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Abstract

This thesis addresses the problem of nonlinear uncertainty propagation in space
trajectories. This problem can be specifically stated as follows: Given the initial orbital state of

a spacecraft trajectory as random variables, what is the orbital state at some later time?

This problem is currently encountered by mission designers at institutions such as the
Jet Propulsion Laboratory. Before an expensive space probe is irretrievably launched, extensive
trajectory analyses are conducted to determine the amount of fuel needed to correct for

trajectory errors. This involves propagation of uncertainties in the trajectories.

The current method for uncertainty propagation involves linearizing about the nominal
trajectory to obtain a state transition matrix used to map the covariance matrix to a later

orbital state. This method neglects nonlinear effects.

Two new algorithms were developed to account for nonlinear effects in the propagation
of uncertainties in space trajectories. The first utilized simplifying assumptions to obtain
analytic expressions for the probabilistic quantities describing the final orbital state. This
algorithm provided good trend information but lacked precision. The second algorithm utilized
Gaussian quadrature techniques to numerically compute the desired quantities. While requiring

significant computational effort, this algorithm provided high precision.

Example trajectories were analyzed to compare the results from the new algorithms to
those from the current method. Nonlinear effects were shown to influence both the mean and

the variance results.
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l. Introduction

This first chapter serves to introduce the reader to the problem addressed in this
thesis. Simply stated, this problem is the determination of a spacecraft’s orbital state at a
specific time given probabilistic initial conditions. The necessity of this determination derives
from mission design analyses performed currently at institutions such as the Jet Propulsion
Laboratory. The sources of uncertainty are discussed along with models for describing these
uncertainties. The probabilistic quantities of mean and variance are discussed both
qualitatively and quantitatively to provide a foundation for understanding the developments

contained in this thesis.

The following mathematical conventions will be used throughout this thesis.

I = vector
r, = first element of vector r

r = scalar

A. Problem Origin in Current Mission Analysis

This thesis addresses the problem of uncertainty propagation in space trajectories. This
problem can be specifically stated as follows: Given the initial orbital state of a spacecraft

trajectory as random variables, what is the orbital state at some later time?

This question is currently asked by mission designers at institutions such as the Jet
Propulsion Laboratory. Before an expensive space probe is irretrievably launched, extensive
trajectory analyses are conducted [1]. The results of these analyses are a nominal trajectory for
launch targetting purposes as well as numerous maneuvers along the trajectory to correct for

launch errors and uncertainties in navigation.

The sources of trajectory errors from launch are numerous. The launch vehicle engines
may give different thrusts than expected. The guidance system on the launch vehicle may
contain errors itself from gyroscope drift and other sources. Finally, unforseen perturbations

may occur during the separation of the spacecraft from the launch vehicle.



Uncertainty is also introduced from the navigation algorithms themselves. The orbital
state of the spacecraft is determined from antennae sightings from Earth. Numerical methods
are used to minimize the differences between each sighting; however, the existence of the

differences is evidence of the uncertainty in the sightings.

B. Uncertainty Models

The uncertainty from sources described above must be modelled with some analytic
probability distribution function. This will enable calculations to be made according to
standard probability theory. A probability distribution function provides all necessary

information about the nature of the random variable.

The difficulty in modelling uncertainty as an analytical function is that actual
uncertainties are difficult to estimate. The processes leading to uncertainty are often nonlinear
and, therefore, are difficult to predict. Typically, multiple cases are simulated to determine the
extent of variation in the process. The conditions of the simulation may not exactly match

actual conditions.

Even if the possible extent of variation is understood, it is difficult to assign a
distribution function to the data. Real systems rarely exhibit behavior which is exactly
modelled by analytical functions. The engineer must usually choose a function closest to reality

and then let conservative allowances account for any differences.

With respect to space trajectories, engineers typically use Gaussian distributions to
model uncertainties. One reason for this is that the Gaussian distribution decreases away from
the mean. This satisfies the engineer’s intuition. However, the main reason it is used is because
the ease with which it lends itself in linear theory. As will be further explained, linear
assumptions result in simple calculations for Gaussian distributions. New numerical algorithms

presented in this thesis are valid for any distribution choice.

A disadvantage of the Gaussian distribution is the unrealistic finite probability existing
at great distances from the mean. Consider the mathematical representation of the Gaussian

distribution shown below.

2
p(x) = \I_é;l exp (—(x—_—%’i> , —00 < X < 400 (1)

X 20%
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p(x) = probability density function of x
oy = variance of x

px = mean of x

Clearly, no matter how large the variable x becomes, the distribution function still retains a
finite value. This does not accurately portray the real system which has bounds in the range of

€rrors.

As mentioned above, new numerical algorithms presented in this thesis accept any
distributions. Therefore, a distribution used may have finite bounds. One such example used

extensively in this thesis is the uniform distribution.

1
_ ﬁ,——n<x<+f€
p(x)—{ 0. |X|>h: (2)

This distribution function maintains a constant probability density value up to a bound, at

which point it returns a value of zero.

Other distribution functions can be found in any standard probability reference [2].

They include Beta, Gamma, and Cauchy functions.

C. Meaning of Probabilistic Quantities

Engineers interpret the random variables through quantities known as the mean and
variance. An understanding of these is especially important since the results of the numerical
algorithms presented in this thesis are given in these quantities. In fact, when the full
nonlinearities of the problem are considered, as will be explained later, there is no analytic
function to represent the distribution and engineers must correctly interpret the mean and

variance for proper analysis.

The mean is more commonly known as the average. It represents the expected output
of the system. Engineers will usually designate the mean trajectory as the nominal trajectory
and plan the mission according to it. Clearly it is the most important result of probability
theory. As will be explained later, the mean can be significantly affected by nonlinear
considerations, which is an important point of this thesis. Mathematically, the mean is

calculated according to the equation below.



+ oo
by = | 109 plx) dx 3)
—00
y = f(x)

This equation will be central to the numerical algorithms presented later.

The engineers would also like to know how closely the distribution surrounds the mean.
Consider Figure 1-1 below. Notice how in Case 1 the distribution is much more spread out

than in Case 2.

[y

Figure 1-1

q(x) p(x)

Case 1 Case 2

If they represented the distribution of trajectories, the spacecraft would have to carry more
fuel in Case 1 to correct for deviations from the nominal trajectory. Clearly the engineers need

to have some measure of this variation from the mean.
The probabilistic quantity which tells engineers how the distribution varies from the
mean is called the variance. It is given by the following equation.

+ o0
ol = J ( f(x)—py )2 p(x) dx 4)

— 00

This equation will also be central to the numerical algorithms presented later.



In conclusion, engineers utilize both the mean and the variance in their analysis of a
trajectory. The mean is the nominal trajectory around which the mission will be designed. The
variance tells how spread out the distribution is about the mean so that the range of variation

can be understood.
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Il. Space Trajectory Mathematics

The solution of the problem addressed in this thesis is the calculation of the integrals
for mean and variance presented in the previous chapter. This requires the mathematical
relationship between the orbital state and the initial conditions and time of flight. The purpose
of this chapter is to describe this relationship in detail so that the specifics can be drawn on
later in the presentation of the results of this thesis. Both the classical formulation and the

numerical integration method using Gauss’ variational equations will be described.

A. Classical Conic Trajectory Calculations

The equations for classical conic trajectories represent the only existing analytical
relationships between orbital elements at different times. This is possible because of several
assumptions that reduce the general trajectory problem down to what is known as “The Two-
Body Problem”. As the name suggests, we only consider two objects, specifically the spacecraft
and the planet around which it orbits. The spacecraft mass is considered negligible with
respect to the planet, which is a good assumption. The planet is assumed perfectly symmetric.
Finally, there are no other forces acting on the system other than the gravitational force

between the planet and the spacecraft.

The results of this simplified model is an implicit analytic relationship between an
orbital state and the initial state after some flight time. The step-by-step calculation procedure
follows in this section. Note that all of the relationships that can be derived from this model

are not presented. The reader can refer to a standard astrodynamics text for these details [3].

In the algorithms used in this thesis, the initial orbital state is assumed to be known in
a planet-based fixed Cartesian coordinate system. In this system, the orbital state consists of a

position vector and a velocity vector. We write the position and velocity vectors as follows.

r=rye +r,€y+rses (5)

v=vye +vyoer +Vv3es (6)

The first quantities calculated are the angular momentum vector h, the nodal vector n,

and the eccentricity vector e. The equations for these fundamental vectors are below.



~l

h:;xz (7)

n=ez3xh (8)
9=%((V2—¥)£—(z-x)x) (9)
n = planet gravitational parameter

v=|yv]| (10)
r=|r| (11)

These vectors are illustrated in Figure 2-1 below.

Figure 2-1
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The magnitudes of these vectors are also important and will be used in several equations

below.
e=|el (12)
n=|n]| (13)
h=|h| (14)

The next group of quantities to be calculated are known as the classical orbital
elements. They represent various geometric characteristics of the spacecraft trajectory. Both

the names and the mathematical definitions of these elements are now presented.



p = semi-latus rectum

2
p=10 (15)
i = inclination
h
. —-1(h3
i = cos ( B ) (16)

Q = longitude of the ascending node
Q = cos™! ( % ) (17)

w = argument of the periapsis

w = cos 1 ( %) (18)

v = true anomaly

v =cos ! ( er ) (19)

a = semi-major axis

a=_—P (20)

1—e

Time-of-flight must now be brought into the algorithm. This is done through geometric
conversion of the flight time into area swept out in the conic section of the trajectory. Certain
new relationships must be developed to enable this. Consider the elliptical trajectory in Figure
2-2 below. Note the new variable E called the eccentric anomaly. This is calculated according
to the following equation.

