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ABSTRACT 

As engineering systems become larger and more flexible,serious 

consideration must be given to the very high order, and consequently 

very high bandwidth.of these so called quasi-distributed parameter 

systems. In particula~ as practical active control devices such as 

sensors and actuators have finite bandwidth, great care must be 

exercised so that control of low frequency modes does not cause 

instability of intermediate and high frequency modes. In this 

report, the nature of these stability problems is investigated in the 

context of direct velocity feedback control, and approximate bounds on 

the diagonal elements of the modal gain matrix are derived. Two velocity 

feedback techniques are proposed to alleviate potential instability, but 

these are dependent on the natural damping of the system, which remains 

uncertain in practice. Another technique using position feedback is con

sidered. Despite certain additional complications, position feedback 

control proves to be more advantageous in many ways than velocity feed

back. Some preliminary analyses on a quasi-linear vibration suppression 

technique via damping matrix modification are also presented. The feasi

bility of these theoretical techniques are confirmed by means of a 

numerical simulation on a simply supported discrete shear beam. 
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ACRONYMS 

DPS Distributed Parameter System 

QDPS Quasi-Distributed Parameter System 

LSS Large Space Structures 

LAS Liapunov Asymptotic Stable 

iff If and only If 

PDE Partial Differential Equation 

ODE Ordinary Differential Equation 

DOFB Direct Output Feedback 

TF Tuning Filter 

WLOG Without Loss of Generality 

S/A Sensor/ Actuator 
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LIST OF SYMBOLS 

The following are symbols that frequently appear throughout the 

thesis. * denotes variable dimensionality. 

Symbols 

A 

B 

C 

D 

V 

F(t) 

I 

i 

K 

s 

u 

V 

Dimension 

* 
N x N 

N 

* 
scalar 

N x N 

N x N 

scalar 

scalar 

scalar 

scalar 

NA 

scalar 

State matrix of 1st order system 

Modal gain matrix 

Control gain matrix 

Natural viscous damping matrix 

Modal damping matrix 

Control force vector 

Identity matrix 

Stiffness matrix 

Inertia ( Mass ) matrix 

Number of modelled system states 

The ,Natural Number System 

Number of S/ A pairs = number of contro 11 ed modes 

Number of Tuning Filters 

The Real Number System 

S/A location matrix 

Laplace transform variable 

Lead compensator time constants 

Actuator state vector 

Liapunov function 

System state vector 

State vector of the ; th tuning filter 



Symbols Dimension 

n 

e 

p 

scalar 

scalar 

scalar 

scalar 

scalar 

sea 1 ar 

scalar 

scalar 

scalar 

* 

NA X N 

scalar 

N 

* 
N x N 

N X N 

scalar 

scalar 

scalar 

Twice the open loop damping of the ; th mode 

Twice the open loop damping of the actuator 

Twice the open loop damping of the ; th tuning filter 

Scalar gain for the ; th mode 

Kronecker Delta Tensor 

Small parameter 

Natural damping ratio of system 

Natural damping ratio of actuator 

Natural damping ratio of the ; th TF 

Canonical actuator state vector 

S\l? 

; th eigenvalue of relevant system 

Modal state vector 

Compensator state vector (only in Chapter 3) 

Modal matrix 

Canonical stiffness matrix 

Natural frequency of the ; th mode 

Natural frequency of the actuator 

Natural frequency of the ; th TF 

End of Proof 
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1.1 MATHEMATICAL FORMULATION 

l 

Chapter 1 

INTRODUCTION 

By definition, a Distributed Parameter System (or a continuous 

system) is a dynamical system whose state is continuous in both the 

temporal and spatial domains. Consequently the dynamics of such a system 

is described by partial differential equations. For the purpose of 

application to vibratory systems such as large flexible space structures, 

we shall only concern ourselves with the class of hyperbolic systems 

described by the generalized wave equation: 

m(x) a2y(x,t) + D &y(x,t) + K y(x,t) = Fc(x,t) 
at 2 0 at 0 

(1. L 1) 

where y(x,t) represents the system's physical state relative to equilibrium, 

defined continuously in the spatial domain T and temporal domain [o,~). 

The forcing terms on the right hand side are excited by the external 

transient disturbance and the distributed control Fc(x,t). At 

any instant, all sufficiently smooth and square integrable y(x,t) 

satisfying the appropriate boundary conditions 

L;Y(X, t) = 0 i = 1,2, ... ,p (1.1.2) 

(where Li are linear operators) together with the inner product defined by 

< y(x,t), z(x,t) > = 1y • z m{x)dx 
T 

and the associated norm 

I IYI I = < 

(1. 1. 3) 

constitute an infinite dimensional Hilbert space H
0 

= L2(T). The mass 
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density m(x) is a positive and bounded function defined on T. K
0 

is a 

linear, self-adjoint, time-invariant and positive semi-definite 

operator of order 2p representing the internal stiffness of the system; 

the spectrum of K
0 

is discrete and by virtue of its self-adjointness, 

the eigenfunctions form a complete orthonorma 1 set {<Pn (x), n = l, ... ,""} 

such that 

(1.1,4) 

and 

(1.1.5) 

where wn is the modal frequency corresponding to the nth modal state 

<Pn(x). D
0 
if denotes the natural linear viscous damping of the system; 

its magnitude is usually small, but rather uncertain, in practice [l]. 

The research on control of distributed parameter systems in 

general has only been recent. Some rigorous mathematical treatment can 

be found in [2]-[4],where advanced functional analysis and other 

abstract mathematical tools have been used to derive complicated 

adjoint equations which, if ever solved, will yield an optimal control 

system. Such theories are rigorous and stimulating, but one may raise the 

question as to whether these theories can be applied to the physical 

realm without major modifications. This was the major issue raised in a 

recent conference on the application of distributed systems theory to 

the control of large space structures held at the Jet Propulsion Laboratory 

where two schools of thought were in direct conflict. The first school, 

led by BALAKRISHNAN, insisted that the PDE approach is the better way 

and should be adhered to until such time as it is deemed absolutely 
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necessary to discretize. The other school, led by HUGHES [5] and being 

more pragmatic, favored the approach of finite discretization throughout 

the entire design process. We tend to favor the second school for the 

following reasons: 

(i) Even though the PDE approach may be feasible in some extremely 

simple system such as the Euler-Bernoulli beam, most engineering 

systems are extremely complex; and it is most difficult, if not impossible, 

to find a suitable PDE that will accurately describe a complex system 

together with all its boundary conditions. 

(ii) In the event that such a complex PDE can be found, there is no 

guarantee that it will be easy to analyze and to derive conditions for 

optimality, 

(iii) With the present technological know-how, it is not quite 

possible yet to exercise distributed control. In other words, we are 

faced with the ultimate problem of controlling an infinite dimensional 

DPS with a finite dimensional controller. 

In view of the mathematical and technical difficulties involved in 

the PDE approach, it is imperative to seek a finite truncation of the 

infinite dimensional system. One way of doing so mathematically is to 

truncate the eigenfunction expansion solution to (l .1.1). Applying the 

principle of separation of variables, we approximate the solution to 

(1.1.1) by 
N 

y(x,t) ~ I ~n(t) ~n(x)~ 
n=l 

(1.1.6) 

The exact solution can be realized in the limit as N + 00 • Substituting 

(1.1.6) into (l,l,l),multiplying by ~m(x) and integrating over the spatial 

domain T, we obtain 
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N 
~m(t) + L Vmntn(t) + w~~(t) = fm(t), m = 1,. ,,N 

n=l 

where Vmn = [¢m(x)D0 (¢n(x)) dx 
T 

and fm(t) = [ [FC(x,t) + F0(x,t)J ¢m(x) dx 
T 

(L 1. 7} 

(1,1.8) 

(L l. 9) 

(1.1.7) is essentially a system of ODE 1 s governing the first N modal 

states of the infinite dimensional system of (1.1.1), and can be 

conveniently expressed in the matrix notation 

(1. L 10) 

where.;, fEIRN, V, nEIRNxN, n = diag (w~). This approach however, serves 

only as a mathematical guideline since firstly the PDE (l,1.1) is 

difficult to find and secondly it is difficult to know what the ¢n(x) 

are, especially as continuous functions of x. 

In practice, it is much easier and more practical to model a DPS 

as an approximation to a discrete system and regard it as a discrete system 

throughout, Such an approach has become standard engineering practice 

through the powerful use of finite element analysis. In theory this 

differs from the eigenfunction expansion truncation method but in 

practice, they both result in an equivalent set of equations 

(1. 1. 10). At least the approximation by finite truncation is usually 

good for the lower order modes. As control theorists we are not so con

cerned about how a discrete model of a continuous system can be obtained 

by finite element analysis--this is an independent subject in its own 

right and the job of structural engineers. We shall conveniently assume 

that it is possible to carry out such analysis so as to J11odel the continu-
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ous system by the following set of ordinary differential equations: 

(L L 11) 

where Mis an NxN positive definite inertia matrix, Dan NxN positive 

semi-definite viscous damping matrix, and Kan NxN positive semi

definite stiffness matrix. These matrices are system parameters to be 

identified from finite element analysis. y(t) is a real N-dimensional 

state vector and FC(t) a real N-dimensional control vector. As the ex

ternal disturbances are assumed to be in the form of initial conditions, 

we shall regard the control problem as a regulator problem. The dimen

sion of the system has thus been reduced from infinity to a finite N. 

(In other words, the spectrum of the DPS has been reduced from one with 

infinite bandwidth to one with finite bandwidth.) The larger N is, the 

better will (1.1.11) approximate the DPS (1.1.1). One can also visual

ize the discrete systeM (1.1.11) as a distribution of mass elements 

connected by springs (which may have negative spring constants) and 

dashpots. For our present purposes, we shall henceforth refer to the 

system (1.1.11), with N large, as a "Quasi-Distributed Parameter System." 

The QDPS (1 .l .11) is characterized by the matrices Mand Kand can be 

analyzed in the modal (or eigen, or canonical)form via the congruent 

transformation¢ which simultaneously diagonalizes Mand K, such that 

¢TM¢ = IN (1.1.12) 

¢TD¢ • V (Ll.13) 

¢TK¢ = Q = diag{w~} (1.l.14) 

The nth column of¢ is the eigenvector corresponding to the nth 

mode, with frequency wn. The modal state vector ~ is given by 
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(1.1.15) 

The modal damping matrix Vis non-diagonal in general unless classical 

normal modes exist, but it is nevertheless assumed diagonally dominant. 

Under the transformation (1.1.12)-(1.1.15), (1.1.1) is reduced to the 

modal equation 

(1.L16) 

which is equivalent to what we had before (c.f. (1.1.10)) by truncation 

of the eigenfunction expansion. 

Throughout this report, the analysis is carried out in the context 

of LSS control although it can be applied, with some modification 

perhaps, to other large scale vibratory systems, such as seismic structures, 

large scale social-economic systems,or biological systems. 

1,2 REVIEW OF ACTIVE CONTROL TECHNIQUES 

The central problem in active control of QDPS is vibration 

suppression, To be exact, given a finite number of resources such as 

sensors, actuators and controllers, how can the control F(t) be 

constructed to steer the QDPS from a non-null state to its null state in 

some optimal way and at the same time preserve global asymptotic 

stability, There has been a proliferation of the theory of LSS control 

in the recent literature,and these are well reviewed in [6] and [7]. A 

large proportion of all active control techniques proposed to date are 

of optimal control type [8]-[12]. However, in addition to being 

complicated, difficult to implement, and requiring large on-board 

computer capacity,etc., optimal control techniques inevitably encounter 
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the notorious problem of "Control and Observation Spillover", which is 

likely to render the system unstable. What happens physically is that 

due to the high dimensionality of the problem, the energy used in 

controlling the lower order modes spills into some of the uncontrolled 

modes through the coupling,and destabilizes the latter modes. These 

spillover effects are both predicted by theory [8] and demonstrated by hard 

ware experiments [13]; and despite efforts in overcoming them [14, 15], remain 

stubborn. It is one of the usual difficulties in engineering control 

problems where optimal performance is frequently in conflict with stability. 

Another much simpler technique is known as the Direct Output 

Feedback Control [16]. Not only is the use of collocated (sensors and 

actuators) velocity feedback [17] - [19] easier to implement, it also 

guarantees global stability. Spillover still exists, but 

rather than being detrimental, it stabilizes the uncontrolled and 

unmodelled modes. 

Whether by using optimal control techniques with state estimator 

or by DOFB control, the control F(t) in (1.1.11) essentially takes the 

form 

(l.2,1) 

In the case of optimal control, the NxN gain matrices B1 and B2 are 

time dependent and related to the solution of a pertinent matrix Ricatti 

differential equation. In the case of DOFB, B1 and 82 are time invariant. 

In particular if collocated velocity feedback were used, so that B1 = 0 and 

8
2 

is positive semi-definite, then it is quite obvious that the resulting 

control system is globally stable, With NA pairs of collocated sensors 

and actuators available, DOFB allows the eigenvalues of the first NA 
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fundamental modes of the system to be approximately assigned. Thus DOFB 

can be corx:eived as a version of the pole placement technique (20], In view 

of the fact that stability is the most important requirement of real 

LSS, collocated velocity feedback control seems to be potentially a 

more important technique than optimal control. 

However, there still remains one crucial problem, yet unfortunately 

ignored by most, namely, the interaction of actuator dynamics with the 

structural dynamics. Under certain easily attainable conditions it can 

be shown that intermediate modes of frequency close to the actuator's 

frequency can become unstable [21][22]. A thorough investigation into 

the nature of this instability is presented in the next chapter. To 

avoid these instability problems is a non-trivial task if velocity 

feedback is used. Two methods are suggested in Chapters 3 and 4 

respectively. The first method generalizes the lead compensation tech

nique commonly used in classical single-input-single-output control system 

design and applies it to the control of QDPS. Under careful design of 

compensation parameters, the overall system can be rendered stable. The 

second method simply suppresses the feedback of all the modes which are 

likely to become unstable. Both these methods suffer from the lack of 

robustness as they require extensive knowledge about the system 

modal structure and natural damping. A much superior, though not 

quite conventional, technique--positive position feedback control 

[23]--will be presented in Chapter 5. It is shown that the scheme 

does more than guarantee global stabilityt it also has numerous 

advantages over velocity feedback control schemes. In Chapter 6, 

we deviate from the conventional method of control actuation and 
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seek the alternative use of electronic damping by stiffness modification 

[24]. A coherent juxtaposition of these theories is presented in Chapter 

7 through the numerical simulation of a simply supported discrete shear 

beam. 

Throughout this report, two crucial assumptions are made. 

