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Abstract

A class of subgrid-stress (SGS) models for large-eddy simulation (LES) are presented based
on the idea of structure-based subgrid-stress closure. The subgrid structure of the turbulence
is assumed to consist of stretched vortices whose orientations are determined by the resolved
velocity field. An equation which relates the subgrid stress to the structure orientation and
the subgrid kinetic energy, together with an assumed Kolmogorov energy spectrum for the
subgrid vortices, gives a closed coupling of the SGS model dynamics to the filtered Navier-
Stokes equations for the resolved flow quantities. The subgrid energy is calculated directly
by use of a local balance between the total dissipation and the sum of the resolved-scale
dissipation and production by the resolved scales. Simple one- and two-vortex models are
proposed and tested in which the subgrid vortex orientations are either fixed by the local
resolved velocity gradients, or rotate in response to the evolution of the gradient field. These
models are not of the eddy viscosity type. The choice of the energy spectrum introduces
the Kolmogorov prefactor as a parameter. In the simplest case we make an a priori choice
of the Kolmogorov prefactor which we refer to as the fired Ky scheme. Alternatively, one
can compute the Kolmogorov prefactor dynamically by enforcing continuity of the resolved
energy spectrum with the subgrid spectrum. This introduces an additional equation for
the Kolmogorov prefactor which is solved in conjunction with the equation relating the
dissipation. This is referred to as the coupled Ky scheme. LES calculations with the present
models are described for 323 decaying turbulence and also for forced 32% box turbulence
at Taylor Reynolds numbers, Ry, in the range Ry ~ 30 (fully resolved) to Ry = oo. The
models give good agreement with experiment for decaying turbulence and produce negligible
SGS dissipation for forced turbulence in the limit of fully resolved flow.

Using the coupled Ky scheme, we present LES results for a three-dimensional channel
flow. The coupled Ky scheme is implemented in planes of constant height and the Kol-
mogorov prefactor is calculated as a function of the wall-normal direction by computing

a two-dimensional energy spectrum. Results are presented for the alignment models in an
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open channel of dimensions 47 X 27 x 2 at a Reynolds number (based on the friction velocity
and the channel half width), R, = 180 and a grid resolution of 32 x 32 x 65, where the last
index refers to the wall-normal direction. Results compare favorably with direct numerical

simulation (DNS).
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Chapter 1

Introduction

Computing turbulent flows is one of the most challenging problems in computational fluid
dynamics (CFD). Though CFD has enjoyed considerable progress in the last decade par-
tially due to developments in computing hardware and software, the full range of scales for
turbulence cannot be calculated directly for flows of engineering interest. Thus turbulence
remains the main obstacle in the practical application of CFD. This chapter aims to intro-
duce some of the existing methods used to compute turbulence and provides motivation for
work presented in later chapters.

In a procedure devised by Reynolds (1895), we can write the instantaneous velocity as

the sum of the mean, U;, and the fluctuation from the mean, u,,

Ui (x,t) = Ui(x,t) + ui(x, 1), (1.1)

where the “ 7 denotes the time average defined as

_U_i(x, ) = %/tiT Ui(x, 7)dT, (1.2)

and T is an averaging time which must be long enough to smooth out the turbulent fluc-
tuations but short enough not to average out any imposed time dependence. It follows
from these definitions that the fluctuations themselves have zero mean. Averaging the in-
compressible Navier-Stokes equations according to (1.2), and using (1.1) and noting that

Tu="Ut = 0, one obtains

oU;
= 0 1.3
=0, (13)
;0 (o 0P 0 07T,
ot ‘Lé?j(U@'UJ T om0, Y on0m, (1.4)

It is evident that the equation for the mean velocity is just the Navier-Stokes equation

written in terms of the mean variables, but with the addition of the term involving ;4;.
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Thus the equation of the mean variables involves ten unknowns namely, U;, P and Uy -
This is the classical closure problem in turbulence. Equation (1.4) is known as the Reynolds-

averaged Navier-Stokes equation (RANS) and the term ;@  is known as the Reynolds stress.

1.1 Simulation techniques

The closure problem can be circumvented if we numerically solve the (unaveraged) Navier-
Stokes equation. This approach is known as direct numerical simulation (DNS). If the
mesh is fine enough to resolve the smallest scales of motion and the time stepping is fine
enough to capture the fast time scales of the flow, then the only possible errors result from
the discrete approximation of the equations. If L is the length scale of the computational
domain and 7, a measure of the small scales, then in order to resolve all the scales of motion
one would need N ~ L/n grid points in each direction. This ratio has been shown to be
proportional to Re3/4 (Landau and Lifshitz 1959). Thus the total number of grid points

9/4, Furthermore the number of time steps

required in a DNS is proportional to N3 ~ Re
required to advance the computation for a given period, scales as Re3/4. Given that the
operation count in most CFD codes scale as N?log N, the cost of doubling the Reynolds
number would mean an increase in computational effort by a factor of 16. For this reason
DNS has been restricted to simple geometries at low Reynolds numbers. Notwithstanding
its limitations, DNS has effectively been applied to simple geometries such as flow past a
flat plate, cylinder, channel flow, etc. and has been a useful tool towards understanding
turbulence. Further discussions on this topic may be found in McComb (1990) and Rogallo
and Moin (1984).

The other approach is to arrive at closure models for RANS. The effect of the turbulent
fluctuations that appear in the Reynolds stresses must be modeled in order to close the
system. Among the commonly used closure models for RANS are the mixing length models,
the k — € models and the algebraic Reynolds stress models (Spalding and Launder 1972).
The most severe drawback of the RANS approach is its lack of generality. In most cases
it involves setting many constants which have been derived for simple flow configurations.
When these models are applied to flows which are very different than those used to calibrate
these constants, ad hoc adjustments become necessary. This problem arises because the

Reynolds stress contribution comes from a diversity of scales. While the smaller scales
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may have some universal characteristics, the larger scales in most cases do not as they are
strongly affected by the boundary conditions and the flow geometry. Notwithstanding its
drawbacks, the RANS approach is easy to implement, considerably faster, and less memory
intensive than DNS or LES.

Large-eddy simulation (LES) is an approach intermediate in complexity between the
direct simulation of turbulence and the solution of Reynolds-averaged equations. The LES
approach is to compute the detailed space and time dependence of the flow only at scales
larger than some cutoff whilst modeling the effects on the retained scales of the transport of
momentum and energy of the ‘fine’ scales below the cutoff. The approach is based on two
related assumptions: first that the large (retained) scales are strongly coupled to the outer
flow and the body geometry (boundary conditions) producing the turbulence, and second,
that the ‘fine’ scales exhibit a quasi-universal character with only weak dependence on the
large scales. The heart of LES is thus the construction of subgrid-stress (SGS) models which

are based in some sense on a physically realistic description of the fine scales.

1.2 Filtered Navier-Stokes equations and subgrid stresses

The mathematical distinction between the ‘fine’ scales and the ‘large’ scales was formally

introduced by Leonard (1974) as a convolution operation on the velocity field given by
Ui(x,t) = /G(x — x"YU(x', t)dx, (1.5)

where G(x — x') is the kernel and the integral is over the entire domain. It may be shown
that if G is solely a function of x — x/, then differentiation and the filtering operators
commute (Leonard 1974). The most commonly used filter functions are the Gaussian and
the top-hat filter in real space, and the sharp-cutoff filter function defined in wavenumber
space.

Consider the large-eddy simulation of the Navier-Stokes equations on a grid with a
typical cell size of Az and time step At. Let Uj(x,t) represent the resolved (supergrid)
velocity field and let f’(x, t) be the resolved pressure field. The filtered LES equations for



an incompressible fluid are

aU;
=0 1.
o, 9 (==~ P 9Ty 82U,
— o — (U U;) = - — Y : )
where Tj; is the subgrid stress tensor defined as,
Ty = Ui, — UiU;. (1.8)

Furthermore, if the subgrid velocity is decomposed as Us(x,t) = Us(x,t) 4+ ui(x,t) where
U, is the full velocity field and w; the subgrid field then the subgrid stress tensor may be
broken into three parts,

Tij = Lij + Cyj + Ry; (1.9)

where L;; = (7757 = lNTZ ﬁj are the Leonard stresses, C;; = u@(} i +uj f/} are the cross-terms
and R;; = u;u; are the SGS Reynolds stresses. The Leonard stresses represent interactions
between resolved scales that result in subgrid scale contributions. They can be computed
explicitly given the choice of the filter. For a sharp-cutoff filter they are the aliasing er-
rors. The cross-terms represent interactions between the resolved and the unresolved scales
whereas the SGS Reynolds stresses represent the contribution from the unresolved scales.
A further complication concerns the question of filtering in time. At large Reynolds
numbers, equations (1.6-1.7) appear to have little physical meaning on time-scales of the
order of the Kolmogorov time-scale, (v/ 6)1/2, and shorter. In fact, time-wise integration of
(1.6-1.7) is usually done with time-step Aty >> (v/€)'/? which implies a filter. It would
therefore seem prudent to generalize (1.5) to a space-time filter, with no change in the
formalism. This issue does not seem to have been addressed in the literature but may be

relevant to proper comparison of LES and filtered DNS.
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1.3 Review of some SGS models

Most popular SGS models use Smagorinsky’s realization of the eddy-viscosity model. The

subgrid stresses are written as (Smagorinsky 1963)
1 2 o~
Tij — 3 0iiThi = =2 (C A) fS[Sij, (1.10)

where gu = <35’i/8$j -+ aﬁj/’aazi) /2 is the resolved rate-of-strain tensor, 15]2 = 2§z~j§ij,
and C is a dimensionless number called the Smagorinsky coeflicient. A is some characteristic
length scale, i.e. the scale below which (1.5) represents the effect of the averaged motion of
the neglected scales. Values of C' in the range 0.1 — 0.2 have been used. A difficulty with
assuming C' to be constant is that the eddy viscosity overwhelms the molecular viscosity
in regions of laminar flow. The Smagorinsky based models have proved useful but do have
some drawbacks, one of which is that, owing to their phenomenological origin, the models
provide no direct estimate of subgrid contributions to turbulent transport.

In the “dynamic model” (Germano et al. 1991; Ghosal et al. 1995), this problem is
handled by use of a procedure based on evaluating the Leonard stresses at various filter
scales, together with certain kinematical identities to develop techniques for computing
C(x,t) as the LES computation proceeds. Some other eddy viscosity type models that have
met with mixed success are the spectral-eddy viscosity model (Kraichnan 1976) and the
structure function model (Metais and Lesieur 1992). A few alternatives to eddy viscosity
type models have been proposed, including the scale-similarity model (Bardina et al. 1980),
a model based on estimation of part of the unresolved velocity field and a tensor-diffusivity
model which utilizes a direct evaluation of the non-linear terms by a series expansion and
estimating the low order term (Leonard 1997). These and other developments in LES
modeling are reviewed by Reynolds (1989) and Lesieur (1996).

In a recent attempt to model the SGS stresses, Domaradzki and Saiki (1996) propose
a velocity estimation method for the unfiltered velocity field. The subgrid stresses can
then be calculated using (1.8). An estimate for the unfiltered velocity field is obtained by
expanding the resolved large scale velocity field to subgrid scales two times smaller than
the grid scale. The rationale for such an extrapolation comes from their study which shows
that approximately 75% of the SGS energy transfer is from the range of resolved scales

0.5k, < k < k., where k. is the cutoff wavenumber. DNS data also reveals that almost the
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entire SGS energy transfer is exclusively by interactions of the resolved scales with a limited
range of subgrid scales with wavenumbers k. < k < 2k,.

