Mass.

This is equivalent to the standard equations of motion for mass addi-
tion.




_73 -

M
(=

d

Figure 4.7 - Addition of a Mass to Identified System.
mo is added to the rest of the system.

AN

This is represented by Figure 4.7. Change of the system via addition of stiffness or

damping is done by replacing & and mo with z and ky or £ and d, respectively.
4.4 A More General System
4.4.1. A Plate Attached to a Beam

The interconnection method will now be extended for use with multidimen-
sional systems. As a point of departure, a plate at fhe end of a beam will be treated.
The plate is allowed to move essentially in the plane perpendicular to the beam.
Thus, the beam experiences one torsional and two transverse bending modes. The
axial and other modes may be treated similarly, but for this analysis they are con-
sidered negligible. Also, the mass of the beam is ignored. It is assumed that single
axis accelerometers are mounted on a plate of mass M and moment of inertia Z,
about the beam (mounted at the center of gravity of the plate). The accelerom-
eters’ axes are mounted at angles 8; to the x-axis of the system. Each sensor is
positioned at a distance r; from the center of gravity (c.g.) with an angle ¢; from
the x-axis. Motions of the c.g. are denoted by .4, Yy, and ¢,. This mounting
scheme allows the sensors to pick up the bending and the torsional models. The
expressions for multiaxis accelerometers mounted at the c.g. with torsional sensors

are less involved. Figure 4.8 presents this setup.

Motion sensed by each accelerometer will consist of the participation of each
mode in the direction of sensitivity of the sensor. It is assumed that the accelerom-
eter is rigidly attached to the plate. The expression for the acceleration sensed
by the i*" accelerometer in its direction of sensitivity is obtained from a geometric

analysis.



Figure 4%8. - Geometry of Plate and Accelerometer .

In general, several single axis sensors are mounted on portions of struc-
tures in arbitrary configurations as shown. The various motions of the
system can be deduced if the geometrical relations are known between
the various sensors.

i =FcqcO80; + fog Sinb; + rideg sin (8; — ¢; — beg)
— ;g2 cos (8 — ¢i — Beg). (4.6)

Since motions are considered small, this can be linearized with respect to Deq
as
a; Zi:cg cos 8; + ’tjcg siné; + T‘iqﬁcg sin (91' — QDI)

- riéig cos (6; — ¢;). (4.7)

The system has vibrations in the x4, y.g, and ¢, directions represented by
the expressions

MyEey + Dodeg + Kooy = Y facg,(t)
j

Myfieg + DyYeg + Kyyeg = nyCQj(t)

J

Irqgcg -+ Drécg -+ I{'récg = Z Tcgj(t)v (48)

J

where M, and M, are the mass of the structure; Z, is the rotational moment of

inertia; Dy, Dy, and D, are the dampings; K,, K,, and K, are the stiffnesses:
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and fxcgj.; fycgj, and Teg, are the forces/moments applied at point j affecting the

c.g.

Then, assuming that a linear actuator is placed at position j which is capable
of applying a force f; with orientation ; to the x-axis, the :'" accelerometer output

18
2

2
a;(s) = cos b; V. r DT K. };f: cos 8;

o2

06, s Ny
+sin My s? +Dy3+l’gy EJ:fJ PR

2
8

+T2‘Sin(9,¢—-¢i)l_ 4 Dst K ijrjsin(Bj—-qﬁj)
T r r j

S

) 2
Z,s? + Dys+ K, Zj:fm sin (6; — é")] ' (4.9)

—ricos(8; — ;)|

The only source of torques is the linear actuator.

The last term of this expression is due to the effect of radial acceleration
i2

cg*
quadratic dependence on f;, this system cannot, in general be described by linear

on a linear sensor. It is a quadratic term corresponding to Because of this
transfer functions. Fortunately, there are two cases where it is possible to apply
linear models and the LFT model modification technique:

i) If (8; — ¢;) = kn, k € integer, the sin(§; — ¢;) term is zero, so the quadratic
terms are removed. This corresponds to forcing geometries which do not excite the
torsional mode. In general, external forces will affect torsion, so this special case is
not of interest.

H)If(6i— o) = Qﬁ'—;—uz, k € integer the cos(6; — ¢;) term is zero. This corresponds
to aligning the axes of the accelerometers so that they do not sense any radial
acceleration. By placing the sensors in directions orthogonal to their radial position

lines, this can be accomplished.

With condition ii) satisfied, the transfer function from force j to accelerom-

eter 1 becomes



E 0
sin b
Mys? + Dys + K, Y

2
8

+ sin 8;

+ r;sin (0; — YT T D s — o).

with sin(8; — ¢;) = £1.

(4.10)

The state space description for this system is then as shown in Figure 4.9.

% :
— 4 L .
My Mz 3 Cos 9;
_%}L _._bz. de 5in 8
M, M, 3, i
0 1 0
K D 1o ol i a
—-5 -5 o7 sin(f; — ¢;)
cos (B —6;)
K D D K D in (8;—813r; sin (8; — &
. . , rpsin (B;—ds ) sin (8; — b
cosbi[- 5~ — 5] sinfi[-7 "Xf;'] risin(8; — ¢i)[-5F — FF] b J'I:" =nlfiz )
A B
c | D

Figure 4.9. - State Space Description of Plate System.

Only one mode is assumed in each direction of motion. When multiple

modes are present, this form generalizes.

4.4.2. Addition of a Mass to a System

If a mass my is added at a distance 7 from the c.g., the setup is represented

by Figure 4.10 where

Kz DRz
M, Mg
K D
- ——r e -
Cr = My M, By =
LIKy _IDp
I, I,

Di2 =CBy D2y =CyB  Dyy = C3Bs.

My

0
L
i,
0
=z
I,

(4.11)
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It may be noted that —ms[I,] is placed in the lower block of the LFT. Here
I, is the identity matrix of size n, where n is the number of dimensions of motion
measured (3 in this case). When more dimensions are used, this size needs to be

increased (up to six per connection location).

A ' B B,
a; - ¢ D D, PR f(®)
Feg Cs D31 Do o
ne — — —Maley
(y.?g ) ( ~Ma2leg )

7—;9569 -mq?’_‘z(jﬁcg

[T+ 4

...-.m~
| 0 0 -m

Figure 4.10. - Adding a Mass to a Plate.

Only three directions of motion are assumed in this setup. In a more
general situation, there may be six directions of motion, so the lower
matrix will be six by six.

Similar changes in stiffness or damping can be made using this formulation.
The outputs in those cases then need to be changed to the differences in distance
or velocity (respectively) between the points at which the changed elements are
attached. Then, inputs will be forces applied at those points.

4.4.3. Connection of Systems with Dynamics

For addition of dynamics a relationship similar to the LFT may be set up.
There are two derivations for this: one is based on the LFT; the other is based
on Lagrange undetermined coefficients (constraints) as used in [CKR]. First, the
transfer function from force input to acceleration output for a mass m is -;; In
the above LFT, the lower block is —m. Generalizing to a system with dynamics,
then a negative inverse of the system dynamics could be placed in the lower block.
That is, suppose the identified model for a certain system (force input; acceleration,

velocity or displacement output) is represented by K, which is assumed invertible.
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K~ corresponds to the transfer function from sensors to actuators (the inverse of

the actual plant). The attachment LFT to a system P is then

Fi(P,—K™Y) = Py — Po K7 I+ Py K771 Py

Because of invertibility of K, then
Fi(P,—K7') = Py — Pi3[K + Pps] ' Pyy. (4.12)

The last part of this expression is convenient because the model I does not
need to be inverted. On identified models, this inversion is undesirable since it can

be very sensitive numerically.

The derivation of this relation using constraint variables is shown next. More
general connection types can be derived with this procedure. It is assumed that
transfer function models (in state space, for example) are used to describe each
structure to be connected. The models may come from theoretical analyses or from
identification procedures. Each system will be taken as 2-input, 2-output where the
inputs or outputs may be vectors of signals. Expressions are given in state space
for computation of the combined system model. Without loss of generality, the

derivation will be done for the connection of two structural systems.

Let the first system (structure I) be modeled as

P A l B, B,
P= [P; P;z} = ¢y Dy Dyg
C, Dyy Doy

<21> _ {Pn Pl?] (fl)
Z2 Py Pyl \ fo

and let the second system (structure II) be denoted by

, E | B F

. { K

K=l gol=|6 | #u Ho
) Gs Hyy Hi

(23) _ [Kn Klz] fa
24 Ky Koo fa
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It is required that force input to sensed output transfer functions be available for
both structures at the attachment locations. In this case, structure I's attachment
is located where f; is applied and 23 is measured. structure II'’s connection point is
at f3 and z3. When the systems are connected at these points, the effects of f, and
f3 will be the same on 22 and z3. If z; and z3 measure the same quantity with the
same gain, then they should be equal. For these relations to be met, the transfer

functions from f; to zo must be made equal to those from f3 to z3.

For the second derivation, the two independent systems are diagonally aug-

mented as
21 Py, Py hf
27 Py Py fa
Z o= povnd - " - T .
= z3 K11 Ko f3 £
24 K2 Kao fa

Addition of constraints may be done by choosing a constraint matrix R, and con-
straint coeflicients A so that R*z = 0. The * superscript denotes complex conjugate
transpose, although in this case R is real. For the case of setting constraints equal,
R is chosen such that R = [0 R} R} 0] = [0 I,, — I,, 0], where I,, = I, is the
identity matrix of size of the number of signals in the attachment outputs. RA will
be the necessary forces of constraint to impose the desired connections. Assuming

that T is invertible (symbolically) the constraint forces are added to create the sys-

= -3

By solving for A and substituting back into the equations for z, the transfer functions

tem

in Figure 4.11 are obtained for the combined system. When R; = I, and Ry = —1

these transfer functions simplify via straightforward identities to Figure 4.12.

In state space, this transfer matrix is computed as shown in Figure 4.13.
The only inversion necessary is that of (), which contains the static response of
the system and the effects of the unmodeled modes. As seen here, and discussed
by Ewins [Ewi], these terms need to be identified quite well, especially if they are
of small magnitude. Otherwise, when inverted, errors will appear in all transfer

functions.
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Py - P12R18—1R§P21 Py — Pio Ry B—IR;PQQ —P12R1B"1R;K'11 —Pio Ry B“lR,E[(}g
J= Py — PyoRyB~YR;Py;  Pay — PygRiB™1 R} Py —P2Ri1BT'R K14 ~Pa Ry B Ry Ky,
- - K11 RQB_IR;le -1 RQB—lRIPQQ Ky~ I{lleB-lR;I{ll Ky — I(11RQB_IH;K'13
—K’le'«)B"lR;Pgl "I{QlRQB—lR;PEQ Koy — ImezB—lR;[fn Ko9 — 1{21333'1R§[f13~}
z1 fi
<2 T f2 . * ® 1
such that 5 =T f and B = (Rl P22R1 “+ RQIXMR;)}

3 3
4 fa

Figure 4.11. - Combined System Transfer Functions.

Information on how the two systems are connected to each other
(rigidly, through springs, etc.) is contained in R. This is the general
form of the attachment formulation.

z1 Pyy = P3B=1Py P3B7'Kyy Py B lx Ky P13 B 1K f
z2 | _ K11 B~ Py K11B~'Py;  PyaB 1Ky, Py B~ K19 fa
zz | K11B~1Py Ki1B~'Pyy  PypeB 'Ky Py3 B~1K, fa
24 Ky B™1 Py Ky1B™'Pyy K31 B7 1Py Kpy — Koy B~ 1Ky, fa

B simplifies to [Py + K11]

Figure 4.12. - Combined System Simplified Transfer Functions.

The transfer functions from f; to 22 and from f; to z3 have been set
equal. This corresponds to connection at locations 2 and 3.

The result is a state space transfer function model which can be used directly
to generate frequency responses or to synthesize controllers. If the modes of the
new system are desired, an eigenvalue and eigenvector computation of the A-matrix
of the new system is required. It is easy to check that the transfer functions from

f2 to zo are equal to those from f3 to z3.

For every degree of freedom that is connected, one mode (2 states) will drop
out of the above system. Removal of these modes from the realization can be done
using one of various model reduction methods [Bmu]. The main restriction this
procedure has in state space is that ) must exist. For this to happen the static
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A= B QCy —-ByQGy By — B:QDy1 —B2:QHyp —ByQHp, —B2QHis
-FQCy E-FQG ~F1 QD —F1QD3; —-F1QD2 Fs— F1QHy,

Cy — D12 QCs ~D12QG, Dyy = D19QDyy —DyaQHyy —D1aQHy — D12 QI
-H1QC, -~ D2 QG —~H11QDsy; ~H11QDgy —H11QDay —Daa QI
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Q = [Dag + Hiy ™!

Figure 4.13. - State Space Representation of Combined Systems.
It is easy to see that the state space relations for the transfer functions
at locations 2 and 3 are equal.

contributions of the two structures must be nonzero. Unfortunately, this restricts
the procedure to acceleration output models. On actual structures, this is not a

significant restriction, since accelerometers are easy to implement.

It 1s still possible to apply the connection scheme using displacement or veloc-
ity sensing. The velocity or displacement models can be easily modified to accelera-
tion models by modifying the state space descriptions. Similarly, the computations

may be done with polynomials or with other realization setups.[Kai]
4.4.4. Restrictions of the Connection Method

Physically, there is a large restriction to this method: The system’s behavior
must only be changed in a linear-fractional way. This limitation also exists in
previous approaches to response mode synthesis. For bending modes, the limitation
is not a problem. However, torsional modes, because of Coriolis and centrifugal
forces may give trouble. As with the beam-disk problem shown above, the resulting
implementational limitations are stated easily: the axes of rotation of the torsional
modes must not be significantly altered by the assembly of the substructures; and
radial acceleration must not be sensed. For exact results, the axes of rotation (a.r.)
must not be moved at all. If the axes of rotation move, the radii from the a.r. to the
attached mass become unknown. Since these quantities appear as r?, the changes
will give a nonlinear modification. In general, however, the method will give good

linear re-analyses to systems.



4.5 Conclusion

The method, as presented in this chapter is a generalization to state space
of response/component mode synthesis. Given, the proper models, the connection
scheme involves inversion of only the static components of the system models. The
state space and LFT framework points out the restrictions of the method quite
clearly and presents the needs for information to be identified. Chapter 5 further
discusses identification of the necessary parameters, and presents examples of im-

plementation of the method explained in this chapter.
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Chapter 5. Numerical and Ex-
perimental Applications of the
Assembly Methodology

5.1 Introduction

In this chapter, the methods explained in Chapter 4 are applied to numerical
and experimental systems. In the first section, implementational details relating
to what information must be experimentally obtained for the procedure are dis-
cussed. Section 3 presents a method to identify these parameters for systems with
noncolocated sensor/actuator (sensor/actuator) geometries. A numerical example
of the entire procedure follows in Section 4. The experimental connection, which
involves comparisons of the responses of the physically attached systems with the
predictions based on the proposed method, is given in Section 5. This is followed by
discussions of the experimental results (Section 6) and suggestions for improvement

of the experiments (Section 7). The final section gives a brief conclusion.

Many of the features which make this method so valuable are used for the
experiments: The two structures are excited by actuators that are not colocated
with the sensors or the connection point for the systems. Some of the actuators are
locally controlled to follow a given displacement command. Models are developed
from input and output voltages from accelerometers and actuators sampled by a
data acquisition system. Thus absolute physical information of the structure is not
used (except for some geometrical relations between sensors). And finally, the two
structures have different sensor/actuator (hardware) combinations so that the basic

system input/output models are incompatible for connection.
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5.2 Necessary Information from Identification

If the procedure is to be used, there are several parameters that need to be
identified besides those identified for transfer function models. These parameters
have to do with normalization/uniqueness of the models and with compatibility of

the substructures’ models.