Assumption I. The rigid body mode can always be decoupled from the 

vibrational modes. Thus the two major aspects of LSS control, namely: 

attitude pointing and vibration suppression, can be considered separ

ately. The decoupling can be achieved either by proper design of the 

feedback gain matrix or by using relative sensing and actuation. In 

this report we shall only concentrate on the problem of vibration sup

pression. 

Assumption II. The dynamics of the actuators is assumed to be 

second order. Higher order dynamics can always be assumed, but will 

give rise to more complicated algebra without necessarily deducing fur

ther instructive information, as the second order assumption is believed 

to be the most realistic choice. 

Needless to say, the practical situation could deviate significantly 

from the theoretical prediction if these assumptions do not hold. 
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Chapter 2 

STABILITY ANALYSIS OF COUPLED SYSTEM AND ACTUATOR DYNAMICS 

2.T ASYMPTOTIC STABILITY OF A SINGULARLY PERTURBED SYSTEM 

Al 1 actuators used in practice inevitably possess some inertia and 

hence must be regarded as finite bandwidth dynamical systems. Collocated 

rate feedback control ·(and expectedly, optimal control with spillover 

eliminated) may work fine if the actuators are assumed to have no 

dynamics but this is unfortunately not so. BALAS [25] shows that with 

fast modes truncated, neglecting of actuator dynamics is justifiable 

(i,e. does not destabilize the system), if these dynamics are sufficiently 

fast. This claim is obviously false due to conflicting assumptions. No mat-

ter how fast the actuator dynamics may be, they must have finite band\vidth, 

whereas the flexible system is one of infinite bandwidth (or at least very 

large-- in any case, larger than that of the actuator) whether one would 

like to model it as such or not. Note in passing that sensor dynamics are 

not so important,as the .sensor bandwidth is usually much higher than 

the actuator bandwith. 

Without actuator dynamics, the equation governing the collocated 

velocity feedback control of a QDPS (from (1.2.J)) 

My+ Dy+ Ky= F(t) = -sTcss, (2.1.1) 

where Sis a NAxN integer valued.matrix referred to as the sensor/actuator 

location matrix [18], with individual entries defined by 

[SJ .. = {1 if SIA.pair i is located at element j 
1 J O otherw, se 

(2, 1.2) 

Sometimes Sis written as a set of integers denoting the set of elements 
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at which the S/A are located. C is a NAxNA time-invariant gain matrix. 

It is easy to see that if C is positive definite then the feedback 

essentially adds a positive semi-definite passive damping to the 

existing natural damping D; hence, the resulting system must be globally 

stab1 e. 

With the inclusion of actuator dynamics (assumed 2nd order), however, 

(2.1.1) is modified to be 

My+ Dy+ Ky= -ST Cu 

u + 2r; w u + w2 
( u - Sy ) = 0 a a a 

(2,1.3) 

(2,1.4) 

where u is an NA dimensional real vector representing the state of the NA 

actuators which have identical damping ratios r;a and natural frequencies wa. 

Applying the following transformation: 

(2.1.5) 

(2, l .6) 

where~ is the modal matrix defined in l .1, the equations of motion 

in the modal space are 

(2.1.7) 

(2.1.8) 

The transformation ( 2. l. 6) introduces N-NA degrees of redundancy into 

(2.1.8), Though quite unnecessary, it yields symmetry in (2, l. 7), so that 

subsequent analysis is simplified. 

Let us assume for the moment that we are dealing with a finite 

discrete system rather than a QDPS, i.e., N is sufficiently small such 

that actuator bandwidth can indeed exceed that of the system, then the 



12 

following theorem is apparent, 

Theorem 2.1 

If wa >> . max w1, then the coupled system (2.1,7) and (2,1,8) 
1=1,,.,N 

is stable. 

The proof of theorem 2.1 requires the use of the well-known 

Klimushchev and Krasovskii lemma [26] which we shall state without proof 

here. 

K-K Lemma 

Given the linear system of differential equations 

(2,1.9) 

(2.1.10) 

where Eis a small positive parameter, x.'s and A .. 's are vectors and 
1 , J 

matrices of appropriate dimension, with A22 invertible, the corresponding 

degenerate (or reduced) system is defined by setting E= O, so that 

(2.1.11) 

(2.1.12) 

Thus if A11 - A12 A;1 A21 and A22 are both stable matrices and if E 

is sufficiently small, {i.e. 3 El 3 ¥ E < E1) then the system 

(2.1.9) and (2.1.10) is Liapunov Asymptotically stable, and furthermore the 

trajectories of the original system converge uniformly to the trajectories 

of the reduced system. 

The proof of this lemma is non-trivial but theorem (2.1) can be 

deduced readily from it. Set E = - 1- to be the perturbation parameter 
wa 

and rewrite (2.1.7) and (2.1.8) in the form of (2.1.9) and (2.1.10), i.e., 
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(2.1.13) 

(2.1.14) 

Note that the A;/s are independent of the perturbation parameter e:, Note 

that A11 and A22 are known to be stable with A22 non-singular, and 

(2.1.15) 

which is exactly the stable state matrix of the reduced system obtained 

by ignoring actuator dynamics. Hence, by increasing wa' £ can be made 

sufficiently smal\ and consequently the theorem follows directly from 

the K-K lemma. D 
We have intentionally proved a false statement as our initial 

assumption is wrong. BALAS [25] did essentially the same thing though 

he did not suspect the fallacy. As a real continuous system has infinite 

bandwidth, the threshold bound s1 in the K-K lemma, in effect, reduces to 

zero. Real actuators always have finite bandwidth,and hence the 

condition in theorem 2.1 can never be realized physically. 

2.2 GLOBAL STABILITY ANALYSIS : DECOUPLING OF SYSTEM VIA 

PERTURBATION THEORY 

An exact sufficient and necessary condition for stability of the 

QDPS with actuator dynamics (2.1.7), (2.1.8) is extremely difficult to 

obtain indeed. Conventional tools such as the Bellman-Gronswall lemma and 
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the Liapunov Direct method prove to be futile, due to the high dimension

ality and lack of symmetry. We would expect the system to become unstable 

if the feedback gain matrix B becomes too 11 large" (the definition of 

"large" is not very clear cut here). Global techniques such as those 

which require a bound on the norm of B as a sufficient condition for 

stability tend to destroy much of the fine structure. A typical case is the 

use of a Vectorliapunov function for an interconnected system [27,28]. It 

can be shown that the sufficient condition for stability using this 

method can be hundreds or thousands of times overly restrictive! 

What is really needed is a method that will not only predict global 

stability, but will also predict the stability of individual modes and 

the stability margin of each mode. as well. It turns out that if B 

is sufficiently "small", {but is still able to impart up to 20% damping 

ratio to the controlled modes), then decoupling of the QDPS via 

perturbation theory enables us to investigate the stability of individual 

modes. 

Even though the act'uator system (2.1.8) has vector input and 

output it is in effect a scalar system since each actuator has identical 

dynamics. Taking Laplace Transform of (2.1.7) and (2.1.8) and combining, 

we have 

sV + n + -----B ; = by Initial 
w: s ] ,.. Terms governed 

s2 +2¼wa s+w: Conditions 

Thus the stability of the coupled system is determined by the 

root of the characteristic equation 

(2.2, l) 
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(2,2,2) 

Thus if the elements of Band V are sufficiently small, we can 

attach a small parameter E to each and let 

'\., 

B = 

V = l V 
E 

and consequently (2.2,2) yields 

N 

(2.2.3) 

(2.2.4) 

Il [(s2 + 2i;;w s+w2 ){s2 +S.s+w;) +w2 sy.J+ O(e: 2 ) = 0 
i=l a a a 1 1 a , (2, 2. 5) 

where S; = 2,;nwi and Y; are the ; th diagonal elements of V and B 

respectively and ,;a & ~ the damping ratios of the actuator and QDPS, 

respectively. Hence we can regard, to first order accuracy, the dynamics 

of the coupled system as being governed by N modal subsystems each having 

a characteristic equation 

which represents the dynamics of the scalar system 

(2.2.6) 

(2.2.7) 

(2.2.8) 

It is now easy to analyze the stability of these scalar systems 

by classical control techniques. Later simulation shows that this 

approximation is good for closed loop damping up to as high as 30%, 
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2.3. SCALAR THEORY : DERIVATION OF STABILITY BOUNDARY 

Settings= iw in the scalar characteristic equation (2.2.6) and 

partitioning into real and imaginary parts 

Im g(iw) = -(f3.+S )w3 + (f3.w2 + S w~ + u.i2y.)w 1 a 1a a1 a, 

the first cross-over point of the Nyquist plot with the real axis 

(Im g(iwc) = 0) occurs at [the root of Im g(iw) = O] 

w2 = 
C 

10 w2 + 0 w~ + w2y.) t µ; a µa 1 a 1 

f3. + s , a 

(2.3.1) 

(2.3.2) 

(2,3.3) 

Nyquist's stability criterion states that a sufficient and 

necessary condition for stability is that the Nyquist plot have zero 

net encirclements around the origin, which is equivalent to saying that 

(2.3.4) 

We shall examine this stability criterion from two perspectives. 

Firstly, if we regard Y; as a fixed parameter, then (2.3.4) can be 

expressed as a sth degree polynomial in w;, (see Fig. 2.1), i.e. 

+ (4snSaw! - 2Y;snw; - 2snS! - Bs~Baw~)wi 

+ (Y;Baw: - 4s~Y;Baw: - 4~~Baw:)wf 

+ (2snY;w; - 2snSaw; - 2Y;sns:w:)w; 

+ {- y.(3 w4 + y~w 4 ) < 0 
1 a a 1 a 

(2,3.5) 
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Depending on Y; and the rest of the parameters, there exists an 

unstable frequency range which lies approximately between wa and 2wa. 

The size of this range increases as Y; is increased. Hence, to first 

order accuracy and with yi fixed, the mode i is unstable if its frequency 

lies within this range. 

Alternatively, we can examine the stability of all modes from a 

global perspective. Rearranging (2.3.5) as a quadratic in Y; yields 

+ (-o.o W~ + 20.0 W~W2 - Q~Q2W~ - f3.f33W~ - Q D~W2 µ,µa 1 µ,µa 1 a µ,µa 1 1 a 1 µaµ1 a (2.3.6) 

This condition is satisfied if and only if Y;E(Y1,yu) where Yt and 

Yu are the roots of the quadratic (2.3.6), 

Y /w;) = 4'n'a ( 'n"'i + 'n"'a) ( :: ) + ( i;a"'a - i;n"'i l ( 1 - c:) 2) 

(2.3.7) 

and 

Yu (w;) = 4i;ni;a ( 'n"'i + 'n"'a) ( i,) + ( 'a"'a - 'n"'i) ( 1 - ( ~) 
2
) 

+ (t;n"'i + 1;3wa)✓(1 -c:) 2)2 + 161;~1;! (:: )
2
+ 81;n1;a(:: )~ +(::f) 

(2.3.8) 

. ' 
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These two curves together define the stability boundary, i.e,, 

sufficient and necessary conditions forstabi1ity$as shown in Fig. 2.2. 

Notice that this stability boundary can also be derived, in a more 

painstaking manner, by plotting the upper and lower end points for 

instability in Fig. 2.1 against their corresponding gain Y;· It is 

important to know that the stability boundary is highly dependent on the 

natural damping sn of the system. Assn decreases, the stable region 

shrinks, and in the limit as s + 0, the stability boundary degenerates 
n 

into thew; axis and an asymptote which passes through wa (see Fig. 2.3). 

Consequently, if sn= 0, all modes of frequency greater than wa are 

unstable if positive gain is used. The effects of varying wa and r; a 

are also shown in Fig. 2.4 and Fig. 2.5,respectively,although these 

quantities are not quite as important as r;n. 

Note that one may desire to compute the unstable frequency range for 

a given positive y1 (i.e., find the inverse function of yin (?..3.7) and 

(2.3.8)). The exact 

for a sufficiently 

expressions of the 

inverse expression seems impossible to obtain, but ' w 

large or small value of R = .J.., we can obtain asymptotic 
wa 

lower and upper limits wi(y) and wf*(y) of the un-

stable frequency range (see Fig. 2.6) as (suppressing i from Y;), 

for R << l wi (y) = w ✓ 1 - y 
1 

(2.3.9) 
a 2sawa 

\ 

wa ( t3 ~ 4(4r;;-1) (2' w ) 2/3] for R >> l wf*{y) - y 1 + 1- ~ a (2,3.10) - 2 2snwa 3 

The derivation of these asymptotic formulae are included in Appendix A. 

It is now possible to predict global stability of the OOPS (2.1.7) 

and (2.1.8) by simply checking the location of the plot of scalar gain vs. 
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natural frequency for each individual mode in Fig. 2,2. In fact we can go 

a step further and predict the marginal stability of each mode. 

2.4 CLOSED LOOP DAMPING CHARACTERISTICS 

In order to obtain a better understanding of the closed loop 

damping characteristics of the modes in relation to the stability boundary, 

we shall compare the characteristic equation (2,2.6) with its 

equivalent closed loop expression, 

( s2 + B s + w 2 K s2 + B s + w2 ) = 0 p p q q (2.4.1) 

For sufficiently small gain, the closed loop modal frequency wp is 

expected to be close to the open loop frequency w;, and hence BP 

represents the closed loop damping of the mode which can be prescribed 

a priori by adjusting the gain y1 . To do so, we expand (2.2.6) and 

(2.4.1) and equate terms in similar powers of s, i.e. 

53 B; +Ba= BP+ sq (2,4.2) 

52 w; + w2 + S·S = w2 + w2 + S S 
1 a 1a p q pq 

(2.4.3) 

51 B;w~ + S w; + y.w2 = S w2 + Sqw~ (2.4.4) a 1 1 a p p 

50 w~w2 
1 a 

= w2w2 p q (2.4.5) 

A priori prescription of Sp will result in 4 simultaneous equations 

in the 4 unknowns yi,wp,wq,Sq. These can be reduced further to a 

quadratic in just Y;, whose roots are given by 

-A2 ± /A~ - 4AaA1 
y i ( W; , Sp) = (2.4.6) 

2 
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where 

sq = s; + (:3 a - s p 

K1 = w~ 
1 

+ w2 a + S-S , a - spsq 

K2 = s 2 + 8 2 iwa awi 

A2 = -w: u~ll + sqK1 - 2K2) 

A3 = (SPK1 - K2)(BqK1 - K2) + (BP - Sq)2 wfw~ 

(2 4,7) 

(2,4.8) 

(2.4.9) 

(2.4.10) 

(2.4,11) 

(2.4.12) 

For comparison purposes, it is desirable to prescribe the 

approximate closed loop damping ratio r,;P( 3 SP= 2r,;pw;) instead, The 

resulting plots of Y; as a function of wi for various r,;P are shown in 

Fig. 2.7. and Fig. 2.8. 

