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Abstract

The applicability of multi-speed discrete-velocity gases to compressible flow situations
is considered. First, the equation of state, the anisotropies and the advection velocities for
any multi-speed model on the square and triangular lattices are derived. The dependence on
the model of any of these to leading order in the flow velocity is shown to be only through
a fourth moment of the stationary equilibrium speed distribution. Next, a computation
scheme is introduced, wherein adjacent cells in a cell network interact through an exchange
of particles, commensurate with the equilibrium fluxes of mass, momentum, and energy.
This corresponds to the infinite collision rate limit of the model gas, resulting in very low
viscosities. Finally, a simple multi-speed model, the nine-velocity model is studied in detail:
Solving the shock tube flow with the model yields almost all phenomenology associated
with a perfect gas. An exact shock profile is computed for the model and is compared to a
Navier-Stokes shock profile. An adiabatic channel flow is simulated with the model and the
results compared to an integral solution of the Navier-Stokes equation. The comparisons
in both the cases are excellent. It is also shown that the nine-velocity gas does not permit

steady supersonic flow.
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CHAPTER 1

Introduction

A discrete-velocity model of a fluid was considered as early as 1890 by Maxwell in
the context of kinetic theory of gases. Subsequent investigators (Broadwell 1964a, 1964b;
Hardy & Pomeau 1972; Hardy et al. 1976; Gatignol 1975; etc.) have advanced the un-
derstanding of these models considerably. The large scale utilization of these models as a
simulation strategy for fluids, however, had to await the work of Wolfram (1986), in which
the computer-scientific idea of a cellular automaton (CA), Neumann (1949), was unified
with the idea of a discrete-velocity gas to give rise to, what has been called, a lattice gas.
While this has been the main reason for the recent surge of activity in this area, Doolen
(1989, 1991), as with most pioneering works, some of the shortcomings of this methodology
have since been recognized (McNamara & Zanetti 1988, Zanetti 1989). From the point of
view of fluid dynamics, however, some of the qualitatively unphysical assumptions that go
into a lattice gas, contribute to making the simulation strategy unsatisfactory and a good
simulation technique for discrete-velocity gases would be more desirable. Implementation
aspects aside, it is also felt that, in the context of fluid dynamics, other than for a few
specialized studies, a lattice gas has little advantage over a discrete-velocity gas, i.e., most
of the useful aspects of a lattice gas comes from it being a discrete-velocity gas. Quite
apart from the simulation strategies, most work in discrete-velocity gases has dealt with
single-speed models. Investigation of the physics of multi-speed discrete-velocity gases, with
compressible flow situations* in mind, and the developement of a good simulation strategy

for discrete-velocity gases is the motivation for the present work.

* Compressible dynamics of single-speed models have been studied quite extensively (Broadwell 1964a, 1964b;
Gatignol 1975, Caflisch 1979).



1.1 Lattice Gas Techniques

Since the recent revival of activity in the area of discrete models for fluids has been
mainly due to the popularization of lattice gas techinques, the idea behind these techniques
is briefly considered here. Dynamical systems which are discrete in space and time and
whose sites take on only a finite set of values are termed lattice gases because of their close
analogy to the kinetic constitution of gases. Consequent to their complete discreteness,
they can be very effectively simulated as cellular automata. Further, the high degree of
parallelism achieved by limiting interactions to short ranges, renders them ideal for the
parallel processing computing architectures that are being evolved. These highly desirable
features of lattice gas methods make it very attractive to be able to use them as a simulation
strategy for complex physical phenomena. Equivalently, these models can be seen as solution
techniques for the partial differential equations describing the phenomenology of the original
physical processes, Doolen (1989,1991). Sometimes, the reference to the physical situation
is entirely by-passed and one tries to find a lattice gas representation of a particular partial
differential equation. This approach, though very attractive, has not met with much success.
The more usual procedure consists of isolating the essential physics of the situation involved
into a simple lattice gas model, and studying the model. The model itself is then used as a
direct simulation strategy or, strange as it may seem, partial differential equations describing
approximately the lattice gas model are developed and these are compared and contrasted

to the original partial differential equations. Such an exercise has a twofold usefulness:

1. In trying to make the model partial differential equations resemble the original
equations, the necessary physics of the original situation will have to be extracted
and no more, often leading to large but good simplifications. Once it is ensured that
the equations are of the required form, the models can be employed with confidence

in a study of the original phenomenon, Frisch et al.(1987).

2. It is hoped that with the two sets of partial differential equations now being very
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similar, the lattice gas model, with its simplicity may throw more light on under-
standing why the solutions of the original partial differential equations behave the

way they do.

Add to all these, the ease of handling difficult geometries and complicated bound-
aries in using these models as direct simulation methods, we may have a good tool to probe
the workings of some nontrivial phenomena. In the context of fluid flow, the general purpose
of this technique is then to determine how much the properties of the microscopic elements

of fluids can be simplified while still retaining the characterisitic macroscopic behavior.

1.2 Discrete Models for Fluids

The phenomenon of interest here is fluid flow, and so the discrete models used are
based on the dynamics of real gases. The motivation for using this method is the universality
of the dynamics** of fluids under a wide variety of molecular structure and interactions: the
macroscopic behavior of a fluid near equilibrium is expected to be nearly independent of the
details of the motion of the molecules that constitute it. For example, low Mach number
flow of a gas and of a liquid are described by the same equations. The aim of this approach
is then, as mentioned above, to maximally simplify the molecular dynamics while retaining
the essential physics. This simplification of the molecular dynamics involves a discretization
of the phase space, either full or partial. While a discretization of the physical space alone
is one of the most common instances of such a partial discretization and gives rise to the
familiar Monte Carlo formulations, a discretization of the velocity space of the molecules
gives rise to the notion of a discrete-velocity gas. A full discretization of the phase space
i.e., both velocity and physical space, gives rise to a lattice gas. Thus, lattice gases, in the
context of fluid dynamics, can in some sense be thought of as a subset of discrete-velocity

gases. For purposes of describing these models, some aspects are more easily understood in

** The universality class of interest here is the Navier-Stokes like dynamics
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terms of lattice gas models, and for other aspects, discrete-velocity gases are adequate: we

freely use both models in describing the various features.

At this point, it may be appropriate to point out that if the process being dealt
with was a system of partial differential equations rather than molecular dynamics, then a
discretization of the independent variables of the system (space, time) alone would give rise
to a finite difference scheme. However, a discretization of the dependent variables, if only
of a primary set of them, can in some sense be thought of as representing the behavior of

discrete-velocity gases.

In all the models considered, once the velocity space has been discretized, the
particles are identified with their velocities, i.e., the particles are otherwise indistinguishable.
Discretization of both velocity and position in a lattice gas gives rise to the notion of discrete
time, the unit of time being that taken by the slowest moving particle to travel the smallest
unit of distance in the direction of its velocity. All other particles move an integer number of
link lengths in the direction of their velocities in the same time. The evolution of the system
is then reduced to a set of discrete move and collide phases. At each instant, each lattice
site collects the relevant information from it‘s nearest neighbors and performs a simple
transformation on it. In the move phase, particles hop over to an adjacent lattice site
commensurate with their velocities and the particles at every lattice site scatters according
to a predefined set of rules in the collide phase. All instances of collisions considered in
the present work conserve mass, momentum and energy individually. The above evolution
at the microscopic level ensures the conservation of mass, momentum and energy at the
macroscopic level. In the case of a discrete-velocity gas, space and time are continuous and
so the evolution can be thought of as continuous rather than in discrete time steps. An
additional difference between a discrete-velocity gas and the corresponding lattice gas arises
from the ezclusion principle. The ezclusion principle is that no lattice site may have more
than one particle of a particular type. This is adopted in the implementation of lattice

gases for no reason other than to keep the computation per time step small.
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1.2.1 The Square and Triangular Geometries
In two dimensions, the only regular polygons which can tile the plane are the trian-

gle (or equivalently the hexagon) and the square. These two different geometries give rise to

inherently different macroscopic dynamics and therefore have to be separately considered.
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F1G.1.2.1 Velocity space discretization: square (left) and triangular (right) geometry.

Fig.1.2.1 shows the discretization of the velocity space with a square and a triangular geom-

etry. The symbols indicate the discretized velocities and the enclosing polygons correspond

to the different models.

Fig.1.2.2 shows a snapshot of a region of space occupied by a lattice gas. The lattice here
has a square geometry. The small enclosures are the lattice sites, and the particles, which
are identified by their velocities, are indicated by the arrows. The arrows scale with the
velocities of the particles, and all of them point to a lattice site. The full set of lattice
sites to which the arrows at any lattice site can point to constitute the neighborhood of

the lattice site. The simplest model on this lattice is the Hardy-Pomeau-Pazzias (HPP)
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F16.1.2.2 Phase space discretization: square (left) and triangular (right) geometry. The
small enclosures are the lattice sites and the particles are indicated by arrows,
which scale with their velocities. All the arrows point to a lattice site. The full
set of lattice sites to which arrows at any lattice site can point to constitute the
neighborhood of that lattice site.

model. This model allows only four velocities, directed oppositely along a pair of mutually
perpendicular axes; they are all of the same speed. See Fig.1.2.1. A family of multi-speed
models are obtained by considering full square neighborhoods of an increasing sizel — the
nth multi-speed model has (2n + 1)? allowed velocities and a physical lattice point in the
model can affect any of the (2n41)? lattice points in its neighborhood. Fig.1.2.2 also shows
the corresponding picture with a triangular geometry. The simplest model on this lattice
is the Frisch-Hasslacher-Pomeau (FHP) model with sixpvelocities, all the same speed but
directed toward the vertices of a hexagon. A family éf ﬁmlti—speed models are obtained on

the triangular lattice by a procedure similar to that on the square lattice.

T Models like the different 13-velocity models on the square lattice and the triangular lattices (see Fig.1.2.1) are not
considered to keep the number of models considered small. Moreover, since the geometry of the models which are
not considered is the same as the ones which are considered, but with different numbers of velocities, the behavior
of the models which are not considered is clear.
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Much work has been done in the past few years in trying to recover incompressible
fluid dynamic behavior as governed by the Navier-Stokes equations from the above class
of lattice gases, Frisch et al.(1987). But most such previous lattice gas models consist of
particles with a single speed, thus not allowing an independent specification of temperature
or energy. Consequently, the exercise of recovering the Navier-Stokes equations is done in
the so called incompressible limit. From their constitution, discrete-velocity models are seen
to be inherently compressible. Therefore, it is only natural to investigate their applicability
to compressible flow situations. A description of compressible flow necessarily requires

thermodynamics and so multiple speeds become necessary.

1.2.2 The Nine-Velocity Model

To better illustrate a multi-speed model, the simplest of them with a square geom-
etry, the nine-velocity model (d’Humieres et al. 1986; Nadiga et al. 1989; Chen et al. 1989)

is discussed here in more detail.

Fig.1.2.3 shows the allowable velocities in the nine-velocity model, and the lattice
on which the particles move. The slow particles, which have unit speed, say g, are restricted
to move on the horizontal and vertical links, whereas the fast particles, which have a speed
of v/2¢, move on the diagonal links. The zero speed particles exist only to take part in
collisions, to allow interactions between the other two speeds. Each lattice site has nine
neighbors, itself, four at a distance § away and four others at a distance /26 away, where
6 is the distance traveled by a speed g particle in unit time. After the move phase, all
the possible collisions, each conserving mass, momentum and energy, of the types shown in

Fig.1.2.4 take place, subject to the exclusion condition.

Since only one particle of a given velocity is allowable at a site, the site may
not be able to accommodate some of the particles resulting from some collisions; hence,

those collisions are excluded. The pre-collision velocities are indicated in solid lines, the



The allowed velocities The physical lattice

FiG.1.2.3 The nine velocities allowed in the model comprising three different speeds and
the physical lattice on which the particles move.

post-collision velocities in dotted. Collision type 3 is important and unique in that the
post-collision speeds are different from the pre-collision speeds. This provides a process of
dynamic equilibration between the particles of different speeds. The rest of the collision

types involve only an exchange of speeds between the partners.

1.2.3 Implementation

The implementation of a lattice gas on a digital computer is simple, elegant, and
highly efficient. In the present work, a lattice site is represented by a computer word.
The computational domain is then an array of words. A particle of a particular type (i.e.,
a particle with a certain velocity) is identified with a particular bit in the word. A word
therefore has to have at least as many bits as there are velocities in the model. The presence
or absence of a type of particle at a lattice site is indicated by the presence or absence (on

or off) of the corresponding bit in the word representing the lattice site. When only a
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F1c.1.2.4 The four types of collisions in the nine-velocity model. Only in collision type 3
are the pair of pre-collision speeds different from the pair of post-collision speeds.

few velocities are present in the model (as in FHP. HPP, nine-velocity, etc....), the move
phase is accomplished by a small number of simple binary operations on the array of words
representing the computational domain, while the collide phase is reduced to a table lookup.
With more velocities, the move phase requires more binary operations, and the lookup table
becomes bulky, necessitating a functional implementation of the collisions. In a variant of
the preceding implementation, not used in the present work, the presence or absence of a
particle of a particular type at a group of lattice sites is compacted into a word. A set of
words, as many as the number of different velocities, then represent several lattice sites, as
many as the size of the word. In this scheme, the move phase amounts to shifting words
bitwise in the appropriate direction and the collision phase to the evaluation of Boolean
functions representing the collisions. In either case, the simplicity of the move and collide
steps makes it possible to simulate huge numbers of particles, in comparison to other direct

simulation methods. Furthermore, since only nearest neighbors interact, the evolution is
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highly localized and hence is ideally suited for parallel computation. The overhead due to
communication between the nodes of the parallel processor is proportional to the ratio of
the perimeter of the physical space represented by a node to its area, i.e., to the inverse
of the aspect ratio of the computational domain. The complete synchrony between the
various parts of the computational domain obviate the need for balancing the load between

the various processors dynamically.

1.2.4 Macro-Irreversibility of Deterministic Lattice Gases

The completely deterministic nature of the above evolution is exploited in Nadiga
et al. (1989), where numerical simulations are presented which show that the solutions
describing the macroscopic history of the nine-velocity gas is stable in one direction and
highly unstable in the reversed direction. This was used as an illustration of the existence
of a preferred direction in the evolution of macroscopic systems, i.e., how macroscopic

irreversibility comes about in microscopically reversible systems.

1.2.5 The Model Boltzmann Equations

The evolution of the spatial averages of the populations in the model is given by
the Boltzmann equations. They are simply a statement of the conservation of the number
of particles of each type under the streaming and collision processes. Symbolically, they
can be written as

L;n; = Q,‘(nj,nj) ,7=1,...,b, (1.2.1)

where L; = 0/0t + ¢;.0/0x is the linear streaming operator of the particle type i, and
Q; is the collision operator of particle type i. As an example, the full equations for the
nine-velocity model are shown in Table 1. Implicit in writing these are the assumptions
that the gas is dilute and that molecular chaos prevails. The gain and the loss terms that

appear on the right-hand sides of the equations for the 10 different collisions are indicated
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in the second row, and the relative velocity ¢, for each of the collision is indicated in the
first row. The left-hand sides of each of the nine equations for the nine classes of particles
are indicated in the first column. The entries in the matrix give the sign with which the
gain/loss terms appear in the corresponding equation. These equations are exact in fact
for the dilute discrete-velocity gas limit rather than the lattice gas limit. To the extent of
representing the discrete processes in a lattice gas continuously, the error involved in using
these equations to represent lattice gas evolution is that these equations do not reflect the
effects of the ezclusion principle. The justification however in using them to describe the
lattice gas evolution is that the effects of ezclusion are negligible in the dilute gas limit,

only in which limit these equations are of any validity.

1.3 A Clarification about the terminology

Since the present study concerns with the application of discrete-velocity models
only to fluid flows, no special care is taken to distinguish lattice gases from discrete-velocity

gases. The justification for this is

o Lattice gases are a subset of discrete-velocity gases, in that the velocities of
particles in a lattice gas are discrete. The primary effect on the hydrodynamics
of these models is due to the velocity discretization and occupies most of our
attention in the course of this thesis. The effects of a discretization of space,
as reflected by the ezclusion principle and conservation of staggered momenta

are secondary and are not studied here.

¢ At low densities, the behavior of a lattice gas is the same as that of a discrete-
velocity gas. This follows from, as seen in the next chapter, the reduction of the
equilibrium Fermi-Dirac velocity distribution of lattice gases to the Boltzmann

velocity distribution of discrete-velocity gases at low densities.
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1.4 Outline
The organization of this thesis is as follows: While chapters 2, 3, and 4 deal with
equilibrium situations, chapters 5 and 6 deal with non-equilibrium. In chapter 2, an attempt
is made to present a comprehensive picture of the various effects of discretization of the
velocity space in a gas of hard sphere particles at equilibrium. The effects of discretization
of the physical space on the velocity distribution, is mainly through the exclusion principle
of lattice gas automata (Wolfram 1986; Frisch et al. 1987). A simple transformation of
variables in the equilibrium equation of discrete-velocity gases, discussed in Sec. 2.2, is all
that is required to capture these effects. The effects themselves are not considered in any
detail; the justification being that the exclusion principle has little physical basis to it: It is
used mainly for its computational advantages. By combining analytical and computational
tools, the velocity distribution functions are studied to arrive at a few results which throw
light on some of the interesting, perhaps bothersome, aspects of these models. The most
important of these results is the equation of state for any model with a square or triangular
geometry. In this context, some comments are made about the interpretation of pressure in
lattice gases. It is also shown that the deviation of the equilibrium distributions of discrete-
velocity gases from the Maxwell-Boltzmann distribution can be identified as due to two
different causes, one arising out of the finiteness of the velocity unit called the discretization

error and the other due to finiteness of the velocity space, called the truncation error.

In chapter 3, a new paradigm of lattice gas computation is introduced. This is
based on Equilibrium Flux Method of Pullin (1980) and enables an elegant and efficient
computation of nearly inviscid and non-heat conducting lattice gas flows. The elegance of
the method comes out of a clear physical interpretation of each of the steps involved. The
method is first developed as a simple first order scheme. It is then refined into a second
order scheme using a popular limiting strategy, the min-mod limiter (Yee 1989). From the
point of view of partial differential equations, this new method computes the solutions of

the Euler equations of a lattice gas. In this frame work, some of the adjectives that may be
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used to describe the scheme include flux-splitting, high order Total Variation Diminishing,
shock-capturing, etc. While this new paradigm of lattice gas computation retains all the
features which make lattice gases interesting and easy to use, it is shown how some of the

shortcomings of the presently used methods are circumvented.

In chapter 4, the Euler equations of lattice gas models are developed formally by
linking the equilibrium distributions studied in chapter 2 to a flow situation. The equations
are then studied in some detail for the nine-velocity model. The study includes looking at
the characteristics and other important one-dimensional unsteady phenomena. The latter
is mostly done via the paradigm introduced in chapter 3. It should be pointed out that
the nature of this study is more to understand lattice gases in their own right rather than

investigate quantitative concurrence or deviations thereof from perfect gas results.

In chapter 5, the exact structure of a shock in the nine-velocity gas is obtained
numerically. The approach here is on the lines of Gilbarg & Paolucci (1953 ), more dynamical
than fluid mechanical in nature. Most phenomena observed in the context of a monatomic
gas are seen in this structure: A comparison to the structure as obtained by a solution
of the Navier-Stokes equations reveals the similarity. A comparison is then made between
the exact shock profiles and those obtained using the method of computation introduced in
chapter 3. It is found that the errort in the computation is physically in the right direction.
It is conjectured that that method of computation approximates the solutions of the (model)

Euler equations as a regular low viscosity limit of the (model) Navier-Stokes solutions.