The models for two systems will be immediately compatible if the same
actuators and sensor are used on both structures and if there are enough sensors and
actuators colocated at the attachment points. The transfer functions from inputs
to outputs at the connection locations are then known and are normalized correctly
for both structures. In this case, the procedure is identical to previous response/
component mode synthesis approaches[Ewi]. When different sensors and actuators
are used, if accurate conversion factors are known from one set of transfer functions
to the other, the necessity of using the same actuators and sensors is reduced,
but the models must be normalized appropriately. The colocated sensor/actuator
requirement means that all significant directions of motion (degrees of freedom to be
connected) are sensed and excited at the connection points of the systems. With an
identified model for the colocated case, the transfer functions to be constrained can
be obtained from straightforward manipulation of the realizations using the known
geometries of the sensors and actuators. A reference coordinate system should be

chosen on each system based on the geometry of the attachment procedure.
5.3 Systems with Noncolocated Sensor/Actuator Geometries

For systems where colocated sensor/actuator geometries are not available at
the attachment point, or where the sensor/actuator sets are not identical (i.e., sensor
and actuators on the two systems have different sensitivities and gains,) an indirect
method can be used to determine the parameters necessary for modal synthesis.
The procedure requires two physical identification experiments for each system: a
full identification, and a partial identification. First, the structure is excited and
fully identified in its basic form. For force input, acceleration output structures a
model of the form

oMM ()

Tij(wr) = ) (f3 = wi) + 2V=1fmlmwr

m=1 "/ m

(r) (1)

b (5.1)
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as described in Chapter 3 can be used. For displacement or velocity sensing, the
numerator term —w? can be changed to 1 or v/—1Iwy, respectively and the residual
terms are removed. The functional dependence of the transfer functions on wy is

assumed, and is left out of the notation.
5.3.1. Uniqueness of Identified Modal Models

This type of model is unique to within one parameter per mode, i.e.,

m m 1 Amiyr{m
[t ™™ —] = ™ E™

J a(m)

for all m, 7, and j. a(™ can be thought of as a normalization factor, but it will be
referred to herein as the modal weight since each mode’s input and output partici-

pation factors needs to be mass-normalized for the attachment procedure to work.
5.3.2. Systems with Actuator Dynamics

Actuator dynamics can also be added. For example, if the actuator at input

J has a local controller for displacement tracking, a term of the form

m;(—wi)

(V=Twk + p1)(vV=1wk + p2) (5.2)

can multiply equation (5.1). This term is included only for transfer functions relat-

ing to the controlled input.
5.3.3. Modal Assumption

In structural systems, for every mode and every location on the structure, the
input eigenvectors have the same shape as the output eigenvectors. The input and
output participation factors for the models are obtained from these eigenvectors.
Since the basic identification procedure is unable to determine the modal weight
parameters o™, another procedure is needed. The second experiment and the
partial identification mentioned above do this. In the LFT for mass attachment, the
only unknown parameters (in the non-ideal case) are the input participation factors
at the attachment location. These can be assumed, from basic structural theory, to

be multiples of the output participation factors at that point, i.e., bgm) = ae(m)cgm).
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The factors o!™ may then be determined from the following partial iden-
tification procedure: The base model obtained from the original identification is
used with data from experimental excitations of the structure with the known mass
attached to it. That is, a mass of known size is attached to the structure at the
connection location, and the system is excited. The resulting data is then used
for an identification procedure based on the model developed for the unmodified
structure. A gradient search, for example, can be made on the response of the LFT
for a structure with a known mass attached to it. The search is done for the a(™)

parameters which appear in the input participation factors for the attachment point

(m) y (m)
battach = O((m)cattach'

To describe the transfer function for the partial identification, an example for
two-dimensional motion is given. A coordinate frame must be chosen, and geometric
relations between the sensors and the coordinates must be determined (as in the
plate at the end of the beam example in Chapter 4). Letting the directions of
motion for the two-dimensional example be = and y, T;, will denote the transfer
function from a force in the z-direction to sensor i, T,; denotes effects of input
J to an artificial sensor in the z-direction, and T,, represents the motion sensed
by an z-direction sensor by an z-direction force. Forces and accelerations in the
y-direction are denoted similarly. Then, the transfer matrix of a structure modified

by a known mass /i is computed as in Figure 5.1.

-1
(modified) _ 4 . . : -7 0 1 0 _ Tx(g Txy L) 0 Tx]
T =T+ [T T ]{ 0 —m] { [o 1} !i:rya, T,y || 0 —m T,;

Figure 5.1. - Modified Transfer Function.
Only two directions of motion are considered in this representation.

For linear structures with torsion, the torsional modes may be assumed in-
dependent of the bending modes, thus translational direction forces will not excite

torsional modes. Letting

42
_.udk

(f2 —w}) +2v/~1fmCmwr’

Q(m, k)=
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the individual transfer functions for the r-direction are computed as

M
T = Z cgm)cgm)a(m)Q(]n, k)

m=1]
M

=3 ™™ Qem, k)

m=1
M

T, = Z c(zm)c(zm)a(m)Q(m, k).

m=1

Other directions are computed similarly.

When the identifications of the a{™)’s is done for each structure, the resulting
parameter set includes enough information to set up models for structure coupling.
The modal mass properties are known. Different masses i may be used on the
different systems, but for compatibility, the relationships between the mass sizes
must be known. The relation is used for a normalization which involves multiplying
all the modal weight parameters on one structure by the ratio of the two masses
used. In essence, the above procedure produces a generalized physical input which
can be identified without the use of an actual physical actuator. This results in
the main advantage of this method which is that conversion of measured voltages
to physical quantities is not necessary. In other words, amplifier gains, sensor
resolutions, and equipment voltage conversion factors need not be known. Another
major advantage is that actuators with local feedback controllers can be used since
the actuator dynamics do not affect the generalized force input created by the added

mass.
5.4 Numerical Example

A simple numerical example consisting of two SDM systems with two modes
each is given to assist presentation of the concepts. The basic set for each system
matches that in Figure 5.3. The properties of each structure for this example are

shown in Table 5.1.

A mass of .3 (30% of my on structure I) was added to each system’s m,
to modify it. Theoretical and LFT models were set up for the modification. The
LFT procedure was verified by comparison of the resulting LET models with the

theoretical models of the two modified SDM systems. Various internal realizations
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quantity | Structure I | Structure Il || quantity | Structure I | Structure II
my 1.0 5.0 mo 2.0 7.0
dy 0.001 0.002 d .002 .003
ki 1.0 4.0 ko 3.0 8.0
w1 0.5365 0.5294 w2 2.2830 1.8063
Gt 2,553 x 107* | 1.266 x 10~* Co 8.160 x 10™* | 3.584 x 10™*

Table 5.1 - Numerical Examples: 2SDM Systems: Basic Properties.
Units on mass, stiffness, and damping are not specified. They must be
compatible, but the curve fit method does not select units.

were set up to test the generality of the method. (The [A, B,C, D] state space
internal realization is equivalent to [S™1AS, S7'B,CS, D], where S is a similarity
transformation. Then, using 5, the realization can be transformed into various
forms (for A) including diagonal and block modal form.) The LFT mass addition
procedure was then performed on the block modal realization and on the original
full realization. As expected, the LET model responses were identical to the theo-
retical responses regardless of the internal realization of the input/output transfer
functions. Results of these tests were then compared with theoretical input/output

models. No difference appeared as seen in Table 5.2. Frequency responses from all

inputs to all outputs were also compared: they were exactly equal.

quantity | Structure I | Structure Il || quantity | Structure I | Structure II

mi 1.0 3.0 Moy 2.3 7.3

dy 0.001 0.002 do .002 .003

ky 1.0 4.0 ko 3.0 8.0
Theo. wy 0.5084 0.5215 Theo. wo 2.2436 1.7995
LFT w, 0.5084 0.5215 LFT w, 2.2436 1.7995
Theo. (; | 2.411 x 107*[1.245 x 10™* || Theo. {; | 8.068 x 107* [ 3.567 x 10~*
LFT ¢ 2411 x107*|1.245 x 10~ LFT ¢, |{8.068 x 107*]3.567 x 10~*

Table 5.2 - Numerical Examples: 2SDM Systems: Properties when
Modified.

The theoretical and the LFT connections give exactly the same results.
This shows that the method extends to multi degree of freedom systems.

The frequency responses for the original and modified systems were then used
for the full and partial identification procedures as outlined above. The experiment
was set up in a form where information on the modal weight parameters was not

directly obtainable (only the FRF's were used). Since this data was numerically
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generated, when the necessary curve fits for parameter identification were carried
out, very small errors resulted between the identified and theoretical models. Fur-
ther iterations of the identification procedures would have resulted in removal of all
error between the models and the numerically generated data. Magnitude versus
frequency plots for the two structures from f; to #; in each one are presented in

Figure 5.2. The responses of the models are also shown.

Structure I £ 1 10 aceel | Structure II: £ 1 10 accel 1

10, — 12,
E E £
0 ;’&\’ ] 10 I
g l0vg E g e }
ER : LR
? f : 8ol
E 10k } £ 10k
: b ] :
[ ' ] F
1021 { i 102 ‘
E ++++= numerical data E £ ++++ = pumerical data
r +
1 3‘ i = identified model ] 1 3> o =identified model ]
q‘O" 100 10 01’0' 100 101
frequency (rad/sec) frequency (rad/sec)

Figure 5.2. - Unmodified SDM Systems: Full Identification.

The only error visible is in structure II at the zero between modes.
Further iterations removes this error, but it is left in to check robustness
of the connection method.

In Table 5.3, the modal weight parameters from the modified system identifi-
cation procedure are presented for the two SDM structures. The modification mass
was placed on each structure at the location where the two systems were to be joined
(mass 2). As a check of the theory, the mass was then placed on each structure’s
mass 1. When this identification was done, it was found that the modal weight
quantities were independent of the mass attachment location. (Small differences

were found, but these are due to errors in the original identification procedures.)

Magnitude plots of f; to #; for the modified independent systems (addition
at mass 2) are presented in Figure 5.3. It is encouraging to note that the fits are
of the same quality as those for the original system. The change from the original

response to the mass modified one is parametrized by one value per mode.
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quantity Attachment Mass # Structure I Structure II
aq 1 4.054 17.330
ay 2 4.056 17.308
Qg 1 1.325 6.891
Qo 2 1.325 6.887

Table 5.3 - Numerical Examples: 2SDM Systems: Identified Modal

Weights.

Invariance of modal weights with respect to modification location is
demonstrated here. The differences are due to errors in the identifica-
tion of the base structures.

Structure I: £ 1 to accel 1, original and modified

magnitude
T

101

107,

+++++ =modified theoretical3
=LFT modified identification

05

e o
frequency (radfsec)

Structure II: f1 to accell, original and modified

102

;i ----=original theoretical |
\t +++++ = modified th
= LFT modified identification

s

2
frequency (rad/sec)

Figure 5.3. - Mass Modified Spring-Damper-Mass Systems.

The original responses (dashed) are presented to show that the mod-
ifications are quite small. From these small differences in responses,
it is still possible to identify the necessary values for the connection

procedure.

The attachment procedure was then used to join the two structures at mo
of each system. Results for frequencies and dampings of the response synthesis
procedure are compared in Table 5.4 to those of the same system generated from
basic principles. Plots of the previously shown transfer functions are also presented
for the combined system and the exact three mode system. These plots demon-
strate that the dynamics of both original systems appear clearly where they did

not previously appear. That is, modes due to Structure II appear in responses of

Structure I’s masses and vice-versa.

5.5 Experimental Connection of Two Lightly Damped Structures
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Figure 5.4. - Coupled Spring-Damper-Mass Systems.

The only visible error between the LF'T connection procedure and the
exact theoretical response is at very small amplitudes. This is caused
by the error in the base system identification. The LFT method works

quite well.
quantity Exact Theoretical From Combined Systems
wy 0.5309 0.5309
(1 1.541 x 10~* 1.543 x 10~*
wa 1.7135 1.7120
o 3.797 x 10~* 3.750 x 10~*
w3 2.0987 2.0994
(3 7.363 x 10™* 7.204 x 10™*

Table 5.4 - Numerical Examples: 2 Coupled SDM Systems: Predicted

and Exact.

The values resulting from the two methods are quite close. Differences
may be attributed to errors in the identification procedures. These
discrepancies can be removed through further iterations.

As a true test of the methodology, two structures were connected experi-
mentally, and their models were attached theoretically (as above). Information on
the shape and identification of the larger of the two systems (the Caltech Flexible
Structure) is found in [Mos] and in Chapter 3 of this thesis.

For the partial identification procedure (to find the a(™)s) the structural
transfer functions were put in an LFT framework based on attachment of a mass
at a particular location. Gradient searches were then performed to determine the

modal mass parameters.
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5.5.1. Secondary Structure to be Attached

A simple single mode beam-like structure was built to experimentally test
the validity of the response synthesis method as proposed. This system consists of
two steel masses connected to each other through thin aluminum strips. For brevity,
this structure is referred to as “Str2”. The placement of the strips allows for one
direction (the z-direction) to have a low frequency mode (about 12 rad/sec when
the structure hangs with the upper mass clamped). The y-direction has only rigid
body motions in the frequency range of interest (5.0 to 40.0 rad/sec).

Identification of the rigid body properties of this structure was necessary for
accurate combination of the models. Unfortunately it was not possible to excite
the structure freely in an environment with gravity. Thus, several excitation con-
figurations were tested to determine which would give the most accurate model for
response synthesis. The structure was hung on a flexible wire attached to the ceil-
ing. Excitation was provided by a voice coil actuator with a displacement-command

following controller attached to a laboratory table.

This system is about 0.38m (15”) long with a total mass of 1.48kg (3.251b).
Therefore, its mass is about 19% the size of the primary structure’s mass of approx-
imately 7.78kg (161b). Sensing is carried out by two NOVA Sensors accelerometers
model NAS-002G. These have a range of +2g and have a resolution of 1.25 Volts/G.
The signals from these devices are passed through differential amplifiers with gains
of 20, and are filtered by 100hz, 4 pole Butterworth filters before being fed into the

data acquisition system.
5.5.2. Identification of Secondary System

Excitation of the secondary structure was carried out by a single voice coil
actuator. Because of friction in the actuator it was necessary to place a local
feedback controller on the system. This improved the response at low and high
frequencies. An LVDT was used to sense the location of the push-rod; therefore,
the controller commanded the position of the actuator rod, rather than the force

generated. The controller was designed using loop-shaping techniques [DFT].

The following excitation and identification procedure was used: The struc-

ture was excited by a chirp signal with frequencies ranging from .1 to 15 hz. Data



- 95 -

for the excitation and the sensor signals were stored at 200hz. Fourier transforms
were taken of both the inputs and outputs, and the output responses were divided
frequency by frequency by the input frequency response. Then, the response of the
LVDT on the actuator was also divided out from the accelerometer transfer func-
tions. This resulted in transfer function responses from the actuator displacement
to acceleration. Finally, a parameter search was done in the frequency domain [Mos]
to fit the model

M Amigtmye 2) 2
Tij(wk) _ Z _ i 7N k. +brc;. mj(‘—"wk
= (fR o) 2V =1 mCmwe (V=1wk + p1 )(V—=1wk + p2)

The last term here is due to actuator dynamics when the actuator rod is rigidly
connected to Str2. If the rod is connected to Str2 through a spring or flexure, this

term drops out.

A schematic drawing of both the Caltech LSS and this secondary structure is
given in Figure 5.5. (These figures are not to scale.) Since only two accelerometers
were available for the modal tests, it was necessary to change the system configura-
tion to align the accelerometers in the direction of excitation. Each accelerometer’s

mass was only 10g, so this was not a significant change.

.......... 2. - Voice Coil Actators
N
oiea ]m Accelerometers 1,2, & 3
prymm—. LYY TR DY
1Ry i Accelerometers 4,5, & 6 /l‘ i
e mns #2

"2

I
N Proof Mass Actuators A directicn 2
rection 1

Figure 5.5. - Caltech LSS and Secondary Structure.
Drawings are not to scale. The second structure is connected to the
bottom of the Caltech structure.
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The modes for which identification was desired were the rigid body trans-
lations and rotation modes for both directions 1 and 2, and the bending mode in
direction 1. The rigid body modes are important since they contain information on
the mass and inertia properties of the system. Unfortunately, it was not possible
to identify these for two major reasons:

i) It was not possible to suspend the structure in mid-air: That is, it was necessary
to hang the structure from a cable. This modified the rigid body modes making
them pendulum modes; and

ii) At low frequencies, accelerations were very small even for reasonably sized dis-
placements; thus, the sensor signals were overwhelmed by noise at the low frequen-
cies.

With these restrictions, the only possible approach was to hang the structure (with
the cable attached to mass #1), and to identify pendulum modes as if they were
rigid body modes.

Various connectors were also used between the actuator and the structure.
Each of these resulted in slightly different structural responses since they modified
the system’s boundary conditions. Among the connections used were steel threaded
rod, a spring, and flexures made of .066 cm (0.026”) “o-ring” stock. The flexures
were used so that pendulum modes would be minimally affected. For stronger
excitation of the flexible modes, the solid rod was used. Finally, a test was done
with a spring whose displacement was measured with an LVDT so that the force to

acceleration curves could be directly obtained.

All of these connections were tested with the actuator acting on either
mass #1 or mass #2. The length of the suspension wire had to be changed when
the excitation location was changed. This changed the behavior of the structure
and thus restricted the procedure to using only data from excitations at one of the
masses. Identification using data from excitations at both masses then was not

possible.

