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Abstract

Low-power wide-dynamic-range systems are extremely hard to build. The cochlea is one
of the most awesome examples of such a system: It can sense sounds over 12 orders of
magnitude in intensity, with an estimated power dissipation of only a few tens of microwatts.

We describe an analog electronic cochlea that processes sounds over 6 orders of magni-
tude in intensity, while dissipating less than 0.5mW. This 117-stage, 100Hz-10Khz cochlea
has the widest dynamic range of any artificial cochlea built to date. This design, us-
ing frequency-selective gain adaptation in a low-noise traveling-wave amplifier architecture,
yields insight into why the human cochlea uses a traveling-wave mechanism to sense sounds,
instead of using bandpass filters.

We propose that, moré generally, the computation that is most efficient in its use of
resources is an intimate hybrid of analog and digital computation. For maximum efficiency,
the information and information-processing resources of the hybrid form of computation
must be distributed over many wires, with an optimal signal-to-noise ratio per wire. These
results suggest that it is likely that the brain computes in a hybrid fashion, and that an
underappreciated and important reason for the efficiency of the human brain, which only

consumes 12W, is the hybrid and distributed nature of its architecture.
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Chapter 1 Overview

This thesis is a compilation of five journal papers. Some of them have been published, some
of them are currently under review, and some of them are in press. Although each chapter
is self contained and may be read without reference to others, there is a natural bottom-
up progression from issues of noise in single transistors (Chapter 2) to issues of noise and
computation in the brain (Chapter 5). Each of these chapters provides an important step
in understanding how to compute efficiently with noisy components.

Chapter 6 is a diversion on the theory of second-order filters used in cochleas. We have
included Chapter 6 in this thesis because it provides useful geometric techniques for future

work on the cochlea.

1.1 White Noise in MOS Transistors and Resistors

Chapter 2 is a discussion of noise in single transistors. To minimize or exploit the effects of
noise in computation, it is important to know what causes noise. Thus, Chapter 2 delves
into the physical origins of noise in subthreshold MOS transistors. We present the first
experimental measurements of noise in subthreshold MOS transistors, and also the deep
relationship between two forms of white noise, shot noise and thermal noise. We show that
thermal noise in transistors or resistors is shot noise due to internal diffusion currents in
the device. We do not assume that the reader has any background in noise and begin our

discussion from first principles.

1.2 A Low-Power Wide-Linear Range Transconductance Am-

plifier

In Chapter 3 we show how to build a lowpass filter with a wide dynamic range of operation
by widening the linear range of operation of a conventional subthreshold amplifier. Various
novel circuit and feedback techniques were used in the design of our amplifier. The am-

plifier has been patented. We show that if the dominant form of noise in the amplifier is
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~ thermal noise, then widening the linear range of the amplifier increases its dynamic range of
operation. If the dominant form of noise in the amplifier is 1/f noise (nonthermal noise due
to impurities in traps in transistors), then widening the linear range of the amplifier has no
effect on the filter's dynamic range. Since our dominant form of noise is thermal noise, we
attain an improvement in the filter’s dynamic range. This improvement in dynamic range is
crucial in the design of our wide-dynamic-range cochlea, which is built with 234 such filters.

If we want to maintain the same bandwidth of operation in the ﬁlter, an increase in
its dynamic range is attained at the price of a proportionate increase in its power con-
sumption. We encounter, for the first time in this thesis, a relationship between resource
consumption (power) and the precision of the computation (as measured by the dynamic
range of operation). Precise computation requires averaging over the incoherent motions of
a large number of electrons per unit time in order to minimize noise. The flow of a large
number of electrons per unit time implies a large current, and consequently a large power

consumption.

1.3 A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea

In complex systems like cochleas, where there are a large number of filters arranged in
a cascade, noise accumulation and amplification severely degrade the dynamic range of
operation. To attain a wide dynamic range of operation without an excessive consumption
of power or area, it is necessary to have a strategy that adapts the gain of cochlea to the
intensity of the incoming sound. The adaptation enables the cochlea to have a dynamic
range of operation with varying lower and upper limits. At any given time, the dynamic
range of operation is moderate (= 30dB—40dB), thus limiting power consumption. Over time
scales that are long compared to the adaptation time, the dynamic range is large (> 60dB)
because the system adapts its upper and lower limits to be suited to the intensity range
of the input. The adaptation is almost instantaneous (one cycle of the input frequency)
for soft-to-loud changes in intensity, and slow (100msecs to a few seconds depending on
parameters) for loud-to-soft changes. The automatic gain control (AGC) is performed in
a frequency-dependent way such that loud sounds at one frequéncy do not mask the effect
of soft sounds at another frequency. In addition to adaptation, we use a low-noise filter

topology, and an architecture called overlapping cascades. This architecture restores good
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signal-to-noise ratios for low-frequency inputs. In prior designs, such inputs had poor signal-
to-noise ratios.

The design of the silicon cochlea yields insight into why nature uses a traveling-wave
mechanism to hear instead of using a bank of bandpass filters. We show that the filter
cascade, that models the properties of a traveling-wave medium, results in a very efficient
construction of a bank of high-order wide-dynamic-range filters with properties that are
relatively invariant with input intensity. It requires a lot more circuitry to accomplish the
same feat with a bank of bandpass filters.

The problem of noise accumulation and amplification in a filter cascade is solved by
successive lowpass filtering in a graded exponential fashion, and by limiting the length of
the filter cascade. The problem of parameter sensitivity in a filter cascade is solved by
collective regulation of the filter gains by the AGC circuits of the cochlea. The cochlea is
a great example of a front end that uses adaptive, distributed, and collective strategies to
compute efficiently and precisely in spite of the presence of noise.

We show that our analog cochlea is more efficient than a custom digital cochlea by
two orders of magnitude in power consumption; for noncustom digital cochleas, our analog
cochlea is five orders of magnitude more efficient. The comparison of analog and digital
cochlear efficiencies provides a starting point for a more general analysis of efficiency issues

between analog and digital computation.

1.4 Efficient Precise Computation with Noisy Components:

Extrapolating from Electronics to Neurobiology

We begin by reviewing issues of efficiency with respect to the use of physical resources
like energy, time, and space for general analog and digital systems. We rederive a well-
known result for particular systems, namely, that analog systems are more efficient than
digital systems at low signal-to-noise (Sy) ratios and vice versa. The basic reason for
this behavior is that physical primitives are more efficient at computing than are logical
primitives as long as we do not attempt to compute with low noise on one wire. At high
SN, however, the multiwire representation of information by digital systems divides the
‘information processing into independent bit parts that many simple processing stages can

collectively handle more efficiently than can one precise single-wire analog processing stage.
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This intﬁition is mathematically expressed by a logarithmic scaling of digital computation
with Sy, and a power-law-like scaling of analog computation with Sy. Furthermore, the
lack of signal restoration in analog systems causes the noise accumulation for complex analog
systems to be much more severe than that for complex digital systems.

It is then attractive to wonder if a hybrid paradigm that combines the best of both worlds
can do better than either. We suggest that computation that is most efficient in its use of
resources is neither analog computation nor digital computation, but rather is an intimate
mixture of the two forms. We propose a hybrid architecture that combines the advantages of
discrete-signal restoration with the advantages of continuous-signal continuous-time analog
computation. The tradeoffs between resources spent on computation versus those spent in
signal restoration reveal that, for maximum efficiency, an optimum amount of continuous
processing must occur before a restoring discrete decision is made. The tradeoffs between
resources spent on computation versus those spent on communication reveal that, for max-
imum efficiency, the information and information-processing resources of the computation
must be distributed over many wires, with an optimal signal-to-noise ratio per wire. Thus,
we arrive at the conclusion that hybrid and distributed systems are very efficient in their
use of computational resources.

Efficient computation is important in complex systems to ensure that the resource con-
sumption of the system remains within reasonable bounds. Thus, it would appear that there
is a great advantage to building complex systems with a hybrid and distributed architecture.

The human brain is one of the most efficient and complex systems ever built. The
entire brain consumes only 12 W of power. The devices that the brain is built out of are
noisy just like physical devices used in artificial computation. The brain is known to be
a massively distributed system with a constant alternation between continuous nonspiking
representations and spiking representations of information. The brain appears to compute
with a hybrid and distributed architecture. However, the mere presence of spikes does not
necessarily imply the encoding of discrete states. We suggest how discrete states may be
encoded, and how signal restoration may be performed in networks of neurons. We do NOT
claim that this is how signal restoration in the brain works but merely offer our suggestion
as a possible way that it might work in the hopes of stimulating further work and discussion
on the subject.

We have made many simplifying assumptions such as treating computation and restora-
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tion as distinct entities, and similarly treating computation and communication as separate
entities. It is likely that such entities are more deeply intertwined in the brain. It is likely
that the rather sharp digital restorations that we propose are really soft restorations in the
brain, such that a more accurate description would need to involve the language of complex
nonlinear dynamical systems. However, in spite of our simplifications, we suggest that the
brain is hybrid in nature. We propose that the hybrid-and-distributed architecture of the
brain is one of the major reasons for its efficiency, and that the importance of this point

has generally been underappreciated.

1.5 A New Geometry for All-Pole Underdamped Second-
Order Transfer Functions

We present a geometry in which many of the relationships of a cochlear-filter transfer
function become transparent and obvious. In particular, in this geometry the gain of the
transfer function depends on one length, and the phase corresponds to one angle. In the
standard s-plane geometric interpretation, the gain depends on the product of two lengths,

and the phase is the sum of two angles.

1.6 Publication List

We provide an index of the Chapter Number and the assosciated journal publication.

e Chapter 2: R. Sarpeshkar, T. Delbriick, and C. A. Mead; “White Noise in MOS
Transistors and Resistors”, IEEE Circuits and Devices, Vol. 9, No. 6, pp. 23-29,
Nov. 1993.

e Chapter 3: R. Sarpeshkar, R. F. Lyon, and C. A. Mead, “A Low-Power Wide-
Linear-Range Transconductance Amplifier”, to appear in Analog Integrated Circuits

and Signal Processing, 1997.

e Chapter 4: R. Sarpeshkar, R. F. Lyon, and C. A. Mead, “A Low-Power Wide-
Dynamic-Range Analog VLSI Cochlea”, to appear in Analog Integrated Circuits and
Signal Processing, 1997.
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. Chapter 5: R. Sarpeshkar, “Efficient Precise Computation with Noisy Components:
Extrapolating from Electronics to Neurobiology”, under review in Neural Computa-

tion.

e Chapter 6: R. Sarpeshkar, S. Mahajan, and R. F. Lyon, “A New Geometry for All-
Pole Underdamped Second-Order Transfer Functions”, under review in IEEE Trans-

actions in Signal Processing.

1.7 The Use of We

Throughout this thesis I use "We’ instead of I’. This is partly because of style, and partly
because some of the work was done jointly with other authors. However, more than 90%
of the work in each chapter paper, including the creative idea aspects and the actual labor,
was done by me. I am the first author on all the chapter papers and bear responsibility for

any errors and omissions in these papers.



Chapter 2 White Noise in MOS Transistors and Resistors

Abstract

Shot noise and thermal noise have long been considered the results of two distinct

mechanisms, but they aren’t.

We live in a very energy-conscious era today. In the electrical engineering community,
energy-consciousness has manifested itself in an increasing focus on low-power circuits. Low-
power circuits imply low current and/or voltage levels and are thus more susceptible to the
effects of noise. Hence, a good understanding of noise is timely.

Most people find the subject of noise mysterious, and there is —understandably—much
confusion about it. Although the fundamental physical concepts behind noise are simple,
much of this simplicity is often obscured by the mathematics invoked to compute expressions
for the noise.

The myriads of random events that happen at microscopic scales cause fluctuations in
the values of macroscopic variables such as voltage, current and charge. These fluctuations
are referred to as noise. The noise is called “white noise” if its power spectrum is flat and
“pink noise” or “flicker noise” if its power spectrum goes inversely with the frequency. In
this article, we shall discuss theoretical and experimental results for white noise in the low-
power subthreshold region of operation of an MOS transistor. A good review of operation
in the subthreshold region may be found in Mead [2]. This region is becoming increas-
ingly important in the design of low-power analog circuits, particularly in neuromorphic
applications that simulate various aspects of brain function [2]- [4].

A formula for subthreshold noise in MOS transistors has been derived by Enz [6] and
Vittoz [18] from considerations that model the channel of a transistor as being composed
of a series of resistors. The integrated thermal noise of all these resistors yields the net
thermal noise in the transistor, after some fairly detailed mathematical manipulations. The
expression obtained for the noise, however, strongly suggests that the noise is really “shot

noise”, conventionally believed to be a different kind of white noise from thermal noise.
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We solve the mystery of how one generates a shot-noise answer from a thermal-noise
derivation by taking a fresh look at noise in subthreshold MOS transistors from first princi-
ples. We then rederive the expression for thermal noise in a resistor from our viewpoint. We
believe that our derivation is simpler and more transparent than the one originally offered
in 1928 by Nyquist, who counted modes on a transmission line to evaluate the noise in a
resistor [5]. Our results lead to a unifying view of the processes of shot noise (noise in
vacuum tubes, photo diodes and bipolar transistors) and thermal noise (noise in resistors
and MOS devices). |

In subthreshold MOS transistors, the white-noise current power is 2gIA f (derived later)
where [ is the d.c. current level, g is the charge on the electron, f is the frequency and A f
is the bandwidth. In contrast, the flicker-noise current power is approximately KI?Af/f
where K is a process and geometry-dependent parameter. Thus, white noise dominates
for f > KI/2q. For the noise measurements in this paper, taken at current levels in the
100f A — 100pA range, white noise was the only noise observable even at frequencies as low
as 1Hz. Reimbold (8] and Schutte [9] have measured noise for higher subthreshold currents
(> 4 nA), but have reported results from flicker-noise measurements only.

Our results (to our best knowledge) are the first reports of measurements of white
noise in subthreshold MOS transistors. We will show that they are consistent with our
theoretical predictions. We also report measurements of noise in photoreceptors (a circuit
containing a photo diode and an MOS transistor) that are consistent with theory. The
photoreceptor noise measurements illustrate the intimate connection of the equipartition
theorem of statistical mechanics with noise calculations.

The measurements of noise corresponding to miniscule subthreshold transistor currents
were obtained by conveniently performing them on a transistor with W/L =~ 10*. The
photoreceptor noise measurements were obtained by amplifying small voltage changes with

a low-noise high-gain on-chip amplifier.

2.1 Shot Noise in Subthreshold MOS Transistors

Imagine that you are an electron in the source of an MOS transistor. You shoot out of the
source, and if you have enough energy to climb the energy barrier between the source and

the channel, you enter it. If you are unlucky, you might collide with a lattice vibration,



9

' éu_rface state, or impurity and fall right back into the source. If you do make it into the
channel, you will suffer a number of randomizing collisions. Eventually, you will actually
diffuse your way into the drain. Each arrival of such an electron at the drain contributes
an impulse of charge.

Similarly, electrons that originate in the drain may find their way into the source. Thus,
there are two independent random processes occurring simultaneously that yield a forward
current Iy, from source to drain and a reverse current I, from drain to source. Since the
barrier height at the source is less than the barrier height at the drain, more electrons flow

from the source to drain than vice versa and I > 1.

I = I;—1,
V,
I, = Ife—f’d?
_Yas
=1 = If(l—e UT)
_Yas
= I (l—e UT> 2.1)

where I is the measured channel current, Vy; is the drain-to-source voltage, and I ;= Isat
is the saturation current of the transistor, and Ur = kT'/q is the thermal voltage.

Because the forward and reverse processes are independent, we can compute the noise
contributed by each component of the current separately and then add the results. Thus,
we first assume that I, is zero, or equivalently that Cp, the concentration of electrons at
the drain end of the channel, is zero. The arrival of electrons at the drain may be modelled
by a Poisson process with an arrival rate A. A small channel length L, a large channel
width W, a large diffusion constant for electrons D,,, and a large concentration of electrons
at the source Cg all lead to a large arrival rate. Because the current in a subthreshold MOS
transistor flows by diffusion, the electron concentration is a linear function of distance along

the channel, and the forward current I ¢ and arrival rate A are given by

If = anW% (22)

A = If/q. : (2.3)

Powerful theorems due to Carson and Campbell, as described in standard noise text-

books such as [10], allow us to compute the power spectrum of the noise. Suppose we have
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' é _Poissoh process with an arrival rate of A, and each arrival event causes a response, F(t),
in a detector sensitive to the event. Let s(¢) be the macroscopic variable of the detector
that corresponds to the sum of all the F'(¢)’s generated by these events. Then, the mean

value of s(t) and the power spectrum, P(f), of the fluctuations in s(t) are given by

s(t) = A/_:F(t)dt (2.4)
W ~ A /_o:oF?(t)dt | (2.5)
= [T P (26)

= 2 [Tl (2.7)

where ¥(f) = [ F(t)e=92"ftdt is the Fourier transform of F(t). Each electron arrival
event at the drain generates an impulse of charge ¢ that corresponds to F(t). Thus, we

obtain

I = ¢\ (2.8)
(1-7)° = 2q2)\/0Afdf (2.9)
= 2qIAf. (2.10)

where Af is the bandwidth of the system. Eq. (2.10) is the well-known result for the shot-
noise power spectrum. Thus, the noise that corresponds to our forward current is simply
given by 2qI;Af. Similarly, the noise that corresponds to the reverse current is given by

2qI.Af. The total noise in a given bandwidth Af is given by

AI* = 29(I; + I)Af

V,

— wds
= 2I;(1+e Ur)Af
V,
= 2qL(l+e TT)AS, (2.11)

NVE—Vs
where I,y = Iy = Ipe YT~ corresponds to the saturation current at the given gate voltage.

Note that as we transition from the linear region of the transistor (Vy, < 5Ur) to the
saturation region, the noise is gradually reduced from 4ql;o;Af to 2qI;:Af. This factor

of two reduction occurs because the shot-noise component from the drain disappears in
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‘ séturation. A similar phenomenon occurs in junction diodes where both the forward and
reverse components contribute when there is no voltage across the diode; as the diode gets
deeply forward or reverse biased, the noise is determined primarily by either the forward or
reverse component, respectively [11].

The flatness of the noise spectrum arises from the impulsive nature of the microscopic
events. We might expect that the flat Fourier transform of the microscopic events that
make up the net macroscopic current would be reflected in its noise spectrum. Carson’s
and Campbell’s theorems express formally that this is indeed the case.. The variance of
a Poisson process is proportional to the rate, so it is not surprising that the variance in
the current is just propbrtional to the current. Further, the derivation illustrates that the
diffusion constant and channel length simply alter the arrival rate by Eq. (2.3). Even if
some of the electrons recombined in the channel —~ corresponding to the case of a bipolar
transistor or junction diode ~, the expression for noise in Eq. (2.11) is unchanged. The
arrival rate is reduced because of recombination. A reduction in arrival rate reduces the
current and the noise in the same proportion. The same process that determines the current
also determines the noise.

Experimental measurements were conducted on a transistor with W/L =~ 10* for a
saturation current of 40nA (Fig. 1). A gigantic transistor size was used to scale up the
tiny subthreshold currents to 10nA-1uA levels and make them easily measurable by a low-
noise off-chip sense amplifier with commercially available resistor values. The shot noise
scales with the current level, so long as the transistor remains in subthreshold. The noise
measurements were conducted with a HP3582A spectrum analyzer. The data were taken
over a bandwidth of 0-500 Hz. The normalized current noise power, AT%/(2qI;;:Af), and
the normalized current /I, are plotted. The lines show the theoretical predictions of
Egs. (2.1) and (2.11). Using the measured value of the saturation current, the value for
the charge on the electron, and the value for the thermal voltage, we were able to fit our
data with no free parameters whatsoever. Notice that as the normalized current goes from
0 in the linear region to 1 in the saturation region, the normalized noise power goes from
2 to 1 as expected. Fig. 2 shows measurements of the noise power per unit bandwidth,
AI 2 /Af, in the saturation region for various saturation currents I,,;. Since we expect this
noise power to be 2ql,4:, we expect a straight line with slope 2¢ which is the theoretical

line drawn through the data points. As the currents start to exceed 1uA-10pA for our
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huge trarisistor, the presence of 1/f noise at the frequencies over which the data were taken
begins to be felt. The noise is thus higher than what we would expect purely from white

noise considerations.

2.2 Shot Noise vs. Thermal Noise

We have taken the trouble to derive the noise from first principles even though we could
have simply asserted that the noise was just the sum of shot-noise components from the
forward and reverse currents. We have done so to clarify answers to certain questions that

naturally arise:

e Is the noise just due to fluctuations in electrons moving across the barrier or does

scattering in the channel contribute as well?
e Do electrons in the channel exhibit thermal noise?

e Do we have to add another term for thermal noise?

Our derivation illustrates that the computed noise is the total noise and that we don’t
have to add any extra terms for thermal noise. Our experiments confirm that this is indeed
the case. The scattering events in the channel and the fluctuations in barrier crossings all
result in a Poisson process with some electron arrival rate. Both processes occur simulta-
neously, are caused by thermal fluctuations and result in white noise. Conventionally, the
former process is labelled “thermal noise” and the latter process is labelled “shot noise”.
In some of the literature, the two kinds of noise are often distinguished by the fact that
shot noise requires the presence of a dc current while thermal noise occurs even when there
is no dc current [12]. However, we notice in our subthreshold MOS transistor, that when
Iy = I, there is no net current but the noise is at its maximum value of 4¢I tAf. Thus
a two-sided shot noise process exhibits noise that is reminiscent of thermal noise. We will
now show that thermal noise is two-sided shot noise.

Let us compute the noise current in a resistor shorted across its ends. Since there is no
electric field, the fluctuations in current must be due to the random diffusive motions of
the electrons. The average concentration of electrons is constant all along the length of the

resistor. This situation corresponds to the case of a subthreshold transistor with Vg, = 0,
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where thé average concentrations of electrons at the source edge of the channel, drain edge
of the channel and all along the channel, are at the same value.

In a transistor, the barrier height and the gate voltage are responsible for setting the
concentrations at the source and drain edges of the channel. In a resistor, the concentration
is set by the concentration of electrons in its conduction band. The arrival rate of the
Poisson process is, however, still determined by the concentration level, diffusion constant
and length of travel. This is so because, in the absence of an electric field, the physical
process of diffusion is responsible for the motions of the electrons. Thus, the power spectrum
of the noise is again given by 2¢(Iy + I;). The currents Iy and I, are both equal to ¢DnA/L
where D is the diffusion constant of electrons in the resistor, n is the concentration per
unit volume, A is the area of cross section and L is the length. Einstein’s relation yields

D/p = kT'/q, where p is the mobility. Thus, the noise power is given by

A = 4qI;Af
qgDnA
L

= 4gx ,uan%Af

= 4q X Af

= T (qum) G Af
= 4kT (0) %Af
— 4KTGAS (2.12)

where G is the conductance of the resistor and o is the conductivity of the material. Thus, we
have re-derived Johnson and Nyquist’s well-known result for the short circuit noise current
in a resistor! The key step in the derivation is the use of the Einstein relation D/u = kT'/q.
This relation expresses the connection between the diffusion constant D, which determines
the forward and reverse currents, the mobility constant p, which determines the conductance
of the resistor, and the thermal voltage k7T/q.

It is because of the internal consistency between thermal noise and shot noise that
formulas derived from purely shot noise considerations (this paper) agree with those derived

from purely thermal noise considerations [6].
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2.3 The Equipartition Theorem and Noise Calculations

No discussion of thermal noise would be complete without a discussion of the equipartition
theorem of statistical mechanics, which lies at the heart of all calculations of thermal noise:
Every state variable in a system that is not constrained to have a fixed value is free to
fluctuate. The thermal fluctuations in the current through an inductor or the voltage on
a capacitor are the ultimate origins of circuit noise. If the energy stored in the system
corresponding to state variable z is proportional to z2, then z is said to be a degree of
freedom of the system. Thus, the voltage on a capacitor constitutes a degree of freedom,
since the energy stored on it is CV?2/2. Statistical mechanics requires that if a system is in
thermal equilibrium with a reservoir of temperature 7', then each degree of freedom of the
system will have a fluctuation energy of £T'/2. Thus, the mean square fluctuation AV?2, in

the voltage of a system with a single capacitor must be such that

CAVZ kT
2 27
T

= AV? = % (2.13)

This simple and elegant result shows that if all noise is of thermal origin, and the system
is in thermal equilibrium, then the total noise over the entire bandwidth of the system is
determined just by the temperature and capacitance [13]. If we have a large resistance cou-
pling noise to the capacitor, the noise per unit bandwidth is large but the entire bandwidth
of the system is small; if we have a small resistance coupling noise to the capacitor, the
noise per unit bandwidth is small but the entire bandwidth of the system is large. Thus,
the total noise — the product of the noise per unit bandwidth 4kTR and the bandwidth
of the circuit % is constant, independent of R. We illustrate, for the pa,rticula,r circuit
configuration of Fig. 3, how the noise from various devices interact to yield a total noise of
kT/C.

Fig. 3 shows a network of transistors all connected to a capacitor, C' at the node V.
We use the sign convention that the forward currents in each transistor flow away from the

common source node, and the reverse currents flow toward the common source node.! The

'Our sign convention is for carrier current, not conventional current. Thus, in an NFET or a PFET, the
forward current is the one that flows away from the source irrespective of whether the carriers are electrons
or holes. This convention results in a symmetric treatment of NFETs and PFETs.
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gate and drain voltages, Vy; and Vy;, respectively are all held at constant values. Thus, V; is
the only degree of freedom in the system. Kirchoff’s current law at the source node requires

that in steady state

ZI;; = ZI;‘. (2.14)

= = - 2.1
gs ; UT ( 5)
The bandwidth, Af, of the system is then
Af=i><z><g‘i=g—s (2.16)
2 2 C 4C

where the factor 1/27 converts from angular frequency to frequency and factor 7/2 corrects

for the rolloff of the first-order filter not being abrupt?. Thus, the total noise is

A2 = iZq( +I’)495

_ i s
= 24 IoTe, (2.17)

where we have used Eq. (2.14) to eliminate I,. The voltage noise is just AI%/g? or

ave - EXEy
S n i
i=1 Ty
T
- % (2.18)

The fact that the total noise equalled kT'/C implies that this circuit configuration is a
system in thermal equilibrium. Typically, most circuit configurations yield answers for
total voltage noise that are proportional to kT/C.

We obtained direct experimental confirmation of the ¥T/C result from our measure-

2
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‘ments of noise in photoreceptors: Fig. 4 shows a source-follower configuration which is
analogous to the case discussed previously with two transistors connected to a common
node. The lower current source is a photo diode which has current levels that are pro-
portional to light intensity. The voltage noise is measured at the output node, V,. The
voltage V; is such that the MOS transistor shown in the figure is in saturation and its re-
verse current is zero. The photo diode contributes a shot-noise component of 2qIAf. Thus,
we obtain equal shot-noise components of 2qIAf from the transistor and light-dependent
current source, respectively. The theory described above predicts that, independent of the
current level, the total integrated noise over the entire spectrum must be the same. We
observe that, as the current levels are scaled down (by decreasing the light intensity), the
noise levels rise but the bandwidth falls by exactly the right amount to keep the total noise
constant. The system is a low pass filter with a time constant set by the light level. Thus,
the noise spectra show a low pass filter characteristic. The voltage noise levels, AV,2, are
proportional to AI%/g,? or to 1/I and the bandwidth is proportional to gs and therefore to
the photo-current I. Thus, the product of the noise per unit bandwidth and the bandwidth
is proportional to the total noise over the entire spectrum and is independent of I. Thus,
the area under all three curves in Fig. 4 is the same. The smooth lines in Fig. 4, are
theoretical fits using a temperature of 300K and a value of capacitance estimated from the
layout.

It is possible to extend our way of thinking about noise to the above-threshold region
of MOS operation as well. However, the mathematics is more difficult because the presence
of a longitudinal electric field causes non-independence between the noise resulting from
forward and reverse currents. Further, the modulation of the surface potential by the
charge carriers results in a feedback process that attenuates fluctuations in the mobile

charge concentration— an effect that is referred to as space-charge smoothing.

2.4 Conclusion

The key ideas of our article begin with the derivation of a formula for noise, Eq. (2.11),
that is valid in the subthreshold region of operation of the MOS transistor. The noise is
essentially the sum of shot-noise components from the forward and reverse currents. This

noise is the total thermal noise, and no further terms need be added to model thermal noise.
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' ’fhis view of thermal noise as a two-sided shot noise process is fundamental, and we showed
that Johnson and Nyquist’s well-known expression for thermal noise in a resistor may be
viewed in the same way. Thus, this article developed a unifying view of thermal noise and
shot noise.

The predictions of the formula were confirmed by experimental measurements. We
discussed the equipartition theorem of statistical mechanics and its relation to noise cal-
culations. We showed how our theoretical calculations agreed with noise measurements
in a photoreceptor. Finally, we concluded with a brief discussion of the considerations
involved in extending our ideas to above-threshold operation in order to develop a single

comprehensive theory of noise for the MOS transistor.
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Figure 2.1: Measured current and noise characteristics of a subthreshold MOS transistor.
The lower curve is the current, normalized by its saturation value I,q;, so that it is 1.0 in
saturation and zero when Vj; is 0. The upper curve is the noise power, AI?, normalized
by dividing it by the quantity 2qIso¢Af, where Af is the bandwidth and g is the charge on
the electron. We see that as the transistor moves from the linear region to saturation, the
noise power decreases by a factor of two. The lines are fits to theory using the measured
value of the saturation current and the value for the charge on the electron g = 1.6 x 1019

C.
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Figure 2.2: The noise power per unit bandwidth, AI?/Af, plotted vs. the saturation
current, Iz, for different values of I;5;. The MOS transistor is operated in saturation.
Theory predicts a straight line with a slope of 2¢ = 3.2 x 1071° C, which is the line drawn
through the data points. The small but easily discernible deviations from the line increase
with higher levels of I;,: due to the increasing levels of 1/f noise at these current values.



22

VuO—| VI L

N

Vi

Figure 2.3: A circuit with four transistors connected to a common node with some capaci-
tance C. By convention, the common node is denoted as the source of all transistors, and
the forward currents of all transistors are indicated as flowing away from the node while
the reverse currents of all transistors are indicated as flowing towards the node. Only the
voltage V; is free to fluctuate, and all other voltages are held at fixed values, so that the
system has only one degree of freedom. The Equipartition theorem of statistical mechanics
predicts that if we add the noise from all transistors over all frequencies to compute the
fluctuation in voltage, AV,2, the answer will equal kT /C no matter how many transistors
are connected to the node, or what the other parameters are, so long as all the noise is
of thermal origin. We show in the text and in the data reported in Figure 4 that our
expressions for noise yield results that are consistent with this prediction.
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Figure 2.4: Measured noise spectral density in units of dBV/rtHz (0 dBV = 1V, -20dB =
0.1V) for the voltage V; in the circuit above. The current source is light-dependent and the
curves marked 0, -1 and -2 correspond to bright light (high current), moderate light, and dim
light (low current) respectively. The intensity levels were changed by interposing neutral
density filters between the source of the light and the chip to yield intensities corresponding
to 1.7 W/m?, 0.17 W/m?, and 0.017 W/m? respectively. The 1/f instrumentation noise is
also shown and reveals that its effects were negligible over most of the range of experimental
data. We observe that the noise levels and bandwidth of the circuit change so as to keep
the total noise constant, i.e., at low current levels, the voltage noise is high and bandwidth
low and the converse is true for high current levels. Thus, the area under the curves marked
0, -1 and -2 stays the same. The theoretical fits to the low-pass filter transfer functions are
for a temperature of 300K and a capacitance of 310 fF, estimated from the layout. These
results illustrate that the ¥T'/C concept, derived from the equipartition theorem in the text
is a powerful one.
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Chapter 3 A Low-Power Wide-Linear-Range

Transconductance Amplifier

Abstract

The linear range of approximately =75 mV of traditional subthreshold transconduc-
tance amplifiers is too small for certain applications—for example, for filters in electronic
cochleas, where it is desirable to handle loud sounds without distortion and to have a
large dynamic range. We describe a transconductance amplifier designed for low-power
(< 1pW) subthreshold operation with a wide input linear range. We obtain wide linear
range by widening the tanh, or decreasing the ratio of transconductance to bias current, by
the combination of four téchniques. First, the well terminals of the input differential-pair
transistors are used as the amplifier inputs. Then, feedback techniques known as source de-
generation (a common technique) and gate degeneration (a new technique) provide further
improvements. Finally, a novel bump-linearization technique extends the linear range even
further. We present signal-flow diagrams for speedy analysis of such circuit techniques. Qur
transconductance reduction is achieved in a compact 13-transistor circuit without degrading
other characteristics such as dc-input operating range. In a standard 2um process, we were
able to obtain a linear range of £1.7V. Using our wide-linear-range amplifier and a capaci-
tor, we construct a follower—integrator with an experimental dynamic range of 65 dB. We
show that, if the amplifier’s noise is predominantly thermal, then an increase in its linear
range increases the follower—integrator’s dynamic range. If the amplifier’s noise is predom-
inantly 1/f, then an increase in its linear range has no effect on the follower-integrator’s
dynamic range. To preserve follower—integrator bandwidth, power consumption increases
proportionately with an increase in the amplifier’s linear range. We also present data for
changes in the subthreshold exponential parameter with current level and with gate-to-bulk
voltage that should be of interest to all low-power designers. We have described the use of

our amplifier in a silicon cochlea [1, 2].
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' 31 Introduction

In the past few years, engineers have improved the linearity of MOS transconductor cir-
cuits [3]-[12]. These advances have been primarily in the area of above-threshold, high-
power, high-frequency, continuous-time filters. Although it is possible to implement audi-
tory filters (20Hz—20khz) with these techniques, it is inefficient to do so. The transconduc-
tance and current levels in above-threshold operation are so high that large capacitances
or transistors with very low W/L are required to create low-frequency poles, and area and
power are wasted. In addition, it is difficult to span 3 orders of magnitude of transconduc-
tance with a square law, unless we use transistors with ungainly aspect ratios. However, it
is easy to obtain a wide linear range above threshold.

In above-threshold operation, identities such as (z — a)? — (z — b)? = (b—a)(2z — a—b)
are used to increase the wide linear range even further. In bipolar devices where the non-
linearity is exponential, rather than second-order, it is much more difficult to completely
eliminate the nonlinearity. The standard solution has been to use the feedback technique
of emitter degeneration, which achieves wide linear range by reducing transconductance,
and is described by Gray [39]. A clever scheme for widening the linear range of a bipo-
lar transconductor that cancels all nonlinearities up to fifth order, without reducing the
transconductance, has been proposed by Wilson [14]. A method for getting perfect lin-
earity in a bipolar transconductor by using a translinear circuit and a resistor has been
demonstrated by Chung [15]. Both of the latter methods, however, require the use of resis-
tors, and ultimately derive their linearity from the presence of a linear element in the circuit.
Resistors, however, cannot be tuned electronically, and require special process steps.