In this thesis we discuss a structural SGS model put forward by Pullin and Saffman
(1994). The model stems from the physics of the ‘fine’ scales of turbulence and is not of
the eddy viscosity type. In Chapter 2 we discuss and further develop the stretched vortex
models. The application of these models in homogeneous turbulence is presented in Chapter
3. We discuss the case of the Taylor-Green vortex followed by a detailed investigation of
decaying and forced isotropic turbulence. The performance of these models in a three-
dimensional channel flow are presented in Chapter 4. Conclusions and future work are

discussed in Chapter 5.



Chapter 2

Stretched vortex subgrid models

We propose a structural model of the subgrid vorticity based on a stretched-vortex represen-
tation of the subgrid scales. Structure-based models designed for turbulence computation
were discussed by Reynolds (1992) and specific models have been proposed by Pullin and
Saffman (1994), henceforth PS, aimed at SGS modeling for LES, and by Reynolds and
Kassinos (1995) in the context of one-point closure for RANS. The general approach may
be characterized as structure-based subgrid stress closure. In this chapter we implement and
further develop the stretched-vortex subgrid model of PS. Some of this work is reported by
Misra and Pullin (1997).

2.1 Basic model structure

The subgrid vorticity is assumed to consist of a superposition of vorticity fields or ‘struc-
tures’, each with the property that the vorticity is unidirectional, with its magnitude having
no explicit dependence on the coordinate parallel to the vorticity. Some support for this
structure is provided by the observed tendency for alignment between the vorticity vec-
tor and the eigenvector corresponding to the algebraically intermediate principal rate-of-
strain, in several numerical simulations (Ashurst et al. 1987; Vincent and Meneguzzi 1991).
This suggests a small-scale structure which is nearly “two-dimensional,” stretched by strain
which is weaker than the small-scale vorticity. Special cases are the Burgers-Townsend
vortex (Townsend 1951) and the Lundgren stretched-spiral vortex (Lundgren 1982) both
of which have been applied to calculation of fine-scale turbulence properties (Pullin and
Saffman 1993; Pullin et al. 1994). The success of the stretched-vortex models of the fine
scales, while mixed, does suggest that they may form the basis of a viable SGS model
for LES. In what follows we give a description of the subgrid vortex orientation and an
expression for the subgrid stresses. When combined with schemes for relating the vortex

orientation and the subgrid turbulent energy to the resolved scales, a closed system of LES



Figure 2.1: Orientation of the vortex axes with respect to the laboratory-fixed axes.

equations results.

2.1.1 Vortex structure

Since the main problem of SGS modeling for LES is to represent the averaged effect of the
small scales on the dynamics of the resolved scales, there is less need for a detailed subgrid
vorticity distribution than is required by calculation of the fine scale properties themselves.
Here we discuss a simple model of a typical subgrid structure put forth by PS. The homoge-
nous turbulence is assumed to consist of a superposition of velocity fields from an ensemble
of straight vortex structures. The orientation of a particular structure is shown with re-
spect to the laboratory axes in Figure 2.1. We take axes (r1,r2,73) with corresponding unit
vectors (e1, ez, es) fixed in space and define the unit vectors of a particular structure with
e'3 parallel to the vorticity in the structure. It is assumed by PS that the vorticity within

each structure is always parallel to the vortex axis, i.e.

w :w(rlvr27t)e37 (21)
where (r],7y,73) are the coordinates in the vortex-fixed axes with (r},r) lying in a plane
normal to the vortex axis. PS refer to this as cylindrically unidirectional. An essential

assumption in the PS model is that the structures maintain their unidirectionality during
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any interactions between the structures and the large scales. The motions inside the vor-
tices satisfy the Navier-Stokes equations and we further note that the vortex/Navier-Stokes
dynamics enters in an implicit way to be discussed later in this section (see also Appendix
B).

Let E;; denote the rotation tensor describing the transformation of coordinates from the
laboratory-fixed axes, (r1,72,73), to the vortex-fixed axes, ( 7"1, ré, 7*;) This rotation may be
described in terms of the three Euler angles - «, the colatitude angle (the angle between
the r3 axis and the ré axis), 0 is the longitude angle and « the spin angle about the r; axis

(see, e.g., Jeffreys and Jeffreys (1950)). Thus E;; may be written as,

cos acos  cosy — sin Jsiny cosasinffcosy+ cosfBsiny —sinacosy
E=| —cosacosfBsiny —sinfcosy —cosasinfsiny -+ cosfcosy sin o sin -y
sin o cos 3 sin csin 8 cos «

(2.2)

2.1.2 Subgrid stresses

In the (r’l,r;,ré) axes, PS show that the SGS stresses, when averaged over the structure
cross-section, may be given by,

u;u; = u' 2 Zi]’, (2.3)

where Z;; is a diagonal tensor with diagonal elements (%—, %, O). In equation (2.3), the © *
is defined to be an average over the cross section of the vortex, followed by an average
over all possible spin orientations of the vortex ~, where 7y is assumed to be uniformly
distributed in 0 <y < 27. ;':n_i? is thus the mean square velocity averaged across the vortex
cross section and orientation. PS give several formal and heuristic derivations of (2.3). The
simplest way to understand (2.3) is to realize that owing to the assumed distribution given
by (2.1) the velocity associated with the vortex motion must lie in the (7"/17 7"'2) plane, so that
when the average over (r’l, rlz) plane and over -« is taken, the off-diagonal components will
vanish and the turbulent energy will be distributed equally in the 7’; and the 7“'2 directions.

Upon transforming back to the laboratory-fixed axes we obtain,

Tij = ;27;: E;m-ququ, (24)
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where,
%(1 —sinfacos?B) —isinasin2B —4sin2acosf
E'-Z-E=| —lsin®asin2p 3(1—sin®asin?B) —lsin2asing |- (2.5)
——;}: sin 2a cos 3 _211- sin 2asin 3 %(l — cos? @)

We further note that ET - Z - E is independent of ~.

We now introduce the pdf P(a, §) of the vortex Euler angles, such that Psin adadf/4mr
is the probability that (e}, e, e5) lie in the range o to a + do and § to § + df. In general
P(«, B) may be expected to be determined by interaction between the small and large-scale
motions. Our models for this will be discussed later. The expectation over any function

f(Ei;) averaged over the orientation may be defined as,
1 w2 . )
(FEN) =1 [ [ FEs)P(@,8) sina dadp. (2.6)
T™J0o JO
Applying (2.6) to (2.4) then yields,
7ij = uZ, (EpiZpgEj), (2.7)

where it is assumed that u2, is independent of (a, 3).
Using the standard result from homogeneous turbulence (Batchelor 1953), the subgrid

energy may be written as,

w2, = 2K (2.8)
K = /:OE(k)dk, (2.9)

where, E(k) is the subgrid energy spectrum and k. is the cutoff wavenumber. We thus
obtain, the SGS stresses as,

Tig == 2K <Epizpqqu>. (2.10)

The internal and unknown vorticity distribution need not be axisymmetric. Equation
(2.10) holds for an arbitrary internal vorticity distribution in an individual structure fol-
lowing averaging over spin angles v about the vortex axis, when ~ is assumed uniformly

distributed in 0 < v < 27. Equation (2.10) is nevertheless operationally equivalent to an
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Figure 2.2: A typical cell representing the fine scales, showing a single vortex embedded in
a strain field OU;/dz;, provided by the large scales.

axisymmetric subgrid vortex. This may be justified physically by arguing that at suffi-
ciently large Reynolds number and for sufficiently small k., the subgrid vortex dynamics
may be assumed to be evolving on a time scale which is fast compared to At;, the integra-
tion time-step for (1-4). In Aty either some degree of subgrid dynamic axisymmetrization
can be expected, or, alternatively owing to its self-induced motion about its axis, some
azimuthal averaging, equivalent to a sampling of the space of state spin angles, will occur,
thus giving a tendency to equipartition. We remark that (2.10) has a similar structure to
the “dimensionality tensor” of Reynolds (1992).

The stretched vortex model of the subgrid vorticity is very simple. It is effectively a
locally two-dimensional model of the subgrid motion. Possible axial motions inside the
vortex are neglected and so are reconnections of the subgrid vorticity with neighboring
structures. The essential idea of the model is illustrated in Figure 2.2, where the vortex
is embedded in a strain field which is provided locally by the resolved velocity gradient
tensor OU;/ Oxz;. The main physical idea is that the vortex gets stretched/compressed and
rotated by 8U; /Ox;. When stretched, the component of 8U; /Oz; aligned with the vortex
axis will be much weaker than the internal strain field of the small-scale two-dimensional
motion inside the vortex. This will have the effect that the vorticity will align with the
intermediate eigenvector of the total local strain field. This was referred to earlier as the

characteristic of the fine scales observed in DNS.
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2.2 Vortex orientation models

Calculation of 735 from (2.10) requires both K and the distribution of structure orientations.
PS proposed that the subgrid vortex structures are convected and rotated by the resolved

field. The equation describing the evolution of P(w, ) is then

P ~ 8P 1 8 /=~ 1 8 /~
ot 1 ox; Fo \Uasina P == \UsP) =0, 2.1
ot ]833)‘ sin o Ja ( . ) + sina 93 <U’3 P) 0 (2.11)

where 17@, U 5 are the projections of the resolved field r; ou; /0x; onto the unit sphere. The
third and fourth terms of (2.11) give the contribution to the rate of change of P from rotation
by aU; /0z;. The use of (2.11) is justified by heuristic appeal to the ideas of rapid distortion
theory in the context of the present structural model. In the cells, individual vortices feel
the local strain provided by the resolved field and rotate in response. In the PS model, the
subgrid energy was determined by assuming that E(k) had a locally Kolmogorov form. The
local dissipation € was calculated by relating it to the sum of the local production plus the
local dissipation in the resolved field. This model, with appropriate boundary conditions
for P gives closure. 1t is not of the eddy-viscosity type.

We tried to solve (2.11) using an ellipsoidal model for P(«, ) (See appendix A). This
was unsuccessful as it was found that the ellipsoid rapidly evolved into a “cigar” irrespec-
tive of its initial conditions. This is consistent with the analysis of Cocke (1969) and later
Orszag (1970), who showed that for homogeneous isotropic turbulence the length of a ma-
terial line always increases on the average with time. This led us to the natural choice of
delta-function pdf models. Presently we describe an approach based on modeling P(«, )
by product delta functions or a linear combination of products of delta functions. Typically

we have

47

P(a,f) = == b5(a=0)6(8 = ¢) = ple | e"), (212)

where 0(x,t), ¢(x,t) is the specific orientation, and where the unit vectors e and e” are

defined respectively by

e1 = sinacosf, €9 = sinasin f3, €3 = COS Q, (2.13)

e] = sinfcosd, e5 = sinfsin ¢, e; = cosé. (2.14)
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We have introduced the notation p (e | €”) for convenience. While this almost certainly
oversimplifies the subgrid vortex dynamics, the spirit of LES is to obtain the averaged
effect of subgrid motions on resolved scales, and it is hoped that (2.12) will suffice for this
purpose.

It then follows from (2.5) and (2.12) that equation (2.10) can be written as
o
m=®ww%ﬁ/ E(k) dk. (2.15)
ke

We now describe some specific orientation models used presently. The first two align
the vortices with directions defined by the local resolved strain rates. We refer to these as
local alignment models. They are simple and easy to implement. The third model attempts

to couple the vortex orientation to the evolution of the resolved rate-of-strain tensor.