-1
E = cos ( ae ¥ rcosv ;cos 4 ) (21)
Given an initial eccentric anomaly, the time of flight to the final desired position, and the

number of complete orbits passed during the flight, an implicit equation for the final position

eccentric anomaly can be developed. This equation appears below.

t—toz\[%[2k7r+(e—esinE)—(Eo—esinEo)] (22)



t = time at the final spacecraft position
to = time at the initial spacecraft position
k = number of complete orbits passed during flight

= eccentric anomaly of final spacecraft position

Eo = eccentric anomaly of initial spacecraft position

The algorithm must solve this equation for the eccentric anomaly of the final spacecraft
position. Since this variable is implicitly defined, numerical methods must be used to find the
solution. This lack of explicit solutions for the eccentric anomaly will be an obstacle to fully

analytic stochastic solutions, as explained in the next chapter.

N

Figure 2-2
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An analogous equation for hyperbolic trajectories also exists. Instead of the eccentric
anomaly used for elliptical trajectories, the hyperbolic eccentric anomaly is used. It also has

geometric significance. Its mathematical definition is as follows.

F=lnly+{y’—1] (23)

€ + Cos V
“ 14+ ecosv (24)

Similar to the above case, if given the hyperbolic eccentric anomaly of the initial spacecraft
position and the time of flight, the hyperbolic eccentric anomaly of the final spacecraft position

can be calculated. This is done with the following equation.

3
t—to:\‘(_f;’)[(esinhF—F)—(esinhFo—Fo)] (25)

F = hyperbolic eccentric anomaly of initial spacecraft position

Fo = hyperbolic eccentric anomaly of final spacecraft position

This implicit equation is solved with numerical methods.

At this point, the algorithm has the value of the eccentric anomaly for the final
spacecraft position. The same equations that enabled the calculation of this eccentric anomaly
from the true anomaly can be reversed now to calculate the true anomaly of the final

spacecraft position. Note that the eccentricity of the orbit remains constant.

The algorithm’s objective is to compute the Cartesian-based position and velocity
vectors. The next step in doing this is to compute the position and velocity in the Perifocal
system. Figure 2-3 illustrating this coordinate system with respect to the orbit is shown below.

The position and velocity vectors are calculated according to the following equation.

r=rcosvP +rsinvQ (26)

_ p
x‘_'l-i-ecosu (27)

gz\l_g[—sinu£+(e+cosu)g] (28)
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Figure 2-3

The last step in calculating the final spacecraft position and velocity vectors is to
rotate the Perifocal system-based vectors to a Cartesian planet-based system. The rotation is

accomplished as follows.

rc = Rrp (29)
rc = position (velocity) vector in planet-based system
rp = position (velocity) vector in Perifocal system

R = 3x3 rotation matrix
The rotation matrix R has the following elements.
R,; = cos Q cos w — sin Q sin w cos i (30)

R, = — cos R sin w — sin 2 cos w cos 1 (31)

Ri3 = sin Qsin i (32)



R,; = sin Q cos w + cos €2 sin w cos i (33)
R,y = — sin Q sin w + cos Q cos w cos i (34)
Ry3 = — cos Qsin i (35)
R3; = sin wsin i (36)
Rz, = cos wsin i (37)
R33 = cos i (38)

B. Variational Planetary Equations For Numerical Integration

In order to develop the analytic algorithm above, it was necessary to make some very
severe restrictions. No perturbations from the two-body model are allowed. This is not
sufficient for modern space navigation. Engineers currently account for nonspherical planets,
solar pressure, third-body gravitational influences, and many other perturbations from the
simplified models. The equations that allow the inclusion of these perturbations are for the
derivatives of the orbital elements with respect to time. Numerical integration schemes utilize

these derivatives to compute the trajectory step by step.

The orbital element derivative equations were derived using the technique of variation
of parameters by Lagrange and improved by Gauss [4]. These equations can appear in several
forms through various coordinate transformations. The set shown below is representative.
Most of the orbital elements have been defined earlier. Perturbations enter the equations

through acceleration terms.
ar = acceleration in the radial vector direction
ay = acceleration in the direction of motion L to the radial vector
a;, = acceleration in the angular momentum vector direction

Three new quantities should be defined before the variational equations are presented.

M = mean anomaly

M =E —~esinE (39)

f = mean true anomaly

tan g = NH——i—Z tan % (40)
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b = semiminor axis

b=a2(1—-e?)]| (41)

Gauss’ form of the planetary variational equations can now be presented.

- it @
g_i:rCﬁsea (43)
b - L peonta t(peryining - SO (ay
‘(ij—?zll{a—z(esinfa,—{—gae) (45)
de = L{psinfa, +[(p+r)cosf+relay} (46)
d_l:;i:n+ﬁ—e[(pcosf—2re)ar—(p+l‘)5inf3'9] (47)

The variational equations can be integrated from some initial spacecraft orbital state to an
orbital state at a later time by any one of many numerical integration algorithms, such as
Runga-Kutta methods. The reader can find detailed explanations in specific reference books on

that subject [5].
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Ill. Analytic Solutions

As the reader will recall, the objective of this thesis is to compute the mean and
variance of the elements of the final spacecraft state. This is done via integrals described in
Chapter 1. The purpose of this chapter is to present analytic solutions to these integrals.
Utilizing the analytic conic algorithm for computing trajectories, several intermediate results
can be determined. Furthermore, specific analytic relationships exist between many orbital

quantities allowing probabilistic integral computation.

A. Intermediate Solutions From Conic Algorithm

The ultimate objective is to compute the mean and variance of the orbital elements
after some flight time from uncertain initial conditions. Although this will be numerically
possible in later chapters, an analytic solution is impossible. In the conic algorithm, an implicit
equation occurs for a variable which makes it impossible to analytically compute an integral.
Furthermore, although each step in the algorithm is reasonable, after substituting them into
each other to obtain the final nonlinear, algebraically complex expression, the integral is

unknown.

It is possible to compute the mean and variance from step to step by assuming for each
calculation that the input variables are independent and described with a uniform probability
density function. These relationships may assist the engineer in understanding the probabilistic

relationships between orbital elements.

The remainder of this section is devoted to presenting the probabilistic relationships
between the steps in the conic trajectory algorithm. Readers may have a need compute the
relationships between quantities not presented here. Those may be calculated in an analogous

method as that which follows.

The first quantity is the angular momentum vector. The procedure for calculating the
mean and variance of the first element of the angular momentum vector will be illustrated to
demonstrate the procedure used for all of the calculations in this section. The calculation of the

mean is as follows.
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ULl UL2 UL3 UL4

(1) V3 — I3 Vs )
iy = J 2 163 = 6; 2> dv, dvg dr, dr, (48)
LL1 LL2 LL3 LL4
ﬂhl = Hry Hvg T Hrg Hv, (49)
ULl = Bry + 6
UL2 = Hrg + 0
UL3 = Hvy + €

UL4=/1V3 + €

LL1 = Hry — )
LL2 = Hry — )
LL3 = Hvy — €
LL4 = Hvg — €

Pn, = angular momentum vector first element mean
6 = distribution limit of all position vector elements

€ = distribution limit of all velocity vector elements

The remaining results for the angular momentum vector element means are presented below.

.th = Hrg Bvy ~ Hry Hvg (50)
Hhy = Hry Hvy = By i, (51)
The angular momentum vector element variances are presented below.
_ 22 2 1 2 2 1 2 2 1 2 (2 1,2 (2
Uh1—965+3l¢r25 + gHigc€ +3#v25 +3#v35 (52)
2 _ 242 2 1 2 2 1 2 2 1,2 (2 1 2 (2

ohy=38+tu e L2 2L+ Lud e (54)
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The nodal vector element means are presented below.

Hny = — Nh2
Hny = phl

The nodal vector element variances are presented below.

2 2
Thy = Oh,

2 2
Thy = Oh,

(55)
(56)

(57)

(58)

The eccentricity vector equations are algebraically complex and require some simplifying

assumptions. These involve computing the probabilistic quantities of intermediate expressions

within the equations. They are computed below.
y = r% + r% + rg

2 2
py = 8 + uf + iy + i

—

4 2 2 4 4 4
of =1 6% + D2 [u2 + ud, + udy 1+ ul + 4y + 4ty

2 2 2
+ 2 [ ph) P, + pE) uEy  pEy sy | — K

3
/‘F=(3_]1_‘;)[(ﬂy+Ly)2—(ﬂy—Ly) ]

NIW

2 2
TF = Hy — HF

Ly = probability distribution limit of y

(61)

(62)

(63)

(64)
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The mean eccentricity vector elements are presented below.

2 2
_ 252Nr1 _ Hro Hvy Hv, n Hry Hvy _ Hry Hvy Hvg " Hry Hvg
Hey = 73y ] ] 7 ]
— log| EF — °F
2L g( #r — Le
2¢2 ; Py  Hr, BE
_ Hry _ Hry Bvy Py + Hro Pvy _ Hrg Bvy Pvg + ro Hrg
Hep = 733 ] ] ] ]
_ I-‘r2 log IIF + LF
2L #e — L
22 0r, P, Bvg Hus  Hry Heo  Hry Hug By Hry fe
_ '3  Ffa Fv3z Vo + f3/Ve N17V17¥3 '3 ™y
Hes = 33 ] ) ] ]

— m log( "——__F i

The eccentricity vector variances are presented below.