Various authors have used an MOS device as the resistive element in an emitter-
degeneration scheme to make a BiCMOS transconductor—for example, the scheme pro-
posed by Sanchez [16].. Another BiCMOS technique, reported by Weimin [5], uses an
above-threshold differential pair to get wide linearity, and scales down the output currents
via a bipolar Gilbert gain cell, to levels more appropriate for auditory frequencies. Above-
threshold differential pairs, however, result in lower open-loop gain and higher voltage offset,
and techniques such as cascode mirrors are required to improve these characteristics. Cas-
code mirrors, however, degrade dc output-voltage operating range and consume area. In

addition, above-threshold operation results in higher power dissipation.
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. Subthreshold MOS technology, like bipolar technology, is based on exponential nonlin-
earities. Thus, it is natural to employ source-degeneration techniques. Methods for getting
wider linear range that exploit the Early effect in conjunction with a source-degeneration
method are described by Arreguit [19]. The Early voltage is, however, a parameter with high
variance across transistors; thus, we cannot expect to get good transconductance matching
in this method. Further, such schemes are highly offset prone, because any current mismatch
manifests itself as a large voltage mismatch due to the exceptionally low transconductance.

The simple technique of using a diode as a source-degeneration element extends the
linear range of a differential pair to about 4150 mV, as described by Watts [6]. However, it
is difficult to increase this linear range further by using two stacked diodes in series as the
degeneration element—the wider linear range that is achieved is obtained at the expense
of a large loss in dc-input operating range. If we operate within a 0 to 5V supply, the
signal levels remain constrained to take on small values, because of the inadequate dc input
operating range.

Three techniques for improving the linear range of subthreshold differential pairs have
been described in [17]. The authors define the linear range to be the point where the
transconductance drops by 1%. By that definition, the linear range of a conventional
transconductance amplifier described by Iy = Iptanh (z/V7) is Vi, /5. Their best tech-
nique achieved a value of V = 584 mV, and involved expensive common-mode biasing
circuitry. In contrast, our technique yields a V, of 1.7 V, and involves no additional biasing
circuitry.

In [21], a 21-transistor subthreshold transconductance amplifier is described. From
visual inspection of their data, the amplifier has a V;, of about 700 mV. They estimate
from simple theoretical calculations that the effective number of shot-noise sources in their
circuit is about 20. In contrast, our 13-transistor circuit has a V7, of 1.7 V, and the effective
number of shot-noise sources in our circuit is around 5.3 (theory) or 7.5 (experiment).

We can solve the problem of getting wider linear range by interposing a capacitive
divider between each input from the outside world and each input to the amplifier. Some
form of slow adaptation is necessary to ensure that the dc value of each floating input to
the amplifier is constrained. This approach, as used in an electronic cochlea, is described
in [14]; it did not work well in practice because of its sensitivity to circuit parasitics. As

we shall see later, capacitive-divider schemes bear some similarity to our scheme. We shall
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discuss capacitive-divider techniques in Section 3.5.4.

To get low transconductance, we begin by picking an input terminal that is gifted
with low transconductance from birth: the well. We reduce the transconductance further
by using source degeneration, and a new negative-feedback technique, which we call gate
degeneration. Finally, we use a novel technique, which we call bump linearization, to extend
the linear range even more; bump circuits have been described in [23]. The amplifier circuit
that incorporates all four techniques is shown in Figure 3.1. _

In Section 3.2, we present all the essential ideas and first-order effects that describe the
operation of the amplifier. We describe second-order effects, such as the common-mode and
gain characteristics, in Section 3.3. We discuss the operation of this amplifier as a follower—
integrator filter in Section 3.4. We elaborate on noise and dynamic range in Section 3.5. In
Section 3.6, we conclude by summarizing our contributions. Appendix A contains a quanti-
tative treatment of common-mode effects on the amplifier’s transconductance. Section 3.7.1
describes the effects of changing transconductance; Section 3.7.2 is on the effects of parasitic
bipolar transistors present in our well-input amplifier. Normally, the amplifier operates in

the 1V to 5V range, where these bipolar transistors are inactive.

3.2 First-Order Effects

We begin by expressing basic transistor relationships in a form that will be useful in our
paper. We use standard IEEE convention for large-signal (ipg), dc (Ipgs), and small-signal

(24s) variables.

3.2.1 Basic Transistor Relationships

The current in a subthreshold MOS well transistor in saturation is given by

. KU 1-x)v
ips = Igexp (—%) exp (—(—U;LS), (3.1)

where vgg and vy g are the gate-to-source and well-to-source voltage, respectively; x is
the subthreshold exponential coefficient; Iy is the subthreshold current-scaling parameter;
Ur = kT'/q is the thermal voltage; and vpg > 5Ur.

Eq. (3.1) illustrates that the gate affects the current through a x exponential term,
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whereas the well affects the current through a 1—x exponential term. Thus, when the gate is
effective in modulating the current, the well is ineffective, and vice versa. By differentiating

Eq. (3.1), we can easily show that the gate, well, and source transconductances are

= 9%Dps — s — _,lps
99t = Jug = vy = KT
_. Oi _ i _ I
gu=Gms =l = —(1-r) 2, (32)
s dvg Vg Upr?

respectively. Thus if and only if k > 0.5—which is almost always the case—then the well
transconductance has a lower magnitude than the gate transconductance, and the well is
preferable over the gate as a low-transconductance input.

It is convenient to work with dimensionless, small-signal variables: If i; and vy are arbi-
trary small-signal variables, and we define the dimensionless variables i = i4/Ip, v = v4/Ur,
then a relation such as ¢y = ggvg = kIpvy/Ur takes the simple form i = kv. We notice then
that & plays the role of a dimensionless transconductance; that is, £ = gy /(Ip/Ur) is the
dimensionless transconductance that we obtain by dividing the real transconductance g4
by Ip/Ur. We shall use the dimensionless variable forms to do most of our calculations,
and then shall convert them back to the real forms. For convenience, we denote the dimen-
sionless variable by the same name as that of the variable from which it is derived. Thus,
Eq. (3.2) when converted to its dimensionless form, simply reads gg: = —, g = —(1 — &),
and g, = 1.

Figure 3.2 shows a well transistor, its small-signal-equivalent circuit, and a signal-flow
diagram that represents its small-signal relations. In this paper, we shall ignore the capac-

itances that would be represented in a complete small-signal model of the transistor.

3.2.2 Transconductance Reduction Through Degeneration

The technique of source degeneration is well known, and was first used in vacuum-tube
design; there it was referred to as cathode degeneration, and was described by Landee [24].
Later, it was used in bipolar design, where it is referred to as emitter degeneration [39]. The
idea behind source degeneration is to convert the current flowing through a transistor into
a voltage through a resistor or diode, and then to feed this voltage back to the emitter or

source of the transistor to decrease its current.
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Gate degeneration has never been reported in the literature to our knowledge. This
lacuna probably occurs because most designs use the gate as an input and thus never have
it free to degenerate. The vacuum-tube literature, however, shows familiarity with a similar
concept, called screen degeneration, as described in Landee [24]. The idea behind gate
degeneration is to convert the current flowing through a transistor into a voltage through a
diode, and then to feed this voltage back to the gate of the transistor to decrease its current.

Figure 3.3a shows a half-circuit for one differential arm of the amplifier of Figure 3.1,
if we neglect the B transistors for the time being. The source-degeneration diode is the
pFET connected to the source of the well-input transistor; the gate-degeneration diode
is the nFET connected to the drain of the well-input transistor. The gate-degeneration
diode is essentially free in our circuit, because it is part of the current mirror that feeds
the differential-arm currents to the output. The voltage Vi represents the common-node
voltage of the differential arms. In differential-mode ac analysis, the common-node voltage
is grounded, as explained in the following paragraph.

In Figure 3.1, if vy = v_, and the amplifier is perfectly matched, then a quiescent current
of 123 flows through each branch of the amplifier and ioyr will be 0. If we now vary the
differential voltage, v4 = v; —v_, by a small amount, the current changes by i,u: = gvg,
where g is the transconductance of the amplifier. We would like to compute g. If we apply
vd, such that v, changes by +% and v_ changes by -%, then the common node of the
two differential halves (the source of the S transistors) does not change in voltage. For the
purposes of small-signal analysis, we can treat the common node as a virtual ground. Thus,
if g is the transconductance of the half-circuit shown in Figure 3.3a, the output current
is gngt — (—gn*%) = grva. Hence, the transconductance of the half-circuit, biased to the
current level of Ip/2, is the transconductance of the amplifier.

The circuit of Figure 3.3a yields the small-signal circuit of Figure 3.3b: The source-
degeneration diode is represented by a dimensionless resistor of value 1/kp, the gate-
degeneration diode is represented by a dimensionless resistor of value 1/k,, the gate-
controlled current source of Figure 3.2 is represented by a dimensionless resistor of value
1/k (the gate is tied to the drain), and the well-controlled current source of Figure 3.2 is
represented by a dependent source, as shown.

The left half of Figure 3.3c represents the signal-flow diagram for the well-input tran-
sistor, as derived in Figure 3.2. The right half of Figure 3.3c represents the blocks due to
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the source or gate degeneration diodes feeding back to the source or gate. Thus, we have
two negative-feedback loops acting in parallel to reduce the transconductance. One loop
feeds back the output current to the source via a —1/x, block; the other loop feeds back
the output current to the gate via a 1/x, block. Since the magnitude of the loop gains of
the source-degeneration and gate-degeneration loops are A; = nl_,, and 4y = ﬁ respectively,
the well transconductance is attenuated by m—g; that is to say, the transconductance

is
11—k«

= 3.3
1+ -+ % (3.3)

g

We multiply the dimensionless transconductance thus computed by 2—IUB; to get the actual

transconductance, since Ipg in each differential arm is I2 .
The W, S, and G transistors of each differential arm may be regarded as a single

transistor with I-V characteristics given by
I « e~ (vs—gvw)/Ur, (3.4)

By following the steps outlined by Mead [2], we can easily derive that

glvy — U—)>,

ioyr = Igtanh ( 507

(3.5)
where g is given by Eq. (3.3).

3.2.3 Bump Linearization

Bump linearization is a technique for linearizing a tanh and extending the linear range of
a subthreshold differential pair [26]. We shall first explain how it works for the simple
differential pair; then, we shall extend this explanation to our amplifier in a straightforward
fashion.

A bump differentiél pair has, in addition to its two outer arms, a central arm containing
two series-connected transistors [23]. The current through the transistors in the central
arm is a bump-shaped function of the differential voltage, so we call these transistors bump
transistors. Thus, the differential output current from the outer two arms, I, is the usual

‘tanh-like function of the differential voltage, V, except for a region near the origin, where

the bump transistors steal current. By ratioing the W/L of the bump transistors to be
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w with respect to the transistors in the outer arms, we can control the properties of this
I-V curve. A small w will essentially leave it unchanged. A large w will cause a flat zone
near the origin, where there is current stealing. The larger the w, the larger the width and
flatness of the zone. At intermediate values of w, the expansive properties of the curve due
to the bump compete with the compressive properties of the curve due to the tanh, and
a curve that is more linear than is a tanh is obtained. At w = 2, the curve is maximally
linear. _

For a simple subthreshold bump amplifier with bump scaling w, the differential output

current can be shown to be
sinh z

tout = m, (3-6)
where
B = 1+ -"é‘f (3.7)
gr(vy —v-)
z T . (3.8)

The bias current is assumed to be 1, without loss of generality. Simple calculus shows that

the first and second derivatives of Eq. (3.6) are

diout 1+ Bcoshz
Row _ _TOOT (3.9)
dz (8 + cosh z)
9 . . 2 _
d zo;t _ sinhz (8% — coshsx 2) . (3.10)
dz (B + cosh z)

If we require that the 7,,;-vs.-z curve have no points of inflection in it except at the origin,
then it must always be convex or concave in the first or third quadrant; this requirement
is necessary to ensure that there are no strange kinks in the I-V curve. In Eq. (3.10), we
must then have

(,6'2—,8coshx—2) <0 (3.11)

for all z. Note that in deriving Eq. (3.11), we have used the facts that the denominator
term of Eq. (3.10) is always positive, and that sinhz changes sign at only the origin. The
worst possible case for not meeting the constraint given by Eq. (3.11) occurs when cosh z is

at its minimum value of 1 at z = 0. If we set coshz = 1 and solve the resulting quadratic
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for ,3, we obtain

™
IA
™

(3.12)

=sw < 2 (3.13)

Thus, at w = 2, we are just assured of satisfying this constraint. At w = 2, the ,y:-vs.-x
curve is maximally linear: If we Taylor expand Eq. (3.6) at 8 = w = 2, we find that it has
no cubic-distortion term. In comparison, the function tanh z/2, which is to what Eq. (3.6)

reduces when w = 0 or 8 = 1, has cubic distortion.

3 xd 1727

T z T
tanhE = E - ﬁ + 5‘16 — 40320 + .. (314)
sinhz x oz z’ o
2+coshe 3 540 | 4536 77760 T (3.15)

At z =1, the tanh function has cubic distortion of approximately 8%, as compared to
the linearized tanh function which has no cubic distortion whatsoever, but has only fifth-
harmonic distortion of less than 1%. Thus, we have linearized the tanh. We shall show
later, in Section 3.5, that bump linearization is a particularly useful technique because it
increases the linear range of an amplifier without increasing that amplifier’s noise.

Our circuit topology in Figure 3.1 implements a wide-linear-range bump differential pair
by ratioing the W/L of the the nFET B transistors to be w with respect to the W/L of
the nFET GM transistors. However, the mathematical analysis of the circuit is identical
to that of a simple bump differential pair if we replace the s of Eq. (3.8) with the g of
Eq. (3.3).

3.2.4 Experimental Data

In summary, from Egs. (3.3) and (3.5), we get the transfer function of the amplifier with

the B transistors absent:

I = IBtanh(Vd/VL), (3.16)
Va = Vi -V_, (3.17)
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1+ 1/kp +H/K,n)
11—k '

V, = (2kT/q) ( (3.18)

From Egs. (3.3), (3.5), (3.6), (3.7), and (3.8), the transfer function of the overall amplifier

has the form
sinh(2z)
1+ w/2 + cosh(2z)’

Towt = Ip (3.19)

where = V;/Vy. The W/L of the B transistors is w times the W/L of the GM transistors.

We fabricated our transconductance amplifier in a standard 2um CMOS n;well process,
and obtained data from it. We have also used the amplifier in a working silicon cochlea
[1,2]. Figure 3.4a shows experimental data for our amplifier for values of w = 0, 1.86, and
66, fitted to Eq. (3.19). Note that, even at rather large w, the nonlinear characteristics are
still gentle. This property ensures that even fairly large mismatches in w do not degrade
the operation of the amplifier significantly. For w =~ 2, Figure 3.4b shows that the simple
tanh fit of Eq. (3.16) is a good approximation to Eq. (3.19) if V; — (3/2)Vz—that is to
say, from 1.16 V for w = 0 to 1.7 V for w = 2. Considering the leading-order terms of
Egs. (3.14) and (3.15), the factor of 3/2 seems natural. However, we shall show, from the
follower—integrator data of Section 3.4, that the tanh approximation is inadequate for large
differential inputs, because the curve is more linear than is that of a tanh.

We verify Eq. (3.18) experimentally in Section 3.7.1. Since  varies with the well-to-gate
voltage, and consequently with the common-mode voltage, the verification is involved; we

have relegated the details to the appendix.

3.3 Second-Order Effects

We shall now discuss several second-order effects in our amplifier. We begin by describing

the common-mode characteristics.

3.3.1 Common-Mode Characteristics

Below an input voltage of 1V, the well-to-source junction becomes forward biased, and the
parasitic bipolar transistors, which are part of every well transistor, shunt the current of the
amplifer to ground. Thus, as Figure 3.5a shows, the output current of the amplifier falls.

Figure 3.5b illustrates the same effects, but from the perspective of varying the differential-
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mode volt‘age, while fixing the common-mode voltage. In this figure, we can see that changes
in x increase the transconductance of the amplifier as the common-mode voltage is lowered.
The increase is exhibited as a rise in the slope at the origin. At very low common-mode
voltages, at a particular differential voltage, the input voltage for one arm or the other falls
below 1V, and the bipolar transistors in that arm begin to shunt the current to ground.
The lower the common-mode voltage, the smaller the differential voltage at which shunting
begins. Thus, at low common-mode voltages the current starts to fall at small magnitudes
of differential voltage.

We clarify the bipolar effect in Figure 3.6: Figure 3.6a shows a vertical crosssection
of a well transistor in an n-well process; Figure 3.6b shows that the equivalent circuit of
this well transistor contains two parasitic bipolar transistors. Typically, the well-to-source
and well-to-drain junctions are always reverse biased, so that these bipolar transistors are
turned off. For our amplifier, and in most cases, the source-to-drain voltage is sufficiently
positive that the bipolar transistor at the source is the one that is turned on, if any is,
whereas the one at the drain is hardly turned on. Thus, in Figure 3.6c, we have indicated
the bipolar transistor at only the source. The bipolar effect is described in quantitative
detail in Section 3.7.2.

Typically, we operate the amplifier at a common-mode voltage of about 3V, where
small dc offsets do not significantly affect its transconductance, and where the action of the
bipolar transistors is negligible. When the bipolar transistors do turn on, there is no danger
of latchup, because the current that is fed to the substrate is at most the tiny subthreshold
bias current of the amplifier. Our input operating range of 1V to 5V is about the same
as that of a simple subthreshold nFET differential amplifier. These amplifiers also show
transconductance changes, due to x changes, that are most abrupt at low common-mode
voltages.

As the common-mode input voltage of our amplifier is decreased, the well-to-gate voltage
falls, the depletion region beneath the channel of the transistor shrinks, x decreases, the
transconductance of the amplifier rises from Eq. (3.3), and, at a given differential voltage,
there is more current. Thus, the data of Figure 3.5a show that the current rises as the
common-mode voltage is decreased from 5V to 1V. Note also that the transconductance
changes are greatest near 1V where the depletion region is thin, and are least near 5V,

where the depletion region is thick. The x changes are described in quantitative detail in
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‘Section 3.7.1.

3.3.2 Bias-Current Characteristics

Figure 3.7a shows the bias-current characteristics of our amplifier as a function of the bias
voltage Vp. The amplifier is capable of operating with little loss in common-mode range
from bias currents of pA to pA. Figure 3.7b illustrates that the linear range begins to
increase at above-threshold current levels, because of an increase in the I/g,, ratio of a
transistor at these levels. That is to say, the characteristic scaling voltage in Eq. (3.18)
begins to increase above 2kT'/q.

Note that the changes in x observed with bias current and common-mode voltage are not
unique to our amplifier: They occur in every subthreshold MOS transistor. By measuring
the slope of the I-V curve in a simple nFET differential pair, we obtained changes in & with
common-mode voltage and with bias current. Figure 3.8 shows these data. Note that &
changes are most abrupt at low common-mode voltages—that is to say, at low gate-to-bulk

voltages; « also decreases with increasing bias current.

3.3.3 (Gain Characteristics

The voltage gain of the amplifier is determined by the ratio of its transconductance g,
to its output conductance g,. When w = 0, the transconductance is Ig/Vy. The output
conductance is Ip/2Vj, where V; is the effective Early voltage of the output M transis-
tors in Figure 3.1. The effective Early voltage of the output M transistors is the parallel
combination V*VE/(V§* + V), where V* and V{ are the Early voltages of the n and p
output transistors, respectively. When w = 2, gy, is given by I5/(3/2Vy), since the linear
range increases by a factor of 3/2. The value of g, is given by Ig/3Vy, as the output cur-
rent in each arm falls from Ig/2 to Ip/3. Thus, effectively, the w = 2 case corresponds
to the w = 0 case, with Ip being replaced by 2Ip/3. So the gain is unchanged, because
gm and g, change proportionately. Independent of whether w = 0 or w = 2, the gain is
2Vy/ V. Figure 3.9a shows that the conclusions of the previous paragraph are borne out by
experimental data. As the common-mode voltage is lowered, the gain increases because of
the increasing transconductance, or decreasing Vy. The w = 0 and w = 2 amplifiers have
almost identical gain. Figure 3.9b illustrates that, as a function of bias current, the gain

initially rises, because the Early voltage increases with current. As the bias current starts
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to .go abdve threshold, however, V;, drops faster than Vj increases, and the gain starts to
fall. From Figure 3.7b and Figure 3.9b, we see that the location of the gain peak is at a bias
current (10 nA) where the linear range starts to change significantly, as we would expect.
Figure 3.9b shows, however, that the w = 0 and w = 2 cases do not have identical gains
at all bias currents, although the gains are similar. We attribute these small differences to
differences in g, and g, at bias-current levels of I5/2 versus I/3.

For the amplifier for which data were taken, the output transistors had a channel length
of 16pm in a 2pm n-well Orbit analog process. If higher gain is desired, these channel
lengths should be increased, or the positive and negative output currents can be cascoded

via pFET and nFET transistors respectively.

3.3.4 Offset Characteristics

A current offset of i can be compensated for by a voltage offset of v; = ix/gm, where g, is
the transcbnductance of the ix — vy, relation (ix and vy, are arbitrary variables). Therefore,
if the fractional current offset caused by a threshold or geometry mismatch is ix/Ix = 6,
then the voltage offset v; is ix/gm = (Ix/gm)(ix/Ix) = (Ik/gm)d. The Ig /g ratio is thus
the scale factor that converts percentage mismatches to voltage offsets. A transconductance
amplifier has an Ip /gy, ratio of of 2Ur/g. Thus, the same percentage mismatch results in
a larger voltage offset for an amplifier with a lower g. This general and well-known result
causes the lowering of transconductance to be assosciated with an increase in voltage offset.
However, we show next that, although this increase in voltage offset is fundamental and
unavoidable, certain transistor mismatches matter more than do others. By designing the
amplifier carefully, such that more area is expended where mismatches are more crucial, we
can minimize the offset. In our amplifier, mismatches may arise in the two nFET GM-M
mirrors, in the pFET M mirror, or between the W, S, and GM transistors in the two arms.
In a first-order analysis, the B transistors do not affect the voltage offset, except that g is
replaced by (2/3)g. We shall therefore start our analysis with the case of w = 0, and then
extend our analysis to the w = 2 case.

Suppose the net mismatch due to all mirror mismatches is such that i, /i_ = 125—(1 +
%”L) / %—(1 - %M) ~ 14 0p7. The mismatch in currents may be referred back to the input as

a voltage offset of +V3//2 on one input, and a voltage offset of —Vs/2 on the other input:
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Since 1—U_T; is the I /g, ratio of the W transistors, a mismatch of dy between those
transistors introduces a voltage offset of %J_LHJW on the well inputs. Because %f is the
Ik /gm ratio of the S transistors, a mismatch of g between those transistors results in a
voltage offset of %65 on their gates. This voltage offset is fed back to the sources of the
W transistors and is amplified by 1/(1 — k) when referred back to the those transistors’
well-inputs. Similarly, a mismatch of dg between the G transistors causes a voltage Qﬁset
of %nz on the gates of the GM transistors that is amplified by /(1 — ) when referred back
to the well inputs. The total offset, V,¢, is just the sum of the voltage offsets introduced by

all the mismatches, and is given by

Ur (i ~ 5G). (3.21)

Ur (ias + £5G> . (3.22)

We notice that the greatest contributor to the offset is the mirror mismatch §;. Thus,
it is important that all mirror transistors in the amplifier be big. The matching of the S
transistors is more important than is the matching of the W transistors since 1/x, > 1.
The matching of the GM transistors is more important than ié that of the W transistors
if K/kn > 1, which is usually the case; for x/k, ratios exceeding 1/kp, it is also more

important than the matching of the S transistors. The amplifier is thus laid out with big
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| pFET M “tranistors, moderate GM transistors, moderate nFET M transistors (to match the
GM transistors), moderate S transistors and small W transistors. It is interesting that the
transistors that matter the least for matching are the input transistors.

If the B transistors are present, a similar analysis shows that the matching of the M
transistors becomes even more important, because the g in Eq. (3.21) is replaced by (2/3)g.
In Eq. (3.22), we then have dpr — (3/2)d).

The sizes of the transistors that we used for the amplifier were 12/12 for the W transis-
tors, 12/12 for the bias transistor, 29/12 for the S transistors, 14/16 for the GM and nFET
M transistors, and 26/16 for the pFET M transistors. The total dimensions of the amplifier
were 85um X 190pum in a 2pm process. Our random offset is about 5 to 10 mV.

Due to Early voltage effects, the cascaded gains of the GM-M mirror and the pFET
M mirror in the positive-output-current path, exceed those of the GM-M mirror in the
negative-output-current path. Hence, with Vpos = Vpp, the amplifier typically has a sys-
tematic positive voltage offset that is on the order of 10 to 20 mV. The voltage Vps is
operated approximately 0.5 mV below Vpp, to cancel this offset. We have also built auto-
matic offset-adaptation circuits to control the offset of our amplifiers; we shall not elaborate
on those schemes here.

The data of Figure 3.10a show the offset voltage of a follower built with this amplifier
as a function of the Vpg voltage. The two current curves correspond to two different
common-mode voltages. The slope of the input—output relation is the ratio of the source
transconductance at the Vpg-input g to the transconductance of the overall amplifier g.
At high common-mode voltages, the offset is more sensitive to the Vpg voltage, because
g decreases with common-mode voltage. Figure 3.10b shows that the offset voltage is less
sensitive to the Vpg voltage at high bias-current levels, because g; decreases faster than

does g with bias current.

3.4 Follower—Integrator Characteristics

One of the most common uses of transconductance amplifiers is in building filters. Thus,
1t is important to study the properties of a follower-integrator. "The follower—integrator is
the simplest filter that can be built out of a transconductance amplifier; it is a first-order,

lowpass filter. Figure 3.11a shows the basic cohﬁguration. The voltage Vr is identical to Vg
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in Figure 3.1, and, with the capacitance C determines the corner frequency (CF) of the filter.
Figure 3.11b shows the dc characteristics of such a filter built with our amplifier. Except for
very low input voltages, where the parasitic bipolar transistors shunt the amplifier’s current
to ground, the output is a faithful replica of the input. Figure 3.12 reveals the effects of the
parasitic bipolar transistors in detail. At input voltages that are within the normal range of
operation of the amplifer (1V to 5V), such as those shown in the top portion of the figure,
the output of the follower is a simple lowpass-filtered version of the input. In the bottom
portion of the figure, we see that, as long as the input voltage is below about 0.7 V, the
amplifier’s bias current is shunted to ground, and the output voltage barely changes. The
constancy of the output voltage occurs because there is no current at the output of the
amplifier to charge or discharge the capacitor such that it barely changes. When the input
voltage is outside this range, the output voltage tries to follow the input voltage by normal
follower action. We show these data to illustrate the consistency of our earlier results with
the behavior of the follower—integrator; we do not recommend operation of the filter in
this regime. We shall now describe more useful linear and nonlinear characteristics of the

follower—integrator in detail.

3.4.1 Linear and Nonlinear Characteristics

Figure 3.13a and Figure 3.13b show data for the gain and phase characteristics of a follower—
integrator. The phase curve is much more sensitive to the presence of parasitics than is the
gain curve, which remains ideal for a much wider range of frequencies. The higher sensitivity
of the phase curve to parasitics is reasonable, because the effect of a parasitic pole or zero on
the gain is appreciable only at or beyond the pole or zero frequency location. The effect of
the same pole or zero on the phase is significant a full decade before the frequency location
of the pole or zero.

We have studied the origin of the parasitic capacitances in detail, but we shall not delve
Into this subject here. The parasitics are caused by the large sizes of transistors that we use
to reduce our 1/ f noise and offset; the dominant parasitics are the well-to-drain capacitance
of the W transistor, which causes a right-half-plane zero, and the gate-to-bulk capacitance of
the GM transistors, which causes a left-half-plane pole. Rather than make detailed models
of the parasitics, we model their effect by simply having a different corner frequency (CF)

for the gain and phase curves. As Figure 3.13a and Figure 3.13b show, the phase CF is
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| slightly lower than the gain CF, because of the excess phase due to the parasitics.

It is possible to reduce the influence of parasitics in our amplifier by having the nFET
GM-M mirrors be attenuating. Then, the differential-arm parasitics are at higher frequen-
cies, compared with the CF of the filter. Another alternative is to use a larger output
capacitor. However, for cochlear-filtering applications, for which this amplifier is mainly
intended, there is a steep amplitude rolloff beyond the CF of the lowpass filter, and fine
phase effects are not important at these frequencies. In addition, the second-order filter, of
which this filter is a part, is only an approximation to the more complicated filtering that
occurs in a real cochlea. Thus, we have not expended energy optimizing the parasitics to
get an ideal first-order filter.

Figure 3.13c shows the first, second, and third harmonic rms output amplitudes when
the input rms amplitude is 1V (peak-to-peak of 2.8V). The data were collected with an
EGG3502 lockin amplifier. Because of the wide linear range of our amplifiers, there is little
distortion even at these large amplitudes. At frequencies that are within a decade of the
CF, the second harmonic is less than 4 x 10™2 the amplitude of the first harmonic. The
third-harmonic distortion is negligible at these frequencies. The total harmonic distortion
is less than 4%.

Figure 3.14 plots the relative amplitude distortion—that is to say, the ratio of the
magnitude of the second and third harmonic amplitude to that of the first. Note that the
X-axis is plotted in multiples of the CF, and that we are uninterested in effects more than a
decade beyond the 1 point. The chief features of interest are that the addition of the bump
transistors reduces third-harmonic distortion as we expect from Eq. (3.14) and Eq. (3.15).
However, it also increases the second-harmonic distortion at frequencies just below the CF,
for reasons unknown to us. Usually, second-harmonic distortion occurs along with dc shifts.
Figure 3.15 shows these shifts for an input signal with an rms input amplitude of 1V. These
shifts exert only a mild influence in cochlear designs, because input-signal amplitudes far

- beyond the CF are small due to successive filtering from prior stages. The dc shifts are not
significant for small inputs. The dc shifts are observed in OTA-C follower-integrators as
well; they are typically positive for amplifiers with nFET differential pairs and negative for
amplifiers with pFET differential pairs.

Figure 3.16a shows the shifts in gain and phase CF for the w = 0 and w = 2 cases as a

function of the input rms amplitude. Note that the gain and phase CF shifts are similar.
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| The addition of the B transistors decreases the amount of CF shift due to the linearization
of the tanh. Figure 3.16b shows the shifts in CF as a function of the input dc voltage to
the followér—integrator. As we expect from prior data on the amplifier (Figure 3.5a), the
CF shifts track the shifts in transconductance with dc input voltage. The tracking is seen

for gain and phase CF curves, and for the w = 0 and w = 2 cases.

3.5 Noise and Dynamic Range

The largest signal that a filter can process without excessive distortion is determined by
the linear range of that filter. The smallest signal that a filter can process is one whose
rms amplitude is just above the filter’s input-referred noise. The dynamic range of a filter
is given by the ratio of the power of the largest signal to the power of the smallest signal.
We have already discussed linear range and distortion in the follower—integrator. Now, we
focus on the other half ofv the story: noise in the follower—integrator. After we compute
and measure the noise, we can tell whether there has been an improvement in the dynamic
range of the follower—integrator. Since there are no free lunches in nature, we also want
to discover what price we have paid in our design, in terms of the increase in power and
area. We shall discuss noise and dynamic range in our design in Sections 3.5.1-3.5.3. We
shall discuss the dynamic range of capacitive-divider schemes in Section 3.5.4, since those

schemes bear similarity to our technique of using the well as an input.

3.5.1 Theoretical Computations of Noise in the Amplifier and Follower—

Integrator

We now compute the noise in a follower—integrator built with our amplifier. We tie the v,
and v_ to a common constant voltage source, and the output to another constant voltage
source. (Then, we replace each of the 13 transistors in Figure 3.1 with its small-signal
equivalent circuit. We introduce a noise current source between each transistor’s drain and
source terminals in the small-signal equivalent circuit. For each noise source, we compute
the ac transfer function between its current and the differential output current. We sum the
hoise contributions from each of the 13 sources incoherently; that is to say, the square of
‘the net output current noise is the sum of the squares of the current noise from each source.

The input-referred voltage noise per unit bandwidth is the output current noise per unit
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| bandwidth divided by the transconductance of the amplifier. The total voltage noise is the
voltage noise per unit bandwidth integrated over the bandwidth of the follower—integrator.
The bandwidth of the follower-integrator is determined by the transconductance of the
amplifier and the capacitance. If the amplifier is used in a system, where the bandwidth is
determined by some other part of the system, then this bandwidth determines the interval of
integration. The parasitic capacitances in the amplifier set an upper bound on the maximum
possible bandwidth.

Although there are 13 transistors in Figure 3.1, we do not get 13 transistors’ worth of
current noise at the output. Our calculations will show that we get about 5.3 transistors’
worth of current noise. This figure is only slightly higher than the 4 transistors’ worth of
noise obtained from a 5-transistor ordinary transconductance amplifier (OTA). The reduc-
tion in noise occurs for three reasons. First, for each noise source, there is a total or pdrtial
cancellation of its noise current at the output, due to opposing contributions from the two
circuit arms. As an example, the noise current from the bias transistor in Figure 3.1 (with
gate voltage V) makes no contribution to the output noise current, because it branches
into equal portions in the two differential arms, which cancel each other at the output.
Similarly, other noise sources, such as those from the B transistors, contribute no noise.
The sources from the GM transistors have a partial noise cancellation. Second, some of
the noise current from each source is prevented from contributing to the output by local
shunting circuit impedances. As an example, the noise currents from the W transistors
contribute only 0.16 transistors’ worth of current noise to the output because most of the
noise current gets shunted by the W transistors themselves. Third, when we compute the
incoherent noise average across many sources, a given source’s contribution to the net noise
is proportional to the square of its fractional current gain; that is to say, to the square
of the output noise current divided by source current. Therefore, weak contributions are
weakened further.

If we define ap, ag, aw, ag, and ajs to be the current gain between the output current
of the amplifier and the input drain-to-source noise current of a B,S,W,G, or M transistor,

respectively, we can show that

ap = 0, (3.23)
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Kn

ag = , 3.24
S Kn + Knkp + KKp ( )
Knkp
lo' = , 3.25
w Kn + Knkp + KKp ( )
ag = —mthnkp (3.26)
Kn + Knkp + KKp

oy = 1. (3.27)

Since each transistor has the same dc current flowing through it (i.e. Ig/2 in the w = 0
case, or Ig/3 in the w = 2 case), the magnitude of the noise current source across each
transistor is the same. Thus, the output-current noise of the amplifier is the noise current

due to one transistor times an effective number of transistors N, where, N is given by
N = 2a5% 4+ 2aw? + 206° + dap®. (3.28)

For our amplifier with x = 0.85, k, = 0.7, and &, =~ 0.75, the numbers work out such that
N = 5.3. The dominant contribution to N comes from the four M transistors which
contribute a whole transistor each. The two G transistors contribute 0.865 transistors.
The two S transistors contribute 0.28 transistors. The two W transistors contribute 0.16
transistors. The B transistors and the bias transistor contribute no noise. The most noise-
free linearization techniques, in decreasing order of merit, are bump linearization, the use
of the well as an input, source degeneration, and gate degeneration. Bump linearization is
the only technique of the four that adds no noise whatsoever. Note that, depending on the
circuit configuration, the relative noise efficiencies of the use of the well as an input, source
degeneration, and gate degeneration may vary. For example, in a well-input amplifier with
source degeneration but no gate degeneration, aw = as = k,/(k + K,). In the latter case,
the use of the well as an input and gate degeneration each contribute 0.41 transistors’ worth
of noise.’