In chapter 6, the two dimensional, adiabatic, compressible, viscous channel flow
is investigated. First, the flow is simulated using the nine-velocity model in a lattice gas
automata computation. The simulation being computationally intensive, is carried out
on a message-passing multi-computer, the Intel iPSC/860 GAMMA. In the second part,

the integral solution method of Broadwell (1952), is developed on exactly the same lines

! In the sense of deviation from the exact solutions of the model Euler equations.
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here, only the resulting nonlinear ordinary differential equations are numerically solved?.
Important features of the flow are discussed thereafter and some qualitative comparisons
of the two methods are made. The flow field in the vicinity of the sonic region in such
an adiabatic flow is expected to be of considerable interest, and has not been previously
investigated. Both the methods presently used, however, are seen to be insufficient in
correctly modeling the flow in this regime. Using a model with more number of speeds may
help study the flow in the vicinity of the sonic region better, but a conclusive study of the
problem would require either a full computation of the compressible Navier-Stokes equation

or a simulation of the problem using the Monte-Carlo technique.

f The ordinary differential equations were not solved originally because of scarce computer resources.
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CHAPTER 2

A Study of Equilibrium in Discrete Fluids

In this chapter, an attempt is made to present a comprehensive picture of the various
effects of discretization of the velocity space in a gas of hard sphere particles at equilibrium.
The effects of exclusion, which become relevant for a lattice gas in view of the discretization
of space, are captured by a transformation of variables indicated in Sec. 2.2; for brevity,
results are presented only for cases with no spatial discretization. The effects of conservation
of staggered momenta (Zanetti 1989), which are again a consequence of the discretization

of the physical space in lattice gases, are not considered either, since
1. these conserved quantities in most multi-speed models are expected to be associated
with some sort of very detailed encryption procedure®.

2. these conservations are effectively removed by the presence of walls and/or any sort

of external interactions.

The effects of a change in the number of speeds allowed on the two different geometries, the

square and the triangle are also studied.

* In the simplest of the multi-speed models, the nine-velocity model, the staggered momenta are easily identified to
be (—1)t(Gze — Gzo) and (-—l)t(Gye — Gyo), where Gge denotes the summation of g¢ (j), the z-component of
the momentum of a column, j, of physical lattice sites, the summation being carried over all the even numbered
columns, j: Gre(t) = Z] even 97 (4,t), Gyo denotes the summation of gy{7), the y-component of the momentum
of a row, i, of physical lattice sites, the summation being carried over all the odd numbered rows: Gyo(t) =
Ei odd 9y (3, t), etc... . This is because of the fact that the even though the nine-velocity model is a multi-speed
model, the influence of any lattice site in the two coordinate directions is restricted to the nearest one in that
direction. See Fig.1.2.3. Thus for example, the z-momentum of a column j of sites at the present instant, no
matter what, will be distributed between columns 7 — 1 and j + 1 the next time step. This holds for all j, and if
Jiseven, j —1and j+ 1 are odd and vice versa(d’Humieres 1989).
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Discretization of the velocity space of the particles constituting a fluid, even though
done at the microscopic level, manifests itself in the macroscopic behavior of the fluid.
This is best described by the lack of certain symmetries of the partial differential equations
describing the macroscopic behavior. Thus while the form of the Navier-Stokes and Euler
equations are left unchanged under rotations or Galilean transformations of the reference
frame, such rotational invariance or Galilean invariance of the partial differential equations
describing the macroscopic dynamics of discrete-velocity gases is not always guaranteed
(Hardy et al.1976, Wolfram 1986, Frisch et al.1987, etc.). Most of these symmetries, or
lack thereof, are reflected in the equilibrium distributions of these models, and thus the
equilibrium studies in this chapter also help understand these features of discrete-velocity
gases. A lack of fundamental invariances, as under Galilean transformations and rotational
transformations, of the partial differential equations governing the macroscopic phenomena,
may make the usage of these models highly suspect. While these concerns are valid, studies
of discrete-velocity models, as in this chapter, show that there are regimes in a given model,
where the symmetries are restored to a large extent. It is in these regimes that the models

are to be operated, if they are to be used in studying physical phenomena.

While it has been known that three body collisions are necessary for thermodynamic
equilibrium in the FHP model, there has been no systematic way of telling what collisions
— whether binary, ternary or higher order and which of these — are necessary in any
given model to reach thermodynamic equilibrium. A simple procedure** to do this is given
in Sec. 2.2. Some new results, which help in choosing a velocity discretization for a given
problem are presented in Sec. 2.3. While the idea of four tensors of the model characterizing
its directional behavior is well known, most such usages, to the authors knowledge, are
embedded in thick notation and extraneous detailsf. The aim in Sec. 2.4, therefore, is

comprehensibility and accessibility of these concepts to the non-physicist and minimality of

** The resulting algebra is best handled by a symbolic manipulator.

t An exception is Wolfram 1986.
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the situation considered. Notwithstanding that, the expressions for the equations of state

for any model on the square and triangular lattices arrived at there is new.

2.1 Definition of Some Macroscopic Properties

Since a discrete-velocity gas has only a finite number of velocities, say b, the velocity

distribution function is a summation of delta functions at the allowed velocities.

b
fa(e) = Fy(c)f(c — ;). (2.1.1)

1=1
The ratio of the probabilities of occurance of allowed velocities ¢; and c; is Fy(c;)/Fy(c;).

The fact that a particle has to have one of the allowed velocities is expressed by the condition

/_o:o fa(c)de =1 = Z Fy(e;) =1, (2.1.2)

where the integration is over the number of velocity dimensions considered. The average
number of particles with velocity c¢; at the given point in physical space, denoted by n; is

given by n; = nFy(c;), where n is the number density of particles at that point.

1. Density, p, is defined as the zeroth moment of the velocity distribution:

2. Flow velocity u, the first moment:
1 b
u= —-Zcini (2.1.3)
Pia
3. The specific energy e, the second moment:

1 b ' 2 ’
e= —Z|cil n where ¢; =¢; —u
Pi=

4. The specific total energy e; = e + %|u|2
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The definition of other thermodynamic quantities is not as straightforward and requires
more care. The primary reason for this is the finiteness of the phase space. In fact, tem-
perature in discrete-velocity gases is most often wrongly defined, owing mainly to using
the same definitions as for a perfect gas in classical kinetic theory. The problem with such
definitions is that they are then inconsistent with thermodynamics. A discussion of other
thermodynamic quantities is deferred to a later chapter since for the present purpose, the

above definitions are sufficient.

2.2 Equilibrium Equations and Collisions

The problem considered is this: Suppose the discretization of the velocity set is decided
upon, say based on considerations of symmetry. The model is then complete if the set of
collisions among particles of the various velocities is specified. The question is how can one
determine the set of necessary collisions to fully define the model? For example, are binary
collisions enough or are tertiary and/or higher order collisions necessary? The following
procedure enables us to get a a priori set of appropriate collisions, and this can be done given
any discrete velocity set, in any number of dimensions and any geometry. It only assumes, as
we require, that there is a unique distribution of velocities at a thermodynamic equilibrium
specified by the macroscopic variables mass, momentum, and energy. In fact, even the
requirements of conservation of mass, momentum, and energy in each of the collisions
comes out of the analysis. This discussion is carried out for discrete-velocity gases. The
procedure can easily be repeated for lattice gases, by tagging on the effects of exclusion. In
fact, even that is unnecessary, because the required collisions in a given lattice gas turn out

to be same as that for the corresponding discrete-velocity gas.

Thermodynamic equilibrium at a given given value of mass, momentum, and energy

can be defined as that state in which the set of variables Nai assume values such that they

! the velocity distribution function integrated over a large enough uniform region of space so that the numbers Ng



— 20—
satisfy the mass, momentum, and energy requirements while also maximizing the number of
possible permutations among the particles which leave the macroscopic state unchanged. In
other words, it corresponds to a maximization of the number of number of microstates for
a given macrostate. Since we are interested in a unique distribution function, it is assumed
that every macrostate specified by a mass, momentum, and energy corresponds to a unique
set of numbers N, the number of particles of the various types allowed. The function
representing the number of microstates corresponding to any given set of numbers N, is

easily seen to be

Z(Ng) = (2.2.1)
YT N,! -
with the N, satisfying the mass, momentum and energy specifications:
b b b lca — u!z
— a
;:INaZN; z:lcaNa:Nc:Nu; Zl_—g__N“:Ne (2.2.2)
= a= a=

The correct set of numbers N, is that which maximizes Z(N,) under the above D + 2

constraints (D being the number of dimensions), i.e., the correct N, satisfies the equations

07
W(Nc)—o C—l,...,b a_l,...,b—D—.‘Z (223)

Or incorporating the constraints,

07z
ON,

(N1, N, ...;Ny_p_2,p,u,e) =0 a=1,...,b—D -2 (2.2.4)

After carrying out the differentiation, p, u,e may be eliminated from the above equations
to get b — D — 2 equations in b variables and these are the equilibrium equations for the

model. Any of these equations can be put in the form

> Eypp(1+ No) =0 (2.2.5)

The sum always has an even number of terms and g is the digamma function which is the

first derivative of the log of the gamma function

for n integral, v = 0.577...

x| =

n—1

Yo(z) = d—i‘log I'(x), where p(n) = —v + Z
k=1

(2.2.6)

are large.
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The numbers N, are very large in the thermodynamic limit and the behavior of the digamma
function for large arguments is logarithmic. Therefore the equilibrium equations Eq.2.2.5

can be rewritten as
logN;+logNj...=log Ny +logNy...= N;N;...= NpNg... (2.2.7)

These can now be looked at from a collision point of view: the equilibrium equations dictate
that there be detailed balancing of a set of collisions. On inspection, it is also seen that
the collisions dictated by the equations are such that each one of them conserves mass,

momentum, and energy.

No assumptions have yet been made regarding either the geometry or the dimensions
of the model. Restricting to 2-D for simplicity and carrying out the above procedure for
the square lattice, irrespective of the number of speeds involved, the equilibrium equations
Eq.2.2.7 are all seen to be of the form N, Ny = N, Ny, i.e., two body collisions are sufficient
for a unique thermodynamic equilibrium. Repeating the procedure for a triangular lattice, it
is seen that while some of the equilibrium equations Eq. 2.2.7 are of the form N, Ny = Np Ny,
others are of the form NyNyN. = N,NyN,. That is, in addition to two body collisions,
three body collisions! are necessary for a unique thermodynamic equilibrium on a triangular

lattice, irrespective of the number of speeds allowed.

From now on, it is more convenient to work with a probabilistic formulation of the
fractional velocity distribution function. The macroscopic flow velocity and the specific

energy definitions are reproduced here:

b (c; —¢)?
u=¢= ZCiFd(Ci)§ e= Z '1—2————Fd(c,-) (2.2.8)
=1

=1

The equilibrium equations Eq.2.2.7 are similarly rewritten as

Fy(c;)Fa(cj) ... = Fy(ep)Fy(eq)...5 -+ (2.2.9)

§ For a substantial number of three body collisions to occur, the density must be higher than when only binary
collisions are enough. Thus on a triangular lattice, the density should be higher than on the square lattice. This
requirement may question the propriety of using the model Boltzmann equations to describe the dynamics.
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The equilibrium velocity distribution is thus fully determined by the D + 2 Eq.2.1.2
and Eq.2.2.8 and the b — D — 2 equilibrium equations Eq.2.2.9, which may in general be
solved numerically to obtain the velocity distribution function. However some analysis, gives
useful insight and also helps interpret the numerical results. To refer to the equilibrium
velocity distribution without knowing it explicitly as the solution of the aforementioned set
of equations, the set of b equations, Eq. 2.1.2, Eq. 2.2.8 and Eq.2.2.9, is termed the implicit

discrete Maxwell-Boltzmann distribution.

At this point, the effects of exclusion, as they arise in a lattice gas due to discretization
of space, can be included by simply rewriting Eq.2.2.9 in terms of F;. The equilibrium

equations in a lattice gas are therefore of the form

Fy(ci)

(e (2.2.10)

Fylei)Fy(ej) ... = Fy(ep)Fyleq)...; --- where Fy(c;) =

All the calculations in this thesis, done in the context of velocity discretization only, can be
repeated with the hat-variables in the equilibrium equations, as in Eq.2.2.10 to include the

effects of exclusion in a lattice gas.

2.3 Stationary Equilibrium

From the form of Eq.2.2.9, log(Fy(cg)) is a collisional invariant, and since the only
conserved quantities in a collision are mass, momentum, and energy, log(Fy(cq)) has to be

a linear combination of mass, momentum and energy, or
Fy(cq)Fo = exp(a+ b.cg + ﬁcaz) . (2.3.1)

When the macroscopic flow velocity is zero, b = 0 i.e., all the directions are equally pre-

ferred. Then substituting Eq.2.3.1 in Eq.2.1.2 and Eq.2.2.8,

exp(a) Z exp(Be.?) = 1; exp(a) Z 2 exp(Bc2) = 2e. (2.3.2)
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At this point, it is useful to introduce a dimensionless parameter characterizing the dis-
cretization of velocity* in the model. A natural choice for this is § = ¢/+/e, where ¢ is the
unit of speed in the model. Consequently, it is convenient to non-dimensionalize 3 by e,
B = Be. The discretization parameter § = ¢/+/e measures how far away the model is from

the continuous velocity case (§ = 0 implies a continuous velocity gas). Define

G =3 exp(Bi%el), (2:33)

with €; a non-dimensional vector coinciding with the particle velocity vector c,. Using the

definition of G in Eq.2.3.2 gives

. > 9. 2G
&2 exp(B%e2) = = - (2.3.4)
p q
Equivalently,
dlogG _ 2 (2.3.5)
dpg?) ¢’

where now 3, § and G are all non-dimensional, and the dependence of the distribution
function on the model is reduced to the dependence of G on the model. In two dimensions
on the square lattice 6,21 = Caz® + cay2 and on the triangular lattice, ég = ng + E?m + €a¢Cany
with gz, Eay Or E4¢, €ay = ...—2,-1,0,1,2,... In the limit of having an infinite number of
velocities in each direction, with each velocity being an integral multiple of the unit velocity
¢, G is the sum of a (multidimensional) infinite series. This series is highly convergent.
Incidentally these infinite sums can be expressed in terms of theta functions** at z = 0 for

the various geometries and dimensions. For example on the square lattice in two dimensions,
)
G = 0%3(0;%7y, (2.3.6)
and on the triangular lattice,

G = 03(0; 7 /4)04(0; 3711y (2.3.7)

* more precisely the speed.

** since the complex variable z is the argument of a theta function, with z identically 0, use of the theta function is

no more than a notational convenience in the present case.
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The Euler-Maclaurian series summation formula for a general function f(j) can be written

as

> 7G)= [ fada+ Rfim), (2.38)
]

where R(f;n) is loosely called the remainder!. The above formula can be used to express
the infinite series G' as the sum of an integral and other terms. The integral can be evaluated

exactly:

o0
/ exp(B§°r?) 2xrdr = — (2.3.10)
0

T
Pz

Consider first, the continuous velocity limit} of the discrete velocity gases on the square
and the triangular geometry. It is seen that the terms other that the integral in the Euler-
Maclaurian formula for the sum G depend multiplicatively on (%32 (the log of the argument
of the theta function). Therefore, when 7 is let to go to 0, these terms vanish and on both

the square and triangular lattices, G is given by the integral in Eq.2.3.10, — Using

=L
ik g
this value of G in Eq.2.3.5 gives B = —0.5, independent of §. This corresponds exactly
to the Maxwell-Boltzmann velocity distribution for the continuous velocity ideal gas: from

Eq.2.3.1,

9

&

F(c) = exp(a)exp(—-;—;) (2.3.11)

Thus the limiting behavior of the discrete velocity gases both on the square and triangular

lattices is seen to be correct.

The error in discrete-velocity gases, still with an infinite number of velocities is tied

to the finiteness of the discretization parameter § and is given by the remainder terms of

T 1 n—1 m+l
R(fim) = S (Sm)+ SO + D bor (7w = 27 o + ) / Par g (== m) 2T (2)dz
T g 7™

by = -Bl; Pr(z) = ___¢r('1:) (2-3.9)

r! r!

' 1
Pr(z)y=b,_1+F_(z) Pr{0)=0; br = -—A Pr(z)dx

where By are the Bernoulli numbers and ¢r are the Bernoulli polynomials.

! In the sense of § going to 0.
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Eq.2.3.8, used in evaluating G. Since these terms are difficult to determine analytically,
and since the series definition of G, given in Eq.2.3.3, is highly convergent, G is easily
evaluated numerically. These values of G when used in Eq.2.3.5 give the variation of Fij

with the discretization parameter §.
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F1G.2.3.1 The error in B due to discretization on the square and triangular lattices. For
a fixed unit velocity g, this error is important at low values of specific energies.
Note log scale on the z-axis.

Shown in Fig.2.3.1 is the variation of —3 with § for the square and triangular lattices
in two dimensions. 8 = —0.5 at § = 0 corresponds to the continuous velocity limit of
B = 1/2e. The deviation of B from —0.5 is due to discretization of the velocity components
in terms of a non-zero unit velocity and can therefore be thought of as a discretization

error. A couple of noteworthy features of the discretization error as seen in Fig.2.3.1 are

1. For a fixed unit velocity g, this error is increasingly important at low values of the

specific internal energy.

2. The error is very small till a § of about 1.5. The engineering consequences of this

are encouraging.

Next consider the case when the number of velocity components allowed is finite. Then,

there is the additional effect of truncating the series sum G and this error can be thought
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of as a truncation error. This effect is again dependent on g, but for a fixed unit velocity
g, this effect is more important when the value of the specific energy is highf. Since the
series G now has only a finite (for the models to be considered, small) number of terms, it is
easier to deal with the original equations. Reverting back to Eq.2.3.2, the discrete Maxwell

Boltzmann distribution for the stationary case can be written as

e
F, = -, (2.3.12)
2%
where z (= exp 3§%) satisfies the polynomial equation
2 <2
Y (5 -ept=0. (2.3.13)
q

a

The velocity distribution (presently the speed distribution) is fully determined if the vari-
ation of z = exp 3% with § (equivalently e) is determined. The above equation is a poly-
nomial equation in z and the equation cannot be solved explicitly if it is of degree greater
than three. The numerical solution is presented as a plot of —3 v. § for the different models
on the square and triangular lattices in Fig.2.3.2. The number of velocities in the models
considered on the square lattice are 9, 25, 49, 81, 121 and oo and on the triangular lattice
are 19, 37, 61, 91 and oo (see section 1.3.1 and Fig.1.2.2). The error on the right i.e for
g large is the discretization error previously discussed. All the curves, except the ones for
00 g0 away to 3 = 00 at Gmin, SO that only the highest speed allowed in the model occurs,
and none else. As previously said, a § of —0.5 corresponds to a Gaussian distribution of

velocities, as in ideal gases.