2.2.1 Model 1a: Alignment with e; and e,

This model, proposed by PS, is based on the idea that the subgrid structures respond on
a fast time scale to the supergrid strain. Let the eigenvectors of g,-j, be €1, €2 and e3,
corresponding to eigenvalues A; < Ay < Agz, such that Ay + Ay + A3 = 0. It is assumed that
a fraction of the local subgrid structures tend to become aligned with &3 and the remainder
align with the intermediate eigenvector ;. The orientation pdf is a two-vortex model given

by

Ple)=Ap(elé)+(1—-N)p(e]é), (2.16)
where,
A—————-‘/\2‘+)\3. (2.17)

With equipartition of subgrid energy among the vortices, 7;; is given by,

W=W%~®@Hmfn@r@@m/§mmm (2.18)
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2.2.2 Model 1b: Alignment with e; and the resolved vorticity vector, @

Model 1a will be later shown to contain no backscatter i.e., the subgrid structures are

subject only to stretching. In order to allow for backscatter we propose the model

Ple)=pple|é)+(1-p)ple|e’), (2.19)
Tij = {M(éij — €3i€3;) + (1 — p)(6;5 — efe‘;’)} koc E(k)dk, (2.20)

where (1 — ) is the fraction of structures aligned with the resolved vorticity, with direction
¥ = ;/|w], where @ is the resolved vorticity. This model is arbitrary but can be shown
to include backscatter. As partial justification we note that we should expect complete

alignment with @ in the DNS limit. We have performed calculations with 4 = 0,0.5,1.0.

2.2.3 Model 2: Rotation by A,

The local alignment models make no use of (2.11). A realizable model intermediate in
complexity between (2.11) and Models la-b can be obtained by substituting (2.12) into
(2.11) and using (2.14) to yield

3; = 6; ANLij — 6;-) Cz 6}) Akj; (221)
where B
~ aU

- a;- , (2.22)
2

is the resolved velocity-gradient tensor. In practice, owing to the need for de-aliasing arising
in the implementation of spectral methods, it is more convenient to work with the equation
for a vector defined by ¢; = Q(x,t)e!. If Q(x,t) is chosen such that 7 is a solenoidal field

equation (2.21) can be written as

& o (1T) =0 (2.23)

It is straightforward to show that the axis of a straight compact vortex, with an arbitrary
internal vorticity distribution, when embedded in a time-dependent outer strain field, will

rotate according to equation (2.21). We remark that in obtaining (2.23) we have omitted
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convection of the subgrid vortices by the resolved field. This is done since no coupling of
vortices in neighboring cells is assumed. Thus two vortices originating at different locations
can be brought arbitrarily close together with differing orientations. Some discussion on an
equation of the type (2.23) may be found in Bayly (1992). An alternative is to introduce
a model damping mechanism, which we wish to avoid. In Appendix B an alternative

derivation of (2.21) is presented.

2.3 Subgrid energy and dissipation

Closure of all the aforementioned models requires knowledge of the subgrid energy K. Our
present method of evaluating K, invokes a local balance between the total dissipation and
the sum of the resolved-scale dissipation and the production of turbulent kinetic energy
by the interaction between the resolved rate-of-strain tensor and the subgrid stresses. An
alternative approach based on K — e-type equations for the subgrid vortices is discussed in
Chapter V but is not implemented in this study.

We develop the local balance arguments for a generic single-vortex model with SGS
stresses given by (2.15); they can be mutatis mutandis carried out for the alignment Model
la and Model 1b and the rotation model respectively. It is assumed that the difference
between the total local dissipation €, and the resolved-scale viscous dissipation is in balance

with the local supergrid energy production, €445, so that
€ = 2V§ij§ij + €sgs; Esgs = "gisz‘j =K gij (5@']' — 6;-) 6;)) (2.24)
Closure is obtained by assuming a Kolmogorov form of E(k) with a viscous cutoff

E(k) = Ko/3 g5/, ke <k <n! (2.25)

= 0, k>nt
where KCp is the Kolmogorov prefactor and n = (v3/ e)% is the local Kolmogorov length. We
remark that for stretched vortex models of the fine scales E(k) depends only on the internal
structure of the vorticity and is independent of P(e) (Pullin and Saffman 1994; Lundgren
1982); there is no assumption of isotropy and therefore no inconsistency in combining a

Kolmogorov spectrum with local anisotropy. Alternatives to the sharp dissipation cutoff
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of (2.25) would be to assume that each subgrid vortex is of the Lundgren spiral vortex
form, and to replace (2.25) with the Lundgren spectrum, or to use an exponential cutoff
near kn = 1 as suggested by DNS (Kida and Murakami 1987) and experiment (Saddoughi
and Veeravalli 1994). The sharp cutoff is chosen presently for simplicity; at large Reynolds
numbers the energy integral converges absolutely when (2.25) is used and v — 0. At
low Reynolds number, the model subgrid stresses are subdominant to the resolved viscous
stresses (see PS, Appendix B). The actual form of the dissipation range E(k) would be
important if one were trying to predict the distribution of the dissipation across the subgrid
scales, but the spirit of LES is to get the averaged effects, without having to compute all
the subgrid details, and we expect a simple model to be sufficient for this purpose. We
remark that (2.25) can be viewed as introducing a cutoff parameter kn = J, where we have
chosen J = 1. Finally, it might be objected that (2.25) is inconsistent with the effective
axisymmetric vortex structure. We again emphasize the PS kinematic derivation of (2.10) is
for an arbitrary internal vorticity distribution when the average over uniformly distributed
spin angles is allowed.

Using (2.25) in (2.15) the subgrid stresses may be expressed as,

3Ko o3 2/3 ~
T = N <1 = (ken) ) (615 — €5 €), ken <1 (2.26)
= 0, ken > 1.

When equation (2.26) is substituted in equation (2.24) one obtains,

~ o~ 3K ~
€ == 21/5@'5@' - 2/03 62/3 (1 - (k‘cf])g/g) SZ((S” - 6%’ 6;)), kcn <1 (2.27)
2 kc ’
= 2V§ij§ij7 ken > 1,

which, upon using the transformation

3 1/4
X:&m:@<—) , (2.28)
€

gives

1 -8 X% 438, X431 = X213 = o, X <1 (2.29)
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1-58x% = o, X >1,
where,
S = 2‘54753 (2.30)
Sy = ’Sv]@—gk—gj—@ (2.31)

It can be shown that for S5; > 0 (2.29) always has a positive real root. It will later be
demonstrated that (2.29) can have multiple solutions for X in certain regions of §1 - §2
space, but these will be seen to be well removed from realizable values of Sy, S. The required
solution is defined as that on a continuous branch from the positive solution corresponding
to Sy = 0. When S < 1 this can be shown to satisfy X > 1, which from (2.26) gives zero
subgrid stresses, while for S; > 1 this branch gives X < 1 always. Hence in practice the first
of (2.29) is solved only when 5 > 1; otherwise the SGS model turns off, or equivalently,
we set X = 1. This corresponds to locally fully resolved flow.

For the defined branch, dominant balance arguments can be used to show that in the

limit of v — 0O

2TK3 /1 = 3 .
€ = < (=S8 —even))” Sy <0 (2.32)

= 0, Sy > 0. (2.33)

Equation (2.29) is our basic result for calculating the dissipation, from which the subgrid
stresses follow from (2.26). Presently we use (2.29) in two different implementations. In the
first, Kg is specified as a parameter and is held fixed for the simulation. This is the fized
Ko scheme. In the second implementation, Ky is calculated dynamically as follows; label
the points in physical space at which the resolved field is calculated by index m = 1,... M,
where, for example, M = N3 for an N? spectral method. Next, write (2.29) at each point

of the resolved flow in physical space as

H (81 = 1] (1= Bun X+ 3K0Snm X430 - X2%) +

H [1 - §1,m] (1-Xm) =0, m=1,...M, (2.34)
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where HJ...] denotes the Heaviside function, X,, = k.(v3/ €m )74, €, being the local dissi-
pation at point m, and gl’m, §27m are (2.30) and (2.31) evaluated at point m.

Now let E(k) be the energy spectrum of the resolved field at some specified wavenumber

k =k, k < ke. Assume that E(k) conforms to (2.25)
E(k) = Ko ()3 k=13, (2.35)
where (¢) is the instantaneous volume-averaged dissipation, which can be expressed as

(6= LS [ ) 2 m 181, 20855 (236)
€)=-— H|Si;m—1 + H |1 = Sy, 2055, 2.36
Mm:._I 1,m X}% 1 Vidyj0iy

Equation (2.35) forces continuity of the resolved and subgrid energy spectra at k = k, which
in practice is chosen near to, but somewhat less than k.. Eliminating (¢) from (2.35) and

(2.36) gives

o 1MH§ L v m1-8,]8, =0 2.37
o B g A= 8] Sa-0 e
where,
. EB/215/2
F—“—w- (2.38)

When M, ke, k, E, v and §17m, §27m are given, (2.34) and (2.37) are M + 1 nonlinear
equations for X, (m = 1,... M) and Ky. Once the X,,, are known, the €, can be calculated
and the subgrid stresses follow from (2.26) applied at each point. We refer to this as the
coupled K¢y scheme. The methods by which the fized Ky and the coupled Ky schemes are

incorporated into an LES code are described in the following chapters.
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Chapter 3

Homogeneous flows - turbulence in a periodic box

We apply the models developed in the previous chapter to homogeneous flows. In §3.1 we il-
lustrate the numerical procedure incorporated in these simulations. We then present results
in §3.2 for the Taylor-Green problem. In §3.3 we discuss the important case of isotropic
turbulence; §3.3.1 deals with decaying turbulence, such flows are discussed extensively in
Batchelor (1953) and can be generated behind a grid in a laboratory wind tunnel. We
compare our results for this case with the experiments of Comte-Bellot and Corrsin (1971).
In §3.3.2 we present results for forced isotropic turbulence for all models. Some comparison
with DNS is also made.

The results presented in the following sections are obtained using the coupled Ky scheme.
The fized Ky scheme gives almost identical results with the appropriate value of Ko chosen.
The fized Ko scheme will be referred to by F-Ko[. . .] and the coupled Kg scheme by C-Kol. . .].
The bracketed information indicates the model number, i.e., 1a, 1b or 2. For example F-
Ko[1la] would refer to Model 1a with Ky held fixed while C-Kg[1b; 0.5] would refer to Model
1b with p = 0.5 using the coupled Ko scheme.