2 52 §2 “?1

2
l‘rl
cs, = - + -
17 6(ug —Le)Lg 6 (s + L) Lg " 2(ug —Le) Lg 2 (ue + Le) Le
38528 | Bunet  uty, ud
+ 7 T 2
1359 457

A 26262[131
7t 3z )
97 99 9y
252/1r1#r2llv1#v2
32

2.2 2
€ Hrobvy

2.2 2
€ l‘r3l‘v1
31)2

37)2

262/“r1#r2#V1#V2 (6 € I‘LV2)2
- 2 + 2
n

Ul
+ (6 #VI#V2)2
37]2

8(e l‘rlﬂvz)z
+ 2
3n

2
+ (€ l‘le‘v2)
3772
2 3 2 4
+ (#YQ”VI#V2) _ Ql‘rlﬂrzl‘vll‘v2 6 ”Vz
n? n’

2 4 2 2
+ urll“VQ 86 l‘rllir3/-‘v1/v‘v3 + 26 ur2PT3#V2#V3
72 392 392
2t Brg ey Bvobivy  2fr frabiv e bvs (8 € pyy)?
T T3V Pvalivy 2T I3V  Pvoivg + V3
n? n? n’

3172

8(€ pr, pivy)?
+ rirvs

(€ /1r3liv3)2
2 +
31

(6 ﬂvlﬂv3)2
2 +
3n

31)2

(#r By, By )2
+ 37Y17Y3

2
n

(65)

(67)
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B 2 Hry By vy B N 2(8 pyybivy)? . 2(#r1uv2uv3)2
) 302 )

_ 2prpegpvipiy 8200y pel, 262 2log(up— L)
) t 77 t— + 9L
n 3 n F7

2¢if log(up —Lg)  pry pirybiv, v, log(ue — L) s 82 ud log (g — L)

. (urypv,)log(Be—Lg)  pr rgbiv, pvglog(pe—Lg) N 82 ug log(ug —Lg)
Len Len ' 3 Len
. (#ryivs)?log(ue—Le)  262c%log(up+Lg) 26247 log(ke+Lg)
+ HryBrybvy B, log(pe+Leg) _ 52#32108(#F+LF) _ (#rlﬂvz)zlog(#F+LF)
Len 3 Len Len
N Pryfrgbvy pvslog(pe+Le) 62#33log(up+L,=) (urluv3)210g(#p+L.=)
Len 3 Len Len
2
— He,

oe, = - + -
27 6(ug —Le)Lg 6 (sp +Le) Lg * 2(pg — L) Le 2 (pe + Lp) L
38624 28 u?264 64;1,21 c4u,23 25262;132
P) 2 T o2 to= t 2
1359 457 9n 9 9n

2.2 2 2 2 2
+ € HryHv, " € Hrabv, _ 252#r1#r2#v1ﬂv2
3n? 37)2 3n?

2
2¢ l‘rlﬂrzl‘vll—‘vz (6 € l‘vl)z 8(€ ﬂrzﬂvz)z (6 /“rlﬂvl)z
5 + 5 + 5 + 5
n 3n 37

2 2 3 4
+ (6 “VI#V2) + (Frlﬂvlﬂvz) _ 2“f1#f2“V2ﬂV1 + 62"V1
3n? n° n° 3n?

2 4 2 2
4 Highvy 8€” Hrybrgbvybivg + 26" pury trg vy Bvg
2 392 392

2
+ 2""1#'3,‘V2“V1,‘1V3 2/“'2#'3/“V2#31#V3 (6 € ”V3)2
2 - Y + Y

p 2
N 8(€ pryhvg) N (€ prgypvy) N (6 bvyvg)? N (Hrabvobvg)?
2 2 2 2
37 37 3n

2
772 3,,2 7)2
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n° 3n° n? 9 Len
22 pploB(HE—Lg)  prytirybuyiuoloB(ue—Le) | 845, log(ke— L)
3 Len Lgn 3 Lgn
N (irpbivy)?1og(HE—Lg)  prybiry iy, bvglog( e — L) . 62 3 log(pe — L)
2
N (wropivy)log(ue—Lg)  262%log(up+Lg)  2¢°prlog(ue+Le)
Len 9 Len 3 Lgn
+ Hry Brybvy v, log(pe +Lg) 52#3110g(#F+LF) (u,zyvl)zlog(pF+LF)
Len 3 Lgn Len
+ Hrobeg vy vglog(pe +Lg) 62#331°g(ﬂF+LF) (I‘r2l‘v3)2l°g(l‘F+LF)
- #32 (69)

—_— + —
6(re —Le)Le 6 (e + Le) L~ 2(sp — Lp) e 2 (wp + Lg) Lg
38624 28 p$3e4 N 64;1?2 N 64;121 N 26262/133
13572 4572 9n? 9n? 9n?

2.2 2 2.2 2
€ /Jr2[lv3 + € l‘rlllv3 _ 262#'3/“(2”V3#V2
392 3n° 392

2 2 2
2e lir3lir22/1v3liv2 + (6¢ ﬂvz) + 8(¢ l‘r3l‘v2) + (€ l‘rzl‘vz)z
n n’ 3n° 3n°
2
(6 I‘v3i2‘v2) + (ﬂrzl-‘v3#v2)2 _ 2/‘r3#r2#v3vg + 52#32
39 n? n? 3n?

2 4 2 2
BraHv, _ 8e HryHrgbv, Hyy + 2e HroBryBvy By,
2

+
n? 3n 392

2
2#r2#r1ﬂv3#v1#v2 2#r1#r3#v3#32#v1 (6¢€ #v1)2
Y. - pY: + pY.

2
8(€ I“r3l“V1) + (6 l‘fll‘vl)z + (6 #V3,“V1)2 + (l‘rll‘vll‘v3)2
3"2 3772 302 T]2

772 3172 7)2

3 4
) tozt—=t 9L
n 3n n F7
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3 Len Len 3 Len

2
N (Hrytivy)?log(pe—Lg)  prypr pv piv;log(pe —Lg) N 62 log(pg— L)
Len Len 3 Len

+ (#r3#v1)2108(ﬂF—LF) 26262log(pF+LF) 262#?3105(#F+LF)
Len 9 Lgn 3 Lgn

+ llr3#r2#v3llv21°g(#|=+L|=) 62/‘32108(#F+LF) (l‘r3#v2)2l°g(liF+L|=)
Len 3 Lgn LFTI

+ #rlﬂr3#v1#v310€(#F+LF) 52/‘31108(#F+LF) (#r3#v1)zl°g(#F+LF)

2
/163
The semi-latus rectum mean and variance follow.

2 2 2 2 2 2
o = [Why + mp, + by + S (LR 412 +12 )]

2 12
h3™h3

7b = 5oz [MLLe, + siLE, + u
+ 15 (Li + Ly, + Lp )]
The eccentricity magnitude mean and variance follow.
y=el+el+e]
ny =3 (L2 + 18, +12,) + 43 + 43, + 4,
of =51 ué L3 + k3,12, + ud L2, ]

+%(L§1+L§2+L§3)

3 3
#e=(3+_ly)[(/1y+[‘y)2—(ﬂy—Ly)2]

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)



08 = py — pé

The semi-major axis mean and variance follow.

N

z=1-—

¢}

np =1 — pd — 112
o2 =& (4212 + 1Y)

15
— Fp Bz + Ly
Ma = 3T log( iy — L, )
42 L2 I

= + —
2Lz(pz—Lz) 6Lz(pz—Lz) 2Lz(pz+Lz)
S S
6Lz(puz+Ly)

The angular momentum magnitude mean and variance follow.

y = h + h2 + n?

2 2 2 2 2 2

2 _ 2 12 2 12 2 12
oy =3 [ pn Lh, + #i,Lh, + s Li, |

4 4 4 4

+ ol

3
llhz(gLLy)[(#y'*'Ly)2—(l‘y“Ly)

2 _ 2
Th = Ky — Hn
The nodal vector magnitude mean and variance follow.

y =i +n3 + n3

NIW

(78)

(79)

(80)
(81)

(83)

(84)

(85)

(86)

(87)

(90)



(3]
o
'

py =L (LA, + LA, + L2,) + uh, + pdy + nhy (91)
oy = % ( Z%IL%I + #%2L§2 + #§3Lr2:3 ]
+ 7= (L, + Lo, + La;) (92)
1
n =y? | (93)
3 3
in= (30 ) [Cmy + L)% = (ay = Ly) 2] (94)
oh = py — pA (95)
The mean and variance of the cosine of the inclination follow.
”cin - m lo ( F'h — Lh ) (96)
2 2 2
2 = Fhg + L“a Fhy
L
_ 3 _ 2 97
6Ly (pn+Ly)  Hein (97)
The mean and variance of the sine of the inclination follow.
y = hi + h3 (98)
_ 1 2 2 2 2
uy—g(Lh1+Lh2)+/Ihl+Mh2 (99)
2 _ 4 2 12 2 12
oy =3 Zhth} + ”thhz ]
+ g5 (Ly, + Ly,) (100)
1
z =y (101)

3 3
"Z:(%Ly)[(“v+Lv)2—(#y—Ly)2] (102)



Hsin

S 2Lg(up=Ly) © 6Ln(uy—Lp)  2Ln(pn+Lyp)

L e
6Lh(ﬂh+Lh) sin

The mean and variance of the cosine of the longitude of the ascending node follow.

Hcom = g—]r_lln log( Hn + o L )

2 2 2
Ln1 Hny

2
o4 = + —_
©M = 2Ln(un—Ln) ' 6Ln(gkn—Ln)  2Ln(sn+Ln)

L2
" 2
8Ln(pin+Lg)  Fcom

The mean and variance of the sine of the longitude of the ascending node follow.

_ Hno #n + Lp
Hsom = 5L, 108( In — Lp )
o2 Ky N L3, Hay
oM = 2Ln(pn—Ln) ' 6Ln(pn—Ln)  2La(pn+Ln)

L2
_ " o _ 2
6Ln(un+Ln) _ Fsom

The mean and variance of the cosine of the argument of periapsis follow.

y = nye; + npep + ngeg
Ky = Hnibe; T HnyHe, T Hnghesy
2
of = § (L& ud, + L&,un, + L3 k3, + L2u3,)

+§ (L3 L3 +L3L2))

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)
(111)

(112)
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Hz = HUnHe

o3 = 3 ( Lel‘n nl‘e )+ 5 LgL%

pz + Ls
Hew = 2Lz lo g( P__z — L_z )
Ly n
6Lz(uz—Lz)  2Lz(pz+Lz)

2
02 — Hy
oW QLZ(P’Z_LZ)

+

L2
N S
6Lz(pz+Lz)

The mean and variance of the cosine of the true anomaly follow.

y =r1€) + rpe, + rze;

Hy = Hribe, t Brobe, T Hryhes

03 = ( Lell‘rl + Lezl‘rz + Lrll-‘el + Lr2l‘62 )

+ Sl, (L2 L2 + L2 L2)

Hz = Urle

a%:%(L +Lr#e)+%LgLr2

- My Bz + Lp
Hev = 21, 108( by — L, )
2 2 2
2 _ By Ly By
oEv = ; + —
v 2Lz(pz—Lz) 6Lz(uz—Lz)  2Lz(pz+Lz)

L2
S S}
6Lz(puz+Lz)

(113)
(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)
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The mean and variance of the sine of the argument of periapsis follow.