Two interesting cases, both of which can be confirmed theoretically, 

demand special attention. Firstly, for a non-zero r,;n the locus of 

z;;P = 0 % simply degenerates into the stability boundary, and secondly the 

locus of r,;P = z;;n degenerates into the stability boundary of r,;n = 0 %. 

These two loci thus partition the stable region of a non-zero r,;n into 

four mutually exclusive regions (see fig. 2.7) as follows 

Region I' y. 
1 

> o, r,;p > r,; n (2.4.13) 

Region II, y. 
1 

> o, i:;;p < r,; n (2.4.14) 

Region II I, Y; < 0, r,;p < l;n (2,4.15) 

Region IV, Y· 1 
< 0, r,;p > r,; n (2.4.16) 

The following observations can be made: 

(i) For modes of w; > wa, higher than natural closed-loop damping is im= 

possible if positive gain is used, Conversely, for modes of w; < w , a 
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higher than natural closed-loop damping is also impossible if negative 

gain is used. 

(ii) V 'P > 'n' 3 a frequency range in which ~p cannot be attained 

no matter how large or how small the gain may be. For example, for 

'P = 5 % (~n = 1 %, 'a= 70 %), this range is approximately [0.72 wa' 

1.37 wa]' 

(iii) As wi approaches wa from both sides, the maximum attainable 

closed loop damping becomes very small. 

(iv) The iso-~P locus for negative gain seems to lie much further 

down from thew; axis than the case of positive gain. This means that if 

negative Y; were to be used for modes of w1 > wa' much higher gain 

magnitude is required to attain the same order of damping as for the 

positive Y; case. 

The above predicted closed loop damping characteristicsareconfirmed 

later by numerical simulation (Chapter 7), and the understanding of 

such is crucial in the qesign of compensated feedback treated in the 

next chapter, 
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Chapter 3 

STABLE VELOCITY FEEDBACK CONTROL BY GENERALIZED 

LEAD COMPENSATION 

3.1 SCALAR THEORY: APPLICATION OF CONVENTIONAL LEAD COMPENSATION 

TECHNIQUE 

The problem of overcoming the potential instability discussed 

previously is, in general, not a trivial one. In particular we would like 

to increase the stability margin of those potentially unstable modes 

without upsetting the prescribed stability of the lower controlled modes 

or causing the higher uncontrolled modes to be unstable. As in most 

engineering control systems, the design process for a stable system is 

usually by trial and error, and by sound judgement based on past 

experience. A theoretically rigorous method that absolutely guarantees 

stability is unlikely except for simple low order systems. One commonly 

used technique for stable design of single-input-single-output classical 

control systems hthe lead compensation method, This technique is well 

known and treated in just about every text book on classical control 

theory and hence needs no further reiteration here. However, the use 

of extended lead compensation [or lag, or lead-lag] on multiple-input

multiple-output systems is not as straightforward as the single-input

single-output systems. In this chapter we shall endeavor to generalize the 

idea of lead-compensation into our very high order QDPS. Later simulation 

shows that, with appropriate design of the lead compensation network 

parameters, global stability of the system can indeed be achieved. 

To understand the detailed mechanism involved, it is constructive 

to examine the stability of the pertinent scalar coupled system 



•• • 2 
~ + S;~ + w;~ = - Y;n 

n + s n + w2 (n - t) = 0 a a 
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(3.1.1) 

(3 1.2) 

via Bode Diagram analysis. The open loop transfer function of this system 

is 

(3, 1,3) 

the Bode plot of which ( with typical parameters of ~n = 1%, Y;= 0.2, 

~a= 0. 7, wa= 1 .0) for various values of w; is shown in Fig. 3,1. The 

upper figure is a magnitude plot of 

= 1ogy.w2 + logw- 1og((w~-w2
)
2 +(S.w) 2]½ 

1 a 1 1 

- logf (w!-w2
)

2 +(Saw) 2J½ {3,T.4) 

and the lower figure is a phase plot of 

(3. 1. 5) 

As wi increases past wa, the phase margin decreases from a positive 
value [stable] to a negative va 1 ue [unstable] to non-existence [stable] one 
as shown by the following table : 

Modal Phase Margin Stability 
Frequency w; 

0.8 16° Stable 
1.1 00 Criti ca 1 
1.3 - 7.3° Unstable 
1. 7 -1 o0 Unstable 
1.9 00 Critical 
2.2 no cross over, Stable 

P.M. does not 
exist 

Table 3.1 Phase Margin of Different Frequency Modes 
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Hence the range w;E [1.1, 1.9] corresponds to what we have 

referred to in Chapter 2 as the critical frequency range,and a comparison 

shows that this is consistent with the stability boundary of Fig, 2,3, 

The principle of lead compensation is to introduce into the uncompensated 

system a dynamical system which rectifies the instability by increasing 

the phase margin. A typical lead network has a transfer function 

given by 

The compensated system is now described by 

system state 

actuator state 

lead compensator 

(3.1.6) 

(3,1,7) 

(3.1.8) 

(3.1.9) 

with ~,n,pEIR. Even though this can be reduced to a 5th order scalar 

system, and Nyquist plot technique can be used to establish conditions 

for stability on r;,T1,r2, the resulting expressions are highly complicated 

and are not likely to be of practical use. We shall only include them 

in Appendix B for completeness. The resulting open loop transfer 

function of the compensated system is now 

(3.1.10) 

As the system is linear, the Bode plot of the compensated system is 

just the algebraic sum of the Bode plot of the uncompensated system 

(Fig. 3.T) and the lead network. There remains the question of selecting 

r1 and T2 in (3.1.6) such that the phase margin of the compensated system 
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results in positive values. The lead network (see Fig, 3.2) h"'as the 

feature that the magnitude increases at the frequency 1/T2 and levels off 

at 1/T1 and the corresponding phase increases be1ow 1/T2 to a. 

maximum value at wm = ✓T~ T
2 

and reduces to zero again above 1/T1. As 

the unstable frequency range starts at about w= wa, we note that the 

effect of setting r2 = - 1 is to increase the phase of the Bode plot after 
wa 

w = 1/T2. Since the system is highly resonant at w = wi, the increase 

in magnitude due to lead compensation causes the cross-over 

frequency to change very little. If r1 is chosen to be sufficiently small 

[ f- sufficiently large] the phase increase at cross-over is sufficient 
1 

to create a positive phase margin. To clarify the above argument, 

we sha 11 present a typical unstable system (w1 = l, 3 ), before and after 

compensation,as shown in Fig 3.2, If the values of r1 and T2 are set at 

0,1 and 1,0 respectively, the previous phase margin of -7,3° is now 

increased to 32°, In fact this lead network can even stabilize any 

mode with frequency in the critical range. 

Note in passing that the choice of T1 and T2 remains somewhat arbitrary; 

for example, ifT1 =0.2 is used instead of T1 =0.1 in the previous case, the 

resulting phase characteristic is almost as good. Conceivably, an optimal 

choice of T1 and T2 may exist but will not be trivial to determine. 

3.2 EXTENSION TO MULTIVARIATE SYSTEM 

Since the inclusion of lead compensation in the coupled system/ 

actuator dynamics alters the crossover frequency in the Bode Plot only 

slightly (due to the high resonance of the system), it essentially just 

raises the phase of the Bode Plot in the range of frequency 

between 1/T1 and l/T2 . If we choose T1 and T2 such that this 
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range covers the critical frequency range as discussed in Chapter 2, 

then hopefully those potentially unstable modes will be made stable 

without affecting the other modes very much. This is by no means a 

rigorous theoretical proof that guarantee stability but rather an 

educated and logical guess. The feasibility of this approach is 

confirmed by later simulation. 

To generalize the idea of lead compensation into our present 

multivariate system, we introduce into the system (2.1.3) and (2.1.4) a 

lead network such that 

QDPS 

Actuator 

Lead compensator 

My+ Dy + Ky = -ST C u 

u + B t.i + u.>2(u - p) = 0 a a 

r 1b + P = r 2(sy) + (Sy) 

(3.2.1) 

(3.2.2) 

(3.2,3) 

where y ER N, u,pER NA, r1,r2 ER. Equivalently, the modal form is 

given by {y = ~~) 

~ + vt + ~~ = - ~TSTu 

U +Bu+ w2 (u -p) = 0 a a 
T1p + p = T2(S¢t) + {S¢~) 

(3.2.4) 

(3,2.5) 

(3.2.6) 

Note that even though the lead compensator has multiple inputs and 

multiple outputs, it is actually a system of identical systems since 

T1 and T2 are scalar. Conceivably, better performance can be achieved if 

r
1
and T2 are extended to matrices. This again is not a trivial problem -

and would pose a promising research topic. 
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Chapter 4 

ACTUATOR DYNAMICS SUPPRESSION BY GAP CREATION 

4.1 INTRODUCTION 

Basically the modes of the QOPS with actuator dynamics included 

(2.1.n can be divided into three frequency ranges. The first N1 modes 

are "Slow Modes 11
, i.e. their frequencies are low compared to the 

actuators frequency wa. The modes that we wish to control are likely 

to lie within this range only. The next N2 modes are "Critical Modes" 

which are vulnerable to instability since their frequencies are of 

comparable magnitude to wa. The last N3 (such that N1+N2+N 3 = N, the total 

number of modes) modes are "Fast Modes'' since their frequencies are 

well above wa. The system modal state vector and actuator state vector 

can thus be partitioned as 

[
~1l}N1 

~ = ~ 2 }N 2 

-; 3 }N 3 
[ 

n1] }N1 
n = n2 }N2 

n3 }N 3 

It is thus conceivable that if the feedback of the critical modes 

is suppressed, then the overall system should be stable. One way to 

achieve this is to design the feedback such that the modal gain matrix 

8 (in {2, 1.7))takes the form 

N1 N2 N3 --- --- ---
[ B11 

0 B1TN, 
8 = K21 0 823 } N2 (4.1.l) 

831 0 8a3 } Na 

Note that, unless 821 = 82a = O, the gain matrix is non-symmetric. 
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Intuitively since the scalar gains (diagonal elements of B) for the critical 

modes ~2 are zero, they must be stable to first order perturbations. (In 

fact, they will be only naturally damped.) A rigorous proof using the 

K-K lemma is possible, but it will tend to assume an unnecessarily large 

gap, i,e. anover-restrictive condition. Now that Bis not positive 

semi-definite, some of the diagonal elements of B33 may become negative 

but this is not undesirable as this causes a higher than natural damping , 

for the uncontrolled modes as shown in Chapter 2. 

In this chapter we shall consider three different methods to 

create the 11 gap 11 in the modal gain matrix B, asin(4.1.1). The require

ments on sensors and actuators and the computational complexity vary; 

the preferred technique will depend on the particular application. 

4.2 GAP CREATION BY COLLOCATED CONTROL 

The simplest but somewhat wasteful method is when a large number 

of collocated sensors anq actuatorsareavailable. Let Ns and NA denote 

the numbers of sensors and actuators respectively, with NS = NA, 

NA= N1 + N2, we can let 

(4.2.1) 

Hence if we partition the modal matrix@ as 

(4.2.2) 
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then the gain matrix C ( E RNi+N2 ) is given by 

(4.2,3) 

assuming that the appropriate non-singularity condition holds. Corre

spondingly, the modal gain matrix remains symmetric and positive semi

definite and is given by 

y .1 
' ·-y 0 813 N1 (4,2.4) 
0 0 0 
T 

813 0 83 3 

Note that in this case the modes in ~2 are completely decoupled 

from the modes in ~1 and ~3 and there is no feedback on each mode in ~2 

Hence, i,f the gap is designed appropriately the overall system is guaran

teed to be stable. This method nevertheless suffers from the disadvantage 

that a very large number of sensors and actuators are needed, which may 

not be permitted in practice. 
-1 

4.3 GAP CREATION BY THE USE OF 0 S FILTER 

In general, sensors are lighter, cheaper and possess much higher 

bandwidth than actuators; hence, more can be employed. Suppose we have Ne . .., 

sensors and NA actuators (N5 > NA) with corresponding location matrices 

S
5

( E INNsxN) and SA( E INNAxN), respectively, with NA= N1 and 

Ns .. NA = N 2 = the number of suppressed mode.s. Some of the sensors and 

actuators may still be collocated but since Ns > NA' the modal gain matrix 

is necessarily nonsymmetric. The motivation for the fancy terminology of 

11 051 
Filter" will become obvious later, as we present the synthesis of the 
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feedback in the following systematic way: 

(i) The state (rate) of the system is picked up by the sensor 

N1=NA N2 ------where 0s = [ S5 ~1 I S
5

~2 J 

and 

(ii) The sensor input S
5
y is pre-multiplied by 051 to obtain 

t( E ffiNS) 

(4,3, 1) 

(4,3.2) 

(4.3.3) 

(4,3.4) 

(iii) 't is pre-multiplied by a control gain matrix C(ER NAxNs) to 

obtain the control force f(ER NA), where 

C = ~I~] }NA (4.3.5) 
NA N2 

such that f = ct . -l . = C1~1 + C 0S 03~3 (4,3.6) 

and we see immediately that the control force is independent of the 

modes in t2. 
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{iv) The modal gain matrix is thus given by 

0T C 0 
· T -1 = 0 C 0 03 A1 l A1 S 

T 0 
T -1 0 C2 0 C 0 03 A2 A2 S 

(4,3,7) 

T 0 T -1 0 C3 0 C 0 03 A3 As S 

N1 N2 N3 
where 0 = S ~ = N1{[ ~l~l'e] A A A1 A2 A3 (4.3,8) 

Hence if the first N1xN 1 block of Bis prescribed as 

Y1 0 
' B11 = ' (4.3.9) ' " ' 0 YN1 

then C1 = ( -T 0A
1

) B11 (4.3.10) 

and the remaining portions of Bare by-products of such a prescription. 

Note that the synthesis. of C (or c1) and the e5 l filter only requires the 

knowledge of the first NS modes and is independent of all higher modes, 

which are rather uncertain in practice. Computationally, this method re

quires the inversion of an N5xN5 matrix (05) and an NAxNA matrix (0A
1 
). When 

N5 is large, it may be desirable to seek an alternative approach. 