3.1 Numerical implementation

We consider an incompressible fluid in a cubical box of length 27. We solve (1.6) and
(1.7) with and without a forcing term, coupled with (2.23) (for the rotation model), using
periodic boundary conditions in all three directions. In Fourier space (1.6) and (1.7) may

be combined to give (subscript k has been dropped)

aU,;
Bt

= vk + P |—(ik;UU;) — (ikmTim) + fi| » (3.1)
where P is the projection operator on the space of solenoidal fields, defined as

(3.2)
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In k-space (2.23) is
el

~a—t"— — ikjt;U; = 0. (3.3)

A Fourier-Galerkin pseudo-spectral method is used with ‘3/2 de-aliasing rule’ for the non-
linear terms both in the momentum and subgrid equations that is 32 Fourier modes in each
direction are advanced in time; the computation of the non-linear terms were done using 48
modes, the extra 16 modes used for padding. A second-order explicit Runge-Kutta scheme
is used for time advancement which can be illustrated as follows:

Equation (3.1) can be rewritten in the form,

where —g;(U;) denotes the bracketed term in (3.1). We recall from ordinary differential
equations the RK2 template as dy/dt = h(y,t); k; = dt - h(y™,t"); kg = dt - h(y™ + k1, " +
dt);y" =y + %kl + %]{)2. When applied to equation (3.4) we have,

2o =T
ky = dt- (“6_”1” " Pyi(U; )) ;

~n+1/2 on . =n
U, = g vRME, (Ui —’Pgi(Ui)-dt),
" . =n+l/2
ke = dt- (-fuk% " Pg(T; )) ;

= e (0] - Sp0)) - SR

The rotation model is incorporated into the LES code as follows; equations (1.6), (1.7),
(2.15),and (2.23), are solved simultaneously for the fields U; and £;. At a given time-step
(or intermediate time-step) the ¢; are obtained from the Fourier coefficients #; which allows
construction of the rotation matrix E;;(x) and hence the contractions S, and S,. For
the fized Ko scheme, in which Ky is a specified parameter, equation (2.29) is solved for
X, individually at each of 323 points using Newton-Raphson, whence ¢(x) follows from
(2.28) and 74;(x) from (2.26). This is transformed back to Fourier space and fed into the
momentum equation. In the coupled Ko scheme, the scalar solution of (2.29) is replaced by
simultaneous solution of (2.34) and (2.37), which gi\/fes both Ky and the dissipation field.

We note that the Jacobian of the coupled nonlinear system is diagonal with single sidebands
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thus the linear equations which result from application of the Newton-Raphson method can
be solved directly in order M = 323 operations.
The local alignment models operate similarly but do not require solution of (2.23) since
S, and Sy can be calculated directly from resolved flow variables. Some extra computation
is involved is solving the scalar equation in each cell to obtain the eigenstates of 517 We

used the initial approximation X = S’; 1/4

, S5 < 0, and, from dominant balance, X = 2.0,
Sy > 0. This itself can be avoided if (2.32) is used but this was found to produce a somewhat
overly dissipative model in the DNS limit; see discussion below. A choice of Ky = 1.5 is
used as an initial guess for flows with Ry > 80; for lower Reynolds number one needs to

lower this initial guess to obtain convergence. Unless otherwise stated results presented in

this chapter are obtained using 32 Fourier modes in each direction.

3.2 The Taylor-Green problem

The Taylor-Green flow (Taylor and Green 1937) develops from a single-mode two-dimensional
velocity field and produces small-scale structure by means of vortex stretching. The flow

develops from the initial condition (the characteristic velocity and length scales are unity),

U(z,y,2,0) = sin(z)cos(y) cos(z),

V(z,y,2,0) = —cos(z)sin(y)cos(z), (3.5)

W(z,y,2,0) = 0,

as shown in Figure 3.1(a-d). The initial time evolution of the flow is inviscid and develops
into well organized, symmetric laminar structures in the form of vortex sheets shown in
Figure 3.2(a~-d). These sheets subsequently roll up to become unstable and lead to fully
three dimensional turbulent flow.

We run the simulation until a maximum time of ¢ = 18 at a Reynolds number 3000
(= 1/v). Figure 3.3(a) shows the evolution of the total kinetic energy. The total energy
is almost unaltered until a time t = 6. This is the regime where the flow is essentially
inviscid owing to the generation of fine scales. After energy has redistributed among the
wavenumbers, the flow starts to dissipate as shown in Figure 3.3(b). Figure 3.3(c) shows the

Taylor Reynolds number, Ry, which steadily drops and settles at ~ 70. That the model is



9292 .
inoperative until ¢t = 6 is evidenced by Figure 3.3(d), which shows a plot of the Kolmogorov
prefactor, Ko. Figure 3.4 shows the flattening of the energy spectrum and the generation
of higher wavenumber modes with increasing time.

Brachet et al. (1983) performed DNS of this flow at an effective resolution of 5123.
Comparisons with their DNS have not been made since their simulations enforce symmetries
in the velocity field which are maintained during the course of the run. This is done by
representing the velocity field as an appropriate choice of expansion in terms of trigonometric
functions. Our spectral method only assumes periodicity in the velocity field.

The Taylor-Green problem highlights an important feature of the C-Ky scheme. While
the flow is essentially fully resolved at early times, the Taylor Reynolds number, Ry, is
high ~ 1000; our models turn off since the C-Iy scheme enforces continuity of the energy
spectrum at the cutoff. Models incorporating the F-Ky scheme perform poorly in this
situation since the value of the Kolmogorov prefactor is specified (and is O(1)) and the X'’s
evaluated in equation (2.29) are not O(1) since S is large. However it should be noted
that the Taylor-Green flow is a mathematical artifact and is simply a vehicle for producing
decaying turbulence, thus the somewhat poor performance of the F-Kg scheme is not a

serious Issue.

3.3 Isotropic turbulence

3.3.1 Decaying turbulence

We study decaying isotropic turbulence in order to compare our results to the experiment of
Comte-Bellot and Corrsin (1971). They measured the energy spectrum at three downstream
locations in grid turbulence. One can relate this to decaying isotropic turbulence by invoking
the Taylor approximation. We mimic their experiment by studying turbulence in a cubical
box with periodic boundary conditions. In a frame of reference moving with the mean flow
speed,

T da!

t= | 70 (3.6)

where z is the downstream distance from the grid and U(z) is the mean flow velocity over
the cross-section of the tunnel. We have non-dimensionalized the experimental data by the

following characteristic velocity, length and time scales: U,y = V‘BU(SQ/ 2, Lyey = L/2w
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Figure 3.1: The flow configuration at time ¢ = 0.

while (¢) and (d) represent the enstrophy contours in the respective planes.
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t = 2 using 64% modes and with v = 0.

and (b) show the velocity vectors while (¢) and (d) represent the enstrophy contours in the
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E(k)

Figure 3.4: Time evolution of the energy spectrum E(k) for Model 1a.

and tyef = Lyef/Ures. In their experiments the velocity fluctuation at the first measuring
station is \/;]—63 = 22.2 cm/s, the free-stream speed is Uy = 10° cm/s and the spacing
of the turbulence generating mesh is M, = 5.08 cm. The size of the computational box,
L = 11M,, was chosen to contain roughly four integral scales. The times at the three
stations were measured in terms of Ut /M. The initial Taylor Reynolds number is Ry ~ 80.
In order to compare the resolved and the subgrid part of the turbulent energy produced
by the computation, the measured spectra have been integrated over the relevant scale
ranges. The initial conditions are generated by the choice of the energy spectrum whence
Fourier coefficients with random phases are constructed. This procedure is illustrated in
Appendix C.

Figure 3.5(a) shows the decay of the resolved energy with time for all the three models.
The dotted line is the result of running the simulation with the model switched off. It is
evident that the models play an important role in providing dissipation of kinetic energy.
The decay of the subgrid energy with time is shown in Figure 3.5(b). Note that the subgrid
energy is obtained from the model without the solution of additional field equations. Since
the subgrid energy is derived from knowledge of the resolved field and the chosen subgrid

energy spectrum, it cannot be independently initialized to match the experimental value.
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Figures 3.6(a-b) compare the resolved energy spectra with the measurements at the initial
time and then at the two later instances. The initial spectrum is generated to match the
experimental data, while the later two curves are the spectra calculated from the three
models. Figure 3.5(a) gives the area under the curve of Figures 3.6(a-b) at the three time
instances, over the resolved range of scales. While all models give good agreement with
the data for the decay of the resolved energy, C-Ko[la] and C-Kg[1b;0.5] seem to give a
slightly better resolved-scale spectrum than C-Ko[2]. This may be related to an observed
tendency for the power spectrum of the ¢; for the rotation model (not shown) to peak
towards the cutoft at k. followed by a rapid decrease to zero at k = k.. This apparently
results from the nonlinear coupling between the ¢; and the U; fields, which in the absence
of viscous damping produces a mild cascade towards higher wavenumbers and a subsequent
buildup near k = k.. The response of the U; field is seen to be a concomitant increase in
E(k) near the cutoff. The interaction between subgrid structures in adjacent cells occurs
only implicitly via the LES equations and the subgrid stress relations. This is apparently
too weak to adequately damp high wavenumber growth. Figure 3.7 shows the value of the
Kolmogorov prefactor, ICg, with time. The Kolmogorov prefactor Ky settles to about 1.5 for
C-Ko[la], 1.85 for C-Ky[1b;0.5] and hovers around 2.5 for the C-Ko[2]. LES with C-Ko[18]
for a range of values of u were performed and yielded satisfactory results in the sense of
agreement of the energy decay with experiment; p = 0 resembled the rotation model in its
behavior vis-d-vis the energy spectrum and the value of Ky. Results in this thesis will only
be presented for the case u = 0.5.

In order to examine grid dependence, we performed LES with resolution 163,323 and
643 respectively for C-Ko[la]. Figure 3.8 summarizes the performance of the model at the
three different resolutions for decaying turbulence in comparison to the results of Comte-
Bellot & Corrsin. Since by virtue of (2.25) and (2.9), the subgrid contribution to the total
energy is estimated directly, the total turbulent energy can be calculated. This is shown
in Figure 3.8(b) from which it may be seen that both the 323 and the 643 simulations give
good agreement with the data. Convergence with respect to increasing N is achieved at
N = 32. The 16° simulation agrees well with the filtered data in Figure 3.8(a) but underes-
timates the total energy because the cutoff is too near the peak of the energy spectrum to
allow the subgrid component to be reasonably well represented by (2.25). The computed

spectra, including the subgrid component for N = 32, are shown in Figure 3.8(c), while the



- 928 -
dynamically computed Ky for the three cases is shown in Figure 3.8(d). Tests with C-Ko[1b]
and C-Ky[2] show that the computed energy decay is quite insensitive to this aspect of the
overall model but that the computed Ky depends on the orientation model.

We remark that models incorporating the C-Ky scheme have a correction mechanism
that takes into account any rise in energy in the high wavenumber modes, i.e., a rise in
E(k) is invariably followed by a rise in the value of K, which in turn results in higher
dissipation thereby resulting in a drop in E(k) in the following time-step. In order to test
this we performed simulations with no 3/2 de-aliasing but only a spherical truncation. The
spherical truncation gets rid of the doubly- and triply-aliased terms but not the singly-
aliased terms (Canuto et al. 1987). The results shown in Figure 3.9(a) are only marginally
different. Figure 3.9(b) shows the resolved kinetic energy for various cases. Shown are
truncated DNS, de-aliased DNS, truncated C-Kg scheme and de-aliased C-Kg scheme. It
is clear that truncated DNS blows up while the truncated C-Ky model predicts the right
decay rate. We also remark that there is a considerable saving in computational cost with
spherical truncation since the evaluation of the non-linear terms require smaller size FFT’s
in each direction.

The computing time per time-step relative to the Smagorinsky model with constant C
was found to be approximately 1.5 for Models 1a and 1b and about 3 for the rotation model.

The C-Ky scheme was marginally more expensive than the F-Ky scheme.