X; = nNyeg (126)
X, = —n,e; (127)
Hxy = finyHe, — Hn,he, (131)
0%y = 5 (La,pd, + pdyld) + § LA,L2, (132)
0%, = 3 (LA, ud, + wR LE,) + § L2 L2, (133)

0%y = 5 (LA, + pA L2, + LA k3, + pd,Le))

+§ (L3123, + L3,L8)) (134)
y = x% + x% + xg (135)
my =5 (LE) + LE, + L) + uR) + 4k, + 43, (136)

of = 5[ w313, + uE,LZ, + wi L3, ]

+ 5 (L, + L, + L) (137)
1
x = y? (138)
1 3 3
i = (g0 ) [Cay +Ly) % = (y = Ly) 2] (139)
oF =y — 12 (140)

zZ = ne (141)



U§=%(Leﬂn+ nﬂe)'*'ngL%

#swzoLzlg(z—ttf)

" S SR
2Lz(pz—Lz) 6Lz(uz—L2) 2Lz(pz+Lz)

N ¥ S
6Lz(puz+L32) sw

The mean and variance of the sine of the true anomaly follow.

Xl = 62r3 - 63['2
X2 = e3r1 — e1r3

X3 = €Ty — eor

Heylry — Heghr,

Bxy = Heghry — He lry

Hx3 = HeyHry — Heybry

Ox, = % ( Lezﬂr3 + ﬂe2L + Le3l‘r2 + ,“e3L )
+ 5§ (LZLE + 12,12

0%, = 5 (L3 p? + pd L7 + L3 p2 + pd L)
+ §(L&L2 + L2 L2)

Oxy = '13 (L r2/~‘e1 + llrlLe2 + Lrlﬂez + l‘rQLel )

+ 3 (LALE, + L2L2))

y =xi +x3 + 3

(142)

(143)

(144)

(145)

(146)
(147)
(148)
(149)

(150)
(151)

(152)

(153)

(154)

(155)
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my =5 (L% + L% + L) + 4, + ik, + 4%, (156)

oy = 5 LukLa, + i, L3, + L%, ]

+ 75 (L + Lt + Li,) (157)
1
x = y? (158)
1 3 3
ﬂx=(m)[(#y+Ly) —(py —Ly)“] (159)
oF = py — b3 (160)
z = re (161)
Bz = HrHe
o3 =3 (L7 + L2ud) + § 1212 (162)
- B (l‘__z + L ) (163)
Hev = 2L, € sz — Ly
o2, = P2 " L _ px
V' T 2Lz(pz—Lz) ' 6Lz(pz—L;)  2L(pz+L)
L3 2
- x 164
6L (u+Lz) 1S (164

The mean and variance of the cosine of the eccentric anomaly follow.

y = e + cos(v) (165)
Hy = pe + Hev (166)
ol = % L2 + % L2, (167)
z =1+ e cos(v) (168)
bz =1 + pepey (169)

o3 = 3 (L& + pd12) + L 1212 (170)



_ Hy pz + L,
Hceo = 2L, log( iy — Ly ) (171)
2
o2 — py + Ly _ Hy
€0 T 2Lz(uz—Lz) ' 6Lz(uz—Lz)  2Lz(pz+Lz)
Ly 2
- - (172)
6Lo(uz+0Lp) ~ Fee©
The mean and variance of the eccentric anomaly follow.
Heo = 'Q‘L“lcz [ (Bceo+Lceo) Cos-l(#ceo‘FLceo) — (#ceo—Lceo) cOs_l(l‘ceo—l-'ceo)
- \Il - (ﬂceo+Lceo)2 + \Il - (I‘ceo—Lceo)z ] (173)
2 __ 1 -1 2 -1 _L 2
Oeo= 2Lceo [ (#ceo+Lceo) { cos " (pceo+Lceo) }* — (Hceo—Lceo) ( €0s™ (fceo —Liceo) )
— 2 (#ceo+Lceo) + 2 (kceo—Lceo) — 2\|1 ~ (#ceo+Lceo)? 05 (ptceo+Leeo)
+ \Jl - (#ceo—Lceo)2 cos ! (ptceo— Lceo) | (174)
The mean and variance of the mean anomaly follow.
M =E —esinE {(175)
Emo = Heo + 2% [ cos(peo+Leo) — cos(peo—Leo) | (176)
eo

0'r2no = ﬂgo + % Lgo - %Zo [ sin(peo+Leo) — sin(peo—Leo)

— (Meo+Leo) cos(peo+Leo) + (teo—Leo) cos(teo—Leo) |

2 2
L .
+ (2£ZQ+GLZO) [ -5(tteo +Leo)—-5(tteo —Leo) —-25 sin{2(peo +Leo)}

+.25 sin{2(pieo — Leo)} | (177)



The progress through the analytic trajectory algorithm has now reached Kepler’s Equation.
This is an implicit equation for the eccentric anomaly given an initial mean anomaly and flight
time. The mean and variance of this final eccentric anomaly can be found using numerical

techniques following some preliminary analysis. The final mean anomaly calculations are below.

The final eccentric anomaly will be calculated from these results.

1
aa =t ( s )2 (178)

a

_ t {7 t {7

Haa = — + (179)
? Laypa+La LaJsa—La
2
2 t°n 1 1
o = - = - (180)
2 4La ( (#a+La)®  (pa—La)? )
Mp = aa — 2k7 + M, (181)
M;, = final mean anomaly
M, = initial mean anomaly
HBmn = paa — 2k7 + pmo (182)
Ofn = % ( L3, + L3o ) (183)

The final eccentric anomaly mean, pen, and its uncertainty limit, Len, can be found
numerically using the Newton-Raphson method for nonlinear systems of equations. The two

functional relations to be zeroed are given below.

f; = — smn + fen + Qﬁzn [ cos(pen+Len) — cos(pen—Len) | (184)
Lgn He

f; = ( pen + 3 T 3L [ sin(pen+Len) — sin(pen—Len) — (fien+Len) cos(pen+Len)
en

L2
+ (ten—Len) cos(pen—Len) | + ﬁen (I‘g"'_3g) [-5 (#en+Len) — -5 (en—Len)

— +25 sin(2pen+2Len) + .25 sin(2pen—2Len) | — { pten + 2£:n [ cos(pten+Len)

1
— cos(pen—Len) ] }2 )2 \B — Lmn (185)
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The partials used in the numerical search are provided below.

Open

of,

ZI:

22—

o,

_ 5

= 1 + pe [ sin(pten—Len) — sin(pen+Len) ] / 2 Len

= — pe [ — sin(pen—Len) — sin(pten+Len) ] / 2 Len

— #e [ — cos(pen—Len) + cos(pen+Len) ] / 2 Lan

2pen — 2—’[%1 { cos(pen—Len) — cos(pen+Len) — (ten—Len) sin(pen—Len)
+ (pen+Len) sin(pen+Len) — cos(pten—Len) + cos(pen+Len) }

2 2
+Lg/3
(ﬂeQLei/ ) [ .5 cos(2pen—2Len) — .5 cos(2pen+2Len) ]

(Iien—Len)2 + (#en+Len)2 (#gn+Lgn/3)

2Len Len

He
+
2L2,

[ (#en—Len) cos(pten— Len)

— (#en+Len) cos(pen+Len) — sin(pen—Len) + sin(pen+Len) ]

2 2
- (_l‘—e:%/m [ Len+-25 sin(2#en—2Le") - .25 Sin(2ﬂen+2Len) ]

QIIiZn [ (#en—Len) sin(sen—Len) — (pen+Len) sin(sen+Len) ]

2,12
+Lg/3
(ﬂeQLei/ ) [1 — .5 cos(2pen—2Len) — .5 cos(2pen+2Len) ]

of,

Open
of,

= fz'*:Lmn [3z;— 6 (f; + pmn) Drien ]

_ 5 oty

The mean

= fz‘*:Lmn [ 32— 6 (f; + #mn) 3Toen ]
and variance of the cosine of the new eccentric anomaly follow.
L

Hcen = 57— | — Sin(/‘en_Len) + Sin(l‘en‘l'Len) ]
2Len

(186)

(187)

(188)

(189)

(190)

(191)

(192)
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Tlen = %;en [ Len + .25 sin(2pen+2Len) — .25 sin(2pen—2Len) | — pen

The mean and variance of the cosine of the new true anomaly follow.

y = — e + cos(Ep)
By = —fle + Hcen
03=§L§+§L§en

z =1 — e cos(Ey)
Bz = 1 — pepicen
oz = % ( Lgen#g + ﬂgenLg. ) + %} LgenLg

Hevn = 21, log( —_— T

2 L2 2
odun = Fy + Y - Fy
2Lz(pz—Lz) = 6Lz(uz—Lz)  2Lz(pz+Lz)

L2
- -_y—_ - l‘gvn
6Lz(pz+Lz)

The mean and variance of the new true anomaly follow.

Hvn = :ﬁv—n [ — (Bevn—Levn) COS—I(#cvn—chn) + (Kevn+Levn) COS-I(ﬂcvn‘Fchn)

- \Jl—(#cvn"‘chn)2 + \ll—(l‘cvn—chn)2 ]

03n= Sri— [ - (#cvn—Levn) {Cos.l(#cvn—chn)}2
2Lcvn

+ (#evn+Levn) {cos  (sevn+Levn)}? — Levn

“2\|1_(#cvn+chn)2 cOs.l(licvn‘i‘chn) +2J1—'(Pcvn—chn)2 COS-I(#cvn—chn) ]

2
— Hvn

(193)

(194)
(195)
(196)
(197)
(198)
(199)

(200)

(201)

(202)

(203)
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The mean and variance of the sine of the new true anomaly follow.