The magnitudes of the individual noise current sources depend on the dc current flowing
through the transistor, and are well described by a white-noise term for low subthreshold
currents [1]. At high subthreshold currents, there is also a 1/ f-noise term. Our experimental
data in Section 3.5.3 reveal the amount of the 1/f contribution; we shall model this term
empirically, because no satisfactory theory for 1/f noise currently exists.

In the first paragraph of this section, we explained the procedure for calculating the
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noise. We shall now perform the calculations. As usual, we begin by analyzing the case for
w = 0 and then extend our analysis to the w = 2 case. The output-current noise of the

amplifier EZ is given by

_ 00 2
2= /f N <2q(%3) + @) df, (3.29)

where the first and second terms in the integral correspond to white noise and 1/f noise,
respectively; Ip is the bias current, and K is the 1/f noise coefficient. We also assume that
there is low-frequency adaptation in the amplifier, so that frequencies below f; are not
passed through. This assumption is necessary if we are to prevent the 1/f noise from
growing without bound at low frequencies. In our amplifier, we have an offset-adaptation
circuit that keeps f; around 1 Hz. Also, typically the K for pFETs is smaller than is that for
nFETs, and scales inversely with the channel area of the transistor. However, we assume a
transistor-invariant K, for‘ simplicity.

The corner frequency of the follower—integrator f, is

Ip
fe= OV, (3.30)
so from Eq. (3.29), the input-referred voltage noise @ is
KI2
- /OON(CJIB-i-TfB) ( 1 )df
e =
: no I/Ve) \1+(f/f)
_ NgVi2\ nf. NKV? 2
NqgVy NKV;? ( I >2
= In{1 —_— .
i T8 " ( \arrov;
(3.31)

In evaluating Eq. (3.31), we computed two integrals:

x  dx T
_ T 32
/0 = = (3.32)
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Note that the 1/f noise rises with bias current because of the increasing bandwidth.
The magnitude of the 1/f noise depends on the bandwidth; that is to say, it depends on
Ip/CVy. The white noise is current invariant, because the noise per unit bandwidth and
the bandwidth scale as 1/Ip and Ip, respectively. The white noise increases linearly with

V1, whereas the 1/f noise increases quadratically with V7.

3.5.2 Theoretical Computations of Dynamic Range

The dynamic range Dpg is defined to be the ratio of rms input power in a signal with
amplitude Vi, to the input-referred noise power; this definition is implicitly based on our
willingness to accept the distortion present at this amplitude, which from Figure 3.13 is
seen to be reasonable. If we want to be more conservative with respect to distortion, then

we simple scale V7, by the necessary fractional amount. So, we have from Eq. (3.31) that

VZ2/2
b = Vi
v;
_ V7 /2
© Ngvi , NKV.? I 2
ic- g ln(l"‘(_B—zwf,ch))
1

_ . (3.34)
N¢ , NK In
sov; T g 0 (1 + (27rf,ch) )

In Eq. (3.34), the white-noise term is typically much larger than the 1/f term, because
of the small value of K in our large, mostly pFET transistors, because frequencies below
1Hz are vﬁltered out by offset adaptation, and because white noise is still relatively high
at the low subthreshold current levels. Even at high bias currents, where the 1/f noise
appears to be important on a log—log plot of noise amplitude versus frequency, the net area
under the plot is dominated by white noise on a linear-linear plot. Thus, from Eq. (3.34),
the dynamic range is nearly

20V,

Dp = . 3.35
R Ng (3.35)

We see from Eq. (3.31) that the white-noise power increases like V. The maximum signal
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power increases like V,-'f. Thus, if white noise dominates, wide linear range implies more
dynamic range, as Eq. (3.35) predicts. The noise per unit bandwidth scales like V2, but
the bandwidth scales like 1/V}, such that the overall noise scales like V. If bandwidth is to
be preserved, then power proportional to Vz, has to be expended, according to Eq. (3.30).
After the bandwidth has been restored to its original value, however, the noise still remains
at a value proportional to V. The noise remains at the same value because thermal noise
is current invariant. The current invariance arises because the noise per unit bandwidth
and the bandwidth scale like 1/Ip and I, respectively. The extra dynamic range has been
earned at the price of an increase in power.

We see from Eq. (3.31) that the 1/ f-noise power increases like V2. The maximum signal
power increases like V2. Thus, if 1/f noise dominates, wide linear range does not affect the
dynamic range. The noise per unit bandwidth scales like V2, and the bandwidth scales like
1/Vy. If bandwidth is to be preserved, then power proportional to V7, has to be expended,
according. to Eq. (3.30). After the bandwidth has been restored to its original value, however,
the noise increases like V2 because 1/ f noise is not current invariant, but rather is bandwidth
invariant. The bandwidth invariance arises because the noise per unit bandwidth depends
on only VZ and is current invariant. So, the total noise over a given bandwidth depends
on only that bandwidth. The advantage of linearity in such a situation is merely that the
signal and noise levels have been scaled to be suited to inputs that themselves have a higher
noise floor and large amplitudes. There is also an area cost assosciated with extra dynamic
range: To reduce 1/f noise and offset, we must use transistors with large areas.

If w = 2, the analysis for v;2 and Dg proceeds similarty. For the currents through the
transistors, Ig/2 — Ig/3. For the bandwidth and linear range, Vy ~» (3/2)V;. Ifaw =0
and a w = 2 follower-integrator have the same bandwidth, then we can show that they
have identical input-referred noise spectra. For the bandwidths for the w = 2 and w = 0
cases to be equal, however, the bias current for the w = 2 case has to be increased by
a factor of (3/2) over that for the w = 0 case. Theoretically, the dynamic range of the
w = 2 case is (3/2)? times the dynamic range of the w = 0 case because of the increase
in linear range. In practice, however, if the linear range is already large in the w = 0
case, the increased linearity in the w = 2 case does not reduce distortion further. The
distortion is typically limited by some other mechanism. For example, in our amplifier the

dominant distortion is due to « shifts caused by the nonlinear well-to-channel capacitance.
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Nevertheless, the increased linearity does reduce third-harmonic distortion and CF shifts

with input amplitude, as shown in Figure 3.14b and Figure 3.16b.

3.5.3 Experimental Noise Curves

Figure 3.17a shows noise spectra at low bias-current levels for a follower-integrator with a
capacitance C = 1.02 pF. The data were taken with a HP3582A spectrum analyzer. From
Eq. (3.29), we would expect white or thermal noise to be dominant at low bias currents.
We observe from the figure that, even at the lowest frequencies, no 1/f noise is visible. We
were able to fit the data with lowpass-filter transfer functions as shown. Note that, for the
low bias currents of Figure 3.17a, where 1/f noise is hard to discern, we did not use any
1/f terms in our fit. The terms in the integral of Eq. (3.31) predict that the noise spectra
reveal relatively more 1/f noise at high bias current levels because the white-noise term
decreases and the 1/f term remains roughly constant. The data of Figure 3.17b illustrates
that this .prediction is approximately borne out. However, we were able to empirically fit

the voltage noise per unit bandwidth % more accurately by a term of the form

— _(Kp 1
7 = ( = +A) <———_1+(f/fc)2>. (3.36)

Figure 3.18a shows a typical fit to the data in more detail. From the first line of Eq. (3.31),
we would expect Kp = V2K /4,n = 1,and A = V;2Nq/Ip. Since Kp and n are empirical,
they do not yield substantial theoretical information, although they are useful practically.
In the following paragraph, we show how to extract the value of N of Eq. (3.35) from the
value of A.

From the value of f. obtained from the fit to the data, from our knowledge of C, from
measurements of I, and from Eq. (3.30) we obtain V;. Given Vj, and the fit parameter A,
we obtain IV, the effective number of transistors contributing shot noise. Figure 3.18b shows
a plot of N versus the bias current Ig. We observe that N is roughly 7.5 in subthreshold,
and decreases as the bias current goes above threshold and space-charge smoothing sets in.
The value of N in subthreshold is within a factor of 1.4 of our theoretical prediction of 5.3.
Above threshold, the space-charge smoothing, that is to say, the modulation of the mobile

“charge concentration by the mobile charges themselves, reduces the noise to a value below

what we would expect from shot noise.
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o Figuré 3.19 shows a plot of how the Kp and n of Eq. (3.36) vary with bias current 5.
Since Kp =K VL2 /4, part of the increase in Kp arises from the increase in V7, and part of it
arises from the increase in K. It is also interesting that, as the bias current increases, the
1/f noise power systematically rises from about 0.67 to about 0.95.

The noise measurements of Figure 3.17 through 3.19 were taken for an amplifier with
w = 0. We also experimentally confirmed that the noise in a w = 2 amplifier was identical

to that in a w = 0 amplifier of the same bandwidth.

3.5.4 Capacitive-Divider Techniques

Our use of the well as an input implicitly involves a capacitive-divider technique: The gate,
surface potential, and well form three terminals of a capacitive divider. We chose the well
as an input because coupling ratio of the well to the surface potential, 1 — k, is smaller than
the coupling ratio of the gate to the surface potential, k. The advantage of this implicit
capacitivé-divider scheme is that the divider is inherently part of the transistor; so, we
exploit a parasitic capacitance rather than avoiding one. Also, no additional floating-gate
adaptation circuits or control voltages are needed. The disadvantage of the technique is
that the capacitive-divider ratio is fixed by the physical parameters of the process, and is
slightly nonlinear. If the divider ratio is not as small as desired, we must use other circuit
techniques like source degeneration, gate degeneration or bump linearization to obtain wider
linear range. Luckily, in our circuit, the additional transistors used to widen the linear range
do not increase the noise greatly, but they do cost more area. It is logical to ask whether
we can do better in area consumption with circuits that have explicit capacitive dividers.

We shall discuss two simple schemes where capacitive dividers are explicitly used around
OTA’s. We assume that any floating-gate inputs of the amplifiers are held at a proper dc
value by low-frequency adaptation circuits. We further assume that the adaptation circuits
do not affect noise in the amplifier’s transistors or in the circuit. In practice, this assurﬁption
may not be true of certain adaptive schemes.

Figure 3.20a shows a simple scheme. The voltage Vr determines the bias current in
the OTA. In practice, parasitic capacitances between the output and input terminals of the
OTA can hurt the design significantly. If V7, is the linear range of the OTA, and N is the
effective number of noise-contributing transistors in the OTA, then it can be shown that

the dynamic range Dp is
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Da—- (o + C_C‘%) (462) i (3.37)

The analysis leading to the previous equation is similar to that preceding Eq. (3.35). We
assume that thermal noise dominates. From Eq. (3.37), we see that C,,; needs to be
moderately large. If not, any improvement in dynamic range over that of an OTA-C
follower—integrator arises only at the expense of an extremely large value of C. For example,
if Cout were 0, we would need C to be approximately 15 pF to get a dynamic range
improvement of 15 over that of an OTA-C follower—integrator with 1pF.

Similarly, for the inverting configuration of Figure 3.20b, we get

C2(CintC1) Y\ ( Co+Cin+Ci
2 (Cm"t T G Cin 01 Co Vi

— 2 b
Dg = No . (3.38)

Once again, we observe that C,,; must be moderately large. If not, any improvement in
dynamic range arises only at the cost of an extremely large value of (C;y, + Cy). This con-
figuration also introduces an RHP zero. If the effects of this zero are to occur at frequencies

well past the CF of the follower—integrator, then

Cout (%

) + Cin + C1 > Cs. (3.39)

Parasitic capacitances can also hurt this design significantly, especially if the explicit
capacitors in the circuit are small.

Actually, the circuit of Figure 3.20b does not even need an OTA, as the reference input
of the OTA is not really used. The OTA can be replaced by a two-transistor amplifier, but,
in that case, V7, also should be replaced by V7 /2. Thus, from Eq. (3.35), as in a normal
OTA, N is still effectively 4.

Thedretically, by making capacitive-divider ratios appropriately small, and by spending
power, the dynamic range may be increased to values beyond that attained in our desigﬁ.

A floating-gate adaptation scheme combined with a two-transistor version of Figure 3.20b

is being explored {30,31].
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3.6 Conclusions

We conclude by summarizing our key findings:

1.

If the amplifier’s noise is predominantly thermal, then an increase in its linear range
increases the follower—integrator’s dynamic range. If the amplifier’s noise is predomi-
nantly 1/ f, then an increase in its linear range has no effect on the follower-integrator’s
dynamic range. To preserve follower-integrator bandwidth, power consumption in-
creases proportionately with an increase in the amplifier’s linear range according to

Eq. (3.30).

In subthreshold, the noise is predominantly due to thermal noise, even at high bias
currents, where some 1/f noise is present. The theory described in [1] accurately
modeled our thermal noise. Empirical expressions in the paper modelled our 1/f

noise.

In subthreshold circuits where thermal noise dominates, a simple formula for the
dynamic range of a follower—-integrator is Dg = 2CV;/Nq. The capacitance of the
follower—integrator is C, the linear range of the amplifier is Vy, the charge on the
electron is g, and the effective number of noise-contributing transistors in the amplifier

is N. A more complicated formula that includes 1/f noise is given by Eq. (3.34).

Experimentally, we obtained a dynamic range of 65.2 dB in a follower—integrator with
a capacitance of 1pF. A signal with an input rms amplitude of 1V yielded 4% total
harmonic distortion. The total measured noise of the follower—integrator was 0.55 mV.
A simple OTA-C follower—integrator has a theoretical linear range of 75 mV, and a
theoretical noise floor of 110 V. Thus, we obtained a dynamic range improvement of
at least 8.5 dB over the OTA-C follower—integrator. In practice, due to offchip noise

floors on the order of 0.5-1 mV, the improvement can be as much as 20 dB.

. Bump linearization is our most efficient linearization technique, because it increases

the linear range of our amplifier without increasing its noise.

. Gate degeneration is a useful transconductance-reduction technique. It can be gen-

eralized to the notion of the current increase from one input degenerating another

input. The technique could be useful in multiple-gate-input circuits [32].
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- 7. When the well is used as an input, the gate must be operated at as low a voltage as

possible in order to obtain maximum dc-input operating range.

8. Capacitive-divider techniques that widen the linear range bear similarity to our tech-
nique of using the well as an input. If appropriate attention is paid to capacitor
sizing, parasitic capacitances, and floating-gate adaptation in these techniques, then

they may yield dynamic range improvements similar to ours.

9. Changes in «, the subthreshold exponential parameter, are due to changes in dc
current and to changes in well-to-gate voltage. These two effects may be studied

separately through the techniques described in the paper.
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Figure 3.1: The Wide Linear Range Transconductance Amplifier. The figure shows the
transconductance amplifier with v; and v_ well-input voltages and the I,,; current output.
The voltage Vp sets the bias current of the amplifier and the voltage V,s allows a fine
adjustment of its offset if necessary. The S transistors reduce the transconductance of the
differential-pair W transistors through source degeneration. The GM transistors reduce the
transconductance of the W transistors through gate degeneration. They also serve to mirror
the differential-pair currents to the output of the amplifier. The B transistors implement
bump linearization. The M transistors form parts of the current mirrors in the circuit.
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Figure 3.2: Signal-Flow Diagram for a Saturated Well Transistor. (a) A well transistor
with marked voltages and currents. (b) The small-signal equivalent circuit for the well
transistor. (c) The signal-flow diagram represents the dimensionless relationships between
the small-signal variables of the transistor. In our paper it shall prove to be the most
useful and insightful way of analyzing transconductance relationships, rather than the more
conventional circuit representation shown alongside it. In the signal-flow diagram, it is
understood that all currents are normalized by Ipg, all voltages are normalized by Ur, and
all transconductances are normalized by Ipgs/Up. Thus, the small-signal relationship of the
transistor takes the simple form igs = v, — kvg — (1 — K)vy.
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Figure 3.3: Transconductance Reduction through Degeneration. (a) A half circuit for one
differential arm of our amplifier, if we ignore the B transistors of Figure 3.1 for now. (b) A
small-signal equivalent circuit for this configuration. (c) A signal-flow diagram for this con-
figuration. The signal-flow diagram shows that the transconductance reduction is achieved
through two parallel feedback loops. The top loop is due to source degeneration and the bot-
tom loop is due to gate degeneration. A more detailed description of the feedback concepts
assosciated with transconductance reduction may be found in Section 3.2.2.
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Figure 3.4: I-V curves for the Amplifier. (a) Experimental data for our amplifier for values
of w =0, 1.86, and 66, fitted to Eq. (3.19). (b) For w = 2, the simple tanh-fit of Eq. (3.16)
1s a good approximation to Eq. (3.19), if Vz — (3/2)Vr,
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Figure 3.5: Differential and Common-Mode Curves. (a) The data shows that the current
rises as the common-mode voltage is decreased from 5V to 1V, because changes in x increase
the transconductance of the amplifier. Below 1V, the well-to-source junction becomes for-
ward biased, and the parasitic bipolar transistors, which are part of every well transistor,
shunt the current of the amplifer to ground. (b) The same effects as in (a) but from the
perspective of varying the differential-mode voltage, while fixing the common-mode voltage.
Further details may be found in Section 3.3.1.
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Figure 3.6: The effect of the parasitic bipolar transistor. (a) A vertical crosssection of a well
transistor in an n-well process. (b) The equivalent circuit of this well transistor contains
two parasitic bipolar transistors. (c¢) The bipolar transistor at the source is responsible for
shunting the amplifier’s current to ground at low common-mode voltages, while the bipolar
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3.7 Appendix A

This appendix contains a quantitative discussion of the common-mode effects in our ampli-
fier. The data in the appendix were taken for a w = 0 amplifier built in a p-well process, as
opposed to the data in the rest of the paper, which were taken in an n-well process. The
k for the p-well process is lower, and consequently the linear range is near 0.6 V, rather
than 1V. We also use the grounded-substrate convention [12]. This convention enables us
to present the data as though they were from an n-well process, as in the rest of the paper.
The grounded-substrate convention implements the following transformation from n-well
space to p-well space: V — —V, n-channel—p-channel, and p-channel—n-channel. Note
that the transformation is applied to all voltages implicitly defined in terms of the gate,
source, drain, or well voltages in addition. For example, the flatband voltage is defined in
terms of v — vy, and changes sign as we move from n-well space to p-well space. Thus, if
the flatband voltage is quofed as —0.75 V for an n-channel transistor, it’s taken as -0.75 V

for a native transistor in n-well space and as +0.75 V for a well transistor in p-well space.

3.7.1 The Effects of Changes in x

In our amplifier, the gates of the W transistors are near ground. As we lower the volt-
ages of the well inputs, the well-to-gate voltage decreases; consequently x decreases; the
transconductance, which is proportional to 1 — «, increases. We now analyze this effect
more quantitatively.

The parameter & is a function of the gate-to-well voltage. We can show that
X
2

\/j;_(UG—'UW—VFB)

k=1-—

: (3.40)

where v is the body-effect parameter and Vrp is the flatband voltage.

A well-input amplifier that has no source degeneration or gate degeneration has a
transconductance of magnitude g,, given by g, = (1 — 5). By computing the transcon-
ductance at the origin for various common-mode voltages Vi, we measured g,, as a function

of V¢ at a bias current corresponding to Vpp — Vg = 0.77 V. From Eq. (3.40), if we plot
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‘1/(1 — n)2 versus vy, i.e., 1/g,?% versus vg, we get

which is a straight line. Thus, we can compute v and Vpp from the slope and y-intercept
of this line, if we know V. For our experiment, we grounded the gate to allow maximum
dc input operating range, so Vg was 0. From the data shown in Figure 3.21a, we computed
v = 1.06V2 and Vrp = 0.68 V. In comparison, the SPICE parameters from the MOSIS
sheets quoted v = 1.05V'% and Vrp = 0.75V. The actual flatband voltages are negative;
since the data were taken in a p-well process, we use the positive values as explained in the
first paragraph of this appendix.

A well-input amplifier with gate degeneration has a transconductance of magnitude g,

given by

%= T +1 e /';n). (3.42)
For such an amplifier, we can determine the functional variation of k with V¢ from Eq. (3.40),
using the previously determined values of Vpp and v, and with Vg being the amount of
diode drop on a G transistor. By using measured well and native transistor parameters
we estimate Vg = 0.69 V given that Vpp — Vg = 0.77 V, and also that x, = 0.714. By
using these parametric values in Eq. (3.42) and Eq. (3.40), we predicted the dependence
of g4 with vc. The middle curve of Figure 3.21b shows that changes of g, with Vo were
in good agreement with the theory of Eq. (3.42) and Eq. (3.40). The uppermost curve of
Figure 3.21b is that of g, versus V¢ and is also plotted for reference; it is simply a different
way of plotting Figure 3.21a.

A well-input amplifier with source and gate degeneration has a transconductance g given
by Eq. (3.3). By using the functional variation of x versus Vg, the values of k,, the value
of Vg estimated in the previous paragraph, and k, = 0.753, we were able to predict the
variation of g with V¢, as shown by the lowest curve of Figure 3.21b. The data begin to
deviate from theory at the lower input voltages, probably because of the change in Kp with

increasing well-to-gate voltage.
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3.7.2 The Effects of the Parasitic Bipolar Transistor

To underspand exactly when the parasitic bipolar transistor present in every MOS well
transistor becomes significant, we find it instructive to analyze the interaction between the
bipolar and MOS modes of operation for a well transistor: The subthreshold saturation
current of an MOS transistor situated in a well, which is assumed to be an n-well without
loss of generality, is given by

o = Del ) -

iyv = Iye , (3.43)
where 1) is the surface potential, and I is a constant pre-exponential factor. The constant
Ins does have a weak dependence on 4, described in [29], that we neglect for simplicity. If
Itg is the threshold current of the transistor, and if, at this point, the surface potential is

below the source potential by an amount 2¢r, then
Ing = Ipge29F/Ur, (3.44)

The constant Irg is typically near pCor(W/2L)(Ur /k)>.
If all voltages are referenced to the well (i.e., viy = 0), and we define ) = —¢ and

F = —(vg — VFg), then we can show that

2
P = (\/W+1—2—%> : (3.45)

We introduce the definitions of ¢ and TF because it is more convenient to work with —
and —(vg — Vpp) when dealing with transistors in the well.

The source current of a well transistor is split into an MOS component, called 7, which
reaches the drain of the transistor and a bipolar component, called iz, which is shunted

away to ground. The bipolar current is given by

ip = IBe(ESU;;ﬂ), (3.46)

where Ip is the saturation current of the bipolar. The MOS current is given by Eq. (3.43).
The question that we now ask is this: When does the MOS current exceed the bipolar

current (ips > ip)? The answer to this question provides insight into how a well transistor
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.must be operated if it is to have as wide a range of MOS operation as possible. We notice
that the MOS and bipolar transistors have the same dependence on the source voltage,
vg. Thus, in subthreshold, the answer is independent of the source voltage. The MOS
pre-exponential factor, I, is usually 1000 to 10000 times smaller than the bipolar pre-
exponential factor Ig. Thus, if the MOS transistor is to have any hope of competing with
the bipolar transistor, its surface potential must be below that of the well by the amount
that compensates for its pre-exponential handicap. Hence, the gate-to-well voltage must be
below the flatband voltage by an amount needed to generate an adequate depth of depletion
region. We now compute exactly how much this amount must be.

If ipr > ip, then, from Egs. (3.46) and (3.43), we must have

Ip
Urln (m)

> Veum, (3.47)

v

vw — P

where Vpjr, defined as in the previous equation, is a voltage that yields a measure of by
how much the bipolar’s pre-exponential constant exceeds the MOS’s. Thus, if we reference

all voltages to the well, Eq. (3.47) yields

—_71[} 2 VBM,
1/_) Z VBM7
2
2
( —F+7Z—%) > Vau. (3.48)

After we perform simple manipulations on the previous equation, we finally obtain the

criterion for the MOS transistor to dominate over the bipolar transistor:

IA

Ve —VVBM (\/ Veum + 7) , (3.49)

< Veor (3.50)

(ve — vw)

where we define Vor to be the RHS of Eq. (3.49). If we require i3 > 100ip, for robust
operation, we must increase Vpps by UrIn100 before using Eq. (3.50). We now have a

recipe for operating well transistors in subthreshold: As long as we ensure that the gate is
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sufficiently below the well, we are in no danger of turning on the bipolar transistor. Thus,
if the range of MOS operation is to be as wide as possible, the gate voltage must be set to
as low a value as circuit requirements will allow. The well is then free to operate from low
values near the gate voltage to Vpp. Therefore, when the well is being used as an input,
the gate should be at ground or near ground. In our amplifier, it is one diode drop above
ground.

To understand the effects of the parasitic bipolar transistor in our amplifier, we need
only to understand the half-circuit shown in Figure 3.22a, because the bipolar transistor(s)
in the arm(s) of our amplifier is (are) activated if the voltage of either input gets too
low. It is thus simpler to analyze the effects of the bipolar transistor in a single arm of
the amplifier, and to extend the analysis to the case where the bipolar transistors in both
arms are activated. Hence, we tie one input to Vpp to turn off completely one arm of the
amplifier, and we concentrate on the turned-on arm.

The circuit of Figure 3.22a is one half of the differential pair of the amplifier with
the S transistor omitted, and the bipolar transistor drawn explicitly. The S transistor is
omitted because it affects the drain voltage of the bias transistor (the bias-current transistor
not shown), but has no effect on the currents ig and ijs, which are our primary concern.
Figure 3.22b and Figure 3.22c show the small-signal model and corresponding signal-flow
diagram that describe the half-circuit of Figure 3.22a.

When the Well—inpﬁt voltage vy is in the 1V to 5V range, the gate voltage, v, which is
one diode drop above ground, is sufficiently below the well voltage that all the bias current
is carried by the MOS transistor. As the well voltage begins to drop, it starts to get close
to the gate voltage and the bias current starts to be diverted to the bipolar transistor. The
data of Figure 3.23a show that a differential-pair-like competition between the MOS and
bipolar transistors yields a sigmoid curve in output current versus input voltage. The data
curves of Figure 3.23 were normalized by their saturation current values, and were fit by

sigmoid equations of the form

. 1
N T Ty e—0326(ury—Var)/Uz ?

(3.51)

with differing values of Vi for the three curves.

The input voltage at which the bipolar and MOS currents become equal, Vy, depends on
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fhe bias current. Higher bias currents drop larger voltages across the GM transistor, increase
the gate voltage of the W transistor, and consequently cause the well-input voltage to
approach the gate voltage at higher values. The data of Figure 3.23b show our measurements

of this effect, and also show that

Vg =0.81(Vpp — Vp) + 0.019. (3.52)

Given the theory that we have developed for the bipolar-mos interaction (Eq. (3.50)), and
the effects of changes in x (Eq. (3.40)), we can predict what Egs. (3.51) and (3.52) should be
by analyzing the circuit of Figure 3.22a. Using measured values for the constants Vrg, 7,
Kn, &b (the  of the bias-current transistor), and Vg, (determined by measurements of the
bipolar and MOS pre-exponential constants), we were able to obtain reasonable agreement
between theory and experiment. From the signal-flow diagram of Figure 3.22¢, we can show

that the constant 0.326 of Eq. (3.51) is nearly

a= 2/5’;2/2%;. (3.53)

Note that we evaluated x with the surface potential at a value that was Vg below the well
voltage. We found that it was 0.467. Using Eq. (3.50) and elementary reasoning, we can
show that Eq. (3.52) is derived from

K Ur. [ IB
Vo = 22 (Vep —V |2 ]-V 3.54
H= (Vbp — VB) + P (2—’5\] cT; (3.54)

where IP and IV are the subthreshold scaling parameters for the bias-current transistor
and for the G transistor respectively. We found that x, = 0.5615, k, = 0.714, I =
L12x1071 A, IV = 1.40x 10716 A, Ip = 2.12 x 10726 A, Irg = 1.8 x 1077 A, 2¢p = 0.749
V, Vey = 0.2165V, v = 1.05V%, Vrp = 0.75 V. The most interesting finding is that Vpas
= 0.26 V, which implies that the MOS transistor’s pre-exponential constant I; is about

4000 times as weak as the bipolar transistor’s pre-exponential constant Ig.
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Chapter 4 A Low-Power Wide-Dynamic-Range Analog
VLSI Cochlea

Abstract

Low-power wide-dynamic-range systems are extremely hard to build. The biological
cochlea is one of the most awesome examples of such a system: It can sense sounds over 12
orders of magnitude in intensity, with an estimated power dissipation of only a few tens of
microwatts. In this paper, we describe an analog electronic cochlea that processes sounds
over 6 orders of magnitude in intensity, and that dissipates 0.5mW. This 117-stage, 100Hz-
to-10Khz cochlea has the widest dynamic range of any artificial cochlea built to date. The
wide dynamic range is attained through the use of a wide-linear-range transconductance
amplifier, of a low-noise filter topology, of dynamic gain control (AGC) at each cochlear
stage, and of an architecture that we refer to as overlapping cochlear cascades. The operation
of the cochlea is made robust through the use of automatic offset-compensation circuitry.
A BiCMOS circuit approach helps us to attain nearly scale-invariant behavior and good
matching at all frequencies. The synthesis and analysis of our artificial cochlea yields insight
into why the human cochlea uses an active traveling-wave mechanism to sense sounds,
instead of using bandpass filters. The low power, wide dynamic range, and biological

realism make our cochlea well suited as a front end for cochlear implants.

4.1 Introduction

The dynamic range of operation of a system is measured by the ratio of the intensities of
the largest and smallest inputs to the system. Typically, the dynamic range is quoted in the
logarithmic units of decibel (dB), with 10dB corresponding to 1 order of magnitude. The
largest input that a system can handle is limited by nonlinearities that cause appreciable
distortion or failure at the output(s). The smallest input that a system can handle is limited
by the system’s input-referred noise floor.

At the same given bandwidth of operation, a low-current system typically has a higher

noise floor than does a high-current system: The low-current system averages over fewer
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electrons per unit time than does the high-current system, and, consequently, has higher
levels of shot or thermal noise [1]. Thus, it is harder to attain a wide dynamic range in
low-current systems than in high-current systems. A low-voltage system does not have as
wide a dynamic range as a high-voltage system because of a reduction in the maximum
voltage of operation.!

Low-power systems have low-current or low-voltage levels; consequently, it is harder
to attain a wide dynamic range in low-power systems than in high-power systems. The
biological cochlea is impressive in its design because it attains an extremely wide dynamic
range of 120dB (at 3kHz), although its power dissipation is only about 14uW. The power
dissipation in the biological cochlea has been estimated from impedance calculations to be
about 0.4uW/mmx35mm = 14yW [2].

The dynamic range of the cochlea at various input frequencies has been measured by
psychophysical and physiological experiments [3]. The biological cochlea has a wide dynamic
range because it has an adaptive traveling-wave amplifier architecture, and also because it
uses a low-noise electromechanical technology.

The electronic cochlea models the traveling-wave amplifier architecture of the biological
cochlea as a cascade of second-order filters with corner frequencies that decrease expo-
nentially from 20kHz to 20Hz (the audio frequency range) [4]. The exponential taper is
important in creating a cochlea that is roughly scale invariant at any time scale; it is easily
implemented in subthreshold CMOS, or in bipolar technology.

Prior cochlear designs have paid little or no attention to dynamic range. The reports do
not give their dynamic ranges [4]-[18]. However, we know that low-power cochlear designs
that pay no attention to noise or gain control, like our own initial designs, have a dynamic
range of about 30dB to 40 dB (1mV to 70mV rms) at the small-signal peak frequency (BF)
of a typical cochlear stage. The lower limit of the dynamic range is determined by the input
signal level that results in an output signal-to-noise ratio (SNR) of 1. The upper limit of
the dynamic range is determined by the input- signal level that causes a total harmonic
distortion (THD) of about 4%. Typically, the upper limit is a strong function of the linear
range of the transconductance amplifiers used in the cochlear filter.

A single follower-integrator filter in one of our recent designs [9] had a dynamic range

'We are assuming that the supply voltage limits the range of operation of the system. If there is some
other voltage that limits the range of operation of the system, then power is wasted through an unnecessarily
high supply voltage. We choose not to operate the system in this nonoptimal situation.
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‘of 65dB (0.55mV-1000mV rms) because of the use of a wide-linear-range transconductance
amplifier (WLR) [10]. However, even if the first filter in a cochlea has a wide dynamic range,
the dynamic range at the output of a typical cochlear stage is reduced by the accumulation
and amplification of noise and distortion from stages preceding it. Nevertheless, the constant
reduction in the bandwidth of the cochlear stages along the cascade ensures that the total
noise or distortion eventually becomes invariant with the location of the cochlear stage:
Noise or distortion accumulates along the cascade, but it is also reduced constantly by
filtering. However, the asymptotic noise is high enough that, in our design [9], the dynamic
range for a cochlear stage with a BF input was only about 46 dB (5mV to 1000mV rms).
In that design, the use of nonlinear gain control helped to decrease the small-signal Q
with increasing input amplitude, and thus mitigated the effects of distortion; however, the
design’s filter topology was not low-noise, and the nature of the nonlinear gain-control
circuit was such that the .circuit increased the noise further. Thus, the effects of noise
accumulation and amplification limited our ability to attain a wide dynamic range.

In this paper we describe a cochlea that attains a dynamic range of 61dB at the BF of

a typical cochlear stage by using four techniques:
1. The previously described WLR
2. A low-noise second-order filter topology
3. Dynamic gain control (AGC)
4. The architecture of overlapping cochlear cascades

In addition, we use three techniques that ensure the presence of a robust infrastructure in

the cochlea:

1. Automatic offset-compensation circuitry in each cochlear filter prevents offset accu-

mulation along the cochlea.

2. Cascode circuitry in the WLRs increase the latter’s DC gain, and prevent low-frequency

signal attenuation in the cochlea.

3. Translinear bipolar biasing circuits provide @s that are approximately invariant with
corner frequency, and allow better matching. Bipolar biasing circuits were first used

in cochlear designs by [18].
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“We shall discuss all of these preceding techniques in this paper.