§ This is rather obvious because there is a maximum of the specific internal energy allowed in the model.
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06 T 06 T

F16.2.3.2 The error in § due to allowing only a finite number of velocity components. Note
log scale on the z-axis(a)Square lattice (b)Triangular lattice

2.4 The Non-Stationary Equilibrium Distribution vie a Perturbation Expansion

The exact Maxwell-Boltzmann distribution in the context of discrete-velocity gases,

Eq.2.3.1, is rewritten here for convenience.
F, = Fy(cq) = exp(a + b.cg + fcg?) (2.4.1)

The only vectorial dependence of the coefficients can come from u. Therefore, b can be
written as bu, where b is a scalar coefficient and not the magnitude of b used above. The
distribution has three parameters — a, b, and 3, and these are to be determined to satisfy
the mass, momentum, and energy considerations. This cannot however be done exactly
analytically in the context of discrete-velocity gases mainly because of the the finiteness
of the velocity space, which brings in a nontrivial dependence* of the velocity distribution
function on the macroscopic flow velocity. Therefore resorting to a perturbation series in

u, doing it here only to O(u?),
a = ag(e) + ag(e)u? + O(ud)
b= bo(e) + ba(e)u® + O(u®) (24.2)

B = Bole) + f1(e)u? + O(u®)

* for a perfect gas, b can be set identically to 0 by changing the frame of reference to one traveling with the
macroscopic flow velocity.
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which when used in Eq.2.4.1 gives
F, = exp(ag + Boca?) exp(bgca.u) exp((ay + frca?)u?) exp(O(ud)) (2.4.3)
If u is small enough for u3 to be negligible,
Fy = Flg|(e) (1 + bo(e)ean+ ZB3(e)cam)? + (ar(e) + Br(e)ea)ul + 0(u3)> (2.4.4)
where F{a] = exp(ag +ﬂ0c82) is the previously discussed stationary distribution. The mass,
momentum and energy considerations reproduced here

ZFa =1, Z coFy = u, Z c.lF, = 2¢ + u? (2.4.5)
a a

a
then determine the coefficients aq, bg, and 31 for any model. At this point, it is convenient

to introduce a set of tensors of various orders, denoted by E(2), EM, etc... and defined by

b
Eaﬁ'y&... = Z F]ajcaacaﬂca'ycaé s (2.4.6)

a=1
Note that the E tensor of a given order is simply a convenient notation to represent all possi-
ble moments of the stationary distribution function of that order. In addition to simplifying
the algebra tremendously, these tensors are capable of characterizing fully the directional
behavior of the models. In the rest of this chapter, the specific energy e is assumed non-

dimensionalized by ¢2 and any velocity by g.

2.4.1 Structure of the E Tensors

A momentary digression to take a look at the structure of these E tensors on the square
and triangular lattices is worthwhile. The reader is referred to Wolfram (1986) for a good

discussion of the sub ject.

e From their definition, it is seen that the E tensors are symmetric over all their

indices.



— 99—
The symmetry of the square and triangular lattices constrain the odd order E

tensors to be identically zero.

E™l =0, =n=0,1,2,... (2.4.7)

The second order tensors on both the geometries is again the same from symmetry

considerations and is given by

Eog = €bop (2.4.8)

They are seen to be isotropic.

The higher (even) order tensors however have a different form on the two geometries: for two

spatial dimensions, the isotropic 4-tensor, denoted by A,g,s has the form 8,65 +6av0gs +

04503y and can be conveniently denoted by indicating only its upper simplical** compo-

nents: (3,0,1,0,3). The structure of the 4-tensors on the square and triangular geometries

is discussed below:

Square Geometry: In terms of the upper simplical components, the 4-tensor is
given by (e41,0,e42,0,e41). The expressions for one of the components eq3, can
be derived explicitly without having to know even the stationary distribution as

follows:

2 2
eq2 = Enge = ZF|a|cazcay = Z F|az|F|aylczzcgy ’ (24.9)
a

ax,ay
Since the probability of the velocity ¢, occurring, is the joint probability of its
velocity components ¢4z and cqy occurring, and since the distribution of the two

components are relatively independent]‘, the joint probability can be replaced by

*%

the indices form a non-increasing sequence: Thus for Eaﬂ’ (Ell’ Es1, E22) are indicated and so on. The upper

simplical components are sufficient to describe the E tensors completely because of the symmetry of tensors in all
its indices, as seen by the definition in Eq.2.4.6.

t This is not true in the case of the triangular lattice and therefore this argument cannot be used to determine eyg9

there.
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the product of the two probabilities. Therefore,

2 2 2
= (S et ) (5 Aoy = (S e ) (5 ey ) =
azx by a b

(2.4.10)
. 2 2
because El;’[alcgz = Z F]a:cIFIayICZ:c = ZF]ay| ZFlaxlcaz = ZFIaa:Icaz
a az,ay ay azr ar
(2.4.11)

So that Eqgys = (41,0, 2,0, e41). Since this is not, in general, of the isotropic form
(any isotropic 4-tensor can only be a scalar multiple of the isotropic 4-tensor A, B6>
and therefore can have only one independent component), it can be decomposed

into an isotropic component and an anisotropic component:

Eaﬁ‘y& = 62(3,0, 1,0, 3) + (84] — 362)(1,0,0,0, 1) = €2Aaﬂ75 + (641 - 362)50,’375 s
(2.4.12)

e Triangular Geometry: First consider the 4-tensor generated by the velocity vectors
directed towards the corners of a regular hexagon (with one of the corners on the z-
axis. After considering the symmetries, it is enough to look at the ratio E1111/F1122
to determine the form of the 4-tensor. Since, all the six velocities are of the same
speed they occur with equal probability (%) in the stationary state. Therefore from
Eq.2.4.6,

pu_ 4(8) + 24
Praz 1 (1\2 (BY ’ (2.4.13)
() (%)

The 4-tensor generated by a hexagon, therefore, has the isotropic form ( )AaBys-

Any model on the triangular lattice can be written as a sum over regular hexagons
of various sizes oriented differently with respect to a common z-axis. Then, since
the 4-tensor generated by each of the hexagons is isotropic, they retain the same
form on transformation to the global coordinates and thus the 4-tensor of the given

model is obtained simply by scalar addition of the coefficientst. Thus the 4-tensor

¥ This cannot be done on the square lattice because even though any model can be written as the sum over squares
q g y
of different sizes, the 4-tensors cannot be simply added back because the 4-tensors of the squares are anisotropic
and therefore change form on transformation to the global coordinates.
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on the triangular grid is isotropic: Eqgys = e41(€)Aqp+s

2.4.2 The Distribution Correct to O(u?)

The three moments in Eq.2.4.5, using the perturbation expansion Eq.2.4.4 can be
rewritten in terms of the E tensors as

1

Qb%Eaﬂuauﬁ + (alE(O) + B1Eqc)ugug + o(®) =1

a

1
> Faca = Ea +boEagup + 563 Eagyugty + (01 Ea+ f1 Eapp)uyuy + O(u?) = u (2.4.14)
a

1
Z FaCZ = Eaa+b0Eaaﬁuﬂ+Engaaﬁ'yuﬂu‘y'!'(al Eaa+ﬂ1EaaﬂB)u7u7+O(u3) = 2e+u2
a

The second of Eq.2.4.14, along with the structure of the E tensors discussed in the previous
subsection gives bg = 1/e. Similarly the first and the third of Eq.2.4.14 can be used to
determine «y and 1. Since they involve 4-tensors which are different for the two geometries,

the resulting expressions are different.

e Square Geometry:

1 eq1 — 3e? e
- , = _ 2.4.15
AL 4e? €41 — € o1 eq41 — €2 ( )
e Triangular Geometry:
1 e41 — 3e? 3 e
f=——— 1 (2.4.16)
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2.4.3 The Equilibrium Momentum Flux Tensor

To get a better insight into the velocity dependence of the distribution function, further

discussion is carried out in terms of the equilibrium momentum flux tensor.

Pap=p Y FacaaCep (2.4.17)

Substituting F, correct to O(u?) as given by Eq.2.4.4 in the above definition gives the
equilibrium momentum flux tensor correct to O(u?). This can be written in index notation

as

1
Paﬁ = pZ ﬂal (Caacaﬂ + bOCaacaﬂca’Yu'Y + §bgcaacaﬂcavca6u7U6 (2 4 18)

+ caacaﬁ(al + ﬁlca'ycav)uéu&)

Or in terms of the E tensors as
1
Pop=p [Eaﬂ + Engaﬂ‘yéu‘rué + (a1Eqpg + B1Eqgyy)usts + O(us)] s (2.4.19)

noting that the term boE,p,uy has not been written because the odd order tensors are
identically zero on both the square and the triangular lattices. The scalar coefficient of
o in the above expression for the equilibrium momentum flux tensor can then be identified

as pressure.

Substituting the form of the tensors discussed in Sec.2.4.1 into Eq.2.4.19, the equilib-

rium momentum flux tensor takes the form

e Square Geometry*

1
Pug=0p [e + (5 + ajet+ Bi(eq + 62)> uQ] bap + Puatg
R (2.4.20)
€41 — 3e*

9¢2 50,@75“‘7“5 + O(ug)

+p

§ coordinate independent
* _ 2 a2
Eaﬂ'f'f_e Aaﬂ77+(641 3e )50‘377
=4625aﬁ + (641 —362)60,3

= (641 + 62)5aﬂ
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The pressure on the square lattice is therefore identified to be
1 2\ .2 3
p=p [e + (5 + aje+ Pi(eq; + e )) u“+ O(u )] (2.4.21)

Substituting for @y and B in terms of e4q,

a2
p=p (e - f‘“—4—623€l-u2 + 0(u3)> (2.4.22)

The simplified form of the equilibrium momentum flux tensor on the square lattice

is therefore
v v e
Py = ple— Zuz)éaﬂ + pugug + —é—éaﬁ75pu7U5 +0(u?), ¥= —321 -3 (2.4.23)

A few features worth noting about the form of the equilibrium momentum flux
tensor in Eq.2.4.23 are:
e The kinematic dependence of pressure, given by ¥ to O(u?).

o The correct advection velocity, indicated by the unity coefficient of pugug in
Eq.2.4.23.

e The form of the anisotropy of models on the square lattice, and the magnitude
again given by ¥ to O(u?)

¢ The recovery of isotropy (¥ = 0) in these models, when eq; = 3e%2. The
equilibrium momentum flux tensor is then ezactly of the form for perfect gases,

correct to O(u?): pedap + uatig

Triangular Geometry: Going through as for the square lattice,

v €41 €41
Pug=p (e - Euz) 0o + 3oz PlUatp +0(u?), ¥= =~ 3 (2.4.24)

It may be noted that when eq; = 3e2, the tensor is again identically that for a

perfect gas.
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It is heartening to see that after pages of algebra, all the deviations from the familiar
equilibrium momentum flux tensor are captured by one term which characterizes the devi-
ation of the 4-tensor of the model from the isotropic form. Comparing the momentum flux
tensor on the two geometries, it is seen that the anisotropy of the square lattice has been

traded for the incorrect advection velocity on the triangular lattice.

2.4.4 The Deviation ¥ for the Different Models

For the nine-velocity model, the above algebra can be carried out explicitly. The func-

tional forms obtained are as follows:

1 1
Fjop = (1 - e)%, Fy = 5‘3(1 —€), Fg = 162 (2.4.25)
1 1 1-—3e
bo = -, = - , = 2.4.26
0= 7 a e B1 e ( )
1 1
EQB = 660’:3 = 6(1, 0’ 1)’ a’nd Eaﬁ'y(S = 62(;7 07 17 07 ;) (2.4.27)

where again the upper simplical components are indicated; e4; = e. The isotropic and

anisotropic components of E,g,4 are therefore
Enpys = €%(3,0,1,0,3) + e(1 — 3€)(1,0,0,0,1) = e? Ay g5 + €(1 — 3€)dapys  (2.4.28)

The equilibrium momentum flux in the nine-velocity model therefore has the explicit form

— 3e 1-3
Pup=p (6 iy u2> 0ap + pugug + 3 epuau[géaﬂ +0(u?) (2.4.29)
and the pressure is given by
1-3
p=p (e - Su? + 0(u3)> (2.4.30)

Since the stationary velocity distribution for any of the other models involves solv-
ing polynomial equations of order four or higher, they have to be obtained numerically**.
Fig.2.4.1 shows the variation of ¥ = e41/e? —3 with g for the different models on the square

and triangular lattices.

** The stationary distribution is required in order to calculate €41 = E]lll’ the one variable on which all the
deviations depend.
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ot
E-13

FiG.2.4.1 The variationof ¥ = .6_6921. —3, the quantity which determines the kinematic depen-

dence of pressure on both geometries, the anisotropy on the square geometries
and the advection velocity of the triangular geometries. Shown for the differ-
ent models discussed in the section on Stationary Equilibrium. (left): Square
lattice (right): Triangular lattice

2.5 On Pressure in Lattice Gases

In the above discussion, since the particle velocity distribution was found analytically
correct to O(u?), the pressure was identified correct to O(u?). It is rather interesting to
note that the procedure by which pressure was identified above was purely mathematiczﬂ;’
other definitions of pressure, as from a mechanical point of view whereby it is the aver-
age normal stress at a point when the fluid is in thermodynamic equilibriumf, or from a
statistical thermodynamic point of view wherein it is the generalized force conjugate to
specific volume are possible. This may suggest that the definition of pressure is not unique
or that pressure itself is a poorly defined concept. This however is not true as is clear from
the following simple experiment. Suppose pressure is defined by p = p(p,e,u). Now set
up an initial condition on a one-dimensional domain with a variation of say density and
specific energy, the variations being such that p(p,e,u) is constant over the domain. By
following the subsequent evolution of the initial condition under the model Euler equations,

the correctness of the definition of pressurei can be verified: if the definition was right, the

1 This definition gives p = pe identically.

} The definition of pressure is correct if it conforms our everyday notion of it and if it works correctly in the
hydrodynamic equations.
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subsequent evolution would be given by

Dp De
== =09, 2.5.1
Dt Dt (2.5.1)

i.e., the density and specific energy profiles are simply advected with the flow velocity. If
the definition was incorrect, there would be C4 and the C_ waves generated in addition.
By doing the above experiment, it was seen that at small values of the flow velocities, the
definition of pressure arrived at above is much better than the p = pe definition got from
the average normal stress argument. It remains to be seen if the statistical thermodynamic
definition of pressure as the generalized force conjugate to specific volume conforms to the

previous definition.

Apart from all the above discussion, a question that remains is how can one identify

pressure exactly if the particle velocity distribution is known ezactly but numerically?
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CHAPTER 3

A Method for Near-Equilibrium Discrete-Velocity Gas Flows

The equilibrium flux method (EFM) of Pullin (1980) is a kinetic-theory-based finite
volume method for calculating the flow of a compressible ideal gas. It is shown in this
chapter, how the EFM idea can be applied to a discrete-velocity gas. The EFM view of a
discrete-velocity (lattice) gas allows good approximations to inviscid, non-heat conducting
flows of a discrete-velocity (lattice) gas to be conveniently and efficiently calculated. To the
knowledge of the author, there has not been a good way of calculating such a flow ‘til now.
The near-equilibrium flow techniques discussed in this chapter derive from the following
EFM interpretation of an equilibrium flow:

“the particle ensemble simulation is replaced by a scheme in which adjacent cells in a cell network
interact directly through exchange of mass, momentum, and energy, the exchange in Af being
calculated using the equilibrium flux relations.”*

The near-equilibrium flow techniques, therefore, use direct calculations of local kinetic trans-

port of mass, momentum, and energy in the lattice gas with no recourse to continuum

formulations in terms of partial-differential equations.

3.1 Equilibrium Fluxes

From chapter 2, thermodynamic equilibrium is defined as the state in which there is a
detailed balancing of collisions. As discussed, there are a set of b — D — 2 relations of the
form

NNy -+ = NpNg -« - 3.1.1)
b p'tq

* Pullin 1980.
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which are satisfied in such an equilibrium state. The vector F of hydrodynamic variables

comprising mass, momentum, and energy is given by

F= (Xa:”av;"""a’znacg) (3.1.2)

and G, the flux of F is given by

G = (Z naca,Znacaca,Znacgca) (3.1.3)
a a a

The definition of F along with the set of b — D — 2 thermodynamic equilibrium equations
Eq.3.1.1 (model dependent), is the implicit discrete Maxwell-Boltzmann distribution. Sim-
ilarly, the definition of G used in conjunction with the equilibrium equations Eq.3.1.1 gives
the equilibrium fluxes of mass, momentum, and energy. Since the b particle populations
satisfy the b — D — 2 equilibrium relations Eq.3.1.1, there are D + 2 independent particle
populations. We represent these D+2 independent particle populations by m, and therefore

Eq.3.1.2 and Eq.3.1.3 may be rewritten
F = F(m), G = G(m) (3.1.4)

While from Eq.3.1.2 and Eq.3.1.3, it is clear that G = G(F), the functional dependence
cannot be expressed explicitly**. Finally, if the equilibrium distribution of all the & popu-

lations is denoted by n, n can be calculated from m, using Eq.3.1.1.

** This would involve the equation of state.
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3.2 Near-Equilibrium Flow in 1-D

The present near-equilibrium flow technique is best illustrated by considering it in one
spatial dimension. Consider a linear array of cells tiling the one-dimensional domain. Each
cell has a centroid and is bounded by two boundary elements, across which the cell interacts
with its neighbors. The time evolution of the system is then reduced to a calculation at
each time step of the net flux of F at the cell boundaries, and updating F using the fact
that F is a conserved quantity. It is enough to consider the interactions of one cell at one
of its boundaries because the domain is invariant under a translation by the dimension of
a cell. Considering the interactions at the cell boundary at = + Az /2, between the cells

centered at z and z + Az, the flux of F at z + Az/2, G(z + Az/2), comes from

1. the flux of F in the positive z-direction due to particles moving in the positive z-
direction and presently in the cell [z—Az/2,2+ Az /2], called G‘F(n'*”(:l:-{—Arz:/2,t))Jf
where nt has been used to denote the distribution of particles with a positive x-

velocity, and

2. the flux of F in the negative z-direction due to particles moving in the negative z-

direction and presently in the cell [z+Az/2,2+3Az /2], called G™(n"(z+Az/2,1)).

The integral form of the conservation law for F over the cell [z — Az/2,z + Az/2]
centered at z can then be written as

d (=¥ Az Az
— A F(n(z,t))dz+ | GT(nt(z + ==,1)) - G (n"(z + —,1))
dt /I“‘f" ( 2 2 ) (3.2.1)

- (G+(n+(z - %ﬁ,t)) -G (n (z - é;—,t))) =0

t A notational clarification: The reader may observe in the coming pages that gt always goes with n+, and G™
with n™. The notation G+(n+) and G~ (n") are however used to leave no room for ambiguity: G+(n_) and
G'—(n+) are meaningful quantities but never occur in the present context. G+(n), if used is to be interpreted
as G+(n+) and G7 (n) as G (n™). It may also be noticed that Gt and G— always occur with mutually
opposite signs. The split fluxes Gt and G™ are so defined to help visualize them better.



— 40—
This is the master equation, so to speak, of the present near-equilibrium flow method and
schemes of different orders of accuracy are derived as approximations of this equation. Note
that this equation embodies the important physical idea of kinetic flux-splitting, i.e., it is
tmportant to interpret the flux terms in Eq.3.2.1 the way they were introduced. To further
congeal the important aspects of this method, a simple first order scheme is considered first.
The complication arising out of the higher order accurate schemes are discussed thereafter.
In that context, the behavior of the first order scheme is seen to be crucial; so while almost
always higher order methods are used in computations, an understanding of the first order

method is of paramount importance.

3.2.1 A First Order Scheme

To obtain a first order scheme, it is enough to assume that the velocity distribution,
and therefore all other relevant quantities, are constant in the volume of a cell, and that
they undergo discontinuous changes at the cell boundaries. Physically, this amounts to
saying that the mean-free-path of the gas is of the order of the cell sizet. Considering cell
[z — Az /2,2 + Az /2] with exchange of mass, momentum, and energy at z — Az/2 and

z 4+ Az /2, the resulting updating scheme for F in the cell is given by

d 1 ~(n~
aF(n(z,t)) =" Aa {G+(n+(x,t)) — G (n"(z + Az,1)) (3.2.2)

- Gt(nt(z — Az,t)) + G (n (2,1)}
Using a first order time integrator, the forward Euler stepper, the above equation becomes
F(n(z,t+ At)) = F(n(z,1))
(@ (2,0) - G (0 (x + Az 1) - G (n* (@ — Az 1) + G~ (n7(2,)
(3.2.3)

with At satisfying the Courant-Fredrich-Levy (CFL) stability criterion vAt/Az < 1, with v

being the characteristic velocity of propagation of a small disturbance in the medium. The

¥ but the collision frequency is infinite in each of the cells.