Hsvn = 1 [ cos(pvn—Lvn) — sin(gyn+Lyn) |
2Lyn

Ugvn = 2—111‘,‘—" [ Lvn - .25 Sin(?ﬂvn"':)Lvn) + .25 Sin(?ﬂvn—QLvn) } - ﬂgvn

The mean and variance of the new radial distance follow.

z =1 + e cos(vy)
kz = 1 + pepicvn

0’% = % ( Lgvn/ig + #gang ) + % Lg\ng

_ Hp Hz + L,
Her = 2L, 108( by — Ly )
2 2 2
U?r = Hp + Lp — Hp
2Lz(pz—Lz) = 6Lz(pz—Lz)  2Lz(pz+Lz)
L3

6Lz(pz+Lz) "

The mean and variance of the perifocal position vector follow.

Hrpy = Hrr Hevn

Hrpz = Hrr Hsvn
2
Trpy = %’ ( err/l?:vn + Lgvn#?r ) + gl) Lgan,Q,

O'?p2 = % ( L?rﬂgvn + Lgvn#?r ) + % Lganrzr

The mean and variance of the perifocal velocity vector follow.

_ {7 HBsvn (J#p"‘Lp - J#p-Lp)
Hvpy = Lp

N {0 (pevn + pe) (Jﬂp"‘Lp - «Jﬂp'Lp)
Hvpy, = Lp

(204)

(205)

(206)
(207)
(208)

(209)

(210)

(211)
(212)

(213)

(214)

(215)

(216)
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2 _ Bp+Lpy > 2 2
Ovp, = L, Og(m) (psvn+Lgvn/3) — Hvpy (217)

pp+L
7%y = of log(#zTLs) (ne+LE/3) — pip,

n_ Pp+Lp\ o 2 n #p+Lp
+ ot 108(L2o12) (ben+LEn/3) + = log([22p2) memcwn  (218)

The mean and variance of the Cartesian-based final position vector follow. Those for the
velocity vector are identical with these with position information replaced with corresponding

velocity information.

Hrny = HrpyHcombew — HrpyHsombswhcin — HrpyHcombsw
— HrpyHsombew Hein (219)

Hrny, = HrpyHsomBew + HrpjHcombswhcin — Hrp,yHsomMsw
+ HrpyHcombewHein (220)

otny = (#fo, +Lip, /3) (weom+Lm/3) (uéw+L2w/3)

-2 (#?p1+Lr2p1/3) HsomHMcomMew Hsw Hcin

2
2 (ﬂgom'f‘ Lcom/3) llrpll‘rpzllcw#sw

2 (llc2:w+ng/3) HsomHcombrpy Krp, Hein

+ (uPo, + LA, /3) (#dom+L2om/3) (3w +L3w/3) (2 +L2,/3)
+ 2 (#§w+L§w/3) HsomKcomHrp, brp,Hein

+ 2 (#om+LZom/3) HswhcwHrpy Hrp, (l‘gin+L<2;in/3)

+ (ﬂ$p2+L?D2/3) (#2om+Léom/3) (nw+L3w/3)

2 2
+ 2 (#r02+Lr92/3) HsomHUcomHMcwHsw Hcin
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+ (#?p2+Lr2p2/3) (ligom+L§om/3) (ﬂgw+ng/3) (ﬂfin+L§in/3)
— uip, (221)
otny = (pfp, +Lib, /3) (uBom+Liom/3) (uéw+Léw/3)
+ 2 (pé, +L3, /3 :
Hip, + rpl/ ) HsomHcombcw HswHcin
2 2
— 2 (#som+Lsom/3) Hrpy Hrpy Hew Hsw
+ 2 (l‘gw+ng/3) HsomHcombrpy HrpsHein
+ (pfp, +Lio, /3) (néom+Léom/3) (uéw+LEw/3) (uGin+1L20/3)
2 2
— 2 (usw+Lsw/3) Hsombcombrp, FrpyHcin

+ 2 (pom+LZom/3) Hsw Bew brp, Frp, (#§5n+L§in/3)

+

(Hfpy+Liny/3) (Hom+Liom/3) (udw+L3w/3)

-2 (I‘r2p2+Lr202/3) HsomHMcomHcw HswHcin

+ (#r2p2+L?pz/3) (#gom+Lgom/3) (#(2:w+ng/3) (#gin+L§1n/3)

— Hip, (222)
otng = (mip,+Lip, /3) (u2n+L30/3) (Wew+L3w/3)

2 2
+ 2 (”sin+Lsin/3) Hrpy HrpyHew Hsw

(Hipy+Liny/3) (Han+LEn/3) (néw+Léw/3) (223)
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The analytic computation of the probabilistic quantities of the conic trajectory algorithm are
now complete. Example applications and comparisons with numerical results will be presented

in a later chapter of this thesis.

B. Further Solutions For Conic Variables

There are several relationships existing between conic trajectory variables that are not
used in the trajectory propagation algorithm presented above. These lead to additional
analytic probabilistic relationships. The input variables are again assumed to be independent

with uniform probability distribution functions.

The periapse radius is a function of the eccentricity and semi-major axis.

rp,=a(l—e) (224)
prp = pa (1 — pe) (225)
o?, = L1 (12 - 24l + 4213 + p212) + JL212 (226)

The results for the apoapse radius are similar.

ra=a(l+e) (227)
Hrya = Ha (14 pe) (228)
of, = 3 (12 + 2peL3 + 4213 + 4312 ) + JL312 (229)

The angular momentum is a function of the radius and velocity at either the periapsis or the

apoapsis.

h = rpvp = rava (230)
Bh = Hrpbvp = HBrabv, (231)
op = L (L2l + 13,43) (232)
vp = b (233)

©
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— Mn #rp + Lp
IJ’VD_ 2Lrp log( [-lrp - Lrp ) (234)
o2 — sh + L
Vp 2Lrp(#fp_pr) 6Lrp(/‘tfp_pr)
G Ly 3 (235)
P

B 2Lrp(l‘rp+Lrp) B 6Lrp(l‘rp+Lrp)

The semi-major axis can be expressed as a function of the periapse and apoapse radii.

a=13(rp+r) (236)
a= 4 (o + ey ) (237)
03 =5 (L, + L2) (238)

The period of an elliptical orbit is a function of the semi-major axis.

(239)

N

#szgT([Q#a—ﬁ——La]\j#a—La

+ [ 2 + 2 + Lal a+La> (240)

N

otp = 4% ( u3 + pal3 ) - w3 (241)

The velocity of a circular orbit is inversely proportional to the square root of the radius.

Ves = FZ; (242)
I""cs"""'cs n L'cs “Hres n
— l _ ' 243
Hves Ll’cs /""cs+Lfcs Lrcs ”’cs—Lfcs ( )

UVCS = lOg ( lufcs + Lfcs) lOg ( #'CS Lfcs ) - u?cs (244)
2chs
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The escape velocity from an elliptical orbit has similar relations.

2n

Ves = i.—eg (245)
Lreg t Hres 2n Lres — Hres 21
_ _ 246
Hveg Lres [Ires + Lres Lres HBreg— Lfes ( )
Ves - L—_ g /l'es + 'es) L og ”res fes ”res
fes Tes

The analytic solutions provided in this chapter were based on simplifying assumptions that
render them inadequate for many practical applications. If the user were to use the results to
find the final state of the trajectory, he would have to assume variable independence and
constant probability distribution for each step. Specifically, the probability distribution limit

would be found from the covariance result through the following equation.
L? = 3 ¢2 (248)

This is not fully realistic. Furthermore, the conic algorithm can not adapt to non-perfect
trajectory situations where perturbations exist. These errors will be evident in a later chapter

where example results are compared with numerical ones.
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IV. Linear Approximation Solutions

This chapter presents the only method of propagating uncertainty through a trajectory
known prior to the work of this thesis. It involves linearizing about a numerically propagated
trajectory for each integration step and then mapping a Gaussian covariance matrix with
linear techniques. The details of this method will be presented along with comments on the

method’s neglect of nonlinear effects.

A. Historical Background of the Linear Approximation Method

Navigational data is gathered by a spacecraft by various optical sightings of stars and
other heavenly bodies. As can be expected, errors exist in these instruments. A “best” estimate
of the spacecraft trajectory state is typically found by minimizing the errors between many

sightings using algorithms such as least squares and maximum likelihood estimation [6].

These estimation methods are linear. The output is given as the expected values and a
covariance matrix for a Gaussian distribution. The need for mission planners is to propagate

that matrix and the mean state to some later point along the trajectory.

The current method of linearizing about a nominal trajectory was developed at least
three decades ago and continues to be used today. The earliest references from the
Massachusetts Institute of Technology [7] utilize linear theory developed by Kalman [8] in
1960. These techniques were used for both hypothetical studies of Mars and Venus missions as

well as analysis of the Apollo translunar trajectory [9].

This linear theory appeared in unmanned spaceflight analysis in the early sixties as well
[10]. The same document from the Jet Propulsion Laboratory that first explained the
linearized method is still passed on today to newly hired engineers. The reasons for this long-

standing success is because of the difficulty in explicitly analyzing the trajectory nonlinearity.

B. Detailed Exposition of the Linear Approximation Method

The linear approximation method can be summarized very quickly. The mean
trajectory state is propagated numerically through integration of either the equations of
motion or the variational equations. The covariance matrix is mapped step-to-step with a state

transition matrix based on the mean trajectory state at each step.
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The mean trajectory state is often called the nominal state because the covariance
matrix has no affect on its propagation. More specifically, this mean state is propagated in the
same way as if there were no uncertainty in the first place. This is done through numerical
integration of the equations of motion or the variational equations described in an earlier
chapter. This propagation method is able to include all possible perturbative effects not
included in the analytic conic algorithm such as solar pressure, non-spherical planets, and
third-body gravitational influences. This method models the trajectory environment very

accurately.