The organization of this paper is as follows: In Section 4.2 we discuss the architecture and
properties of a single cochlear stage. In Section 4.3 we discuss the architecture and properties
of the cochlea. In Section 4.4 we compare analog and digital cochlear implementétions
with respect to power and area consumption. In Section 4.5, we discuss the relationship
between our electronic cochlea and the biological cochlea. In Section 4.6, we discuss possible
applications of the electronic cochlea for cochlear implants. In Section 4.7, we summarize

our contributions.

4.2 The Single Cochlear Stage

Figure 4.1 shows a schematic for a singe cochlear stage. The arrows indicate the direction of
information flow (input to output). The second-order filter (SOS) is composed of two WLR
amplifiers, two capacitors,‘and offset-compensation circuitry (LPF and OCR). The corner
frequency 1/7 and quality factor @ of the filter are proportional to v/T1Is and /I /1>,
respectively, where I and I, are the bias currents of the WLR amplifiers. The tau-and-
@ control circuit controls the values of the currents I; and Iy such that the value of 1/7
depends on only the bias voltage Vr, and the small-signal value of () depends only on the
bias voltage V. An AGC correction current I4 attenuates the small-signal value of Q at
large-signal levels in a graded fashion.

The inner-hair-cell circuit (IHC) rectifies, differentiates, and transduces the input voltage
to a current Ip,.. The voltage V4 controls the value of an internal amplifier bias current in
the IHC. The voltage Vg controls the transduction gain of the IHC. The peak detector
(PD) extracts the peak value of Iy, as a DC current Ik The current I becomes the
AGC correction- current input (74) to the tau-and-Q control circuit. The bias voltage Vpr
determines the time constant of the peak detector, and thus the response time of the AGC.
The peak detector is designed such that it can respond to increases in input intensity within
one cycle of a sinusoidal input at V;,, ; its response to decreases in input intensity is much
slower and is determined by Vpr.
 The offset-compensation circuit is composed of a lowpass filter (LPF) whose time con-
stant is determined by Vor. The LPF extracts the DC voltage of the filter’s intermediate

node, and compares this voltage with a global reference voltage Vgr in the offset-correction



_ 89

block (OCR). The OCR applies a correction current to the intermediate node to restore
that node’s voltage to a value near Vgp. The DC voltage of the output node is then also
near Vgr, because the systematic offset voltage of a WLR amplifier is a small negative volt-
age. The maximal correction current of the OCR scales with the bias current I;; the bias
voltage Vo controls the scaling ratio. Since the restoration is performed at every cochlear
stage, the output voltage of each stage is near Vgr, and offset does not accumulate across
the cochlea. If there were no offset adaptation, a systematic offset voltage in any one stage
would accumulate across the whole cochlea.

Since the gain-control topology is feedforward, rather than feedback, we avoid instabil-
ities or oscillations in the (). However, since raising Qs lowers the DC voltage, and the DC
voltage does have a mild influence on the @), the DC and AC output-voltage dynamics are
weakly dependent on each other.

We shall now describe the details of each of the circuits in Figure 4.1. In Section 4.2.1
we discuss the WLR circuit. In Section 4.2.2, we describe the offset-adaptation circuit. In
Section 4.2.3, we examine the filter topology. In Section 4.2.4 we present the translinear
tau-and-Q) control circuit. In Section 4.2.5, we describe the circuits in the THC and PD

blocks. In Section 4.2.6, we discuss the overall properties of an entire cochlear stage.

4.2.1 The WLR

The WLR has been described in great detail [10]. The version of the WLR that we use in
our cochlea, however, has been slightly modified, so we shall describe it briefly. Figure 4.2
shows the circuit of the transconductance amplifier. The inputs v, and v~ are the wells of
the W transistors; we use the well, instead of the gate, to lower amplifier transconductance
and consequently to widen the linear range of the amplifier. The linear range is further
widened through the novel technique of gate degeneration via the GM transistors, and
through the technique of bump linearization via the B transistors [10]. The GM-M mirrors
are attenuating, with a 1:3 ratio, to avoid parasitic-capacitance effects in the differential
pair. The CP and CN transistors function as cascode transistors; they ensure that the DC
gain of the amplifier is high such that there is no significant low-frequency attenuation in
the cochlea (See Section 4.3.1 for further details.). We use CP and CN transistors on both
arms of the amplifier to avoid any systematic offsets. The CP and CN transistors do not

alter the noise performance of the amplifier, since their noise currents contribute little to the
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voutput cﬁrrent of the amplifier. The pFET M transistors implement current mirrors. The
bias current of the amplifier Ip is provided by bipolar transistors in the tau-and-Q biasing
circuit. The extra mirror necessary to convert NPN bipolar collector currents to pFET bias
currents does not alter the noise performance of the amplifier. The offset-correction circuit
adds two correction currents at the V;,; and V,, nodes. In the filter of Figure 4.1, only the

left amplifier has correction-current inputs from the OCR.

4.2.2 The Offset-Adaptation Circuit

Figure 4.3 shows the offset-adaptation circuit. The LPF is a simple 5-transistor nFET OTA-
C filter operated in the subthreshold regime. The DC value of the V; input is extracted by
the LPF and is compared with Vg in the pFET differential pair. The currents in the arms
of the differential pair are steered via mirrors to the V,; and V,, inputs of the left WLR
in Figure 4.1, such that the sign of the feedback is negative. The cascoding of the offset-
correctioﬁ currents prevents the offset-correction circuitry from degrading the DC gain of
the amplifier. The Vg gate voltage of the left WLR, as revealed in Figure 4.2, is also the Vg
gate voltage in the offset-adaptation circuit, such that the offset-correction current scales
with the bias current of the WLR. The scaling ratio is controlled by the source control Vop.

The value of Vo, which determines the loop gain of the offset-adaptation loop, and the
value of Vor determine the closed-loop time constant of the offset-adaptation loop. A high
loop gain speeds up the closed-loop response such that the influence of low-frequency inputs
is adapted away. Thus, there is a tradeoff between strong offset control (high loop gain),
which implies some ringing and overshoot as well, and coupling of low-frequency inputs into
the cochlea. Since our lowest-frequency input is 100Hz, we have been able to maintain a
good control of the DC offset in the cochlea without attenuating any frequencies of interest.

Note that the offset-correction circuitry can correct offsets to only a resolution that is
limited by its own offsets. Since we use subthreshold circuitry with small linear ranges in
the OCR and LPF, these offsets are on the order of 5mV to 15mV; they are small compared
with the 1V linear range of the WLR. The offset-correction scheme would have been useless

if we had used WLRs to sense and correct the offset of other WLRs.
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4.2.3 The Second-Order Filter

Figure 4.4 shows representations of our second-order filter. The block-diagram form of part
(b) is convienient for doing noise calculations. For the purposes of doing noise calculations

we list 12 algebraic relationships:

dm1 = 7[: (4.1)
b .
gm2 = VL. (4.2)
C1
= —, 4.3
m m1 ( )
Cy
= —, 4.4
& Im2 ( )
T = /TiT. (4.5)
I, = CiVe (4.6)
T1
I, = CoVi (4.7)
T2
= |72
Q = - (4.8)
no= —5 (4.9)
n = 1Q. (4.10)
Cr = C. (4.11)
C = +/C10,. (4.12)

The currents I; and I, are the bias currents of the amplifiers, V7, is the linear range of these
amplifiers, and the transconductance g,,; of amplifier 7 is given by gm; = I;/Vr. The noise
source vp;, shown in Figure 4.4(b), represents the input-referred noise per unit bandwidth

of amplifier i. From [10], we know that
vai = NqVZ/I;, (4.13)

where N is the effective number of shot-noise sources in the amplifier, and q is the charge
on the electron. For our amplifiers, N is typically 4.8, whereas the amplifiers reported in
[10] have N = 5.3.

From Figure 4.4(b) and the preceding algebraic relationships, it may be shown that the
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outpﬁt noise per unit bandwidth vy, is given by

Unl + Vn2 (TS/Q)

282+ 75/Q+ 1’

o2, = tmt|s Qv (4.15)
" 17252 + 75/Q + 1)

(4.14)

In Eq. (4.15) we have used the fact that the noise sources v,; and v,y are uncorrelated,
so there are no cross terms of the form vp1vp2. From the algebraic relationships of Egs.
(4.1) through (4.12), by substituting s = w7 and w = 27 f, and by using the normalized

frequency = = wT, we can show that

(NgVL/QCh) (1+ 4L |
2 _ R
vno(f)df = R sz df, (4.16)
| N T
Ro(@ie = (GEE) @)1+ &)z, (4.17)

where H(z) represents the normalized transfer function of a second-order filter,

1

H) = a0

(4.18)

and j is the square root of -1. To get the total noise over all frequencies, we integrate the

LHS and RHS of Eq. (4.17) from 0 to co. It can be shown by contour integration that

/000|H(x)|2dx - 7@ (4.19)
/oox2[H(a:)]2dx = Io. (4.20)
0 2

(4.21)

The total output noise over all frequencies < v2, > is then given by

<id,> = F(EEN(Ge+FAE)) (.22
= (]\i‘gf) (1+ 51}})’ (4.23)
(Nf—g’:) (VCr + ~\/2,=R). (4.24)
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‘N'ote that the total output noise is independent of @ for this topology: The noise per unit
bandwidth scales like 1/Q, and the integration of the noise over all bandwidths scales like @, -
so that the total output noise is independent of (). These relationships are reminiscent of an
LCR circuit where the total output current noise depends on only the inductance, the total
output voltage noise depends on only the capacitance, and neither of these noises depends
on R; only the noise per unit bandwidth and the @ of the LCR circuit are influenced by
R. In fact, it can be shown that this topology has a transfer function and noise properties

that are similar to those of an LCR circuit if we make the identifications

mn = L/R, (4.25)
n = RC. (4.26)

For a given value of C (the geometric mean of Cy and C5), the total output noise is minimized
if Cg = 1—that is, if Cy = Cs.

Figure 4.5 shows the noise spectral density versus frequency and the total integrated
noise at the output over all frequencies. The data were obtained from a test chip that
contained a second-order filter with amplifiers identical to those in our previous report [10].
The lines are fits to theory. As we expect, the total integrated noise is quite constant with Q.
The parameters used in the fits were N = 5.3, Vi, =1V, Cr =1.43, ¢ = 1.6 X 1071% and C =
697fF. The values of N and V; were obtained from measurements on our transconductance
amplifiers [10]. The value of Cr was obtained from least-squares fits to the data. We
obtained the value of C' by having the noise measurements be consistent with values of C'
expected from the layout.

In filter topologies that have been used in prior cochlear designs e.g. [4] or [9], the noise
per unit bandwidth increases with @: The Q is obtained through the addition of positive-
feedbackv currents. These currents contribute additional shot noise and thus increase the
noise per unit bandwidth; in these topologies, the integrated noise over all frequencies also
increases with @, so both factors contribute to the increase in noise with Q. Although
we have performed extensive experimental and theoretical analysis of noise in these filter
topologies as well, we shall present only key findings here: For. the topology presented in
[4], at @s near 2.5, the rms noise power at the output is 9 times higher than it is for

our topology. For s near 0.707, the rms noise power at the output is about 0.8 times
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llo'wef than it is for our topology. For Qs near 1.5, which is where we typically operate,
the rms noise power at the output is about 2 times higher than it is for our topology.
The effects of increased noise per unit bandwidth in a single second-order filter are greatly
amplified in a cochlear cascade. Factors of 2 in noise reduction in a single stage can make
a significant reduction in the output noise of a cochlear cascade. Thus, using our filter
topology contributes significantly to reducing noise in a cochlear cascade.

Although the noise properties of the filter of Figure 4.4 are superior to those of other
second-order topologies, this filter’s distortion at large amplitudes is significantly greater,
especially for (s greater than 1.0: Distortion arises when there are large differential voltages
across the transconductance-amplifier inputs in a filter. The feedback to the first amplifier
of Figure 4.4 arises from V3, rather than from Vi, in contrast to the topology of [4].
Consequently, the accumulation of phase shift from two amplifiers, as opposed to that
from one amplifier used in earlier topologies, causes greater differential voltages and greater
distortion in the first amplifier. Also, the transfer function of the intermediate node V; is
such that the magnitude of voltage at this node is greater than that in other topologies for
Qs greater than 1.0. Consequently, the differential voltage across the second amplifier is
larger, and the distortion from the second amplifier is also greater.

It is instructive to find the largest input signal at the BF of a filter for which the total
harmonic distortion (THD) is about 3%-5%. The amplitude of this signal, vy, is a good
measure of the upper limit of dynamic range for a filter, in the same way that the input-
referred noise is a good measure of the lower limit of dynamic range. Figure 4.6 shows the
rms amplitude v,,; at a BF of 140Hz for the filter of Figure 4.4. We observe that, as the @
increases, the distortion increases, and the value of vy, falls. The data were obtained for
a THD level of 3.3% (30dB attenuation in intensity). The data were empirically fit by the
equation

Q

oma(Q) = 128 — 161 In (m) (4.27)

The preceding discussion illustrates why an AGC is essential for attaining a wide dy-
namic range with our filter topology: The noise properties of the topology are favorable for
sensing signals at small amplitudes, and with high @s. However, when the signal levels are
large, if the distortion is to be kept under control, the @s must be attenuated. The AGC

ensures that the Qs are large when the signal is small, and are small when the signal is
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large.

4.2.4 The Tau-and-(Q) Control Circuit

In Figure 4.7, we make the following definitions:

I, = Ie"T/?Ur (4.28)

Qo = e"e/2Ur, _ (4.29)

where Ur = kT/q is the thermal voltage, and I is the bipolar preexponential constant.
The current I4 is a place holder for an AGC correction current from the IHC and peak-
detector circuit, and I; and I are output currents that bias the first and second amplifiers
of Figure 4.4, respectively. A simple translinear analysis and the solution of the quadratic

equation reveal that, if we define 1 to be a normalized AGC correction current, according

to
7= <2IT/QO> ’ (4.30)
then
- b
Q = 5’ (4.31)

=Qw<%%%i$. (4.32)

Independent of the value of I4, the translinear circuit always ensures that

VI =I,. (4.33)

Thus, it is an effective tau-and-Q biasing circuit for the filter in Figure 4.4, since it ensures

that the AGC affects the () but not the corner frequency of the filter. If we let
6 = arctann, (4.34)

then trigonometric manipulations of Eq. (4.32) reveal that

Q = Qo tan <% - g) (4.35)
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‘If there is no AGC correction current, then 8 = 0 and Q = Q. In the limit of an infinite
AGC correction current, §/2 = w/4 and @ = 0.

Figure 4.8(a) shows the corner frequency of the filter in Figure 4.4 as a function of the
bias voltage Vp. As we expect from Eq. (4.28) and (4.33), and from the equations of the
filter (Eqs. 4.1 to (4.12)), the corner frequency is an exponential function of the bias voltage
Vr. The exponential preconstant yields a thermal voltage of 26.7mV, which is fairly close
to the expected thermal voltage of 26mV at a room temperature of 300K.

Figure 4.8(b) shows the @ of the filter in the absence of any AGC correction current.
As we expect from Eq. (4.29) and Eq. (4.35) with = 0 (no AGC current), the @ is an
exponential function of the bias voltage V. The exponential preconstant yields a thermal
voltage of 26.3mV, which is fairly close to the expected thermal voltage of 26mV at a room

temperature of 300K.

4.2.5 The Inner Hair Cell and Peak-Detector Circuits

Figure 4.9 shows the IHC and PD circuits. The amplifier in the IHC is a simple 5-transistor
nFET OTA with a fairly high gain (500 to 1000). The bias current of the OTA is determined
by the voltage V4. The bias current should be sufficiently high that the dynamics of the
node V}, are much faster than the dynamics of the node V,,, for all input frequencies and
amplitudes of interest. Since the OTA is connected in a follower configuration, the voltage
Vi is very nearly a copy of V;,, except for very weak signals, where the bipolar transistor
BA or the MOS transistor PA are not sufficiently turned on. In practice, the signals or noise
at the cochlear output taps are sufficiently high that BA or PA may be assumed always
to be sufficiently turned on. When V;, or V,, are rising, the capacitor Cypg is charged
primarily by the bipolar transistor BA. When V;, or V,, are falling, the capacitor Cyg is
charged primarily by the MOS transistor PA. Thus, during the phases of the signal when
the derivative of the signal is negative, the current I, is an amplified copy of CgrdVi,/dt.
The amplification factor is given by exp(Vyr/Ur). Thus, the THC differentiates, rectifies,
amplifies, and transforms the input voltage V;, into an output current Ip,.

The output current Ip, is fed into the peak detector. The peak detector consists of a
slow source follower, composed of PF, PT, and Cp, and the feedback transistor PI. The
transistor PO outputs a copy of the current in PI as Ix. The source follower can follow

descending signals in V; rapidly because of the exponential dependence of the current of
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PF on its gate voltage. However, the voltage Vpr is set near Vpp so that the current
source formed by the transistor PT is slow in charging the capacitor Cpr; consequently,
during ascending signals in V}, the voltage V; is slow to respond. Because of the fedback
nature of the circuit, and the asymmetry in the time constants of the source follower, V; will
equilibrate at a value such that the average current through PI is slightly below the peak
value of Ip,. As Iy, alternately reaches its peak and moves below that peak, the voltage V;
will undergo large swings due to the high gain of the input node of the peak detector. In
contrast, the voltage V; will have only small variations from its DC value; they constitute
the ripple of the peak detector.

Figure 4.10 shows the waveforms Vi, Vi, V4, Vf, and V;. The labeled voltages in
the figure indicate the DC voltage values that correspond to the horizontal location of
the arrow. As we expect, Vi, and V, are very nearly equal to each other. The voltage
V}, undergoes abrupt transitions during changes in the sign of the input derivative; these
changes cdrrespond to a transition from BA being turned off to PA being turned on or vice
versa. The voltages V; and V; in the peak detector undergo rapid downward transitions
that are phase locked to the downward-going zero crossings of the input waveform where
the peak value of I, occurs. The upward transitions in V; and V; are slow because of
the sluggishness of the current-source transistor PT. The data were taken with V;, being a
102mV rms input at 1kHz, with V4 = 1.0V, with Vpr = 4.039V, Vpp = 5.0V, and with
Vur = 100mV. Typically, we operate Vpr near 4.25V, which results in no discernible ripple
in V4, but these data were taken specifically to illustrate better the workings of the peak
detector. The transistor PT was fabricated as a poly2 transistor. Thus, at the same current
level, the bias voltages on Vpr are higher than those corresponding to bias voltages on a
polyl transistor.

From the preceding discussion, we expect that the value of I,; will be near the peak
value of CyrdV;,/dt amplified by the factor of exp(Vyr/Ur). Thus, if the input amplitude
were given by

Vin = i sin (27 fint), (4.36)

then the value of I, would be given by

ka = wainCHRameVHR/UT_ (4.37)
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’In .cdnforfnance with Eq. (4.37), Figure 4.11 shows that the response of I, is linear with
the amplitude and with the frequency of the input. The data were taken for V4 = 1.0V, and
Vpr = 4.3V. The experimental slopes for Figure 4.11(a) and Figure 4.11(b) yielded values
for Crr = 335fF and Cyr = 313fF, respectively. However, the linear fits to the data reveal
that an offset in amplitude of about 77.5mV rms in the case of Figure 4.11(a), and an offset
in frequency of about 276Hz in the case of Figure 4.11(b), needs to be subtracted from a;,
or fin, respectively. These offsets imply that there is a minimum amount of input current
I, that is required for the peak detector to output a current I;. Through experimentation,
we have found that this minimum value scales approximately linearly with frequency such
that the offset for a;, always lies somewhere in the 50 to 100mV rms region (for a Vg
of about 100mV). At this time, we do not have a good explanation of what causes these
offsets; we suspect that they are due to the short-channel length and small Early Voltage
of transistor PI.

Figure 4.12 shows that the relationship between I, and Vyg is described by an ex-
ponential, as Eq. (4.37) predicts. The thermal voltage Ur was determined to be around
29.9mV. This voltage is somewhat higher than the 26mV expected from theory. The data
were taken with Vpr = 4.30V, and V4 = 1.15V.

The current I,y is mirrored by the bipolar transistors BP and BO in Figure 4.9 to
function as the AGC correction current /4 in Figure 4.7. From Egs. 4.1 to (4.12), we know
that I is given by 27 f.CVL, where f. = 1/7 is the corner frequency (CF) of the filter.
Thus, 7 in Eq. (4.30) is given by

K 2IT/Q0,

()G () o

Thus, the voltage Vg g serves to strengthen or weaken the normalized AGC correction

(4.38)

factor 7.

4.2.6 The Properties of an Entire Cochlear Stage |

Figure 4.13 shows the frequency-response characteristics of the filter of Figure 4.4 for dif-

ferent input amplitudes. In the absence of an AGC, large input amplitudes generate large
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émounts of distortion in the filter; thus, in Figure 4.13(a), it was impossible to obtain
smooth frequency responses beyond an input rms amplitude of 250mV. In contrast, in Fig-
ure 4.13(b), we could easily obtain smooth frequency responses up to (and even beyond)
input amplitudes of 1V rms, because of the presence of an AGC. If the frequency-response

curves are fitted with the transfer function of a second-order section,

1

H =
(s) 282 +715/Q + 1’

(4.40)

then we find that the CF (1/7) is reduced with input amplitude, and the @ is reduced
by the AGC as well. In Figure 4.13(b), the CF is reduced from 147Hz at small signals
to 112Hz at large signals; the @ is reduced from 2.22 at small signals to about 0.52 at
large signals. These numbers are valid for Vgp = 65mV, and Vpr = 4.25V. Given that we
designed Eq. (4.33) in our translinear biasing circuit to keep the CF constant, it may seem
surprising that the CF chaﬁged with input amplitude. However, we must realize that we
are fitting the frequency-response curves of a nonlinear system with a linear approximation
given by Eq. (4.40) at each rms input amplitude. According to Egs.( 4.39) and (4.32), for
the same input rms amplitude, the “Q” is lower at high frequencies than at low frequencies.
The frequency dependence of the @ results in disproportionately more attenuation of the
input at high frequencies than at low frequencies, such that the CF, as measured by the
amplitude curves, appears to shift.

If we plot the C Fyp—that is to say the frequency at which the the second-order filter has
a phase lag of 90 degrees—versus rms input amplitude, then the data of Figure 4.14 reveal
that CFyo is approximately constant. At low input amplitudes, the AGC has no effect,
because I,y provides no correction until the input amplitude is above a certain threshold,
as we discussed in Section 4.2.5. Even if there were no offset, the AGC correction in this
regime would be small. Thus, the system is linear at low amplitudes. Consequently, at
these amplitudes, the C Fy is identical with 1/7 and with the CF measured by gain curves.
Since the AGC is designed not to affect the parameter 7, the CFyy remains approximately
invariant with input amplitude, even at high amplitudes where the AGC is active. In fact,
Figure 4.14 shows that a strong AGC (higher values of Vyr) improves the constancy of
the C'Fyy with amplitude, because it prevents static nonlinear shifts in CFyg that increase

at high @s. The CFy; is the frequency near which center-surround schemes, e.g., those
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that perform spectral extraction on cochlear outputs for use in implants [11], generate their
maximum output. Thus, the fact that the CFy is approximately invariant with amplitude
makes our AGC cochlea attractive as a front end for center-surround postprocessing.

Figure 4.15(a) shows data for @ versus a;, measured for three different values of Vg g
for the second-order filter. From Egs. (4.30), (4.34), and (4.35) we would expect the curves
to be fit by a function of the form

7w arctan (Gagp)

Q = Qo tan (Z - -—2—> | (4.41)

However, from the discussion of Section 4.2.5, we know that a;, in Eq. (4.41) should be
replaced by 0 below some threshold value ag, and by a;, — ap above this threshold value.
The fits in Figure 4.15(a) are functional fits to Eq. (4.41) with the free parameter G, and the
additional free parameter ag. For Vgr = 3mV, 32mV, and 656mV, we found G = 1.93,2.5, 4,
and ag = 0.164,0.095,0.06; respectively; Qo was 2.05 for all curves, a;;, and ag are in units
of V. We took data by measuring the gain of the filter at f;, = f. = CFyp = 1/7, which, for
a second-order filter, is (). Figure 4.15(b) plots the output amplitude, Q(a;,) X a;p, rather
than Q(ain), at this frequency. We observe that, before the AGC turns on (a;, < ag),
the relationship between the input and output amplitudes is linear. After the AGC turns
on (a;n > ap), the relationship between the output and input amplitudes is compressive,
although not as compressive as theory would predict. Since ag is large for small values of
Vur, the range of linearity is large for small values of Vyg.

Figure 4.15 suggests that, at large amplitudes, the static nonlinearities in the filter
increase the @) slightly. Since the @ of the filter is given by \/—% , we deduce that the static
nonlinearity is causing 75 to increase faster with a;, than 7y; this deduction is in accordance
with the intuition that the second amplifier in Figure 4.4 is subject to greater differential
Voltages,v and, consequently, to more saturation and slowing than the first amplifier. One
way to avoid, or even to reverse, the nonlinear shift toward higher Qs is to have the linear
range of the first amplifier be smaller than the linear range of the second amplifier.

The nature of Eq. (4.41) is such that, independent of the value of G, Q(a;,)a;, is a
inonotonically increasing function of a;,. This property guaranfees that the input—output
curve at the BF of a cochlear stage is always monotonically increasing, as confirmed by the

data of Figure 4.15.
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. Figure 4.16 shows that the harmonic-distortion levels at 1V rms with an AGC are
comparable with the harmonic-distortion levels at 250mV rms without an AGC. The AGC
data were taken with V3, = 65mV. Figure 4.17 shows that a strong AGC (large value of
Var) reduces harmonic distortion due to the lowering of Q.

Figure 4.18 illustrates the dynamics of () adaptation: The stimulus is a pure tone at the
BF of the filter that turns on suddenly after a period of silence, persists for a while, and
then abruptly decreases in intensity to a quieter tone. At the onset of the tone, a transient
response is seen at the output. The transient causes the peak detector to overadapt instantly
within one cycle. The overadaptation is corrected by the slow capacitive charging of the
peak-detector current source, which restores the (), and thus the output amplitude, to an
equilibrium value. When the tone transitions from loud to soft, the initial response to the
soft tone is moderate due to the low @) caused by adaptation to the preceding loud tone.
Eventually, the slow capacitive charging of the peak-detector current source restores the @,

and thus the output amplitude, to an equilibrium value.

4.3 Properties of the Cochlea

In this section, we shall discuss the properties of the cochlea. We shall begin with a discus-
sion of low-frequency attenuation because the discussion will motivate the introduction of

our overlapping-cascades architecture.

4.3.1 Low-Frequency Attenuation

If the open-loop gains of the amplifiers in Figure 4.4 are A; and As, then we can show that
we obtain the low-frequency gain of the filter of Figure 4.4 by simply replacing 71 s and 795
with 1/A4; and 1/As in the transfer function. Thus, from Eq. (4.40) the low-frequency gain
Hy is givén by

Hy = ————— (4.42)

(4.43)
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| Althbugh Hy is very close to 1, it is not exactly 1. A low-frequency input that travels

through M stages of a cochlea will suffer a net attenuation, H s, given by

Hy = ( A )M (4.44)
M= A1+1 ’ '
~ e M (4.45)

where the exponential approximation is valid if A; is a large number. Now, 4; = 2V,/V,
where V7, is the linear range of the amplifier and V; is its effective Early volfage at the output
of the amplifier [10]. In the 1.2um nwell Orbit MOSIS process used to fabricate our circuits,
Vo is around 20V for wide-linear-range amplifiers that do not have cascode transistors at
the output; Vr, = 1V, and A; is about 40. Thus, we can expect an attenuation of almost
one e-fold across a 39-stage cochlea built with cascodeless amplifiers.

Figure 4.19 shows the low-frequency attenuation of a 40Hz 50mV input to a 39-stage
cochlea tuned from 900Hz to 100Hz for different values of the parameter A;. For these
experiments, we operated the cochlea with a very low @ (Vg = -80mV) so that we could
focuss on just the effects of low-frequency attenuation. We varied the value of A; by
varying the bias of the cascode transistors Von and Vpp, in the amplifier of Figure 4.2.
We explored the effects of turning off the cascode transistors by biasing them as switches.
Thus, to turn off the CN cascode transistors, we would set Von to 5V; to turn off the CP
cascode transistors we would set Vop to OV. Figure 4.19 shows the low-frequency attenuation
for the four cases of both cascodes on, both cascodes off, only N cascodes off, or only P
cascodes off. We observe from the data that the P cascodes are more helpful in reducing
low-frequency attenuation than are the N cascodes, because the pFETSs in our process have
a lower Early voltage than do the nFETs. With both cascodes on, a 39-stage cochlea has a
net attenuation that is less than 0.8. We normally operate the cochlea with both cascodes
on, with’ Ven = 1.2V, and with Vop = 3.8V. These bias values permit operation of our
amplifiers over the entire frequency range of the cochlea without any saturation effects for
input rms amplitudes that exceed 1V rms.

The attenuation of the gain of signals at other frequencies is by the same factor Hys. In
contrast the output noise (or distortion) at a cochlear tap is accumulated through addition
over successive stages, as shown in Figure 4.20. The noise that is added at the input is

attenuated by the same amount as the signal, but the amounts of noise that are added at
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stages successively closer to the output tap of interest are attenuated by successively smaller
amounts. Thus, the output SNR is degraded by low-frequency attenuation.

To limit the degradation of the SNR of the cochlea through low-frequency attenua-
tion, and noise-and-distortion accumulation, we use the architecture of overlapping cascades
shown in Figure 4.21. Rather than having one large cochlea, we use a few small cochleas
whose frequency ranges overlap by one octave. All such cochleas process the input in par-
allel. The filters in the overlapping octave serve to mimic the effects of the infinite cascade
prior to the stages of interest; the outputs of these filters are not used. Since most of the
effect of the infinite cascade occurs within an octave of the corner frequency of a cochlear
stage, we do not sacrifice much in the way of cochlear modeling, but we do gain significantly
in limiting our SNR degradation. In general, the amount of overlap between cochleas, and
the number of stages per cochlea can be varied to suit the nature of the cochlear application.

Although the thermal noise in an infinite cascade converges to an equilibrium where
noise accumulation is matched by noise filtering, the 1/f noise in an infinite cascade does
not converge and continues to grow in the cascade. The 1/f noise is significant for only
those high-frequency cochlear stages that have amplifiers with large bias currents [10]. The
overlapping-cascades architecture helps to limit the accumulation of 1/f noise.

A cochlear cascade that is composed of all-pole second-order filters overestimates the
group delay of the biological cochlea. The overlapping-cascades architecture also helps to
reduce the group delay of the silicon cochlea.

The architecture of overlapping cascades may be viewed as a hybrid of an architecture
that has many parallel filters in a filter bank and of one that has one filter cascade with all
the filters in serial.

The cochlea that we discuss in this paper was built out of three 39-stage overlapping
cochlear cascades: The low-frequency cochlear cascade was tuned to operate in the lbOHz
to 900Hz region. The mid-frequency cochlear cascade was tuned to operate in the 450Hz
to 4050Hz region. The high-frequeny cochlear cascade was tuned to operate in the 2000Hz
to 18,000Hz region. Thus, each of the cochlear cascades had about 11.2 filters per oc-
tave, ensuring a fairly sharp cochlear rolloff slope. The Qs of the cochleas were tuned to
be approximately 1.5. The voltage gradients in Vr corresponding to the three frequency
gradients of the low-frequency, mid-frequency, and high-frequency cochlear cascades were

1.040 to 0.9V, 1.130 to 0.990V, and 1.210 to 1.070V respectively. The value of Vg that
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was suitable for operating all three cochleas was -52mV. For the remainder of the paper,
we shall focuss on the operation of the low-frequency cochlear cascade, which we shall
call the cochlea. The operation of the other cochlear cascades follows by straightforward
generalization. The other parameters that we used for operating our cascades were Vo,
= 493V, Vggr = 120mV, Vpr = 4.25V, Von = 1.2V, Vop = 3.8V, Vor = 0.3V, Vyr =
3.0V, and the DC value of V;,, = 3V. To conserve power, we operated V4 at 0.995V in the
low-frequency cochlea, at 1.05V in the mid-frequency cochlea, and at 1.15V in the high-
frequency cochlea. It is possible to reduce the power dissipation even further by having a tilt
in the values of V4 in each cochlea. Through experimentation, we found that Vy = -44mV,
-52mV, and -65mV yielded the best performance for the low-frequency, mid-frequency, and
high-frequency cochleas, respectively. We could also speed up the gain adaptation in the
mid-frequency and high-frequency cochleas by setting Vpr in the 4.10V to 4.15V range.
We used standard shift-register and clocking circuitry to multiplex the outputs from the

different cochlear taps onto a common output tap.

4.3.2 Offset Adaptation

Figure 4.22 shows the DC output voltage across the cochlea as we scan from tap 1 to tap
39. In the absence of any offset adaptation (Vor = 4.76V), each cochlear stage has a
systematic negative offset of about 42mV; by 39 stages the DC output voltage has dropped
from 3V to 1V. As we strengthen the offset adaptation by raising the value of Vpp, the
offset degradation improves. At 4.96V, there is little offset accumulation, and there is an
almost flat DC response across the whole cochlea. Typically, we operate the cochlea at Vo
= 4.93V and tolerate some offset in return for reduced ringing in the offset-adaptation loop,

and for a lower adaptation corner frequency.

4.3.3 Frequency Response

Figure 4.23(a) shows the frequency response of the cochlea at different input amplitudes
ranging from 5mV to 1000mV rms at cochlear tap 30. The adaptation in @ with increasing
input amplitude is evident. Figure 4.23(b) plots the gain versus frequency such that the
curve with the highest gain corresponds to the lowest input amplitude of 5mV. The gain
adapts from about 30 for the 5mV rms case to about 0.7 at 1000mV rms. Figure 4.24

shows that the output is approximately linear in the input at frequencies before the BF,
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‘is- coinpressive at the BF, and is even more compressive after the BF. These compression
characteristics are seen in the biological cochlea as well [12]; they arise because of the
accumulatéd effects of gain adaptation over several cochlear stages.

Figure 4.25(a) illustrates that the harmonic distortion is greatest about one octave
before the BF. This effect occurs because the second-harmonic distortion is amplified by
the high gain at the BF when the input frequency is 1 octave before the BF. When the input
frequency is at the BF, the second-harmonic distortion drops sharply because 1 octave after
the BF there is great attenuation. These effects imply that nonlinearities in the cochlea
cause masking in the perception of harmonic frequencies; that is, the threshold for the
detection of a 2f tone is higher in the presence of a 1f tone than in the absence of one.
Psychophysical experiments reveal this effect in humans as well [13].