Data from two sets of experiments with Str2 are presented to demonstrate
the experimental issues. The first set, referred to as “Case 1” used a flexure with
o-ring stock and excitations at mass #2. This set of data is useful for developing
insight into the connection process. Case 2 used a steel threaded rod connection
that joined the actuator to mass #1. Results from the spring connection were

similar to those from Case 1, so they are not presented.
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Figure 5.6 presents data for directions 1 and 2 for Case 1, with the identified
model overlayed. The data is for accelerometer 2. Similarly, Figure 5.7 shows
accelerometer 2 data and model response for Case 2. In this case, it was very
important to fit the quasi-static/residual terms of the model accurately. These

residual components balance the actuator controller dynamics.

Case 1, accelerometer 2, direction | Case 1, accelerometer 2, direction 2
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Figure 5.6. - Str2, Case 1, Accel. 2, Directions 1&2.

There is a very low frequency mode in these models due to the first
pendulum mode. Because of the flexure, actuator dynamics are not
needed in the model.

Case 2, accelerometer?, direction 1 Case 2, accelerometer 2, direction 7

10 . 106
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Figure 5.7. - Str2, Case 2, Accel. 2, Directions 1&2.
A displacement tracking actuator was used here. The modes at around
100 rad/sec are due to the clamps which held down the actuator.
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5.5.3. Identification of Modal Masses

Once these models were obtained, the search for the a{™)’s was conducted.
On the Caltech LSS, a mass of .933kg (2.10lb) was placed in the center of the bottom
plate. This was the location were the second structure was attached later in the
procedure. Str2 had a mass of .614kg (1.351b) attached at mass #1 for Case 1 and
to mass #2 for Case 2. In both of these Str2 cases the actuator and the attachment
locations were different. When the actuator and the mass were colocated, the
displacement tracking controller removed the effect of the modification mass, making

it impossible to accurately identify the a{™)’s.

Str2 was attached to the Caltech LSS at Str2’s mass #1, thus it was necessary
to use invariance to modification location of the a(™’s for Case 2. That is, the
connection to the LSS was done through mass #1, but the partial identification
was done with the modification at mass #2. Figure 5.8 presents plots of the rms
sums of the responses of the unmodified system, the response of the modified system,
and the response of the LFT based identified modification models for the Caltech
LSS, Case 1, and Case 2. In Table 5.5, modal frequencies of the original and
mass-modified systems are shown. These values resulted from the (™ partial

identification.

Case 1, RMS oniginal and modified Case 2, RMS of response, original and modified
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Figure 5.9 - RMS Magnitude, Modified Str2: Case 1, Case 2.
The solid lines show the modified fit which comes from performing an
LFT mass modification on the original systems’ models (dotted lines).
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LSS rms responses, original and modified
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Figure 5.8. - Modified and Original Caltech LSS, RMS Responses.

The modification of responses due to addition of a mass on the bottom
bay are shown here. Using the differences between the original model
and modified responses, the modal weights are found.

5.5.4. Results of Connection of the Structures

Models were then set up for connection of Str2 to the Caltech Flexible Struc-
ture, and MATLAB was used to compute the state space relations previously dis-
cussed for the model of the combined structures. Table 5.6 gives the modal frequen-
cies for the original systems and for the predicted combined systems. The values are
located in the table to try to demonstrate where each mode of the combined system
comes from. The rms sums of all relevant channels of the frequency responses for
the original LSS, the experimentally combined system, and the predicted systems

are given in Figure 5.10.
5.6 Discussion of Experimental Results
Success of the structure connection method can be measured by the following

two criteria:
i) There are some modes which are greatly affected by the attached structure, and
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Caltech LSS Case 1
Original Modified Original Modified
frequency frequency frequency frequency
rad/sec rad/sec rad/sec rad/sec
5.558 5.203 0.113 0.113*
5.607 5.278 0.085 0.085*
10.267 10.301 8.347 6.600
13.972 14.023 8.347 6.935
14.488 14.478 77.78 72.981
22,777 22.965 87.78 85.791
24.766 24.810 Case 2
24.868 24.875 10.637 8.969
39.878 40.133 105.0 94.745
29.71 22,172
110.9 110.9

*Not enough data at low frequencies to fully identify

Table 5.5 - Original and Mass-Modified Systems: Caltech LSS, Case 1,
and Case 2.

The changes in Str2 due to different excitation clamping fixtures can be

observed from the differences between Case 1 and Case 2. Values in this

table are from the models for the original and the modified systems.

some which are not. For those which are significantly moved, agreement between
experimental and predicted frequency locations and participations indicates success.
11) Dynamics will be added to each structure by the other. Thus, it is important that
the modes which are caused by the secondary appear in the response of actuators

and sensors from the primary structure, and vice-versa.

In these experiments, the significantly altered modes are the lowest frequency
ones. This is indicated first by the amounts of change in these modes caused by
addition of a mass at the attachment location. The two closely spaced, first bending
modes (5.5 and 5.6 rad/sec) were moved to about 4.7 rad/sec by the second struc-
ture. Additional dynamics in the combined structure were found at 11.0 rad/sec,
where the flexible mode in Str2 appeared quite strongly in the experimental data
(Figures 5.10and 5.11).

5.6.1. Case 1

Case 1, which used the soft flexure and excitation at mass #1, will be dis-

cussed first. The lowest predicted LSS modes appear as though they were moved
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Case 1 Case 2
Original Combined Origin Original Combined Origin
frequency frequency frequency frequency

rad/sec rad/sec rad/sec rad/sec
0.084 * Second 5.558 4.970 LSS
0.113 * Second 5.607 3.211 LSS
5.558 0.1134 LSS 10.267 10.267 LSS
5.607 0.7913 LSS 10.637 10.628 Second
8.347 5.963 Second 13.972 14.103 LSS
8.347 6.056 Second 14.488 14.446 LSS
10.267 10.267 LSS 22.777 22.777 LSS
13.972 14.008 LSS 24.766 24.862 LSS
14.488 14.491 LSS 24.868 24.900 LSS
22.777 22.776 LSS 29.710 28.081 Second
24.766 24.799 LSS 39.878 39.878 LSS
24.868 24.878 LSS 105.0 95.402 Second
39.878 39.878 LSS 110.9 110.91 Second
77.78 65.287 Second
87.78 83.472 Second

*Removed by model reduction

Table 5.6 - Joined System Predicted Modes: Case 1, and Case 2.
From the plots of the RMS responses, the indication is that Case 2
gives better predictions than Case 1. The fourth mode in Case 2 is
obscured in the plots.

to higher frequencies (5.9 and 6.0 rad/sec) in the response plots. However, a better
explanation is indicated in Table 5.6, where the lowest modes were shifted to very
low frequencies. Then, the two secondary structure pendulum modes moved from
8.3 rad/sec down to the 5.9 and 6.0 rad/sec values. Simple one-dimensional modal
theory explains that frequencies of vibratory modes (for one-dimensional systems)
are bounded by other modes in the system. For example, the frequency of the
second mode of a system cannot become higher than the third, or lower than the
second when the structure is physically modified. Usually, when physical changes
are applied, all the modes will move. Thus, it is plausible to explain the motion of
the low modes in Case 1 as insufficient change in the first modes of the Str2 (at 8.3
rad/sec), rather than as negative change (frequency increase) in the fundamental

frequencies of the primary structure (5.5 and 5.6 rad/sec).

This error is also caused by the fixturing system which could not be factored
out of the Str2 behavior before the connection procedure. Thus the theoretical

connection procedure acted as though it was connecting Str2, the flexure connection,
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Figure 5.10 - RMS Sums of Combined Behavior: Case 1.

This plot presents the response of the original Caltech LSS (dotted), the
response of the combined structures (dashed), and the prediction using
Case 1 (solid). While the first modes are shifted to lower frequencies
in the experimental response, the prediction appears to move them to
higher frequencies. Similarly the additional mode between the LSS first
torsional and second global bending does not appear in the prediction.
All 36 input/output channels are presented here.

and the hanging wire to the LSS. Proper modification of the fundamental modes

was then not calculated.

Additional modes did not appear in the predicted behavior of the primary
structure when combined with the secondary. One explanation for this is that since
pendulum modes in Str2 were easily excited, motion of the flexible mode was not
detected. That is, the motion of Str2 was dominated by pendulum modes which
obscured motions of the flexible mode when this was tested independently of the
LSS. The pendulum modes were constrained by the connection bolt between the
system, thus becoming fundamental modes of the combined system. The primary

motion of Str2 then became flexible modes, which had not been detected.
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Case 2, LSS and Combined RMS responses
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Figure 5.11 - RMS Sums of Combined Behavior: Case 2.

This presents the same data sets as the previous plot, except using the
model from Case 2 fixturing. The lowest modes are predicted at lower
frequencies, although one of them is shifted down too far. The added
mode (at 11 rad/sec) appears in the prediction at 10.62 rad/sec, so it
is obscured by the LSS torsional mode.

The other reason that the additional flexible mode does not appear in Case 1
is that rotational motion about axis 2 of Str2 was not measured. When the structure
connection was carried out, these motions could not be theoretically constrained to
match the behavior of the Caltech LSS. The prediction then corresponds to con-
necting Str2 to the LSS through a hinge rather than a bolt. These errors would have
been reduced significantly if rotation about the axis for direction 2 for both struc-
tures had been measured at the attachment locations. Connecting the structures
without constraining this direction (and other rotations) incorrectly models the bolt

joint between the systems. Unfortunately, rotational sensors were not available.

Appearance of primary structure behavior in the combined Str2’s sensors
indicates good identification of the LSS and validity of the method. Figure 5.12
shows the transfer functions (experimental and predicted) from voice coil #1 on the

LSS to accelerometer #2 on Str2 along directions 1 and 2. Although the amplitudes
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of the predicted responses are incorrect by almost one order of magnitude at lower
frequencies in the transfer functions presented, it can be seen that modes from the
LSS appear in the response of Str2’s sensors. Other transfer functions had better
correlation of the predicted behavior and the experimental response. At 11 rad/sec
there was a lack of a flexible mode in Case 1. These results were encouraging, but
they indicated that the fixture for the experimental excitations was not a good one

for testing the secondary structure.

It is also worth noting that the transfer functions from actuators to sensors
on the original Str2 had magnitude approximately one order of magnitude higher
than those of the LSS. Some of the responses at accelerometer #2 of Str2 still came
out too small at the lower frequencies. This indicated poor identification of the

static properties of the attached system.
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Figure 5.12. - Transfer Functions from VC #1 to Accelerometer #2 on
Str2: Case 1.

Results here are not great, but they are encouraging. Many of the
modes due to the LSS appear in the response of the sensor from Str2.
Unfortunately, Case 1 did not properly catch the flexible mode in Str2,
so it does not appear here. Also, the first LSS torsional mode does
not appear in the predicted behavior through Str2. This is because
rotational motions are not used in the constraint procedure and the
accelerometers are very close to the center of rotation for this mode.
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Case 2 resulted in a significantly better prediction of the behavior of the
combined structure. Here, a rigid connector was used between the actuator and
Str2. This prevented most of the pendular responses. The fundamental mode of the
LSS shifted down to 4.9 rad/sec in the prediction, as in the combined experiment.
Unfortunately, the second first-bending mode (not the originally lower frequency
first first-bending) shifted too far (to 3.2 rad/sec). The conclusion that this was the
5.6 rad/sec (and not the 5.5 rad/sec) mode came from the eigenvectors. Predicted
and measured responses were viewed channel by channel, and it was determined that
the behavior of the 3.2 rad/sec mode matched that of the 5.6 rad/sec one. This
shift may be attributed to experimental error: The identification of direction 2 of
Str2 was dominated by a mode at 28 rad/sec, which did not appear in the combined
experimental response. It is believed that this was not a structural mode; rather,
since the actuator was not rigidly connected to ground for the tests, the mode
was likely a result of motion of the whole actuator/structure assembly. Parameters
related to direction 2 were changed to check their effect on the modification of the
5.6 rad/sec mode. When properly changed, the quality of the predicted combined
behavior improved significantly. The conclusion is that poor identification of these
parameters led to the large change of the 5.6 rad/sec mode.

The flexible mode identified in direction 1 of Str2 appears in the combined
structure, although it is obscured by the LSS first torsional mode at 10.26 rad/sec.
This mode, as seen in Table 5.6 is shifted from 10.63 rad/sec to 10.62 rad/sec. In
Figure 5.13, the transfer function from voice coil actuator 1 to accelerometer #2
shows this mode clearly, although with too small a magnitude. Also appearing in
the predicted behavior are the LSS modes. These appear with much more accurate
participation levels. In this case, the excitation of the secondary system is much
more accurate because of the connection scheme. The bending mode at 28 rad/sec,
which was considered non-structural, does not appear in the experimental response
of the system, although it appears in the prediction. In particular, it shows up in
the response direction #2. This would confirm that this mode was not structural.

Several possibilities exist which explain the small predicted participation of
the bending mode in direction 1 and the large response in the experiments. Because
of difficulty exciting the small structure properly, the flexible mode was not fully set

in motion. Also, the fixture for the identification procedure altered the modes too
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Figure 5.13. - Transfer Functions from VC #1 to Accelerometer #2 on
Str2: Case 2.

These results are significantly better than Case 1. Once again, most of
the LSS modes appear in the predicted response through Str2. In par-
ticular, LSS mode 1 appears in the exactly correct location in direction
1. The added mode from Str2 appears in direction 1 also, although at
a frequency 0.5 rad/sec too low. In direction 2, LSS mode 2 appears
at too low a frequency. The experimental data (dir. 2) also picks up a
peak at 11 rad/sec: Had this peak been due to the torsional mode, it
would have been at a slightly lower frequency. The torsional mode does
not appear in the predicted behavior since rotations of the two systems
are not constrained to be equal. The best explanation for this peak is
that it is due to cross-axis sensitivity of the accelerometer (which then
picks up the bending mode perpendicular to its sensitivity direction).

much. For example, the suspension wire might have absorbed much of the energy
from the mode, resulting in smaller sensed accelerations. Another explanation,
which has more to do with the large response of the joined system experiment,
i1s that the accelerometer on Str2 measured radial accelerations due to the LSS
torsional mode at 10.26 rad/sec. This would cause a large response in torsion,
which because of closeness to the bending mode would give a large base upon
which the bending mode response would appear. (This is a phenomenon of closely
spaced modes.) The implementation used in these cases assumed that the secondary
structure sensors were at the center of the bay. In this configuration, torsional modes
are not predicted. In Figure 5.13, direction 2, this mode appears again at 11 rad/sec.
Here, it could be due to torsion, although then it should be at a lower frequency.
More likely, the appearance in direction 2 was due to cross-axis sensitivity of the

accelerometer.
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As with Case 1, measurement of rotations of mass 1 about direction 2 were
not used for the connections. The rod that connected Str2 to its excitation actu-
ator significantly constrained this direction for Case 2. Better predictions would
have probably been obtained with proper sensing and theoretical constraint of the

rotational motions.
5.6.3. A Posteriori Improvement of Case 2

In Figure 5.14, the results of the a posteriori improved models for Case 2
are presented. The improved models were obtained by adjusting parameters in
the models to obtain better agreeme;xt between the predicted and the experimental
combined structure responses. Here, the low frequency mode location is corrected,
and the 11 rad/sec mode is visible, although its magnitude is a little small. Im-
provement in mode 2 was due to changes in the quasi-static components in the
model of Str2. The 11 rad/sec mode was corrected by changing the frequency and

output participation factor of mode 1 for direction 1 in Str2’s model.
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Figure 5.15. - Transfer Function from VC #1 to Accelerometer #2 on
Str2: Improved.

Here, the LSS modes appear correctly in the individual transfer func-

tions to Str2. The mode due to bending of Str2 also appears nicely in

direction 1, as visual observations indicated. Better fixturing of Str2

and more sensors would have given results of this good quality.
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Comparison of RMS Responses of Joined Structures
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Figure 5.14. - Experimental and Predicted RMS Behaviors for Connected
Structures.
Model Improved by Altering Parameters.
The first bending modes and the additional mode appear in the com-
bined responses quite well here. Case 2 data was changed as follows:
The residual participation of direction 2 was reduced, thereby shifting
LSS mode 2’s frequency less. Str2’s mode 1 frequency was moved from
10.63 to 11.0 rad/sec, thereby moving it out from behind the LSS tor-
sional mode. Also the participation of Str2’s mode 1 was increased so
that i1t would match the experiment better.

5.7 Observations and Suggestions for Experimental Improvements

Overall, these experiments were a quite successful demonstration of the
method. In particular, Case 2 pointed out areas in the experimental procedure
which greatly affected the quality of the overall fit. First, it was very important
to properly identify the quasi-static components of the structural behavior. These
were due to static properties and higher frequency modes not explicitly modeled.
The fit was done using residual participation terms in the full identification model
for each system and with a residual modal weight in the partial identification for the

modified systems (a("¢®)). If a("**) is negative (as the curve fit program sometimes
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gave,) the method predicted unstable poles. Since the final system was passive, this

was incorrect.