4.4 GAP CREATION BY THE USE OF P FILTER 

A slightly more complicated gap creation technique is made possible 

again by using more sensors (N5) than actuators (NA); it is called the 

P filter. The synthesis of the feedback is as follows: 
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-1 • 
(i) As in the es filter case, the state (rate) of the system is 

picked up by the sensors 

SsY = Ss<Pt (4.4.1) 

(ii) An estimated full modal state 'te RN is obtained by 

pre-multiplying the sensor output SsX by an appropriate constant matrix 

H( e: RNxNs). The choice of H remains somewhat arbitrary,but we would 

like t to be as close as possible to the real state t. One way of 

constructing H is by modal filtering [9], through the use of the Lagrange 

interpolation formula. The algebra is fairly involved, so we shall 

include it in Appendix C. Assuming that such a matrix H can be 

constructed, then 
,:-. . 
~ = G F; (4.4.2) 

N1 N2 N3 - -N1{ G11 G12 Gu 

where G = H S <P = . s N2{ G21 G22 G2:, (4.4.3) 

N3{ G31 G32 G33 

Thus the purpose of modal filtering is to make Gas close to the 

identity matrix as possible; exact identity is possible only when the 

same number of sensors as states are used, i.e., Ss = IN or some 

permutation of IN. 

(iii) Define the P filter as the N1xN matrix 

----1-.. 
p = Nj[ IN11 -G12G22 I O] (4.4.4) 
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..r.-
so that pre-multiplication of~ by P gives 

--Nd [ G11- G12 G;! G21I Q I G13 - G12 G;~ G23] t 
(4.4.5) 

(iv) The control force f(E :R Ni) is obtained by pre-multiplying 

~ by C(E R N1xN1) 
A 

f = CPt = CPGt 

(v) Finally the modal gain matrix Bis given by 

= <1>Isl [C(G11 - G12G;!G21) I o I c(G13 - G12G;½G23)J 

<PisX 

11IsX 

= T T ~1SA C(G11-
-1 

G12G22G21) 0 
T T <P1SA C(G 13 

-1 ) - G12G22G23 

T T <P2SA C(G11- -1 ) G12G22G21 0 
T T <hSA C(G 13 

-1 ) - G12G22G2 3 

T T 
<P 3S A C( G11 - -1 ) G12G22G21 0 

T T <PaSA C(G13 
-1 - G12G22G2a) 

then 

(4.4.6) 

(4,4.7) 

(4.4.8) 

(4.4.9) 

Note that in practice, we only need to calculate the first N5xNs 

su bbl ock of G, (i.e. [t: ~::j) which requires knowledge of only the first 

N5 modes. The rest of G need not be computed and, hence, we need not know 

anything about the higher modes. Also we have assumed that G22 and 

G11 - G12Gi!G2 1 are non-singular. A sufficient and necessary condition 
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for this is that G' = [G11 G1 ;] be non-singular since 
G21 G22 

det G' = det (.~:: t:J = det(G,,) det (Gw G,,G;)G21) f, 0 (4.4. l 0) 

This condition can be shown to relate to some controllability and 

observability conditions . In general, if we have a sufficient number 

of sensors and actuators well spread out over the system and located 

away from the nodes of the controlled modes, then the non-singularity of 

these matrices should be well assured. 
T T In this method, the matrices that need inversion are G22 , (~ 1SA) 

and {G11 - G12G;;G2 1 ), of rank NS-NA (=N2), NA (=N1) and NA respectively. 

In the case when NS and NA are both large and NS - NA is relatively small, 

the computational effort required can be substantially less than in the 

previous case. 



45 

Chapter 5 

POSITIVE POSITION FEEDBACK CONTROL WITH TUNING FILTERS 

5.1 SCALAR THEORY: STABILITY ANALYSIS 

In order to understand the mech?nics of position feedback, it is 

constructive to examine first the pertinent scalar system that approxi

mates the dynamics of the ;th mode. This mode can be expressed as (with 

subscripts suppressed from~., n., y.) 
1. 1 1. 

system 

actuator n + 6 n + w2 (n - ~) = 0 a a 

(5.1.1) 

(5.1.2) 

The meaning of positive position feedback is obvious from these 

equations. 

Theorem 5.1 

The combined system and actuator dynamics of (5.1 .1) and (5.1.2) 

areLiapunovasymptotic stable iff y<l. (Also serves as the stability 

boundary.) 

Proof: The closed loop characteristic equation for (5.1.1) and (5.1.2) is 

(5.1.3) 

(5.1.4) 

A sufficient and necessary condition for stability is that all the 

principal minors of the corresponding Routh-Hurwitz array be greater 
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than zero. The principal minors of (5,1,4) can be easily shown to be 

s. + B 
1 a 

M2 = B;wi +Saw:+ BaB;(B; + Ba) 

Mg= B;Sa [(w1 - w:) 2 + (B; +Sa)(S;w! + Bawi)] + y(S1 + Ba) 2wiw! 

Mi+ = w~w2 (1 - y)M3 
1 a 

Thus for positive y, M1 , M2 & M3 are unconditionally positive. M4 

is positive iffy< 1, and the proof is complete. □ 
It may be interesting to find out how instability would take place 

if y exceeds l, Three possible cases of root-locus diagrams depending on 

the relative distance of the open loop poles from the real axis are 

shown in Fig. 5.1. If wall-z;~ <w;ll - z;~, it is the actuator that 

becomes unstable,whereas if wall - z;~ > w;ll - r;~, then it 

system that becomes unstable. In the critical case where wa I l 

is the 

,,-2 -- ":, -a 
w./ 1 - z; 2 the root loci coalesce to form a symmetrical pattern, and 

1 n 

either case is possible. Furthermore,the unstable pole always appears as 

a real root of the characteristic equation (5.l.4). Note in passing 

that the variable yin (5.1.1) is a dimensionless variable and the 

actual gain should be w1y. 

In contrast to the velocity feedback case, the present stability 

boundary is very simple indeed. Our main concern is subject to this 

upper bound on the gain, can we achieve good closed loop damping 

characteristics? 
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w 1 =0.8 
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0.8 

0.6 

0.4 

0.2 

-Re _____ _..._..,_.....,_.....,....., .. 
0.8 0.6 0.4 0.2 0 

Fig. 5.1 Root Locus Diagram of Scalar Position Feedback System with 

wf = 1.0, z;f = 0.7L Note that the subscript f is 

interchangeable with a. 
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5.2 CLOSED LOOP DAMPING CHARACTERISTICS OF SCALAR POSITION FEEDBACK 

CONTROL SYSTEM 

To examine the closed loop damping characteristics of the system 

(5.1.l) and (5.1.2), we compute the roots of its characteristic 

equation (5.1 .4) for fixed y and plot the negative of the real part of 

the roots against the frequency wi,as shown in Fig. 5.2. The character

istics consist of 2 branches, upper and lower.· For sufficiently 

large y (~ 0.25), the 2 branches meet at a cusp which we shall 

examine again later. From Fig.5.1, it is obvious that the upper branch 

represents the actuator and the lower branch represents the system. For 

the sake of argument~ however, we shall carry out some asymptotic analysis. 

For w. << l, (5.1.3) approximately reduces to 
l 

(5.2.1) 

Hence if Aj' j = 1, .. ,,4 are the roots, the plot of -Re(Aj) vs w; 

must necessarily start from (0,0) for the system and (O,c;;awa) for the 

actuator. On the other hand for wi >> 1, (5.1.3) can be approximated by 

(s 2 + e.s + w~(l -y))~2 + B s + w2 ) = 0 
1 1 a a 

from which we can immediately deduce the asymptotic behaviors 

for system 

for actuator 

lim - Re(AJ,) = 'W, n 1 
w.-+co 

1 

(5.2.2) 

(5.2.3) 

(5,2.4) 

Hence, the upper and lower branches approach the asymptote, as shown in 

Fig. 5.2. From the same figure we note the following: 
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Filter Asymptote, y. = 0 
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Fig. 5.2 Closed Loop Damping Characteristics 

, = 0.5, , = 0.01, wa = 1.0 a n 

3 
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(i) For y lower than a threshold value y*(which we will derive 

in § 5. 5 ) the lower ( system) branch exhibits a resonance peak near wa 

and moves to the left as y increases, 

(ii) As y increases past the threshold value y*, the upper and 

lower branches meet at a cusp; hence, the closed loop damping of the 

system cannot increase beyond this point. This corresponds to the 

degenerate situation in Fig. 5.1 (iii). The characteristic to the left 

of the cusp corresponds to the situation in Fig. 5. l (ii), and the 

characteristic to the right of the cusp corresponds to the situation in 

Fig. 5.1 (i). The frequency at which the cusp occurs can be shown to be 

~ w I 1 a s2 since s2 << 1 a n 

and the maximum closed loop damping achievable at this cusp is 

(5.2.5) 

(5.2.6) 

We shall defer the ~erivation of these expressions to § 5.5. It 

is thus obvious that the best closed loop damping characteristics are 

achieved in the critical situation (Fig. 5.1 (iii)),when (5.2.5) holds; 

and maximum closed loop damping (5.2.6) is achieved for all y exceeding 

the threshold y~ but less than another threshold y**. 

(iii) For y > y** some branches bifurcate into two branches which 

corresponds to the degeneration into two real roots in the root 

locus diagram. We should try to avoid this situation by keeping y low; 

otherwise,one root will be less stable than the other. 
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We shall examine the closed loop damping characteristics in detail 

again in § 5.5 when we attempt to design a procedure for selecting the 

system parameters. 

5.3 MULTIVARIATE THEORY: STABILITY ANALYSIS 

Having understood the scalar system, the idea of position feedback 

can be easily generalized into the multivariate system. The equations 

governing position feedback (collocatedactuators and sensors) control 

of a QDPS with actuator dynamics are given by 

(5.3.1) 

' u + B u + w 2( u - S y) = 0 a a 

where y E RN is the system state vector and u E RNA the actuator state 

vector. The NAxNA gain matrix C is positive definite and can be factorized, 
.k 

using its square root C2 as follows: 

(5.3.2) 

The modal form of the system is obtained by applying the following 

transformation 

(5,3.3) 

(5,3.4) 

so that 

{5,3,5) 

(5.3,6) 

or (5,3.7) 
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Theorem 5.2 

The combined system and actuator dynamics as represented by (5,3.7) 

are Liapunov Asymptotic Stable if 

n - ( 1 + E)B is positive definite (5.3,8) 

where e: is some arbitrarily small positive quantity and Bis the modal 

gain matrix given by 
(5,3.9) 

Proof: Define the Liapunov function V as 

(5.3,10) 

where (5,3,11) 

(5,3.10) is equivalent to 

(5.3.12) 

where the last term can be expressed by the Cauchy-Schwartz Inequality as 

T ~ 2wa T ~ 
2w n B 2 ~ = -- n · If.+£ B 2 ~ , O < e: « 1 

a lf+E: 

< (5.3. 13) 

(5,3,14) 
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so that if the assumption (5.3.8) holds, Vis positive definite for 

all non-trivial ~ and n. Differentiating V with respect tot yields 

{5,3.15) 

. 
Although Vin (5.3.15) appears to be only negative semi-definite, 

it is actu~l_ly negative definite. . V = O if[~]= O, but if[~] 'f o, 
then [~] t, 0. Consequently, (~] can only be zero momentarily; thus, 

' V takes on the value zero only on a set t of measure zero. The proof is 

thus made complete by invoking the well-known Liapunov theorem. 0 
Even though Theorem 5.2 is only a sufficient condition, it is 

minimally restrictive [i.e., close to being sufficient and necessary], 

A sufficient and necessary condition can be obtained from the following 

theorem. 

Theorem 5.3 

For a second order multivariate dynamical system described by 

IZ + QZ + PZ = 0 (5,3.16) 

where Z,Q,P are of appropriate dimension and Q is positive definite, a 

sufficient and necessary condition for Liapunov asymptotic stability is 

that 

P is positive definite (5.3.17) 
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Proof: To prove sufficiency, define the following Liapunov function 

= l -[oZT(Q - oI)Z + (Z + oZ)T(z + oZ) + zTPZ] > 0 
2 

(5.3.18) 

where 2o = smallest eigenvalue of Q. The time derivatives of Vis 

given by 
• •r • T 
V = - z [Q - oI]Z - oZ PZ. (5.3.19) 

Hence, if Pis positive definite, Vis strictly less than zero and hence the 

system is LAS. To prove the reverse [i.e.,P nonpositive definite ⇒ 

unstable],we define another indefinite Liapunov function 

the time derivative of which is given by 

Define the Hamiltonian Hof the system to be 

so that • ·T• 
V = 2Z Z - H 

the time derivative of His 

• 

(5.3,20) 

(5.3.21) 

(5,3.22) 

(5.3,23) 

(5,3.24) 

Thus if P is not positive definite, we can always find Z(O) and Z(O} 

such that H(O) in (5.3.22) is negative, and V(O) in (5.3.20) is positive. 
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. 
Hence H(t) < 0 V t, and as a result V(t) > 0 ¥ t, and the system-is 

unstable by the 3rd theorem of Liapunov. 

The following theorem is thus a direct consequence of theorem (5.3). 

Theorem 5.4 

The system in (5.3.7) is LAS iff the modified stiffness matrix 

D 

is positive definite (5.3.25) 

Note that the sufficient condition for stability (5.3,8) is 

equivalent to 

K - (l+e:) sTcs is positive definite (5.3.26} 

We shall see in the next section that this is difficult to 

satisfy if high closed loop damping is desired for every controlled 

model. 

5.4 DAMPING ENHANCEMEN1 WITH THE USE OF TUNING FILTERS 

Even though the QDPS with position feedback in (5.3.5) and (5,3.6) 

is conditionally t:AS, it is not likely to have very good closed loop 

damping c haracteri sti cs for a 11 the contra 11 ed modes. The specification 

of prescribed damping for the controlled modes is more subtle in this 

case§since position and not velocity feedback is used. Previously we 

have found that the added damping due to feedback is only appreciable 

when the controlled mode frequencies are close to the actuator 

frequency. For frequencies much higher or lower than wa' an undesirably 

large gain is required to attain the prescribed damping,which is likely 

to cause instability as a consequence. 
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This difficulty thus motivates us to use one or more sets of "Tun

ing Filters. 11 These are basically band-limited electronic filters with 

dynamics similar to those of the actuators, but with frequencies 11 tuned 11 

to the controlled mode frequencies, in order to achieve maximum closed 

loop damping. Assuming that actuator dynamics can be ignored for the 

moment (we shall show shortly that this is possible by appropriate ar

rangement) and NA TF 1 s are available to control NA modes, then maximal 

damping effect can be realized if we set the cusp corresponding to each 

of these TF 1 s to lie right above the corresponding controlled mode fre

quency. 