— 41—
scheme indicated in Eq.3.2.3 has a simple physical interpretation in terms of the interactions

of the centroids: The state of z at time ¢ + At is different from the state of = at time ¢ by

1. the departure of particles from z due to a non-zero z-velocity, terms 1 and 4 in

Eq.3.2.3.

2. the arrival of particles with a positive z-velocity from = — Az, term 3 in Eq.3.2.3

and

3. the arrival of particles with a negative z-velocity from z + Az, term 2 in Eq.3.2.3.

The important difference from the usual lattice gas evolution?, however, is the fact that
the arrival and departure of the particles is so as to simulate fluxes with purely equilibrium
components (no viscous or heat conducting components). As a computational detail, since

the primary dependent variables are m, the evolution of m is given by

m(z,? + At) = m(z,t)

- -—A—t[JFm]“1 (Gt(nT(z,1)) - G~ (n (x4 Az,t)) - GT(nT(z - Az,1)) + G~ (n"(z,1)))

Az
(3.2.4)

where Jp,, is the Jacobian of the transformation from F to m.

3.2.2 Viscosity of the First Order Scheme

It was mentioned before that the mean-free-path is of the order of the cell dimension:
the method is therefore expected to have viscosity. Since the coefficient of viscosity is specific
to each model, a qualitative procedure of how this coefficient of viscosity can be estimated
is outlined here. Though the particle velocity distributions in the cells themselves are the
equilibrium Maxwell-Boltzmann distributions, the distributions at the cell boundaries are

not — they are a combination of the two different one-sided equilibrium distributions. At

§ The dimension of m, the vector of particle populations that is updated at each time step, here is D + 2 and not
b, as for the usual lattice gas evolution.
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the interface between cell 7 and j + 1, indicated by j + 1/2,
.1 . .
n,(j +5) =0t (HUn G+ D). (3.2.5)

The subscript a stands for actual, as opposed to equilibrium which is what is implied by no
subscript. The n, at j + 1/2, defines a macroscopic state there, F(j + %) Corresponding
to that macrostate, there exists an equilibrium distribution n(7 4 1/2) and consequently an

equilibrium flux G(5 + %), which can be written as
G(j +3) = GH@H(F( +3)) - G~ (a (G +5)) (3:2:6)

This is, however, not the actual flux at j + 1/2. The actual flux at j + 1/2, G4(5 +1/2) is
given by

Ga(j + 3) = Ga(ma(i + 3)) = G¥(n*(4)) - G~(n™(j + 1)) (3.2.7)

where the actual (non-equilibrium) flux at 7 + 1/2 has been expressed in terms of the
equilibrium (one-sided) fluxes at j and j + 1 The non-equilibrium part of the actual flux at
J + 1/2 is given by the difference of Eq.3.2.7 and Eq.3.2.6. After some manipulation, the
non-equilibrium component of the actual flux at 7 4+ 1/2, denoted by G,(j + 1/2) is given

correct to first order by

Ax

1
G,(J+=)=——
v(.7+2) 9

-1 dF
[(JG+m + 3G ) Frm] ™ ’('i"z'] . (3.2.8)
I+5

This non-equilibrium part of the actual flux can be written in the form
dF -
Gu(a) = —vo—  with v= % [(JG+m + T ) [Tl 1] (3.2.9)
z

The constitutive relation above has a full 3x3 matrix of viscosity coefficients relating the
flux of mass, momentum, and energy to the gradient of mass, momentum, and energy, but
the important thing to note is the dependence of all the viscosity coeflicients on the cell
size in the first order scheme analyzed. Macrossan (1989), carries out such an argument

for the special case of the flux of momentum depending on the gradient of momentum in
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the context of a first order EFM applied to a perfect gas and arrives at a coefficient of
viscosity which is again seen to be directly dependent on the cell size. Thus the equilibrium
flow technique is expected to simulate the equilibrium flow exactly only in the limit of the
coefficient of viscosity, as, e.g., in Eq.3.2.9, going to zero. This can be achieved either by
letting the cell size go to zero (expensive) or by making the method increasingly higher
order accurate in space, i.e., make the coefficient of viscosity of the method depend only on

higher powers of the cell size. The latter approach is pursued in the next section.

Before that, it is worth pointing that the equilibrium flow technique discussed here is
a shock-capturing method: the coefficient of viscosity acts correctly and is appropriately

modified implicitly in all situations, with no parameters to be tweaked.

3.2.3 Second Order Schemes

An extension of the above first order scheme to a higher order accuracy requires care.
This is illustrated by Fig.3.5.1, where a second order accuracy is achieved by averaging the
individual flux terms in Eq. 3.2.1 symmetrically over adjacent neighbors. The pathological
oscillatory behavior (seen in the Fig.3.5.1) behind the shock is the quintessential feature of
this method which renders it useless in computing flows with discontinuities (see below).
It is interesting to note that the first order scheme does not develop oscillations* when
steep gradients are encountered. The problem with the above second order scheme is that
the second order accuracy was achieved by linear interpolation of the primary variables
between the centroidal values. In so doing, the interpolated values at the cell boundaries
— {rom the left and the right — develop spurious variations (non-monotonicites) when
steep gradients are encountered and these non-physical variations grow, resulting in the
typical oscillatory behavior (seen in Fig.3.5.1). The correct way to develop a second order

scheme is therefore to linearly interpolate the variables in such a manner as to preserve the

* The viscosity calculations of the previous subsection could perhaps be used to explain this.



— 44—
first order monotonicities: this precludes the generation of the spurious variations at the
cell boundaries when steep gradients are encountered. As discussed in the review article
by Yee, 1989, this can be achieved by using some kind of a limiting procedure: imposing
constraints on the gradients of the primary dependent variables gives rise to slope limiter
schemes. Imposing constraints on the gradients of the fluxes themselves gives rise to flur
limiters. Both, a slope limited second order scheme and a flux limited second order scheme
are studied. The limiting procedure used in the two cases is the same, and is the popular

minmod limiter.

The minmod limiter is best described as this binary operator:

- _{o if sgn(p) # sgn(o)
min0d(0,0) = { D ), ) 15 o) 2 sente) (3:210)

where sgn(p) is the sign of p and |p| is the absolute value of p. In the present usage, p and
g are the values of the slopes at the centroid of a cell — p being the backward slope and
g the forward slope. The full minmod limiting procedure simply consists of applying the
above binary operation to each of the cells at any given time step to obtain the slopes for

any relevant quantity at each of the cell centroids.

In both the flux limiter and slope limiter schemes to be presented, the aim is to obtain
second order accurate approximations for the four split-fluxes in Eq.3.2.1. Time integration

will be discussed in the next section.

e Flux Limiter: The split-fluxes are calculated at the centroids and then are lin-
early interpolated using the minmod limiter to estimate their values at the cell

boundaries:
GT(z + —é—-,t) =G (z,t) + -2—m1n_mod (Apck G (z,1), AfyyqG (z,t)) (3.2.11)

A
® 1) =G (z + Az, 1)~

G5

1
—Q—min_mod (Apek G (2 + Az,1), ApygGT(z + Az, 1))



— 45—
where Gt (z,t) = Gt(nt(z,t)), etc., all consistent with the kinetic flux-splitting

idea and Af,qy(z,t) = y(z + Az,t) — y(z,1), ete.

e Slope Limiter: The primary dependent variables m at the centroids are linearly
interpolated using the minmod limiter to approximate their boundary values, at

which values the split-fluxes are calculated.

1
m(z + %-z—, t) = m(z,t)+ Emin_mod (Abckm(m, t),Afwdm(:c,t))

Gt(z + %,t) =Gt (nT(z + é23”-,10) (3.2.12)
G (z+ %g—:,t) =G (n"(z+ -Z;—m,t))

where the same notation as in Eq.3.2.11 has been used.

3.2.4 Time Integration

If the above spatially second order schemes are to be used in an unsteady problem, it
is important to make sure that the time integration is at least second order accurate, since
otherwise, the time integration errors are likely to dominate the spatial errors. In fact, the
time integration errors are directly coupled to the spatial errors, if the time stepping is
determined by the CFL stability criterion. To simplify matters, a high degree of accuracy
of the time integration is ensured by using fourth order Runge-Kutta with a time step
well below the CFL stability limit. This is done for both the first order and second order
spatially accurate schemes. Since the present interest lies in applying these schemes to
unsteady problems, the high degree of accuracy of time integration does not go to waste:
the computations can be continued much longer before the accumulated time errors become

significant.
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3.3 A Comparison of The First and Second Order Schemes

The accuracies of the first order and the two second order schemes as obtained in
computations are compared by running a test problem with the nine-velocity gas. The time
at which the methods are compared are such that the errors due to the time integration
are negligible. The integral over the spatial domain of mass, momentum, and total energy
is conserved to better than one part in a million in all the schemes. The order of accuracy

of the method is estimated by looking at a global error measure E given by

E(1) :/ y(z,t; Aw)—/ y(z,t; Az = 0). (3.3.1)
Domain Domain

y(z,t; Az) is the solution obtained by a numerical scheme with a step size Az for a problem,
the exact solution for which is given by y(z,t; Az=0). Since the exact solution y(z,t; Az=0)
is not known analytically, Richardson’s deferred approach to the limit, Press et al. (1988), is
used to estimate the exact value: a rational function extrapolation is used on a sequence of
solutions with decreasing Az to estimate the solution at Az=0. The method is ntt order

accurate if £ = O((Az)").

The test problem is set up on a periodic domain (0,1) so that the effects of boundaries are
eliminated. The initial condition on the periodic domain is a sinusoidal velocity distribution
superimposed over a uniform state: p(z,0) = pg, e(z,0) = €g, u(z,0) = ug + u3 sin(27z).
The time t at which the error analysis is done is chosen to be smaller than the time of
formation of discontinuities, which is determined by the initial conditions. The quantity y

in Eq.3.3.1 used in the error analysis is the non-dimensional** kinetic energy %pu2.

Fig.3.3.1 shows the scaling of the global errors with the spatial discretization for the
three different schemes discussed previously. The first order accuracy of the basic scheme

and the second order accuracy of both the flux limited and slope limited schemes are clearly

** density, p, is non-dimensionalized by the average density over the domain and the velocity, u, by the unit speed,
g in the model.
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F16.3.3.1 Variation of the global error in kinetic energy with spatial discretization, at a
particular time.

verified. The close correspondence between the flux limiter and slope limiter schemes, shows

that neither of them has a clear advantage over the other.

In light of the previous discussion of the viscosity of these methods, the above test

problem can be used to obtain a numerical estimate of the coefficient of viscosity.

Fig.3.3.2 shows the decay with time of the initial kinetic energy in the problem discussed
above, for both the first order method and a second order method. In this computation,
an extremely coarse mesh was used — only 8 cells — to tile the domain (0,1) giving a
Az = 0.125. The important feature to note in the plot is the qualitative behavior of the
kinetic energy: The oscillatory nature is a feature of the exact Euler solution and the decay
of the amplitude is an effect of the viscosity of the method. The decay of the amplitude
(given by the envelope) is approximated by an exponential and the rate of fall off is a

measure of the viscosity of the method. The amplitude at a time ¢ can thus be written as

Y = Yoo — (Yoo — Yo) exp(—rt), (3.3.2)
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F16.3.3.2 The dissipation of kinetic energy as a manifestation of the viscosity of these
methods

where yq is easily estimated by the phase at which the y is considered (corresponding to
time t), yoo corresponds to final uniform state, after the perturbation has been dissipated,
and v is the effective viscosity coefficient.

vt = log <M> (3.3.3)
Y= Yo

By repeating the calculation on a finer mesh, the viscosity is seen to vary linearly with the
cell size in the first order method and quadratically in the second order method. Thus the

viscosity of these methods can be used to characterize the accuracy of these methods.
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3.4 Comparison with Other Lattice Gas Methods

While at the outset, it may seem that the near-equilibrium flow techniques cannot be
compared to the other prevalent schemes of computing lattice gas flows, it is rather clear
from the discussions in this chapter and Sec. 5.5 that meaningful comparisons can in fact
be made. Before that, it should be pointed out that the features of lattice gases which make

them interesting and popular are preserved in the near-equilibrium flow schemes introduced:

e The interactions are local, and thus these methods are just as parallelizable as other

lattice gas methods.

e Subject only to the CFL criterion, these schemes are robust with little unphysical

behavior.

As compared to the full lattice gas simulations, the relative merits of the near equilib-

rium flow technique are

e Since it is not a stochastic process, simulations using this technique are relatively

noise-free.

e The need for an exclusion principle to ease computation is obviated. Thus the

classically unphysical effects of an exclusion principle are eliminated.

e Schemes to enhance collisions! (Rothman 1989) are also obviated since the tech-
nique is the infinite collision frequency limit of the lattice (discrete-velocity) gas

flow.

e Spurious conservations, as of staggered momenta (Kadanoff, 1988) are not expected

in this mode of computation.

1 which in most cases are highly unsatisfactory in that they violate some basic conservation leading to a loss of
universality of equilibrium distributions!.
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e It is speculated that simulations of flows with a much higher Reynolds number are
possible with this method, given the same computer resources. The quantitative
interpretation of the flows will perhaps be complicated by the nature (Eq.3.2.9) of

the viscosity coefficient.

o If a larger number of velocites are to be included in the lattice gas model, while the
full lattice gas simulations are likely to run into problems of too big a neighborhood,
and/or too large a look-up table, the present method would not be affected much,

but for an increased computation in each cell.

e Ixtension to 3-D computations poses no new problemsi.

The disadvantages of the near-equilibrium flow technique compared to the full lattice

gas simulations are, of course,

e Aspects of long-time velocity auto-correlations and many-body correlations cannot

be studied, since they are all thrown away by the Boltzmann approximation.

e By using floating point numbers, it lacks a very attractive feature of CA. This
may preclude implementions of this technique on the special CA computers being

developed.

¢ One has to speak of the accuracy of the method unlike in the CA universe.

To put it in the context of the Lattice Boltzmann Equation (LBE) approach, the near-
equilibrium flow technique is the infinite collision limit of the full LBE. Computing collisions
which constitute the right hand side of the LBE is a computationally intensive task (Inamuro
& Sturtevant 1990). The present method does not deal with collisions, since an infinite

collision rate is implicit in the formulation. The prevalent schemes for LBE, however, use

1 Note that only the scheme of implementing a given model is being discussed, not a scheme for arriving at new
g a g g g
models based on the present technique.
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a simplified model for the collisions. The most popular model is the single time relaxation
model, Succi et al. (1991), like the Bhatnagar-Gross-Krook (BGK) collision model for the
actual Boltzmann equations, but with much severe restrictions: while the deviations from
equilibrium in the BGK model are deviations from the local equilibrium, the deviations in
the LBE context are from one global equilibrium! This is clearly untenable in a compressible
flow situation. A further price to be paid in such a simplification is not knowing when the
simplified relaxation model of collision becomes insufficient. This is evidenced even in the
studies of the BGK approximation of the actual Boltzmann equations (Cercignani 1988).
Since the near-equilibrium flow techniques are based on the idea of local thermodynamic

equilibrium, no such problems arise in their usage.

3.5 The Method from the Point of View of Euler Equations

Consider a set of conservation? equations in one space dimension and time

OF(n) + 0G(n) _

= o =0. (3.5.1)

If F is the vector of mass, momentum, and energy, and if G is the flux of F, then Eq. 3.5.1 are
the hydrodynamic flow equations. Let n in Eq.3.5.1 be the molecular velocity distribution
function; if n is the equilibrium Maxwell-Boltzmann distribution, then Eq.3.5.1 are the
Euler equations. The structure of F(n) and G(n) are particular to the underlying molecular
model. If the underlying model is that of an ideal gas — a dilute gas of hard sphere
particles with a continuous velocity space extending from —oo to +00 — the resulting form
of Eq. 3.5.1 is referred to as the actual Euler equations. If, on the other hand, a simplified
molecular model is used, the resulting Eq.3.5.1 is referred to as the model Euler equations.
These model Euler equations (see next chapter) have the same kind of non-linearity as the

actual Euler equations — non-linear convection. Consequently, a non-linear steepening of

f The integral of F(n) over the domain is conserved with time, provided the domain is isolated.
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initially smooth profiles of the conserved quantities F(n) is to be expected with the model
Euler equations. Singularities are expected to appear in finite times for all but the most
degenerate initial conditions. The same issues then arise in numerically solving the model
Euler equations, as in solving the actual Euler equations: the ability or inability of the
numerical methods to handle steep gradients and issues of artificial vs. numerical viscosity.

.This is crucial of course if the evolution is to be followed beyond the time of formation of

discontinuities.
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F1G.3.5.1 Time evolution of an initial monotonic tanh pressure profile under the model
Euler equations using a centered space fourth order RK algorithm. The post-
shock oscillations are numerical.

Viewing Eq.3.5.1 as a set of partial differential equations with no reference to the
underlying model, a first and rather popular attempt would be to use the centered space
and fourth order Runge-Kutta time stepping procedure. Fig.3.5.1 shows the time sequence
of the z-profile of pressure using such a numerical solver to solve the model Euler equations
Eq.3.5.1 of the nine-velocity model (see next chapter). The initial condition is smooth,

but non-linear convection steepens the wave. This numerical procedure is best analysed by
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considering a simple quasi-linear convection equation, the inviscid Burgers’ equation. Lax
(1986) shows that central-space differencing is equivalent to introducing a dispersive term
into the original equation. This causes a transfer of energy into the higher wave-number
components, the wave-number scaling with the mesh width. Fig.3.5.1 seems to reveal the
same sort of behavior in the present context, though the system now consists of three partial
differential equations and of a considerably more complex form. It is perhaps interesting to

note a couple of other things in this context:

¢ John von Neumann in his innovative efforts at constructing simplified molecular
models to compute hydrodynamics, Neumann (1944), used a non-linear spring-
mass chain to study shocks in an inviscid and non-heat conducting gas. Numerical
solutions of this model resulted in post-shock oscillations of the same nature as seen
in Fig.3.5.1. von Neumann conjectured that these oscillations can be interpreted
from the gas dynamic point of view as thermal energy produced by the irreversible

nature of the shock wave.

e The centered space differencing of the inviscid Burgers’ equation which introduces
dispersive effects, causes the numerical solutions to look much like the solutions
of the KdV equation. The post-shock oscillations in ?? seem very similar to the
breakdown of the initial profile into a series of solitons in the case of the KdV

equation.

The behavior of the oscillations are of no concern in the present context and need to
be eliminated. Based on the particle velocities in the z-direction, the flux term in Eq.3.5.1

may be split as
JOF(n) + dGT(nt) _9G™(n7) _
ot dz Jz B

0 (3.5.2)

Using the ideas of kinetic flux-splitting, it could perhaps be argued that the stable differenc-

ing for the flux terms should follow the simple rule ‘backward difference the forward fluzes
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Gt and forward difference the backward flures G~." Using the corresponding first order

differences, Eq.3.5.2 becomes

O0F(n) . Gt(nt(z,t)) - Gt(nT(z — Az, 1)) _ G (n7(z+Az,t)) - G (n"(z,1)) _

ot Az Az 0

(3.5.3)
This equation is seen to be the same as Eq. 3.2.3. Eq. 3.5.3 can also be thought of as resulting
from upwind differencing the (positive and negative components) of the flux, based on the
particle velocites. Ideas from total variation diminition (TVD) schemes used in the context
of shock-capturing techniques (Yee 1989) for Euler equations can perhaps be used to obtain
higher order schemes and these would presumably look like the second order schemes of

Sec.3.2.3
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CHAPTER 4

The Euler Limit of Discrete-Velocity Gas Flows

The solutions computed using the near-equilibrium flow technique, introduced in the
previous chapter, are effectively approximations to the solutions of the model Euler equa-
tions (specific to the model used). In this chapter, the model Euler equations are derived,
the behavior of their characteristics examined and the solutions of these equations, as ob-
tained by the flux-limited second order near-equilibrium flow technique of chapter 3, for
some typical problems analyzed. While the methodology is general, specific computations

are done using the nine-velocity model.