To avoid the problems with fixturing, the best approach is to fully sense all
directions of motion at the attachment locations. By properly accounting for these

motions in the connection procedure, the physical joints are modeled correctly.

Another concept developed from these results is that larger changes in modes
reduced the apparent size of the system. That is, when the modal weights were
determined as being larger, the modifications to the other system resulted smaller.
Thus the a!™ are really like inverses of the modal masses.

Controlled actuation also added some difficulties to the procedure. The
magnitude of the actuator dynamics (m; in the describing transfer function) over-
parametrized the model since it could multiply the modal participation factors.
Thus, it was possible that the modal gain components traded-off with the actuator
dynamics to improve the fit of the model. Then, the input and output components
multiplying the modal weight values would be incorrect. This problem is avoided
through use of an actuator which does not require feedback control to give good
performance. Because of the model forms, the modal weight parameters were not

affected by this phenomenon.

Other suggestions for improvement of the test procedure include testing the
secondary system in a gravity-free environment and testing the system with fixtures
that do not allow for pendulum modes. The first of these ideas is quite expensive
to implement, but should lead to better identification of the rigid body properties
of the system since it will be free of any constraints. A support system which does
not allow pendulum modes will probably have dynamics of its own which then have
to be removed from the models. More study will definitely be beneficial for the

determination of the best testing setups.
5.8 Conclusions

A quite general approach to response mode synthesis has been presented in
the previous two chapters. The main advantages of this approach are:
i) the procedure can be done using input-output experimental data alone (no refer-

ence to physical quantities is needed);
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i1) noncolocated sensor/actuator geometries are allowed (in some cases, even pre-
ferred);

iii) acceleration sensing can be used directly (there is no need to synthesize dis-
placement data from accelerometers); and

iv) locally controlled actuators can be used to excite the structure (as long as their
effect can be modeled).

The procedure involves first, a basic identification experiment of each substructure;
second, a partial identification of each subsystem after modification (to make the
models of the systems compatible); and finally, theoretical assembly of the various

component models.

The linear fractional transformation framework was also presented as a gen-
eral tool for linear structural dynamic analysis. Theoretical and experimental results
were given for input/output identification and interconnection of structural systems.
Limitations of the method because of experimental difficulties were presented along
with suggestions for improvement of the procedure. In Chapter 7, an application
of the LFT connection method is given where the attached structure is used as an

uncertainty description for active controller design.
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Chapter 6. Structural Control
Using #./.~-Synthesis

6.1 Introduction

In this chapter, a discussion is given of the steps necessary for design of Ho./
p-optimal controllers. In particular, the setup used to specify the synthesis problem
for the Caltech Flexible Structure (CFS) is presented in detail. In Chapter 7, results

of application of controllers resulting from the synthesis setup are given.

This chapter i1s organized as follows: Section 2 discusses some of the difficul-
ties of active control of structures. In Section 3, the mathematical formulation of the
H . /p-synthesis procedure is presented. The theoretical framework is followed by
Section 4, which contains a discussion of application of the method including some
of the computational issues involved in implementation of H.,/u-synthesis. The
models used for controller design for the unmodified structure are also explained in

this section.

The term open loop in this and the following chapter refers to the uncon-
trolled system without any compensator dynamics. Closed loop refers to the system

with full controller dynamics and feedback.
6.2 Difficulties with Structural Control

The achievable closed loop performance of a structure depends on the de-
sired levels of stability, robustness, and effort of a synthesized controller. These
properties are specified by models in a mathematical control problem formulation.

The mathematical problem specification for optimal controller synthesis, hereafter
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referred to as the synthesis setup, consists of a model of the system to be controlled,
descriptions of the uncertain quantities in this model, specifications of the desired
performance, and ideas on the qualities of the controller that make it more success-
ful. For H. /u-synthesis the models for all these properties consist of state space

realizations of input/output transfer functions.

Modeling of the base (open loop) system may be done analytically/
numerically, experimentally, or by some combination of these methods. Analytical/
numerical modeling for structures is primarily carried out using the finite element
method (FEM). Accurate results require very complex and exact information on
each structural component, each joiﬁt in the structure, and each sensor and actua-
tor to be mounted on the system. Information with the necessary level of precision
is almost never obtained. Thus, the basic analytical /numerical model of the system

will be inaccurate.

Experimentally identified models require less prior information on the com-
ponents of the system. The system, however, must be tested in its working environ-
ment in order for the descriptions to be appropriate for controller design. Therefore,
controller synthesis cannot be done until the system has been deployed. Errors in
these models are caused by phenomena such as experimental noise, variation of
material properties over time, and incomplete knowledge of what kind of model to
use. A combination of theoretical and experimental procedures which consists of
using experimental results to improve theoretical models can also be used. This
is probably the approach that will be used for future missions, although certain

uniqueness of model issues exist with this procedure.

The main effect of modeling errors on the controlled system is performance
reduction, possibly to the level of instability. A phenomenon known as the water
bed effect, where the controller redistributes energy in the system from frequencies
where performance is desired to other frequencies, occurs when the system is being
controlled. If certain modes or other system dynamics are left out of the system
model, the controller may shift energy in such a manner that these unmodeled effects
are excited, thereby causing degradation of performance or instability. Instability
may be avoided by specifying where the system’s behavior is poorly known. The
controller will then either achieve less performance or will avoid shifting energy into
these regions. With better knowledge of the system, greater performance can be

obtained.
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The desired performance objective for most structures consists of increasing
the system’s stiffness. For example, displacements will have to be kept in the
micron range for systems such as NASA’s large optical interferometer (which will
be on the order of 50 meters long). Experimental identification is difficult because
of very close spacing of very lightly damped modes. Theoretical analysis is hindered
by incomplete knowledge of joint and material properties, by partial data on the
damping of each mode, and by poor understanding of the interactions between the
structure and the sensors and actuators. Nonlinear behavior of the system which
shall not be discussed here, introduces another level of errors in the modeling and

control.
6.3 H. /u-Synthesis: Theory

The control synthesis procedure used for this work is H.,/p-synthesis, which
consists of H-optimal synthesis, p-analysis, and D-scaling, nested in an iterative
scheme[Bmu|, [DFT], [DGK], [Pac]. This section gives a sketch of the process,
leaving out some of the mathematical rigor necessary for a complete description.
This description is intended as an overview of the motivation behind the procedure

known as p-synthesis.

First, the synthesis setup is used to compute an H..-optimal controller. In
the notation used here, this is known as the K-iteration. At this point, uncertainties
modeled in the setup act as scalings on the performance of the system. Once the
control algorithm has been computed, the loop is closed around it (i.e., interaction of
the controller and the synthesis system is computed via the Redheffer Star product
[Kai]) producing a model of the controlled structure. Effects of the uncertainty
on the stability and performance of the closed loop system are then calculated to
produce a value known as y, which is discussed in greater detail later. Information
from g on the worst case uncertainty (which degrades the stability and performance
of the system the largest amount) is then incorporated into descriptions known as D-
scales. (This step is referred to as the D-iteration.) The D-scales are then collapsed
into the synthesis setup thereby changing the performance objective so that the
controller is robust to the worst case uncertainties during the next K-iteration.
Combination of D-scaling and K-synthesis is denoted by D-K iteration, and results
in the technique known as p-synthesis. The procedure is repeated so as to obtain
the controller which gives the best performance in an H.setting and which has

the best robust stability and performance in a u-analysis sense. The feature about
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this procedure that makes it so effective is that for all the systems in the family
generated by the model and uncertainties (the synthesis setup), the controller is

guaranteed to be stable and to achieve the desired performance for values of u < 1.
6.3.1. H..-Optimal Control

A brief description of H.-optimal control is given here. The system realiza-
tion framework used is state space, which, for linear systems gives descriptions in
both the time and frequency domains. Denoting the states of a system as z, the
control inputs to the system as u, the outputs to be minimized by the procedure as
z, the unmeasured disturbances as w, and the measured signal for control as Yy, the

evolution of the system to be controlled is described by

z=Az + Biw+ Byu
z=Ciz+ Dnjw+ Diru

y = Caz + Dayw + Dagu. (6.1)

Since these signals may be transformed between time and frequency domains easily,
the same notation shall be used for both domains. The dot superscript represents
differentiation with respect to time. Subscripts on transfer matrices denote output

and input locations.

Upon transformation to the frequency domain, this system is given by

£\ Py Pro w

Py P
where P;; = Ci(sI — A)"'Bj + D;;, s = wy/—1, and w is frequency. Dependence on

frequency of the P’s is assumed, and thus left out of the notation. For structural
systems, the C' matrices contain the output participation factors and information
on the sensing type (e.g., velocity or acceleration), the B matrices consist of the
input participations, the A matrix incorporates the modal frequencies and damping

values, and the D matrices are the static input/output components.

In Hoo-optimal control, the input and output signals (w,u, z, and y) are all
Ly-norm bounded, that is the 2-norm of all of these signals, ||2||3 = [ |-*|dt < cc.
Using norm bounds, the H.,norm results because ||z[|3 = || T.w20l2 < [|T2w ]| ]l2]]3,

so the induced norm from a signal w € £; to a signal z € L is the co-norm of

the transfer function T.,. To get the smallest response of the performance signal
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z to the worst case disturbance w, the goal becomes to minimize ||T;y||oc over
all controllers ' with the property that u = Ky. In mathematical notation, the
H.-optimal controller achieves

min max ||T .

in max ([ Tewlleo (6.3)
Appendix 1 presents a constructive partial motivation for the formulas leading to

the optimal controller as presented originally in [DGK] and in [DGF].

The synthesis setup consists of, as previously mentioned, a system model,
performance specifications, and uncertainty specifications. These are assembled
into the state space realization in Equation 6.1. When synthesized, the controller
K will manipulate the measured outputs y resulting in the controlled inputs u
which alter the dynamics of the system. The effects of the control inputs u on the
measurement outputs y are given for the open loop system by the transfer function
Pyy. The transfer matrix P;; consists of uncertainty descriptions and performance
specifications; Pj, contains information which is used to shape the controller effort
most directly; and P, details effects of disturbances and uncertainties on the sensed

signal.
6.3.2. p-analysis

The robustness of stability and performance can be quantified with the struc-

tured singular value, or u, which is defined as

A/ — L
pa(M) = minaga{7(A) : det(I+MA)=0}. (6.4)

The A in this value corresponds to a structure of interactions between the uncer-
tainty signals, the M represents the closed loop controlled synthesis setup, 7( ) is
the largest singular value, and det( ) is the determinant. Since M is a function
of frequency, ua(M) is taken as the largest value over all frequencies. Uncertain-
ties are put in a format which uses linear fractional transformations through the A
block. These blocks denote families of matrices with particular specifiable shapes
(structures). For example, A may be chosen as block diagonal consisting of full
complex matrices of size m X n or as diagonal complex matrices of size n x n.
The form of the blocks characterizes the interactions between the inputs and the

different outputs.
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The value of p specifies the norm of the smallest matrix (in the family) A
which destabilizes the closed loop synthesis problem. The A-block is partitioned
so that both uncertainty and performance blocks are included. g > 1 means that
the controller will not achieve the specified performance for the uncertainties de-
scribed by the setup, that the controlled system will not be stable for the particular
uncertainties, or a combination of failure of performance and stability. A value of
1 < 1 means that the controller will meet the specified performance with the given
modeled uncertainties. The performance/stability boundary of 1 results from the
formulation of linear fractional transformations. Figure 6.1 graphically presents the
connection of components which leads to M and p. The linear fractional notation
Fi(P, ) denotes that the last outputs of P are fed into the first inputs of Ii', and
that the first outputs of K are fed into the last inputs of P. Thus, if P is partitioned
as in Equation 6.2, M = Py; + P12 K(I — Py K) 71 Pyy.

<-->

Figure 6.1 - Linear Fractional Transformations Leading to M and .
P is the synthesis plant setup, I is the compensator, and M is the
closed loop controlled synthesis system. Robustness is thus measured
with respect to specified performance and robustness.
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The characteristic dynamics of this system are dominated by MA(I +
MA)™L. This system will be stable (well behaved) when det(I + AMA) # 0, that
is, when 7(MA) < 1. Stability of M is guaranteed by the H.,-synthesis procedure

when a controller for the particular setup exists.

In a more practical sense, the performance and uncertainty descriptions are
the components of M that interact with the A. For the value 4 = 1 to be reached.
P must be modified through the performance and uncertainty specifications. If
i < 1 the controller may be designed to either achieve more performance or to
be robust to greater uncertainty. This will increase the gains in P. When p > 1
the gains in P must be decreased, either reducing the desired performance or the
achievable robustness to uncertainty. If y ~ 1, a trade-off exits: larger uncertainties
mean that less performance can be achieved; more performance reduces robustness

to uncertainty.
6.3.3. D-scaling

The D-scale iteration results from steps necessary to compute p, which cannot
be calculated directly [Pac]. Current implementations of the calculation shall be

discussed here. Upper and lower bounds for g can be computed as

maxgeo p(QM) < pa(M) < infpepd(DMD™!), (6.3)

where p( ) is the largest eigenvalue, Q is a set of appropriately structured unitary
matrices (Q*Q = I, where * denotes complex conjugate transposition), and D is
the set of appropriately structured invertible matrices. A power iteration is carried
out to find the @ which maximizes p(QM) at each frequency of interest. For each
submatrix in A (and in D), the D-scales which maximize the maximum singular
value are obtained through a generalization of Osborne’s balancing method[Bmul].
The maximum singular values at the sampling points may be assembled to give
frequency-varying descriptions which can be modeled by curve fitting. Currently
this is done using minimum phase rational polynomials fit to the curves described
by the maximum singular values for each submatrix in A. The order of the curve
fit 1s chosen by the control designer. The polynomials are then converted to state
space and assembled to give approximate D-scales. Approximation is a result of

the curve fitting.

6.3.4. p-synthesis
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The D and its inverse D™! are then collapsed back into the P in the open
loop synthesis setup (D-iteration). The performance objectives of the problem are
thus changed so that avoidance of the worst case uncertainties is incorporated into
the disturbances. Since minaea(3(A)) < F(DM D) specifies the D’s, the scaling
is guided by p. In the next K-iteration, the best controller under the worst case
disturbances, which now include the worst case uncertainties (from the perspective

of the prior controlled system M) is synthesized.

In the first D-K iteration, the D-scales are chosen as identities. Thus, the

first controller is guaranteed to be stable to perturbations of size

7(A) < st (6.6)

As the D-K iterations proceed, 7(DM D™!) is usually reduced, thus the con-
trollers achieve more robustness and more performance. They are stable when
perturbed by larger uncertainties (larger 7(A)).

There are two main features about the method which require caution. First,
the D-K iteration procedure is not guaranteed to converge globally. It is possible
that the p will decrease the first few steps, and then it will increase. Since the goal
is to reduce y, the K from the iteration with the smallest value of x4 should be used.
Secondly, the guarantees on performance and stability are valid only for the model
of the system as presented in the synthesis setup. Errorsin the base descriptions and
lack of conservativeness in the uncertainty models can lead to controllers which when
implemented lead to an unstable or poorly performing system. So, the controller
will only be as good as the model.

6.4 Implementational Issues of H,,/u-Synthesis

This section presents examples of the various components in the synthesis
setup, discusses the particular choices for the problem specifications, and reviews
descriptions used for design of robust optimal controllers for the Caltech Flexible
Structure (CFS). Results of the application of these control algorithms will be given
in the next chapter. This portion of the paper also contains discussions of some of
the computational and implementational issues of H.,/u-synthesis using the MAT-
LAB Musyn Toolbox [Bmu]. Much of this work was pioneered by G. Balas [Ba2].

6.4.1. Nominal Model



- 119 -

The most important component in the synthesis setup is the basic model of
the (open loop) system to be controlled, referred to herein as the nominal model.
This is the best (in some mathematical sense) description of the effects of com-
manded inputs on sensed outputs. It is most often determined either by theoretical
analysis such as FEM code [StF], or by identification using one of the various meth-
ods available [CKR], [Mos]. The result of the identification or theoretical analysis
must be put into state space form for H-controller synthesis. Chapter 3 discusses
modeling of the CFS.

The CFS is a good example of a space structure for several reasons: it has
many closely spaced, lightly damped modes, it is set up for both colocated and
noncolocated control experiments, and it has both structural (active member, such
as voice coil) actuators and nonstructural (inertial, such as proof mass) motors.
More information on the identification of this system may be found in [Ba2], and
[Mos].

6.4.2. Specification of Desired Performance

Desired performance of the controller may be specified in many ways. The
basic goal is to reduce ||T.y||oo below 1.0, thus reducing the effect of the distur-
bance w on the controlled signal z. In most cases, the disturbance inputs and the
performance outputs must be scaled in Pi; in the synthesis setup to obtain signals
with magnitude near 1.0. As the magnification of these signals is increased more

performance is specified.