3.3.2 Forced turbulence

Forcing is achieved by exciting low wavenumbers such that the total energy injection rate
is constant in time (Carati et al. 1995). A certain selected number of Fourier modes are
chosen from a wavenumber shell |k| = ky. The Fourier coefficient of the forcing term is then

written as,

£ =2 2k (3.7)

for all modes in the specified shell. The above choice of f; ensures that the energy injection
rate, Z?k . 6k, is a constant and equal to §. We have chosen kg = 2, N = 20 (a box
of side 2 grid units centered around the origin with the center modes and the origin left
out) and 6§ = 0.1 for all the runs. LES simulations with forcing were performed over a

range of K. The simulations run stably and eventually reach steady-state when statistics
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Figure 3.5: Decay of the resolved (a) and the subgrid (b) energy. Solid line - C-Ky[l1a,
dashed line - C-Ky[1b; 0.5], dot-dashed line - C-Ko[2] and dotted line - no model. The
symbols are data from Comte-Bellot & Corrsin (1971).
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Figure 3.6: Time evolution of spectra in decaying turbulence at three time instances. Solid
line - C-Kp[la] and dashed line - C-Kg[1b; 0.5] (a). C-Kg[2] (b). The symbols are data
from Comte-Bellot & Corrsin (1971). The straight lines for k > k. are the modeled subgrid
spectra.
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Figure 3.7: Time variation of the Kolmogorov prefactor, Ky, in decaying turbulence. solid
line - C-Kp[la], dashed line - C-Kg[1b; 0.5] and dot-dashed line - C-Kp[2].

are collected. Figure 3.10(a) shows a plot of (g44,)/(€), the ratio of the average subgrid
dissipation to the total average dissipation in the box versus R). The three curves shown
are for the Smagorinsky model, the fired Ky models and the coupled g models. For mod-
els incorporating the C-Ky scheme for forced turbulence, the computed values of Ky (not
shown) showed an R) dependence that was somewhat model-dependent. For each model
Ko increased with increasing Ry from near zero at the DNS limit and reached a plateau
for values of Ry greater than about 100. These asymptotic, large Ry values were 1.3, 1.5
and 2.0 for C-Ky[la], C-Ko[1b;0.5] and C-Ko[2] respectively, which we note are somewhat
lower than the values shown in Figure 3.10(a). This appears to be an R effect. For the
F-Kq calculations, these asymptotic ICp values were used for all Ry. Figure 3.10(a) shows
that the C-Kp models are less dissipative in the DNS limit than the F-Ky models and
thus are superior in this respect. Figure 3.10(b) is a plot of k.(n) versus R) where here
(n) = (13/(e))/*, (€) being the box-averaged total dissipation. In both figures all results for
the three models employing the same scheme were graphically indistinguishable. With 323
modes fully resolved DNS can be run at about Ry ~ 25. This was confirmed by turning off
the SGS model and comparing computed values for the skewness and the flatness factors
of the longitudinal velocity derivatives and one component of the vorticity with the results

of Kerr (1985) at the same resolution and similar Ry. With the SGS models turned on we
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Figure 3.8: Decay of the resolved (a) and total (b) energy for C-Ky[la]. The energy spectra
at three instances are shown in (¢). Time variation of the Kolmogorov prefactor is shown
in (d). Dashed line - 162, solid line - 32 and dash-dotted line - 64>. The symbols are data

from Comte-Bellot & Corrsin (1971).
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Figure 3.9: Energy spectra with (solid line) and without 3/2 de-aliasing for C-Kg[la]. The
dashed line represents the simulation with only spherical truncation (a). Figure (b) shows
the resolved energy for this case. Also shown in Figure (b) are truncated DNS (dashed)
and de-aliased DNS (dotted) along with truncated C-Ky[la] (long-dashed) and de-aliased
C—K:(){la].

find k.(n) = 1 at Ry ~ 25, indicating near full resolution except in the far viscous range.
Figure 3.10(a) shows that the models are subdominant in this DNS limit, providing less
than, 0.0003 (C-Kg) and 0.008 (F-Kg), of the volume-averaged dissipation. By comparison,
the Smagorinsky model produces a fraction 0.16 of the total dissipation at Ry ~ 25.

We remark that the simplest possible model of the present class can be constructed
using vortex alignment with the eigenvector corresponding to A3 and (2.32) to evaluate
£sgs- At Ry o~ 90 this model performed similarly to Model la for both decaying and
homogeneous turbulence and was only marginally slower than Smagorinsky. It was found,
like Smagorinsky, to be too dissipative in the DNS limit, and so is not discussed in detail.

The pdf of SGS in filtered DNS fields for both box turbulence (Carati et al. 1995)
and non-homogeneous flows (Mason and Thomson 1992) have typically shown some 30%
backscatter. It follows from (2.24) that backscatter, defined by 545 < 0 occurs whenever
Sy > 0 while Sy < 0 gives cascade. A straightforward calculation using (2.24) shows that
SGS dissipation can be written as

-~ ;L
Esgs = - K Sij (51] e J >

b

~ =5 K,

180
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= Sy K, (3.8)

where 5’{53 is the component of S'ij aligned with the vortex. Hence backscatter, defined by
€sgs < 0 occurs whenever Sy > 0 - the SGS vortices are being compressed on the average
- while Sy > 0 - the vortices are axially stretched - gives cascade. Figures 3.11(a-c) show
scatter plots of 5’1 versus 5’2 for the three orientation models obtained from a simulation
at Ry ~ 90. Models incorporating the C-Kg or the F-Kg scheme exhibit similar behavior.
Model 1a has no backscatter (this can be demonstrated) while Model 1b (with g = 0.5)
shows some (~ 3%) backscatter. The rotation model shows substantial backscatter, about
~ 40%, and it is possible that this may be related to its somewhat higher computed values of
Ko compared to Model 1a and Model 1b. A simulation with C-Ky[1b; 0], i.e., full alignment
with the vorticity, show a similar scatter plot to C-Kp[2]. This suggests a strategy of
adjustment of u to obtain backscatter agreeing with filtered DNS. It is interesting to note
that all the points lie within a bounding parabola. An estimate based on a locally two-
dimensional ‘maximum stretch’ scenario for §Z-j gives a bounding parabola S = 16 5'%
We find however that §; = 12 S% gives a slightly better boundary and so this curve is
displayed in the figures. The backscatter properties of the models are also illustrated in
Figure 3.12 which shows a pdf of the “stretch,” that part of the velocity gradient-tensor
which stretches the subgrid vorticity. The stretch is suitably normalized by /() /v. The pdf

of the dissipation logm—i— for the three models is displayed in figure 3.13. The distribution

appears to be approxinéz;ely log-normal.

It was remarked earlier that (2.29) can exhibit regions of multiple roots in the Sy versus
Sy plane, posing a potential problem in obtaining a unique value of €, given Sy, 85. This
can be shown to occur only when Sy < 0. The boundary of the region corresponding to
multiple-valuedness of X (5'1, 5’2) in the S, S, plane always lies well away from populated
regions of the scatter-plots of Figure 3.11. In fact when S; >> 1 this boundary is given by
Sy ~ —25651 /(81 Ko) which lies well below the parabola bounding the scatter plots.

Comparisons were made with 1282 DNS data (Misra and Lund 1996) at Ry ~ 85. The
data was filtered down to 32% to appropriately compare with LES results. Shown in Figure
3.14 is the pdf of the “stretch”. It is evident that the rotation model mimics the behavior of
filtered DNS fairly well. Plotted on the same graph is F-/Cy[1b; 0.5] which exhibits about 5%

backscatter. We remark that F-/Co[1b; 0] has a similar peformance as that of the rotation
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Figure 3.10: (e44s)/€ versus Ry (a) and (k.n) versus Ry (b). Solid line - F-Ky scheme
(Models 1a, 1b and 2 are indistinguishable) , dashed line - C-Ky scheme (Models 1a, 1b and
2 are indistinguishable) and the dot-dashed line - Smagorinsky model with C' = 0.17.

model. The symbols are data from DNS. The models performed satisfactorily in a priort
tests, i.e., wherein the §U field was extracted from DNS and subjected to the model and
appropriate quantities compared with filtered DNS. The correlations of the SGS stresses
were roughly 0.4 for the SGS energy, i.e., diagonal components and about 0.1 for the off-

diagonal components.
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Figure 3.11: Scatter plot of S versus S indicating regions of backscatter. F-Ko[la] (top,
a) shows no backscatter, F-Kop[1b; 0.5] (middle, b) shows some backscatter and F-Ky[2]
(bottom, ¢) shows about 40% backscatter. C-Ky models exhibit similar behavior.
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dot-dashed line - C-Kp[2]. F-Ko models exhibit similar behavior.



- 37-

6 o
b I:‘
5 i o Y,
o ’ )
£ o i i
2 - ' '
[} v "
= - ! !
\‘9, 4 - 1 1
o - ' '
L ' \
1
L ) \
L . '
3 ' \
A 1 AP0 \
. B \
A oo N
1]
2+ o
o \
L o
L (o}
J
L Q
(]
1+ je]
0©°
-0.4 -0.2 0.0 0.2 0.4
stretch
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Chapter 4

Inhomogeneous flows - three-dimensional channel flow

In order to test the stretched-vortex models in inhomogeneous flows, we perform LES of
turbulent channel flow. This is chosen due to its geometric simplicity and the extensive
documentation of experimental and DNS data. We consider a three-dimensional channel
with the fluid contained between two parallel rigid walls separated by a distance L, in the
wall-normal direction (z). The channel is of length L, in the streamwise direction (z) and
L, in the spanwise direction (y). We non-dimensionalize the governing equations by the
channel half-width (§ = L./2) as the length scale and the friction velocity (u, = (Tw/p)"?)
as the velocity scale. We further decompose the pressure into a mean pressure gradient
driving the flow and a fluctuating component. The choice of the non-dimensionalization
ensures a mean pressure gradient of —1. Thus the governing equations in non dimensional

form may be written as,

oU;
o = 0, (4.1)
al, 0 i~ ~ o5 oT; 1 820
— (0,0,) = - — 1) — — , 4.2
ot + an (U Uj) (8372 1) 6.(17]' + R-,— 8.‘13]'893]' ( )

where, R; = u.6/v, is the Reynolds number. In this chapter we will consider the flow with
R, = 180 with the channel dimensions 47 x 27 x 2 at a grid resolution 32 x 32 x 65. Based
on the grid resolution and the domain size, Az, =~ 70 and Ay, =~ 35, where the subscript
“4+” denotes the distance in wall units defined by, Az, = u,Az/v. There are 5 points in
the wall-normal direction which reside in the viscous sublayer, z, ~ 12; the closest away

from the wall being at Az, ~ 0.3.

4.1 Numerical implementation

We incorporate the spectral code developed by Chan (1996). The code uses a pseudo-

spectral numerical method in the spatial direction with Fourier expansions in the streamwise
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and spanwise directions and Legendre polynomials in the wall-normal direction. While
details of the code can be found in Chan (1996), we present here a brief description of the

code and its implementation in LES using our model.

4.1.1 Temporal integration

The equations are integrated in time using an operator splitting procedure developed by
Moin and Kim (1982) wherein the convection, diffusion and the pressure gradient terms are
treated separately. The net effect of such a procedure is to integrate the filtered momentum
equations as a series of scalar partial differential equations. In the first step, the convection
and the SGS terms are integrated explicitly using a four-step Runge-Kutta method; this is
followed by an implicit treatment of the viscous term using the Crank-Nicolson scheme. The
intermediate velocity obtained from these steps, in general is not divergence free, therefore
the last step aims to adjust the pressure gradient in order to make the final velocity field
divergence free.