4.1 The Model Euler Equations

An inviscid and non-heat conducting flow of a discrete-velocity gas is realized, as in
any other fluid, by prescribing local thermodynamic equilibrium at every point in the flow.
Then, such a flow is represented by the Boltzmann equations Eq.5.2.2 in conjunction with
the equations Eq.2.2.9 which prescribe thermodynamic equilibrium and of course, the ap-
propriate boundary conditions. Noting that with b particle velocities allowed in a model,
there are b — D — 2 equilibrium equations and at the same time D 4 2 macroscopic variables
(mass, momentum, and energy), the equilibrium flow must be describable in terms of D + 2
primary variables. To this end, consider the D + 2 moments of the Boltzmann equations

Eq.5.2.2 corresponding to mass, momentum, and energy:

b
;fj(ci)fz,-n,:o, j=1,D+2 (41.1)
file) =1, fopri(e)=c, fprala)=lal
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The right-hand side of Eq.4.1.1 is identically zero because mass, momentum, and energy
are collisional invariants. The above are D + 2 partial differential equations in b dependent
variables. The equilibrium equations Eq.2.2.9 may now be used to eliminate b— D —2 of the
variables to arrive at the D + 2 partial differential equations, now only in D + 2 variables,

the model Euler equations, symbolically
Ejni(ng) = 0, i=1b0 jk=1,D4+2. (4.1.2)

Rewriting the above equations in conservation form,

0%  Of(a)

5t T Tox

=0 (4.1.3)

where & = (p, pu, pe;) and f(®) is the flux of #. The structure of the flux vector f(#) in
the case of discrete-velocity gases is much more complicated than in a perfect gas. In fact
f(#) is usually not expressible* ezactly in a closed form. Therefore, to circumvent this, the
hydrodynamic vector & is expressed in terms of n, some D + 2 particle populations, as

@ = F(n), in which case Eq.4.1.3 becomes

OF(n) OG(n)
2 T ox

=0, (4.1.4)

where G(n) is the flux (&) reexpressed in terms of n. F(n) and G(n) are both explicitly
known as the appropriate moments of the distribution function**, and are algebraic forms.
All discussion from here on is confined to flows in one spatial dimension, and when the
nine-velocity model is used, the flow is along one of the slow moving particle directions!.
This makes the analysis simpler at places and since the aim of the study is to indicate the
methodology, the case chosen is as good as any. Extension to multiple space dimensions
or analysis of flows directed along any other one direction is straight forward. As a nota-
tional clarification, all dependent variables used in this chapter are in their non-dimensional
form: densities refer to the number of particles at a point or in a cell, velocities are non-

dimensionalized by ¢, the unit of speed in the model and energies by Q.

* Related to the equation of state and Galilean non-invariance of discrete-velocity gas models.

** the full equilibrium distribution function is expressible in terms of n.

t except in one of the subsections where the possibility of supersonic flow is investigated.
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For one-dimensional unsteady flow, the model Euler equations Eq.4.1.4 can be put into

a more convenient form:

on; dn;

Aij‘gz"'*'aij'a?:()v i,j-_—l,...,3. (415)

A = Jgn is the Jacobian of the transformation from & to n, and similarly a = J¢(4),,. Note

that A and a, both depend on n and therefore Eq.4.1.5 is a system of nonlinear equations.

4.2 Characteristics of the Model Euler Equations

A curve C : (z = X(5);t = T(n)) in the = — ¢ plane, is a characteristic direction

(velocity) of the system Eq.4.1.5 at (z,t) or equivalently 7 if
[A;; — -'gaiﬂ =0 where & = X'(n)and B =T'(n). (4.2.1)

Letting 8/a = w be the new variable, Eq.4.2.1is a cubic equation in w and can be solved for
the three characteristic velocities (wo,wy,w_) at the point n corresponding to & = (p, u,e).
In the Boltzmann limit, which is being used, the density factors out and the characteristic
speeds depend only on the specific energy e, and the flow velocity u. Physically, the three
characteristic speeds correspond to the absolute speeds of propagation of a disturbance
made in the discrete-velocity fluid in thermodynamic equilibrium at (p, u,e)i. For refer-

ence, the above three characteristic velocities for the perfect gas are u, v + a and u — a,

¥ If the full kinetic (Boltzmann) equations of the model are considered, there is a hierarchy of waves of different
orders. In such a hierarchy, the lowest order waves correspond to the hydrodynamic modes. The characteristic
speeds ((wa,w+,w_) being discussed above are of the lowest order waves. The higher order waves correspond
to kinetic modes. The first signals about the disturbance are carried by the kinetic modes — the very first ones
corresponding to the particle velocities, which form the characteristics of the highest order waves and so on. These
kinetic modes, however, carry very little information about the disturbance: the higher the order, the lesser its
importance. The bulk of the information about the disturbance is carried by the hydrodynamic modes, and thus
are of primary importance. To clarify this, consider the Boltzmann equations,

1 a 8 ..
Lin; = EQz(nJ,n]), where L; = 52 +ci~8—x-, and ,7=1,...,b.
Kn, the Knudsen number is a measure of non-equilibrium: if Kn = co, only the left-hand side is significant, and
the equations represent free-molecular flow, and if Kn = 0, the streaming of the particles is unimportant and
continuum flow is recovered. Next, consider a small disturbance en’ about a fixed thermodynamic equilibrium

state nO:

0

n=n +Enl.

Q(n,n) = 2¢Q(n% n’) + 0(?) since Q% n% =0
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where a = (%%)s = +/YRT. Thanks to the Galilean non-invariance of discrete-velocity
gases, the additivity property of u + a is lost and the three characteristic velocities are more
general functions of both u and e. It is interesting to note that, performing the same pro-
cedure with the velocity discretization corresponding to the FHP model, there are only two
characteristic velocities, whereas compressible fluid dynamics demands three. The reason
for this is absence of temperature as an independent variable in the FHP discretization,

resulting from the allowance of only one particle speed®.

Then correct to O(e), the evolution of the disturbance is

Rewritten in a more convenient form, they appear as

! Kn ..
Pz]”] =0, where Pij = TLi—Qi(n?,.), i,7=1,...,b.
This is a system of linear equations — the coefficients are either linear operators depending on the particle

velocities, or constants depending on the base equilibrium about which the disturbance is imposed. Therefore, by
algebraic elimination (Cramer’s rule), the system can be collapsed into a single wave equation:

Det(P)¢ =0,

where ¢ is any n; or any linear combination of ng, and Det(P) is the determinant of P. Since any velocity moment
of n; is a linear combination of n;, the above equation holds for the hydrodynamic variables (p, e, u) too. The
wave operator Det(P) has the form, as it results from an application of Cramer’s rule to the linear system,

b
Det(P)p =Y KnF3wig =0,
3

where Wk is a hyperbolic wave operator of the kth order. This represents an hierarchy of waves (Whitham 1959;
Broadwell 1964a; Nadiga et al. 1989). The absence of wave operators of order 0, 1, and 2, t.e¢., WO’ Wl' and W2
is due to the structure in the collision operator Q(n,n) resulting from the conservation of mass, momentum and
energy in each of the collisions. Characteristic speeds of Wb' the highest order waves, are the particle speeds,
and the characteristic speeds of W3, the lowest order waves, are the hydrodynamic characteristic velocities given
by (wg,w +,w_). The relative importance of the different order waves is brought out by the exponent of Kn

multiplying them. For continuum flow, with Kn << 1, K n? is negligibly small and only W3 is important. While
the higher order waves decay exponentially fast, the effect of the higher order waves on the lowest order waves is
to make them diffusive to O(Kn), dispersive to O(K’nz), etc., (Whitham 1974).

2
§ eg =e+ 1—"2—- is thus conserved.
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4.2.1 Characteristic Speeds in the Nine-Velocity Model

The matrices A and a in Eq.4.1.5 for the nine-velocity model with flow along particle

direction 1 (see Fig.1.2.3), with n = (ng, n1,n5) are given below.

1— 2,/n1n5(n1+n5) no\/n1+n0a/n5+3n1‘/n5+n5% ng,/n1+n1%+n0,/n5+3,/n1n5

n02 no,/n n(),/ns
A= —2./ning(n;—ns) 1+ n1n5 n5% I A % 3:{1&111,5
no2 n()\/nl no,/ ng
—2/mins(n;+ns) n0\/n1+n0\/n5+6n1\/n5+2n5% nox/n1+2‘n1%+n0\/n5+6\/n1n5
ng? 2ng+/n1 2n9+/n5
(4.2.2)
3
—2/min5(n1—ns) 14 3y/mins ng2 1+ :{nlns
ng° ng ng/m1 ng s
3
a = —2/mn5(ny+ns) ng/n1+3ny/As+ns2 ni 2 +ng./n5+3/n115
ng? n0+/11 o /15
—2./ming(n;—ns) + nms nﬁg _lgmz % 3/mins
ng2 T noyma 5 ﬂo\/ ng

The above A and a matrices were used to write the characteristic polynomial, the
left side of Eq.4.2.1 explicitly using a symbolic manipulator. But with the coefficients of
the polynomial being too bulky to be of any practical use, the characteristic speeds were

computed as numerical solutions of the characteristic equation.

This is presented in Fig.4.2.1 as a variation with e of the three characteristic speeds
(wo,w4,w—) at a specified flow velocity; three different velocities are considered. wy is the
velocity of propagation of the upstream disturbance, w_—, that of the downstream distur-
bance, and wq is the third characteristic speed corresponding to the flow velocity « in a
perfect gas. Fixing with the mean flow, it is seen that the characteristic velocities in the
upstream and downstream directions are in general different (same when the mean flow is
0). Another interesting observation is the way w_ behaves at low values of specific internal
energy: at a given flow velocity u, w_ seems to approach w_ = 0 with a zero slope. This is
verified to be the case by calculating the above variation of w_ with e for a whole range of
values of u. From this it follows, that at no combinations of u, the flow velocity and e, the

specific energy, do all the three characteristic velocities have the same sign. The implication
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F1G6.4.2.1 The variation of the three characteristic speeds with specific energy at different
flow velocities. The upper three curves correspond to w4, the fast characteristic
speed in the flow direction; the lower three to w_, speeds of the backward running
characteristic and the middle three to wy

of this is the impossibility of supersonic flow — the disturbances are never all swept down-
stream — in the slow moving particle direction. To investigate whether supersonic flow is
possible in any direction at all in the nine-velocity model, we conjecture that it is sufficient
to investigate the flow along one of the fast moving particle directions. To do this, the A
and the a matrices need to be recalculated appropriately. For flow along particle direction

2 (see Fig.1.2.3, with n = (ng, n2,ng), the A and a matrices are given by

\/71_0+¢+\/n_6 Vo2t /ne Vot t/ie
175 no ng
as| e Vi sly) Ve (-1- 97

N LY AR YRR R
270 3 T Ve 2 T Ve

(4.2.3)

ac | 2ty 5L vAo 94 N
2/no 2/s 2/
no—./ne VALY no
2/2ng v2+ 2/2n3 -V2- 2/2ng
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The full set of calculations is repeated with the above matrices and the variation of the three
characteristic speeds with e at given values of flow velocities u, now along the diagonal
is shown in Fig.4.2.2. Similar calculations of the characteristic speeds at other possible
combinations* of e and u reveal that the three characteristic velocities are never of the
same sign. From the above calculations, it may be concluded(?) that it is ¢mpossible to

establish a supersonic flow in the nine velocity model.

Characterisitic Speeds
=
l

-2 L L L ! . L . 1 . L . I . ) ; { . L L
0.0 0.2 0.4 0.6 0.8 1.0

F16.4.2.2 A similar plot of the variation of the three characteristic speeds with the flow
along a fast moving particle direction.

As a consequence of this,

o No stationary shock waves are possible in the nine-velocity model.

e No moving shock exists in the model which generates supersonic flow behind it.

* e+l <10
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4.3 Mach Number in Discrete-Velocity Gases

At this point, it is worthwhile to digress momentarily to look at the concept of Mach
number in the context of discrete-velocity gases. In a continuum-velocity gas the character-
istic velocities are v and u £ a. Therefore, in the frame of the moving fluid, the disturbances
propagate away symmetrically with speeds a in the upstream and downstream directions,
and the Mach number is defined as the ratio of the flow velocity and a. Equivalently, a
Galilean transformation of the system, into one in which the fluid is stationary leaves the
thermodynamics invariant: a is the same in the two cases. There is, thus, a unique (isen-
tropic) speed of sound to which the fluid velocities can be referred, and hence the Mach
number. The problem with the discrete-velocity gas is the absence of such a symmetry:
in the frame of the moving fluid, the upstream and downstream propagation speeds of a
disturbance are not equal, and they depend on the fluid velocity itself. There isn’t one
unique speed of sound to which the flow velocities can be referred, and hence, the concept
of a Mach number is not a natural one in the context of discrete-velocity gases. Having

noted that, a pseudo-Mach number may be defined in two different ways:

o Considering the upstream propagation of disturbances,

M = . (4.3.1)
Wy — U
e Considering the downstream propagation of disturbances,
u
M~ = 4.3.2
U — W ( )

The above two definitions reduce to M = u/a for a perfect gas. While neither one of the
above two definitions is sufficient on its own, the following shows that they could be used

appropriately to get a qualitative picture.
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e Considering a 1-D steady flow along a slow particle direction, w4 < 1.0. Therefore,
Mt > 1.0 for « > 0.5, but it was shown in section 4.2.1 that the flow can never
be supersonic. From the calculations in that section, it was also seen that w_ < 0.
Using it in Eq.4.3.2, M~ < 1.0 always, which reflects correctly that the flow can
never go supersonic. So for steady flows, the Mach number is better defined by

M~

o Consider a Cy wave moving with a velocity U into an uniform region (p, u, €),
where the characteristic velocities are (wg, w4, w—). The consideration to decide if
the disturbance is supersonic or if it is subsonic with respect to the upstream is the
relative magnitude of U and w4. Let U > wy. Then, from its definition, M+ > 1,
and thus it correctly indicates that the disturbance is supersonic with respect to
the upstream. So also for U < w—. Therefore, for waves, the qualitatively correct

definition of the wave Mach number is given by M+.

As an aside, from above, it may be noted that the impossibility of setting up a supersonic
flow in the nine velocity gas does not translate to being unable to have supersonic wave Mach
numbers — a direct consequence of the Galilean non-invariance. Notions that shock waves
cannot be studied with discrete velocity gases because they involve high Mach numbers is
ill-founded because the Mach numbers involved are the shock Mach numbers and the flow

velocities involved can still be small.
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4.4 Riemann Invariants in Discrete-Velocity Gases

Along the characteristic directions in the z — ¢t plane, the partial differential equations,
presently the Euler equations Eq.4.1.5, become ordinary differential equations. In the case
of perfect gases, these ordinary differential equations are integrable and they give rise to
the Riemann invariants. In the general case of the characteristic velocities reducing the
partial differential equations to odes, it would not be surprising if the odes are not inte-
grable and this might very well be the case with discrete-velocity gases. Thus there may
not be any invariants of the flow as such. The presence of invariants, if any, may in fact
be used to a thermodynamic end, as in a perfect gas, where the invariant which propa-
gates with the characteristic velocity u, may be used to define entropy, i.e., the invariant
identified to propagate with the fluid velocity would also satisfy the usual thermodynamic
properties associated with entropy, Whitham (1974). Since such a Riemann invariant has
not been identified in the nine-velocity gas, this approach to define entropy cannot be

examined.

4.5 The Linear Wave Equation Limit

The first of a few unsteady one-dimensional equilibrium discrete-velocity gas flows ex-
amined is the limit in which a simple** linear wave behavior is recovered. The compu-
tation technique used in all of the example calculations is the flux-limited, second order,
equilibrium flow technique discussed in the previous chapter. An initial hyperbolic secant
disturbance is established on a periodic (0,1) domain, and its time evolution is studied.
Throughout the computation, mass, momentum, and energy are all conserved to better
than one part in a million. The disturbance is chosen to be so small that the nonlinearity

is negligible.

** non-dispersive
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F16.4.5.1 Recovery of the linear wave equation: An initial pressure pulse splits into a Ct
and a C_ disturbance. The initial pulse is the linear superposition of the two
pulses.

Fig.4.5.1 shows the evolution of pressure with time. The behavior of the other distur-
bances, density, specific energy, and velocity is similar. The initial pressure disturbance is
set up in a quiescent medium by a variation in the density. Because of the linearity, the
initial disturbance can be thought of as a superposition of two waves, one corresponding
to the C'; family and the other to the C_ family, into which they split. The two waves
thereafter propagate with little change in their form (essentially parallel characteristics).
On reversing time, the two waves recombine to give the initial disturbance correct to the
irreversible diffusion arising out of the viscosityf of the discretization? (the pressure profiles
are shown in Fig.4.5.2). This reconfirms the linear superposability of the solutions. Fur-

ther, the high degree of macro-reversibility! of the flow could perhaps be interpreted as due

to the primarily isentropic nature of the disturbance*.

1 see previous chapter
! In fact part of the error is ascribable to imperfections in the initial data.

# Any classical process is micro-reversible.

* This is non-trivial considering the poor understanding of the thermodynamics of discrete-velocity gases.



~ 66—

T v T
t=0.00 4
............ 1=0.10
_____ t=0.20
0332 —
g
2 N E
g
&
0.330
0.2 0.8

F16.4.5.2 Reversing time at t=0.4, the Cy and the C_ waves recombine to reconstruct
the original initial condition verifying linear superposition and isentropy of the
disturbances

4.6 Nonlinearity of the Model Euler Equations

The nonlinearity of the model Euler equations is next tested by monitoring the steepness
of an initially shallow compressive wave. The best setup for this is of course a simple**
compression wave propagating into an uniform state. Not knowing the Riemann invariants
in discrete-velocity gases prevents such an explicit setup. So, instead the time evolution of
an initial hyperbolic tangent interface between an equilibrium upstream and an equilibrium
downstream state, with the two equilibria satisfying the Rankine-Hugoniot jump conditions
(see later) is studied. Dirichlet boundary conditions are prescribed at the inflow and outflow
boundaries: the gradients of all the flow variables are prescribed to be zero. Fig.4.6.1
compares the steepness of the pressure profiles. The profiles have been offset by the distance

they have traveled to make the comparison. The steepening is evident.

The steepening of the front is clearly indicative of the nonlinearity: the speed of prop-

agation of the disturbance w4 varies as the magnitude of the disturbance (say p)T.

** The usage of simple is in a gas-dynamic sense, wherein only one of the three families of characteristics are not
parallel.

1 c.f d(u+a) = %‘Edp for a perfect gas.
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F1G.4.6.1 Steepening of a compressive wave

Fig.4.6.2 shows how an initially steep expansion front gets shallower with time. It
should however be noted again that the situation in either of the above two cases is not
ezactly that of a simple wave because all that can be said for certain is that the variation

spans across two uniform regions.

4.7 Jump Conditions

Viewed in terms of &, the model Euler equations Eq.4.1.4 are three partial differential
equations in the three hydrodynamic variables p, v and et. Consider an infinitesimally
thin shock wave moving with a velocity U. While all discussion in this chapter assumes
the frame of reference of the model, the frame in which the allowed particle velocities are
those in Fig. 1.2.3, to write an expression for the jump across the shock, momentarily fix the
frame of reference with the wave. Then §/0t can be replaced by —U8/0z. Integrating the

resulting equations from ahead of the shock to behind it, gives the shock jump conditions

1 The equations are not written explicitly in terms of (p, u, e}, because, as mentioned before, the flux of (p, u, e) are
not expressible explicitly in terms of (p,u, €).
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F1G6.4.6.2 An initially steep expansion wave becomes shallower with time

(Whitham 1974)

[G(n)] = U[F(n)]. (4.7.1)

Given the upstream density, specific energy, and flow velocity (py, €y, uy), the three al-
gebraic equations can be solved to obtain the downstream state. Equivalently, given the
upstream state and one of the quantities downstream, the shock velocity and the rest of the

downstream quantities can be determined.