The covariance matrix is a 6x6 matrix of the correlations between the orbital elements,

L]

s; = ith element of the state vector consisting of position and velocity

as shown below.

05 = covariance of the ith and jth elements of the state vector s

It consists of the covariances of the position and velocity elements with respect to each other.

Furthermore, each element is assumed to have a Gaussian distribution.

From linear system theory, the covariance matrix is mapped from one state in the

integration process to the next state with a transition matrix as follows.

2 _ 2 T
[ o® Jur=[Tiira)[ ° Ji[Tiis1] (249)
[ o2 :li = covariance matrix for the ith integration step state
[Ti,i+1] = transition matrix from the ith state to the (i+1)th state

The transition matrix consists of the partials of each state element with respect to each other.
These quantities are available from either analytic sources such as the variational equations or

numerical methods where a finite difference is used to approximate an infinitesimal difference.

Note that the probabilistic integrals described in the first chapter need not be explicitly
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computed. The mean state is found independent of any knowledge of uncertainty by simply
propagating the mean initial conditions as a single trajectory. The final covariance matrix is
computed by mapping the initial covariance matrix linearly with a state transition matrix.

This involves simple arithmetic procedures.

C. Impact of Linearization on Accuracy

The linearization assumption used in the above algorithm leads to easy use.
Propagation of the mean state without regard to uncertainty magnitudes is as simple as
propagating a single trajectory. The propagation of the covariance matrix is equally simple. It
is mapped with a transition matrix from step to step in the numerical integration process of
propagating the mean state. Note that the Gaussian distributed elements remain Gaussian

distributed because of the linearization.

Figure 4-1
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The first sacrifice of linearization is the necessity for Gaussian distributions. The
unrealistic nature of this distribution can be demonstrated by considering the infinite limits
that it has. Certainly there is some limit beyond which the trajectory cannot exist.
Furthermore, the distribution shape may not be accurate for any number of reasons particular

to each trajectory. This algorithm is inflexible with regard to distribution choice.

This linearized algorithm maintains the distribution as Gaussian. In actuality,
nonlinear effects distort the initial distribution as the trajectory is propagated, as illustrated in
Figure 4-1 above where the initial radial distance is uncertain. The trajectories in the
distribution closest to the gravitational center curve more than those farther away. This
nonlinear effect means that an initial Gaussian distribution will generally no longer be
Gaussian after being propagated along a trajectory. This non-Gaussian distribution will have

different moments than that given by the Gaussian result.

Another result of the linear assumption is that the mean is independent of the
uncertainty magnitudes. It is propagated without regard to the rest of the distribution. If
nonlinear effects are not ignored, then the distribution size and shape affect the mean. For
example, suppose that the distribution consists of just two trajectories initially aligned along a
radial line as shown in Figure 4-2 below. The initial mean is just the trajectory halfway
between them. Consider the propagation of these two trajectories. As before, the trajectory
closest to the gravitational center bends the most. The propagation of the initial mean
trajectory according to the linearized method is compared with the actual mean of the two
propagated distribution trajectories. As seen in Figure 4-2, the initial mean trajectory diverges

from the actual mean trajectory.

The conditions under which nonlinearities have the greatest impact can be seen in the

two-body equation of motion shown below.

F+ r% r=0 (250)
Clearly, the nonlinear term in this equation becomes less significant as the distance from the
gravitational center becomes greater. Empirical demonstration of this fact is included in this
thesis in a later chapter. Clearly the linear approximation method is more accurate for
hyperbolic trajectories away from a planet than for elliptical trajectories or planetary flyby

cases.
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V. Complete Numerical Solutions

The difficulty in computing the exact mean and variance integrals from the first
chapter has been made very clear. In fact, the lack of an explicit trajectory solution requires
numerical approaches from the very start. Therefore, possibly the only way to get the exact

solutions is through numerical methods.

The purpose of this chapter is to demonstrate the application of Gaussian quadrature
techniques to the integrals of concern, an approach that has never been tried previously with

space trajectories. The case of dependent orbital elements is addressed.

A. General Explanation of Gaussian Quadrature Methods

Gaussian quadrature techniques are used to compute integrals [11]. Typically, the
integral is represented and computed as follows.

i=1

J G(x) f(x) dx = i‘: w; f(x;) (251)
b

Note that the integral is converted into a finite weighted sum. For our purposes, f(x) is the
trajectory algorithm. It may be either the conic algorithm or the numerical integration
algorithm. The probability density function can be considered as either part of f(x) or as G(x).
This thesis considers only the constant probability distribution and Gaussian probability

distribution. The weights w; are particular to each quadrature algorithm order N.

For specific choices of G(x), Gaussian quadrature yields the exact solution when f(x)
can be represented as a polynomial. Higher order polynominal representation requires the
summation of a correspondingly higher number of terms. In our case, the trajectory algorithm
is assumed to be represented by some polynomial. When there are no singularities within the
effective limits of the integral, this is a good assumption. Higher order polynomial assumptions

lead to higher accuracy.

Our case generally involves uncertainty in all six orbital elements. Therefore, the
probabilistic integrals are six-dimensional. The Gaussian quadrature algorithm must be

repeated six times within nested loops.
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B. Gauss-Legendre Quadrature For Constant Probability Density Functions

The case considered here is that of constant probability density functions for
independent variables. The probabilistic integrals have finite limits and G(x) is just a constant.
Therefore, the integral that is being computed is a six-dimensional integral of the trajectory

function.

The quadrature scheme used is called Gauss-Legendre. Within the algorithm, the limits
of the integral are scaled to (-1,1) automatically. The quadrature order is determined by user
input. There is a trade-off between accuracy and algorithm speed. If the algorithm is part of a
real-time guidance scheme, this can be a very important issue. The weights and abscissae can
be found in many mathematical table handbooks [12]. A few of them are shown in the table

below.

+Xx N w

B77 2 1.00
775 3 .556
.000 3 .889
.861 4 .348
.340 4 652

C. Gauss-Hermitian Quadrature For Gaussian Probability Density Functions

The second case considered is that for independently distributed Gaussian variables

with infinite limits. The weighting function G(z) is given below.
_,2
G(z) = e % (252)

Recall that the Gaussian probability density function has the following form.

)2
p(x) = ‘1_2_; . exp (——( 20,;) ) (253)
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It can be transformed to the appropriate form with the following change of variables.

(x—p)
Z = — (254)
{20
Despite the infinite limits, the integrals can still be computed with a finite sum. The number of
terms is again determined by the order of quadrature that the user selects. Several of the

weights and abscissae are listed in the table below.

+x N w

707 2 .886
.000 3 1.18
1.22 3 .295
525 4 805
1.65 4 .081

D. Dependent Gaussian Distributed Variables

The above discussion assumed independently distributed variables. Typically in actual
applications, the orbital elements are presented as dependent Gaussian variables. The

probability density function is given as follows.

T gl (x—
p(x) :mexp (—(" #) g ( ")) (255)

S is the 6x6 covariance matrix containing both diagonal and off-diagonal nonzero elements. A

transformation matrix is constructed as follows.

y =AXx (256)
x=Aly (257)

A = transformation matrix

This transformation matrix is constructed from the eigenvectors of S so that the following

holds true.
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ASAT =24 (258)
A = diagonal matrix

After substituting the transformation into the original probability density function expression,

the following simplified expression results.

6 (vj—m)°
p(y) =j£[1 JElr - exp (— —’Q—U-J';J—) (259)

From this point, the same change of variables as previously used is applied.

(y—n)
z = = (260)
{20
The probability density function is now in the appropriate form for the application of the

multi-dimensional Gauss-Hermitian algorithm.

E. Comments on the Application of Romberg Integration Methods

The more traditional method of numerical integration is known as Romberg
Integration where the area under the curve is estimated with a summation of trapezoids. This
method can also be applied to Gaussian distributions with infinite limits through the following

transformation.

0 2
J XN J t1—2e—1\(2t ) gt (261)

An algorithm was developed that implemented this technique. It was much too inefficient for
convenient computation of the six-dimensional integrals. Therefore, it is a conclusion of this
thesis that the Gaussian quadrature schemes are superior to the Romberg Integration methods

for the uncertain space trajectory application.
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VI. Computer Demonstrations of Algorithms

This chapter contains actual results from computer programs utilizing the algorithms
described in the previous chapters. The purpose is to demonstrate and compare the results of
the various algorithms. These include the analytic algorithm, the Gaussian quadrature

algorithm, the linear approximation algorithm, and the Romberg integration algorithm.

This chapter also includes examples that demonstrate the full effects of the nonlinearity
on the mean and variance to emphasize the necessity of accounting for their presence. Cases

where the effects are large will be compared to those where the effects are small.

The resulting graphs from these studies are shown in Appendix A. The final orbital
element values are plotted versus varying deviations in the initial conditions of the trajectory.
Recall that the deviation is the square root of the variance. The first three elements are the
position vector elements and the second three elements are the velocity vector elements. The

variation in the initial uncertainty is made by multiples of the following deviations in each

position and velocity element.

Position Deviation = .5773503 km
Velocity Deviation = .0005773503 km/sec

These correspond to the deviations of constant probability distributions with limits of one unit.

The mean initial trajectory state used for elliptic trajectory analysis is as follows.

r; = 6700 km
r, = 100 km
r; = 50 km

vy = 0 km/sec
vy = 7.7 km/sec

vy = 1 km/sec

It represents a typical low Earth orbit such as that used for the Space Shuttle. The mean

initial trajectory state used for hyperbolic trajectory analysis is as follows.
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r; = 67000 km
r, = 1000 km
r3 = 500 km

vy = 0 km/sec
v, = 7.7 km/sec

vz = 1 km/sec

A. Demonstration of the Analytic Solution Algorithm

The analytic solution algorithm is demonstrated on the elliptic trajectory above with
the given uncertainties in the initial conditions. The method used here was to assume at each
algorithm step that the input variables are independent and have constant probability density
functions. The density function limits were set such that the variances were equal to that from

the previous steps’ calculations for those input variables.