The norm ||T;w|leo = sup, 7(Tiw(wyv/—=1)). In the frequency domain, the
H -optimal controller therefore reduces the peaks in magnitude over the entire fre-
quency spectrum. In modal systems, such as structures, modal responses create the
transfer function peaks when force inputs and acceleration outputs are modeled.
This type of actuation and sensing has no inherent integration or differentiation
which would appear as a rollups or rolloffs on the magnitude Bode plot. Figure 6.2
presents two transfer functions for an artificial two mode system: one with force
input and acceleration sensing, and one with force input and displacement sensing.
This figure illustrates the inherent rolloff in displacement sensed systems. Systems
such as structures with force input and displacement sensing have representations
which are strictly proper. These have inherent rolloff in magnitude as the frequency
increases. That is, the magnitude of the transfer functions will generally decrease by
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20 dB for each decade of increase in frequency for every pole that takes the system
past being proper (i.e., for every unit of relative degree). Therefore, the maximum
magnitude dynamics will generally be at low or zero frequencies. At higher fre-
quencies, the response of the system will be very small. The infinity norm peak
is then obtained at the low frequencies, thereby specifying low frequency perfor-
mance. If performance is desired at higher frequencies, the disturbance input of the
performance output should be differentiated so that the H. . -norm of T.,, achieves
its maximum where performance is desired. Scalings on the disturbance and the
performance may take any (state space realizable) form since they do not alter the
nominal transfer function P,5. That is, they modify the synthesized controller, but

they do not change the basic system to be controlled.

Responses of 2 mode sysiem: 2 sensing types

T
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Figure 6.2 - Comparison of Sensing Types to Show Inherent Rolloff.
The displacement sensed signal’s magnitude rolls off with frequency,
while the acceleration sensed signal remains generally flat. If perfor-
mance is specified with these signals, mode 2 of the acceleration spec-
ified signal will be affected significantly more than the displacement
sensed mode 2, but mode 1 of the displacement sensed will be at-
tenuated much more than that for mode 1 of the acceleration sensed.
The displacement signal has been multiplied by a scalar so that its
magnitude matches that of the acceleration sensed signal.
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There are two main ways to specify the performance through P;;: as noise
rejection or as disturbance rejection. Noise rejection involves creating a frequency
weight signal (like a filter) which scales an input whose effect is added at the system
output. That is, the noise signal is fed directly to the performance output instead
of through the system. The controller will then try to minimize the effect of noise or
disturbances acting directly at the performance location. This type of performance
1s not very effective for modal systems since the controller must shift energy to
regions outside the performance region which may be quite large. Figure 6.3 presents

the block diagrams for noise and disturbance rejection.

Qi [T TRt
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Figure 6.3 - Noise and Disturbance Rejection for Performance Specifi-
cation.

Increasing the noise scaling will generally increase robustness of the

controller since this will specify larger noises. Since the controller can

only modify the plant (not external noises), increasing the disturbance

scaling will increase the controller effort, thereby reducing robustness.

Placing the disturbance at the inputs to the nominal system means that the
controller will alter the system so that it responds less at the open loop peaks. This
1s significantly more effective for systems such as structures because the controller
then shifts energy from peaks of transfer functions to the valleys which are at nearby

frequencies.

In the case of the CFS, the primary performance specification uses distur-

bances acting at the nominal model inputs and performance signals from the system
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outputs. This means that all structure motions are considered as composed of sums
of motions of the individual modal responses. The goal is to reduce motions, thus
modal responses are to be removed. In the Hframework, this means reducing
the response peaks so that the system behaves like a rigid structure. For an ideal
system, optimal control produces a system with a flat response over the frequency

band of interest (i.e., no peaks/poles and no valleys/zeroes).

Various combinations of input disturbances and output locations are cho-
sen for performance of the CFS. The main objective is to reduce the effects of
disturbances at the bottom bay on sensors at the same location (proof masses to
accelerometers). Control is done b}} the voice coils at the top of the system. The
other setup presented here aims to minimize the effects of disturbances at the voice
coils on motions of the bottom bay, with control by the proof mass actuators.

It is possible to specify performance at only one accelerometer on the bot-
tom bay of the CFS. The sensor picks up several bending modes and torsion modes,
but is uniaxial. Motions in the direction of sensing are reduced quite nicely, but
movements in other directions are not attenuated significantly. In some cases, en-
ergy is redirected to directions where performance is not specified thereby pushing
the system closer to instability for these motions. Therefore, it becomes neces-
sary to specify performance at multiple accelerometers covering various directions

of motion.

With multiple locations specifying performance it becomes possible to specify
which locations are most important for control and what kinds of disturbances are
expected. On the CFS, different levels of performance are placed on disturbances
coming from the proof masses and the voice coils, and on vibration reduction at the
bottom bay or at the second platform. The disturbances acting at the proof masses
have to be scaled by a single or a double integration so that the controller effort
is placed at the lowest modes. This counteracts the rollup caused by the actuator
dynamics (which places the maximum amplitudes of the transfer functions at higher
frequencies). This weight is presented in Figure 6.4 along with scaled and unscaled
responses at a bottom bay accelerometer to a proof mass. The scaled response is

used to specify performance.

6.4.3. Controller Shaping
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Performance Specification for the CFS
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Figure 6.4 - Performance Specification for the CFS.

The unscaled transfer function (dashed) results in controllers which
nicely control the higher frequency modes, but do not affect the lowest
modes. When the scaled objective (dotted) is used, effort is placed to
control all the modes.

Experimental control synthesists often know general properties that make
the controller more effective. These include maximum allowable controller gains
and frequency ranges of small effort. Characteristics of this type are incorporated
into the controller in order to avoid phenomena like actuator and sensor saturation,
destabilization of unmodeled high frequency modes, and aliasing due to finite fre-
quency bandwidths of implementation hardware. Three general methods exist to
shape the controller in pg-synthesis: performance specifications, uncertainty descrip-

tions, and controller effort weighting.

Performance specification, which is discussed in the previous subsection is
very indirect. By choosing levels of necessary performance in particular frequency
bands in the synthesis setup, the designer will, in general, obtain controllers which
place more or less effort at the particular regions. There are still many cases where
because of the complexity of the performance and uncertainty specifications, the
controller will have significant effort in regions where little performance is necessary.
This is caused by energy redistributions the controller causes from regions where
significant performance is desired to those where levels are less important. Thus,

this tool for controller shaping is not very direct.
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Use of uncertainty descriptions to affect the synthesized controller is a rec-
ommended method. The various uncertainty description types will be discussed
in more detail in the next subsection. Since uncertainty indicates to the synthesis
mathematics that large control efforts at certain frequencies may destabilize the
system, the resulting controller will not greatly affect the uncertain regions. Simi-
larly, the control algorithm will distribute energy from frequencies where significant
performance is required to regions other than those with large uncertainties. For
systems where destabilization of unmodeled modes are a great danger, uncertainty

shaping of controllers is useful.

The most direct controller shaping method is scaling of the transfer function
from control effort to performance Pi,. In essence, this is what uncertainty de-
scriptions at the inputs do. Since the goal of H..-synthesis is to reduce all transfer
functions to below magnitude 1.0, the control signal can be scaled through P;, by
a frequency dependent scaling which has the shape of the inverse of the desired
controller (magnitude) form. For example if a controller with maximum gain of
10.0 is desired, the transfer function Pj; may be chosen as 1/10.0 = 0.1. Gener-
ally, however, the synthesis setup has many conflicting objectives, so the ability
to obtain the controller shape features is traded off with other goals. That is, the
multiple objectives compete against each other; thus, the resulting controller may

have features not directly expected.

Mathematically, the transfer functions in P;; must be nonzero in order to
prevent controllers with infinite gain. This can be shown using basic loopshaping
concepts of robustness{DFT], where the sensor signal is defined as noisy. If the
controller has very large gains, the effects of sensor noise will be greatly magnified.
The transfer functions from sensor noise to the performance outputs (with unity
scaling on Py3) are calculated by (I + KP)"'K. Larger K’s will then, in general,
result in larger gains in this component, particularly when K P results with small

magnitude.

In order to prevent controllers with zeroes which cancel plant poles, the
disturbance signal must also be included in the synthesis setup. The unscaled
transfer functions for disturbances through the controlled plant to the performance
measure is (I + PK)~'P. Thus, the poles of the plant will still add cost to the

mathematical problem even if PK = 1 through pole-zero cancellation.
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A comment must be made about controller magnitude rolloff: In order for
the controller magnitude to decrease at higher frequencies, it must have poles where
controller rolloff 1s first desired. These poles, however, will change the phase of the
compensator. If the phase change is too rapid (as when quick rolloff is desired), the
controller rolloff may end up destabilizing the plant. Therefore, controller rolloff

must not be carried out too quickly.

In the CFS synthesis setup, the controller is weighted directly by a constant
scaling which aims to keep the maximum gain below 10. This maximum desired
value is determined from experimental experience. The desired controller rolloff (to
avoid destabilization of unmodeled higher frequency modes) is specified by uncer-

tainties which are described in the following subsection.
6.4.4. Uncertainty Descriptions

Uncertainty in systems is modeled by weights on A-blocks which were de-
scribed in Subsection 6.3.2. The A-blocks are defined as members of a set of norm
bounded matrices. When they are used in system descriptions, they generate a
family of system behaviors. The family is selected by weights on the As. For u-
synthesis, the standard blocks are taken as matrices of appropriate dimensions with
the property that they are in complex mathematical balls of norm 1. For example,
a 1 x 1 complex A would include all possible signals é such that |§] < 1 where |.|

denotes absolute value.

There are three common types of uncertainty descriptions which are gen-
erated using the A-blocks: additive, multiplicative, and parametric. These are
discussed in this subsection. Use of the linear fractional transformation framework
to create structural uncertainty is presented in Chapter 7. Other specialized forms
of uncertainty can also be generated, but these are generally combinations of the

three common forms.
Additive Uncertainty

Additive uncertainty is presented schematically in Figure 6.5, where the input
to the additive scaling for the A-block is a control signal (). The output from
the A-block is fed into the sensed signal y which in many cases is also part of

the performance measure z. This places uncertainty on the nominal plant model
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transfer function Pyy. Since neither the inputs nor the outputs of the uncertainty
description pass through the system model, additive uncertainty is not directly
dependent on the magnitude of the nominal model. Thus, this type of description
places uncertainty at all frequencies even where the system has small magnitude.
In particular, since identification of system transmission zeroes is difficult, additive

uncertainty can be used to compensate for lack of this type of knowledge.

A additive

weight

[ €

¢ | System

y“"O‘— Model ¥

A

Figure 6.5 - Typical Schematic Form of Additive Uncertainty.
Since this form does not directly depend on the system model, it is
most useful to specify uncertainty at system transfer function zeroes.

Because of additive uncertainty, the controller will stay clear of large gains.
In the synthesis portion of the D-K iterations, the control signal u shaped by the
additive weight is part of the transfer matrix to be reduced for performance. Thus,
the controller shape will approach the inverse of the frequency weight. For example,
when higher frequency modes are not well known, an additive uncertainty whose
magnitude is small at low frequencies but large at high frequencies can be used. The
controller will then have larger gains at the lower frequencies and low magnitudes

at the higher frequency regions. This increases controller magnitude rolloff.

For better computational properties, additive along with all other uncertainty
weights should be split between inputs and outputs. For example, if a second order
weight is used, one pole should be used at the input weight and the other at the
output scaling. Similarly, the magnitudes should be of comparable sizes. Since the
connection through the A-block does not exist during the K-iteration, these weights

specify performance. The inputs and outputs related to these uncertainty weights
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interact with the sensor, performance, and disturbance signals through multiple
channels. It is therefore a good idea to have well balanced systems. That is, the
inputs and outputs should be of similar magnitudes so that important features are
not missed because of small weights in the synthesis setup. Another reason to split
up the uncertainty weights is that generally the D-scales will not need as many
states for the polynomial that fits them. This reduces the number of additional
states in the synthesis setup. Computation time and controller state number are
thus kept smaller. (Current H.,methods generate controllers with the same number
of states as the synthesis setup.)

In the CFS, uncertainties at lower frequencies of sizes between 3% and 10%
are used. For example, with 6% low frequency weight, the input and the output

scalings are each

V0.06(s + 50) o
(s +250) (6.7)
The (s+4250) term in the denominator specifies the level of higher frequency uncer-
tainty. Since this weight is placed at both the inputs and the outputs for uncertainty,
the A-block for additive uncertainty is weighted by

0.06(s + 50)2

(s + 2502 (6.8)

The Bode magnitude response of this weight is shown in Figure 6.6, where it is
overlayed on the structure response of one of the structure channels. As can be
seen, this weight places low uncertainty at the zeroes below 30 rad/sec, and places
high uncertainty level above 100 rad/sec. The A-structure is chosen as a 3 x 3 full
complex block. This additive description is purely ad hoc — it is selected based on

trials of different controllers.
Multiplicative Uncertainty

Multiplicative uncertainty is represented by Figure 6.7 where the uncertainty
block is placed at the output of the nominal system. Here the sensor signal’s un-
certainty level is generated by the multiplicative weight. Since this description is
directly dependent on the nominal system model, uncertainty will be larger in ab-
solute terms when the system has a larger response. In structural systems, this

occurs at the modal peaks. Uncertainty at the zeroes will then be very small (or
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Additive Uncerinty for Caltech Flexible Structure
101 o

i
108 3 i‘t

0}
e / i

102 s A i
10t 108 0t

magnimde

102 10®
frequency (radfsec)

Figure 6.6 - Additive Uncertainty for Caltech Flexible Structure.
Uncertainty here has the most effect on the system where the system
has low amplitudes. The magnitude increase at high frequencies is used
to force the controller to roll off, thereby avoiding unmodeled modes.

zero) since the multiplicative weight scales zero amplitude signals. The multiplica-

tive description may also be placed at the input to the system model to simulate
actuator uncertainty.

mulplicafve
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Figure 6.7 - Graphical Representation of Multiplicative Uncertainty.
The signal entering the uncertainty description is directly related to the
system model. At transmission zeroes, the uncertainty will therefore

be very small. At modal peaks, the uncertainty can be quite large in
absolute terms.
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In terms of controller shaping, multiplicative uncertainty helps prevent pole-
zero cancellations. The controller has to be somewhat less aggressive if the exact
pole locations and gains are not fully known. As with any type of uncertainty, larger

uncertainties result in controllers with less performance.

For structural systems, this type of description will most greatly affect the
values of modal frequencies and dampings. They will also affect the modal partici-
pation factors (gains). On the CFS, constant weights of 6% are used on the nominal
system response output signal. A full 3 x 3 A-block is used. Once more, this level

is determined by trial and error.
Parametric Uncertainty

When more tailored uncertainty is desired, parametric uncertainty can be
used. This involves isolating a particular uncertain parameter in the model, and
feeding uncertainty around it. For example if a modal damping is only known to
within a certain level, this may be reflected in the synthesis setup. An example is
probably the best way to demonstrate this tool. Suppose that a spring-damper-mass

system is modeled by

&+ 2Cnominaws + wlr = f(t), (6.9)

but that the damping is only known to be 90% accurate. Thus, witha —1 < 6§ <1,
¢ can be described as ¢ = Crominai(1+.18). The value of  is then .9Chominat < ¢ <

1.1Chominal- The equation of motion then becomes

I+ 2Chominat(l + 8wi + w?z = f(1). (6.10)

Pulling the ¢ out, and putting the system in state space form,

()= 2| )+ 2]+ 2]
r=1[0 —2¢w(.1)] (i)
with
.= br (6.11)

Unfortunately, this type of uncertainty adds an input and an output to the

synthesis setup for every uncertain parameter. Computation of the D-scales then
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requires more time because there are more uncertainty blocks to calculate. Similarly,
when curve fits of order greater than zero are used for the D-scales, many more
states are added to the synthesis setup. This increases the number of states in the

controller.

On the CFS, parametric uncertainty is not used. Many of the effects of
parametric uncertainty can be modeled with additive or multiplicative uncertainties,
although somewhat less exactly. Performance of the controller is reduced somewhat,
but since methods do not yet exist for efficient uncertainty identification [NeS], this

method can only be used with rule-of-thumb estimates of uncertainty.
6.5 Other Issues in the Synthesis Setup

In addition to the nominal model, the performance specifications, and the
uncertainty descriptions, there are several implementation-related components that
need to be included in the synthesis setup or that need to be considered during
the synthesis procedures. The setup components include such items as control
hardware computational details, and sensor and actuator dynamics. Computational
difficulties discussed include optimality of the controller and costs associated with

calculation of u.
6.5.1. Computational Delays

When the controller is implemented on digital hardware, there are computa-
tional delays which must be accounted for. These effects can lead to instability of
dynamics at frequencies above the Nyquist frequency (1/2 the sampling frequency).
Controller synthesis using MATLAB is set up for continuous systems so it is nec-
essary to approximate the discrete phenomenon in a continuous setting. For state
space relations, the most common method to model delays is the Pade approxima-
tion. In the Caltech system, real-time computer control running at 200 Hz is used.
A second order Pade approximation is used since most of the dynamics to be con-
trolled are well below the Nyquist frequency. Once the continuous time controller
is synthesized, it is converted to a discrete form using a zero-hold approximation.