In general, less than NA (Nf, say) sets of TF's can also be used to 

control NA modes. Each TF is an NA state second order system with an 

input from the sensors and an output to the actuators. With the inclu

sion of these TF's, the complexity of the overall system is increased 

considerably. In particular, the inclusion of actuator dynamics destroys 

the syrrrnetry of the system; hence, global stability cannot be proven 

analytically. To overcome this, we observe that the dynamics of each TF 

can be arranged to be 

I (Z. + 2z;;f wf Z. + wf2 Z. ) = wf d Sy NA 1 · . 1 . 1 . 1 1 1 1 l 
(5.4.1) 

where z;;f. and wf. are the damping ratio and natural frequencv of the 1
th 

1 1 

TF and c7 is the square root of the non-negative definite gain matrix 

for the , th TF. The synthesis of a typical TF is shown by means of a 

block diagram in Fig. -5;3. 
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Sy I l/2 
-----41..,.Wf C. 
Output I 1 f 
from 

Sensor 

I w 2 f. 
I __ _J 

Fig. 5.3 Synthesis of a Tuning Filter 

Note that by this s~nthesis, not only Z; is available for output, 

but Z; and Z; as well; hence, by appropriate arrangement, the signal 

Z. + B z,. +w 2Z
1
. can be made available as input to the actuators. The 

1 a a 
overall system-filter-actuator dynamics can thus be expressed as 

Input to 
Actuators 

System 

Filters 

(5,4.2) 

Actuators 

-~ ♦ 1 
IN (z. + 2?;;f wf z.+ wf2 z.)= wf C?Sy, f=l ... ,Nf(5,4.3) 

A 
1 •• 1 .,, . 1 

1 1 N 1 1 

f T/2 •• · 
U +Su+ w2 u= I wf C. [Z. + S z. + w2 Z.J (5.4.4) 

a a i=l i 1 1 a 1 a 1 

The block diagram representation of these equations is shown in 

Fig. 5.4. 
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ST Sy 
ACTUATORS u Q DPS i----y~ SENSORS i-------. 

w C 112 
f I I 

Fig. 5.4 Closed Loop Position Feedback Control System 



Now (5.4.4) implies that 

Nf 
{i) lim u = I w cTl 2z. 

' 1 f. 1 1 1= 1 
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(ii) If u(O) = u(O) = Z;(O) = Z1(0) = 0 Vi 

Nf 
( t T/2 then u t) = l wf c. z. . 1 . 1 1 1= , 

(5,4,5) 

(5.4.6} 

Hence for Sa sufficiently large and initial conditions sufficiently 
Nf 

small, u converges rapidly to 4 wf.cT12z;; and consequently actuator 
1=1 1 

dynamics fall out of the picture completely. The overall system then 

reduces to the symmetrical form: 

Nf 
My+ Dy+ Ky= ST I 

i=l 
T/2 

wf C. z. 
i 1 1 

(5.4.7) 

IN [
0

i,. + 2r;;f wf :z:. + wf2 z.J = wf C~ Sy , i= 1, .•. ,Nf (5.4.8) 
A 

• . 1 . 1 . 1 
1 1 1 1 

Applying the appropriate canonical transformation,. as defined by (5.3.3), 

(5.4.7) and {5.4.8) are transformed into 

1N+N NP + Qp + Pp = 0 (5.4.9) 
A f 

~ 

where p = ~1 
ER N+NANf (5.4.10) 

ZN 
f 

Q =QT 
V 0 

ER N+NANf = 2r;f wf IN (5.4.11) 
1 l A 

' ' 0 2r;f 'wf IN 
Nf Nf A 
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and 
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T T 
~

100f ,--- -EN/'f __ Nf 
f IN 0 

l A 
I 

" ' .., 
' 

-EN WN 0 w2 I 
f f fNfNA 

E. 
1 

= C~ S<P 
1 

B; = E!/ 2 E~ 
1 1 

= itiTSTC.S<P 
1 

E R N+NANf 

(5,4.12) 

(5,4.13) 

(5.4.14J 

The stability of the overall system is apparent from the following 

theorem. 

Theorem 5.5 

The overall system in (5.4.7) and (5.4.8) is LAS if 

Nf 
n - l (1 + E;) B; is positive definite 

i=l 

where£;, i= l, ... ,Nf are arbitrarily small positive quantities. 

Proof: Define the Liapunov function 

1 •T• l T V = - pp+ - p Pp 
2 2 

By the Cauchy- Schwartz i nequa 1 ity, 

N N 
l • T' f • T • 1 T f V > - [ l; l; + I Z • z . J + - l; ( n - l (1 +e . ) B . ) l; 
2 i=l 1 1 2 i=l . 1 1 

Nf E, 
+ l I wf2 _,_ z!z. 

2 ·1 ·1 11 1 = 1 +e:. 
1 

(5.4.15) 

(5.4.16} 

(5.4.17) 
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with first derivative of Vis 

V = - pTQ_p ~ 0 (5,4.18) 

which is negative definite almost everywhere by an argument similar to 

that in Theorem 5.2. Hence, if the assumption (5.4.15) is satisfied, V 

is strictly positive for all nontrivial ~ and Z; with V negative almost 

everywhere (by reasoning similar to that in Theorem 5.2) and the proof is 

made complete by invoking the Liapunov theorem. 
D 

Note in passing that this sufficient condition for stability is 

independent of the filter dynamics; hence, if the C; 's are such that 

Nf 
K - .l (l+E;)STC;S is positive definite (5,4,19) 

1=1 

then the system is LAS. In practice,theCi will be dependent on the 

filter dynamics for greater flexibility in design, 

Even though the above condition is minimally restrictive, it is 

only a sufficient condition. A condition both sufficient and necessary 

for stabi 1 ity can be easily deduced from Theorem 5. 3. 

Theorem 5.6 

The overall system in (5.4.7) and (5.4.8) is LAS iff the matrix P 

(as in (5.4.12)) is positive definite. 

5.5 A DESIGN PROCEDURE FOR THE TUNING FILTERS AND FEEDBACK 

GAIN MATRICES 

If Nf=NA then one TF can be used to tune each controlled mode. In 

practice we only need Nf< NA TF 1 s so that some TF's will be used to tune 

more than one mode. The more TF's we use, the better we would expect 

the performance to be, but the complexity of the overall system would 

also increase. 
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As in the velocity feedback case, we shall adopt the technique of 

approximate pole-placement to prescribe an approximate closed loop 

damping for the controlled modes. An exact specification of the closed 

loop damping seems to be a formidable task, but for sufficiently small 

feedback, the coupling effect from the uncontrolled modes is negligible 

to first order accuracy, so that, as before, the coupled system can be 

decoupled into scalar systems. Taking the Laplace transform of (5.4,9), 

"' the Laplace transformed state l; is governed by 

( 

N w2 

. f f. ~ 
( s

2 IN + Vs + n) .. I ( 1 
) B ~ t; = 

i=l s2+27; w s+w 2 1 

f. f. f. 
1 1 1 

terms governed by 
Initial Conditions 

We shall first assume the simplest case in which an equal number of 

filters and actuators are available, Then, by selecting appropriate C;, 

B1 can be constructed as 

where only one diagonal entry of 8
1
• is non-zero, i.e., 

11 

To achieve this, C; must be 

where 

o, 
0 

2 w. y. 
1 1 

°'-o 

(5.5.1) 

(5.5.2) 

(5.5.3) 

(5.5.4) 
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and consequently B, = s! , and B. appear as by-products, i.e., 
112 121 122 

The closed loop eigenvalues. of the overall system are therefore the roots 

of the equation 

s2+21; w s+w2 
f. f' f. 

1 1 '1 

det ------------='+------------=O 

NA 

where V = NAf;;, 
V21 

NA 

n = NAl~ 

v,,] 
V22 

~,] 

(5.5.7) 

(5,5.8) 

(5.5.9) 

Assuming that Vf\, o(l) and B; '\, o(l), then it is easy to see that 

the characteristic equation for each of the first NA controlled modes is 

approximately 

(s 2+S.s+w~) (s 2+Sf s+wf2 ) - w~wf2 y. = 0, i = 1,,,,, NA 1 1 . . 1 . 1 
l 1 1 

(5,5.10) 

where (5.5.11) 

which is identical to(5,1.3), except that wa&Sa are replaced by wf. and Bf.~ 
1 1 
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respectively. Since we have already developed an extensive knowledge of this 

scalar system, we shall proceed to design each filter so as to prescribe 

the closed loop damping. Comparing {5.5.10) with the closed loop expression 

(s 2 + B s + w2 )(s 2 + B s + w2 ) = 0 
P; P; qi qi 

(5.5.12) 

and equating coefficients of/, we have 

53 : s, + sf. = Bp. + s q. 
1 1 1 

(5,5,13) 

s2 : w~ + w} + s.sf = w2 + w2 + Sp.sq. 1 i 1 i P; q. 
1 1 1 

(5.5.14) 

s1 : wisf. + w} f3. = w2 B + w2 S 
i 1 p. q. q. P· 1 1 1 1 1 

{5.5.15) 

50 : w~wf (1 - Y.·) = w2 w2 

1 i 1 P· q. 
1 1 

(5.5.16) 

Hence, assuming w to be the closed loop modal frequency, specify
pi 

ing s will give us four unknowns Bq.' wp.' wq.' Y; in the above four 
P; 1 1 1 

simultaneous equations, The solution can be shown to be 

sq. = sf. + B; - sp. 
1 1 1 

(5.5,17) 

Gl i = w~ + w2 + s.sf - sq. sp. l f i 1 i 1 1 

(5.5.18) 

Gi; = s.wf + sf w; 
1 i i 1 

(5.5.19) 

G2; - sp;G1i 
w2 = p. 

sq; - BP; 1 
(5.5.20) 

G2; - Sq;Gli w2 = q. 
SP; - Sq; 1 

( 5, 5. 21) 

2 2 Wp,Wq. 
y. = l J ] 

1 w~ w2 
1 f. 

1 

(5.5.22) 
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Provided that SPi is sufficiently small, these solutions are expected to 

be well-behaved (i.e., no complex frequenciesornegative damping). Should 

we wish to specify the closed loop damping ratio i;Pi instead, where 

(5,5.23) 

the resulting simultaneous equations will become very complicated, but 

the following iterative procedure will enable the solution to be calculated 

very quickly: 

step (i) set Sp.= 2l';P_w1, i.e.,approximate wp. by wi 
1 1 1 

step (ii) solve for sq.' wp.' wq.' yi from (5.5,17) to (5.5.22) 
1 1 1 

13* 
P,· 

step (iii) compute the actual ratio l';* = -
P; 2w* p. 

l 

step (iv) if , ! r,;P. -1;;P. I< o to some desired accuracy, STOP. 
1 1 

Otherwise replace B* by B* = 21;; w*, where w* is the latest 
P; P; Pi P; P; 

approximation to wp.' and return to STEP (ii), This procedure is. found to 
1 

converge very rapidly,and in general no more than 2 or 3 iterations are 

required to obtain accurate solutions. In any case, very accurate 

solutions are not required, since errors will inherently exist due to the 

coupling terms having been neglected. 

As an illustration, we assume that w; corresponds to the first mode 

of a discrete shear beam of 20 elements, with parameters w;= 0.2981, 

1; = 0.01 (so thats.= 0.00596), wf = 0.363, r,;f = 0.5922 (so that n 1 • . 
l 1 

Sf = 0.42994), and i:; prescribed to be 0.3 . The outcome 
; P; 

after each iteration is as follows (choose 0 =0.001): 
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13* B* w* w* r;* y"! 
pi qi P; qi p. 1 

1 

Iteration 1 0.17886 0. 25704 0. 30540 0.28970 0.2928 0.3315 

Iteration 2 0.18324 0.25266 o. 30715 0.28669 0,2977 0,3352 

Iteration 3 0.18465 0,25125 0, 30863 0.28656 I 0.2992 ! 0.3367 

So far wf i and z;f; have remained fixed but arbitrary. Our concern 

is, of course, how to select these parameters so that some optimal 

criterion can be met. Some objectives of optimality are as follows: 

(i) For a given prescribed closed loop damping coefficient (or equiv-

alently, damping ratio), the gain y. is to be as small as possible. 
1 

(ii) A robust design (in the sense that sensitivity to possible 

variation in structural properties is reduced to a minimum) is desired. 

In particular, we do not want a slight variation in modal frequency to 

result in undesirably large gain, 

We shall examine the closed loop damping characteristics as 

discussed in §5.2 again, bearing in mind this time that adjustable 

filter dynamics are available to tune each of the controlled modes. 

In particular, we wish to identify the exact location of the cusp, as 

shown in Fig. 5.2. 

At the cusp, the ; th mode and its filter have identical damping, 

hence /3p. = sq. and (5.5.20)and (5.5.21) imply that unless 
1 1 

the closed loop frequencies w andwq will be unbounded. (5.5.13) also 
pi i 

implies that 

(5.5.25) 
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and hence (5.5.24) is equivalent to a cubic equation in wi: 

s.wf2 + sf w; = lcs. + sf )[w~ + wf2 
-

1 s. - Bf )2
] 

1 i i 1 2 1 i 1 i 4 1 i 
(5.5.26) 

The frequency wi at which the cusp occurs is then the real root of the 

above cubic. Solution to the cubic looks difficult at first, but we shall 

guess the following solution which can be verified to satisfy (5.5,26) 

exactly: 

The corresponding maximum closed loop damping is then 

Note that both wf and Bp. are independent of Y;, but in order to 
1 

reach the cusp, Y; has to exceed a threshold value Yf• It is easy to 

see that this is also the Y; required to reach the coalescent point of 

Fig. 5.1 (iii),at which wp. = wq.; and hence,(5.5.14)and (5.5.13) imply 
. 1 1 

that 

and consequently,the threshold gain before the cusp is reached is given 

by [wt2 + wf2 - l (s. - B )2]2 
1 i 4 1 f; 

Yf = 1 - ------------

On the one hand, we would like the actual closed loop damping to be 

as close to the cusp as possiblet so that only minimal gain is required, 

On the other hand, if it 1 ies too close to the cusp, then a slight offset 
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in the modal frequency will result in an undesirably large gain in 

the design process, if the same closed loop damping were to be maintained.* 

Thus,we are faced with a pair of conflicting design criteria, and there 

exists no definite optimal solution to this situation. A crude rule of thumb is 

to design wf. and ~f. such that the system's closed loop damping reaches 
1 1 

only 80% of its maximum attainable value (the cusp), so as to strike a 

compromise between minimal gain and reasonable robustness. As the 

resonance peak is always slightly to the right of the cusp, we shall 

also slightly offset the natural modal frequency to the right of the 

cusp as 

W, =-------
1 

(5.5.27) 

Having fully understood the overall system and filter behavior and 

its relation to the design criterion, we are in a position to select 

the appropriate filter parameters, Since it is desired that the 

controlled modes all dec_ay at the same rate, we shall set a prescribed 

damping ratio for the first mode approximately and set the damping of 

all other controlled modes to be equal to that of the first, An exact 

prescribed damping for the first mode is quite difficult,to obtain; it 

requires an iterative procedure which cannot be guaranteed to be conver .. 

gent. We shall only concentrate on the following direct procedure: 

* Note that this argument is slightly ambiguous because if we were to 
design the system to be exactly at the cusp, then with the filter 
parameters fixed and at a given gain, a change in modal frequency will 
only decrease the closed loop damping but will not cause instability. 
The meaning of robustness is, hence, twofold here. 
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Step (i) Decide on the approximate closed loop damping ratio for 

the first mode ~p· Assuming that wp
1 

~ w1 , the closed loop damping for 

the first mode (and for all controlled modes) is 

(5.5.28) 

Step (ii) Set the closed loop damping to be 80% of the maximum 

attainable value 

The resonance peak is placed slightly to the left of w1 ; hence 

(5.5,28) - (5.5.30) imply that 

or equivalently 

Note that 'fi is independent of w1 , and the corresponding filter 

frequency is 

{5.5.29) 

(5.5.30) 

(5.5.31) 

(5,5.32) 

(5,5.33) 
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Step (iii) In order that the other controlled modes have a minimal 

gain (with the 80% allowance), we should set 

(5.5.34) 

and (5,5.35) 

which wi 11 give rise to the optima 1 filter parameters 

s2 ½ 
P1 

l;f. = ' i = 2, ... ,NA 
(0.8 r 1 
l. 02 wi + 82 

P1 

(5.5.36) 

w. 
and = 1 

wf. 
1 1.02 ✓ 1 l; 2 - f; 

(5,5,37) 

In practice, however, it was found that Y;, i = 2, ... ,NA, are 

usually smaller than Y1, and this procedure tends to result in an 

unnecessarily small Y; '. so much so that the stable spillover into the 

uncontrolled modes tends to be less than if Y; was larger, For this 

reason andfor convenience of calculation, we simply let l;f. = z; ¥
1
. 