Graphs 1 through 6 show the variation of the six final mean orbital elements with
increasing initial deviations. Graphs 7 through 12 show the variation of the six final orbital
element deviations with increasing initial deviations. Note how increasing initial deviation

results in increasing variation from the nominal state.

The speed is the same as computing the nominal trajectory and does not vary with
different cases. Accuracy also doesn’t vary with different cases. A comparison with the

complete numerical solution will be made below.

B. Demonstration of the Romberg Integration Algorithm

The case considered here is the same as used above with the same uncertainty scheme.
The results were very unsatisfactory even for higher order runs. Graph 13 shows the variation
of the mean first orbital element with increasing uncertainty. Note the inaccuracy evident in
the graph compared to the nominal trajectory value. Furthermore, the time required for

integration is too excessive for any practical application.

C. Demonstration of the Gauss-Legendre Quadrature Algorithm

The case considered here is the same as used above with the same uncertainty scheme.

This algorithm gives good results in a reasonable time. Graph 14 shows the variation of
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accuracy with quadrature order. The accuracy is very good and a third order quadrature is
typically sufficient for most applications. Graph 15 shows the variation of computer time with
quadrature order. The times are very reasonable for practical applications. Note that these

times were from a personal computer with an “Intel 386” processor.

Graphs 16 through 21 show the variation of the six mean orbital elements with
increasing uncertainty. Graphs 22 through 27 show the variation of the six orbital element

deviations with increasing uncertainty.

D. Demonstration of the Gauss-Hermitian Quadrature Algorithm

This case uses the same trajectory initial conditions as above. However, the probability
density functions are Gaussian distributions. The variances are such that they are the same as
those of the constant probability density functions used above. Graph 28 shows the variation
of accuracy with quadrature order. The computer time variation with quadrature order is the

same as Graph 15 of the Gauss-Legendre algorithm.

Graphs 29 through 34 show the variation of the six mean orbital elements with
increasing uncertainty. Graphs 35 through 40 show the variation of the six orbital element

deviations with increasing uncertainty.

E. Demonstration of the Linear Approximation Algorithm

This case uses the same trajectory initial conditions and uncertainty scheme as that
used in the Gauss-Hermitian algorithm demonstration above. The time of execution is very
short and does not vary with different cases. Accuracy will be addressed below in comparison

to the quadrature algorithm results.

Graphs 41 through 46 show the variation of the six orbital element deviations with

increasing uncertainty. Recall that the mean final orbital state remains constant.

F. Comparison of the Analytic Algorithm With the Quadrature Algorithm

The assumptions made for application of the analytic algorithm were quite bold. Yet,
there seems to be a favorable comparison between the results of final mean orbital state and
those from the quadrature algorithm. The trends are identical. Since the analytic algorithm is

computationally faster, it may be of practical value. Its results seem to be consistently greater
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than those of the quadrature algorithm’s, which suggests a way to conservatively account for

nonlinear effects.

Similar to the mean results, the covariance results of the partial analytic algorithm are
far excessive of those from the quadrature algorithm. However, this may again have the

benefit of conservative design impact while providing efficient computational effort.

G. Comparison of the Gaussian Distributions With the Constant Distributions

A comparison can be made between cases which differ only in which probability density
shape they use. In the above examples, the constant distribution was replaced with a Gaussian
distribution with the same variance. Both the mean and variance results were very similar,
especially when compared to the linear approximation algorithm. This suggests that the
distribution shape details are less important than the general picture. The variance gives the
user an idea of how the distribution is spread. Similar variances suggests similar spreads which

give virtually identical results.

H. Comparison of the Linear Approximation Algorithm With the Quadrature Algorithm

The neglect of nonlinear effects in the linear approximation algorithm are significant in
the above examples. Errors increase with increasing initial uncertainty. Both the mean and the
variance results show differences due to nonlinearity. This suggests that the linearization
method used today may not be adequate and that engineers should at least consider nonlinear

effects which are being neglected.

I Example Analysis of a Hyperbolic Trajectory

A hyperbolic trajectory with uncertain Gaussian distributed initial conditions was
analyzed with both the quadrature algorithm and the linear approximation algorithm. Graphs
47 through 52 show the variation of the six mean orbital elements with increasing initial
uncertainty as computed with the quadrature algorithm. Graphs 53 through 58 show the
variation of the six orbital element deviations with increasing initial uncertainty as computed
with the quadrature algorithm. The six mean orbital elements don’t vary with increasing
initial uncertainty as computed with the linear approximation algorithm. Graphs 59 through

64 show the variation of the six orbital element deviations with increasing uncertainty as
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computed with the linear approximation algorithm.

There are small differences once again in all of the computations due to nonlinear
effects. Those engineers using the linear algorithm must possibly consider these errors even

with hyperbolic trajectories.

J.  Comparison Between Elliptic and Hyperbolic Trajectory Analyses

In the above examples, both elliptic and hyperbolic trajectories have been analyzed
with the quadrature and linear approximation algorithms. A noticable difference between the
two cases is that the nonlinear effects are much less in the hyperbolic case than in the elliptic
case. This result is expected from previous discussion of regions with strongest nonlinearity. It
suggests that the linear approximation algorithm may be considered acceptable for some

trajectories where nonlinear effects are minimal.

K. Example Analysis With Dependent Variables

In a previous chapter, theory was developed to accommodate dependent Gaussian
distributed variables. This capability is now demonstrated with an example. The case used is
from the Galileo Mission launched in 1989 on a trajectory to Jupiter by a Boeing-made upper
stage called the IUS. The covariance information was obtained from a Boeing document [13].
The covariance matrix and orbital state were obtained at the end of the propulsive burn. This
trajectory information was then propagated with both the quadrature algorithm and the linear

approximation algorithm. The results are shown below.

Time of Flight = 3929.73 sec

Mean Initial Approx. Method Quadrature Method
Orbital State Resultant Orbital State Resultant Orbital State
-6653.15 km 4650.95 km 4648.24 km

482.81 km -27007.33 km -27004.90 km

1995.01 km 13341.78 km 13340.04 km

-1.0615 km/sec 3.3597 km/sec 3.3582 km/sec

-9.8316 km/sec -5.3348 km/sec -5.3339 km/sec

5.7933 km/sec 1.8056 km/sec 1.8049 km/sec



Initial Covariance Matrix

1.7 39.94 -22.62 -.0483 .00589 .00841
39.94 2079.19 -1243.37 -2.48 42 .59
-22.62 -1243.37 750.14 1.48 -.26 -.36
-.0483 -2.48 1.48 .00297 -.000494 -.000695
.00589 42 -.26 -.000494 .0000947  .000137
.00841 .59 -.36 -.000695 .000137 .000203
Approx. Method Resultant Covariance Matrix

8882.43 -1345.55 -2161.29 1.4365 7224 -.9180
-1345.55 493.45 456.67 -.1995 -.05432 1771
-2161.29 456.67 885.67 -.3461 -.1633 .3057
1.4365 -.1995 -.3461 .0002334 .000121 -.000147
7224 -.05432 -.1633 .000121 .00007 -.00007
-.9180 1771 3057 -.000147 -.00007 .000113
Quadrature Method Resultant Covariance Matrix

8951.57 -1202.49 -2192.98 1.4615 7777 -.9434
-1202.49 2011.63 -70.59 -.1908 3757 .005327
-2192.98 -70.59 1082.54 -.3396 -.3061 .3624
1.4615 -.1908 -.3396 .0002441 .000130 -.000152
7777 3757 -.3061 .000130 .000196 -.000121
-.9434 005327 .3624 -.000152 -.000121 .000135

An interesting comparison between the quadrature algorithm and the linear
approximation algorithm shows that differences exist. The actual mission used the linear
method results. Since the differences are relatively small, the impact of including the nonlinear
effects would have been minimal. However, the existence of the errors raises concern over the

accuracy of current practices.
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VII. Conclusions

The work in this thesis demonstrates the effects of nonlinearity on uncertainty
propagation in space trajectories that have not been accounted for previously. Until this work,
a linear approximation algorithm was the only way to propagate the covariance matrix. A
quadrature algorithm was developed that considers the full nonlinearity of the problem. It
shows that errors exist in both the mean and the variance calculations of the linear method.
These errors are most severe when the trajectory is close to the gravitational center. This

occurs more in elliptic trajectories than in hyperbolic trajectories farther from the planet.

Contributions were also made regarding analytic solutions. The mean and variance
expressions were computed for each step in the conic trajectory algorithm. These can be used

to study the probabilistic relationships between orbital elements analytically.

One nonlinear effect is that the mean final orbital state is a function of the initial
uncertainties’ magnitudes. The linear approximation algorithm separates the variance and
mean state problems because the initial variance magnitudes have no impact on the final
means. However, when all nonlinear effects are considered, the variances affect the means. This
puts much greater importance on the accuracy of the initial variances than before. Previous
variance estimates could be conservative. However, now they must be more accurately
estimated. This is also true of the probability density function shape. The problem with this is
that engineers may not have the techniques to achieve this accuracy. Regardless, the
nonlinearity of the problem has been shown to be significant and is now computationally

tractable.



(8]

(9]

[10]

(11]

- 54 -
References

Halsell, C.A., “Maneuver Analysis for the Mars Observer Mission,” Advances
in the Astronautical Sciences, Vol. 71, Part 1I, American Astronautical
Society, San Diego, CA, 1990.

Pfeiffer, P.E., Concepts of Probability Theory, Dover, N.Y., 1978.

Bate, Mueller, White, Fundamentals of Astrodynamics, Dover, N.Y., 1971.

Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics,

American Institute of Aeronautics and Astronautics, N.Y., 1987.
Chapra, Canale, Numerical Methods for Engineers, McGraw-Hill, N.Y., 1988.