Other transformations can also be used.

6.5.2. Sensor and Actuator Dynamics
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Sensors and actuators used in systems have finite bandwidths of effective
operation. They also may have significant dynamics, as the controlled proof mass
actuators on the CFS have. If these characteristics are not included in the nom-
inal model, they need to be added into the synthesis setup when it is assembled.
Compensation for limited response bandwidths may be done using uncertainty, but
modeling of significant dynamics should be done in the transfer function Ps with
accurate models of the behavior. If these effects are neglected, unstable controlled

systems may result.

On the experiment with the CFS, the accelerometer and voice coil response
losses are at frequencies significantly higher than the region of control interest, thus
they are not explicitly modeled in the synthesis setup. The higher frequency additive
uncertainty leads to controllers that avoid the devices’ limitations. Since behavior
of the proof mass actuators is actively controlled, these dynamics are incorporated
in the nominal model as described in Chapter 3. Additionally, significant actuator
uncertainty (multiplicative uncertainty acting at the input to the nominal model) is
needed because the proof masses have nonlinear responses due to friction. Identified
models of the proof mass actuator behavior are of lower quality than those for the

voice coils.
6.5.3. Optimality of the H,, Controller

Computation of the H.-optimal controller involves an iterative search for
the smallest value v for which ||T.4|lcc < ¥. The problem may be scaled so that
v ~ 1. Failure of the procedure to meet a particular v value may occur for one
of three main reasons. The first two involve finding solutions of Riccati equations
related to the full information (FI - similar to state feedback) problem and the
output estimation (OE - output state estimator) problem. The third condition is
related to the combination of the FI and the OE results to form the optimal dynamic
compensator K. Failure of any of these requirements means that a larger value of +
must be used, i.e., that the closed loop performance of the closed loop system will
not have ||T.||ec < 7. The solution for the FI Riccati equation is denoted X, and
that for the OE is represented by Y.

When controllers which achieve ||T;,||o0 < 7 are achieved, the diagnostics in
the MATLAB Musyn Toolbox on the requirement for combination of the FI and

OE solutions give a good indication of the level of optimality of the controller. That
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is, information is given on how close the controller performance is to the absolute
minimum value of 4 for the infinity norm of the transfer function from disturbance
to performance. When the H.-optimal controller is obtained, the largest eigenvalue
p(XoYoo) 15 Just slightly smaller than 1.0. Smaller p(X Y. ) values indicate less

optimal controllers. Values greater than 1.0 mean failure of the synthesis.

The mathematically suboptimal controllers will, in most cases, perform bet-
ter that the optimal ones for several reasons. First, the fully optimal controller
will push all of the uncertainty and performance specifications to their limit, and
will therefore have infinite bandwidths of effort. To obtain an optimal controller
with finite bandwidth, an uncertaiﬁty with infinite magnitude at high frequencies
is necessary. This, however, specifies infinite performance at higher frequencies —
an objective which cannot be met. Therefore, uncertainty and performance de-
scriptions of finite magnitudes are always used. Suboptimal controllers will roll off
at the high frequencies since the synthesis procedure is not pushed to work at all

frequency regions.

Another major reason to use suboptimal controllers exists with systems which
are nonminimum phase (have transmission zeroes with eigenvalues in the right half
plane) such as structures. In a loose sense, the optimal feedback will attempt to
cancel the open loop zeroes by placing compensator poles near the zeroes. Then if
the zeroes are in the right half-plane, the controller will have right half-plane poles,
thereby being unstable when not connected to the plant. Unstable controllers have
difficulties with robustness, hardware implementation, and model reduction, thus
they should be avoided. Robustness is lost because errors always exist between the
model and the actual behavior of the system, and because the system’s behavior
often changes over time. An unstable controller relies on the nonminimum phase
zeroes to give a stable closed loop (controlled) system; therefore, variation of these
zeroes may lead to instability of the whole system. The primary problem with hard-
ware implementation of unstable controllers is saturation due to large magnitude

signals generated by the unstable compensator.

Nonminimum phase zeroes can also be introduced to the synthesis setup by
the uncertainty and performance specifications. The controller is guaranteed to
result in stable behavior of the controlled synthesis setup. Thus, unstable dynamics
in the compensator may be artifices of the synthesis setup (not due to the nominal

system). It is therefore a good idea to check the behavior of the controller on a truth
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model consisting of the nominal description, prior to implementation on the actual
system. This will help avoid unstable closed loop behavior caused by mathematical

devices.

Model reduction of the compensators is often necessary because of limits
on controller size for hardware implementation. Model reduction tools such as
Hankel singular value truncation work only for stable systems. Unstable controllers,

therefore, cannot be model reduced for proper implementation.

From experience with the Caltech system, a good rule-of-thumb for choice of
the optimality of the feedback algorithm is to choose controllers with p(X oY) <

0.45. Different types of systems will require different optimality choices.
6.5.4. Computation of p

Computation of the value of y and of the D-scales also has some features
worth noting. As previously mentioned, the value of y cannot be computed directly
from its definition. Instead, upper and lower bounds of the scaled M. the closed
loop synthesis setup, are used to guide the value of u. For each frequency value,
p will have different bounds, thus it is necessary to choose frequencies at which to
compute g. This creates a tradeoff between the resolution of the bounds and the
computational time necessary to find the maximum value of p over all frequencies.
If resolution is not high enough, peaks in the value may be missed, leading to overly
optimistic estimates of x4 (p too small). That is, frequencies where y > 1 can
be missed. However, larger numbers of frequency points increase computational

expense.

The upper and lower bounds for p are found in certain cases to differ by
a significant amount [Bmu]. Use of the upper bound as the value of u can be
extremely conservative if there is a large gap between the bounds. Assuming that p
1s larger than actual sacrifices obtainable performance but gives greater robustness.
On structural systems, experience is that these bounds differ by less than 10%.
Therefore, performance is not greatly sacrificed here because of the inability to

directly compute p.

6.5.5. Using D-scales to Study Interactions in the Synthesis Setup
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It is also useful to track the progress of the D-scales as iterations of u-synthesis
proceed. In each D-iteration portion, it is necessary to create approximations to
the scalings for the upper bound of y. The D-scales, when collapsed into the
synthesis setup (as D on one side and as D! on the other) alter the performance
specifications so that the next controller synthesized avoids the worst case (in the
sense of 4) disturbances. Interactions between the various inputs and outputs of
the synthesis system are quite complex, so the D-scales can alter the problem in
sometimes unforeseen ways. Therefore, tracking the D-scales can indicate problems
with the synthesis setup. In particular, large changes in the average magnitude
(over the frequency band of interest) of a D-scale indicate that the H.oproblem is
being changed greatly. Figure 6.8 gives an example of characteristics the setups

often have with respect to the D-scales.

2 < w2

Figure 6.8 - Common Interactions of D-scales in Synthesis Setup.

The solid lines represent connections specified by the controlled syn-
thesis setup. The dashed lines give the closing around the A-block.
When this loop is closed (for p-analysis), the D’s cancel each other
out; however, with the A loop open (for the K-iteration) the D’s can
greatly alter the synthesis specifications.

If D is of very large magnitude, D™! will be of very small amplitude. Then
the effect of w2 on z1 will be greatly increased, while the effect of wl on z2 is
significantly decreased by the D-scales. This could for example, result in a very
small gain controller from the K-iteration. This type of problem is avoided by
making sure that w1 affects z1. Generally this prevents unpredictable scalings of

the synthesis setup.
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The shape of the D-scales can also be used to get some idea of what the worst
case disturbance is. This is done by observing which channels are scaled to large

magnitudes by the D-scales. and by noting at what frequencies this occurs.

On the Caltech structure, the interactions in the synthesis setup are replaced
when large changes in the D-scale magnitudes occur. The order of the D-scales is
kept below 2 to avoid increases in the size of the synthesis setup. For the first step
of p-synthesis, the order of the synthesis setup is approximately 39. For each 3 x 3
A-block, each order for the D-scaling adds six (three for D, and three for D™1)
states to the synthesis setup. Therefore, it is desirable to use low order D-scale fits,

although this increases the conservativeness of the controller somewhat.
6.5.6. Assembly of the Models

Figure 6.9 presents a typical block diagram of the synthesis setup for a struc-
tural system. It contains the features previously mentioned: additive uncertainty,
multiplicative uncertainty (at the output), computer delay, controller scaling, a
nominal model, performance specifications, and controller shaping. The desired
performance results from both the noise and the disturbance inputs affecting the
performance output. Weights (acting like filters) can be placed in any branches
of this setup except for the loop that links the controller signal to the measured
signal. Performance or uncertainty specifications in this loop modify the nomi-
nal model thereby changing the controller directly. The compensator will then be

incorrect for the unscaled system.

When this setup is actually implemented for controller synthesis. the inputs
and outputs to the A-blocks are placed as outputs and inputs respectively to the
synthesis setup. In Figure 6.10, one of the models for synthesis of the Caltech
structure 1s presented. The solid lines represent interconnections for the K-iteration.
The blocks connected to these lines are assembled to form the synthesis setup.
Dashed lines represent where the controller and the A blocks are connected for

p-analysis.

As described previously, the uncertainty descriptions are split between inputs
and outputs. The first (three) inputs and outputs determine additive uncertainty;

the next (three) give multiplicative uncertainty; the following (six) specify noise,
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Figure 6.9. - Standard Synthesis Setup.

It is not necessary to include all the various uncertainty blocks. For
controller synthesis, the connections through the uncertainty blocks are
opened.

disturbance, and performance; and the last (three) give the nominal model. Per-
formance is specified by disturbance and noise inputs and by structural response

and control size outputs. This trades off disturbance rejection, noise rejection, and
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Figure 6.10. - Caltech Flexible Structure Synthesis Setup.

The solid lines show the setup which must be constructed at the begin-
ning of the D-K iteration scheme. Closing the loop around the K gives
the controlled synthesis setup which is then p-analyzed for robustness
and performance with respect to the A blocks.

controller effort. The performance specifications are fed through a A-block for per-
formance. This loop is used so that p can measure performance along with stability.
D-scales are not fit for the performance block. Robust stability of the system is mea-
sured by calculating u only with respect to the uncertainty A-blocks. (Please see
[Pac] for a more thorough description.)

The main weight used to specify greater disturbance rejection is the distur-

bance scaling. This is increased for more overall performance of the system. A
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scaling can also be placed on the performance outputs, but this changes the effects
of the additive and multiplicative uncertainties in addition to increasing the scale
on the disturbance. Specific paths in the synthesis setup may interact to create

objectives other than those expected.
6.6 Conclusions

This chapter has detailed many of the implementational issues of H../pu-
synthesis, and has given details of the mathematical setup for synthesis of con-
trollers. The procedure, while requiring significant user input, develops a very
effective controller design procedure for complicated systems. In the following chap-
ter, results of various experimental implementations of this type of controller are

presented.
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Chapter 7. Experimental Con-
trol of the Caltech Flexible
Structure - Without and With
Str2 Attached

7.1 Introduction

This chapter presents results of experimental application of H /u-synthesis
developed control algorithms on the Caltech flexible structure (CFS) and discusses
some of the experimentally observed limitations of active structural control. The
first group of experimental results are of control of the basic CFS using either the
voice coil or the proof mass motors for actuation. The second group of results
combines controller design with structural combination modeling. The setup for
an uncertainty description based on a secondary structure attached to a primary
system 1s given. Then, results of control of the CFS modified by Str2 are shown.

The chapter finishes with a discussion of results.
7.2 Results of Control of the Caltech Flexible Structure

In this section, a presentation is made of the results of implementation of
synthesized controllers on the experimental setup. The system to be controlled is
the three bay configuration of the CFS. The main goal is vibration attenuation

which 1s specified by trying to remove modal responses of the structure.

7.2.1. Measuring Performance
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The system in question is a multiple input multiple output (MIMO), mul-
tiple degree-of-freedom (MDOF) structure with various additional dynamics such
as those caused by the proof masses. Performance can therefore be measured in
several ways including modal peak magnitude reductions, maximum transfer func-
tion gains (Heo-norms), or energy under the transfer function curves (H;-norms),
just to name a few. Similarly, various combinations of actuator inputs and sensor

outputs may be used to measure the performance of the compensator.

Unfortunately, when these metrics are used on digitally sampled systems,
the values obtained depend on the resolution of the discrete fast Fourier transforms
(FFTs) of the data. Also, values such as Hoo-norms are skewed by actuator or
sensor dynamics. For example, the 2-zero rollup of the proof masses will place the
peak transfer functions at high frequencies whereas the largest modal responses are
really at lower frequencies. Similarly, H,-norms are distorted because of the need
to integrate over linearly spaced frequencies. Since the controller shifts energy from
one region to another by adding energy to the system, the integration over frequency
can give a larger Hy norm for a controlled system than it gives for the open loop

system.

The performance measures used here are comparisons in the frequency do-
main of the disturbance response of the open loop and the closed loop transfer
functions. The transfer functions are obtained by doing a frequency by frequency
divisions of the FF'Ts of the sensor outputs by the FFT of a chirp-type disturbance
input. Since the performance objective for most of the controllers is to reduce modal
(vibratory) responses at particular sensors to disturbances at certain actuators, the
magnitude of these transfer functions are used. The magnitude plotted is the root
mean square (RMS) sum of all the sensor signals generated as responses to excita-
tions. Frequency point by frequency point summation is done across the relevant

transfer channels.

The amount of peak reduction for each mode and the amount of increased
response in the frequency regions between the peaks are discussed to rate the per-
formance of the feedback algorithm. Good performance is indicated by reduction
in modal peaks of the open loop response when the compensator is on. A few con-

trollers are presented to demonstrate the limits of control that can be achieved on
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the CFS. The experiments are quite repeatable. Systems with more powerful actua-
tors and different kinds of sensors can probably produce more dramatic disturbance

rejections than those obtained herein.

There are two basic control arrangements that are discussed. In the first,
the three voice coils are used to minimize motions at sensors 4, 5, and 6 with
disturbances caused by proof mass 1. This is a good example of noncolocated
multivariable control. The second configuration uses the three proof mass actuators
to minimize motions at the bottom bay sensors (4, 5, and 6) when excitation is
caused by voice coil 1. Since the proof masses are inertial actuators, and since they
are smaller than the voice coils, they have significantly less control authority. Less
performance is therefore expected from this colocated control experiment. This is
not generally a feature of collocated systems, but because of the equipment used

here, less performance is obtained.

The control algorithms are implemented on a Masscomp 5400 data acquisi-
tion computer which is set up for active control. While the system is configured to
excite six actuators and to store data from ten sensors, it is only set up to actively
control three actuators using three sensors with multivariable controllers. Addi-
tionally, it locally controls the three proof masses using their respective LVDTs. In
the multivariable experiment which uses the proof masses for control, the central
(MDOF) and the distributed (local) controllers work together.

As previously described, the controllers are synthesized in the continuous
domain. Because of the uncertainty and performance specifications, they sometimes
are on the order of 45 to 60 states. These are then model-reduced down to around 30
states using Hankel singular value methods. Only those states with Hankel singular
values greater than 1x 10™* are kept. The controllers are then put in block diagonal

real form, are transformed to the discrete domain (using a zero order hold), and are
translated to a FORTRAN data set implementable on the MASSCOMP computer.

7.2.3. Performance Results - Voice Coil Control Actuation

Results of experimental control are presented first for the voice coil controller

(noncolocated), followed by those for the proof mass control system (colocated). The
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units on the magnitude plots are sampling bits of output divided by bits of input
signal. The outputs are equivalent to 3.875x107° G/bit, the voice coils impart
force at 6.5156 x 1073 N/bit, and the proof masses give approximately 2.3 x 1073
N/bit. The units are left as bit/bit since the real measure of performance is the
comparison between the open loop and closed loop experiments, rather than the

absolute quantities. The frequencies are all in rad/sec.

Figure 7.1 presents results of the most optimal voice coil controller experi-
ment. Figure 7.1 has the RMS sums of the transfer functions from proof mass 1
to accelerometers 4, 5, and 6. The modal peak reduction is of at least 10:1 (open
loop:closed loop) for the first few modes. Energy removed from these peaks is
shifted to the regions between the open loop modes. The response of the system
appears to be approaching that of a double differentiator. This corresponds to a
two zero rollup of a rigid structural system excited by the proof mass actuator
dynamics as previously discussed. The shift of energy to the zeroes is worth not-
ing. In Figure 7.2 the transfer function (magnitude and phase) from proof mass 1
to accelerometer 6 seems to indicate that transmission zeroes are removed by the

controller (particularly at around 18 rad/sec).