The Runge-Kutta scheme when applied to the convection and the subgrid terms yields

UO — ij'n
Ul = U"+ 6ty H°
U?2 = U"+ 6tanH?

U? = U"+6tazH?
UP = U™ + 6tay H? (4.3)
where, a1 = %, Qg = %, g = % and a4 = 1.0
H:—i—(v-(ﬁﬁwﬁ-vﬁuv-l‘ (4.4)

where T is the subgrid-stress tensor. The code employs the skew-symmetric form for the
convective terms in order to control the aliasing errors.

The Crank-Nicolson scheme, when applied to the viscous terms in the second step, gives
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an intermediate velocity as
Ur-Ur 11

this solution procedure requires a boundary condition for U*. If the no-slip condition is
applied along a solid boundary, the overall accuracy of the above scheme is only first-order
in time. As a remedy, Kim and Moin (1985) derive an extrapolation procedure that will

recover the second-order accuracy. The boundary condition for U* then becomes
U = U 4 5tvgn (4.6)

The resulting velocity, ﬁ*, in general, will not satisfy the continuity equation and is cor-
rected as

U™l = U* - 6tv¢" (4.7)

where ¢ is a auxiliary scalar variable. By imposing the continuity condition on the new

velocity field, one obtains _
v.U*

VoV =

(4.8)

4.1.2 Spatial discretization

The flow has two homogeneous directions and thus periodic boundary conditions are as-
sumed in the streamwise and spanwise directions. Following a Galerkin spectral formulation,

we can write (4.5) as

2

/[6t+—~(k2+k2)] WdF /182U W dl = / ) Wdl (4.9)

where, I' is taken to be a set of non-overlapping elements filling the space in the vertical

direction, W is a weighting function and

For details on W see Chan (1996).
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Similarly the third fractional time step may be written as,

OW 9 =% = =
/ (k2 + k2)¢ dT — /——--—¢i dl = 6t(/Wzka +z’kyV)dI‘+/%—ifW dl‘)+

z=H aqs[z

Ww‘z:() 92

where l} ’ 17'* and W* are the velocity components in the z, y and z directions respectively.
Due to the compatibility condition that is required for the solution of a Poisson equation,
the last two terms of the above equation cancel each other. Thus no artificial boundary
conditions are required for ¢.

Spatial integration is performed using the Gauss quadrature rule. For example,

1 N
/ =30 auf(&)
- k=0

where ¢ is the weighting factor defined as

2 1
FENEN D InEP

where, £, are the Legendre-Gauss-Lobatto points and Ly is the kth order Legendre polyno-
mial.

The solution procedures marches forward in time as three different integration steps. For
the first step, we integrate the convective terms using a four-stage Runge-Kutta scheme, this
is followed by the Crank-Nicolson scheme for the viscous terms and a fully implicit scheme
for the pressure gradient term. We evaluate a set of non-linear operators for the Runge-
Kutta scheme and solve a set of Helmholtz equations for both the viscous and pressure
terms.

Each stage of the Runge-Kutta step requires the evaluation of 16 spatial derivatives in
the horizontal directions, 8 spatial derivatives in the vertical direction, 16 inverse Fourier

transforms and 17 forward Fourier transforms.

4.1.3 SGS model implementation

We presently implement only models incorporating the C-Ky scheme for reasons to be

discussed in the next section. The implementation details of the C-Ky scheme is similar to
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that described in the earlier chapter with changes required by the presence of inhomogeneity
in the wall-normal direction.

Equations (2.34) and (2.37) are solved in planes normal to the wall while equation (2.35)
is now obtained by considering a two-dimensional energy spectrum. Hence when following
the method described in §2.3 for dynamically computing Ky, the two-dimensional energy
spectrum, Es p(K), of the resolved flow in = — y-planes, where K2 = k2 + kS, was matched
to the © — y-plane average of the equivalent two-dimensional subgrid spectrum. Under
the assumption that the shell-summed subgrid spectrum is of the form (2.35), we show in
Appendix D, that for a single vortex structure whose axis makes an angle « with the z

direction, this two-dimensional subgrid spectrum takes the form
E(K) = KoQ(a) /3 K573, (4.10)

where Q(a) is a correction factor in the range 0.7319 < @ < 1 which can be calculated
numerically as a function of « and stored as a table look-up. For the channel flow, at fixed
z, both @ and e are functions of z and y. Hence presently, when matching (4.10) to the
two-dimensional resolved spectrum computed from the resolved flow in planes z = Const,
() and e are replaced by their x — y plane averaged values. This has the consequence
that the dynamic calculation of Ky takes place separately in each of the N, planes, and so
Ko = Ko(z). The computational penalty for this is small.

Two other features of the model implementation method are worth noting, first the
cutoff wavenumber, k., is defined as k. = 7/A, where A is chosen as the Deardorff formula
ie. (AzAyAz)'/3. Second, in order to reduce computation we solve for K only at the first
fractional time step of the four-step Runge-Kutta scheme, while the vortex orientations are
determined from the S’ij field at all the intermediate steps. This also has the added effect
of keeping the divergences small in the calculation.

1/3 and

Comparisons will be made with the Smagorinsky model with A = (AzAyAz)
C = 0.1 as defined in (1.10). In order to achieve lower dissipation near the walls, the length

scale, A, is reduced using the Van Driest damping function (Moin and Kim 1982).
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4.2 Results and discussion

The simulations were run until a statistical steady-state was achieved, and for an additional
10 eddy-turnover times during which statistics were collected. Figure 4.1 shows the nor-
malized wall shear stress. The wall shear oscillates about its steady averaged value, R;,
indicating statistical steady-state. As mentioned in §4.1, the temporal marching of the code
is performed using a time-splitting procedure which does not strictly enforce the divergence
free condition. We plot in Figure 4.2 the absolute value of the maximum divergence defects
(V- [NI) in each plane. The divergence defects fall off rapidly to zero away from the wall.
Since they are O(0.1) near the wall where the gradients are O(R.) we are led to believe
that the code is accurate to @(1073). This is somewhat unsatisfactory and is solely a con-
sequence of the time-splitting scheme. However, since the SGS model is inoperative in the
near wall region (as will be demonstrated) this may not be a serious issue.

The mean streamwise velocity is shown in Figure 4.3. Shown are two models C-KCo[1b; 1]
and C-Kp[la] along with under-resolved DNS, the Smagorinsky model and fully resolved
DNS of Kim et al. (1987). Both the models do a bit better than the Smagorinsky model
but still over-predict the velocity near the center of the channel. The root mean square
(rms) quantities are shown in Figure 4.4(a) for both the models. Since the symbols are data
from DNS and have not been filtered, we include the subgrid component. If U is the total

velocity, then one can show that,

s = (U-T)

= U2-T"
~ 2 = 2
= (U+u’) - <U+u')
— _,‘\72 -y
= U2-U +u
where,“ 7 denotes a time average and “ Jenotes a spatial average. The last term is

the subgrid energy which we include with the resolved quantity. It is seen that the models
do fairly well in the streamwise and spanwise rms distributions but wyms predicts a steeper
slope. This could be a result of the model being somewhat dissipative in the near-wall
region. Figure 4.4(b) shows the time averaged Reynolds stress for the two models. Figures

4.5(a-d) shows the decomposition of the rms and Reynolds stress into the resolved part and
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the total component for the C-fCg[la; 1] model. The difference between them is the SGS
contribution.

Figure 4.6 shows the Kolmogorov prefactor versus z, = u,z/v, for the two models. Ag
one would expect, the value of Ky is almost zero in the near-wall region and rises to values
O(1) in the center of the channel. These values of Ky are consistent with those established
in homogeneous turbulence for the respective models. To establish the contribution of the
SGS model to the total dissipation, we plot in Figure 4.7(a), the ratio e444/€, which is plane
averaged. Near the wall, since the Kolmogorov prefactor is small there is no SGS dissipation
and 445 is expectedly zero. This appears to arise from the part of the model computation
that couples the assumed subgrid spectrum to the resolved (z — y)-plane 2D spectrum near
the cutoff. It seems that there is little turbulent energy in the resolved scales at the cutoff
available for transfer to the local subgrid spectrum. The model detects this and responds
by producing very small Ko and €,45, thereby effectively shutting itself down. Computed
values of Ky at the wall are O( 10“4). We also remark that the flow is almost fully resolved
in the vertical direction and we thus expect little contribution from the model. Figure
4.7(b) shows a plot of the plane averaged X = k.n. The figure shows that the value of X
is not close to unity as one would expect and as was demonstrated in Figure 3.10(b) for
homogeneous turbulence. We believe this problem stems from the value of k. which was
chosen using the Deardorff estimate for A. This is an ad hoc criterion and may not be the
appropriate choice. Near the wall, the cells are pancake-like, thus an appropriate choice
of the k. should probably take into account the aspect ratio of the cells. In this study
we maintain our choice for k. while acknowledging this problem. The model nonetheless
produces negligible dissipation near the wall since Ky is small. The fized K¢y scheme will
admittedly not work in such a scenario. Both models considered here show the same trend

with regard to Figure 4.7. Shown in the figure are results from C-Ko[1b;1].
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Figure 4.1: The wall shear stress 7, normalized by R. (a). Statistics are collected during
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Figure 4.2: Normalized divergence defects in the channel versus channel height.
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Figure 4.3: Mean streamwise velocity (a). Symbols are data from Kim, Moin & Moser
(1987). Solid line is the C-Kp[1h;1], dashed line C-Kp[la], dotted line is under resolved
DNS and the dashed-dotted line is the Smagorinsky model with Van Driest wall damping.



_ 47 -

@
30
25 BN\
L o 7N\
= / Q
,’ .. Urns
i
[ Y
204
- n\\*
L. i
g nu \\\
I o, e
I ] S
o -~
1.5 g By - Seel
P Vrms nnn \"~~
Op, -~
g Dun ~o
5 o A
O0000000 a -~
1.0 ,."' - 000000000 ooy SR R
¥ A Cop B
J X o a
H & AAAAAAAAAA ...... OoOOOo "Oopog
E N Y a2 O O O
"',’ ’f ,A,AQQ..‘....‘
05 4§ /& Wi
;
i
i
- R R A R RS S N S S
0.0
0 30 60 90 120 150 180
Z

150 180

Figure 4.4: Figure (a) shows the rms quantities, while Figure (b) is a plot of the Reynolds
stresses, u'w'. Solid line is the C-Kp[1b; 1], dashed line C-Kp[la]. The symbols are data

from Kim, Moin & Moser (1987).
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Figure 4.5: (a) Upms (b) Upms (€) Wems and (d) Reynolds stress v'w' for C-Kp[1b;1] . Solid
line is the total component while dashed line is the resolved part. Symbols are data from
Kim, Moin & Moser (1987).
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Figure 4.7: Plane averaged (g,4s/€) (a) and (kcn) (b). This is obtained from a typical data
file and is not time averaged. Shown in this figure is C-Ko[1b;1].