Figure 4.25(b) illustrates the growth and filtering of harmonic distortion as the signal
travels through the cochlea. The input is a 1V rms signal with frequency 162Hz that
corresponds to the BF at tap 30. As the signal travels from tap 15 to tap 30, the second-
harmonic distortion builds until it is at its peak value about 1 octave before tap 30 (tap 20).
After tap 20, however, it is gradually filtered away because the second-harmonic frequency
begins to fall in the cutoff region of the cochlear filters. By the time that the signal is at tap
30, there is only a small amount of distortion left. Thus, the sharp cochlear rolloff ensures
that each tap does not suffer much distortion at its BF.

Figure 4.26 illustrates that, at the BF, the output amplitude and harmonic distortion
barely change with amplitude for amplitudes beyond about 40mV or 50mV. The second
harmonic is 25dB smaller than the first harmonic for a wide range of input amplitudes. The
reduction in harmonic distortion is due to the accumulated effects of the action of the AGC
at each cochlear stage, and to the sharp cochlear rolloff. Note that, in the corresponding
harmonjc-distortion plots for a single cochlear stage (Figure 4.17(b)), the second harmonic
distortion at BF is only down a factor of 8 at 1V rms, and there is continued growth of all
harmonics with input amplitude.

Although the CF as measured by amplitude curves (Figure 4.13(b)), shifts, the C'Fyy as
measured by phase curves (Figure 4.14) does not change appreciably. These findings for a
single cochlear stage are echoed in the cochlea as well: At cochlear tap 30, as Figure 4.27
shows, the phase curves have a relatively invariant CF, although the gain curves (shown

in Figure 4.23(b)) shift with amplitude. The kinks and rising parts of the phase curves of
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vFigure 4.27 are due to parasitic capacitances in the cochlear filters.

4.3.4 Noise, Dynamic Range, and SNR

Figure 4.20 illustrates that the noise at the output of a cochlear tap has contributions from
the input-referred noise of each cochlear filter preceding that tap. To evaluate the total
noise at the output we need to evaluate the noise per unit bandwidth of each of these
sources, to evaluate the transfer function from each source to the output, to accumulate the
contributions from the various sources, and then to integrate over all frequencies.

If there are N, filters per octave, then the frequency ratio r between the 7 of any filter

and the 7 of the filter just to the right of that one is given by

ro= 27 /Noect, (4.46)
— e"‘l/(Noct/ln (2)), (447)
= e 1/Nnat (4.48)

Thus if z = w7 is the normalized frequency corresponding to the output tap of interest,
then the filtering effects of the filters preceding the output filter are represented by H{(z),
H(rz), H(r?z),...as shown in Figure 4.20. Similarly, if I were the bias current at the output
cochlear tap (corresponding to /I1I at each tap), the bias current of the ky, preceding
filter would be given by I/r.

From Egs. (4.12) and (4.17), the normalized input-referred noise per unit bandwidth is
given by

$2
vé(z)dz = ( gr ‘gfé,) (@ + \/T—R) dz. (4.49)

It is then easy to show that the input-referred noise per unit bandwidth for the ky, filter
preceding the output tap is given by

NqVyrk z2r2k

2

dr = /O d 4.50
since z = rfz and I — I /r’C . If there are M preceding taps, then the total output noise

per unit bandwidth v2,,(z)dz is given by

out
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NqVL M n ‘,L.2,r.2n n L2
mZWQCzO:T (vCr+ \/C’_R)]';IIH(T z)| dz. (4.51)

We obtain the total output noise at the cochlear tap of interest by integrating Eq. (4.51)

over all z from 0 to co. Although the expression for the output noise at a cochlear tap can
be written down, it is hard to solve in closed form. But it can be measured easily with a
SR780 Spectrﬁm Analyzer. Figure 4.28 shows what the noise spectrum of a cochlear tap
looks like at tap 31 of our cochlea. It has a form predicted by Eq. (4.51) except for the
second and third harmonic peaks; these peaks are due to nonlinearities in the filters.
Figure 4.29illustrates that the dynamic range at the output of tap 30 of our cochlea is
greater than 60 dB at the BF of that tap (162Hz): Figure 4.29(a) shows the noise spectrum
of the background noise at tap 30 which yields a total integrated noise of 50mV rms. When
a BF sinusoidal signal (162Hz) of 0.907mV rms magnitude is applied to the input of the
cochlea, it is amplified up by a factor of 57.1 to 51.8mV. Thus, the rms power of the
signal and noise at tap 30 is about 72mV rms (1/(51.8% + 502)). Now, at an output SNR
ratio of 1, we would expect the signal and noise to have an rms power of 50v/2 = 70.7mV
rms. The fact that the rms power is 72mV means that our minimum detectable signal,
which corresponds to an output SNR of 1, is actually below 0.907mV. In fact, since the
system is linear at small input amplitudes, the minimum detectable signal is 50mV /57.1 =
0.875mV. Figure 4.29(b) shows that the harmonic distortion at a 1V rms input is about
v/(11.85% + 2.822 + 1.112 + 0.245%) /315.8 = 3.87%. This value is less than 4% which is

commonly used as a measure of the upper limit of dynamic range of measuring-amplifier
systems. Thus, at BF, we can process input signals over a ratio of 1000/0.875 = 1143 in
amplitude, or 1.306 x 10° in intensity. This range of intensity corresponds to a dynamic
range of 10log;,(1.306 x 10%) = 61.1dB.

At large signals, the SNR at BF improves for two reasons: The signal amplitude gets
larger—though not in a linear fashion, because of the AGC-and the noise amplitude drops,
because of the lowering of Q. Figure 4.30(a) illustrates this effect for a 1V input and for a
0.9mV input. Figure 4.30(b) shows a plot of the signal amplitude and the noise amplitude
for various input levels. The signal amplitude was evaluated as the square root of the power
at the BF in spectral plots like those in Figure 4.30(a); the power at the harmonic peaks

was ignored, although the power at these peaks also is due to the signal. We evaluated
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vthe noise‘power by integrating the power over all frequencies in the noise spectrum. The
noise spectrum was obtained by removing all signal and harmonic peaks in the spectrum.
We interpolated the noise spectrum in the regions where we removed the peaks. The noise
amplitude was the square root of the noise power.

Figure 4.31 shows a plot of the SNR (signal power/noise power) as a function of input
amplitude. As the input rms amplitude changes by a factor of about 61dB in intensity
(0.9mV to 1V rms), the SNR changes by a factor of about 31dB (1 to 1241).

Figure 4.32 shows how our AGC cochlea extends the dynamic range of a hypothetical
linear low-@Q cochlea. The linear low-@Q cochlea can be viewed as being representative of just
the passive basilar membrane, with no outer hair cells [4]. Thus, we call our AGC cochlea
with amplification (high-Q) an active cochlea, and the linear low-Q) cochlea a passive cochlea.
Some silicon cochleas have been built with a passive cochlea acting as a front end to a bank
of bandpass filters [5].

Suppose that the passive cochlea has the same gain, and the same low @), as the active
cochlea at the largest input levels of 1V rms. Both cochleas will then have the same low-Q
noise floor of 8.96mV at 1V. Since the passive cochlea maintains the same 0.315 gain at all
intensities, its minimum detectable signal is given by 8.96mV/0.315 = 28.4mV. The active
cochlea has a high @ at small input levels such that it amplifies the input signal and the
noise. At BF, however, it amplifies the signal significantly more than the noise. In fact, its
minimum detectable signal occurs when a 0.82mV input at BF has been amplified up by a
factor of 59 to be just above the noise floor, which has now increased to 48.4mV.? Thus, the
active cochlea extends the dynamic range of the passive cochlea by having the minimum
detectable signal decrease by 20log;;(28.4/0.82) dB = 31dB! It is known that outer hair
cells in the biological cochlea extend the lower end of our dynamic range of hearing by about
40dB.

Figure 4.33(a) shows the noise spectra of various taps from tap 1 to tap 37. The corner
frequency of the noise spectra successively decrease from tap 1 to tap 37, while the noise
per unit bandwidth successively increases. The peak height increases and converges to an

asymptotic limit as we traverse the cochlea. Note that, because of offsets in the cochlea,

>These numbers (gain of 59, noise of 48.4mV, and minimum detectable signal of 0.82mV) are slightly
different from the numbers that we quoted earlier (gain of 57.1, noise of 50mV, and minimum detectable
signal of 0.8756mV) because of the interpolation procedures used in our data processing algorithm, and
because of the different times at which the data were collected.
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’therev is an abrupt reduction in corner frequency between taps 21 and 25. This abrupt
reduction in bandwidth lowers the noise below the theoretical value that we would expect
for taps close to and beyond this region. The total integrated noise over all frequencies
is shown in Figure 4.33(b). The noise increases due to accumulation and amplification as
we traverse the filters of the cochlea. However, the successive lowpass filtering limits this
growth, until, in the asymptotic limit, there is an equilibrium between noise accumulation
and noise filtering, and the noise ceases to grow. The discontinuities in the curve around tap
21 to tap 25 are due to the abrupt reductions in bandwidth around this region. The eventual
convergence of the noise is due to the exponential taper of the cochlea: The exponential
taper results in an accumulation of noise terms with coeflicients that are determined by the
terms of a geometric series with geometric ratio r (Eq. (4.51)). Since r < 1, the geometric
series converges. Note that, as we increase the number of filters per octave, by Eq. (4.46),
we increase r, and the noise increases. There is thus a tradeoff between the sharpness of
the rolloff slope of the cochlea, which increases with N,., and noise reduction. The noise is
also extremely sensitive to the value of Q because of the sensitive dependence of the H (rfz)
terms of Eq. (4.51) on Q. We used = 1.5, and Ny = 11.2 as a good compromise between
not having too much noise at the output of the cochlear taps, and not having broad filters
with shallow rolloff slopes.

Figure 4.34(a) shows the minimum detectable signal and maximum undistorted input
at the BF of each tap in the cochlea. The minimum detectable signal was measured as
described earlier in this section. The maximum undistorted input was measured by finding
the input rms value at which the second harmonic (by far the dominant harmonic) was
attenuated by 25 dB when compared with the first harmonic. We observe that the maximum
undistorted input is nearly constant at 1V rms, except for the first few taps, where the action
of the strong AGCs at each tap have not accumulated sufficiently to reduce the distortion.?
Figure 4.34(b) shows the dynamic range at various taps. The dynamic range varies from
about 59dB to 64dB. The early taps have little accumulation of noise or gain, in contrast
with the late taps, which have large accumulation of noise and gain. The effect of gain

regulation in the AGC causes the accumulation of noise and of gain to be approximately

3We were able even to apply a 1.4V input rms signal and to keep the distortion under 25 dB (due to the
strong AGC), but we refrained from doing so because the input signal then would be just at the edge of our
DC operating range; operating the cochlea at this extreme is possible, but we chose not to so as to leave a
safety margin.
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vin balance, so the dynamic range does not suffer a huge variation across taps. However, as
we would expect, Figure 4.35 shows that the maximum output SNR at BF (the SNR at 1V
rms input) falls as we traverse the cochlea. It is maximum at tapl (6.74 x 10% or 48.3dB)
where there is the least noise, and minimum at tap 37 where there is the most noise (649
or 28.1dB). The discontinuities, due to the CF offset of the cochlea around taps 21 to 25,

are evident in Figure 4.34 and Figure 4.35.

4.3.5 Spatial Characteristics

Figure 4.36(a) shows the spatial response of various taps of the cochlea to a 162Hz input,
for various amplitudes. To understand the similarity of Figure 4.36(a) to Figure 4.23(a), we
can view the cochlea as performing a frequency-to-place transformation with log(f)—z [4].
Even the harmonic-distortion plot of Figure 4.36(b) is quite similar to that of Figure 4.25(a).
The most severe distortion occurs at a place that corresponds to a corner frequency that
is 1 octave higher than the corner frequency at the best place (BP). Figure 4.37 shows the
shift in BP for two different frequency inputs to the cochlea.

4.3.6 Dynamics of Gain and Offset Adaptation

Figure 4.38(a) shows the attack response of cochlear tap 30 to the abrupt onset of a tone
at the tap’s BF (162Hz). After a transient at the first cycle, the envelope of the response
adapts quickly to the new intensity, corresponding to the quick onset adaptation of the peak
detector. The offset correction has a slower rate of adaptation and continues to adapt with
some ringing even after the envelope adaptation is complete.

Figure 4.38(b) shows the release response of cochlear tap 30 to an abrupt decrease in the
intensity of the BF tone. The adaptation of the envelope is much slower than that shown in
Figure 4:38(a) because of the slow adaptation of the peak detector to inputs of decreasing
intensity. The DC offset adaptation continues to have a rate of adaptation that is slower

than the rate of envelope adaptation.

4.3.7 The Mid-Frequency and High-Frequency Cochleas

So far, we have dwelled almost entirely on the properties of the low-frequency cochlea; the

properties of the other cochleas are similar. Figure 4.39 shows the variation in ) versus
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éorner frequency due to bias-current differences in a cochlear filter. There is a variation in
Q as we go from subthreshold behavior at low frequencies to above-threshold behavior at
high frequencies. However, our high-frequency circuits operate just at the beginning of the
transition from subthreshold to above threshold, and thus the change in @ is not significant.
- Figure 4.40 shows that, consequently the “sounds of silence”, that is, the noise spectra at
the various taps in the low, mid, and high-frequency cochleas are similar in shape across

the entire frequency range (100Hz to 10kHz).

4.4 Analog Versus Digital

The total resting current consumption of all three of our cochlear cascades was measured to
be 95uA. Playing microphone speech through our cochleas increased the power consumption
to about 99uA. Thus, the total power consumption of our cochlea is about 100uA x5V =

0.5mW. Our area consumption was 1.6mmx1.6mmx3 = 7.7 mm?

in a 1.2um process. The
pitch of a single cochlear stage, including all scanning circuitry and with a conservatively
large number of power buses (to prevent unwanted coupling through the supplies), was 102
pmx 444 pm.

The high-frequency cochlea consumes more than 3/4 of this power. We can easily cut
our power dissipation to 0.2mW by having a tilt on the V4 voltages, although we did not
implement this tilt on our current design. If only telephone bandwidth is required, we can
do away with the high-frequency cochlea and cut our power dissipation to 0.125mW. If we
implement the tilt on the V4 voltages and do not use the high-frequency cochlea, then our
power consumption reduces to 50uW.

We next compare the power and area consumption of our analog cochlea, an ASIC

digital cochlea, and a noncustom microprocessor (1P) cochlea. We begin by describing the

design of the ASIC digital cochlea.

4.4.1 The ASIC Digital Cochlea

Figure 4.41 shows a block-level schematic of a digital cochlea, similar to our analog cochlea,
and described in [14]. Second-order recursive digital filters with tapering filter coefficients
model the basilar membrane. Half-wave rectification circuits (HWR) perform MSB lookup

to model the inner hair cells. Automatic-gain-control circuits (AGC) with cross talk model
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‘the olivocochlear efferent system. The multiscale AGC is modeled over 4 time scales.

This is a custom cochlea, designed to be as efficient in power and area consumption as
possible. A digital input, clocked at 50 Khz, forms the input to the cochlea; that frequency is
slightly over the Nyquist frequency of 36khz for the highest-frequency location of the cochlea,
and is necessary to obtain robust behavior with the filtering and nonlinear operations in
the cochlea. It is possible to implement a multirate sampling system, but calculations show
that the bandwidth needed to implement 95 stages of the cochlea from 18Khz to 100Hz
(as in the analog cochlea) is equivalent to the bandwidth needed to implement 17 stages
at 18kHz. Thus, a multirate system can help only by a factor of 5.6. If the overhead in
circuitry and complexity needed for a multirate system is factored in, there may be no
advantage whatsoever. Thus, we shall confine ourselves to a system with only one rate
of sampling. Note that we need only 95 stages in the digital cochlea (as opposed to 117
stages), since we do not need the redundancy of the overlapping-cascades architecture. To
handle thé input dynamic range of 60dB, (i.e., 10 bits), it is necessary to do fixed-point
operations at a precision of approximately 24 bits; otherwise, overflow errors and round-
off—error accumulation can seriously jeopardize the computation.

The system shown in Figure 4.41 is implemented most efficiently with a bit-serial rep-
resentation, where the bits are processed serially, and each filter, HWR, and AGC block is
reused 95 times to compute the effect of the entire cascade. The reuse of circuitry results in
tremendous savings in area and power, and makes a digital cochlear implementation feasible
on a single chip. There is, of course, overhead in the storage that is necessary to implement
these computations.

The proposed ASIC digital cochlea was never built. However, we can estimate what its
power dissipation would have been. The Clock Rate is 50 kHz x 95 stages ><.24‘1 bits =
114.0Mhz. The power supply would need to be about 2.0 V to attain a 114.0MHz clock
rate. Let’s assume that the technology is 0.5 ym. The number of gates needed for the
computation is roughly 40 (number of gates for 1 multiply operation, including storage
overhead) x 24 (number of bits) x 7 (3 multiplies in filter and 4 in the AGC) = 6720 gates
+ RAM and ROM. The 13 add operations comprising 5 adds in the filters and 4 x 2 adds
in the AGC are treated as being essentially free in fixed-point computations. The gate.Hz
= 6720 x x 114Mhz = 0.77 x 10'? gate Hz. The gate capacitance = (0.5 ym x 0.5 ym X
10 (transistors per gate) x 2 fF (cap. per unit area) = 50 fF. The switching energy per gate
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Table 4.1: Cochleas
ANALOG | ASIC DIGITAL | DEC «
TECH. | 1.2um 0.5 pm 0.5um
Vobp 5V 2V 3.3V
POWER | 0.5mW 150mW 50W
AREA 7.7mm? 25 mm? 299 mm?

= 50 {F x (2.0)%> = 2.0 x 107!3J. The power dissipation is therefore 0.77 x 10'2 gate.Hz x
2.0 x 10713 = 0.154W, which we shall round down to 0.15W. The area we would need to

build this chip is estimated to be 5 mm X 5 mm (in 0.5 um tech.) = 25 mm?2,

4.4.2 uP Cochlea

In FLOPS, we need about 50 Khz (bandwidth) x 95 (number of stages) x 20 (7 multiplies
and 13 adds) = 95 MFLOPs to implement our cochlea. Note that adds cannot be treated
as free in floating-point operations. On the specfP92 Ear program, the DEC 21164 running
on an Alpha server 8200 5/300 does about 1275 times better than a Vax 11/780. The Vax
11/780 is specified at 0.1 MFLOPS. Thus, the DEC « is capable of 1275 x 0.1 = 127.5
MFLOPS which is enough for our computation, The DEC « consumes 50 W and has an

area of 16.5 mm X 18.1 mm = 299 mm?2.

4.4.3 Comparison of Analog and Digital Cochleas

Table 4.4.3 compares the power and area consumption of the various cochleas. Note that
our analog cochlea would be more efficient in area by about a factor of 2 to 4 if it were also
implemented in a 0.5um technology like the digital designs. However, we have not scaled
down the analog numbers; we have just shown them for our current 1.2um technology.

The analog implementations are more efficient in power than are custom digital imple-
mentations by a factor of 300, and than are noncustom P implementations by a factor of
1 x 10°. The analog cochlea can run on 1Ah batteries for more than a year (with 100uA
current consumption), whereas the best digital cochlea would be able to run for only less
than 1 day (with 75mA current consumption).

The area comparisons show that, even in an inferior technology (1.2 um vs. 0.5 um),
the analog cochlea is about 3 times more efficient than is the custom ASIC cochlea, and is

about 40 times more efficient than is the microprocessor implementation.
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‘The cochlear comparisons were generous to digital implementations: We used a better
technology (0.5 um versus 1.2 pm), operated with a power-saving supply voltage (2.0 V
versus 5.0 V), used an efficient bit-serial implementation, did not include the cost of the 10-
bit or 13-bit A/D converter, and were more conservative in our cost estimates. Nevertheless,
the analog implementations were two to five orders of magnitude more efficient than the
digital implementations. To compete with digital systems, the analog systems had to be
designed with wide-dynamic-range circuitry, and had to compensate for their offsets. In
fact, most of the analog cochlea’s resources in area were expended in filter linearization,
low-noise transduction, and offset-compensation circuitry. Most of the analog cochlea’s
resources in power were expended in low-noise sensing circuitry. The number of devices
needed to do the actual computation was nevertheless so small that 117 stages could be
implemented easily on one chip, with room to spare.

By contrast, the digital cochlea’s resources in area and power were not primarily con-
sumed in fnaintaining precision, although extra bits were necessary to prevent overflow and
roundoff errors. Rather, the actual computation was so expensive in digital that only one
stage of the cochlear cascade was feasible on a single chip. That stage had to be reused 95
times in succession, at a fast rate of 114MHz, to finish the computation in real time. In other
words, the analog implementation was slow per computational stage, cheap, and completely
parallel. The digital implementation was fast per computational stage, expensive, and fully
serial. We might wonder—if the digital implementation were slow and fully parallel just
like the analog one, would the comparisons in efficiency seem less drastic? The answer is
yes for power consumption because it could be reduced by turning down the power-supply
voltage and clock frequency. The answer is no for area consumption, because it would be 95
times worse. In this particular case, however, the size of the chip required for the parallel
digital implementation would be totally unfeasible. In other words, there is no free lunch:

the inefficiency of using a transistor as a switch will always show up somewhere.

4.5 The Biological Cochlea

The biological cochlea is far more complex than is our electronic cochlea, and it is surprising
that we can replicate much of its functionality with just our simple circuits. Our aim is

not to replicate its functions exactly, as computer modeling attempts to do, but rather
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to exploit its clever computational ideas to build more efficient electronic architectures for

artificial hearing. Such architectures may enable the design of superior hearing aids, cochlear

implants, or speech-recognition front ends. In addition, as we shall show in Section 4.5.1,

the synthesis of an artificial cochlea can help us to improve our understanding of how the

biological cochlea works.

The functions of the biological cochlea that we can replicate are:

1.

The frequency-to-place transformation, as implemented by the amplification and prop-

agation of traveling waves

. A compressive nonlinearity at and beyond the BF of a cochlear tap. Like the biological

cochlea, our response is linear for frequencies well below the BF. Our compression is
achieved through an AGC. In the biological cochlea, it is still a matter of debate as
to how much of the compression arises from a dynamic AGC and how much from a
static nonlinearity. We have reported on cochleas where the compression arises solely

from a static nonlinearity as well [9].

. An asymmetric attack and release response to transient inputs.

The extension of dynamic range due to active amplification. Our dynamic range
is extended from 30dB to about 60dB. In the biological cochlea, it is believed that
amplification by outer hair cells extends the dynamic range of the cochlea by about

40dB.

. The broadening of the pattern of excitation as the input intensity is increased. The

dual effect, which we can also model, is the broadening of the frequency-response

curves as the input intensity is increased.

. The shift of the peak frequency towards lower frequencies as the input intensity is

increased. The dual effect, which we can also model, is the shift of the peak place of

excitation toward the input of the cochlea as the intensity is increased.

A sharp cochlear roll-off slope.

. Masking of adjacent frequencies and harmonics due to the effects of the AGC and

nonlinearity, respectively. However, our dominant harmonic is the second harmonic.

In the biological cochlea, the dominant harmonic is the third harmonic.
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451 Traveling-Wave Architectures Versus Bandpass Filters

Why did nature choose a traveling-wave architecture that is well modeled by a filter cascade
instead of a bank of bandpass filters? We suggest that nature chose wisely, for the following

three reasons:

1. To adapt to input intensities over a 120dB dynamic range, a filter bank would require
a tremendous change in the @ of each filter. To compress 120dB in input intensity
to about 40dB in output intensity the filter s must change by 80dB; a dynamic-
range problem in the input is merely transformed into a dynamic-range problem in
a parameter. In contrast, in a filter cascade, due to the exponential nature of gain
accumulation, enormous changes in the overall gain for an input can be accomplished

by small distributed changes in the @) of several filters.

2. Large changes in the @ of a filter are accompanied by large changes in the filter’s
window of temporal integration. Thus, in filter banks, faint inputs would be sensed
with poor temporal resolution, and loud inputs would be sensed with good temporal
resolution. In contrast, in a filter cascade, the shifts in temporal resolution with
intensity change only in a logarithmic fashion with intensity, as opposed to in a linear

fashion as in the filter bank.

3. A sharp rolloff slope in a filter is extremely useful in limiting distortion, and in en-
hancing spectral contrasts. A sharp rolloff slope arises naturally in the cochlear filter
cascade. To accomplish such a rolloff slope in a filter bank requires very high-order
filters, and consequently an enormous amount of circuitry at each tap. In contrast, in
the filter cascade, the burden of creating a high-order rolloff is shared collectively, so

only one new filter needs to be added for each new desired corner frequency.
There are two problems that need to be addressed in a filter cascade:

1. A filter cascade is prone to noise accumulation and amplification. The solution to this
problem is either to have an exponential taper in the filter time constants such that
the output noise converges (the solution found at high CF's in the biological cochlea),
or to limit the length of the cascade (the solution at low CF's in the biological cochlea).

The exponential taper also results in elegant scale-invariant properties.
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2. The overall gain is quite sensitive to the value of each filter’s (). The solution to this
problem is to have gain control regulate the value of the @)’s in the cascade. If the gain
control is sufficiently strong, then the collective adaptation in @ across many filters

will compress a wide input dynamic range into a narrow output dynamic range.

4.6 Applications to Cochlear Implants

Front-end modules in current cochlear implant devices make use of paraﬂel banks of inde-
pendent bandpass filters. For example, the front-end module of a state-of-the-art commer-
cial multichannel cochlear implant devices consists of 20 fourth-order bandpass filters with
center frequencies between 250Hz and v10kHz. The filters are implemented using switched-
capacitor techniques. The total power dissipation of such implementations is on the order
of several milliwatts, and the dynamic range is only 35 to 40 dB.

Our neuromorphic app>roa,ch mimics several aspects of the biological cochlea, as de-
scribed in Section 4.5. In addition, our dynamic range exceeds 60dB. Our power dissipation
for a 117-stage cochlea with a roll-off slope corresponding to a high-order filter (10th order
to 16th order) is 0.5mW. If we use fewer stages and fewer filters per octave to correspond
to current values in implant front ends, we could, we estimate, cut our power dissipation to
50 4W. This power dissipation is about 20-100 times lower than that in current front ends.

Thus, in terms of biological realism, dynamic range, and power we can do much better
than current implant front ends. Previously [11], we described how a nonlinear center-
surround operation on the outputs of the cochlear taps can convert cochlear lowpass infor-
mation into bandpass information without degrading the temporal resolution at that tap.
A neuromorphic front-end module like ours satisfies the fundamental requirements of future

cochlear-implant speech processors [15].

4.7 Conclusions

We described a 117-stage 100Hz-to-10kHz cochlea that attained a dynamic range of 61dB
while dissipating 0.5mW of power. The wide dynamic range was attained through the
use of a‘wide—linear-range transconductance amplifier, of a low-noise filter topology, of

dynamic gain control (AGC), and of an overlapping-cascades architecture. An infrastructure
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‘of automatic offset adaptation, small amounts of low-frequency attenuation, and scale-
invariant BICMOS circuit techniques provided robust operation. The low power, wide
dynamic range, and biological realism suit our cochlea to be used as a front end for cochlear
implants. The design of our electronic cochlea suggests why nature preferred an active

traveling-wave mechanism over a bank of bandpass filters as a front end for hearing,.
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Figure 4.1: Schematic for a Cochlear Stage. A single cochlear stage is composed of a filter
(SOS) with offset-adaptation circuitry (LPF and OCR), an inner-hair-cell and peak-detector
circuit (IHC and PD), and a tau-and-Q control circuit.
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Figure 4.2: The Wide-Linear-Range Transconductance Amplifier. The inputs to the ampli-
fier are vy and v_, and the output is the current I,,:. The bias current is Ig. The voltages
vy and v, represent inputs from the offset-adaptation circuitry.
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Figure 4.3: The Offset-Adaptation Circuit. The input to the circuit is the output of the
first amplifier of the SOS, V;. The outputs vgl and v}, connect to the corresponding inputs
of the first amplifier of the SOS.
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Figure 4.4: The Second-Order Filter Circuit. (a) The input is Vi, the output is Va, and
the bias currents of the first and second amplifiers are Iy and I. (b) The block-diagram
equivalent of the filter is useful for making noise calculations. The voltages vn; and wvpa
represent the input-referred noise sources of the first and second amplifier respectively.
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Figure 4.6: Maximum Undistorted Signal in the Filter. The input amplitude at which
the total harmonic distortion at the output is attenuated by 25dB with respect to the
fundamental is plotted versus Q. The fundamental frequency is at the BF of the filter. The
line is an empirical fit.
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Figure 4.7: Translinear tau-and-@Q Biasing Circuit. The voltage Vr sets the 7 of the filter,
and the voltage Vg sets the small-signal ). The current I is a placeholder for a gain-
control-correction current. The currents I; and I are the bias currents of the first and
second amplifiers of the filter.
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Figure 4.8: Tau-and-Q Control Circuit Characteristics. (a) The corner frequency has an
exponential dependence on the voltage Vp. (b) The quality factor @ has an exponential
dependence on the voltage Vp.
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Figure 4.9: The IHC and PD Circuits. The inner hair cell transduces its input V;, to a
current Ip, that is then fed to the peak detector. The output of the peak detector I, is
mirrored to the tau-and-@) control circuit as a gain-control-correction current.
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Figure 4.21: Architecture of Overlapping Cascades. (a) In a regular cochlear cascade, the
input is fed serially to all stages. (b) In an overlapping cochlear cascade, the input is fed in
parallel to tiny cochlear cascades whose corner frequencies overlap by 1 octave.
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are shown. The minimum detectable input at BF was found to be 0.875mV. (b) The total
harmonic distortion from all harmonics for a 1V rms input at BF was less than 4%. The
maximum undistorted input is thus 1V.



150

10° ¢ . :
o () . ]
T 10k 1V input =
£
by 0.9mV input ]
Q 107t .
> E
S’
£ 103
[ 3
—
Q
QL 4
Q 107 5
wn 3
=)
a 5
8 10°
= E
© i
10‘5 _ . N e . . 4o
10° 102 108
Frequency (Hz)
100: T T 7 T rTTYY v L B R A | M Ty
f o - Signal (BF at Tap 30)
< [ x - Noise o o © 0 o o
o L °
% (b) o
2107 ° 3
o
= R ox
< X
wn X X X
E X
2
- 10, X x %
-
Q.
)
=
o
10'3 T — il oo s
10 107 1072 107" 10°

Input Rms Amplitude (V)

Figure 4.30: Signal-and-Noise Amplitude Characteristics. (a) The output spectrum of tap
30 for a 1V rms and 0.9mV rms input at BF shows the adaptation in ¢ and consequent
reduction in noise. (b) The output rms amplitude of the signal and of the noise at different
input rms amplitudes are shown.



Output Signal-to-Noise Ratio

Figure 4.31: SNR Amplitude Characteristics. The output SNR improves by about 30dB (1
to 1241) as the signal changes intensity by about 60dB (0.9mV to 1V)

151

104: T L LILAE§ T T™r T iy T T T T TTTrT ™)
Tap 30 at BF ]
10% 3
(o]
. ° (o] o]
102k
F o
" [e)
10'L
F o
100 L PP s ——
107 10°® 102 107 10°

Input Rms Amplitude (V)



Output Rms Amplitude (V)

152

T S —
f 0 -- Real AGC Cochlea
L X - Hypothetical Linear Low-Q (Passive) Cochlea
o © o O ©o o X
o]
] X
10" o
X
o - =
| High-Q Noise Floor (48.4mV) X
| X
10} ' 3
| | Low—ENcEe %orTS,ganV_)
I Extension in Dynamic Dynamic Range of
] Range Passive Cochlea
|< >|<
0.82mVv 28.4mV v
10“3 ...l.. ] N l. L raaa
10 107 107 10" 10°

Input Rms Amplitude (V)

Figure 4.32: Extension of Dynamic Range. A hypothetical low-Q cochlea that is completely
linear would have a dynamic range of only 30dB due to the uniformly low gain of 0.315 at
all amplitudes; such a cochlea is analogous to the passive biological cochlea with no outer
hair cells. Our AGC cochlea has a dynamic range of 60dB because faint signals at 0.82mV
are amplified by a factor of 59 to be just above the noise floor of 48.4mV, whereas loud
signals at 1V rms amplitude are attenuated by a factor of 0.315 to prevent distortion; such
a cochlea is analogous to the active cochlea with outer hair cells.
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Figure 4.33: Noise Accumulation Across Cochlear Taps. (a) The noise spectra at various
cochlear taps are shown. (b) The total output noise integrated over all frequencies asymp-
totically converges due to the exponential taper of the cochlea. The discontinuities in the
curve are due to the discontinuous reduction in bandwidth, in turn due to chip offsets,
between taps 21 and 25 in (a)



154

10° 6 9—0—6 o0 -6 -0 o o .o . 0o

to 0 -- Max. Undistorted Input
X -- Min. Detectable Input

1072} 3

10°} x x X
XX X x oy ox X X x X E

Input Rms Amplitude at BF (V)

0 70 20 30 40
Tap Number

65 T T .

af (D) o |

62 4

60 .

58} 4

Dynamic Range at BF (dB)

57 4

o ) .
56O 10 20 30 40

Tap Number

Figure 4.34: Dynamic Range Across Cochlear Taps. (a) The minimum detectable input and
maximum undistorted input at various cochlear taps are shown. (b) The dynamic range at
BF at various cochlear taps are shown.



155

10°p ; r ;
Fo
L
m o
& 04 ;
QZ: s ° o :
w (o]
5 ° %
o o]
5 o ° °
O 10°% 1
><' o o o ]
(C
b3
2 ) L )
10°% 10 20 30 40
Tap Number

Figure 4.35: SNR Across Cochlear Taps. The maximum output signal-to-noise ratio pro-
gressively decreases as we travel down the cochlea due to the accumulation of noise. The

numbers represent the ratio of the signal power to the noise power, that is 10° corresponds
to 50dB.



156

10° ¢ . ; -t .
F 1000mV | 162Hz input
2 [ 320mv A
3 160mV A
-1 N
21%% ' 1
ot 80mvV |
§; 40mv I
2 I
e 20mv
a4 2| | i
2 10 . 10mV | ]
% SmV |
© (a) | BP
-3 . . N
10 0 10 20 30 40
' Tap Number
10° oo . -t 3
uouoooo000000000000°o°°ooooob 162Hz input ]
! xxXxxXxxxxXxx o 1Vms
< 107 )X | 3
> E (X **ﬁﬂe%*%%x** X o
p— - =
® : p'4 ***¥ ** XXXXXX | Oo ]
Q102X ¥ * x XXK o 3
£ % el o
g . o-1f ¥x ale>< o
< 10 x - 2f 1%
» * . 3f | *,
e af | -4 1
& 107 X 3
4t F 3
5 F | LIV
o [ ]
5 10% l *x |
[ BP ]
10-6 L 1 I I
0 10 20 30 40
Tap Number
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Chapter 5 Efficient Precise Computation with Noisy
Components: Extrapolating From Electronics to

Neurobiology

Abstract

We review the pros and cons of analog and digital computation. We propose that com-
putation that is most efficient in its use of resources is neither analog computation nor
digital computation, but rather is an intimate mixture of the two forms. For maximum
efficiency, the information and information-processing resources of the hybrid form must be
distributed over many wires, with an optimal signal-to-noise ratio per wire. QOur results
suggest that it is likely that the brain computes in a hybrid fashion, and that an underap-
preciated and important reason for the efficiency of the human brain, which only consumes

12W, is the hybrid and distributed nature of its architecture.