Many of the zeroes in the system are nonminimum phase (eigenvalues in the
right half plane). For single input single output (SISO) systems, it is generally
accepted that it will take infinite effort to cancel a nonminimum phase transmission
zero. Here the results demonstrate that transmission zeroes can sometimes be
bypassed by taking advantage of the MIMO and multivariable characteristics of
the controller. The best explanation is that the transmission zeroes appear at
particular frequencies only in certain input/output channels. In other channels the
zeroes appear at other frequencies. Thus, the controller can take advantage of use
of multiple channels to obtain responses at all sensors across the whole frequency
range. Desire for robustness of controlled systems traditionally dictates that zero-
removal should not be done. Here, however, it can be seen experimentally that

robust controllers giving better servo-type control can be effectively implemented.

Figure 7.3 shows the RMS sum of responses at all six accelerometers to the
excitation by proof mass 1. This plot points out that energy may be shifted to
locations where there is no control sensing or where performance is not specified
(sensors 1, 2, and 3). Even though the system model is quite good, the lack of

sensing of modes 7, 8, and 9 by sensors 4, 5, and 6 reduces performance of these
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Figure 7.1 - Best Voice Coil Controller.

The RMS sum of the responses at sensors 4, 5, and 6 to proof mass #1
are presented. Good performance is obtained at all modes accord-
ing to these plots. The modes appearing in the open loop response
(dashed) are almost completely removed by the controller. The energy
removed from the peaks appears as increased amplitudes of the closed
loop (solid) response at the open loop valleys. The increase in ampli-
tude with frequency is caused by the proof mass dynamics due to the
displacement tracking controller.

modes at the second bay where their response is larger. Another explanation for
these larger responses in closed loop is that the mode shapes are altered by the
controller. The bottom bay begins to behave like a node for the various modes, and

the energy of motion is shifted to the second bay.

With some of the controllers that are designed, the water bed effect increases
the response of modes, particularly the last mode shown (mode 9 at 39 rad/sec). The
best method to avoid this is to trade off performance with uncertainty. Similarly,
the controllers can be designed with smaller effort and can be backed away from
H-optimality. Figure 7.4 presents behavior of the CFS with a controller where
performance has been reduced and uncertainty has been increased. Performance

at the lowest frequency modes is not as good as with the controller in Figure 7.3,
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Figure 7.2 - Best Voice Coil Controller: PF 1 to Accel. 6.

The closed loop (solid) amplitude approaches the response of a rigid
member: Peaks are reduced and valleys are filled in. Similarly, the
phase of the response becomes smooth. Actuator dynamics are present

but excitation of the middle bay is smaller. Responses at all six accelerometers are

presented.

7.2.4. Performance Results - Proof Mass Control Actuators

Figure 7.5 shows results of a proof mass controlled system for excitation by
voice coil 1. Performance here is much less than that obtained by the voice coil con-
troller for several reasons. First, the actuators are inertial, so they have less control
authority than the voice coils which input force directly to the structure. Second,
these actuators have significant stiction which is a nonlinear effect. Therefore, for
different levels of motion, the linear controllers designed by H, methods may loose
their validity. Most significantly, the force induced by these actuators is not in the
structural load path directly, so it cannot exclusively counteract system motions.
The plot in Figure 7.6 shows the response of the colocated sensor/actuator pair for

the open loop system. It can be seen that structure dynamics are obscured by noise
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Figure 7.3 - Best Voice Coil Controller, Response at all Accelerometers.
Redistribution of energy to sensors not used for control is quite evi-
dent here. The system remains stable, but the mid-bay responses of
the structure are slightly increased. In this plot all the modes are ev-
ident, while in the plot for sensors 4, 5, and 6, some of the modes are
almost not sensed. Respones could then be reduced by sensing in more
locations. Performance is still quite good. (Proof mass dynamics are
present.)

created by the actuator. The model is then inaccurate for this sensor/actuator pair.

Thus, larger levels of uncertainty are needed.

When large disturbances are applied to the proof mass controller, it becomes
unstable at higher frequencies. For small motions, performance can still be obtained.
In Figure 7.4, the performance specification is reduction of the physical accelerations

of the bottom bay. This heavily weights the first three modes.

The main conclusion from the proof mass and the voice coil control exper-
iments i1s that Ho/u-synthesis methods are very effective for structural control.
Particularly, the structure can be altered to behave like a rigid structure using

active control methods. It does not seem likely that the behavior of the system
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Figure 7.4 - Voice Coil Controller with Less Performance Specified, Re-
sponse at all Accelerometers.

The lowest modes are removed less here than in the previous plot.

The closed loop responses peak at the modal peaks, but with greater

damping. Increased responses at frequencies between the modes and

at unsensed modes is reduced significantly. Proof mass dynamics cause

the roll up of amplitude with respect to frequency.

can be modified beyond this except in very small frequency ranges. For example,

adding rollup or rolloff to the structure behavior does not seem possible over large

frequency ranges. The energy shift necessary to accomplish this is too large.

Another strong conclusion is that actuators which work in the structural
load paths are much more effective than inertial actuators for modal response at-
tenuation. Use of inertial actuators also couples the flexible mode responses of the

structure to its rigid body behavior. This can complicate position and orientation

control for space systems.

7.3 Robust Control of Modified Structures
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Figure 7.5 - Proof Mass Controller Response.

The excitation actuator here does not have any dynamics. The proof
masses on the structure are less effective for control than the voice coils
for several reasons: First, they must impart force inertially. Therefore,
they are not in the structural load paths, as the voice coils are. Second,
they are smaller in mass than the voice coils. And finally, they are
somewhat nonlinear because of stiction. Here, some modal damping is
still obtained at the lowest three modes. The plot shown here is the
RMS sum of the responses at all accelerometers to excitation at voice
coil 1.

In the above experimental implementations, the uncertainty descriptions are
developed using purely ad hoc methods. Identification of uncertainties is still in for-
mative stages [NeS], so trial and error methods are currently the primary tools for
development of additive and multiplicative uncertainty descriptions. Demonstra-
tions of controllers that are robust to uncertainty are difficult to carry out because
models of the specific uncertainties are not available. Even parametric uncertainties

are difficult to identify or implement on an experimental setup.

7.3.1. Setup for Structural Modification Uncertainty
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Figure 7.6 - Model and Experimental Response for Colocated Proof
Mass/Accelerometer Pair.

This shows another cause for lower performance of the proof mass ac-

tuators: Signals at nearby accelerometers are corrupted by noise in the

proof mass bearings. Good models, then are difficult to obtain.

When a specific uncertainty is known, controllers with stronger performance
can be designed. In the case of structures, this motivates the use of linear fractional
transformations (LFT) for modeling of structure modifications, and in particular
for the design of controllers robust to the docking of structures.

With identified models of systems such as the CFS it is possible to model
assembly of substructures using LFTs. That is, LFTs model the effect of one plant
P on a controller K, and vice-versa. If the controller is replaced by an appropriate
second plant model, and the plants are both structural, the interconnection of struc-
tures can be done with LFTs. The connection procedure works much like response
mode synthesis [CKR}, [Cra], [Ewi], [Hur]. For example, if the last set of inputs
and outputs of P are the connection location for the s‘econdary structure, and I{
is an input/output model of the secondary structure (model is of the same form as

K), the connection of the two systems is calculated as Fj(P, —K ~!). The relations
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that result from this can be determined without inverting ' as presented in Chap-
ters 4 and 5. The derivation of these relations can also be done by constraining
the transfer function models P and I to be equal to each other at the connection

locations.

The extension of the connection procedure to uncertainty descriptions is pre-
sented next. Supposing that there is a block A = §[I] where 6 € [0,1] € R is
an uncertainty structure, the smallest family of plants generated by this A-block
which includes the original plant P and the combined structure Fy(P, —K 1) will
be Fi(P,—K~'A). When § =0, F;(P,—K~'A) = Py;, whereas when é = 1,

F(P,-K7'A) =
Pyy — PuoK NI+ Py Kt ipy, =
Py —Plz{IX"f-PQQ]_lPQI (71)

The last equation is the model for the combined structural system. Since this
framework is the same one used for u-synthesis, it is possible to design compensators

which are of high performance and are robust to the docking of K to P.

In the standard p-synthesis problem, A can be modeled as A = 61 where § €
[—1,1]. Thus the transformation § = (1—§)/2 can be used to convert the connection
problem to the standard p-synthesis framework. Then, the model for the secondary
plant needs to be collapsed into the model for the primary structure to create
a nominal plant separate from the uncertainty block such that Fj(P,—K~1A) =
Fi(P,A). The state space realization for P which generates a family of plants for the
unconnected and the connected structures P and I is presented next. Figure 7.7

presents the schematic transformations from A to A.

The steps in Figure 7.7 can be worked out by standard transfer function
combinations that generate the matrix P in Figure 7.8. The only inversion necessary
is [+ 1 P2p]) 71, The last outputs and inputs are fed through the A-block. In state

space form, if

P::{Pll Pl?}

Py Py
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Figure 7.7. - Transformation from LFT in A to one in A.

A schematic of the transformation from A € [0,1] to A € [-1,1] is

given. This allows use of standard p-synthesis theory and software for
controller synthesis.

et

Py — PplK +

P Py 71E Py —PioK + Pyt
B K[K + ;Pyp]™'

1715 Pn $Pu[K + 3Pt

Figure 7.8. - Transfer Matrix for Structure Connection Uncertainty.

]

and

K= [Kll I\IIZ} — (E__i__bj.),

Ky Koy
then the P system is given by Figure 7.9.

The extrema of this behavior may be verified by setting A = I, with § = -1

and 6 = 1. When ¢ = —1, the resulting transfer function gives the original plant
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A-BQ3C;  —ByQG Bi ~ B2Q3Da1 —ByQ
-FQiC, E-FQG -FQ3Dn -FQ
C1 = D12Q3C;  —D12QG D11 = D12Q3 D —D12Q
HQ3Co -5D12QG HQ3 Dy —3D22Q

1
where Q) = [§D22 + H|™?

Figure 7.9. - State Space Representation of Combined Structure Model
for Structural Uncertainty Descriptions.

When the last inputs and outputs of this model are closed through a

A block, a family of plants is generated which contains the original

system and the docked systems.

P, while § = —1 generates the attached system F;(P,—K~!). The system’ P is
the model for the original plant modified by 1/2 the attached plant. The identity
matrix in A = 61 is of size equal to the number of degrees of freedom for each

connection point between the systems.

Controller synthesis via p-synthesis is carried out by changing the nominal
plant to P, and by adding the A-block necessary for modification to the synthesis
setup. The previously used additive and multiplicative uncertainties are still needed
because of the errors in the models P and K. The number of states in P is the sum

of the numbers of states in P and K.
7.3.2. Results of Modification Experiments

An idea of the effects of modification on controller effectiveness can be ob-
tained by adding a mass to the actively controlled CFS. In Figure 7.10 the results
of control of the mass-modified CFS are presented with the open loop response
for the unmodified system. This plot presents two different modifications and the
response of the original controlled system. The modifications involve addition of
masses of size 430 grams and 953 grams to the bottom bay of the CFS. As can be
seen, addition of these masses slightly reduces the higher frequency responses of the
controlled system, thereby improving the controller performance. This controller
had been designed with the 953 gram mass attached to the model of the CFS.
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RMS responses, All sensors, Masses Added
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Figure 7.10 - Controller with Mass-Modified CFS.

Masses of different sizes were added to the bottom bay of the structure
to test the robustness of a controller. This controller is not the best
one as evidenced by the slightly modal responses of the lowest modes.
Generally, additional mass seems to improve the controller response.
Proof mass dynamics are present.

From these results, it appears that addition of mass improves the controlled
system response when vibration minimization is the objective. Mass reduction
therefore causes deterioration of performance. There is a likely explanation for
this: Additional mass reduces the effect of disturbances on the system because the
structure has a larger inertia. Unfortunately, in systems for which target tracking
is the objective, additional mass will probably worsen performance because of the

larger inertia of the system to be controlled.

The goals of the docked structure control experiments are to show that con-
trollers can be designed to be robust to two structures, to show instability (or poor
performance) of improperly designed compensators, and to measure the achievable

performance of active control for a modified structure. Figure 7.11 presents the best
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unmodified structure controller’s effect on the CFS and the combined structural sys-
tem. The RMS sums of the response at accelerometers 4, 5, and 6 to excitation

from proof mass 1 are shown.

The properties of Figure 7.11(a) are discussed in a previous section. Control
of the first five modes is excellent as demonstrated by the removal of the lightly
damped modal peaks. There is a little shifting of energy to frequencies which had
open loop transmission zeroes. Increases in responses with frequency in all the plots

for voice coil controllers are caused by dynamics in the proof mass actuators.

In Figure 7.11(b), the best unmodified structure controller is applied to the
CFS with Str2 connected to it. When the second structure is attached, the addi-
tional mode due to bending of Str2 in direction 1 at 11 rad/sec is excited by the
compensator, so the performance and overall stability of the closed loop system is
destroyed. The response is dominated by controller excitation of this mode. It is
interesting to note that responses of the other structural modes are not seen. That
is, it seems that although the controller destabilizes the Str2 mode, it still effec-
tively controls the modes it was designed to attenuate. Visually, Str2’s motion in
its main direction 1 mode increased with time when the controller is on. Motions
of the bottom bay of the CFS are kept very small until Str2’s vibrations become
large. Then, the forces due to these motions start exciting the CFS. A descriptive

analogy is motions of the tail wagging the dog.

Using the same additive and multiplicative descriptions, but adding in the
structural uncertainty, another controller is designed. The performance of this
compensator on the original system is shown in Figure 7.12(a), and the response of
the modified system is presented in Figure 7.12(b). When applied to the original
system, this controller exhibits no loss of performance compared to the controller
in Figure 7.11. In fact, there is less increase of responses at frequencies between
the modes with this controller. When this compensator is applied to the combined
system, there is a slight loss of performance, but the mode at 11 rad/sec is kept
stable. In fact, it is even attenuated somewhat. The performance loss is evidenced
by slight modal responses at 4.5 and 10 rad/sec. Thus, as intended this controller

is robust to the structural docking.
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Figure 7.11. - Best Voice Coil Controller for Nominal System.

On the left, the controller is applied to the original system: good perfor-
mance is obtained at the bottom bay sensors. On the right, the closed
loop performance is unstable. This is shown by the large peak at 11
rad/sec, which resulted from increasing motions of the flexible mode of
Str2. The bottom bay was quite still, but Str2 started moving quite
significantly. Motions of Str2 then excited the rest of the structure.
Proof mass dynamics create the rollup with frequency.

RMS responses; Sensors 4,5,6; Original Structure RMS responses; Sensors 4,5,6; Combined Structures
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Figure 7.12. - Voice Coil Controller Robust to Structural Modification.
The structural modification uncertainty is used here to synthesize a

controller which is robust to the docking, and which has good perfor-

mance for the CFS (a) and for the CFS plus Str2 (b) configurations.

Only slight modal responses can be seen in (b). (Proof mass dynamics

are present.)

Controllers which are robust to the modification can also be designed using

only additive and multiplicative uncertainties, but they have less performance. Fig-
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Figure 7.13. - Controller with Larger Uncertainty Acting on Both Plants.
By just increasing the amount of additive and multiplicative uncertain-
ties, controllers are developed which are stable for both configurations.
Performance, however is reduced as evidenced by the modal responses
of the closed loop systems (solid). Decent performance is still obtained.
(Excitation dynamics are present.)

ure 7.13 shows the RMS sum of the measured transfer functions from proof mass 1
to sensors 4, 5, and 6 for the original CFS and combined CFS-Str2 structures. This
compensator uses 10% additive and 10% multiplicative uncertainty without any
structural uncertainty. Because of the larger specified uncertainties, desired perfor-
mance is scaled back in the synthesis setup. Implemented performance, as can be
seen, is is also less than that of the controller tailored to the specific uncertainty
type, especially in the region of the added mode. The fundamental CFS modes have
larger modal responses, especially in the combined configuration. So, although this
controller is stable, its performance is not as good. These last experiments demon-
strate that proper modeling of uncertainty allows for improvement in performance.
Less conservative uncertainty descriptions result in more aggressive (and therefore

higher performance) controllers.