- 51 -

Chapter 5

Conclusions and future work

5.1 Conclusions

Stretched-vortex SGS models have been shown to perform well for both decaying and forced
isotropic turbulence, over a range of Ry. They give the subgrid energy directly and appear
to produce the correct fully resolved flow in the DNS limit with computational penalty,
for the alignment models, of some 25% in comparison to the standard Smagorinsky model.
The F-Ko models are simple to implement and give satisfactory performance. The C-
Ko approach allows dynamic calculation of Ky at the expense of some extra complexity.
All variations of the model tested presently gave good comparison with data for decaying
turbulence. The stretched-vortex models have been shown to produce backscatter, but
none of the three tested give , in a natural way, the 30% backscatter seen in filtered DNS of
isotropic turbulence. At the expense of adjusting p, the fraction of subgrid vortices aligned
with the resolved vorticity, a two-vortex alignment model with the right properties could
be constructed but we have not done so presently. We remark that models incorporating
the F-Ky scheme are fully constructed in physical space and thus are amenable to finite
difference computations with complex flow geometries.

For the case of the channel flow, the model performed satisfactorily. The coupled ICy
model is applied in planes in the wall-normal direction by considering a two-dimensional
energy spectrum to estimate the Kolmogorov prefactor. The mean and the rms quanti-
ties gave fair agreement the DNS data. The models are about 25 — 50% slower than the
Smagorinsky model and are easy to implement.

The stretched-vortex ansatz appears able to give a self-consistent if approximate quan-
titative description of the detailed fine-scale properties of turbulence and at the same time
provides a basis for the construction of workable SGS models relating the averaged behavior

of the fine scales to the resolved-flow variables in large-eddy simulation.
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5.2 Future work

One could replace the local balance model of Section IIC, including the assumption of a
Kolmogorov energy spectrum, with transport equations for the subgrid vortex itself. The
relevant equations for the subgrid energy K and the subgrid dissipation €445 arising from
internal SGS vortex motions can be obtained from a model of a vortex evolving in a linear

background field (see appendix)

_ll))_f: = —S;Tij — €sgs)
= K&y (615 - Z%) — €sgs
= Sy K — €ogs (5.1)
and
%ﬁtgﬁ _ 22%; Gjeags — 12 :O KL B (k) dk. (5.2)
where €44, 18
€gs = 20 /:-, k2 E(k) dk. (5.3)

The first term on the right of (5.2) gives the increase of the subgrid enstrophy, and hence the
dissipation, produced by local vortex stretching provided by the resolved scales, while the
second term gives the effect of viscous diffusion of enstrophy. These equations can replace
the local balance model for the computation of K; the stresses are still given by (2.15). The
K — €545 are not closed however, since E(k) appears in (5.2). Closure can be obtained by
applying a time filter to (5.1)-(5.2) and using the well-known approximate relation between
the skewness Ss, or dimensionless triple velocity derivative, and FE(k), which can be written

in the form

w [ E*E(k) dk = ———}E-—Sgy—lﬂ €32 (5.4)
e (15>3/2 598 .
Experiment indicates a value near S3 = —0.5. Use of (5.4) in (5.2) with this value gives

closure. It may be objected that this is still a one-parameter model, but unlike the Kol-
mogorov prefactor, Sz is a defined (model independent) quantity characteristic of the dis-
sipation range of turbulence which by definition, lies outside the range of resolved scales in
LES. Some input from experiment or theory is then justified.

Future work on the channel involves designing models that are easier to apply in physical
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space. The present C-Ky scheme is implemented in Fourier space but this method could be

used in physical space by replacing (2.35) with its second-order structure function equivalent

(Au)? = f Ko €3 1%/3, (5.5)

where (Au)? is a measure of the shell-averaged (physical space) longitudinal velocity dif-
ference squared, and where f = 1.31512. This could be applied either globally with /3
replaced by (52/ ) or locally with » = A, where A is the local node spacing. The implemen-
tation of a K — €54, version of the vortex model, and the application of the present class of
vortex SGS models to complex geometry flows such as a backward facing step, flow past an

aerofoil and a myriad other flows of engineering interest provide topics for future research.
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Appendix A
The ellipsoidal pdf model

An attempt was made to numerically solve (2.11) directly, based on the idea of an ellip-
sotdal model pdf. Assume that, at some initial time, P(«a, §) takes the form of an ellipsoid
in the space of the variables defined by r; = cosa, ro = sinacos 3, r3 = sinasin 8. This
is to be interpreted such that P is given by the cube of the distance from the origin in
(r1,72,73)-space to the surface of the ellipsoid. Let the principal radii of the ellipsoid be
(a1,a2,a3) and let (6, ¢,1) be the three Euler angles describing the rotation from a coor-
dinate system fixed by the principal axes of the ellipsoid to (ry,rq, rs) axes. Normalization
of P requires ajagzaz = 1. If P is ellipsoidal initially, then evolution according to (2.11)
preserves this geometrical property. Thus (2.11) can be rewritten in terms of six partial
differential equations describing the rate of change of the six variables (a1, az, a3, 6, b, ).

These are

Da1

or T w Aty (A1)
DCLQ <7
Ty T ® Ay, (A.2)
Dag <t
T T ® Ass, (A.3)
Do L= ~
B = sin By + cost Bhy, (A.4)
D¢ cosY ~, siny =,
Dt = sing P37 g B (A.5)
D1y Y S . 5/
—— = Bjy+cotl cosyp By3— cotf siny Bs;. (A.6)

Dt
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where,

b _ 9. 59
Dt ot 7 0z
A’ = EAET, (A7)

241 241
2 2 ’

B}, = (A.8)
where a prime denotes the frame of the principal axes of the ellipsoid. It may be shown by
reconstruction of the ellipsoidal pdf from (a1, as, as, 0, ¢, 1), that (A1-A6) satisfy (2.11). In
the principal-axes frame, the moments reduce to a diagonal tensor for which a look-up table
can be prepared. The shear stresses may be calculated given the subgrid kinetic energy.
Thus closure is obtained.

Attempts to implement the ellipsoidal model failed. It can be shown that the ellipsoidal
model is analogous to the motion and deformation of the surface of a material ellipsoid
embedded in an evolving velocity-gradient field, and in fact this analogy can be used to
obtain (A1-A6). In numerical experiments based on (A1-A6) it was found that the ellipsoid
rapidly evolved into a “cigar” irrespective of its initial conditions. This is consistent with
the analysis of Cocke (1969) and later Orszag (1970), who showed that for homogeneous
isotropic turbulence the length of a material line always increases on the average with time.
This lead us to the natural choice of delta-function pdf models.

The derivation of (A1-A6) follows from the close analogy of this problem to that of the
motion of a material ellipsoid in an arbitrary strain field. Consider the ellipsoid in the frame

of reference of its principal axes. The motion of any material point is given by the equation,

m’l = A{;x. For small time one can do a Taylor series expansion and write,
i(t) = 4(0) + ¢ Aj; 2(0) + O(t?). (A.9)
Thus,
r () = i(t) 24(t) = 2}(0)% + 2t 2}(0) A; 25(0) + O(t?). (A.10)

We can describe points locally about a; and construct, for small «, the following parame-
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terization.

4(0) = (0)(1-a?/2),
25(0) = 7'(0) a cosf, (A.11)

z5(0) = 7'(0) a sin .

We now need to evaluate r'(0). We know that,

‘102 /02 102
71(0) +332() +$3(> _

= 1. A2
Z T TTa (4.12)
Substituting A.11 in A.12 it follows,
o
!

where F =1 — (a% / a%) cos® B — (a,% / a%) sin? 3. Therefore we obtain,

77(0) = a (1 + %E(F - 1)) ,
z5(0) = a1« cosp, (A.14)

25(0) = ajasinf.

Since we need a maximum of r/(¢) with respect to o and 3, we need to evaluate o and 3

satisfying the two equations,

or'(t) 0. or'(t)

5o =0 g5 O (A.15)

Therefore differentiating A.10 with respect to « and 3, evaluating « and 3 for which 7/(t)

is a maximum and substituting back into A.10 yields,
r'(t)? = a? + 242 4] t. (A.16)

Therefore, ,
. r'(t) — a1 -
ayp = ——-)?———— = a1 Alll.



- 61 -

From symmetry the other two equations are,

. A
as = a9 A22,

. U
asz == a3z A33.

Now we need to obtain the rotation rates. From A.9 we can evaluate the coordinates of

the material point corresponding to the maximum at time ¢. They are,

zi(t) = a1 +a Z'H t,
zh(t) = a1 Biyt, (A.17)
:cg(t) = 1§’13 t.

() = ar (L+ A1),

zy(t) = 0, (A.18)
z3(t) = 0
Thus,
2; (t) = Eij (0 + A0, & + Ad, b + Av) Epj (0, 6,90 ), (2). (A.19)
However,
Ei]'(e -+ AH, ¢+ A¢, T,b -+ A?/'J) = Eij(lg, Qﬁ,w) + (A.ZO)
0 , 0
Let Gip = Ei;(0 + A0, ¢ + Ag, v + Av) E; (6, ¢, 1), we obtain,
1 A+ Ay —~AfB e — A¢ s sp
G=1| —A¢ch— Ay 1 Al sy — A¢pshep |- (A.21)
Al )+ Ad sl st —Al sp + A sO ¢ 1

One can thus obtain the rotation rates as,
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é == Sw Eég + C¢ éél’
cp = s =,

¢ = ) Bé3+§9_B31>

It is instructive to compare equations (A1-A6) with the corresponding equations in a
plane for a material ellipse in an arbitrary strain field. The equations describing its principal

axes and its orientation are,

da = a; A, (A.22)
a; = ag "KIQZ’ (A'23)
qu = ~12’ (A24)

where the primed system refers to the the principal axes of the ellipse and,

cos 1p sin

—siny cosv

Equations A.22 — A.24 when written in the lab frame are (Kida 1981),

a1 = a1 A cos2y,
ag = — ag A cos2y,
) 2 2
P o= Q4+ ag+a§ sin 21,
ap — a4y
where,
A -0
S =
Q =X

This system has a Hamiltonian structure (Neu 1984) and can be written in a compact form.

Define two scaled variables  and 7 as,

n = ai/ag, (A.25)



dr n?
— = 0 . A2
dt n? -1 (4.26)
With this transformation the equations are,
= 1 (2Acos24),
. 1 2
o= Q4 “72 sin 24).
L=
Then we can write the Hamiltonian as,
1 A 1
H = (7) + —) —— (77 - ~—> sin 29, (A.27)
7 Q 7
with,
oH oH
L= -2y = A28
n a5 = o (A.28)
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Appendix B

Vortex in a linear background field

Consider a vortex embedded in a background linear velocity field, the latter viewed as
generated by the velocity gradients of the local resolved flow. Denote laboratory-fixed axes
by z; and vortex-fixed axes by r;; for clarity we omit the “prime” superscript on vortex-
fixed quantities. Without loss of generality these two axis systems may be chosen to be
coincident at time ¢ = 0. The fluid velocity in the fixed frame is ¢; and the vorticity is
& = €4550qp/Ox;, whilst in vortex-fixed axes these are v; and (; = £;5,0v; /Or; respectively,
where e;;, used with a triple subscript here denotes the alternating tensor. The vortex
rotates with angular velocity €;(¢) with respect to the z; in a way to be described. The

background field is
G = Aij(t) T = S’Z‘j(t) xz; + Qi]’(t) zj, (Bl)

where S;;() is the symmetric and Qy;(t) = %sijkék (t) the antisymmetric part of A;;(t), and
g}(t) is the background vorticity. The time dependencies of all these quantities, which differ
in laboratory and in vortex-fixed axes, will be suppressed unless required. In particular
we note that the background strain tensor S”ij (t) and vorticity fk(t) are not independent,
since the latter subject to stretching and tilting by Si;(t). Let u;(r,t) be the velocity field
associated with the vortex alone, in vortex fixed axes, and w; the corresponding vorticity,
wi = €;5,0ug/0r;. The full velocity and vorticity in the vortex-fixed (rotating) axes are

then

Girt) = &—2Q +w, (B.2)

4 (I‘, t) = Aij T — Eijk Qj TE 4+ U;. (B.3)
The components of v; are

v —up = Aprg 4 (A 4+ Q3)ra + (Aig — Qo) 73,

va—uz = (A1 — Q)1+ Agara+ (Ao + Q) 73, (B.4)
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vy —uz = (Az1+ Q)+ (Aze — )73 + Azzra.