The computational setup used in studying shocks and other discontinuities is exactly
like the one used for studying the steepening of compressive waves (flux-limited, second order
near-equilibrium flow technique of chapter 3). The computations are all on the domain [0,1]
with Dirichlet boundaries: zero gradients of all flow quantities at the inflow and outflow
boundaries. The initial conditions in all the cases is a step discontinuity!, J between the

upstream state and the downstream state:

U
Jo: (pu,eu,uu)—>(pd,€d,u(1), (472)

! Note the robustness of the method in handling such steep data.
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obtained as a solution of the algebraic system Eq.4.7.1, unless stated otherwise. The sub-

sequent time evolution of the discontinuity is studied.

1. The initial condition in Fig.4.7.1*

U
Jo : (1.000,0.100, 0.000)—(1.137,0.152,0.100) (4.7.3)

has no explicit information about the direction of propagation of Jo or its speed.
The jump J, satisfies the jump conditions of the Euler equations Eq.4.7.1 for
U=0.828. Evolving the initial condition, the jump Jo is seen to be preserved with
time and it propagates with a speed U = 0.828 to the right, exactly as obtained by
the Euler equations. The entropy, defined using a Boltzmann-like H function, is seen
to rise across the shock in this particular case. However, as will be seen in some of
the next examples, the entropy so defined does not always behave as expected. The
characteristic velocities upstream and downstream are Cy, = (0.742,—0.742,0.000)

and Cyq = (0.881, —0.554,0.014), where they are expressed as (w4, w—, wp).

2. Time evolution of the initial jump

U
Jo : (1.000, 0.400, 0.000)—(0.791, 0.313, —0.200) (4.7.4)

in Fig.4.7.2 shows that the jump is stable in the sense that it does not break
up into different jumps, but the jump is seen to disintegrate** in time. The jump
conditions Eq.4.7.1 arising from the Euler equations do not rule out such shocks (as
in Eq.4.7.4), therefore a possible external constraint has to be invoked. This is seen
to be the kinematic supersonic-subsonic condition: the shock must travel faster than
the speed of propagation of an infinitesimal disturbance in the direction of shock

propagatimﬂL upstream of the shock and slower than the speed of propagation of

* All the quantities in the figure and everywhere else in this chapter are in their non-dimensionalized form: density
corresponds to the average number of particles in a cell, velocities are non-dimensionalized by ¢, the unit speed of
the model, and energies by q2 .

** The tendency towards reducing the slopes of all relevant quantities to zero.

t The emphasis on the direction is because of the lack of Galilean-invariance.
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a disturbance in the same direction downstream of the shock. For example for
a Cy shock}, U should be such that (C4)y < U < (C4);' Or in other words
the effect of the passage of a shock at a point must be to increase the speed of
propagation of a small disturbance in the direction concerned there, if the shock
is to propagate stably. The disintegration of the jump Jo which satisfies the jump
condition is explained as due to the violation of the above supersonic-subsonic
condition. The characteristic velocities upstream and downstream are respectively
Cy, = (0.837,-0.837,0.000) and Cy = (0.626,—0.910,—0.052), and the initial

shock velocity U = 0.758.

(C4)y £U £(C4)yq (4.7.5)

The stable shock in case 1 is seen to satisfy the supersonic-subsonic condition.

3. This case is identical to case 1, except with a different initial jump, Jo.

Jo :(1.000,0.400, 0.000)—U—>( 1.292,0.455,0.200) (4.7.6)
J, satisfies the jump conditions of the Euler equations Eq.4.7.1 for U=0.885. Evolv-
ing the initial condition, the jump J, is seen to be preserved with time and it
propagates with a speed U = 0.885 to the right, exactly as obtained by the Euler
equations. The difference between this case and case 1 is in the behavior of entropy
— the entropy on the downstream side is lower than that of the upstream side. If
the definition of entropy used is correct, the behavior of entropy in the present case
is counter to what is expected from the second law of thermodynamics. To better
understand the behavior of entropy, it is instructive to look at the corresponding
behavior of entropy in the case of a perfect gas. Since some of the thermodynamic

arguments can be made more generally than for a perfect gas, the assumption of

¥ A similar relation would hold for a C_ shock but with the absolute values of the speeds concerned.

§ A C( family of shocks are also seen to be possible by replaéing subscript + with subscript 0.
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a perfect gas is introduced only as required. For a normal* fluid, the kinematic
supersonic-subsonic requirement (equivalent to ([u + a] > 0) can be related to the

variation of thermodynamic quantities across the shock by the following equation.

T
dluta)= —p—a—dp (4.7.7)

1

where I' is the fundamental derivative of gasdynamics 7 [%’;—“} , pa the acoustic
8

impedance and a the speed of sound. Therefore, across a shock,

[u+a]= / " /%dp (4.7.8)

With T’ > 0 for a normal fluid, the supersonic-subsonic requirement can be satisfied
only with pg > p, or through a compressive shock. Next, the entropy jump across
a shock should be related to the pressure jump. For a general fluid, the entropy
jump across a shock is related to the dimensionless pressure jump across the shock

by

Tu[s]
a?

T, 118 + o) where I = [] (4.7.9)

pual’

Ut =

as discussed in Thompson,1988. By the vprevious argument, II is established to be
greater than zero for a stable shock; for a normal fluid, Ty, > 0, so that [s] > 0 if
Ty > 0, which is usually the case**. This result can be shown equivalently for a
perfect gas as follows: consider the equilibrium states upstream and downstream
of the compressive shock. Entropy being a state variable, the entropy jump is fully

determined by the two equilibrium states.

[5] o log, {11;_; (e—d) o } (4.7.10)

€y
Since the model fluid being studied is two dimensional, -y, the ratio of specific heats,

v is 2. Further, using the ideal gas equation of state,

[s]}aloge{z—uz—d}. Thus [s] >0 onlyif 4> 22, (4.7.11)
d

U €y Pu

* As opposed to a retrograde fluid (Thompson 1988)

** The entropy usually increases with an increase in the specific energy at a constant specific volume. This is not
true,e.g., in systems whose phase space is finite.
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Since this is always true for a compressive shock in a perfect gas, the entropy jump
across a compressive shock in a perfect gas is always positive. From the molecular
description of the lattice gas models being studied here, the fundamental derivative
of gas dynamics for these models can be shown to be positive; we assume so here.
Numerical evidence to substantiate the assumption is strong. Thus from Eq.4.7.7,
only compressive shocks are allowed in these models. A complication however in
studying the variation of entropy with lattice gases is the third independent state
variable, the macroscopic flow velocity u. Thus s = s(p,e,u). But by confining
to small macroscopic flow velocities u, to a first approximation, s = s(p,e). In
this approximation, the sign of the entropy jump across compressive shocks can be
established by the inequality in Eq.4.7.11. Unlike for a perfect gas, for a lattice gas,
even for a compressive shock, there are only certain regimes when —2—3 > %‘ Thus
there are regimes where the entropy jump across a compressive shock in a lattice
gas can be negative. The similarities of the situation here to the case of shocks
in superfluid helium, Moody & Sturtevant (1984), are to be looked into. The case
shown in Fig.4.7.3 corresponds to a choice of initial conditions in the nine-velocity
gas which puts the shock in such a regime. Though it is certain to be the case, the
above case of an entropy decreasing shock needs to be reproduced with lattice gas

automata to rest all doubts.

4. If Eq.4.7.9 should hold for lattice gases, then since a regime can be identified where
the temperature is negative (Appendix 1), the entropy should decrease across a
compressive shock if the initial condition was chosen to have a negative temperature

upstream.

5. Finally consider an initial condition with two jumps,

Uy

Ji: (1.000,0.100, -—0.900)————+(2.615,0.536,0.000)
Us

Ja: (2.615,0.536,0.000)—>(3.354,0.572,0.200)

(4.7.12)
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both satisfying the Rankine-Hugoniot jump conditions Eq.4.7.1 for propagation
velocities Uy and Uz, both satisfying the supersonic-subsonic requirement for stable
propagation. Fig. 4.7.4 shows the z — ¢ plot wherein the second shock catches up

with the first and then on propagate as one.

4.7.1 The Shock Tube Problem

Finally, a simulation of the shock tube is considered, the gas in the tube is the nine-
velocity gas. The initial condition corresponds to a high density, high pressure driver section
and a low density, low pressure driven section, separated by a diaphragm which ruptures
at t = 0. The initial jump is

U
Jo :(1.000,0.500,0.000)—(0.200, 0.200, 0.000) (4.7.13)

The gas in the two regions are the same. The end walls are modeled by mirror image sites
across the physical wall. This results in specular walls, which therefore act as no-flow (zero
mass flux), adiabatic (zero total energy flux) boundaries. The time evolution of density
and entropy are shown using a color coding on the z — ¢ plane in Figs. 4.7.5a and 4.7.5b.
The pictures show that the qualitative nature of the the interaction of the various types
of waves, the shock wave, the rarefaction fan, and the contact surface is captured rather

realistically in the nine-velocity model.
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CHAPTER 5

Shock Structure In the Nine-Velocity Gas

5.1 Introduction

In Chapter 4, it was shown that the flow of the nine-velocity gas can never be supersonic.
This was shown computationally by observing that no matter what the flow velocity and the
specific energy, the three characteristic velocities of the model Euler equation were never of
the same sign. This rules out the possibility of steady shock waves in the model. Unsteady
shock waves however are no problem — they are rather natural and necessary: imagine the
simple act of starting a piston at ¢ = 0 and then pushing it continuously with a constant
velocity to the right through a long frictionless channel of the discrete-velocity gas at rest.
The information about the piston being pushed does not propagate with infinite speed; this
is particularly clear in the present context of discrete-velocity gases where the fastest speed
that can ever be reckoned is the speed of the fastest particle in that direction allowed in
the model. Confining attention to the region right of the piston, on the z — t plane, there
is clearly a region of silence and a region of disturbance. The interface between these two
regions is the shock wave. In this chapter, the structure of such an unsteady shock wave is

discussed.

The possibility of such shock waves and their stability was discussed in chapter 4 under
a discussion of the model Euler equations. Thus the jump conditions and the shock velocity
are all obtained by an analysis of the Euler equations. Then letting the frame of reference
translate with the shock velocity, the problem is steady, and this reduces the governing

partial differential equations to ordinary differential equations. With a priori knowledge of
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the jump conditions, the problem could be set up as a two point boundary value problem.
However, setting the problem up as an initial value problem is more illustrative of the
physics involved. This is motivated by Gilbarg and Paolucci’s approach to the problem
of the shock structure in the Navier-Stokes equations, as in Gilbarg & Paolucci (1953).
Broadwell (1964b), took a similar approach in analyzing the infinite Mach number* shock
in his six-velocity, single speed model in three dimensions, but had the luxury of reducing
the number of dependent variables to one, and solving the differential equation exactly.
Gilbarg and Paolucci easily reduced the number of dependent variables in the context of
Navier-Stokes equations to two and thus the treatment of the problem was reduced to an
aﬁalysis of the flow generated by two ordinary differential equations on the two-dimensional
plane. That analysis yielded elegant results. Unfortunately, in the case of the nine-velocity
gas, on maximal simplification, we could only reduce the number of dependent variables
to three and this complicates the analysis, forcing us to treat the situation almost entirely

computationally.

In the context of the nine-velocity model, a thermodynamic equilibrium state is defined
by a point in the three dimensional phase space and the shock solution is a line in this
3-D space connecting two thermodynamic equilibria which satisfy the shock jump relations.
Uniqueness of this solution curve is assumed. Considering the thermodynamics of the
situation, this is almost certain to be so. Sec. 5.2 develops the ordinary differential equations
governing the shock solution, starting from the Boltzmann equations and Sec. 5.3 analyses
the equations for a particular initial value and tracks the solution curve for that case.
Sec. 5.4 takes a gas dynamic view of the situation and some comments are made in the
light of shock structures in an ideal gas, as given by the Navier-Stokes equations. Finally in
Sec. 5.5, a comparison is made of the present solutions to that obtained from the equilibrium

flow technique of chapter 3. Considering that the method was introduced primarily to study

* see Sec.4.3.
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Euler solutions**, the comparison shows that the method errs, i.e., deviates from the Euler

solutions in the right direction.

5.2 The Governing ODEs

The flow is assumed identically uni-directional — along the z-axis — so that v = 0
in the whole region of interest. With that simplification, from the form of the equilibrium

distribution presented in chapter 2, it follows that
ng —ng, ny=mn3g, and ng=n4. (5.2.1)

The variables in the problem then are (ng,...,ns), varying with = and t, as given by the

Boltzmann equations in Table 1, reproduced here symbolically as
Lin; = Qi(nj,nj) 1,7 =0,...,5. (5.2.2)

L; is the linear streaming operator of particle type ¢, given by L; = 8/0t + ¢;,0/0z and @Q;
is the non-linear collision operator. Since the operator L; acts only on particle type n;, n;
will be dropped when convenient, with no ambiguity. If however, the shock wave of interest
is traveling with a velocity U, fixing the frame of reference with the shock wave, enables
rewriting the time derivative in terms of the spatial derivative, so that, L; = (=U +¢;,)d/dx
These equations can be written in a more convenient form by noting that the six variables
(ng,...,ns), satisfy three linear homogeneous equations, expressing the conservation of
mass, momentum, and total energyt. The three linear equations are solved to express three

of the L;s in terms of the other three.

Lo—2Ly~2L4 =0 Lo=2Ly+ 214
Li—Lsg+2Ly—~2L4=0 = Li=-3Ly— Ly — L4 (5.2.3)
Li+3Ly+L3+Ls=0 Ls=—Ly—L3—3L4

** in which limit shocks are discontinuities with no structure to them.

T The same formulation, as in Cornille (1991).
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Integrating the equations on the right, ng, n1, and ns can be expressed in terms of n =

(ng, n3, ng) and their boundary values, either upstream or downstream:

no(z) = ng(n(z), n(-o00)) ng(z) = no(n(z), n(c0))
n1(z) = ni(n(z),n(-o0)) or ni(z)= ni(n(z),n(c0)) (5.2.4)
ns(z) = ns(n(z), n(-00)) ns(z) = ns(n(z), n(c0))

The variation of the three primary dependent variables represented by n is given by the

three non-linear equations

Ly =24, —/5C
Ly = —(V24A1 + V24, + 2D) (5.2.5)

Ly = V242 +V5C
where the collision terms Ay, Ay, C, and D are given by
Al =7ning — ngny

Ag = ngns — nony
(5.2.6)
C= nang — NNy
D= n% -~ n1ns
e Non-dimensionalization: Any of the equations Eq. 5.2.5 is dimensionally of the form

(CI+E)%=95{\/§(N1N3—N0N2)+---} (5.2.7)

where ¢ is the unit of velocity in the model, and S is the collision cross-section,
taken to be independent of the relative velocity of the collision. Dividing the above
equation by gn,.y = gng, where n represents the particle density, subscript d

downstream, Eq. 5.2.7 can be written in the non-dimensional form as

dno

dn = \/§(n1n3 - nonz) +--- (528)

£

14 =
(1+2)
where n; = Nj/n.r, 7 = agz/Ag, Ag being the downstream mean-free-path given
by Ay = ag/(n4S), as obtained by standard kinetic theory calculations?. The

equations Eq.5.2.5 etc. previously used are all of the non-dimensional form like

Eq.5.2.8

3 using the exact velocity distribution of the downstream.
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The structure of the shock is then contained in the variation of n with z, as given by
Eq.5.2.5. Rewriting those equations symbolically in a compact and convenient form,

dn

an =[A_oo or Aso]n+ nIBn (5.2.9)

where A is a 3x3 matrix depending on the initial values of n and B is a vector of three
3x3 matrices, i.e., B=(By, B3, By), where Bj is a 3x3 matrix etc.All the B matrices are
determined by only the collisions in the model, and thus are independent of the particular

shock, unlike the A matrix.

4325 —2/Z-nf 42
e (e 4 T

Vo

9

~6v2 - 18 -8 20 + 4v/2
By=2| -8 -2 8 80,4 (5.2.10)
2044V 244 _2/7-2

-3v5  =3v2-v5  6V2
Bi=2|-3v2-v5 V2  3/2-¥%
6vV2 32— 2a+

Linearization about the upstream equilibrium given by n_o, leads to

d
n=n_gt+n = (—12 = A_oo (5.2.11)
T

A similar linearization about the downstream equilibrium state gives the matrix Ao.
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5.3 A Strong Shock

The case considered here corresponds to the case of a collimated beam of particles,
type 1, see Fig.1.2.3, encountering a wall. To satisfy the geometrical boundary condition
of no flow through the wall, a shock wave emanates from the wall and propagates into the
incoming particle stream, bringing the flow to a halt behind it. Cornille, 1991 attempts to
construct solutions to the above problem. The physics involved in that attempt is, however,
far from clear, e.g., the behavior of the collision cross-sections of the particles is not defined
a priori and the collision cross-sections are left as parameters. After the solutions have been
constructed, the parameter space is searched for positive regions to select the solutions of
interest. In light of the above, no attempt will be made to compare the solutions obtained

here to those of Cornille.

The jump across the shock above is given by
-0.5
J : (1.000,0.000,1.000)—(3.000,0.500, 0.000) (5.3.1)
as obtained from the Euler equations!. From the same arguments as used in classical
kinetic theory, using the distribution function downstream, 7 in Eq.5.2.9 is calculated to
be 0.709z/Ay4. For this case, (ng,n1,ns5) is given in terms of n= (ns,n3,nyg) by

ng = 6ng — 2ny

ny=1-3ng - ’;—3 + %i (5.3.2)

ns = 3ng + n3 — 3ny
In terms of n, the upstream equilibrium state is given by (0,0,0) and the downstream

equilibrium state is (T%’ %, -1%-) The A_ and A are then

0 2_%—2_- 2J3§ __\/g_ 2\/5 \/;-’-gx/g 2\/5:;&'\/5
Ao=|12 202-v2) -12 Ag = 6v2 —2(14+v2) 2(vV2-2)

0 0 2v5 —3v5  —ai2 9 +:Z\/§ |
5.3.3

§ Note that the particle number densities are normalized with respect the upstream value.
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The linear stability of the upstream and the downstream equilibria are fully defined by
the A matrices above. The eigenvalues of A_ o, are found to be (4.472, 4.000, -2.828) and the
eigenvalues of A (7.644,-6.214,-2.608). Since the upstream and downstream equilibria are
both hyperbolic*, the linear stability analysis is sufficient locally, i.e., the stability type is not
changed by the nonlinearity. Therefore, it is clear that while the upstream equilibrium has
a two dimensional unstable manifold** and a stable direction, the downstream equilibrium

has a two dimensional stable manifoldT and an unstable direction.

5.3.1 The Shock Profile

The stability nature of the upstream and the downstream equilibria in the present case
is a rather unfortunate situation because the flow in the phase space near the upstream is
such that most of the flow is directed away from the upstream equilibrium and the flow near
the downstream is such that the downstream equilibrium can be reached from anywhere
on the two-dimensional stable manifold there. In effect, it is neither possible to isolate a
direction upstream, along which the shock solution leaves the upstream equilibrium nor
a direction downstream along which the shock solution marches to the downstream state.
The shock solution is the intersection of the upstream two-dimensional unstable manifold
and the downstream two-dimensional stable manifold. We assume that the intersection of
the two 2-D manifolds is transverse because non-transverse intersection is rather degenerate

and the thermodynamics strongly suggest a unique solution curve.