Note on p-synthesis for this case: The precise A-block structure for mass
modification is a scalar times identity block. Thus, the A-block depends on just
one real parameter §6 € [—1,1]. Unfortunately, computation of the D-scales is not
yet available for real scalar times identity blocks. Instead, a full complex A-block
is used here (T(A) < 1), with a slight loss of performance and with an increase in

robustness.
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7.4 Conclusions

The strongest conclusion that can be drawn from this work is that MIMO
multivariable controllers can be designed and implemented in experimental struc-
tural systems. By using multiple control channels, right half-plane transmission
zeroes can be robustly controlled, leaving a system that acts like a rigid body. Sim-
ilarly, it may be concluded that the limit of the vibration reduction problem, rigid
system behavior, can be obtained experimentally over significant frequency bands.

Structural modification work is presented in this chapter to demonstrate
that given a known uncertainty, high performance controllers can be designed and
experimentally implemented. As shown experimentally poor uncertainty modeling
leads to unstable controllers. In the case here, controllers which maintain good
performance are designed for a system which has a secondary structure attached to
it some of the time. The method for modeling the uncertain interactions between
the structures based only on identified models of the system is also presented and
shown to be effective. This provides an efficient method for design of controllers for

use during docking of actively controlled structures.
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Chapter 8. Conclusions and Di-
rections for Future Work

8.1 Main Results

In this thesis, three major portions of active control for structures have been
addressed: identification, modeling of structural modifications, and design of active
controllers. In Chapter 7, the topics were combined into active control of a modified
structure quite effectively. The results of this work may be broken down into the
particular fields of interest.

8.1.1. Identification

In structural identification, the development from this work is the demonstra-
tion that closely spaced modes can be separated without the previously specified
resolution of frequency domain data. Similarly, more than one mode per sensor
can be identified. This is done through use of multiple input and multiple output
channels. The procedure is demonstrated on numerical and experimental setups.
In particular, the experimental setup has three pairs of very closely spaced, lightly
damped bending modes and three torsional ones spaced between the pairs. This
greatly adds to the difficulty of identification, but excellent results are still obtained.

With the ability to develop models of this good quality from identification
experiments alone, it may not be necessary to use results from estimation programs
such as finite element codes for controller synthesis. The estimates should still be
used for overall system physical design, but identified models should be used for
compensator development. Use of the identification models also reduces problems
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with assuring that amplifier gains are precisely known and with checking connections

to make sure polarity of signals are not reversed. Implementation is thus easier.
8.1.2. Modification Modeling

The interesting component mode synthesis result is the extension of response
mode synthesis to experimentally derived models of structures with noncolocated
sensors and actuators. By doing two experiments on each structure, the behavior
of the combined structures can be predicted in an input/output framework quite
inexpensively computationally. This method also bypasses the need for measure-
ment of the gains of amplifiers and actuators. (Their behavior can be changed by
connections to different systems.) Finally, the method is general enough to be used
with locally controlled actuators. Experimental results on a structure with closely
spaced, lightly damped modes are given to show the connection of two structures
identified independently. Several suggestions are made for improvement of experi-
mental implementations of the proposed methods.

Here, once again, reliance on analytical estimates of system behavior is
greatly reduced. Although more experimental procedures are necessary to obtain
enough information for model connection, the results (if the experiments are prop-
erly carried out) are more accurate than prior estimates. The improved accuracy is
mainly due to use of actual behaviors rather than estimated ones. Similarly, use of
input/output behavior for connections removes the need for explicit amplifier and

sensor modeling.
8.1.3. Active Control

The results of interest to active control are the demonstrations of robustness
and performance for H/p-synthesis. Modal responses for several closely spaced
modes are practically removed through use of multivariable optimal controller. Ad-
ditionally, several transmission zeroes are shown to be bypassed by the active con-
trollers, thereby opening up the possibility of greatly improved tracking by systems
with nonminimum phase zeroes (when not controlled). Different actuation schemes
are used to show that for structural vibration control, actuators that induce force

through load paths are significantly more effective and simpler than inertial motors.



- 162 -

From an identification validation perspective, the excellent active control
results indicate that the model developed through frequency domain modal curve
fitting is effective. While some work still needs to be done on developing additive
and multiplicative uncertainty description identification, the ad hoc procedures used

here were adequate.
8.1.4. Active Control of a Modified Structure

Feedback compensation results are also presented to show the need for accu-
rate uncertainty models. A system with a well modeled uncertainty - a structure
to be attached to it - is shown to have unstable controlled behavior without proper
modification modeling, but excellent controlled behavior when modeled correctly.
Thus, more accurate descriptions of system uncertainties allow for more effective
controllers. Similarly, poor uncertainty descriptions can easily lead to unstable or

ineffective compensators, as demonstrated experimentally.

The work in this thesis combines structural dynamics and control theory to
develop results which are useful in each field. The LF'T control feedback framework
is used to extend a structural dynamics procedure (response mode synthesis), and a
structural control demonstration shows the possibilities of control implementation
(removal of nonminimum phase structural transmission zeroes). The final experi-
ment also gives a particular method for uncertainty modeling (structural modifica-

tion).
8.2 Directions for Further Work

One of the questions that remains to be researched is how the MIMO multi-
variable control works for tracking problems with structural systems. The method
seems to be able to modify the systems so they can achieve rigid body performance
over a wide frequency range when the specified objective is vibration reduction.
Since the tracking problem is not too different, it should be possible to obtain re-
sponses of these systems at frequencies higher than their first harmonic. This is the

currently accepted performance limit for SISO controlled systems.

The structural modeling method presented also provides a possible tool for
H.-optimal structural modification and for combined control-structure optimiza-

tion.
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One of the main restrictions of the assembly method was that sensors must
be aligned so that radial torsional mode accelerations are not sensed. It will thus be
worthwhile to extend the LFT framework to input-output nonlinear systems such

as structures with sensing of radial accelerations due to torsion.
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Appendix 1. A Variational In-
complete Proof to the ».-optimal
Controller Problem

i.1 Introduction

This is an incomplete proof for the H,-optimal controllers. It is not com-
plete for two main reasons: First, the variational proof method provides only local
optimality guarantees. For global optimality, an operator-theoretic approach such
as that used in [DGK], [DGF], [GID] should be used. Second, the proof for the
observer is not complete because the setup for use of variational methods has not
yet been determined. The full solutions are in [DGK] and [GID], among other pa-
pers. The proof herein for the optimal Full Information (FI) problem is taken from
[Hwa], although the problem setup has appeared in other works [Isi], [KwS].

In the following sections, lower case letters are used to denote vectors of
appropriate sizes, and upper case letters represent matrices. Variables representing

scalar quantities are so noted.

The basic problem may be separated into two parts based on the separation
principle [DGK][KwS]. The first problem is: given that the system’s state and the
disturbance affecting it can be sensed fully, what is the best constant feedback
matrix that minimizes the effects of the disturbance on the performance signal.
Since in this system full information is rarely obtained, the second part of the
problem arises: Given the measured output, what is the best estimate of the state
and the disturbance affecting the system. Once the best output estimate (OE) is
obtained, it can be used with the FI matrix to give the dynamic compensator.
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The control problem to be solved is as follows. Given the system described

z = Az + Biw + Bou
z = 0133 + an -+ D12u
Y= Caz + Dojw + Daou. (11)

where the states of the system are denoted as z, the control inputs to the system
as u, the outputs to be minimized by the procedure as z, and the measured signal
for control as y. In this case, Dy; and Djy are taken as zero so that the algebra
works more cleanly. The other assumption set used is Dg; Dy =1 and Dng%ﬂ1 = I
The goal is to minimize the Ly-norm of z given exogenous disturbances w. Thus,
it 1s desired to minimize the transfer function T}, from w to z. When choosing
to reduce ||z]l2 = ([; zT2dt)%, the norm of T.,, to be minimized depends on the
signal w. If w = wo§(t) where wy is a constant and 6(¢) is the Dirac function at zero,
the induced norm by the transfer function is || Tyy||2. This is the standard Linear
Quadratic Regulator problem (LQR/H,). If w is a persistent signal, the induced
norm is ||Tw||co; therefore, the H, problem is obtained. Here, the H, problem is

discussed.
i.2 Full Information

The approach used here is variational calculus resulting in Lagrange’s equa-
tions for minimization of a cost function. Basically, the goal is to find a control
Ooo 2T zdt, subject to the state equation

T = Az 4+ Byw + Bou. To keep the algebra more straightforward, without loss of

algorithm for u which minimizes ||z||} =

generality, the cost function may be taken as .5||z||%, subject to constraints. Since
w is unknown, the cost should also be minimized with respect to the worst case w.
In this case, the worst case w is the one with the smallest ||w]||o which gives the
largest ||z||2. This would be the one which maximizes ||z||3 — ||w||?. Since ||z||3 is

constrained, the search is done for

min, maxy 3([|2[7 — [[w]f3) (i.2)
subject to the constraint on evolution of the state.

Letting ¢ be a Lagrange constraint variable, the cost to be mini-maxed is
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<1
Jrr = / ~(zTz — wTw)
o 2

+ (=27 + 2TAT + wT BT + uTBT)odt, (i3)

where all the vector quantities are functions of time, or by transformation to the
frequency domain, functions of frequency. To mini-max this problem, a search is
made for the stationary points of the cost, i.e., the points where §J = 0. Where ¢

represents a virtual variation. This gives rise to the Lagrange equations since

d oJ 0J
6J 2, 5 Gn) = (= — =
(91’Q.> q ) (dt 8(]1 aql) q1
d aJ oJ
o (2 L sa =0 i
+ 4 (5 Be 8qn) gn =0 (i4)
Therefore, each term multiplying the variations é¢;, 7 € {1,---,n} must

equal zero.

Recalling that z = Cyz + Diau,
JFI = / -é-((l:TClTCll' + 2$TCITD12U -+ UTD?QDlzu
0

—wTw) + (=27 + 2TAT + wT BT + wTBT)odt. (i.5)

The variation with respect to ¢ and with respect to p give
z = Az + Biw + Bou
o= —-ClTClm - C’lTDlgu - ATQ. (1.6)

The first of these is just the state equation. Next taking the variations with
respect to u and w and using that D;Z; Dy, =1,

u = —[D],Ciz + Bso]
w = B;‘FQ (17)

To determine if this is a maximum with respect to w, the second variation of
J with respect to w is taken and found to be = —1. Therefore, this is a maximization
with respect to w. Now, substituting the values for u and w into the equations 6,
the following system is obtained.
o= —[CTCy — ¢F D1, DY, C1)z — [A - B DT,C1) 0
i = [A— B,D127Cy)e + [B; BT — ByBT)e. (i.8)

Noting that since D}, D1y = I, [I — D13D?%)] = [I — D12 DE)T[I — D1, DT,]. So

equation i.8 becomes
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6=~CT[I - Dy DE)FI - D12 DE)C12 — [A - Bo DL, 1170

¢ =[A— ByD127Cy)z + [B1 BT — By B ]e. (i.9)

At this point, it is worth discussing the proof method a little more. When
full information feedback is used, a constant gain matrix Kps is needed such that
u = Kprz minimizes the cost function. Using the result for u in equation 1.7 and

the FI gain matrix definition

u=—D}LCiz — Byp = Kpyz. (i.10)

For this to hold, ¢ must be a function of z, which shall be taken as linear,
s0 p = Xooz. Substituting into Equation i.10, and into Equation 1.8, the system
becomes the one shown in Figure 1.1.

I, _ A- B, DLy BB — B,BT ( I ) .
Xoo )"~ | =CI(I - D12 DL)T(I — D12 DE)C —[A— B, DL,CHT | \ X

Figure i.1. - System of Differential Equations which Leads to an Alge-
braic Riccati Equation for X .

Premultiplying both sides of the equation in Figure i.1 by [Xo = I], an
algebraic Riccati equation results for X .
0 =Xo(A - By DL,C) + (A - B, DL, 01T X o
+CT(r - D, D)7 (I - D1, DT, C,
+ Xoo(B1BY — B2BY )Xo (i11)

The solution X for this may be computed if the bracketed (Hamiltonian)
matrix in Figure i.1 does not have any eigenvalues on the imaginary axis. There
are two optimal solutions for X: one of which is positive definite and the other
which is negative definite. For stability, the positive definite solution is used. The
solution is symmetric. Once X is obtained, the FI feedback and the worst case

disturbance w,,. can be computed as
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u=—[DL,C + Bf X ]t = Kprz

i.3 The Output Estimation Problem

Now that the FI problem is solved, the best estimate of the state is needed.
The state estimate & then replaces z in w = Kprz. Similarly, the estimate @ of
the worst case disturbance w,,, becomes @ = B; Xoo. Since the system evolution
equations are given, and y can be measured, the estimator equation can be set up.
The estimate § of y may be obtained as § = C3& + Ds1. Then the equation for
the estimator can be chosen as

& = A% + By + Byu
+H(G —y). (i.13)

The term H(j — y) is the driving term, and H is a constant gain matrix to be

determined. If w and the initial state are known exactly, the driving term is not

necessary. Subtracting the state estimate equation from the state equation, the

state error (e) equation may be obtained. Letting W = w —# and § = y — 4,
é=(A+ HCy)e+ (By + HDay)w

7= Che + Dy w. (114)

A method is presented which gets very close to constructing the Riccati equa-
tion for the optimal output estimator. As previously stated, this proof is incomplete,

but is presented here to aid in the understanding of H,control.

A possible objective is minimization of the difference between the actual
sensed output and a predicted sensed output. It would also be useful to minimize
the error between the control signal generated by the estimated state and that
created using the actual state. The errors in the state and in the disturbance
estimates are then minimized, thereby reducing the driving term in the observer
equation. This can be done subject to the worst case disturbance and subject to
the evolution equation for the state error. Mathematically, the goal is to minimize
S(||7l12 + |[wl|2) where W = BI X,ce. Substituting ¥ = Cze + D@ and T =
—~[DL,Cy + BT X o]e = Fe, the cost is
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Jop =
/ %(eTFmFooe + T Cye + 2w DL, Cre + WF DI, D1 W)
0 .
+ [T+ eT(A+ HC)T +TF(By + HDa1)T)Adt. (i.15)
where )\ is a Lagrange undetermined coefficient. Variation with respect to
A, e, and w produces the following system.
é = (A + HCQ)G + (Bl + HDzl)"lIJ-
A=—FLF e+ —-ClCie— CIDyw— (A+ HCy)TX
D%Dgﬂl—f = —D£C26 — (Bl + HDQl)T)\. (116)

Using Dy, DI, = I, the last equation can be premultiplied by Ds; to give
D21"u7= —Dgl(Dgle+D21BTA+D£HTA) (117)

The relation Wy, = BlTXooe from the FI problem can be substituted into
the equation resulting from variation of w. For this expression to hold, A is taken
as a linear function of e, A = Yinpe. From here, expressions for H TYimp and for H
are obtained.

HTYimpe = —=[C2 + Do1 B (Yimp + Xoo)le
H=-Y;LICT + (Xoo + Yimp)B1DJ,] (i.18)

Yimp must therefore be sign definite so that the inverse exists. Substitution into the

differential system leads to the system in Figure 1.2 and to the Riccati equation:

—-(A -+ HCQ)T -—FOI;FOO - C;CQ — C2TD2131TXOO
0 (A+ HCs) + BiBT Xoo + HD21 BT Xoo

Y-tmp s y’tmp
()= ()¢

Figure i.2. - Initial System of Differential Equations for Yim,.

0= ~Yimp(A+ HC2) + (A + HC2) Vi,
- Y—tmpBlB;FXoo - Y'tmpHDZIB’jFXoo
—Fosz—CgC2- (i'lg)

The FI Riccati equation gives the relation
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FLFo = XooA+ ATX o + CC1 + Xoo B1 B X o, (i.20)

which is substituted into the system of equations. After some simplification, the
following system is obtained.

0=CTc, - CICy

(Xeo + Yimp)(A — B1D3,C2) + (A = B1 D3, C2)" (Xoo + Yimp)

1.21
+, (Xoo + Y'tmp)Bl(I - D;Dzl)B?Xoo ( )

Note that if the Xo at the end of the last term is replaced by Xoo + Yimp = Yo, a
Riccati equation results with Hamiltonian given in Figure i.3. The solution of this
system would be Yo, = X oo + Yimp, which can be used to generate the optimal state

estimator.

(A— B1DL Cy) Bi(I— DI Dy)(I— DI Ds)BT
C;‘"Cl “C;C2 -[A—,BlD;Fng]T

Figure i.3. - Hamiltonian for OE Riccati Equation.

The full compensator is assembled from the FI and the OE parts. Unfortu-
nately, the term (Xoo + Yimp)B1(I — DI, Dy1)BT Yim, is missing in the setup, so
this final Riccati equation is not obtained. This incomplete proof is presented here

only to provide a motivation of the H,-optimal controller.
i.4 Complete OE Solution

The solution in [DGK] for the optimal observer is that Y, is the solution to
the same algebraic Riccati equation generated by the Hamiltonian in Figurei.3. In
the correct solution, however, the relation for H is different from the one generated

here algebraically.
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