1 
f1 

and compute wf. as in (5.5.37). This will 
1 

cause Y; to increase 

s1 ightly, yet remain well below the allowable threshold. 

Step (iv) Setting Bp. = S , solve for sq.' wp.' wq.' and y1 from 
1 Pl l 1 1 

(5.5.17) - (5.5.22). 

Step (v) The gain matrices C; are then calculated from y1 through 

(5.5.2) and (5.5.3). 

That completes our design procedure. Next we shall briefly 

describe the general case when the number of filters (Nf) is less than 
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the number of actuators. Despite some additional complexity the same 

theory still applies. Firstly, the set of NA controlled frequencies {A) 

are partitioned into Nf sets A1, i = 1, ... ,Nf' each consisting of m1 
modes to be tuned by the ; th filter, i.e. 

where 

The B
111 

matrix in (5.5.1) is now modified to be, for example, 

B = 
h1 

and in general, 

B., = 
111 

Y1WY 0 

Y2W~ 
\ 2 

Ym1wm1 

0 

~ --- --correspond to the 
* *~ i th subset A; 

0 

( 5, 5, 38) 

( 5, 5. 39) 

(5.5.40) 

(5.5.41) 

( 5. 5. 4 2) 

In this case, the determination of the scalar gain Y; is a lot 

more difficult, as the resulting set of equations become overdetermined. 

One heuristic approach when one filter is used to tune 2 modes is to let 

the 2 modes lie on both sides of the resonance peak such that equal 
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boosting effect can be realized. In general, as the lower modes tend to 

be more critical, we would like to use 1 filter for each of the lower 

modes, and for more than l of the higher modes. 

5.6 STABLE SPILLOVER INTO THE UNCONTROLLED MODES 

Unlike the case of velocity feedback, where spillover from the 

controlled modes causes the uncontrolled modes to result in lower 

than natural damping (or even instability), the use of positive 

position feedback actually causes all modes (including uncontrolled and 

unmodelled) to result in higher than natural damping. 

Theorem 5. 7 

To first order perturbation, the closed loop damping for all the 

modes is always greater than or equal to the natural open loop 

' damping. 

Proof: To first order perturbation, the closed loop behavior of each 

mode is determined by the diagonal terms of (5.5.7). The theorem is 

trivially obvious for the controlled modes but for the mth uncontrolled 

mode, say, the corresponding characteristic equation is 

(5.6.1) 

where the [Bj
22

]mm are non-negative quantities. Since the system is 

linear, the interaction of each of the terms under the summation sign 

can be superimposed, and hence the damping characteristics of this mode 

relate to each of the filters as shown in Fig. 5.5 (only a crude picture). 



-Re (A } 

73 

Hump due to Filter I 

due to Filter 2 

m th Mode 
Damping 

'~acteristics 
.... _ 

System Asymptote 

Fig. 5.5 Damping Characteristics for the mth Mode, m > NA. 
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The characteristics lie above the asymptote representing the 

natural damping; hence,mode m must have greater than natural closed loop 

damping. 0 
We can also prove the following global result 

Theorem 5.8 

If the overall system (5,4.9) is stable and V strictly diagonal, then 

all the closed loop damping is lower bounded by the minimum open loop 

damping. 

Proof; Consider (5.4.9) and note that the closed loop eigenvalues are 

those of the stable matrix 

Consider a specific eigenvalue A with corresponding eigenvector 

By definition 

and 

Consequently ;>,_2(¢1 + iiµi) + AQ(¢1 + it/;1} + P(¢1 + iiµ1) = 0 

Premultiplying{5.6.6)by ~I- it/;I = (¢1 + i1111)*, we have 

[ T T tT T (Pl Q</> l + i.J11 Qi.Jl l + </>1P</>1 + 1P1P1P1 
;>.. z + ;>.. :::: 0 

T T T T 
,<1>1</>1 + 1P11P1) </>1</>1 + i.Ji1$1 

v '------v-----1 s !::,. 

(5.6.2) 

(5.6.3) 

(5.6.4) 

(5.6.5} 

(5,6.6) 

(5.6.7) 
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Since from theorem (5,6) Pis positive definite,~ must be positive, 

The global system is reduced to a scalar characteristic equation with 

coefficients 8 and ~,where S can be twice the closed loop damping of 

any mode depending on the choice of <Pi and 1/J1. By the Rayl ei gh-Ri t z principle 

<PI Q<h + 1fJ I Qiµ l 

<PI<t>1 + 1/JI1/J1 

(5,6.8) 

Since Vis diagonal, Qi~ also diagonal; hence, Aj(Q) are simply the 

diagonal elements of Q which are also twice the open loop damping 

of the system together with all of its filters. 

The following intuitive theorem can be easily deduced from (5.6.7) 

Theorem 5.9 

If the overal 1 system were to become unstable due to excessively 

high gain, the unstable eigenvalue(s) will appear as positive real 

root(s) of (5.5.7). 

D 

Proof: If system is unstable, Pis indefinite and~ in (5.6.7) can take 

on a negative value, whiles is always positive. Consequently,one root 

will always be positive, whilethe other is always negative. 

This fact can also be easily observed from the root locus diagram 

in Fig, 5. 1. 
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Chapter 6 

A QUASI-LINEAR VIBRATION SUPPRESSION TECHNIQUE VIA STIFFNESS MODIFICATION 

6.1 ELECTRONIC DAMPING: AN ALTERNATIVE 

Throughout this thesis, we have assumed the use of external actuators 

without questioning their practicality other than the fact that they pos

sess finite bandwidth. In LSS control applications, which we shall con

centrate on in this chapter, these actuators are generally the reaction 

jets. Such a means of imparting control forces onto the space structures 

has been taken for granted by most researchers, and little attention has 

been paid to the following facts: 

(1) Jet-propulsion type actuators inevitably require propellant such 

as compressed gas or rocket fuel, which are of limited supply in space. 

Frequent replenishment of such fuel may prove to be costly. 

(2) Repeated use of these actuators causes a decrease in the propel

lant1s mass. In the control of light and flimsy structures, this changein 

weight distribution may lead to a significant change in the structural 

configuration, which may subsequently lead to stability problems, if the 

design is not sufficiently robust. 

(3) As these actuators possess finite bandwidth, the interaction 

with the very large bandwidth system cannot be ignored. The resulting 

stability problems have been discussed in great detail in Chapter 2; 

hence we shall not elaborate further here. 

(4) For vibration suppression of a thin, light-weight and slender 

surface such as a large solar panel, the surface density is extremely small 

compared to that of a lumped actuator, which is usually fairly heavy and 

bulky. Distribution of these actuators will certainlyalterthemodal structure 
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significantly, creating difficulty in the a priori design process
0 

Other minor issues such as the reliability and possible breakdown 

of these actuators prompt us to consider an alternative control scheme 

which eliminates the use of conventional actuators altogether. As large 

solar cells are available, the question is naturally raised regarding the use 

of this abundant electrical energy for active vibration control. The con

cept of electronic damping is nothing new and dates back to the fifties 

where Olson [29] first used it for acoustical noise control. Piezoelectric 

strain transducers were used to convert electronic control signals into 

control forces, and conversely, convert strain into electronic signals. 

This concept remained unpursued for a while until recently when it was 

applied to the vibration control of optical structures [30] and mechani-

cal structures [31,32]. Control of the latter structures is essentially 

a disguised form of direct velocity feedback control. Instead of measuring 

absolute velocity (or displacement) and imparting direct control forces, 

relative measurements and relative forces are implemented using strain 

transducers. In the particular cylindrical mast vibration control experi

ment [31], four transducers are used to control the first two fundamental 

modes, and spill-over is eliminated by the use of narrow band filters. 

Chen [33] suggests that if conventional actuators are not suitable to con

trol the out-of-plane motion, then the other alternative is to control the 

in-plane stiffness using the piezoelectric transducers. However, it must 

be pointed out that the coupling between in-plane motion and out-of-plane 

motion is highly nonlinear and complicated [34,35], even in the case of a 

simple elastic string. It is really more appropriate to talk about, in 

the mathematical sense, modifying the stiffness matrix resulting from a 

finite element formulation of the pertinent structure. 
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In this chapter we shall explore the theory and application of the 

concept of stiffness modification to the vibration suppression of a multi

variate oscillatory system. Despite the relatively simple structure of 

the control scheme, global stability is always guaranteed by virtue of 

the positive definite rate of energy decay. 

6.2 THE REID'S MODEL 

As before, we shall start our investigation with the simplest 

scalar model first. In actual fact, it is this scalar system-the Reid's 

spring model[36]-that inspires the whole theory of stiffness modification. 

The concept of "Linear Hysteresis Damping" had been studied several decades 

ago in aircraft flutter prob1ems [37]. The Reid's model in particular 

has a butterfly hysteresis characteristic and was studied in great detail 

by Caughey and Vijayaraghavan [38]. After appropriate normalization, the 

equation of motion of a simple harmonic oscillator attached to a "Reid's 

Spring 11 is 

y+y(l+ysgn(yy)) = 0, O<y«l (6.2.1) 

here y is the displacement of the oscillator from its equilibrium posi

tion and y a small parameter. One immediately notices that the unit 

stiffness of the system is modulated by the amount ysgn(yy), Unlike 

the Reid's model where y occurs as a small material constant, the gain 

y in the present context is only constrained by the operating range of 

the piezoelectric transducers, and, hence, need not be small. This system is 

obviously stable since the total energy of this system 
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(6.2.2) 

* has a negative semi-definite decay rate 

E(t) = - YIYYI ~ 0 (6.2.3) 

One intuitively reasons that larger y will result in faster energy decay, 

but it turns out to be more subtle than that, as dependence on the states 

yandy cannot be ignored in the expression E. Since the system is piece

wise linear nonlinear, we can obtain a closed form solution which differs 

distinctly in three separate cases, namely y< 1, y= 1, and y> L Without 

loss of generality, we shall assume the initial conditions y(O) = 0, 

y(O) = 1 and that natural passive damping is negligible. The phase planes 

for all three cases are shown in Fig. 6.1. 

Case ( 1) y < 1 

It is trivial to show, by considering each quadrant in the phase 

plane, that the exact solution is: 

Quadrant 1 . y > 0, y > 0, 0 s: t :i TI 

2/T+y 

y{t) = - 1 - sin ✓l+y t 
✓1+y 

•2 2 1st integral is y + (1 +y)y = 1 

*Eis actually negative definite almost everywhere, since, unless y=y=O, 
either y or y can only be momentarily zero; hence, E takes on zero value 
for nonzero y2+y 2 only on a set oft of measure zero. 
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Fig. 6.1 Phase Plane of the Quasi-Linear System 
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Quadrant 2. y > 0, 
. 'IT y < 0, ~ t:;; 'IT + 'IT 

2v'i+y 2/T+y 2/r-y 

y(t) = _L cos [ /j':"y( t - TI ] 
/1+y 

1st i ntegra 1 is •2 2 1 y + (1-y)y = 

• -rr [ 1 1 ] 1T -rr Quadrant 3. y < 0, y < 0, 2 -- + -- ::;; t s -- + 
v'i+y lf:y v1+y 2/r-y 

Quadrant 4. 

y(t) = -IT'=y sin [IT+y(t - TT TI ) ] 

/T+y 2/f+y 2v'I-Y 

1st integra 1 is 

y < 0, 

• 2 ( 2 1-y y + l+y)y =-, -+y 

_TI_+ TI S. t :s; 1T 

/f+y 2/r-y 
+ _1_] 

/r+y 

( ) -~- [ rr--:-:( 'IT 'IT J t = (-y COS v' I -y t - -- - -- ) ] 
- y /f+y 2 ✓1-y 

1st integral is •2 2 1-y) y + (1-y)y = (
l+y 

2 

total period for one complete cycle is 

and the state at the end of the first cycle is 

(6.2.4) 

(6.2.5) 

(6.2.6) 
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Case (2) y = 1 

In quadr~nt: 1 1 the equation of motion is simply 

y + 2y = 0 

which admits the solution y=-1 sin /2°t 
12 

·2 2 with first integral given by y + 2y = 1 

(6.2.7) 

(6.2.8) 

(6,2.9) 

However, once the phase-plane trajectory enters the second quadrant, the 

equation of motion becomes 

y = 0 (6.2.10) 

Theoretically, the phase plane trajectory should stop at the point 

where it crosses they axis, i.e., at y=l//l, y=O, and remain there 

henceforth. In practice however there is always some small overshoot 
. 
y = -e, 0 < e « 1 , so that the motion after entering the second quadrant is 

simply 
y(t) = -E:t + 1//2 

For small e , the decay can be very slow indeed. 

Case(3)y>1. 

(6.2.11) 

The initial solution in quadrant 1 satisfies a harmonic equation 

and takes the form 

y(t) =-1- sin v'1+y t 
/T+y 

(6.2.12) 

Once the phase plane trajectory enters the 2nd quadrant, the nature of 

the equation of motion changes completely to 



83 

y - ( y- l)y::: 0 (6.2.13) 

which admits the hyperbolic solution 

y( t) = _l - cos h .ry:T t - _e:: _ sin h /y-T t 
/f+y /y-T . 