In searching for the shock curve connecting the upstream and the downstream states
numerically, it is advantageous to start from the downstream state, given the relative mag-

nitudes of the eigenvalues at the downstream and the upstream: starting near the upstream

* non-zero real part of all the eigenvalues

** the 2-D surface obtained by evolving the space spanned by the two eigenvectors corresponding to the two unstable

eigenvalues forward to oo under the full non-linear equations.

1 similarly obtained by evolving back to —co the stable eigenspace under the full nonlinear vector field.
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and marching forward, the eigendirection at the target corresponding to the eigenvalue with
the largest magnitude is unstable and therefore the search trajectory is very likely to be led
away from the target in that direction. If on the other hand, the search started near the
downstream equilibrium and proceeded backwards searching for the upstream, the direction
associated with the eigenvalue having the largest magnitude is stable and so the chances of

the search trajectory reaching the upstream is much better.

By a rather brute force technique, the phase space was searched? to obtain the solution
curve. The search trajectory was started on the two-dimensional stable manifold of the

downstream equilibrium, close to it and evolved backwards under the equation

dn = Aoon+n'Bn (5.3.4)
dz

Departure of the search trajectory from the region of interest terminated that search and
a new initial point was picked! to restart the search. The iterative search procedure ter-
minated when the search trajectory arrived in a pre-defined neighborhood of the upstream
equilibrium. Fig.5.3.1 shows the shock profile obtained by the above procedure for the

shock given by Eq.5.3.1

5.4 An ad hoc Comparison with N-S Profiles

A Navier-Stokes shock profile solver is implemented on the lines of Gilbarg and Paolucci.
While the reader is referred to Gilbarg & Paolucci (1953) for the details, the main idea
is this: in the shock fixed coordinates, using continuity, density is eliminated and the
conservation equations are cast in the form of two odes. The upstream and downstream
are then two equilibrium solutions of the odes, with the upstream an unstable node and the

downstream a saddle point. With that configuration of equilibria, by picking an initial point

i by using knowledge of the solution, the search space was largely constrained.

§ Decreasingly small arcs of a circle of radius § were scanned in increasingly fine steps, much like a binary search.
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Fic.5.3.1 The exact normalized profiles of density, velocity, specific energy and entropy
across the jump (1.000,0.000,1.000)—p-+(3.000,0.500,0.000) in the nine-velocity
gas.

close to the downstream and in the direction given by the eigenvector corresponding to the

stable eigenvalue there, evolution of that initial point backwards takes it arbitrarily close

to the upstream equilibrium, thus giving the shock profile. In Fig.5.4.1, the entropy and
density profiles previously obtained for the nine-velocity gas are compared to those obtained
from the Navier-Stokes equation. For the Navier-Stokes profile, a monatomic hard-sphere
molecular model is used giving a power law dependence of viscosity on temperature with an
exponent of 0.5 and the molecules move in two spatial dimensions giving a specific heat ratio
of 2. The Mach number of the shock was chosen to be 4.0 to roughly match the percentage
overshoot of entropy in Fig.5.3.1. In doing the comparison, the z-axis* of the Navier-Stokes
profile was scaled so that the profiles were roughly of the same thickness. The plot shows

that the detailed qualitative features of the shock profile in the nine-velocity gas is similar

to that in the perfect gas, as described by the Navier-Stokes equations.

* no relative scaling of the y-axes
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F16.5.4.1 A comparison of the entropy and density profiles across a shock using the nine-
velocity model for the conditions previously discussed and the Navier-Stokes pro-
file for a 4.0 Mach number 2-I), monatomic, hard sphere gas.

5.5 The Shock Captured by the Near-Equilibrium Flow Technique

The shock jump for which the exact profile was obtained, as previously discussed in this
chapter was studied using the near-equilibrium flow techniques of chapter 3. Clearly, if the
method was exact, the shock would have to no structure to it, and it would be captured as a
perfect discontinuity. However, as discussed in chapter 3, the method is inaccurate and the
reader is referred to chapter 3 for a discussion of the inaccuracies and their interpretation
in terms of viscosity. Here, it is shown that the inaccuracy of the method, while inevitable,
is not entirely undesirable; the error, defined as the deviation from the exact solution of
the model Euler equations is not arbitrary but is in the physically right direction. In other
words the deviations of the solutions obtained by the near-equilibrium flow technique from
the exact solutions of the model Euler equations is in some sense like the deviations of of a
Navier-Stokes solution with a small viscosity from the Euler solutions. Fig.5.5.1 compares

the shock representation in the flux-limited, second order, equilibrium flow technique to the
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F1G6.5.5.1 A comparison of the exact profiles shown in Fig.5.3.1 with those obtained due
to inaccuracies of the equilibrium flow technique of chapter 3. The lines are the
exact profiles and the symbols are from the equilibrium flow solver.

exact profile, again with a scaling of the z-axis to match the shock-thickness. A few points

worth noting about the representation in the equilibrium flow technique is

1. The qualitative comparison to the exact solution is superb:

o The overshoot in entropy is captured very well; the overshoot is quantitatively
correct.

e The relative positions of the entropy, specific energy, velocity and density pro-

files is correct.

2. The shock is spanned by just four computational points! In this context, it may be
noted that with the solution scheme via odes discussed in this chapter, it is possible
to fine-step through the profile with no considerations of the mean-free-path since

this method is not kinetic in nature.

3. The comparison is in fact better than shown in Fig.5.5.1, because the correct scaling
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to use for the equilibrium flow technique is the local mean free path, as opposed to
the downstream value used in the plot. This is because, as discussed in chapter
3, the grid spacing is a measure of the local mean free path in the method and
there is a rather large variation of the mean free path from the upstream to the

downstream.
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CHAPTER 6

2-D Adiabatic Channel Flow

The viscous and compressible but laminar flow of a perfect gas through an adiabatic
channel is not a fully understood problem. Its incompressible counterpart constitutes the
Hagen-Poiseulle flow and is an exact solution of the Navier-Stokes equations. In this chapter,
some approaches to the compressible case are examined. They fall into two categories:
one using the nine-velocity lattice gas, described in Sec. 6.1 and the other starting with
the Navier-Stokes equations and using the formulation of Broadwell (1952), described in

Sec. 6.2.

6.1 The Lattice Gas Approach

There have been few instances of a full simulation of the problem of laminar compressible
viscous channel flow. One of the problems is the imposition of the downstream boundary
conditions. In this section, a simulation of the channel flow using the nine-velocity model* is
described. The lattice gas method being a particle method, the imposition of the boundary

conditions is simpler.

* Most of the description would be the same for any other model.
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6.1.1 The Lattice Gas Computational Setup

Considering the simplicity of the problem, the picture in mind for the setup is a rect-
angular region of the nine-velocity lattice gas described in Sec.1.2.2. The interaction of
this system with the external surroundings is only through the perimeter of the rectan-
gular region, considering the absence of external body forces. With flow along the longer
dimension, the interactions along the shorter sides constitute the inflow-outflow boundary
conditions and the interactions along the longer dimensions describe what happens on the

channel walls.

The simulation of the wall boundary condition is simple. As was described in Sec.1.2.2,
the evolution of the lattice is a sequence of move and collide procedures. The wall is easily
represented by modifying the collision processes at the lattice sites representing the wall.
To examine the nature of collisions at a wall, consider a row of lattice sites representing
a wall. Particles coming into this row of lattice sites can do so only because they have a
component of velocity directed to the wall. Thus for example, in the nine-velocity model,
only particle types 2, 3 and 4 (refer to Fig.1.2.3) can arrive at the upper (north) wall of a
channel. By defining how these particles are reflected back into the channel, the wall will

be fully defined.

o The reflection can be defined to be specular: only the component of velocity per-
pendicular to the wall is reversed. In this case, the accommodation coeflicient of
the wall is zero, i.e., flow properties parallel to the wall are unaffected by the wall.

The flow velocity at the wall can be non-zero.

¢ The reflection can be defined to be bounce-back: The velocity of the particle im-
pinging the wall is reversed. The accommodation coefficient in this case is two.
This is a rather severe case of a wall wherein the particles bouncing off the wall
do not do so in a random direction, but remember their incoming velocities and

negate it on reflection.
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A realistic wall** has an accommodation coeflicient of unity and this can be easily
achieved by uniformly but randomly choosing between the two types of reflection. This
corresponds to a diffuse wall. Further, in both the specular and bounce-back reflection of
particles at the wall, the particle-speeds are preserved and this ensures adiabaticity of the

wall.

The inflow boundary condition is implemented through a reservoir. By reservoir is
meant a body of fluid, used in the channel flow computation, but which is unaffected by
the flow in the channel. The reservoir in the present case of a lattice gas flow is a small and
independent, constantly updated region, periodic in the flow direction, located upstream
of the actual channel and in a steady state. A particular lattice column of the reservoir!
is assumed to be located immediately upstream of the channel entrance, so that particles
at this lattice column directed downstream are introduced at the channel entrance the
following time step. The particles at the channel entrance directed towards the reservoir

are discarded at each time step.

The conditions in the reservoir can be manipulated independently to the required val-
ues. In the computations presented here, the upstream reservoir uses a mobius-strip like
boundary condition for the walls parallel to the flow, and a periodic boundary condition
in the flow direction, as introduced by Kadanoff et al. (1989). The flow in the upstream
reservoir is sustained by imposing a body forcing, the level of which is adjusted to obtain
the required flow rate. This generates a velocity profile which is parabolic for low forcing
levels. Using this upstream boundary condition, the length of the channel that the flow
takes to relax to the correct velocity profile from that at the inlet (due to the inflow from

. . +
the upstream reservoir) is reduced+.

** Physically, the bounce-back reflection is more unrealistic than the specular one in the following way: A perfectly
flat wall will do the job of specular reflection where as to achieve bounce-back, a wall has to monitor the incoming
particles and appropriately change contour. The consequence is perfect no-slip at the wall, an unphysical condition.

1 since the reservoir is periodic in the flow direction.

¥ as compared to the length, required for the flow to adjust if the velocity profile across the channel at the inlet is
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The outflow boundary condition is essentially an imposition of a downstream pressuref.
This is done at the last column of lattice sites representing the channel. That column is
modeled as porous wall with the porosity depending inversely on the downstream pressure
to be simulated. For a given pressure, the porosity of the wall at any time is uniform across
the wall, but changes location at each time step to preclude the formation of any upstream

patterns.

Fig.6.1.1 is a schematic of the computational setup on a message passing multi com-
puter. Considering the large aspect ratio of the domain (L/D of the channel), the multi-
computer is configured as a linear array of processors along the flow direction. The compu-
tational domain is equally partitioned along the flow direction and the partitions assigned
to the nodes (one computer of the multi-computer). There are no regions of overlap among
the various nodes and the internode communication is limited to moving particles either
leaving or entering the domain of the node appropriately. All the computations presented
here were done with the Intel iPSC/860 GAMMA parallel machine, which consists of 64
nodes of iPSC/860 wired in a hypercube architecture. The communications in the present
case were handled under a Reactive Kernel environment (Seitz et al. 1988). The sustained
lattice site update rate for these computations, with the present implementation, was about

a million sites a second.

The specification of the problem consists of prescribing the conditions in the upstream
reservoir, the downstream pressure and an initial configuration for the channel. The lattice
gas update procedure is then repeated till the flow in the channel attains a steady state,
after which the flow is averaged over a sufficient number of time steps to obtain smooth data.
Whether steady state has been achieved is determined by comparing profiles at different

times and by examining the profile of a few quantities down the channel.

uniform.

§ A variety of other outflow boundary conditions were studied too, omitted here for brevity.
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6.1.2 The Simulations

The following is a description of a typical simulation using the lattice gas computation
setup discussed above. The channel had a width of 256 lattice sites and a length to width
ratio just less than 128. At an inlet density of about 2.5 particles per lattice site, the inlet
Knudsen number is about 0.01. The conditions in the upstream reservoir were such that
the centerline velocity at the inlet to the channel was about 0.127q. At an inlet specific
energy of 0.3¢%, this corresponds to an equivalent inlet Mach number of 0.15*. As discussed
in the chapter on Euler equations, the actual Mach number relates the given speed to the
speed of propagation of a small disturbance at the given conditions. The equivalent Mach
number however has no such significance for the lattice gas, it is simply defined as m,
in analogy to its definition for a perfect gas. The equivalent Mach number has been used
for reasons of non-dimensionalization, as they are done for the Navier-Stokes equations in

Eq.6.2.2.

The downstream boundary condition is set to vacuum. The spatial averaging process to
arrive at the macroscopic quantities is performed over a cell 512 lattice sites along the flow
direction and 4 lattice sites across the channel. The procedure is run for about 16L time
steps, corresponding to about 512,000 updates of each of the 4,000,000** lattice sites. The
system has reached a steady state by this time and the updating procedure is continued for
an additional period while data is accumulated to enhance smoothness of the final results.
The results are presented as three dimensional plots of the concerned quantity against the
length and width of the channel. All the quantities are normalized by the corresponding
inlet quantitiesT : the velocity by the inlet centerline velocity, and the pressure and density

by the width-averaged inlet values. The average across the width of the channel is projected

* The corresponding Mach number, M ™, as defined in Eq.4.3.2 is 0.147.
** Since computation is done only for one half of the domain.

1 except in Fig.6.1.2b, where the u-velocity is normalized with respect to the local centerline u-velocity, and in
Fig.6.1.2g, where the v-velocity is normalized by g, the unit speed of the model.
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onto the y = 1.5 plane and the inlet and outlet profiles are projected onto the z = 1.5L/D
plane. Fig.6.1.2a,...,f shows the variation of the various quantities in the channel. The v-

velocity is essentially zero, except near the exit, where the profile was as shown in Fig. 6.1.2g
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Fic.6.1.2a The u-velocity across the channel and along the flow direction. It has been
normalized by the centerline inlet velocity. The width-averaged u-velocity is
projected on to the y=1.5 plane. The inlet and the exit velocity profiles across
the channel are projected on to the z=18 plane.

Noteworthy features of this computation are

e The small acceleration of the flow at low velocities, picking up strongly at higher
velocities (Fig.6.1.2a). The last 50% of the increase in velocity is over about 12

widths of the channel (the full channel is 128 times the width).

e The flattening of the shape of the velocity profile across the channel, far downstream

(Fig.6.1.2b).

o The flatness of the pressure across the channel up to relatively high flow velocities

(Fig.6.1.2d).
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F1G.6.1.2b The normalization is now with the local centerline velocity. This is done to show
the evolution of the shape of the velocity profile down the channel, discounting
the acceleration of the flow.
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F16.6.1.2c A plot of density across and along the channel. Note the flatness across the
channel at low velocities and the increasingly steep fall-off towards the exit of

the channel.
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Fic.6.1.2d The definition of pressure used is the one in Eq.2.4.30, correct only to O(u?).
The similarity to the density variations in Fig.6.1.2c for the better part of the
channel strongly suggests an isothermal behavior of the flow.

ities becoming increasingly non-linear at higher velocities (Fig.6.1.2d).

o The close similarity of the width-averaged density and pressure profiles at low

velocities (Fig.6.1.2d & Fig.6.1.2d).

e The confinement of the viscous effects to near the walls, as evidenced in Fig.6.1.2e
and Fig.6.1.2f. The rise in entropy of the central core is mainly due to the falling

density {See denmtion of entropy in Eq.B.0.4.

Fig.6.1.3 shows the velocity along and across the channel, when the inlet velocity is
higher, corresponding to an inlet centerline Mach number of 0.4. The minimum in the
velocity profile downstream is rather unexpected and is an artifact of the model. Further
discussion of the computation is deferred till some of the integral solutions of the Navier-

Stokes equation for the problem are discussed.
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F16.6.1.2e The variation of specific energy in the channel shows that the flow is isothermal
for most part of channel and that the heating is mostly near the walls. Note
the width-averaged specific energy falling along the flow-direction, much like a
Fanno flow.
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F16.6.1.2f The nlogn based entropy variation, shows that most dissipation is in the wall
region.
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F1G6.6.1.3 When the flow velocities become close to the maximum allowed speed in the
model, a minimum appears in the velocity profile at the center of the channel.
This minimum is purely an artifact of the model.
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6.2 Integral Solutions of the Navier-Stokes Equations

As stated earlier, the following formulation is due to Broadwell (1952). The numerical
solutions of the resulting nonlinear ordinary differential equations are presented in Sec. 6.2.3,
Sec.6.2.4, and Sec. 6.3. In analyzing the results, some simple extensions of the original

formulation are considered.

A steady, compressible, and laminar flow of a perfect gas between parallel straight
walls which are adiabatic is considered. Under these conditions, it is reasonable to make a

boundary-layer like approximation wherein

0%y §%u
p=p@); F5< 77 (6.2.1)

Under these assumptions, the mass, momentum and energy equations can be written in the

non-dimensional form as

pu , 9pv _
oz oy
du du 1 dp 1 (8%
== ——= —_— 2.2
P % + ’”’ay 7Mi2 dz + Re; (8y2> (6:2:2)

LD (L) LD (1))
Plog TP 0y  Re; Oy \ Pr 9y Re; 0y Pr u@y

Where the non-dimensionalizing quantities are the half-width of the channel d/2; the center-

line inlet velocity u;=u(z=0,y=0); the width-averaged inlet density p; = %f—{l p(z=0,y)dy;
and the inlet pressure p;=p(z=0). M; is the centerline inlet Mach number and Re; the inlet
Reynold’s number based on the half-width of the channel, the inlet centerline velocity and

the width-averaged inlet density.

In using the above approximation, the mathematical nature of the governing partial
differential equations — the Navier-Stokes equations — have been modified from being
elliptic to now being parabolic. This was effectively a consequence of making diffusion in
the problem significant only in one coordinate direction, the transverse direction. With

this change, it is possible to look at the original boundary value problem as an initial
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value problem in the flow direction, Numerically of course, this amounts to an enormous
simplification of being able to march down the channel. A further simplification is to
integrate Eq.6.2.2 along the y-direction, so that the result is a set of nonlinear ordinary
differential equations along the flow direction. But to be able to integrate over the width of
the channel, we have to assume away part of the problem by prescribing the y-dependence
of the velocity profile. This is done here by letting the velocity profile across the channel be
a linear combination of few admissible functions. By admissible, is meant functions which
in the present context satisfy the no-slip boundary condition at the walls and which are
symmetric about y=0, the centerline of the channel. The admissible functions considered
here are simply (1 — y?), corresponding to the incompressible parabolic profile and (1 — vh)

& (1 — y®) to allow for a flattening of the parabolic profile.

Since we are dealing with a perfect gas, the Prandtl number is of the order of unity, and
further the effects of a variation in the Prandtl number are rather small. So, the Prandtl
number is assumed to be unity in all future calculations. With Pr = 1, the energy equation
admits constant H, H = Hy as a particular solution. At this point, two distinctions are

made, the low Mach number case and the general case.

6.2.1 The Low Mach Number Case

The energy equation can be rewritten as

1+l

> M? (6.2.3)

Ty
Y
T +

So that for M <« 1, T = Ty, leading to the isothermal approximationi. In this limit, the

equation of state of a perfect gas becomes p = p. Eq.6.2.2 now becomes

1 Using this approximation, of course, adiabaticity is violated to order u2.
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Ou ou 1 dp 1 9%u
—tve— )=ty - Y 24
p("az +v3y) yM? dz + Re; 9y? (6:24)

with p(0) = 1, u(0,y) prescribed and u(z,+1) = v(z,41) = 0. Integrating Eq.6.2.4 and

considering the symmetry about y = 0,

1
p/ udy = ¢
0

d 1 9 1 dp OJu

- dy | = ———=—+ — 6.2.5

dz (p/o v y) 'yMi2 dz + 0y ly=1 ( )
Here the flow direction has been rescaled with the inlet Reynolds number: z = z/Re; These

are two integro-differential equations in the two variables p and u and not much progress

can be made without further assumptions. Assuming u(z,y) to be of the form
u(z,9) = B(2)(1 - y*) + o(2)(1 - y*) (6.2.6)

the integral equations reduce to

6
plf+go)=c
8 4d 16 Sl =1 P55 6.2.7
15 dz [”(ﬁ + 7[3‘”3“] Y M2 dz (8 +20) (6.2.7)

which now constitutes two equations in three variables, 3, ¢ and p. To obtain a third
equation, we can choose to satisfy Eq.6.2.4 exactly at some points in the flow. This can be

done only at the walls or on the centerline, considering that v = 0 only at these locations.