Franklin, Powell, Workman, Digital Control of Dynamic Systems,
Addison-Wesley, N.Y., 1990.

Battin, R.H., “Statistical Optimizing Navigation Procedure for Space Flight,”
ARS Journal, September 1962.

Kalman, R.E., “A New Approach to Linear Filtering and Prediction Problems,”
J. Basic Eng., Trans. ASME, March 1960.

McLean, Schmidt, McGee, “Optimal Filtering and Linear Prediction Applied to a
Space Navigation System for the Circumlunar Mission,” NASA TN D-1208,
March 1962.

Lesh, Moyer, Solloway, “Statistics of Orbit Determination,” JPL EPD-386,
Pasadena, June 1966.

Press, Flannery, Teukolsky, Vetterling, Numerical Recipes, Cambridge
University Press, Cambridge, 1989.



- 55 -

[12] Beyer, W.H., CRC Standard Mathematical Tables, CRC Press, Boca Raton,
Florida, 1981.

[13] Hansen, Tursa, Tillotson, Knoben, “Galileo Injection Accuracy Report,”

2-3934-PJS-083/89, Boeing Aerospace, Seattle, WA, August 1989.



Appendix A - Graphs



Mean 1st Element (km)

3567

—3368

—3369

-3370

-3371

~3372

GRAPH 1

Mean 1st Element vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

nominal

|

1.0

1.5

2.0

Multiple of Initial Dev.

2.5

3.0



Mean 2nd Element (km)

6009

6008

6007

6006

6005

6004

6003

6002

6001

6000

GRAPH 2

Mean 2nd Element vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

nominal

2.0

Muitiple of Initial Dev.

2.5

3.0



Mean 3rd Element (km)

762.00

761.75

761.50

761.25

761.00

760.75

760.50

760.25

GRAPH 3

Mean 3rd Element vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

I T I

nominal

| | |

.0 1.5 2.0

2.5

Multiple of Initial Dev.

3.0



Mean 4th Element(km/sec)

GRAPH 4
Mean 4th Element vs. Multiple of Initial Deviations
(Analytic Solution Algorithm)

3.0

—6564 T T 1
—6.566
—-6.568
—-6.570 + _
—6.572 -
nominal
—6.574 ‘ L '
1.0 1.5 2.0 2.5

Multiple of Initial Dev.



Mean 5th Element(km/sec)

GRAPH 5
Mean 5th Element vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

—-35.584 T 1 I

—-3.585

-3.586

-3.587

—~-3.588 | —
nominal
—3.589 ‘ L ‘
1.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



Mean 6th Element(km/sec)

GRAPH 6
Mean 6th Element vs. Multiple of Initial Deviations
(Analytic Solution Algorithm)

~0.5017 ‘ ‘ :

—0.5018

—-0.5019

—0.5020

—-0.5021

—-0.5022

~0.5023 nominal

| | |
1.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



1st Element Dev. (km)

350

300

250

200

150

100

50

GRAPH 7

1st Element Deviation vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

T

—

|

2.0

Multipte of Initial Dev.

2.5

3.0



2nd Element Dev. (km)

300

250

200

150

100

50

GRAPH 8
2nd Element Deviation vs. Multiple of Initial Deviations
(Analytic Solution Algorithm)

T T I

1 | |

.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



3rd Element Dev. (km)

GRAPH 9

A - 10

3rd Element Deviation vs. Multiple of Initial Deviations
(Analytic Solution Algorithm)

40 T l l
30 .
20 .
10 .
0 1 1 L

1.0 1.5 2.0 2.5 3.0

Multipie of Initial

Dev.



4th Element Dev. (km/s)

GRAPH 10
4th Element Deviation vs. Multiple of Initial Deviations
(Analytic Solution Algorithm)

0.4 I T T

0.0 | | L
1.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



5th Element Dev. (km/s)

A - 12

GRAPH 11

5th Element Deviation vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)
0.4 T T I
0.3 .
0.2 .
0.1 - -
0.0 | | |

1.0 1.5 2.0 2.5 3.0

Multiple of Initial

Dev.



6th Element Dev. (km/s)

0.05

0.04

0.03

0.02

0.01

0.00

A - 13

GRAPH 12

6th Element Deviation vs. Multiple of Initial Deviations

(Analytic Solution Algorithm)

I T I

| | |

1.0 1.5 2.0 2.5

Multiple of Initial Dev.

3.0



—-3371

—-3371

—-3371

—-3371

-3371

—3371

~3371

Mean 1st Element (km)

3371

—-3371

—-3371

=3371.

410

415

420

425

430

435

440

445

450

455

460

GRAPH 13

Mean 1st Element vs. Multiple of Initial Deviations

A - 14

(Romberg Integration Algorithm)

1

T

nominal

1.0 1.5

2.0

Multiple of Initial Dev.

3.0



15

GRAPH 14

Accuracy vs. Quadrature Order

(Gauss-Hermitian Quadrature Algorithm)

3 3 KRR AL, SRR aoter: 3% et
et e 3
Saratele KR ol ot RRIIIRR R "
3 203 5 R, 05
OO S X lxi & 55 *olebe’e b % 555055
rorets 2 Q2 R 2% eotets
Seetol 550 oge XK ’ ', 5,
X IR %
XS R % 2 2 250508 % 502 X Potatetebetolele!
SO @ * XOHX (I & SO Q02
82 QLR 2
X Py ¥ 8, X % 225
% % X CHRARRX
X IR K X XK ¥ % poosers e letatetels
& oo S : R
& Oa e o¥edets!
% RR
teleiels oteleteli X
e, DSEREEL 02
5% SRR o3t
Seraet R
SOOOOK 5 GRAXD & &S .
22 %02e 0% % 2002 elatesetetete? asetesetatetesloreds R
KB LR 0% st
% 2 Togel ToTaTe 2 2
L 62 %5 I R R RN raees! SRRIKR
% RAOXXXRRNKS X CAXX XS & SRS elel % o
S0 Q % potee K
XN ototete! s o2 2 RRERAKIIKNKD %
2 % » 3 2 X et asatrtetst: 05
ORI ORILAES AR SRR &
2eted o SLXHS R X2 % X
3 % LR % SRR o
x o Pa et tete et
% S
00 % L
et ettt tetatatetetatele XK SRR K
Sesretess YRR ot 028 RS aretetatel SRR
XX 0N XIHANAHXAARRAS & L, Seaets, QLB A%
e e o retate et ted 2 2
3 R 2
XN X
X " .
b ¢ 10 0. x o 2% X 4 o
R AR 02 R X RIS XXX
20X RN & o X
3 333 38 S RIS
R % X X % 2 NIRSARNXR
R teretaretats! X 2 %
& %
O EARARRINS 3 RKURAXAD ons % R X
‘ot X RSRRRKINEEY & 4% XX RN Q%
20508 5555 0 ¢ . L5 K5, 2505 X 25 & 5
" 2 I !x lx s X8 0%0% XX 252505 o, & % 2
% SERRRNIN LSRRI, 2 RRX o SRR
MO X PN XX b & o
0N TR RAMNXIIIR Sorels % Q2
BT o0,
5% X %
2 RIS
0 s 3
-r X

15

13+

@ouapyuo) jo ybig

[

10

Quadrature Order



Computing Time (sec)

4000

3500

3000

2500

2000

1500

1000

500

GRAPH 15

A - 16

Computational Time vs. Quadrature Order

(Gauss-Legendre Quadrature Algorithm)

T

I T I I

Quadrature Order



Mean 1st Element (km)

A - 17

GRAPH 16
Mean 1st Element vs. Multiple of Initial Deviations
(Gauss-Legendre Quadrature Algorithm)

-3371.414

-3371.415

—-3371.416

-3371.417

nominal

-3371.418 1 L '
1.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



Mean 2nd Element (km)

6007.782

6007.781

6007.780

6007.779

6007.778

6007.777

6007.776

6007.775

A - 18

GRAPH 17
Mean 2nd Element vs. Multiple of Initial Deviations
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5th Element Deviation vs. Multiple of Initial Deviations
(Gauss-Legendre Quadrature Algorithm)
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6th Element Deviation vs. Multiple of Initial Deviations
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Accuracy vs. Quadrature Order

(Gauss-Hermitian Quadrature Algorithm)
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Mean 1st Element vs. Multiple of Initial Deviations
(Gauss-Hermitian Quadrature Algorithm)
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Mean 5th Element vs. Multiple of Initial Deviations
(Gauss-Hermitian Quadrature Algorithm)

~3.588380 : : ,

nominal

—3.588382 .

—35.588384

—5.588386

—3.588388

—3.588390 L '
1.0 1.5 2.0 2.5 3.0

Multiple of Initial Dev.



Mean 6th Element (km/s)

GRAPH 34

Mean 6th Element vs. Multiple of Initial Deviations

A - 35

(Gauss-Hermitian Quadrature Algorithm)

—0.5023375

T

I 1

nominal

—0.5023380

—-0.5023385

—0.5023390

| |

1.0

1.5

2.0 2.5

Multiple of Initial Dev.

3.0



Tst Element Dev. (km)

A - 36

GRAPH 35

1st Element Deviation vs. Multiple of Initial Deviations
(Gauss-Hermitian Quadrature Algorithm)
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2nd Element Deviation vs. Multiple of Initial Deviations
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3rd Element Deviation vs. Multiple of Initial Deviations
(Gauss-Hermitian Quadrature Algorithm)
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5th Element Deviation vs. Multiple of Initial Deviations
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1st Element Deviation vs. Multiple of Initial Deviations
(Linear Approximation Algorithm)
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Mean 1st Element vs. Multiple of Initial Deviations
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1st Element Deviation vs. Multiple of Initial Deviations
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1st Element Deviation vs. Multiple of Initial Deviations
(Linear Approximation Algorithm)

| ] |

1.5 2.0 2.5 3.0
Multiple of Initial Dev.



2nd Element Dev. (km)

A - 61

GRAPH 60

2nd Element Deviation vs. Multiple of Initial Deviations
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