(6.2.14) 

where e:: is the small overshoot when the trajectory crosses they axis. 

This hyperbolic solution tends to head back up to the first quadrant again 

and subsequently is pushed back into the 2nd quadrant as an harmonic 

oscillator, and the process repeats itself. Thus the trajectory zig-zags 

along they axis until it slowly finds its way to its stable sink at 

the origin. 

To confirm our theory, the differential equation {6.2~1) is solved 

numerically using a 5th and 6th order Runge-Kutta-Verner differential 

equation solver, the time step being adjusted accordingly until satisfactory 

consistency is achieved. The state history y(t) and energy decay are 

shown in Fig. 6.2 and Fig. 6.3, respectively, for each of the 3 cases. For 

all practical purposes, the agreement between theory and simulation is 

excellent indeed. 

It is obvious now that the overall energy dissipation rate in 

Case (1) is far superior to that of Case {2) or (3). Though the latter two 

cases have more rapid energy decreases in the first ha 1 f second, subsequent 

energy dissipation is very slow indeed. It is thus concluded that the 

best damping characteristic is achieved when y < 1. 

It is not clear at this stage what an "optimal" gain is, as the 

notion of optimality is not well-defined. For example, if one wishes to 

maximize the percentage energy decay rate per cycle, i.e., 
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(6,2,15) 

then the optimal gain can easily be shown to be 0.53,though this is not 

the optimal gain if the optimality criterion refers to the percentage decay 

rate for 2 cycles instead. Alternatively, to maximize the percentage 

amplitude decay rate in 1 cycle, i.e., 

1-(l+y) 
= l+y 

( 
1 1 ) TI--+--

/r=y IT+y 

(6.2.16) 

would require a gain of about 0.66. Infinitely many different criteria 

can be invented, but it has been found in practice that the energy decay 

exhibits little difference within the range of 0.5 <y<0.9. 

Less importantly, one may like to compare the quasi-linear system 

(6.2.1) with an equivalent linear viscous damped system, and determine 

some kind of an 11 Equivalent damping ratio 11
• Some attempts to answer this 

question in a similar model are made in [33], where an approximate decay 

envelope e-~t for a linear viscous damped system 

y + 2l;y + y = 0 (6.2.17) 

is computed to bound the state history of the equivalent quasi-linear 

system (6.2.1). It seems to be such a laborious task to treat a non

crucial issue. In our present theory we are more interested in interpreting 

the term 11 Equivalence 11 in terms of energy decay rate. We simply compare 

the energy histories of the quasi-linear system (6.2.1) and the linear 

viscous system (6.2.17), such that the Cost function 
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(6.2,18} 

is maxi mi zed over a 11 y, where EY ( t) and Ee; ( t) are the energy his tori es 

of the quasi-1 inear and the linear viscous system,respectively. For instance, 

the case of yt1=0.9 is 11 equivalentu to a linear damping ratio of about 

Another point of mere theoretical interest is that an alternative 

to our present quasi-linear model is the 11 quasi-quadratic 11 model 

Y + y [ 1 + y( yy)] = 0 (6.2,19) 

where the energy decay rate is 

• 2•2 E ( t) = -YY y ~ 0 (6.2.20} 

Thus instead of passing the signal through a hard limiter, the signal 

is used directly to modify the stiffness. A closed form solution to 

this system does not exist, but for small y we can obtain a perturbation 

solution. With the usual initial condition, a zero order solution is 

given by 

1 y(t) = -- sin t (6.2.21) 

For a large or intermediate value of y, it can be shown that the ampli

tude of oscillation will also decay as o(t-l) ~ hence, for large t and 

small IIYl!,the decay can be very slow indeed. In practice,it is also 

found that for a comparable energy decay rate, the gain y required in this 

case is much higher than in the quasi-linear case, hence rendering it 
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unattractive. This is also true in the multivariate case, which we shall 

examine next, even though the detailed mechanism involved is much more 

complicated then. 

6.3, FORMULATION OF THE QUASI-LINEAR MULTIVARIATE CONTROL SYSTEM 

The control of QDPS by stiffness modification can be conceived of 

as a form of direct output feedback control where the control force in 

(1.1 .11) is a non-linear function of the system states. The equation 

governing such a system is 

My+ Dy+ Ky= -F(y,y)y (6.3.1) 

where • NxN F(y,y) ER is the time varying stiffness modification matrix. 

There is no unique way of constructing F(y,y), except that it must render 

the overall system globally stable. One physically realizable way of 

constructing F(y,y) is as follows: 

Suppose we have n sets of transducers placed at suitable locations 

of the structure and suppose these transducers can be conceived of as 

being attached to adjacent elements in the discrete structure. Collocated 

with these transducers are n sets of sensors which may also appear in 

the form of strain transducers. Each transducer simultaneously measures 

the relative out-of-plane velocity and displacement of the two attached 

elements. Define the set S of transducer locations as 

(6.3.2) 

where T= [l,2,3,----,N} is the set of all (numbered) elements in 

the discrete finite element model of the structure. For each sk ES, 
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there exists a transducer connecting element sk and element sk + l. 

This transducer may be visualized as a (out-of-plane) shear spring of 

variable stiffness derived from electronic control signals. With such 

an arrangement, the stiffness modification matrix F(y,y) in (6.3.1) can 

be synthesized in two ways. For convenience and obvious physical inter

pretation, we shall ascribe the names 11 Global 11 and 11 Local 11 control for 

these two methods each of which is a generalization of the scalar Reid 

Model. 

Method I -Global Control 

Physically, each set of sensors measures the relative displacement 

and velocity of adjacent elements and multiplies these together with a 

seal ar gain ck. Then a 11 these products are summed together and transmitted 

through a hard limiter to form a scalar integer valued signal v(y,y). 

This signal, multiplied by the gain ck, again then determines the stiff

ness in the kth transducer, whichin turn modulates the structural stiff

ness at its point of actuation. Since the signal v(y,y) is constructed 

from global measurements and is common to all transducers, it is thus rea

sonable to call it 11 Global 11 control. Mathematically, this procedure can 

be formulated in terms of the following equations: 

The stiffness modification matrix F(y,y) is synthesized as 

(6.3.3) 

where Qk EnfxN has entries given by 



and v(y,y) is given by 

where 
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if i = j = k or i =j = k + 1 

if i=k, j:k+l, or i=k+l, j=k 

otherwise 

1 if W>O 

sgn w = - 1 if w < 0 

0 if w=O 

(6.3.4} 

(6.3.6) 

At this stage it is quite unnecessary to study the dynamics of the 

quasi-linear system in its modal form. Unlike the previous linear tech

niques, there is not very much we can do about dictating the decay 

characteristics of, for example, the first n modes. It is easy to see 

that the feedback system is LAS since the total energy 

( 1 •T • 1 T E t) = 2 y My + 2 y ky (6.3.7) 

has a positive decay rate 

• , •T •T • E(t) =- y Byj -y Dy<O (6.3.8) 

where 

(6.3.9) 

The presence of natural damping merely increases the rate of energy 

decay. In the absence of natural damping, E seems to be only negative 
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semi-definite, but it is practically negative definite by the following 

argument: 

E = 0 iff By= 0 or By= 0, so we shal 1 examine each case 

If By= 0 and if B and K have a different nu11 space, then 

KyfO=yfO=y=O or By=O only on a set of t of measure zero. 

Similarly if By= 0 but Ky F O or By F O then y F O =By= 0 only on 

a set of t of measure zero. Thus for non-zero 
. 

y or y, E is negative 

definite almost everywhere on t. Hence regarding E(t) as a natural 

choice of liapunov function, the closed loop system is LAS by the cele

brated Liapunov theory. Note that the matrix B is necessarily singu~ 

lar if fewer transducers than states are used. 

Method II - local Contra l 

In contrast with the case of Global control, the local measurement 

output from each sensor is directly fed back into its associated trans

duce~ after being multiplied by a positive control gain ck. The stiff

ness modification matrix is thus synthesized as 

(6.3.10) 

(6.3.11) 

The resulting system is LAS again since the energy decay rate 

(6.3.12) 

is negative definite, if the ck's are positive quantities. 
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For reasons that appear unclear to us, later simulation shows that 

local control in fact achieves a better energy decay characteristic than 

global control. Intuitively one may reason that,ignoring the natural 

damping for the moment, tis the sum of n negative definite tenns in 

the local control case, while it consists only of l negative definite 

term in the global case. Certainly this is not the only or most crucial 

reason. Another possibility is that there exists some kind of multi

dimensional limit cycle in the case of global control, in which the 

total energy remains very nearly constant once the state is trapped. We 

shall discuss more about this as we examine the outcome of numerical 

simulation later. 

The design of the gains {ck,k ES}, in both the global and local 

cases, to achieve "optimal performance" is a very difficult problem 

indeed. We cannot simply generalize from the scalar theory in view of 

the complicated nonlinear coupling effects. Furthermore, if a well

defined optimality criterion does exist, it is likely to depend on a 

large number of factors such as the state initial conditions, the 

transducer locations and their operating limits, the modal structure of 

the system, and other factors too numerous to name. So until such time 

as some ingenious way is available to make sense out of optimality, we 

shall choose ck on an arbitrary trial and error basis. Note that one 

may suspect that the energy decay rate of each mode is dominated by the 

diagonal elements of the modal gain matrix, as in the case of global 

control 

(6.3.13) 
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If n sets of transducers are available, it can be shown that the ck can 

be chosen such that the first n diagonal elements of B are prescribed 

a priori. Such an endeavor, however, proves to be futile, as demonstrated 

by later numerical simulation. 

It must be pointed out that we have assumed that the piezoelectric 

transducers have no dynamics. This again is not strictly correct, though 

we would expect these transducer dynamics to be much faster than any 

reaction jet type external actuators. In the event of improper design, 

instability due to interaction of transducer dynamics may still arise. 

As in the scalar case, some attempts are made to implement the 

feedback for 11 quadratic decay, 11 i.e., bypassing the hard 1 imi ter with 

the signal v(y,y) or vk(y,y). It has been found that much higher gains 

are required to achieve comparable performance, hence rendering it less 

attractive in practice than the quasi-linear system. 
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Chapter 7 

NUMERICAL SIMULATION OF A SIMPLY SUPPORTED DISCRETE SHEAR BEAM 

7.1 PRELIMINARIES 

To illustrate the theory and application of various control tech

niques discussed thus far, we shall consider a simply supported discrete 

shear beam with N elements which has the following inertia and stiffness 

matrix: 

2 -1 0 

K = k -1 2 -1 
0 

-1 2 -1 

~ 
0 -1 2 

To obtain the frequencies and modal matrix 4) of this system, we note 

that the equation of motion for the nth element is 

(7.1.2) 

m y·· + 2k y - k y - k y = 0 n = 1 .--- N o n o n o n-1 o n+ 1 ' · (7.1.3) 

To solve for the system of difference-differential equation, we 

assume a solution of the form 

(7.1.4) 

and substitute into (7.1.3) to obtain 
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or 
k 

2 4( o) . 2 e w = - s,n r 
mo 

(7.1.4)can be rewritten as 

yn = e iwt[A sin ne + B cos n8] 

The boundary conditions for a simply supported beam are y
0 

= 0 and 

YN+ 1 = 0 which implies that 

B = 0 

and 

sin(N+l )e = o 

Thus for the th 
Q. mode, 

A • 27T 
2 sin (N+l) 

Modal vector 
A • 2Q.7T 

2 s ,n ( N+ 1) 

. 
A : NQ:rr 

2 sin TN+T) 

(7.1.5) 

(7.1.6) 

(7.1.7) 

(7.1.8) 

(7.L9) 

(7.1.10) 

(7.1.11) 
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It is easy to see that, in order that II <f>Q,, 11 2 = 1 , 

All =ff,, Vl 

Consequently the modal matrix ¢ takes the form 

( ) _ /2 . ij'rr 
¢ i j -ym srn (N+1) ' 

(7,1.12) 

(7.1.13) 

Since the structure of the internal viscous damping D is not 

clearly known, we shall assume that all modes have the same damping ratio 

~n and that the modal damping matrix is diagonal and given by 

(V) .. = 2~ w.o .. 
1J n 1 lJ 

(7.1.14) 

The actual value of ~ remains unknown but for most of our sim-n 

ulated example, 'n is assumed to be about 1%. In all cases, we shall 

set the closed loop damping ratio of the first mode to be approximately 

'P and subsequently set the closed loop damping of all the controlled 

modes to be approximately equal to that of the first mode. This has the effect 

of causing all the controlled modes to decay at roughly the same rate. 

7.2 COLLOCATED VELOCITY FEEDBACK CONTROL: NO ACTUATOR DYNAMICS 

In the absence of actuator dynamics, unconditional global stability 

is guaranteed for collocated velocity feedback control. Furthermore if 

NA pai~ of S/A are available, we can approximately 1assign the closed 

loop damping for the first NA modes. To examine the closed loop behavior 

of the system (2.1 .1) we shall calculate all its eigenvalues from its 

state matrix 
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(7.2.1) 

k 
For illustrative purposes, we let N=20, NA=4, m: = 4, S=[3,8,13,19] 

?;; =0.01. Two cases,(i)?;; =0.2, (ii),; =0.3 are computed and the out-
n P P 

come of the simulation is shown in Table 7.1. Despite the existence of 

coupling, the closed loop behavior of the modes agrees very well with scalar 

theory indeed. More simulations of this sort are considered in [18]. 