5.1 Introduction

We estimate that the human brain performs on the order of 3.6 x 10'® synaptic operations
per second (see Appendix 5.8.1). From measurements of cerebral blood flow and oxygen
consumption, it is known that the brain consumes only 12 W (see Appendix 5.8.2). Its
efficiency of computation is thus about 3 x 10'* operations per joule. Our brain is capa-
ble of doing tremendously complex computation in real time despite the slow and noisy
components in our heads and bodies.

An eXtremely fast microprocessor such as the DEC Alpha 21164 performs about 255 x 108
floating-point operations per second, and consumes 40 W.! Its efficiency is thus about
6.25 x 10° operations per joule. It is incapable of solving even relatively simple behavioral

tasks in real time in spite of its blazingly fast and precise transistors.

1On the specfp92 Ear Program, which performs auditory computations similar to those in the human
ear, the DEC 21164 running on an Alpha Server 8200 5/300 is 1275 times as fast as a VAX 11/780, which
would run at about 0.2 MFLOPS for our computation. Thus, we estimate that it is equivalent to about
1275 x 0.2 = 255 MFLOPS. These numbers are for 1995.
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If we compare the computing efficiency of the human brain with that of a digital micro-
processor, we observe that the brain is at least seven orders of magnitude more efficient.?
Mead was the first scientist to point out the great discrepancy in the computational ef-
ficiencies of neurobiology and electronics [1]; he also pioneered the field of neuromorphic
computation—electronic computation inspired by and similar to that performed by neural
systems [2].

How is efficient and complex computation with noisy components achieved in neurobi-
ological systems? Mead attributed the enormous efficiency of neurobiological systems to
their clever exploitation of the physics of the medium that they were built in, to their local
wiring strategies, and to their enormous capabilities to adapt and learn. In this paper we
will focus on the tradeoffs involved in using physics to do computation.

At first, it is strange to imagine that physics might have anything to do with com-
putation. However, information is encoded in physical state variables, and information
processing. is accomplished with the use of physical devices. Thus, questions about what
we can compute and how efficiently we can compute are deeply linked to the way the phys-
ical world works [3]- [4]. The Universal Turing machine helped us to understand that a
language with an extremely minirﬁal vocabulary is sufficient for expressing almost any con-
cept. However, it helped to obscure that a language with a rich vocabulary can express,
in a few sentences, concepts that would take several paragraphs to express in an impov-
erished language. Proposals for molecular computing [5] and quantum computing [6], [7]
have suggested that problems that take an exponential number of resources in conventional
digital computing may be reduced to problems that take a polynomial number of resources
in these paradigms of computing. So far, neither of these proposals has been made to work
for large-scale systems. However, they have both reminded us of the importance of the
underlying physical substrate in computation.

The three resources that a machine uses to perform its computation are also ultimately

physical: time, space, and energy. Computer scientists have traditionally treated energy as

It may be argued that our comparisons have not been fair since the floating-point computations that
a microprocessor performs are more complex than are those that a synapse performs, and are also more
precise. However, in addition to multiplication, synaptic computations involve temporal filtering and adap-
tation, which are fairly complex operations in digital computation. We have also neglected several complex
spatiotemporal correlations and additions that are performed in the dendrite of a neuron. Thus, for simplic-
ity, we have chosen to just compare the efficiency of an “elementary operation” in digital computation and in
neurobiology. There are so many orders of magnitude of discrepancy between neurobiology and electronics
that such concerns will not alter our conclusions.
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a free resource, and have focused mostly on time (the number of clock cycles required for
the computation to terminate) and space (the amount of memory needed or the number of
devices needed to perform the computation). However, energy cannot be treated as a free
resource when we are interested in systems of vast complexity, such as the brain. With the
current efficiencies of digital computation, it would take us tens of megawatts (the power of
about 10,000 furnaces!) to build a system like the brain, assuming we could do so at all. If
we wanted to make this system portable as well, energy constraints would be very important
indeed. Energy has clearly been an extremely important resource in natural evolution. For
an interesting discussion on energy constraints in biology and evolution see [9] and [10]. On
a smaller scale, today, energy constraints are important in all portable applications such as
radio telephony, laptop computing, and hearing aids.

Biological systems typically compute constantly, rather than episodically, with the re-
source of time fixed by the computational requirements of the task. For example, for a
sensorimofor task we may need to respond within a few hundred milliseconds, whereas for
the task of hearing a 1Khz tone, we will need to respond to cycle by cycle variations on a
one lmsec time scale. Thus, throughout this paper, we will assume that the bandwidth of
the computational task is fixed and that the resource of time is not a degree of freedom (it
will be a parameter in our equations but will not be a variable). The other two resources
(energy and space) will be degrees of freedom; we shall use the more natural resources of
power (energy per unit time) and area (the spatial resource in a two-dimensional substrate
such as nerve membrane or in VLSI) as our degrees of freedom.

Suppose that we are given two systems, A and B, that do a computation at the same
bandwidth, at the same output information rate, and with the same input. Then, A is more
efficient than B if it consumes less power (and/or area) in doing this computation. In this
paper, we shall be interested in understanding the reasons for the efficiency of one system
over another.

Electronic systems are far simpler to understand and analyze than are biological systems.
So, in Sections 5.2 and 5.3, we begin by analyzing electronic systems. In Section 5.4, we
use the insights gained by this analysis to outline how efficient precise computation can be
achieved by hybrid and distributed electronic architectures. In Section 5.5 we extrapolate
our ideas for electronic systems to neurobiological systems. In Section 5.6 we describe other

reasons for the efficiency for the brain, besides its hybrid and distributed architecture. In
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Section 5.7 we conclude by summarizing our contributions.

5.2 Analog Versus Digital: The Intuitive Picture

Electronic systems operate with continuous signals (CS) or discrete signals (DS), and in
continuous time (CT) or discrete time (DT). Thus, there are four classes of systems: CSCT,
CSDT, DSCT, DSDT. Figure 5.1 shows examples of systems, either electronic or biological,
in each class. Typically, continuous-signal systems are referred to as analbg, and discrete-
signal systems are referred to as digital, irrespective of their representation in the time
domain. In this paper, we shall first concentrate on those analog systems that are continuous
in both the signal and time domains (CSCT), and on those digital systems that are discrete
in both the signal and time domains (DSDT). Such systems are the most common examples
of analog and digital systems respectively, and are also the most disparate from each other.
Later, in Section 5.4, we shall discuss why an alternation between the CSCT and DSCT
domains can be advantageous over operation in the DSDT or CSCT domain alone. We shall
ignore the CSDT domain in this paper because its relevance to neurobiology is generally
believed to be small.

We now tabulate some of the pros and cons of analog (CSCT) and digital (DSDT)
systems from a signal-processing viewpoint. The tabulation reflects our own biases on
what we believe to be of importance in the context of this paper. It is by no means a
comprehensive and exhaustive list of all the differences between analog and digital systems.
For example, we completely omit all discussion of programmability and learning in these
systems, although these issues are very important; also, we omit all discussion of temporal

aliasing, which is an important source of distortion in discrete systems.

ANALOG DIGITAL

1. Compute with continuous values of Compute with discrete values of
physical variables in some physical variables, typically
range, typically between Gnd Gnd and Vdd, denoted by 0
and Vdd. and 1 respectively.

2. Primitives of computation arise Primitives of computation arise
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from the physics of the computing
devices:

phy'sica,l relations of NFETs,

PFETs, capacitors, resistors,
floating-gate devices, Kirchofl’s
current and voltage Laws etc.

The use of these primitives

is an art form, and does not lend
itself easily to automation.

The amount of computation squeezed

out of a single transistor is high.

One wire represents many bits of

information at a given time.

Computation is offset-prone since
it’s sensitive to the parameters
of the physical devices. The
degradation in performance is

graceful.

Noise is due to thermal fluctuations

in physical devices.

Signal is not restored at each

stage of the computation.

In a cascade of analog stages,
noise starts to accumulate. Thus,
complex systems with many stages

are difficult to build.

from the mathematics of Boolean
logic:

logical relations like AND

OR, NOT, NAND, XOR.

The use of these primitives

is a science, and lends itself
easily to automation.

The transistor is used as a
switch, and the amount of
computation squeezed out of

a single transistor is low.

One wire represents 1 bit

of information at a given time.

Computation is not offset-prone
since it’s insensitive to the
parameters of the physical devices.
However, a single bit error can result

in catastrophic failure.

Noise is due to roundoff error.

Signal is restored to 1 or O at each

stage of the computation.

Roundoff-error does not accumulate

significantly for many computations. Thus, .

complex systems with many stages

are easy to build.
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5.2.1 Physicality: Advantage Analog

Items 1 through 3 show that analog computation can be far more efficient than digital
computation because of analog computation’s repertoire of rich primitives; For example,
addition of two parallel 8-bit numbers takes one wire in analog circuits {using Kirchoff’s
current law) whereas it takes about 224 transistors in CMOS digital circuits. The latter
number is for a cascade of 8 full adders. Similarly an 8-bit multiplication of two currents
in analog computation takes 4-8 transistors, whereas a parallel 8-bit multiply in digital
computation takes approximately 3000 transistors. Although other digital implementations
could make the comparisons seem less stark, the point here is simply that exploiting physics
to do computation can be powerful. The advantage of an analog machine over a digital
machine is especially great when there is a straightforward mapping between the operations.
needed in the computation and the primitives of the technology. For large-scale systems,
e.g. in the implementation of silicon cochleas [8], depending on the nature of the digital
implementation, the advantage can range from a factor of 300 to 10° in power consumption.

Because the number of devices required to perform a computation is greater in digital
systems, there is more wiring and communication overhead. The presence of more devices
and more communication overhead cause digital circuits to have typically higher area con-
sumption than that of analog circuits. The switching-energy dissipation due to the large
number of devices and the communication overhead also causes the power consumption to
be higher in digital circuits. If the number of devices switching per clock cycle is N, the
clock frequency is f, the average load capacitance that a device has to drive is C, and the
power-supply voltage is Vpp, then the power consumption Pp of digital circuits is given by
the simple formula

Pp = NfCVpp®. (5.1)

Unlike digital CMOS circuits, whose power dissipation occurs only during switching and is

entirely dynamic, many analog circuits have standby or static power dissipation and little or
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no dynamic power dissipation.? Thus their power dissipation is given by the simple formula
Py = NVppl, (5.2)

where N is the number of computational stages, Vpp is the power-supply voltage, and I is
the average bias current flowing through each computational stage.

We can make digital circuits more efficient in area and power by using bit-serial imple-
mentations, by lowering power-supply voltages, by reducing clock frequehcy, and by using
more parallelism [11]- [12]. The net effect of these improvements is that the efficiency gap
between analog and digital computation shrinks, although analog computation still retains

its advantage.

5.2.2 Noise and Offset: Advantage Digital

Although the use of physics made analog systems much more efficient than digital systems,
items 4 through 7 reveal that the very same physics causes analog systems to be much more
sensitive to noise and offset than digital systems. The use of continous signal variables
precludes analog systems from having any discrete attractor state to which they can be
restored. Thus, for a sufficiently complex computation the noise accumulation in analog
systems becomes severe, not enough precision can be maintained at the output of the
system, and analog systems clearly emerge as the losers.

Adaptation can help to compensate for offset in analog systems. However, performance
is still ultimately limited by residual offsets due to the finite loop gains of the compensating
circuits, and by the offsets introduced by the compensating circuits themselves. If the
compensation of offset is done periodically or continuously, such that it remains bounded
throughout the computation, then the presence of offsets can cease to be a problem in analog
systems.v Care must be taken to ensure that the feedback loops do not cause unwanted
dynamics due to interactions with the rest of the analog system.

We can attenuate noise to an arbitrarily low amount if we are willing to spend an
arbitrarily large amount of power (and/or area resources). However, as we shall show in

Section 5.3, by this point a digital solution would be more efficient than is an analog solution.

30f course, Class AB analog systems have dynamic power dissipation but we are focusing on only general
trends.
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‘If is interesting to note that components in digital computation have not always been re-
liable. In the early days of digital computation, vacuum tubes had failure probabilities of one
part in a thousand, and very complex computations could simply not be performed without
resulting in large errors. One of the pioneers of digital computation, John Von Neumann,
gave an entire set of lectures devoted to the problem of correcting errors in digital circuits
through the use of redundant signal representations and signal-restoration components[13].
Von Neumann also speculated, with the limited knowledge that was available at the time,

on the possibilites for analog computation in the nervous system.

5.3 Analog Versus Digital: The Quantitative Picture

In this section we quantify the intuitive picture of Section 5.2. To make progress, we need
to have an understanding of what causes noise in the devices with which we compute, and
of how the noise accumulation from the various devices in a system degrades the output

signal-to-noise ratio of an analog system.

5.3.1 Noise in MOS Transistors

Appendix 5.9 contains a detailed discussion of noise in MOS transistors. Here, we discuss
only the most important ideas.

We usually treat current as though it is the flow of a continuous fluid, although it is
the flow of discrete charged electrons. Due to thermal fluctuations, these electrons have
random, diffusive motions that are uncoordinated with one another. These incoherent
motions give rise to shot-noise currents and cause white noise in the device. The noise
is called white because its power spectrum is flat. Intuitively, by simple /N law-of-large-
numbers arguments, we might expect that shot noise would be less important at larger
current levels because we average over the motions of more electrons per unit time. This
intuition is indeed borne out. For further details of shot noise in transistors, see [14].
White noise is fundamental, and is present in all physical devices at room temperature.
The input-referred white noise of an MOS transistor is given by

Af, (5.3)
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Wheré p = 1.0 in the subthreshold region of operation of the MOS transistor, and p = 0.5 in
the above-threshold region of operation of the MOS transistor; I is the DC current through
the transistor; and Af = f, — f) is the bandwidth of operation, with f; and f; being the
highest and lowest frequencies of operation; the technology-dependent parameter K, (p)

increases with temperature and with thick gate oxides, and is given by

4kTUr

K,(1.0) = 53 (5.4)
in the subthreshold regime, and by
K,(0.5) = M (5.5)
(ucu)

in the above-threshold regime. The parameter & is the subthreshold exponential coefficient;
kT is a unit of thermal energy; Ur = kT'/q is the thermal voltage where ¢ is the charge on
the electron; u is the mobility of the electron; Cy; is the oxide capacitance; and W and L
are the width and length of the transistor, respectively. Note that K, is independent of
transistor geometry in the subthreshold regime, but is dependent on the transistor geometry
in the above-threshold regime. The parameter K, (p) is an important parameter of MOS
technology.

Another kind of noise in the transistor is called 1/f noise because its power spectrum
varies inversely with the frequency. It is widely believed that this form of noise arises
from electrons in the channel going into and out of surface states, and into and out of
impurities or defect traps in the gate oxide of the transistor. It is known that the mean-
square 1/f noise voltage at the gate input of the transistor scales inversely with the area of
the transistor A = W L, The offset voltage of a transistor also scales inversely with the area
of the transistor, because it is also caused primarily by impurities and traps in the gate oxide
of the transistor. The inverse scaling with area is intuitive and relies on simple VN law-
of-large-numbers arguments, as espoused in Appendix 5.9. The 1/f noise is approximately
independent of the current flowing through the transistor. The input-referred 1/f noise of

. 2 . .
a transistor vy ; is given by

vap = %{41 In (%) : (5.6)
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where Ky = B/C,;. The parameter B is a measure of the number of surface states,
impurities, and defects in the gate oxide.
Thus, we observe that the noise and offset (or 1/f noise) in an MOS transistor decrease
with an expenditure of power and area resources in the transistor, respectively. The total

input-referred noise is given by

2= B g K g ). | (5.7)

We call such an equation a noise-resource equation for the transistor. In any technology,
each device will have its own noise-resource equation that illustrates how the noise in the
device decreases with an increase in the resources consumed by the device. In this case, we
consume the resource of power (current) to reduce thermal noise, and the resource of area

to reduce 1/f noise (or offset).

5.3.2 Noise in Analog Systems

Figure 5.2 shows a cascade of M analog computational stages with an input V;, and output
Vout- Each stage i has a certain number of devices n;, has a gain g;, consumes a current I;,
consumes an area A;, and adds a certain amount of noise v,;. The cascade is representative
of many analog computations that involve distributed-gain amplification. In neurobiology,
distributed-gain amplification occurs in the dendrites of neurons or in the traveling-wave—
amplifier architecture of the cochlea. ‘

The complexity of the computation sets a lower bound on the number of devices in
each stage n;, and on the total number of stages M. The ingenuity of the analog designer
determines how close to the bound a realization of this system is. Depending on the details
of the computation, the bound may be on M X Xn;, on all the n;, on n; and M x ¥n,,
and so oﬁ. We assume that the power-supply voltage Vpp is fixed and is less than or equal
to the linear voltage range of the system, because otherwise power is unnecessarily wasted
with no increase in output signal-to-noise ratio. So, we choose not to operate the system in
this nonoptimal situation. We also make two simplifying assumptions. We assume that the
current I; and area A; of stage ¢ are divided equally among all fhe n; devices in the stage.
We also assume that each of the n; devices contributes equally to the noise of the stage

vp;. In practice, the circuit topology of a stage determines the amount of current through
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a de\}ice. The circuit topology also determines the noise contribution of that device to the
noise of the stage. In spite of our simplifying assumptions, our model captures the general
trend of the noise in each stage to increase with increasing n;, and the noise at the output
of the ca@cade to increase with increasing M.

The total mean-square noise at the output of the cascade, v2,, is made up of noise from
each of the computational stages. The noise at the first stage is amplified by the cascaded
gain of all the stages, whereas noise at the output of the i’th stage is amplified by the
cascaded gain of all stages from ¢ to M. Therefore, the early computational stages typically
contribute more noise than do the later stages. We define the noise gain from stage ¢ to the

output as G;, with

G;= H k- (5.8)

Then from Eq. (5.7), the assumptions of the previous paragraph, and Figure 5.2 we have
the total noise at the output given by

)

no
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The nature of the computational task determines the requirements on f; and f,. The
bandwidth of the system, Af = f;, — fj, is the overall bandwidth of the system at the output.
Any individual computational stage may have a bandwidth higher than this, but that is
not the bandwidth that is relevant for noise calculations at the final output.

Suppose that we have a total amount of current I7, or equivalently power Pr = Vpp I,

at our disposal; suppose also that we have a total amount of area Ar. That is,
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A = Ar. (5.10)
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We now ask how should we distribute our current and area resources among the various
stages to minimize the output noise given by Eq. (5.9)7 The answer to this question is a

simple exercise in multivariable minimization through a Lagrange-multiplier technique. We
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find that the currents I; and areas A; should be distributed such that

_ ’UJZ'[T
I = S (5.11)
wp = GHHPp, (5.12)
ZiAT
5% = G (5.14)

With the optimal allocation of resources, the total noise at the output is given by

. (ZEMw) TELmAf  (SEY &) Ko n(i/ )
jid - Ar

. (5.15)

This equation is the noise-resource equation for our system. We find that the noise-resource
equation for the device Eq.- (5.7) and the noise-resource equation for the system Eq. (5.15)
are very similar. The noise-resource equation for the device modeled the technology with
the p, Ky(p), and Ky parameters. The noise-resource equation for the system added the
effects of the complexity of the task and the ingenuity of the analog designer in the > w; and
> z; terms. Both equations reveal that power and area resources lower thermal noise and
1/f noise (or offset) respectively. Further subtleties of noise in analog systems are discussed
in Appendix 5.10.

To first order, Eq. (5.15) quantitatively captures all the intuitive ideas about noise and
offset that we expressed in items 4—7 of our analog-versus-digital table. Eq. (5.15) reveals
how noise accumulates in analog systems; if M and/or n; are large, as would be the case
for a complex computation, then the output noise can be large indeed. Eq. (5.15) also
illustrates that if we are willing to compute slowly (Af and f3/f; are both small), then we
can keep the output noise low without consuming too much power or area. Thus, Eq. (5.15)
also captures tradeoffs between maintaining low noise with few resources and maintaining
bandwidth. Finally, Egs. (5.12), (5.14) and (5.15) show that, if noise is to be minimized,
more resources should be distributed to the parts of a system that affect all other parts of
it (the initial stages) and to those parts of it that are complex (high n;). Note that, above
threshold, the weighting of power resources towards the early stages is more severe than is

that for subthreshold (G?/ 3 versus Gy).
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- It is convenient to rewrite Eq. (5.15) as

C, C
2 _ Mw f
Uno = F]‘j + Z”;v (516)
where Pr = Vpplr. The parameter C,, is simply the numerator of the first term of
Eq. (5.15) multiplied by V5, and the parameter C is the numerator of the second term

of Bq. (5.15).

5.3.3 The Costs of Analog Precision

In an analog system, the maximum possible amplitude of an output sinusoidal signal Y
is Vpp/2. The power of this signal is V3,,/8. For such a signal, the maximum possible
signal-to-noise ratio is given by

_Vip
82’

SN

(5.17)

2

where v;

is the noise power at the output. The parameter Sy is important because the
information H(Y') that we can observe at the output of our system is a monotonically
increasing function of Sy. The larger the value of Sy, the more finely can we distinguish
among states at the output, and the greater is the output precision. The exact form of the
function depends on the amplitude distribution of the output signal, and on the amplitude
distribution of the output noise. For many practical situations, H(Y) = (log, (1 + Sn))/2
is a good approximation to the number of bits of information present at the output. The
information at the output is an upper bound on the mutual information between the function
of the input implemented by the computation and the output [15].

By using the expression for system-level noise from Eq. (5.16) in Eq. (5.17), and inverting

the resulting equation to solve for Pr and A7 respectively, we get,

_ CuSN P

fr = <VJ%D/8—<0f/A)SN) | (>:19)
_ CySn

Ar = (VL%D/S—(cw/PTP)sN)' (5:19)

We refer to these equations as the resource—precision equations for analog computation; they
tell us how the resource utilization is a function of Sy, the variable that determines the

output precision. For small values of Sy, the denominator is constant in both expressions
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‘a,nd Pr SNl/”, while A7 o« Sy. Since p = 1.0 in the subthreshold regime, and p =
0.5 in the above-threshold regime, the scaling laws of power versus Sy are Pr oc Sy in
the subthreshold regime, and Pr < Sy? in above-threshold regime. The scaling laws for
area, A ~ Sy, are similar in both regimes. The power cost Pr diverges when Sy is
limited by 1/f noise (or offset); we must spend area in this situation to reduce 1/f noise (or
offset). Similarly, the area cost Ar diverges when Sy is limited by thermal noise; we must
spend power in this situation to reduce the thermal noise. Actually, these conclusions of
divergence are true only for the subthreshold regime, where we cannot trade the power and
area resources of a transistor to obtain a certain value of Sy. Appendix 5.10 shows how we

can trade between power and area in the above-threshold regime.

5.3.4 The Costs of Digital Precision

In typical digital systems, the power and area costs are proportional to the number of bits
b used in the computation. Thus, a 12-bit computation consumes one-half as much area
and one-half as much power as does a 24-bit computation if all parameters—such as clock
frequency f, average switching capacitance C, and power-supply voltage— remain fixed.
If we do allow the clock frequency and power-supply voltage to scale with the number of
bits, as in a bit-serial implementation, then the power costs scale as a polynomial function
of the number of bits. Some computations like multiplication have power and area costs
that scale like the square of the number of bits. In general, most tractable computations
scale as a polynomial function of the number of bits. For simplicity, we assume that the
power and area costs are proportional to the number of bits. It is straightforward to extend
the arguments that follow to the polynomial-scaling case, although a quantitative solution
may not be possible for any general polynomial. Thus, the resource-precision equations for

digital computation are given by

Pr = Lylogy (14 Sn), (5.20)
Ar = Lglogy (14 Sy), (5.21)

where b is defined from the relationship b =~ (logy(1 + Sn))/2. The parameters L, and L,
would depend on the task, technology and ingenuity of the digital designer. For example,

L, would scale like NW L where W and L are the widths and lengths of a small transistor,
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’and N represents the complexity of the task and the ingenuity of the digital designer. The

parameter L, would scale like N fCVp 2.

5.3.5 Precision Costs: Analog Versus Digital

Figure 5.3 shows power and area resource—precision curves for subthreshold analog compu-
tation (Eq. (5.18) and Eq. (5.19) with p = 1) and for digital computation. (Eq. (5.20) and
Eq. (5.21)). We see that analog computation is cheaper than digital computation at low
values of Sy, and is more expensive than digital computation at high values of Sy. Note
also the divergence in power and area costs when Sy is limited by 1/f noise (area) and
thermal noise (power), respectively. The exact location of the crossover point will depend
on the task, technology, and ingenuity of the analog and digital designers. We have chosen
values for Cy, Cf, Ly, and L, such that the crossover happens near 10 bits (60 dB in Sy).
For many common computations in today’s CMOS technology, the crossover happens near
8 bits.

Curves such as the ones in Figure 5.3 were first proposed for comparisons of delay
operations in a seminal paper [16]. Recently, there has been additional work on comparing
analog and digital systems for delay operations [17]. The work of [18] compared filtering
operations in analog versus digital systems. The work of [19] compared analog and digital
systems for their performance on the tasks of comparing two N-bit numbers, and also for
the construction of delay lines. To our knowledge, the comparison presented in this paper
is the first comparison to generalize the prior results to a broad class of analog and digital
systems, and to include the effects of 1/f noise and offset along with the effects of thermal

noise.

5.3.6 A Clarification

It is worth making a clarification: A/Ds and D/As are analog systems and the costs of
operating these systems at high precision (high Sy) are high. In a digital system that does a
lot of high-precision processing, the precision costs of the A/D and D/A are paid once at the
front end and once at the back end, respectively. The cost of the high-precision processing
between the front end and back end is determined by the digital system in between. Thus,
the total cost of the overall system is made up of an analog part for the A/D and D/A, and

a digital part for the rest of the processing. Our comparisons between analog and digital
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compvutation ignored the additional A/D and D/A costs of a digital system. In a sufficiently
complex computation, the A/Ds and D/As represent a small fraction of the total cost of
the computétion. In an analog system doing the same high-precision processing, the high-
precision analog costs are paid throughout all parts of the system, rather than only at the
front end and back end; that is why, for a sufficiently complex task, a digital system with

an A/D and D/A would still be more efficient than an analog system.

5.3.7 The Meaning of the Quantitative Analysis

The analog constants Cy, and C and the digital constants L, and L, are such that the
analog curves lie below the digital curves at low Sy. The basic reason for this behavior is
that physical primitives are more efficient at computing than are logical primitives as long
as we do not attempt to compute with low noise on one wire. At high Sy, however, the
multiwire representation of information by digital systems divides the information process-
ing into independent bit parts that many simple processing stages can collectively handle
more efficiently than can one precise single-wire analog processing stage. This intuition
is mathematically expressed by a logarithmic scaling of digital computation with Sy, and
a power-law-like scaling of analog computation with Sy. Furthermore, the lack of signal
restoration in analog systems causes the noise accumulation for complex analog systems to
be much more severe than that for complex digital systems. Thus, we have large values of
Cy and Cy for complex analog computations (large M, w;, or z; in Eq. (5.15)), whereas L,

and L, remain of reasonable size for the equivalent complex digital computation.

5.4 The Best of Both Worlds

It is attractive to combine the best of both computing paradigms to make a hybrid paradigm
that is better than either one. In this section, we suggest a framework for such a paradigm:
In Section 5.4.1 we show that analog computation that distributes its precision and process-
ing resources over many wires is maximally efficient at a certain signal-to-noise ratio per
wire. In Section 5.4.2, we propose a hybrid architecture that combines the advantages of
discrete-signal restoration with the advantages of continuous-signal continuous-time analog
computation. In Section 5.4.3 we describe a computing architecture that illustrates the

simultaneous workings of distributed and hybrid computation.
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5.4.1 Distributed Analog Computation

Figure 5.4(&) shows an example that illustrates the idea behind distributed analog com-
putation. Instead of the usual analog paradigm that represents 8 bits of information on
one wire, or the usual digital paradigm that represents 8 bits of information on 8 wires, in
distributed analog computation, we represent § bits of information on two wires that carry
analog signals. Also, instead of one analog processor maintaining 8 bits of precision on its
output wire, we now have two processors that interact with each other, and that maintain
4 bits of precision on their respective output wires. The analog signals each have a signal-
to-noise ratio of 24 dB in order to encode 4 bits of information. Note that the information
encoded on the pair of wires does not necessarily represent the amplitude information for
some other 8-bit signal. For example, two wires carrying outputs from a cochlea represent
information in two different frequency bands of the sound input. In this example, we have
assumed that the two wires carry 4 independent bits of information each, such that the pair
of wires encodes 8 bits of information. In general, there may be correlations between the
information carried by two wires.

Because each analog processor operates at a low precision, its power-consumption and
area-consumption requirements are low. We are interested in knowing whether the total
costs in power consumption and area consumption are lower for two 4-bit processors than
for one 8-bit processor. We therefore ask the following question. Suppose we want to output
N bits of information by outputting b bits of information from N/b analog processors on
N/b wires. What is the optimal number of bits b on each wire such that the total power or
area consumption of all circuitry is minimized? In general, because there are correlations
in the information amongst wires or because we intentionally want redundancy (to provide
insurance against transmission noise, or to simplify the computation in subsequent stages)
we shall assume that there is also a redundancy factor R > 1. Thus, we have RN/b
processors and RN/b wires, instead of N/b processors and N/b wires.

To answer the question posed in the previous paragraph, we will have to take the
costs of wiring (communication) and computation into account. Wires cost area and add
capacitance. In order to keep the bandwidth of the system constant as capacitance is

added, the power consumption in the system rises. The wiring costs for area increase in
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1inear proportion to the number of wires.* If bandwidth is to be maintained, the power
consumption must rise in linear proportion to the total capacitance in the analog processor.
Thus, the power costs of wiring also increase in linear proportion to the number of wires.
In neurobiological systems, the power costs of wiring include the costs of active restoring
circuitry in axons as well. Thus, wiring costs are a function of the technology.

From Eq. (5.18) and Eq. (5.19), for relatively small Sy where analog computation is
more effective than digital computation, the power consumption and area consumption are
power-law functions of Sy in the subthreshold and above-threshold regimes. Thus, the
analog cost function for computation per processor is well described by ¢S ~', where | = 2
for above-threshold power consumption, and / = 1 in all other cases of interest; here, ¢ is
a computation-cost constant. We will discuss only the case for [ = 1 since the [ = 2 case
follows by straightforward extension. The cost function for wiring is given by a constant
cost of w per wire. The number of bits per wire b = (logy(1 + Sx)) /2. Thus the total cost
function fér computation and communication is given by
RN )

Cost = (cSy+w) (T

= (e +9) (e )

0.5 (log, (1 + Sy)) (5:22)

Figure 5.4(b) shows plots of the total cost of computation and communication as a
function of Sy in each wire, for ¢ = 1, and for various w/c ratios. We see that, when wiring
is expensive (w/c = 10), the optimal signal-to-noise ratio is high, b is high, and we have few
wires. When wiring is cheap (w/c¢ = 0.1), the optimal signal-to-noise ratio is low, b is low,
and we have many wires.

By simple calculus, we can show that the optimal Sy occurs when

Sy +wje c) . (5.23)

1n(1+SN)=< 1+ 5y

AThe linear proportionality of area cost with the number of wires accounts for only the area occupied by
the wires themselves. In practice, area costs for wiring will involve the area between wires, and the area
between computational elements as well. Such considerations cause the area cost function to be supralinear
in the number of wires. For simplicity, we assume a linear function as the supralinear case will not alter the
basic nature of our conclusions. ’
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The optimal value S%; has the following limiting solutions:

Sy = yw/eif w/ek 1, (5.24)
SISy = w/ecif w/e> 1. (5.25)

At the optimal value, the total cost of computation and communication is 2N Rcln 2(1+Sy ).
For the case where w/c <« 1, the cost is 2N Rcln2. The cost of outputting all N bits from
one single analog processor is ¢2V. Thus, if N is sufficiently big, 2IV Rcln2‘ < 2N even if R
is large. Therefore, even in cases where there is a lot of redundancy, if the amount of output
information is large, it is better to distribute the information and information processing

on many wires.

5.4.2 Hybrid Computation

Noise always accumulates in a cascade of analog processing stages. If a computation is
sufficiently complex, then at some point, an analog system simply cannot maintain enough
precision at its output to do anything useful. Even if we require the system to maintain
only 1 bit at its output it will be unable to do so. We now show how to use a building block
called the A/D/A, and an architecture that uses A/D/As for solving the noise accumulation
problem in analog systems. The A/D/A is an A/D converter that is immediately followed
by a D/A converter. However, its most efficient circuit implementation does not involve
explicit implementation of an A/D converter and a D/A converter. The A/D/A has been
proposed as a useful building block for various analog and digital storage and processing
applications [20].

The basic ideas are illustrated in Figure 5.5. A hybrid link is a set of analog processing
stages (denoted A; in the figure) followed by an A/D/A that restores the analog signal to
one of M discrete attractor states. A hybrid chain is composed of a sequence of hybrid
links. Each chain can maintain analog information to a precision of log, (M) bits with a low
probability of error, provided that we meet the following constraint: The net input-referred
noise of the A/D/A, due to all processing stages in a link and the restoration circuits in the
A/D/A, must be significantly lower than the minimum distance between attractor states. In
Section 5.4.2, we show that an error probability of 10~* can be achieved in a hybrid link if
the input-referred noise has a precision of about N + 3 bits. To keep the error probability
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‘low in a hybrid chain composed of many links, the requisite precision before restoration
only needs to grow very slowly with the number of links.in the chain (like the log(log(size
of the chain)).

Thus, a hybrid chain can do an extremely large amount of analog processing, and still
maintain a precision of logy(M) bits at its output. Effectively, we can operate with the
precision and complexity characteristic of digital systems, while doing efficient analog pro-
cessing. If we assume that we do not want to have to maintain more than 8 bits of precision
at the input to the A/D/A, then the best A/D/A that we can build would restore a signal
to 5 bits of precision. However, such a A/D/A would require too much circuitry. Using
A/D/As is probably not a good technique for maintaining anything more than 3 to 4 bits of
precision on an analog input. As we shall discuss in Section 5.4.3, the main use for A/D/AS
is in distributed analog computation, where it is unnecessary to maintain too much precision
on one wire.