We first consider the case where Eq.6.2.4 are satisfied exactly on the walls:

dp _ .2 0%

.. dp 9
7, - T 942 _t giving == —2YM7 (B + 60) (6.2.8)

The constant in the first of Eq.6.2.7 depends on the entry conditions at the channel.
To leave the entry conditions implicit in the formulation, the derivative of that equation is
considered to form a set of three first order ordinary differential equations. This is cast in

a form more convenient for numerical solution as

d¢

-(-1-;-:

f(¢; M;) where ¢ =(p,B,0) (6.2.9)
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In this form, it is a set of three autonomous nonlinear odes with the inlet Mach number as
a parameter. The equations themselves are far too long and messy to be written explicitly

and there is nothing new to be learnt from them.

If the differential equations Eq.6.2.4 are instead satisfied exactly on the centerline of

the channel,

(uﬁE) _ 1 dp 4 0%u
P\"%z y=0 yM?dz  Oy?|,
d
giving % - (2;3 + (B + a)—i@d{ﬂ> (6.2.10)

and the Eq.6.2.9 are appropriately modified.

On exactly the same lines, if u(z,y) is assumed of the form

u(z,y) = B(2)(1 - y%) + a(2)(1 — y*) + 8(2)(1 - ¢©) (6.2.11)

the requirement of two more equations! forces us to satisfy Eq.6.2.2 exactly at both the
walls and the centerline. Eq.6.2.9 would now be modified into a set of four autonomous

equations.

6.2.2 The General or Non-Isothermal Case

Any of the above isothermal approximations would hold only in the limit M < 1. But
there is no reason to suspect that the inequalities indicated in Eq. 6.2.1 would not hold when
the Mach number is substantially greater than zero*. Therefore to look at higher M, we
can retain the approximations in Eq.6.2.1 but do better than an isothermal approximation.
The energy equation H = Hy, can be written in the non-dimensional form in terms of

temperature as T = n— mu?, where m = 1-2:le,2 and n = 1+ m. This would combine with

§ 2?7 are two equations in four variables — 3, o, §, p.

* Removal of the approximations made in Eq.6.2.1 would require full solution of the Navier-Stokes equations, greatly
complicating the task.
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the equation of state of a perfect gas to give p(z,y) = F:ﬁ%—%c—y—)" The integral of Eq. 6.2.2

1 1 u
/ pudy:p/ ——dy =c
0 0 n—mu

d ! 9 d b2 1dp Ou
— = —_— = ——_—— 4 — 6.2.12
e e e+ (6212

Using the previous approximations for the velocity profiles does not permit an analytical

can then be written as

evaluation of the integral on the left-hand-sides of the above equations. This is overcome
by a change of independent variables from y to 7, the transformation at a given 2 location
given by

n= /0 ’ p(z,y)dy (6.2.13)

7(y = 1) corresponds to the wall. Call it g to represent the wall in the new coordinates as

1
n = g(2) :/0 p(z, y)dy (6.2.14)

The integral equations in the new coordinates are

9(2)
/ udn = ¢
0

d 19z d
/ uldy = Ldp + P u
0

dz _N dz n 877 77'—'9(2)

9(z) )
p= / (n — mu®)dy (6.2.15)
0

Where the last equation in the above set results from the transformation of the independent

coordinate from y to 7. Proceeding as in the previous section, we assume

u (z, %}) = B(z) (1 - (g)z) +o(z) (1 - (-3-)4> (6.2.16)

The extra equation again comes from satisfying the differential equations exactly either at

the wall 7 = g(2) or on the centerline n = 0. If the equations are satisfied exactly at the

wall 7 = g(2)
_d_p _ zé 8211,

d2 =7 7 n2 W (6217)

n=g(z)
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Or if the equations are satisfied exactly on the centerline of the channel 7 = 0

Jdu 1 d J Ou

(52) o= s+ o) 6219
Again if the velocity representation was a sixth order polynomial as in Eq, the differential
form of the momentum equations would have to be satisfied exactly both at the wall = g(z)
and on the centerline = 0 to get the requisite number of equations. The appendix lists the
equations for the various cases. Numerical results from some of the schemes are presented.
The different schemes of approximations considered: the isothermal and the non-isothermal
cases, the fourth and the sixth order polynomial velocity profile representations, satisfying
the momentum equations exactly on the centerline of the channel versus satisfying it on the

walls, etc.are numbered as follows for convenience.

e Isothermal approximations
e Fourth order velocity polynomial, satisfying the momentum equation exactly
on the wall: scheme 1a

e [Fourth order velocity polynomial, satisfying the momentum equation exactly

on the centerline: scheme 1b

o Sixth order velocity polynomial, satisfying the momentum equation exactly

both on the wall and on the centerline: scheme 1c¢

e The Non-Isothermal cases

e Only scheme 2a corresponding to the fourth order velocity profile, satisfying

the momentum equation exactly on the wall is considered.
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6.2.3 Relaxation of the Velocity Profile

The ordinary differential equations developed in the previous section describe to a
certain approximation the evolution of a laminar, compressible, and viscous flow down a
channel. Presently, the velocity profile at the entry to the pipe is set to a rather unphysical

shape — the profile has a minimum on the centerline — and the evolution of this profile

under the above approximation is examined. The inlet Mach number is set to 0.1
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F16.6.2.1 The relaxation of a velocity profile with a minimum on the centerline at the inlet
to the channel to a preferred shape, which in this case is nearly parabolic. The
inlet Mach number is 0.1

Fig.6.2.1 shows that the profile relaxes in a very short length of the pipe to a nearly

parabolic profile. Fig.6.2.2 shows the same in terms of the shape parameters 8 and o. A

non-zero o corresponds to a deviation from the parabolic profile

Scheme 1a was used here (isothermal approximation with a fourth order velocity

profile representation). The relaxation in the other schemes to the preferred shape of the
velocity profile at low Mach numbers is similar
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F16.6.2.2 The relaxation is shown here in terms of 8 and ¢. ¢ = 0 corresponds to a
parabolic profile

6.2.4 The Width-Averaged Quantities

In this section, the variation of the width-averaged quantities down the channel us-
ing the above-mentioned schemes are compared. Before presenting the numerical results,
considering that these schemes are integral in nature, one can expect that there are going
to be significant differences in these comparisons only between the isothermal and non-
isothermal cases. The explanation is that the specific nature of the variation across the

channel is essentially integrated out of the formulation.

Fig.6.2.3 shows the variation of pressure down the channel for four different schemes:

schemes 1a, 1b, 1c, 2a.

Some of the features as revealed in these plots are

1. In all the approximation schemes, the pressure drop at low Mach numbers is linear,

becoming increasingly non-linear at higher Mach numbers.

2. The pressure profile down the channel for the three different isothermal schemes
are virtually identical. Thus the order of the velocity profile and whether the

momentum equation is satisfied exactly on the centerline or on the wall does not
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F16.6.2.3 The variation of pressure along the length of the channel

seem to affect the pressure variation.

3. The deviation of the isothermal approximation from the non-isothermal case is only

in the high-subsonic regime and even there, the deviation is small.
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F16.6.2.4 The width-averaged density along the length of the channel

Fig.6.2.4 is the corresponding picture of the density variation down the channel. Since

in the isothermal approximation p = p, only scheme 1a and scheme 2a are compared. The
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two curves are remarkably close, with departures again confined to the high-subsonic region.
The interesting feature of these plots however is the relative slopes of the pressure and
density curves in the low Mach number region. As seen in Fig.6.2.3 and Fig.6.2.4, the slopes
are the same. This is in contrast to what one might have expected — an incompressible
Poiseulle like flow. The explanation for this is as follows: Poiseulle flow, corresponding to
incompressible flow in a channel, is a singular limit off the present problem, the compressible
channel flow. The singular limit is attained at M = 0. In that limit, the pressure gradient

is external, imposed — the velocity profile has the pressure gradient as a free parameter
dp 2
- 6.2.19
wo—E(1 -4 (6.2.19)

This is unlike in the compressible case, however small the Mach number, where the pressure
gradient is part of the solution. Just as singular limits are thought of as the loss of a solution
when the parameter takes on the limiting value, in the present case, the singular incom-
pressible limit can be thought of as the loss of thermodynamics-as-a- degree-of-freedom from
the compressible solutions on letting the Mach number be zero identically. This explains
why the pressure gradient appears as a free parameter in the Poiseulle flow and as part of
the solution in the compressible flow. In the compressible flow, even at M = ¢, the flow
is driven by viscous dissipation which causes the density to fall and this results in a lower
pressure according to the equation of state p = pT. It is important to note that while
heating due to viscous dissipation is only a second order effect, the variation of density due

to viscous dissipation is of first order.
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U Velocity

F16.6.3.1a The wu-velocity across the channel and along the flow direction. It has been
normalized by the centerline inlet velocity. The width-averaged u-velocity is
projected on to the y=1.5 plane. The inlet and the exit velocity profiles across

the channel are projected on to the z=18 plane.

6.3 Comparison of the Integral Solution to the Lattice Gas Simulation

Scheme 2a is used to obtain the integral solution of the problem, the simulation of which
using the nine-velocity model, was presented in 6.1. In the present context, the problem
is defined by fixing the inlet Mach number M; at 0.15 and setting the specific heat ratio of

the gas, v, equal to 2. Fig.6.3.1a,...,d presents the variation of the velocity, density, and

pressure in the channel.

The qualitative comparisons of the flow — Fig.6.1.2a,...,d and Fig.6.3.1a,...,d — are

good. The width-averaged pressure and u-velocities for the two cases are compared in

Fig.6.3.2
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F16.6.3.1b The normalization is now with the local centerline velocity. This is done to show
the evolution of the shape of the velocity profile down the channel, discounting
the acceleration of the flow.
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F16.6.3.1c A plot of density across and along the channel. Note the increasingly faster
fall-off of the density towards the exit of the channel. The variations across the
channel are small and confined to the regions close to the exit.
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F16.6.3.1d The pressure does not vary with the cross-section in this approximation. The
isothermal behavior discussed earlier is apparent by comparing the pressure
variation here to the width-averaged density variation in Fig.6.3.1c

6.3.1 The Spurious Minimum in the Velocity Profile

The approximations that have been made in the course of arriving at these schemes

essentially limit their range of applicability. We have made three major assumptions:

1. The boundary-layer like assumption of Eq.6.2.1 is most like to fail at high Mach
numbers, mainly because of g%{f becoming comparable to %‘f The variation of
pressure across the channel is also likely to become significant close to the sonic
station, since a curvature of the streamlines is essential there. But this is expected

2 2
to occur further downstream than when g—z% becomes comparable to g—y% Besides

the assumption, p = p(z), does not by itself proscribe a curvature of the streamlines.

2. The isothermal approximation is likely to breakdown earlier than the above because

of significant heating caused by viscous effects which drive the flow.

3. Finally, the order of the polynomial used to represent the velocity profile may lack
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F16.6.3.2 The width averaged variation of quantities in the integral formulation are ex-
pected to be good approximations to the exact values. The qualitative agreement
of the nine-velocity gas simulations indicates that the phenomenology in the two
cases is much the same.

sufficient flexibility and give rise to rather unphysical shapes of the velocity profile.

If the integral solution computation** in 6.3 is continued further down the channel,
a minimum develops in the velocity proﬁle)‘. This minimum in the velocity profile, even
though at a relatively high Mach number, does not seem physical. To see if the minimum in
the velocity profile is only an artifact of the representation used for the velocity profile, the
calculation is repeatedi with a sixth order polynomial for the velocity (Scheme 1c). The
computations now reveal two minima in the velocity profile, thus confirming the fact that
the minimum (or minima, as the case may be) is only a consequence of the insufficiency

of the velocity profile representation used. That is to say, the profiles across the channel,

** the scheme used is the non-isothermal, fourth order velocity representation, with the momentum equations satisfied

exactly at the walls.
1 Repeating the calculation with the isothermal approximation, gives essentially identical results.

s Only the isothermal approximation is used. The non-isothermal approximation is expected to give very similar
PP g
results, from what has been discussed above.



- 117-
as obtained from these schemes, become unphysical beyond a certain Mach number. After
a number of runs, it is seen that while schemes 1a and 2a, which satisfy the momentum
equation exactly on the walls, develop a minimum in the velocity-profile on the centerline,
scheme 1b which satisfies the momentum equation exactly on the centerline does not do
so. This, however, is of little interest since these approximate schemes are unlikely to be

applicable this far down the channel.

6.4 Discussion

The qualitative comparison of the lattice gas to the integral solutions of the Navier-
Stokes equations are good, when the flow Mach numbers below about 0.6. The lattice
gas method shows a minimum in the velocity profile, when the flow speeds approach the
maximum speed allowed in the model. Also the integral methods, both the isothermal and
non-isothermal approximations, with a IV order velocity profile representation, developed
a minimum in the velocity profile at Mach numbers close to 1. But the minimum in the
lattice gas method and the minimum in the integral computation are unrelated, and are

only artifacts of the model used or of the order of the velocity representation used.

The Fig.6.4.1 shows an ad-hoc comparison of the two dimensional channel flow process
on the pressure-specific volume plane. Again the definition of pressure used for the lattice
gas is the one in Eq.2.4.30, correct only to O(u?). The over-riding factor, however, is
the density contribution to pressure. While the comparison may initially seem surprisingly
good, a moments reflection shows that it mainly because of the isothermal nature of the

flow.

In this context, it should be pointed out that a number of investigators (e.g., Kadanoff et
al. 1989) have asserted their verification of the incompressible Poiseulle flow, in the context

of lattice gas simulations. As is clear from the present chapter, the claims are at best a
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F16.6.4.1 An ad-hoc comparison of the two schemes for the adiabatic channel flow on the
p — v plane.

sloppy usage of the term incompressible, because the flow is clearly compressible — it is

isothermal upto relatively high Mach numbers.

Finally, the breakdown of the both the methods at Mach numbers higher than about
0.6, make the study incomplete, since the flow field in the vicinity of the sonic region is
expected to be of considerable interest. While the use of a discrete-velocity model with more
number of velocities, say 25, may allow studying the flow field near the sonic region better,
a definitive study of the problem would involve either the solution of the full compressible
Navier-Stokes equations or a use of the Direct Simulation Monte-Carlo technique (Goldstein

1992).
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APPENDIX A

Entropy and Temperature

Employing the method of most probable distributions, we consider a function § which
measures the probability of occurance of a particular state identified by the velocity distri-
bution and spatial distribution of particles, for a given macrostate. The function © would
then depend on p, e, and also on u, in view of the Galilean non-invariance of discrete-
velocity-gases. The particles in the model as defined above, do not have an interaction
potential and hence the gas is ideal. Consider a set of N particles taking on the allowed
discrete velocities in the model populating V lattice sites in the physical space to be the
system. The system is then fully described macroscopically by prescribing its specific inter-
nal energy, e, and the velocity, u. The N particles can be distributed in the velocity space
(over the allowed b discrete velocities) and the physical space (over the V lattice sites) in
various different ways. Considering any one such configuration, the function  measures the
multiplicity of equivalent micro-configurations possible because of the indistinguishibility of
particles with the same velocity. Looking first at the distribution of the particles in the
physical space alone, it is clear that the state which has the highest multiplicity is one in
which the N particles are uniformly distributed over the V lattice sites.

N!
V

where N; is the number of particles in lattice site j and it is maximized when the Ny,

Xphy = (AOl)

J=1,...,V are all equal. Then looking at the distribution of the particles in the velocity
space, proceeding on similar lines but noting the additional constraints of the specified

energy and velocity,
N!
Xvel = —3 (AOQ)
[Ti=; MV
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where the NV; is the number of particles with velocity c; and the N; satisfy

>! el _
X1
by 1,2
1 ON;

M;'—'—' =e (A.0.3)

21 N;
The maximization of In(x,.;) is achieved as noted in the section on equilibrium state when
the N; is the discrete-Maxwell-Boltzmann distribution. Then using Stirling’s formula, the

specific entropy can be written in terms of other specific quantities as

b
5= -/1-) > niln(n;) (A.0.4)
0

where 7n; is the equilibrium discrete Maxwell-Boltzmann distribution which depends on e

and u.

To better understand the nature of entropy, we consider the flow of the nine-velocity

gas in the direction of one of the slow moving particles.

F1G. A.1 Variation of specific entropy with specific internal energy and velocity at constant
density.
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Two points noteworthy of the above plot are: At a constant flow velocity, the entropy
is not a monotonic function of e, unlike in an ideal gas. At a constant e, the entropy
depends on the flow velocity and decreases with increasing u, again much unlike an ideal
gas. Finally, it is expected that though the surface of s in the e-u plane is convex, in any
spontaneous process, the entropy will only increase, i.e. there will not be a crossover from
one side to another in Fig. In a given process, the entropy may decrease as viewed in the

e-u plane, but there is the additional dependence of s on p.

The definition 1.1.1 for the specific internal energy, e, has been used at times previously
for temperature, because of the resemblance to the kinetic definition of temperature of
ideal gases. The problem in the context of discrete velocity gases is that the velocity set is
finite and therefore such a definition of temperature is, in general, incompatible with the
thermodynamic definition. The thermodynamic definition of temperature is given by Thus
from Fig Eq.3.2.5 it is clear that the temperature in the nine-velocity gas and discrete-
velocity gases in general can be negative. The situation here is very similar to other cases

where the phase space is finite as for example in the case of spin systems.
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APPENDIX B

ODEs from the Integral Formulation of the Adiabatic Channel Flow

The resulting ordinary differential equations for both the isothermal and the non-

isothermal cases are given here for a sixth order velocity profile

B.1 Isothermal Case

The integrated continuity and momentum equations are

26 40 66
L2y =C
g t5+—)
d ( 862 3202 728 12880 57606 806,8)
__p . - =
dz 15 45 91 105 385 63 (B.1.1)
1 dp
- 5—— — 20 — 40 — 60
YM; dz
Satisfying the momentum equation on the wall gives
d
2P = _9yM2(B + 60 + 156) (B.1.2)

dz
Satisfying the momentum equation, instead, on the centerline of the channel gives

d 1 d
—5 = —yM}? {2/3 + é—pa—z—(ﬂ +o+ 6)2} (B.1.3)

The equations for the fourth order velocity representation is got by setting § = 0. When
using the fourth order velocity representation, a further choice is to be made about where
the momentum equation is to be exactly satisfied — at the wall or on the centerline,

corresponding to whether Eq.B.1.2 or Eq.B.1.3 is to be used.
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B.2 Non-Isothermal Case
The integrated continuity and momenturm equations are

W+ B)=c

d (86%  320° N 7262 12880 N 57606 N 8068\
I\ 15 T 75 T o1 T 105 385 63 )
1 dp 2p

ToMId gl 2030

(B.2.1)

The other condition resulting from the transformation, which introduces g as a variable is

2 2 2
psfrm (BB e s )y
Satisfying the momentum equation on the wall gives
P _ o2 (51 60+ 150) (B.2.3)
dz tgn?
Doing the same on the centerline of the channel gives
. L proro)?=-— 200° (B.2.4)

2(n—m(f+ o +6)2)dz CyMZPdz (n—m(B+ o+ 6)%)2g?

Again the equations for the fourth order velocity representation are recovered by setting
6 = 0. Also, when using the fourth order velocity representation, a choice is to be made

between satisfying the momentum equation on the wall, Eq.B.2.3, or on the centerline,

Eq.B.2.4.