In vortex-fixed axes, the momentum and vorticity equations may be written, respectively,

as

0 Ov; oP*
— (v; ik St e = 2 ]
5 (vi + €45 Q1) + V5 8rj+263’“ﬂ]v’” o, + vV v, (B.5)
9 (7 | & 0L = dv; 2
ot (CZ T 291) t Y or; = (G+29) or; YV (B6)

where P* = P + %QQ 7’12 and P is the pressure. Continuity is dv;/0r; = 0.

At t = 0 we specify that w; = w;(r1,72,0) (hence u; = u;(r1,72,0)) and 7%w; — 0 as
7?2 472 — 0o. Thus there is initially no dependence on the ry coordinate, which is viewed as
the ‘axis’ of the vortex, and the vorticity is compact in the cross-sectional plane, (r; — r3).
It follows from (B4-B6) and the initial conditions that the absence of dependence on r3,
ie., w; = wi(ry,ro,t), u; = wi(ry,re,t), will be preserved in the evolution provided £; =
—fizg, Qg = fhg,. The component 3 is arbitrary and a convenient choice is {23 = —-./112.

Introduction of a vector potential ¥;(rq,ry,t) such that

0V, ov; 5
i T Eiik T, =0, i = —Ve Wy B.7
U g,]k 87’3 a,ri w e ( )
then allows (B4) to be written in the form
. Wy
] = & 2
U1 1T+ By
& % ov
vy = 281971+ Soary — —2, (B.8)
(97"1
& = = oy  Ov
v = 281371 + 2837+ S337y + 0 — =
37”1 87“2

When (B8) and (B2) are used in (B6), the resulting equations together with the third of
(B7) give closed equations for w;(ry,rg,t). Similarly, closed equations for u;(rq,r2,t) may
be obtained from (B5).
It is straightforward that the above choice for (; is equivalent to rotation of the r3 axis
according to
de; ~

_(97 = 6]' Am’ - €; €L €j Ak,ﬁ (B9)
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where e;(t) = e (text usage) are the direction cosines of the rg axis relative to the laboratory
axes, (e(0) = (0,0,1)). This is just the rotation that would be experienced by a material line
element of unit length aligned with the vortex axis, due to the linear field alone; it provides a
derivation of equation (2.21). The vortex axis remains rectilinear and the internal structure
of the vortex is two-dimensional in the sense of dependence only on (r, ry), but allows axial
flow.

To obtain the enstrophy equation we simplify to the special case where there is no
background vorticity & = 0. This may be a reasonable model for a strong vortex |w;| >> |&].
We also put wi = wy = 0 at ¢t = 0, from which it follows from the vorticity equation, that

this will be true for all ¢t > 0. The w3 vorticity equation is then

dw: ~ ov 15, ~ ~ ovs3\ o -
b -+ (Sll 1+ ——3-> ] -+ (2512 71+ Soa Ty — -——“i) 9w = S ws + I/V%,w;g. (B.lO)
ot 87"1 5‘7’1 87‘1 K

Now multiply (B10) by ws, integrate over the (r1 —72) plane and use the well-known results,
valid for the vortex flow, vws VZ w3 = 2v [° k* E(k) dk and esg5 = u;g, where E(k) is the
shell-summed energy spectrum and where the overbar refers to an integral over the vortex

cross-section. This gives, after some algebra

N 00
= G332, 4u2/0 K B(k) dk. (B.11)

O€sqs
ot

Finally, we account for the stretching or compression of the vortex by Ss3 and for an average
over all possible spin angles of the vortex structure about the r3 axis. Denoting the vortex

length at time by [(t) we write for some quantity f

lga [_ O:O [ : OZW fdridrady,  1(8)=1(0)exp (/O (1) dt’), (B.12)

?:2

where the double overbar denotes integration over r3 (equivalent to multiplying by [(¢))
and the vortex cross section, division by the volume L? of a large box containing a vortex
and an average over all possible spin angles v, 0 < v < 27. Differentiating the first of (B12)

with respect to t and using the second of (B12) then gives

O o =, 9 (1) [= (= =
8t—533f+—6?—t<27rL3/_00/.00,0 fdmdrgd'y). (B.13)
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When the first of (B12) is applied to (B11) (f = €,4,) and (B13) is used for the unsteady

term it is found that
oG

02 = 2 SygFys — 412 / k* E(k) dk, (B.14)
0
and we note that the double overbar has been suppressed for E(k). Omitting the double
overbar on the other terms gives equation(5.2).

An energy equation for the internal vortex motions may be obtained along similar lines,

starting with (B5). Care must be taken to account for the contribution from the pressure

at infinity in the r; — ro-plane and the time variation of g@j(t) in the vortex-fixed frame.

Defining K = % (&?—%—u‘%) and invoking equipartition u? = ;g, uy g = 0 in vortex-fixed

axes following averaging over spin angle, and using

L) /Zwu(u V2 uy + up V2 u)d“Y:‘QV/OO k* E(k) dk (B.15)
27L3 Jo P TR s T 0 7 .

one obtains, after some algebra

%—Ij = S33 K — 21// k* E(k) dk. (B.16)
0
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Appendix C

Initialization of the velocity field in homogeneous turbulence

The Fourier coefficients are evaluated given the energy spectrum. We make the following

choice for the Fourier coeflicient satisfying the divergence free constraint.

akky + Bkiks  PBhoks —akky Bk} + k3)1/2

= - if k1&ko # 0
G- k02T )2 T k(2 1 kD)2 R B REERTD e
aey + feq + Oeg otherwise,
where,
Elk 1/2 ]
alk) = (2751»3) e cos ¢, (C.2)
E(k 1/2 ] .
B(k) = (2751&2) ¢ sin ¢, (C.3)

ifk#0and a=0=0if k=0. E(k) is the shell-summed energy spectrum and 61,60, and
¢ are random numbers uniformly distributed in the interval (0,27). See Huang (1994) for

details.
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Appendix D

Two-dimensional energy spectrum

We wish to derive the two-dimensional energy spectrum for the stretched vortex models.

We first consider general relationships for homogeneous turbulence.

We define the two-dimensional spectrum tensor as,

1 o o0 . .
Oij(k1, ko) = o / / Rij(p1, p2, 0)e~Frer=ika2 gy, dpy,
hade @ —OC

where the two-point velocity correlation tensor is given by,

/ / / ¢ij(k e~ Pk, dicydhy.

Therefore,

Rij(p1, p2,0 / / / i (K e~ =ikara g1t gk’ i

Substituting (D.3) in (D.1), we obtain,
geel
Oij(k1, ko) = / bij (K1, k2, ka)dks.
iate @]
We define a two-dimensional energy spectrum tensor as
2w
U (K) =K O;;dx,

where

ki = Kcosy,

ko = Ksiny.

K is the two-dimensional wavenumber such that K2 = k? + k2 and K2 + k3 = k2.

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)
(D.7)

The above relationships are general. We now specialize to the stretched-vortex models
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developed in Chapter 2. PS give an extensive derivation of the one-dimensional spectra for
such models. Here, we adapt their analysis to obtain the two-dimensional spectrum for the
stretched-vortex model. This is required in the implementation of the channel flow. We

begin by replacing PS-(40) by the two-dimensional spectrum tensor,

035 (1, ka) = Ié-;lgfgz@m//f/ (D.8)

1 kik; .
ol (8 = T3% — Bubyy ) &0 Bt B P, 6, )dbadprdpadpadisdiad)

where dQ2 = sinadadfdy. We now follow steps after PS-(40) and perform the following

operations:
(i) Integrate w.r.t pi, p2, p3. Use PS-(41) for the ¢ functions.
(ii) Perform ks integration and use k3 + Ejzk1 + Egzrg = 0 (PS-(43)).

(iii) Substitute (D.8) — (D.5), to obtain

7;(K) = %Zem//// (D.9)

1 kik;
IWI%Q- (51'3' -t - ESiESj) 8(k1 + Eq1k1 + Eo1k2)6(ka + Erak1 + E2ok2)

P, B,7v)dr1drady sin adadBdy.

Next we perform integration w.r.t. v and x.
(i) Assume P(a, f3,7) is independent of .
(ii) Use

8 (v, )18la (v, )] =Y o0 —'J’ny)éix)“ X"), (D.10)
g=1 7> Xq

where,

flv,x) = ki +Euk + E2so, (D.11)

g(v:x) = ko + Eiam + E2aro, (D.12)
af g
— ox Ox

J(vg: Xq) = o g (D.13)
dy Oy

f(?’qu)zg('Yq:Xq):an:lQ
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(iii) Put k1 = kcosby, kg = ksinby; dridry = kdrdl),.

(iv) Use

/OQW'/OOO/O%[)WF(&%;%X) (D.14)

5(]61 +E11r1 + E21K2>5(k‘2 + Eiaky + EQQ&Q)I{dlikodXd"/

/2"‘/ K 9ki’7 x)drdby,
'anXq

where the sum is over all roots of (D.11) and (D.12).
After some algebra, using (D.11-D.13) and k? = x? , it can be shown that

J = (& = KH)Y2(K? — 2 cos? a) /2. (D.15)

This fixes the range of integration of k. We therefore arrive at,

7, (K) = %Zem/%/a/o%/;ag_“l (D.16)

1 keik; P(a, 8)sinadadf dr dby k
(51‘9‘ ESzE37> (@.5) 4 i

2 P ——
jwl” % o5 k2 (k2 — K2)1/2(K2 - r2cos?a)l/?’

Let us now consider a two-dimensional (circle summed) energy spectrum

1 kik;
Eyp(K) = 5 Yiis bii — -’,;21 — EgiEsi = 1. (D.17)

Using (D.16), and noting that the full shell-summed energy spectrum for the stretched-

vortex model can be written as (PS-(48))

ZE / —|w|2déy,, (D.18)

the 2D energy spectrum then becomes

2r rlass P(a, B) sin adadBdr
Eap(K T 2n? / / / K2)1/2(K2 — k2 cos? a)l/2’ (D-19)

We check this formula by putting P = 1 for isotropic turbulence. We find that the energy
o0 E(n)dm

K(r7-K?)

spectrum is given by, Fop(K) = K [¢ . This has been verified independently to be
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correct. We now make a choice for the shell-summed energy spectrum as
BE(r) = Koe?3k7%/7, (D.20)

where, Cj; is the Kolmogorov constant. Furthermore making a choice for P(a, 3) as that

given by (2.12), we then obtain,

2Uoe2/PK/3 1 wias uw=53du
Ban(K) = 4 D.21
20 (K) - /1 (W2 —1)12(1 = oo )12 (D.21)
= Q(ap)Koe?/*K™5/3, (D.22)
Thus,
2 [lesas w53 du
== . D.23

We note that Q(ap) = Q(m — ap). A plot of Q(ap) is shown in Figure D.1 and in the

numerical implementation of the model we evaluate it using a look-up table.
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Figure D.1: Q(«) versus a.