To maximize the efficiency of information processing in a hybrid chain, there is an
optimal amount of analog processing that must occur before signal restoration in a hybrid
link; that is, hybrid links should not be too long or short. If the link is too long, we expend
too much power (and/or area) in each analog stage to maintain the requisite precision at
the input of the A/D/A. If the link is too short, we expend too much power (and/or area)
in frequent signal restorations. In Section 5.4.2, we analyze the optimal length of a hybrid
link quantitatively. Needless to say, if we are unconcerned about efficiency, then the link

can be as long or as short as we like, as long as we meet the A/D/A constraint.

The A/D/A

To restore a signal, we must have discrete attractor states. In digital signal restoration,
the input signal is compared with a threshold, and high-gain circuits restore the output to
an attractor state that is a function of the input attractor state. The input may deviate
by a fairly large amount from its attractor state, and the output will still be very close
to its attractor state. The noise immunity of digital circuits arises because the typical
distance in voltage space between an input attractor-state level and a threshold level is
many times the variance of the noise or the offset in the circuit. We can generalize this
two-state restoration to an M-state restoration by having M — 1 input threshold levels and

M output-state levels. The input signal is compared with M — 1 threshold levels and is
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rounded off to that attractor-state level that it is closest to. Systems like these have been
proposed for multistate logic systems. Figure 5.6(a) shows the threshold levels Vp; and
restoration levels Vz; for a four-state or two-bit system. The arrows converge on restoration
levels and diverge from threshold levels.

The A/D/A modifies the digital-restoration scheme for M states to an analog-restoration
scheme for M states. In the analog-restoration scheme, M can be arbitrary and does
not have to be 1, 2, 4, 8, 16, 32, and so on. It can be any arbitrary number that we
choose because, unlike multistate logic, we do not do any digital computation with our
inputs or outputs. The input V;, is an analog signal that may have been processed by many
analog stages. The output V,,: is a restored and filtered analog signal that can serve as
an input to future analog-processing stages. Figure 5.6(b) shows a circuit for one possible
implementation of a 4-state A/D/A.5 The analog signal is compared with three thresholds,
and 0, 1, 2, or 3 currents. are switched onto a resistor, whose voltage then equilibrates
at Vra, le + IR, Vi1 + 2IR, or Vi1 + 31IR respectively. The RC circuit acts as a filter
and removes sharp edges in the signal. The capacitance is chosen such that 1/RC is at
or near the desired bandwidth of the input. Figure 5.6(a) shows that, if an input analog
signal happens to be exactly at a threshold level Vp;, then it will be constantly restored at
random to the attractor state above or below it. However, since we are always within half
a bit of the analog input, this random restoration still preserves the input information to
within one bit, as desired. All other analog inputs are restored to within half bit of their
input values as well. Thus, we preserve information in the analog signal to a precision of
logy M bits like an A /D followed by a D/A of log, M bits. Interestingly, an explicit A/D/A
approach has been proposed for use in various applications [20].

Now we analyze how large the input noise and offset of the A/D/A can be if we need
to preserve a precision of log,M bits in the output analog signal. Suppose that, because of
noise and offsets, the input signal is described by a Gaussian probability distribution with

2, as shown in Figure 5.6(c). If the analog input is situated at a threshold level

variance o
Vr;, then it needs to deviate by a full 1-bit distance from this level for a bit error to occur.
If, on the other hand, the analog input is situated at a restoring level V; that is not at the

extremes such as V7, or Vi4, but rather is midway such as V31 and Vi, then a deviation

5There are vastly more efficient circuit representations that we can use to construct a A/D/A. However,
we do not discuss these here because they are of a more technical nature, and would require that the reader
have a background in analog circuit design.
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from‘this level by half-bit distance is sufficient for a bit error to occur. Thus, we analyze
this worst-case situation for the input situated at Vro.

Let the variance of the noise be 02. The distance between a threshold level and a
restoration level is by/2, where by is a bit distance given by (Viayr — Vi1)/(M — 1) in an
M-state A/D/A. The probability of a bit error P, is then given by the area under the
Gaussian tails in Figure 5.6(c); that is, to the left of V7 and to the right of Ve, Thus, P,
is given by

P, = erfc (Z—‘i%) , | (5.26)

where erfc(z) is defined by

—xz2

.2 e
e “du =

erfc(z) = %/m =

(5.27)

Now P, =1 x 107* if by/(20v/2) = 2.75. Thus, by = 2v/2 x 2.750 = 7.770.
Hence, to restore the signal faithfully, with a low bit-error rate, an N-bit A/D/A requires
that the precision at its input be &~ N + 3 bits (log,(7.77) =~ 3).

The Optimal Length of a Hybrid Link

For simplicity, assume that our computation is a cascade of N identical analog processing
stages, as in a many-pole filter. By the reasoning of the third paragraph of Section 5.4.2, if
the stages are not identical, we can show that an optimal length still exists. However, the
closed-form solution is hard to obtain. Thus, we shall discuss only the case with identical
stages to avoid complexity that does not add much insight. For similar reasons, we shall
analyze only the simple case of current (power) optimization assuming that the 1/f (or
offset) terms in the resource-noise Eq. (5.7) are negligible. Other simplifying assumptions
also include that p = 1 (subthreshold), and that we pay a fixed cost in power per A/D/A
restoration stage.

Suppose that there are M computational stages and 1 A/D/A in every hybrid link.
Then, there will be N/M links with a total of N computational stages, and N/M A/D/As
in the chain. Suppose that the complexities of the A/D/A stage and of each computational

stage correspond to n, and n. devices respectively. By Eq. (5.26), corresponding to whatever

SThere is a possible variant of the problem, where we simultaneously optimize the power allocated between
the A/D/A stages and the computation stages, as well as the number of stages per link.
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error criterion we pick, the input-referred noise o at every A/D/A must be less than or equal
to some value ;. The value of oy depends on only by, the distance between attractor states
in the A/D/A, which is fixed by the precision desired for a given hybrid chain.

Thus from Eq. (5.15), Eq. (5.12), and Eq. (5.14), with n; = n, for all 4, and G; = G for

all 4, the noise due to the computational stages in a link is given by

02 = (]MG'"Lc)jCI'{w(:l)Af7 | (5.28)

where I is the total power consumption in the computational stages. Similarly, the noise

due to a A/D/A stage in a link is given by

7% = W’ (5.29)

v Tn

where I is the fixed current consumption of the restoration stage. The A/D/A constraint

gives us

v? + 02 = oy’ (5.30)

Algebraic manipulation of Eq. (5.28), Eq. (5.29), and Eq. (5.30) then yields

G2n2K,(1)Af
_ 2 ctrw
Ic = M ( AT | (5.31)
gt° — I
= M?C,, (5.32)

where C, is defined by the preceding equations. The total current consumption due to N/M

links in the entire chain is then given by,

Icg = (%) (Ic +1Ir),

_ N (ch + %) . (5.33)

Figure 5.7 shows a plot of the current consumption for differing values of C, = 2.06 pA,
5.11 pA, 9.52 pA, and 15.34 pA; Ig is fixed at 100 pA. The parameter C, was changed by
varying oy in Eq. (5.31). Thus, as we increase the precision of the hybrid link, the costs of

computation rise with respect to the costs of signal restoration, and the optimal length of

the link decreases. The mathematics is in accord with the intuition expressed in the third
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paragraph of Section 5.4.2. The curves in Figure 5.7 were drawn for G =1, Af = 100 Hz,
Ky(1) = 4.38 x 10722, n,. = 3, and n. = 150. It is easy to show that the location of the

Ir
M= \/;c (5.34)

5.4.3 Distributed and Hybrid Computation

optimum in Eq. (5.33) is given by

Figure 5.8 combines the ideas of Sections 5.4.1 and section 5.4.2. The information from a
single-wire analog input is encoded onto many wires by an analog encoder. Typically, the
encoder might be more redundant and thus might distribute the information over many
more wires, but for simplicity, we have shown a nonredundant encoder. A cochlea, retina,
and A/D are all good examples of encoders that distribute information from one wire onto
many wires. In this example, we have an analog encoder, so if we used an A/D, we would
have to follow it with a D/A. Encoding is a computation with costs. In many cases, these
costs can be paid once, right at the frontend, and never paid again, as long as the information
is always distributed. In the example of Figure 5.8, the distributed information is preserved
in the first stage of processing by 2-bit A/D/As. In the next stage of processing, the analog
processors and/or the A/D/As make decisions based on the information and reduce the
output information to 1 bit. Thus, the analog circuits in the second half can afford to be
noisier, since the A/D/A restoration has a precision of only one bit. The use of distributed
analog computation and low-precision A/D/A signal restoration makes this architecture

ideal for efficient precise computation.

5.5 Extrapolating to Neurobiology

Our analysis for electronic systems suggests

1. Why neuronal information processing is distributed.
2. That information processing in the brain is hybrid.

3. How signal restoration in neurons may be implemented.

In Sections 5.5.1 through 5.5.3 we shall discuss these suggestions in more detail. In
Sections 5.5.4 through 5.5.5 we shall discuss how our arguments about noise in electronic

systems can be extrapolated to neurobiology.
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5.5.1 Why Neuronal Information Processing is Distributed

Information processing in networks of neurons is accomplished in a tremendously distributed
fashion. It has often been pointed out that this distribution results in fault-tolerant behav-
ior, since the destruction of any one neuron or synapse hardly affects the operation of the
overall network. However, we suggest that the primary reason for the distributed nature of
neuronal information processing is not fault tolerance, but rather is efficiency. We showed,
in Section 5.4.1, that the costs of computation force information to be as distributed as
possible across many information-processing resources and many wires. However, the costs
of communication force the information—processing and information to be as localized as
possible. The tradeoff between these two constraints, as revealed in Eq. (5.22), results in an
optimal signal-to-noise ratio per wire, as revealed in Figure 5.4. In neurobiological systems,
where communication costs are relatively low compared with communication costs in silicon,
the optimal signal-to-noise ratio is lower than that in silicon.” Thus, we believe that nature
was smart to distribute her computational resources over many noisy neurons (dendrites
and somas), and communicate that information between neurons over many noisy fibers
(axons). The noisiness of the brain is due to the wisdom of millions of years of evolution,
and is not a reflection of the incompetence of biology. We believe that the “use” of neuronal
noise in phenomena such as stochastic resonance, or in phenomena that prevent trapping
in a local minima, may be valuable in certain special cases, but the primary reason for the

noisy nature of the brain is efficiency.

5.5.2 Information Processing in the Brain is Hybrid

Action potentials are all-or-none discrete events that usually occur at or near the soma
or axon hillock. In contrast, dendritic processing usually involves graded synaptic compu-
tation, and graded nonlinear spatiotemporal processing. The inputs to the dendrites are
caused by discrete events. Thus, in neuronal information processing, there is a constant al-
ternation between spiking and nonspiking representations of information. This alternation
is reminiscent of the constant alternation between discrete and continuous representations

of information in Figure 5.5. Thus, it is tempting to view a single neuron as a “D/A/D”.

In today’s electronic technology, it would be unthinkable to even dream of wiring on the scale of neuro-
biology. For example, the million fibers of the optic nerve, or the 35,000 fibers of the auditory nerve would
simply be too expensive to implement.
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HOWéver, although the firing of a spike is a discrete event it does not imply that it eﬁcodes
information about a discrete state. The information encoded by a spike is meaningful only
in relation to spikes in different neurons, or in relation to earlier or later spikes in the same
neuron. If these relationships are analog, then all-or-none events do not imply the encoding
of discrete states. So how do we know whether the brain is analog (continuous-signal) or
digital (discrete-signal) or hybrid (both)? Almost everybody accepts that the brain does a
tremendous amount of analog processing. The controversy lies in whether there is anything
digital about it.

We know, from the arguments of this paper, that the noise accumulation in complex
systems is simply too high for purely analog processing to be efficient in such systems. Given
that the brain is made up of a large number of physical devices that exhibit noise at room
temperature, and is yet extremely efficient (12W power consumption and 300ms response
time for complex tasks), we may hypothesize that it must be mixing continuous-signal
and discrete-signal processing to compute in a hybrid fashion. In Section 5.5.4 we review
noise in biological devices, and in Section 5.6.1 we review numbers on the interconnectivity
and complexity of the brain’s architecture. These reviews suggest that, although it is
theoretically possible that the brain’s complexity is small enough that a purely analog
brain could be efficient, a purely analog brain seems unlikely. However, more quantitative
studies need to be done on noise in biological devices and on the architecture of the brain
before we can conclusively rule out the possibility of a purely analog brain. Thus, at the
present time, our suggestion that the brain is hybrid is only a hypothesis supported by our
quantitative arguments from electronics, and by some qualitative facts from our current
knowledge of neurobiology.

Experimental evidence and theoretical work suggest that discrete states are encoded in
the crosscorrelated firing patterns of neurons in a network [22], [23]. We already know
that the brain’s information processing is tremendously distributed. We have shown how
distributed and hybrid systems combine the best of the continuous and discrete worlds to
create a world that is more eflicient than either. Thus, we suggest that a major reason for
the tremendous efficiency of the brain is that its architecture is not only distributed but

also hybrid. We explore other reasons for the efficiency of the brain in Section 5.6.
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5.5.3 How Signal Restoration May be Implemented

To implement signal restoration there must be a set of discrete states that the continuous
signal is periodically restored to. How are the discrete restorative states of neurons encoded
in the firing of action potentials? Conceptually, at the level of a single neuron, the discrete
states of a spike train may be encoded in the number of spikes that occur in a given window
of time (the mean-firing-rate code), or in a discrete set of firing patterns that occur within
that same window of time (the timing-pattern code). Such codes are scalar codes since they
involve only one neuron. As experimental [22] and theoretical [23] work indicate, it is more
likely that discrete states involve a vector code that is implemented in a collective fashion
across many neurons. The window of time over which we count spikes or detect temporal
patterns within the spikes is determined by the integration time constants of the neurons.

The mean-firing-rate and timing-pattern scalar codes have direct analogies in vector
codes: In the mean-firing-rate case, instead of counting the number of spikes in one neuron
within a window of time, we count the number of spikes across many neurons that are
present within some time window. In the timing-pattern case, instead of a discrete set of
firing patterns of one neuron that occur within some time window, we have a discrete set of
crosscorrelated firing patterns of many neurons within some time window. For simplicity,
we shall assume that our time window is short enough such that each neuron contributes
at most one spike within that time window. It is easy to generalize our ideas to multiple
spikes within one time window.

The key building block of our electronic signal-restoration schemes was the A/D/A,
which was basically an A/D followed by a D/A. In the signal-representation scheme of
neurons how might we build a A/D/A? We shall only discuss signal-restoration for vector

codes.

VonNeumann Restoration for Spike Counting

Suppose we have 3N neurons. We group them into N sets of 3 each. For each of the N
sets we perform a simple majority vote, and regenerate 3 signals, each of which encodes
the result of the majority vote. Thus, if we have (spike, spike, no spike) across the three
neurons, we restore this signal to (spike, spike, spike). If we have (no spike, spike, no spike)

across the three neurons, then we restore this signal to (no spike, no spike, no spike). Thus,
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we restore the original 3N + 1 possible states (ordering of neurons does not matter) into
N + 1 possible states. Just as in the A/D/A, if we want to have low rates of error, we
must compiute with more redundancy (20N instead of 3N). The majority-vote scheme was
first proposed by John Von Neumann [13] as a way for doing signal restoration. Note that,
in this scheme we are really restoring a fine-grained discrete quantity to a coarse-grained
discrete quantity. In the A/D/A, we restore a continuous analog quantity with a fine-grain

size determined by analog noise into a coarse-grained discrete quantity.

Restoration for Spike Timing

Here, we detect the presence of a discrete timing pattern by building suitable delays in the
dendrites or synapses or input axons of a “matched-filter” neuron such that the inputs from
the N neurons that encode the timing pattern arrive in synchrony at the axon hillock [24].
The matched-filter neuron regenerates the timing pattern by fanning out collaterals to a
set of N output neurons with appropriate axonal or synaptic delays such that the timing
pattern is regenerated. The restoration in pattern timing will occur if the matched-filter
neuron is configured to respond to inputs with somewhat-skewed timing patterns; this is
accomplished by setting its threshold to not be too high. If we want to restore M timing
patterns that are encoded on N input axons, then we need M matched-filter neurons and
N output neurons. Each of the NV output neurons could receive inputs in parallel from the
M matched-filter neurons, as, in a good design, only one of the M matched-filter neurons
would be active at any given time. As in the A/D/A, if we want to ensure low error rates,
M should be significantly less than the possible number of timing patterns encoded amongst
the N neurons. It is also crucial that the delays involved in regeneration be precise enough
to maintain a precision that is a few bits above log, (M) bits.

In digital electronic circuits, an inverter performs restoration and computation at the
same time: It inverts its input (1 goes to 0, and 0 goes to 1), but it is also restorative
since a “bad 1” is restored to a “good 0”. Similarly, in a time-delay restoration scheme
we could have the regenerated pattern be a different timing pattern such that a somewhat-
skewed input temporal pattern is restored to a clean temporal pattern. In a pattern-
recognition computation, such as that performed by an assosciative memory, computation
and restoration are intermingled because the nature of the computation inherently requires

a discrete set of outputs.
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Caveats

We have made many simplifying assumptions such as treating computation and restoration
as distinct entities, and similarly treating computation and communication as separate
entities. It is likely that such entities are more deeply intertwined in the brain. It is likely
that the rather sharp digital restorations that we propose are really soft restorations in the
brain, such that a more accurate description would need to involve the language of complex
nonlinear dynamical systems. The processing of information in a single dendrite, let alone
the whole brain is enormously complex. It is possible the tree-like structure and nonlinear
processing of dendrites enables them to perform classification of an exponentially large
number of input combinations with linear resources in dendritic area [32]. Such processing
could be enormously useful in performing signal restoration within the level of the dendrite
itself.

Thus, we do not, by any means, claim that the brain is implementing the particular
architectures, and the particular restorative schemes that we have proposed. We have merely
offered our schemes as a possible way in the hopes that it will stimulate further discussion
and work on the subject. However, in spite of our simplifications, we suggest that the brain
is hybrid in nature. We propose that the hybrid-and-distributed architecture of the brain
is one of the major reasons for its efficiency, and that the importance of this point has

generally been underappreciated.

5.5.4 Noise in Biological Devices

In any technology, the starting point for an analysis of the information costs of computing is
the noise-resource equation of that technology. It was the noise-resource equation for MOS
technology (Eq. (5.7)) that enabled us to construct a set of resource-precision equations
(Eq. (5.18) and Eq. (5.19)). The resource-precision equations evaluated the costs of a
computation as a function of the output information or precision. What might the noise—
resource equations for neurobiological devices look like? Due to the great diversity of
biological devices, and the incomplete knowledge that we have about their functioning, a
quantitative theory for the technology of neurobiology seems premature. However, we can
make qualitative statements that reveal how the noise can be decreased with an increase in

resource consumption.
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The limiting form of noise in biological devices are typically the randomness in ion
channel openings and closings [27], and the unreliability of synaptic vesicle release [28].
Channels transition between discrete closed and open states with certain finite probabilities
per unit time. The transition probabilities depend on the membrane voltage or on the
chemical concentration of a substance. For a good discussion of the kinetics of ion channels,
see [29]. The noise can be reduced by VN law-of-large-numbers averaging over several
ionic channels, (i.e., through the increase of ion channel densities). Similarly, the noise
of synaptic transmission may be reduced through the use of averaging over many vesicles,
many synaptic contacts and so on. Such averaging costs area, and also turns up power
consumption, since the power per unit channel, vesicle, or contact is approximately constant.
It is intuitive to expect that averaging over large areas of membrane would improve offsets
and 1/f noise, but we are unaware of any actual experimental measurements that address
whether they do. Interestingly, as in electronics, the magnitude of the 1/f noise in biology
is highly unpredictable. It is dependent on the concentrations in the cellular environment of
substances that alter transport properties of nerve membrane [27]. In electronics, 1/f noise
is also strongly dependent on the concentrations of impurities in an insulating membrane,
the gate oxide.

Averaging strategies were at the root of a reduction in noise in electronic systems as well.
In electronics, we averaged over more electrons per unit time (to reduce thermal noise by
increasing power), or over more traps and impurity defects (to reduce 1/f noise and offset
by increasing area). In biology, we average over more ion channels or over larger stretches of
membrane. Indeed, a simple v N averaging would yield noise-resource equations that are
similar to Eq. (5.7), with p = 1. However, there are suggestions that neurobiological systems
may be even smarter, and may attain noise reductions that scale like 1/N rather than like
1/+/N [30]; such scaling laws require the use of interactions between channel kinetics and
membrane kinetics through the use of membrane-voltage feedback.

In situations where it is important to maintain reliability and precision, such as at a neu-
romuscular junction, there is a lot of averaging over numerous synaptic connections and/or
synaptic vesicles. In situations where it is not that important to be very reliable, such as
in the highly distributed architecture of cortex, there is little averaging over synapses or
vesicles [25]. When timing must be precise, synapses are typically large [26]. From numer-

ous examples, it is qualitatively clear that the reduction of noise is accomplished through
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fesoufce consumption in neurobiology, as it is in electronics. Neurobiology and electronics
behave similarly because physical and mathematical laws like the laws of thermodynamics
and the law of large numbers do not change with technologies. It is such laws that, along
with a few technology-dependent parameters, determine noise-resource equations. Since
our conclusions depend on only general properties of noise-resource equations, such as a
polynomial reduction in noise with resource consumption, we suggest that our extrapolation

from electronics to neurobiology is correct to leading order.

5.5.5 Noise in Neurobiological Systems

In Section 5.3.2, we abstracted the mapping from computational task to circuit topology
in the parameters M, n;. We stated that the exact mapping would depend on the task,
technology, and ingenuity of the designer. The ingenuity of the designer lies in mapping the
task to the primitives and architecture of the technology, so that M and/or n; are as small as
possible. Consequently, when function is well mapped to structure, noise is minimized; the
wiring of the architecture also is more efficient. Computational architectures where function
and structure are well matched amplify the computational information above the noise in
the components. This amplification is analogous to the way a matched filter amplifies the
signal above the background noise.

Two topologies that may be completely equivalent functionally may have markedly
different noise properties: For example, suppose that in topology A we take the difference
between a large positive current and a large negative current to output a small differential
current; in topology B we just output a small differential current. The noise of topology
A will be much higher than that of topology B even though the two topologies may be
indistinguishable as far as outputs go. Thus, the mapping from function to structure must
be done with care.

It is clear that natural structures have evolved to match structure and function. The
architectures of the cochlea, the retina, the hippocampus, the cerebellum, the neocortex
and various other regions have patterns of connectivity, cellular organization, and cell dif-
ferentiation that indicate a close relationship between structure and function. Cells of
various anatomical types are specialized to have certain functional characteristics. For a
good review see [31].

For noise minimization, resource allocation should be increased in the initial and complex
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stages of a computation, as discussed in Sections 5.3.2.

5.6 Other Reasons for the Brain’s Efficiency

In this paper, we have emphasized that the hybrid and distributed nature of the brain’s
signal processing is important for its efficiency. Now we shall list all the reasons that
contribute to the brain’s efficiency. We shall group them under the three categories of

technology, signal processing, and computational strategies.

5.6.1 Technology

The brain has an awesome technology. It is composed of at least 50-100 kinds of one-
terminal ion-channel elements, and 100-200 two-terminal synaptic elements. The synaptic
elements are made out of varying combinations of neurotransmitter, receptor, and postsy-
naptic ion channel(s). The most common ion channels are the delayed-rectifier potassium,
inactivating sodium, calcium, and chloride channels. The most common neurotransmitters
are glutamate, with excitatory effects on NMDA and non-NMDA receptors, and GABA,
with inhibitory effects on GABA, and GABAp receptors. In addition, every neuron is
capable of elaborate spatiotemporal processing, due to the distributed resistances and ca-
pacitances in dendritic cables. The treelike structure and nonlinear processing of dendrites
may allow for pattern classification of an exponential number of input combinations with
linear resources in dendritic area [32]. The power supply is regenerated locally through the
action of ion pumps, and thus noise accumulation via a global power supply is avoided. The
technology is a symbiotic mix of chemistry and electronics allowing ion channels to be made
as needed, power supply distribution to be adapted as needed (mitochondrial expression),
and extensive wiring and synaptic modification to take place. The molecular specificity of
chemistry is exploited such that many information channels can coexist in the same space,
analogous to the way that radio stations with different broadcast frequencies share the same
airspace. The technology is impressive in terms of its miniaturization and connectivity as
well [25]. An ion pore is a few A; the nerve membrane is about 50 A; the synaptic cleft
is about 200 A; there may be 1-50 vesicle-release sites on a presynaptic membrane that is
about half micron; dendrites can vary from a few pym to 4 mm; the soma is about 10 pm;

there are an average of 6000 synaptic connections per neuron; there are 10° neurons per
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3 in a cortical sheet that is only about 1000 cm? in area, when spread out, and of 2.4

mim
mm average thickness; there are about 4 x 10'° neurons, and about 2.4 x 10'* synapses.
The synapses of the brain may be thought of as being arrayed on a 3D 1.1 um lattice [25].

In comparison with electronics, the brain’s technology is rather noisy. It was the noisi-
ness of the brain that caused us to emphasize the noise-management techniques of hybrid
and distributed computation as being of paramount importance. In comparison with digital
electronics, the brain is also slow (a time scale of 10-100 ms. vs 1-10 ns), and yet it can
routinely solve sensory tasks in 300 ms. that no supercomputer can do in an eon. However,
electronic technology is impoverished in other ways: The number of transistor types is 4 in
the very best BICMOS processes; spatiotemporal processing through structures analogous
to dendrites are expensive to create on a neuron—to-neuron basis; the geometry is most
often rigidly rectangular with two—dimensional wiring; locally generated power supplies are
expensive to create and are.rarely ever implemented; chemistry and electronics are not inte-
grated, with chemistry being involved during fabrication, and never during processing, thus
preventing adaptation on a very fine scale; and the lack of molecular specificity provided
by chemistry prevents the multiplexing of information in the same physical space.

If we collapse the 3D architecture of cortex into a 2D architecture on silicon, maintain
the same area of 1000 cm?, replace every synapse with a single transistor, ignore the costs of
wiring (we are being generous to silicon), and extrapolate today’s design rules for fabrica-
tion, we would need a technology whose feature size was about 50A and a square 12-inch
x 12-inch wafer! Today’s feature lengths are about 0.35 pm, and 300A is about the limit
at which discrete and quantum effects start to be of importance [33]; the wafer sizes are
about 8 inches in diameter. Alternatively, if we keep today’s feature sizes, we would need
our square silicon wafer to 64-ft x 64-ft! In conventional digital computing paradigms, the
costs for fabricating a wafer without any defects grows exponentially in the size of the wafer.
Thus, the difference in costs between a 64-ft. x 64-ft. wafer and a 8-inch diameter wafer is
enormous. It is a tribute to nature that she created a structure that is still way ahead of
the finest technology we possess in the world today: the technology of microelectronics.

Nevertheless, there is nothing that the brain can do that we cannot do in electronics,
in principle. For example, adaptation can be well mimiced at the level of a single device
through the use of floating gates, and networks of transistors can simulate the resisitive-grid

computation of a dendrite. Our technology will be less efficient than neurobiology because
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it is relatively impoverished; however, we can exploit the electronic advantages of lower

noise, and higher speed to improve that efficiency.

5.6.2 Signal Processing

Apart from the hybrid and distributed nature of the neurobiological signal processing,
nonlinearity and adaptation are extremely important as well. Nonlinearity is exploited,
rather than avoided. For example, the nonlinear negative damping in the ear is responsible
for that organ’s instantaneous gain control in response to transient sounds. The clever use
of nonlinearity in the outer hair cell allows us to extract information in transients without
introducing deleterious distortion or saturating the auditory system. Similarly, adaptation
in optimizes the gain of the ear for different listening conditions over a long time scale. We
would not have a dynamic range of 120 dB in our auditory system if it did not have nonlinear
and adaptive properties. It is likely that dendrites have nonlinear and adaptive-gain-control
mechanisrﬁs as well, so that they can “listen” to and process a variety of input conditions
in an optimal way. An adaptive threshold is the simplest example of such a mechanism.
Adaptation is built into all levels of the nervous system, from ion channels that are sensitive
to the level of calcium to massive cortical reorganization of wiring patterns. For reasons
similar to those outlined in Section 5.4.1, it is efficient to distribute the adaptation in small
amounts throughout the system, rather than to do it all in one place. Distributed adaptive
systems are less prone to oscillation because of the low loop gains throughout the system;
nevertheless, the overall system has a large loop gain from the accumulated adaptation
through all levels of the system. Systems with large loop gain are insensitive to fluctuations

at their outputs, because their powerful adaptation compensates for these fluctuations.

5.6.3 Computational Strategies

It is possible to do a behavioral task by processing lots of useless information. Neurobio-
logical systems are efficient at processing only the information that is useful for solving the
task. Any neurobiology textbook is replete with examples on this subject, and we shall not

discuss it further here.



196

5.7 Summary

We conclude by reviewing the main points of the paper:

1.

Analog computation is efficient at low-precision processing, and digital computation
is efficient at high-precision processing. The resource-precision equations for analog
computation (Eq. (5.18) and Eq. (5.19)), and the resource—precision equations for
digital computation (Eq. (5.20) and Eq. (5.21)) quantify the costs of computing at a
certain precision in MOS technology. Figure 5.3 shows a plot of the costs of analog
and digital computation at different levels of precision. The noise-resource equation
of a technology (Eq. (5.7) for MOS technology) determines the form of the resource-

precision curves for that technology.

. The advantages of analog computation arise from its exploitation of the physical prim-

itives for computation. The advantages of digital computation arise from its multi-
wire representation of information and information processing, and from its signal-

restoration properties.

. Analog computation that distributes its precision and processing resources over many

wires is maximally efficient at a certain signal-to-noise ratio per wire, due to the trade-
offs between computation and communication. Eq. (5.22) and Figure 5.4 illustrate

this fact in more detail.

We proposed a hybrid architecture that combines the advantages of discrete-signal
restoration with the advantages of continuous-signal, continuous-time analog compu-
tation. The key building block of such a hybrid scheme is a restoration circuit called
a A/D/A, which is described in Section 5.4.2. Figure 5.5 and Figure 5.6 illustrate
the workings of the hybrid scheme. For maximum efficiency in a computation, there
is én optimal amount of continuous analog processing that must be done before a
discrete signal restoration; Figure 5.7 and Eq. (5.33) illustrate how this optimum can

be determined.

We described a computing architecture that illustrates the simultaneous working of
distributed and hybrid computation in Section 5.4.3 and Figure 5.8. Distributed and
hybrid computation combines the best of the analog and digital worlds to create a

world that is more efficient than either.
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6. In neurobiological systems, where communication costs are relatively low compared
with communication costs in silicon, the optimal signal-to-noise ratio per wire is lower
than that in silicon. Thus, we believe that nature was smart to distribute her compu-
tational resources over many noisy neurons (dendrites and somas), and communicate

information between neurons over many noisy wires (axons).

7. The brain uses hybrid representations, because that is the most efficient way for

massively complex systems to compute.

8. Experiments suggest that discrete states in the brain are encoded in the crosscorre-
lated firing patterns of neurons in a network [22]. Neuronal information processing
is thus most likely to involve vector signal restoration. In Section 5.5.3, we discussed
how signal-restoration in networks of neurons may be implemented using A/D/A-like

schemes.

9. From numerous examples, it is qualitatively clear that, in neurobiology, the reduction
of noise is accomplished through resource consumption as it is in electronics. Neuro-
biology and electronics behave similarly because physical and mathematical laws such
as the laws of thermodynamics and the law of large numbers do not change with tech-
nologies. It is such laws that, with a few technology-dependent parameters, determine
noise-resource equations. Since our conclusions depend only on general properties of
noise-resource equations such as a polynomial reduction in noise with resource con-
sumption, we suggested that our extrapolation from electronics to neurobiology is

correct to leading order.

10. We have emphasized the hybrid and distributed nature of the brain’s signal processing
as being of paramount importance for its efficiency. However, the brain’s great tech-
nology, (Section 5.6.1), its nonlinear and adaptive signal processing (Section 5.6.2),

and its computational strategies (Section 5.6.3) are also important for its efficiency.
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Appendix A: The Efficiency of Cortical Computation

We first compute the number of synaptic operations that the brain executes per second,

and then we discuss the brain’s power consumption.

5.8.1

The Operational Throughput of Cortical Computation

From the numbers of the first paragraph of Section 5.6.1, we know that there are about

2.4 x 10 synapses in each cortex of the brain. The average firing rate of cortex is about

5-10 Hz [25]-we shall use 7.5 Hz. Assuming that each synapse is always operational and
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constantly computing, then the number of synaptic operations per second is 2 x 2.4 x 1014 x

7.5 = 3.6 x 10'°.

5.8.2 The Power Consumption of the Brain

Most of the power consumption of the brain is believed to go into the maintenance of
concentration gradients by ion pumps. Estimates of ion-pump power consumption vary
from 25-100% [34]; consistent quantitative results are as yet unavailable in this neglected
area of research. The ion pumps are the batteries that power all the brain’s electrical
activity. The power consumed by ion pumps may be accounted for by the ATP-related
activity at the pumps, or by adding up the power dissipated in all the resistive ion channels
of the brain. Both forms of accounting must yield the same answer by energy conservation.
The situation in neurobiology is analogous to one in electronics: We can account for the
total power consumption of an electronic chip by measuring the current provided by its
power supplies or by adding up the power dissipated in all the resistive circuits to which
it supplies power. Ion pumps do not power activity such as neurotransmitter synthesis,
uptake, and packaging, synthesis of cellular and vesicular material, axoplasmic transport,
and glial-cell activity. The synthesis of neurotransmitter has been shown to consume a
negligible amount of energy due to its small turnover rate [35]. Mitochondrial distribution
reveals little power dissipation in glial cells [21]. It is an open question whether the energy
consumption due to neurotransmitter uptake also is negligible.

The amount of energy consumption due to spiking activity in the brain has been shown
to be small from calculations and measurements of heat generated by spiking nerve [36]; the
small value is also consistent with mitochondrial distribution [21]. Thus, nonspiking active
and passive currents account for most of the brain’s electrical power dissipation. However,
it is erroneous to conclude that the firing rates of the brain are irrelevant in determining its
power consumption: If the firing rates of neurons in the brain were increased globally, all
the nonspiking activity of the brain also would have to increase, to keep up with the higher
information bandwidth, which is given by the average number of bits per spike times the
average spike firing rate.

The total power consumption of the brain hardly changes from its normal value during
arithmetic problem solving, during fatigue, during sleep, or during hypoxia and hyperoxia.

