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Abstract

Stationary subdivision is an important tool for generating smooth free-form surfaces used
in CAGD and computer graphics. One of the challenges in the construction of subdivision
schemes for arbitrary meshes is to guarantee that the surfaces produced by the algorithm
are Cl-continuous. First results in this direction were obtained only recently. In this thesis
we derive necessary and sufficient criteria for C*-continuity that generalize and extend most
known conditions.

We present a new method for analysis of smoothness of subdivision which allows us to
analyze subdivision schemes which do not generate surfaces admitting closed-form parame-
terization on regular meshes, such as the Butterfly scheme and schemes with modified rules
for tagged edges.

The theoretical basis for analysis of subdivision that we develop allows us to suggest
methods for constructing new subdivision schemes with improved behavior. We present
a new interpolating subdivision scheme based on the Butterfly scheme, which generates
Cl-continuous surfaces from arbitrary meshes.

We describe a multiresolution representation for meshes based on subdivision. Com-
bining subdivision and the smoothing algorithms of Taubin [61] allows us to construct a
set of algorithms for interactive multiresolution editing of complex hierarchical meshes of

arbitrary topology.
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Chapter 1 Introduction

Subdivision is a method for generating smooth surfaces, which first appeared as an ex-
tension of splines to arbitrary topology control nets. Efficiency of subdivision algorithms,
their flexibility and simplicity make them suitable for many interactive computer graphics
applications.

Although the basic subdivision algorithms are simple, the properties of limit surfaces
generated by subdivision may be quite complicated and difficult to analyze. In this thesis
our main focus is on the analysis of C!-continuity and construction of stationary subdivision
algorithms. This class of algorithms is particularly important because all classical subdi-
vision schemes [13, 5, 20, 40] are stationary. Understanding the algorithms in this class is
essential for understanding more general forms of subdivision.

Although subdivision was introduced as a generalization of knot insertion algorithms for
splines, it is much more general and allows considerable freedom in the choice of subdivision
rules. These degrees of freedom can be used to obtain surfaces with specific properties
(varying degree of smoothness, interpolation) or with features such as creases and cusps.
To take advantage of this flexibility we have to understand the dependence between the
subdivision rules and the behavior of the limit surface. Because these dependences are
difficult to analyze, most of the work on subdivision on meshes of arbitrary topology was
centered on analysis of spline-based schemes, which constrained the variety of surfaces that
could be generated.

One of the goals of this work is to develop a framework for analysis of general sub-
division. We prove general necessary and sufficient conditions for tangent plane and C*-
continuity of subdivision and describe practical methods for analyzing C'!-continuity. We
have implemented algorithms that allow us to perform Cl-continuity analysis automati-
cally, potentially for whole families of subdivision schemes and prove C!-continuity for all
valences of extraordinary vertices.

Another goal was to design practical algorithms for manipulation of subdivision sur-
faces. We have chosen a particularly challenging application, multiresolution editing, to

demonstrate how theoretical properties of subdivision lead to efficient adaptive and local



algorithms.

In the next sections we introduce the subject of this thesis and discuss the related work.

1.1  Subdivision

Given an initial mesh, subdivision computes a sequence of refined meshes converging to a
limit surface. The refined meshes are obtained by adding new vert