Even, in an epileptic seizure it increases by only 60 %. During deep anaesthesia or in a coma,
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it reduces by 50% [34]. However, regional changes in power consumption could potentially
be large, because the conductances of neurons can easily change by more than an order of
magnitude due to activity [37]. Thus, we reach the inescapeable conclusion that regional
changes in power consumption due to activity at one location must be compensated for by
a reduction in power consumption at other locations. Given that the power consumption of
the brain is one sixth of the total power consumption of the body [10], it is not surprising
that evolution did not allow drastic changes in brain power consumption; drastic increases in
overall power consumption would have to be accompanied by drastically increased rates of
cooling, which don’t seem plausible. Generally, in the body, power-hungry organs—such as
the kidneys, liver, and brain—have high resting power consumptions that change little with
activity. The brain is the neurobiological equivalent of many analog electronic circuits that
have high static power dissipation, and little dynamic (signal-dependent) power dissipation.
In contrast, most CMOS digital circuits have high dynamic power dissipation and almost

no static pbwer dissipation (see Section 5.2.1).
The global power consumption of the brain has been measured numerous times by
the Kety—-Schmidt technique, and the measurements have generally been fairly consis-
tent, even over 40 years. A recent measurement [38] yielded an oxygen uptake of 144

1. min~!. The glucose reaction yields, in in-vitro reactions, about 60 kJ/molx 38

pmol.100g™
ATP/6 = 380 kJ/mol of oxygen consumed. The 60 kJ/mol. value was obtained from [29].
The weight of the brain is about 1.3 kg [10]. Thus, the power consumption in watts is
computed to be 11.8 W, a value that we shall round off to 12 W. Some measurements that
were performed in the 1970’s and used in the studies of [10] yielded 15 W. We shall use the

more recent measurements of 12 W in our paper. Note also that 12 W is for both cortices

of the brain. Most of the power in the brain is consumed in cortex.

5.9 Appendix B: Noise in MOS Transistors

If I is the mean DC current flowing through a saturated MOS transistor, kT is an amount of
thermal energy, f; and f;, are the lowest and highest frequencies of operation, and Af = f;, —fj
is the bandwidth of operation, then the mean-square white-noise voltage at the gate input

of the transistor, v2, is given by

2 Ay, (5.35)

v
269m



205

Kkl

Im = 77 (5.36)

in the subthreshold region of operation, and by

v2 = %%@A f, (5.37)

gm = V 2,‘1001:%\/7 (5.38)

in the above-threshold region of operation.® In Egs. (5.35)—(5.38), Ur is the thermal voltage
kT/q, p is the mobility of electrons, C,; is the oxide capacitance, W is the width of the
transistor, L is the length of the transistor, and « is the subthreshold exponential coefficient
of the transistor.

For later use, it will be convenient to write the white noise for subthreshold and above-

threshold regimes as

72l _ Kw(p) Af (5_39)

v 0

where p = 1.0 for the subthreshold regime, and p = 0.5 for the above-threshold regime.
The parameter p is the exponent in the g,-versus-I relation of the transistor, and is an

important parameter in MOS technology. We define Ky, (p) such that

4kTUT

Ky,(1.0) = 53 (5.40)
in the subthreshold regime, and
4kT(2/3
K,(0.5) = ——(L)— (5.41)
(wt)

in the above-threshold regime. Note that K, is independent of transistor geometry in the
subthreshold regime, but is dependent on the transistor geometry in the above-threshold
regime. The parameter K, (p) is an important parameter of MOS technology.

Another kind of noise in the transistor is called 1/f noise because its power spectrum

varies inversely with the frequency. It is widely believed that this form of noise arises from

8These expressions represent a lower bound on the noise in the transistor. If the transistors are in their
linear region of operation, the noise is higher by a small amount. We ignore such factors in this paper, since
they are inconsequential to our conclusions.
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electrons in the channel going into and out of surface states, and into and out of impurities
or defect traps in the gate oxide of the transistor. It is known that the mean-square 1/f
noise voltage at the gate input of the transistor v,%f scales inversely with the area of the
transistor A = W L. The noise is approximately independent of the current flowing through

the transistor.

'u2f _ ﬁ i _C.{i
" Al .
Ky (fh)
= —LIn{—]. 5.42
2 27, (5.42)
The parameter Ky is given by
B
K= .
f .o .(5 43)

where B is a measure of the number of surface states, impurities, or defects in the gate
oxide. V

The electronic fluctuations just described dynamically modulate the surface potential
and thus the threshold voltage of the transistor. Hence, 1/f noise can be viewed as noise due
to a dynamically varying threshold voltage. Since the current in a transistor depends on
the difference between the gate voltage and its threshold voltage, independent of where the
transistor is operating, the input-referred 1/f noise is independent of current. The larger the
area of the transistor, the greater the oxide capacitance of the transistor, and the smaller
the effect of any one fluctuating electronic charge on the transistor’s threshold voltage.
However, since the trap and defect densities are approximately constant, the larger the area
of the transistor, the greater the number of fluctuating charges. The increased—capacitance
effect reduces the noise power like 1/42%, and the increased total-charge effect increases the
noise power like A, such that the input-referred noise scales like 1/A.

The parameter B also determines the magnitude of typical offsets in MOS technology:
Offsets between transistors are mainly due to mismatches in threshold voltage caused by
charges in impurities, surface states, defect traps and so on. By applying the reasoning
of the previous paragraph, we can show that offsets scale inversely with the area of the
transistor as well. Thus, the RHS of Eq. (5.42) that models the magnitude of 1/f noise
in MOS technology, also models the magnitude of the typical offsets in this technology.
Actually, the total 1/f noise would be affected by f; and fr, but the offsets would not be.
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So, to model offsets, we should add another term proportional to K¢ but independent of
fi and f,. However, this added complication neither affects nor adds to our conclusions.
Thus, we model 1/f noise and offsets with one term.

In summary, the total input-referred noise in a transistor can be written as

v2 = K%}SI)—)-Af + % In(fn/f1)- (5.44)
The first term on the RHS of Eq. (5.44) tells us that thermal noise can always be reduced by
increasing I or equivalently by increasing power consumption. The second term on the RHS
of Eq. (5.44) tells us that 1/f noise and offsets can always be lowered by'increasing A or area
consumption. Thus, noise reduction is not free but rather is obtained by spending power
and/or area resources. In the above-threshold regime, K,,(0.5) depends on the transistor
geometry according to Eq. (5.41). Thus, unlike in the subthreshold regime, in the above-
threshold regime we can reduce thermal noise by expending area as well. In both regimes,
1/f noise can only be reduced by spending area. Note that our conclusions assume that

fi and fj, are constant and are determined by the requirements of the computation. We

discuss how these constraints are implemented, in Section 5.10.

5.10 Appendix C: Noise in Analog Systems—Further Details

In the above-threshold regime, we can increase the W/L ratio of a transistor to decrease
the thermal noise as seen from Eq. (5.15), Eq. (5.16), and Eq. (5.41) (The dependence
of thermal noise on area is hidden in the constant K,, in Eq. (5.15)). Thus, in the above-
threshold regime, if we are limited by thermal noise, we can reduce it by expending area, and
consequently can increase Sy. Furthermore, in the above-threshold regime, if we have the
freedom to scale the power-supply voltage in proportion to the I/gy, ratio of a transistor,
then increasing I and Vpp simultaneously can increase Sy by increasing the maximum
voltage of operation. Thus, in the above-threshold regime, power and area resources can be
traded against each other to obtain a certain value of Sy. In the subthreshold regime no
such trade can be made, because, first, g,, is independent of the geometry of the transistor
and depends on only the current level, and, second, because the I/g,, ratio is invariant with

current level.
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- In Section 5.3.2, we did not take into account the cost of capacitances. When we
increased the value of I; in stage 1, we asserted that f; and f; somehow remained constant.
However, to keep f; and f; constant, some area has to be expended in increasing the value
of capacitances that determine f; and f,. If filtering operations represent a small part of a
large analog system, then the area resources devoted to these capacitances are negligible.
Our analysis implicitly assumed that they were. However, in systems where filtering is
a large part of the overall computation, and it is important that the bandwidths of each
filtering stage stay constant as I; is changed, the area costs of capacitances mé,y no longer
be negligible. In the latter case, there is an area capacitance cost of a;? / f; assosciated with
stage 4, where g is a parameter of the technology, and f; is the desired corner frequency of the
stage. The optimal allocation of resources is then a problem considerably more difficult to
solve in closed form, since there is an interaction between the allocations of power resources
and area resources. We can provide only intuition for such cases.

The thermal noise levels still decrease with an increase in power consumption. However,
the 1/f noise (and offset) levels increase with increasing power consumption, because tran-
sistor area is sacrificed for capacitor area. Thus, if we wish to minimize the total noise, for
a given amount of area consumption, there is an optimal amount of power consumption.
Hence, we can think of area as being the only true independent resource of the system.
The low-frequency stages must have their current levels and capacitances reduced, com-
pared with cases where capacitance costs are negligible. The high-frequency stages must
have their current levels and capacitances, increased compared with cases where capaci-
tance costs are negligible. In systems built with transconductance—capacitor filters, we can
also use circuit tricks, such as transconductance reduction [40], to keep the bandwidths
constant. In this case, n; becomes a function of I;; there is then an interaction between
the complexity of the circuit and the power resources used. The net result is that the total
noise at the output is a more complicated function of the power and area resources and has
the form

. _ _Cl, g

Uno = F(Pr) T g(Ar = h(Pr)’

where f(z), g(z), and h(z) are smooth monotonically increasing functions of z, built out

(5.45)

of power-law-like and polynomial-like component functions; and C;, and C} are constants

that depend on the task, technology, and ingenuity of the designer.
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Figure 5.1: The Four Types of Systems. Systems operate with continuous (CS) or discrete
signals (DS), and in continuous (CT) or discrete time (DT). Thus, there are four classes
of systems—CSCT, CSDT, DSCT, DSDT. The figure shows examples of electronic and
biological systems in each class. The acronym SCF stands for Switched Capacitor Filter.
The acronym CCD stands for Charge Coupled Device. Typically, continuous-signal systems
are referred to as analog, and discrete-signal systems are referred to as digital, irrespective
of their representation in the time domain. Analog systems that are continuous in both the
signal and time domains and digital systems that are discrete in both the signal and time
domains have been boxed in the figure. Such systems are the most common examples of
analog and digital systems respectively, and are also the most disparate from each other.
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PFigure 5.2: Noise Accumulation in an Analog System. The figure shows a cascade of M
analog computational stages. Each stage consumes a current J;, consumes an area A;, has n;
devices, has a gain g;, and contributes a noise v,;. The common power supply is represented
by Vpp. If we want to minimize noise at the final output, Vo, subject to fixed constraints
on total current consumption and total area consumption, then Eq. (5.8), Eq. (5.12), and
Eq. (5.14) show that the complex stages (with large numbers of devices) and the early
stages (with large amounts of accumulated gain) should get most of the system’s resources
of current and area.
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Figure 5.3: Resource-Precision Curves—Analog Versus Digital. The figure shows plots of
the resource—precision equations for analog computation (Eq. (5.18) and Eq. (5.19)) and
digital computation (Eq. (5.20) and Eq. (5.20)) for subthreshold technology (p = 1). The
plots show how the resource utilization (power in (a) or area in (b)) is a function of Sy,
the output signal-to-noise ratio (a measure of precision). Analog computation is cheap
because of its use of physical primitives, but, at high precision, the costs of maintaining low
noise and offset on one wire make it expensive. Digital computation is costly because of
its use of logical primitives; nevertheless, at high precision, its multiwire representation of
information and information processing makes it efficient. In (a), the power cost for analog
computation diverges when Sy is limited by 1/f noise (or offset); we must spend area in
this situation to reduce 1/f noise (or offset). Similarly, plot (b) shows that the area cost Ar
diverges when Sy is limited by thermal noise; hence, we must spend power to reduce the
thermal noise. Actually, these conclusions of divergence are only true for the subthreshold
regime where the power and area resources of a transistor may not be traded against each
other to obtain a certain value of Siy. Appendix 5.10 contains a discussion that shows how
we may trade between power and area in the above-threshold regime.
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Figure 5.4: Distributed Analog Computation. (a) The idea behind distributed analog
computation is illustrated with an example. Instead of the usual analog paradigm that
represents 8 bits of information on one wire, or the usual digital paradigm that represents
8 bits of information on 8 wires, in distributed analog computation we represent 8 bits of
information on two wires that carry analog signals. Also, instead of one analog processor
maintaining 8 bits of precision on its output wire, we now have two processors that interact
with each other, and maintain 4 bits of precision on their respective output wires. In general,
there may be correlations between the information carried by the two wires. (b) Plots of
the total cost of computation and communication as a function of Sy in each wire, for ¢ =
1, and for various w/c ratios in Eq. (5.22) are shown. We see that when wiring is expensive
with respective to computation (w/c = 10), the optimal signal-to-noise ratio is high, and
we have few wires. When wiring is cheap (w/c = 0.1), the optimal signal-to-noise ratio is
low, and we have more wires. In neurobiological systems, where wiring costs (due to axons)
are relatively low compared with wiring costs in silicon, the signal-to-noise ratio per wire is
lower than that in silicon.
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Figure 5.5: Hybrid Computation. A hybrid link is a set of analog processing stages (denoted
A; in the figure) followed by an A/D/A that restores the analog signal to one of M discrete
attractor states. A hybrid chain is composed of a sequence of hybrid links. Each chain can
maintain analog information to a precision of logy (M) bits with a low probability of error
provided we meet the following constraint: The net input-referred noise of the A/D/A,
due to all processing stages in a link and the restoration circuits in the A/D/A, must be
significantly lower than the minimum distance between attractor states. In Section 5.4.2
we quantify this constraint. Effectively, we can operate with the precision and complexity
characteristic of digital systems, while doing efficient analog processing.
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Figure 5.6: The A/D/A. (a) The input signal is compared with M — 1 threshold levels
and rounded off to the restoration level that it is closest to. The threshold levels Vi and
restoration levels Vz; for a four-state or two-bit system are shown. The arrows converge on
restoration levels and diverge from threshold levels. (b) A circuit for one possible implemen-
tation of a 4-state A/D/A is shown. The analog signal is compared with three thresholds
and 0, 1, 2, or 3 currents are switched onto a resistor, whose voltage then equilibrates at
Vi1, Vi1 + IR, Vi, + 2IR, or V1 + 3IR respectively. The RC-circuit acts as a filter and
removes sharp edges in the signal. The capacitance is chosen so that 1/RC is at or near the
desired bandwidth of the input. (c) The probability of a bit error for a worst-case situation
when the input is at V7o is given by the area under the Gaussian tails, i.e., to the left of
Vr1 and to the right of V. Section 5.4.2 provides further details.
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Figure 5.7: The Optimal Length of a Hybrid Link. (a) To maximize the efficiency of
information processing in a hybrid chain, there is an optimal amount of analog processing
that must occur before signal restoration in a hybrid link, i.e., hybrid links should not be
too long or short. If the link is too long we spend too much power (and/or area) in each
analog stage in order to maintain the requisite precision at the input of the A/D/A. If the
link is too short, we spend too much power (and/or area) in frequent signal restorations. (b)
The figure shows a plot of the current consumption (obtained from Eq. (5.33)) versus link
length (M) for differing values of precision, parametrized by oy, the input-referred noise at
the A/D/A. Section 5.4.2 provides further details. As the precision increases, the optimal
length of the hybrid link is shortened.
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Figure 5.8: Distributed and Hybrid Computation. This scheme combines the best of the
analog and digital worlds to create a world that is more efficient than either. The informa-
tion from a single-wire analog input is encoded onto many wires by an analog encoder such
as a cochlea, retina or A/D. In the example of the figure, the distributed information is
preserved in the first stage of processing by 2-bit A/D/As. In the next stage of processing,
the analog processors and/or the A/D/As make decisions based on the information and
reduce the output information to 1-bit. Thus, the analog circuits in the second half can
afford to be noisier since the A/D/A restoration only has a precision of one bit. The use
of distributed analog computation and low-precision A/D/A signal restoration make this
architecture ideal for efficient precise computation. '
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Chapter 6 A New Geometry for All-Pole Underdamped

Second-Order Transfer Functions

Abstract

In the standard s-plane geometric interpretation of a second-order transfer function with
two complex poles and no zeroes (the frequently occuring transfer function of underdamped
oscillators), the gain depends on the product of two lengths, and the phase is the sum of
two angles. This construction obscures the overall frequency respénse, hiding important
quantities such as the gain peak and the corner frequency. We present an alternate. “one-
pole” geometry in which the gain depends on one length, and the phase corresponds to one
angle. In this space, many >relationships in the transfer function become obvious; quantities

such as the group delay and bandwidth have simple forms and geometric interpretations.

6.1 Introduction

Because Newton’s law is a second-order differential equation, and damped oscillators are
ubiquitous, second-order transfer functions with two complex poles abound in nature. Ex-
amples include springs, pendula, elastics, RLC and active-filter circuits, lasers, atomic vi-
brations, acoustics, and audition. In this article we discuss a geometric view of these transfer

functions that makes their behavior intuitive.

6.2 The Usual Geometry

The transfer function of a second-order system with two poles is given by [1]

H(s)=1/ <1 + —TQ—S- —|—7252> _— (6.1)

where H is the transfer function, s is the Laplace transform variable, @ is the quality factor

of the resonant circuit, and 7 is the time constant of the system. We will only discuss
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’the Common case of underdamped second-order transfer functions, i.e., systems for which
Q@ > 0.5, and both poles are complex. The value ) = 0.5 corresponds to a critically damped
system with coincident poles just about to leave the real axis in the s plane. Our results
may be trivially generalized to signal-processing filters that have two complex zeroes, by
reciprocating gains and negating phases.

With s = jw, the gain and phase are given by

. _ 1 ‘
G| = e (6.2
Arg H(jw) = —arctan (%) ) (6.3)

= —arccos ( 1w . (6.4)
\[(1 — w272)? 4+ w2r2/Q?

Figure 6.1 shows the usual geometric interpretation of these equations for the underdamped
case where both poles are complex. To calculate the gain at the frequency point, F', measure
the distances, d; and dp, from F to the two poles, P, and P. The gain is 1/didy. To
calculate the phase, add the signed angles made by P F and the z-axis, and by PF and
the z-axis. In a double-zero system, this sum is the phase, whereas in a double-pole system,
you negate this sum to get the phase. For example, at DC (7s = 0), these two angles are
equal and opposite, and the phase is zero. At infinite frequency (7s — +i00), both angles

are 90°, and the phase is —180° for a double-pole system.

6.3 Transforming to the New Geometry

In eq. (6.2), we notice that the important variable of interest is the square of the normalized

frequency, w?72. Thus, it’s natural to first define a simpler variable,

With this substitution, we expand squares in eq. (6.2) to get

1

HE) = a0 722
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Now we define an angle 6 such that

. 1
sinf =1-— 5@3, (67)

or equivalently,

6 = arcsin (1 (6.8)

1

2Q%7
For eq. (6.8) to be valid, the argument of the arcsin must be within £1, which means that
0.5 < @ < . So our substitution works for the underdamped cases that we’re interested
in. Actually, the construction also works for —co < @ < —0.5, i.e., for negatively damped
systems with complex poles; the results for positive ) carry over, except that we negate
the phase.

We may now simplify egs. (6.2)—(6.8) to obtain

1

H(z)| = , 6.9
() \/(x—sin0)2+cos20 69
Arg H(z) = —arctan <\1/_5;/—§>7 (6.10)
= —arccos ( 1-¢ ) (6.11)

\/(x — sin#)? + cos 20 . .

Egs. (6.5) and (6.8) are the key equations of our paper.. We will show how they enable

us to construct simple geometric interpretations of our transfer function.

6.4 The Geometry of Gain

We can interpret eq. (6.9) as saying that the magnitude transfer function |H(z)| is the
reciprocal of the Euclidean distance between the point (z,0) and the point (sin®,cos6).
A pictorial representation of eq. (6.9) is shown in Figure 6.2: The z axis in the figure
represents z = w?72; that is, it is proportional to the square of the normalized frequency.
The negative = axis is meaningless in this geometry (squares are always positive), and is
therefore shown with dotted lines. To plot the magnitude frequency response, we move along
the x azis from 0 to +oo, and compute the reciprocal of our distance from a fized point that

lies on a semicircle of radius 1 at (sin®,cos@). The angular location of the fixed point on
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the semicircle is determined by @ according to eq. (6.8); consequently, we call the fixed
point the Q point. For @ = 0.5, the phase is § = —90°, and the @ point is located at (-1,0).
For Q = oo, the phase is § = +90°, and the Q point is located at (1,0). For @ € [0.5, o0],
the angular location of the @ point varies between —90° and +90°. Some important @
points are Q@ = 1/4/2 = 0.707, (0,1), where 8 = 0; Q@ = 1 where § = 30°; and Q = 1.93
where 6 = 60°. If we define ¢ = 90° — 6, then

1

@ = V2 (cos(8/2) — sin(6/2))’ (6.12)
1
Sem) (6.13)

We now itemize a list of relationships that are obvious from the geometry:

e At low frequencies, the distance from the @) point is approximately the radius of the

semicircle, and thus the gain is near 1.

e As we move away from the origin the gain rises, because the distance from the @
point decreases. The gain peaks at x = sinf, when we are directly underneath the @

point. As we move past the peak, the distance increases and the gain falls.

e In z space, the transfer function is symmetric about the peak for z < 2sin6; at
z = 2sin 0, the distance is again 1 (The first time that the distance was 1 was at x =

0.).

e Since the peak gain is at z = sinf, and the place where the gain is unity is at
z = 2sin#, the unity-gain and peak-gain frequencies are a factor of two apart in x
space, or are one-half an octave apart in frequency space. The algebraic proof of this

result is tedious with the original transfer function eq. (6.2).
e The value of the peak gain, 1/ cos 8, is evident in the geometry.

e We can determine the critical value of Q) at which there is a gain peak in the transfer
function: To have a gain peak, the Q-point must be on the right half of the semicircle;
otherwise, the distance from it will always increase with frequency, eliminating the
gain peak. Thus, Q = 0.707 is the critical value. The geometry divides the space into
a left quadrant without a gain peak and a right quadrant with a gain peak. When
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there is a gain peak, the gain is greater than 1, because the distance to the  point

at the peak is always less than the radius of the semicircle.

Thus, we observe that various relationships in the magnitude transfer function become

fransparent in our one-pole construction.

6.4.1 Relationship to Other Geometries

For the benefit of readers, we tabulate expressions for useful quantities in various represen-

tations:

e Rectangular representations in the usual geometry that use the a and b parameters
of Figure 6.1. This representation is often used in audition and speech-recognition

literature, e.g. in [2].

e Polar representations in the usual geometry that use w, = 1/7 and @ parameters.
This representation is often used in physics literature, e.g. in [3]; wy, is determined by
nondissipative energy storage elements, and @ is determined by dissipative damping

elements.

e Polar representations in the usual geometry that use w, and ©, where © is marked in

Figure 6.1.

e Our polar representation that uses w, and 8. Note that we implicitly use w, when we.

work with the square of the normalized frequency & = (w/wy)?.

The latter two representations are closely related. It may be shown that © of the third

representation, is related to ¢ and € of our representation through
¢p=m/2—0=20 =2arcsin(1/2Q). (6.14)

Eq. (6.14) is extremely useful in converting between the representations. Figure 6.3 shows
that, because the angle subtended at the center is half the angle subtended at the cir-
cumference [4], the z plane represents © as well; also, because the angle subtended at the
circumference by a semicircle is 90° [5], and the angle between perpendiculars to lines is
equal to the angle between lines, © is also the angle marked at the @ point in the figure.

Figure 6.4 shows a more detailed comparison of our representation vs. that of the w, and ©
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representation. Note the warping of the symmetric gain curve in z space to the asymmetric
gain curve in s space and the representation of  in s space. The # values are marked with
tickmarks in both spaces.
Expressions for useful quantities in all four representations are summarized in Ta-
ble 6.4.1. It is sometimes more convienient to use ¢, that is, (7/2 — ) instead of ¢, in
our representation, but, for the sake of consistency, we've used only € in all the tabulated

expressions.

Table 6.1: Useful Quantities in the Four Representations

a and b wy, and Q w,, and © wy, and @
Underdamped Region a>0,b>0 0.5 < Q <00 0< O < 7/2 /2 <8 < /2
Gain > 1 Region 0<a<b 1/V2< Q< o0 /4 < © < w/2 0<6<n/2
Damping a// a2 + b2 1/(2Q) sin© sin(w/4 —6/2)
Peak Frequency \/b2 — a2 Wn \/1 - 1/(2Q2) wnVcos 20 wnVEin @
Peak Gain (22 + 52)/2ab Q/(\/l —1/(4Q2)) 1/(sin 20) 1/(cos 0)

«90° Frequency Jaz + b2 wn wn Wn
—90°—Frequency Gain \/l +b2/a?/2 Q 1/(2sin 20) 1/(2sin (x/4 — 6/2))
Unity Gain Frequency \/Z(b2 - g?) wn \/2 - 1/(Q2) wn V2 c05 20 wn V2506

3dB Frequencies Ej‘:‘;i—fﬁgﬂé (1- ﬁf) + (\/:%)/QJ wn (€05 20 X 5in 20Q) wn (sin@ & cos89)

6.5 The Geometry of Phase

A pictorial interpretation of egs. (6.10) and (6.11) is shown in Figure 6.5. The angle ¢ s
the negative of the phase. The distance d is the reciprocal of the gain and is the distance
from z to the @ point, as we discussed in section 6.4. With the point z as center, we draw
an arc of radius d that intersects the vertical line £ = 1 at the phase point. If we draw a
phase vector from z to the phase point, then the angle between the phase vector and the
positive z axis is . To plot the phase of the frequency response, we move along the z axis
and compute 7.

We have a symmetry—to compute gain, we measure distances from our current location
on the z axis to the @ point on the semicircle; to compute phase, we measure angles
between the phase vector and the positive z axis. However, the gain construction is simpler
to visualize than is the phase construction, because the phase construction requires drawing
an arc for each frequency. We can avoid this difficulty if we simply realize that the phase
point is (1,v/z/Q) because of the consistency of egs. (6.10) and eq. (6.11); therefore, it

moves up the vertical line z = 1 as  moves to the right on the z axis. Hence, we may
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imagine a ladder with its foot at (z,0), and with its length being the reciprocal of the gain,
sliding against the wall z = 1; then, the angle that the ladder makes with the floor (the
positive z axis) is the negative of the phase.

At low frequencies, the point (1,+/Z/Q) is near the z axis and the angle 1 is nearly zero.
As we increase z, the angle 1) increases as we decrease 1 — z and increase \/z/Q. At z =1,
1 is 90°, with the phase point located at (1,1/Q). Note that 1/@Q is also the distance from
(1,0) to (sin @, cos @), because of our arc construction.! As z increases beyond 1, the phase
point moves up the vertical line z = 1 at a rate given by 1/(2Q+/z); that rate is always
less than the horizontal rate of motion of z (i.e., 1) for @ > 0.5. If Q is large, 1 is small
for all z except those z near 1, since 1/z/Q remains small even while z changes by a large
amount; as we cross x = 1, 1 increases above 90° and quickly heads toward 180° as the
1 — z distance rapidly overtakes the slow motion of the phase point. Thus, we may infer
that the slope of the phase curve around 90° increases with Q. In fact, dy/dz is Q at z = 1.

Figure 6.6 shows how we can make an alternate construction that also yields %, by
drawing 1/z/Q versus z. Then, at any point z, the ratio of the curve height to the distance
of z from 1 (i.e., 1 —z) is tant. By eq. (6.10), ¢ is the negative of the phase of the transfer
function. The construction of Figure 6.6 is identical to that of Figure 6.5, except that, in
the former case, the phase-point computation is performed on a curve, whereas, in the latter

case, it is done by an arc construction.

6.6 How to Remember the Mapping From Algebra to Ge-

ometry

Egs. (6.5) and (6.8) were responsible for mapping the transfer-function algebra into ge-
ometry, and for all of the resulting simplifications. Eq. (6.5) is easy to remember since it
merely states that we work with the square of the normalized frequency. Eq. (6.8) is more
painful on the memory. One way to avoid this pain is to simply remember the following
fact: The gain of a second-order transfer function is always @ at its corner frequency; thus,

the distance from the Q point (sin#, cos8) to the corner-frequency point (1,0) is 1/Q. By

!There is an easier way to show that the distance from (1,0) to (sin 8, cos6) is 1/Q. This distance is the
reciprocal of the gain at ¢ = 1. At z = 1, the gain is @, so the distance must be 1/Q. It may also amuse
you to show that the distance from (sin8,0) to (1,0) is 1/2Q?, and that from (sin8,cos6) to (sin6,0) is

V1-1/4Q%/Q.
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compﬁting the Euclidean distance between the latter two points, eq. (6.8) is then easily

rederived.

6.7 The Geometry of Group Delay

The group delay of a filter, Ty, is defined as the negative of the derivative of phase with
respect to angular frequency w. The group delay is useful in estimating quantities like the

delay and dispersion of the filter’s impulse response.

Ty = —a—(%—i—m = g—f, (6.15)
where 1) is the negative of the phase, as defined earlier in section 6.5.

Rather than work with the formula for phase eq. (6.3), which would require differenti-
ating, it is possible to differentiate phase graphically. Consider the standard s-plane plot of
the pole locations and the angles 11 and 12 from the horizontal to the point jw, as shown
in Figure 6.7. Since these are poles, 1 = —(t1 + 92), and

_oh o

Ty = Ow ow

(6.16)

The trick is to get simple algebraic expressions for the derivatives of the angles, while
avoiding the angles themselves. The rate of change of an angle with respect to a moving
point is inversely proportional to the distance to the point, which we label d; in Figure 6.7.
The rate is also proportional to the “direction cosine” that describes how the point is moving
relative to the “tangential” direction that would most affect the angle. This direction cosine
is just the ratio dy/d; in Figure 6.7. The fact that d; comes into the denominator twice is

convenient, since it is a hypotenuse.

8¢1 _ d2 _ a

dw & a2+ (w—0b)? (6.17)
0o a

R 1
Ow a2 + (w + b)? (6.18)

We have used the rectangular description of the pole locations in the s-plane due to their
obvious simple relationship to the geometric differentiation. We now express the sum over

a common denominator and convert to the “polar” parameters w,% =a’?+ b2, Q = wy/2a,
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where w,, = 1/7 is the corner frequency; also, we define z = w?r? to be the square of the

normalized frequency, as per our earlier definitions. Then,

2a(a® + b?) + 2aw?

I, = (@ + 82)% + 2(a2 — B2)w? + wh (6.19)
- l1+z
Wnlg = Q1+ (1/Q?-2)z +z?)
1
wh T %(1“’) il (6.20)

Notice that the group delay is closely related to the gain magnitude |H|. In particular, from
the form of eq. (6.20) we can make a direct construction for group delay in the geometry
that we used for gain and phase.

If we have two “poles” at the @ point and at the symmetrically located point on the
bottom of the circle, as shown in Figure 6.8, and a “zero” at x = —1, then the product of
the distances, d,/ df, yields the group delay of eq. (6.20) apart from the constant 7/() scale
factor. Thus, we can visualize the dependence of group delay on z by a two-pole/one-zero
construction. This construction is not as simple as the one-pole construction for gain or
phase. Yet it is a vast simplification over eq. (6.19). Note that unlike the gain or squared
gain, the group delay is not symmetric in z, and that the effect of the zero shifts the

group-delay peak to a somewhat higher frequency than the gain peak.

6.8 Conclusions

The new geometry described in this paper clarifies the properties of a second-order transfer
function with two complex poles. We hope that others will find it useful in working with

these transfer functions as we have.
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F, freq. point

> Re s

P,

Figure 6.1: The usual geometric interpretion of a two-pole system. You need distances and
angles from two poles, P; and P, to calculate the gain and phase at F'.
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) 1
sinf = 1‘— 207
0= 1
’ V2 {cos(8/2) —sin(6/2)}
= gcsc %
Q =0.707
Q-point
(sin 8, cos 6)
6
¢
Q = 0.5 sin @ 1 2sin @ x :=w2’7'2

Figure 6.2: The geometry assosciated with finding the gain of a second-order transfer func-
tion. The z axis represents the square of the normalized frequency w7, where 1/7 is the
corner frequency of the transfer function (see eq. (6.1)). The @ point (sin§, cos6) lies on a
semicircle of radius 1. Different values of 8 correspond to different values of Q—the angle
6 = —90° corresponds to @ = 0.5, 8 = 0° corresponds to @ = 0.707, and 8 = +90° cor-
responds to @ = oo. The relationship between 6 and @ is shown in the equations at the
top of the figure. The gain at the frequency corresponding to z is the reciprocal of d, the
distance from the frequency point (z,0) to the @ point. The zero-frequency gain is unity;
the gain peaks at z = sin@ with a value of 1/cos#, and is unity again at = 2sinf. The
gain is symmetric around the peak for z < 2sin6 in z space. For z > 2sinf, the gain is
less than 1 and decreases monotonically with z.
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(-point

(—170) (LO)

» Re s

Figure 6.3: The relation between angles in the z plane (top figure) and the s plane (bottom
figure). The angle ¢ in the z plane is twice the angle © which is represented in the s plane
and z plane as shown. The angle 8 in the z plane is 7/2 — ¢, that is, 7/2 — ©/2.
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Figure 6.4: A detailed comparison of the s plane and z plane representations. Note the
symmetry of the gain curve in z space and the asymmetry in s space. The value of 6 in
radians is marked with tick marks in both spaces. Note that © = n/4 — /2.
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Q =0.707

@Q-point
(sin 8, cos 8)

freq. point

1~ zp ——]

Figure 6.5: The geometry associated with finding the phase of a second-order transfer
function. The normalized z axis, Q point, and semicircle are identical to those of Figure 6.2.
The distance d is the reciprocal of the gain at the point zg. The phase point (1, (zo /Q)0‘5)
is located at the intersection of an arc of radius d, centered at the point (zg,0), and the
line z = 1. The phase vector is the vector from (zg,0) to the phase point. The angle ¢
between the positive = axis and the phase vector is the negative of the phase of the transfer
function.
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phase point

freq. point

Figure 6.6: An alternate construction that we can use to find the phase of a second-order
transfer function by drawing (z/ Q)%® versus z. At any point zg, the ratio of the curve
height to the distance of zg from 1 (i.e., 1—zg) is tan 1), where 1 is the negative of the phase
of the transfer function. The construction of Figure 6.6 is identical to that of Figure 6.5,
except that, in the former case, the phase-point computation is performed on a curve; in
the latter case, it is done by an arc construction.Note that varying @ simply scales tan ().
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b
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Figure 6.7: The determination of group delay. The group delay is the rate of change of the
quantity 11 + ¢ with w.
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Tgroup

(sin 8, cos §) (Q-point)

(sin 8, —cosf)

Figure 6.8: The representation of group delay in the z plane by a two-pole/one-zero con-
struction. The group delay is the product of 7/Q, a scale factor, and d,/ df,; d, is the distance
from the “zero” at (—1,0) to the point (z,0), and dzz, is the product of the distances from
the two “poles” at (sinf,cosf) (the @ point) and (sind, —cosf).