7.3 VELOCITY FEEDBACK WITH ACTUATOR DYNAMICS 

To demonstrate the instability caused by actuator dynamics, we shall 

deliberately choose wa = 1.0 to 1 ie between the 3rd and 4th modes. ,;a 

is chosen arbitrarily to be about 0.7, The gain matrices are computed 

as if no actuator dynamics are present. With the rest of the parameters 

as before, the closed loop eigenvalues of the system (2.1.7)-(2.1.8) are 

computed from the state matrix 

0 IN 0 0 

-n -v -'B 0 
A = (7.3.1) 

0 0 0 IN 

0 
2 

waIN 
2 

-waIN -Sa IN 

The outcome of the simulation for the 2 cases, (i) i;p=0.2 and (ii) r;P=0.3, 

are shown in Table 7.2. 
When the gains are sufficiently low (r; = 0.2), all modes are still 

p 

stable, though the damping for certain modes becomes very small (e.g., 

?;;CL= 0.01% for the 6th mode). When the gains are raised further 

(i;P = 0.3), the 4th, 5th and 6th modes become unstable. If we plot the 

scalar gain vs. open loop frequency for these modes on the stability 
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Open { i) z.;p= 0.2 (ii} z.;p= 0,3 
loop 
freq. C-L C-L C-L C-L 

Mode w. Y; wpi Damp. z.; ( %) Y· Wpi Damp. 1';(%) l , 1 

1 0 .. 299 .1196 0 .. 293 -.0633 21 .. 08 .17 94 0.287 - .. 0944 31 .. 28 
2 0 .5 96 .1196 0 .s 96 -.0664 11.06 .1794 0 .5 97 -.0977 16 .. 16 
3 0 .890 .1196 0.895 -.06 92 7.71 .1794 0 .90 2 - .. 1001 1L03 
4 1.179 .1196 1.17 9 -.0717 6.07 .17 94 1.17 9 -- .. 1020 8 .6 2 
5 1.461 .1211 1.461 -.07 61 5.20 .1816 1.462 -.1085 7 .AO 
6 1.736 .1744 1.734 -.1081 6.22 .2616 1 .. 7 32 -.1612 9.27 
7 2.000 .146 9 1.995 - .. 093 9 4.70 .2203 1.9 89 - .13 07 6.56 
8 2 .253 .0461 2 .2 50 -.0448 1 .. 9 9 .06 92 2 .247 - .. 0544 2 .42 
9 2.494 .1433 2 .4 91 - .. 0981 3.94 .2150 2.488 -.1376 5 .. 52 

10 ' 2 .. 721 .087 5 2 .. 720 - .. 0710 2.61 .. 1312 2.722 - • 0 93 2 3.42 
11 2 .93 2 .083 0 2.929 -.0713 2.43 .1245 2 .924 -.0931 3.18 
12 3 .127 .0891 3 .128 -.0763 2.44 .1336 3 .129 -.0996 3.18 
13 3 .3 05 .0490 3 .3 09 -.o 556 1 .68 .07 35 3.314 -.0635 1.92 
14 3.464 .1628 3.474 - .127 1 3.66 .2442 3 .485 -.2215 6 .3 5 
15 3.604 .146 8 3.586 -.1138 3.17 .2202 3.551 - .13 09 3 .6 8 
16 3 .123 .1134 3.718 - .o 96 9 2.6u .. 170 2 3.708 - .127 2 3.43 
17 3.822 .2003 3.803 -.1366 3.59 .3 004 3.779 -.1824 4.82 
18 3.900 .1130 3.873 -.0845 2.18 .. 1696 3.853 -.0880 2.28 
19 3.955 .0995 3.937 -.0870 2.21 .1493 3.914 -.1012 2. 5 9 
20 3.989 .1040 3 .. 973 -.0823 2 .. 07 .156 0 3 .. 963 -.0962 2.43 

Table 7.1 Collocated Velocity Feedback Control No Actuator Dynamics 

~n = 0.01, S = {3,8,13,19} 
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( i) I; = 
D 

0.2 (ii) ?;
0 

= 0,3 

C-L C-L C-L 
Mode Y; wpi Damp. d %) y. Wpi Damp. 

1 

1 .1196 0 .326 -.0671 20.16 .17 94 0.345 - .. 1105 
2 .1196 0 .646 -.0366 5 .66 .. 17 94 0 .673 - .. 046 8 
3 .. 1196 0.933 -.0123 1.37 .17 94 0 .9 51 - .. 0127 
4 .. 1196 1.212 - .003 0 0.25 .17 94 1.227 + .. 0016 
5 .1211 1.483 -.0022 0 .15 .1816 1.494 + .003 5 
6 .1744 1. 7 56 -.0001 0.01 .2616 1.766 + .. 007 9 
7 .146 9 2.012 - .006 8 0.34 .2203 2.018 -.0003 
8 .0461 2 .256 -.0154 0.84 .06 92 2 .257 -.0169 
9 • 1433 2.500 - .. 0154 0.62 .2150 2 .. 503 - .0107 

1 O' .087 5 2.724 -.0221 0.81 .1312 2.725 - .. 0196 
11 .. 0830 2.934 -.0250 0.85 .1245 2 .93 5 -.,0229 
12 .0891 3.129 -.0272 0.87 .. 1336 3.130 -.0252 
13 • 0490 3 .3 06 -.0310 0.94 .0735 3 .. 306 -.0301 
14 .1628 3.467 -.0284 0.82 .2442 3 .46 8 -.0254 
15 .146 8 3 .606 -.0308 0.85 .. 2202 3.607 -.0281 
16 .1134 3.725 -.0334 0.90 .1702 3.726 -.0351 
17 .2003 3.825 -.0318 0.83 .3 004 3 .. 826 -.0285 
18 .113 0 3.901 -.0354 0.91 .16 96 3.901 -.0336 
19 .0995 3.956 -.0365 0.92 .1493 3 .957 - .. 0350 
20 .1040 3.990 -.0368 0.92 .156 0 3.990 -.0351 

Actuators .5 981 -.6644 77.32 0.518 -.6367 
.5632 -.7218 78.84 0.476 -.7310 
.5 960 -.7095 76.57 0 .534 -.7208 
.6 546 -.7173 77.87 0.625 - .. 7 263 

Table 7.2 Velocity Feedback with Actuator Dynamics 

wa = 1.0, c;a = 0.7, c;n = 0.01, S = {3,8,13,19} 

* Unstable Modes 

C-L 
d %) 

30 .,51 
6.94 
1.33 

*-0 .. 13 
*-0.24 
*-0 .. 45 

0 .o 2 
0 .. 7 5 
0.43 
0 .. 72 
0 .. 7 8 
0.80 
0.91 
0 .. 7 3 
0 .. 7 8 
0.85 
0.75 
0.86 
0 .88 
0 .,88 

77.55 
83. 7 8 
80.33 
7 5. 7 8 
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boundary picture Fig 2.2, we find that they all lie in the unstable 

region. In fact, if we do likewise for each of the 20 modes,we can also 

predict their relative stability margins approximately. Thus, our scalar 

theory discussed in Chapter 2 seems to be well justified. 

To examine the effect of ill-located S/A, we shall consider the 

stable case z;; = 0.2 with actuator dynamics (Table 7.2(i)) and alter p 

the S/A location to s=(4,10,11,13}. It was found that the scalar gains 

went wild (Table 7.3(i)). In this case perturbation theory does not 

apply since the gains are not small and we cannot use scalar theory to pre

dict stability, nevertheless the 7th and 20th modes are found to be unstable. 

To explain this phenomenon, we observe that two of the S/A pairs are 

adjacent to each other; careful examination of the ~ matrix indicates 

that this has the effect of causing (s<I>1) to be nearly singular, which in 

turn causes some of the elements of C to become very large since C is 

constructed from 

To avoid this sort of singular condition is not difficult. In principle, 

we can use integer programming to work out an optimal S/A location matrix, 

or can even minimize the scalar gain Y; for modes near or within the crit

ical range. This is, however, more easily said than done and is not very 

practical either. In reality~ is not known exactly and is affected bythe 

S/A distribution as well; hence, any such design procedure will be neces

sarily iterative. By experimenting with various S/A locations, we found 

that in general if we spread out the S/A uniformly over the structure, 
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( i) z;P = 0.2, z;n= O.Ol {ii) r;P = 0.2, z;n= 0.005 
S = {4,10,11,13 S ={3,8,13,19} 

Mode y. Wpi 
C-L C-L C-L 
Damp. (%) y. Wpi Damp. 1 1 

1 .. 1196 0.325 - • 0 514 15 .. 62 .1196 0 .. 326 - .. 0652 
2 .. 1196 0.635 - .o 289 4 .. 54 .1196 0.646 -.0333 
3 .1196 0.925 - • 0126 1..36 .1196 0.933 -.0083 
4 .. 1196 1.204 -.0060 0.50 .1196 1.212 +.0028 
5 • 9496 1.500 - .0043 0.29 .1211 1.483 +.0049 
6 .8248 1.760 -.0087 0.49 .17 44 1.756 +.0084 
1 2 .3 800 2 .054 + .oo 50 *-0. 24 .146 9 2.012 +.0031 
8 ,3.4810 2 .306 -.0125 0.54 .0461 2 .256 - .. 0076 
9 2.1120 2 .523 - • 0121 0.48 .1433 2 .. 500 - .. 0030 

10 9.1940 2.821 -.0168 0.60 .087 5 2.724 - .. 0086 
11 1. 0 27 0 2:945 - .o 23 0 0.78 .083 0 2 .. 934 - .. 0104 
12 14 .66 80 3.267 -.0158 0.43 .0891 3 .129 - .. 0116 
13 .1815 3.308 -.0270 0.82 .0490 3 .306 -.0145 
14 15.3790 3 .5 93 - • 0 27 5 0.76 .1628 3.467 -.0111 
15 .26 23 3 .611 - • 0 289 0.80 .146 8 3 .6 06 - .o 128 
16 13.4120 3.814 -.0344 0.90 .1134 3.725 -.0148 
17 .6 96 5 3.842 -.0298 0.77 .2003 3.825 -.0127 
18 10.3850 3.954 -.0368 0.93 .113 O 3.901 -.0159 
19 .2857 3.965 -.0345 0.87 .0995 3.956 -.0168 
20 7.5600 4.664 +1.3140 *-27 .12 .1040 3 .. 990 -.0168 

0.000 -0 .. 0978 100.00 0.598 -.6664 
-4.1200 100.00 

0.545 -0.7320 80 .19 0.564 -.7216 
0.632 -o .6 7 23 72.85 0 .5 97 -.7095 
0.622 -0.7094 75.20 0.655 -.7172 

Table 7.3 Velocity Feedback with Actuator Dynamics: Effect of 

S/A Location and Natural Damping. wa = 1.0, z;a = 0.7 

* Unstable Modes 

C-L 
I:;(%) 

19 .61 
5 .. 16 
0.89 

*-0 .23 
*-0 .33 
*-0 .48 
*-0 .15 

0 .34 
0 .12 
0 .31 
0 .3 5 
0.37 
0.44 
G .3 Z 
0 .3 5 
0.40 
0 033 
0.41 
0.42 
0.42 

7 4.3 2 

78.80 
76.54 
73.84 
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the resulting scalar gains will be of uniform order, hence avoiding any 

singularity-condition. In the absence of a more sophisticated strategy 

for optimal S/A location, this will serve as a reasonably good rule of 

thumb. 

Next we would like to illustrate the intimate dependence on the 

system 1 s natural damping. The same case as in Table 7.2(i) is consid

ered again; this time sn is reduced to 0.005. The previously stable 

structure now has four unstable modes (see Table 7.3(ii)). This illus

trates an important fact: since sn is rather uncertain in practice, the 

stability boundary is not well-defined beforehand either; as a result, 

we cannot simply ascertain stability by choosing wa to be far away from 

the controlled mode frequency, thus raising the stability boundary. 

This also points out the fact that velocity feedback is not a very 

robust control scheme, since stability is highly dependent on an un

certain parameter. Even though sn is small, it is usually nonzero; 

otherwise, all modes of w; > wa will be unstable if their scalar gains 

Y; are positive. 

7.4 VELOCITY FEEDBACK WITH GENERALIZED LEAD COMPENSATION 

To demonstrate the feasibility of using the generalized lead com

pensation technique for overcoming instability, we shall compute the 

closed loop eigenvalues of the system (3.2.4)-(3.2.6) from the state 

matrix (dimension 2N + 3NA) x (2N + 3NA)) 
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0 IN 0 0 0 

-n -v T T -4> SC 0 0 

0 0 0 1NA 0 

A = (7.4.1) 
2 u.i2T 2 w 2 Ula a S<P a 2 S<P -w I -S I -,=- I r, a NA a NA 1 NA 

1 s<t> 
T2 

0 0 1 
IN r, T:"° S<P 

1 A 

As the critical frequency range starts from w.'v w =1.0, we shall 
· 1 - a 

choose T2 = 1.0 so as to increase the phase of the relevant Bode Plot 

in this range. The choice of T1 must be such that the resulting phase 

increase can reverse the sign of the phase margin for the unstable modes. 

The unstable case of Table 7.2(ft) is considered again, this time with 

added lead compensation. Two cases (T1 = 0.1, 0.2) are computed,and the 

outcomes are shown in Table 7.4. It is obvious that smaller T1 tends to 

stabilize the system mo:e; but even though r 1 in the 2 cases differs by 

a factor of 2, there is not a good deal of difference in the 

closed loop performance in the two cases. 

7.5 ACTUATOR DYNAMICS SUPPRESSION BY GAP CREATION 

Of the three gap creation techniques proposed in Chapter 4, we 

shall only consider the first technique, namely by collocated control, 

since the other two basically follow the same principle. We reconsider 

the unstable system in Table 7.2(ii) and note that the 4th , sth and 6th 

modes are unstable. Hence if we use 6 pairs of S/A so as to suppress 

these 3 modes, we should expect a stable closed loop system. This is 
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( i) T1= 0.1, T2= 1.0, i;;p= 0.3 (ii) r1= 0.2, T 2= 1, 0, 

c-L C-L C-L C-L C-L Mode Y; Freq. Damp. 7; ( % ) Y; Freq. Damp. 

1 .1794 0.2 99 -.1092 34 .31 .1794 0 .3 03 - .. 1111 
2 .17 94 0 .6 53 - .103 4 15 .63 .1794 0.660 - .. 0978 
3 • l 7 94 0.962 - .. o 57 4 5 .. 95 .17 94 0.964 - .o 50 5 
4 .. 17 94 1.251 -.0451 3.60 .. 17 94 1.252 -.0359 
5 .1816 1.524 -.0315 2.07 .. 1816 1.523 - • 0 226 
6 .. 2616 1.812 -.0280 1.54 .2616 1.809 -.,0164 
7 .. 2203 2.0 59 - .o 240 1.17 .2203 2 .o 55 -.0136 
8 .. 0692 2.271 -.0228 1 .. 00 .06 92 2 .26 9 - .. 0190 
9 .2150 2.53 8 -.0229 0.90 .2150 2 .. 533 -.0143 

10 .1312 2. 7 45 -.0251 0.91 .1312 2 .. 742 - .o 202 
11 .. 1245 2.954 - .o 26 5 0.90 ., 1245 2.950 - .o 221 
12 .1336 3.148 -.0281 0.89 .1336 3.144 - .o 23 9 
13 .0735 3 .315 -.0314 0.95 .07 35 3 .313 -.,0294 
14 .2442 3.496 - .. 0285 0.81 .2442 3 .. 490 -.0220 
15 .2202 3.634 - .. 0292 0.80 .220Z 3 .627 - .o 231 
16 .1702 3. 7 45 -.0321 0 .. 86 .17 02 3. 7 40 -.0277 
17 .3 004 3.861 - .o 27 7 0.72 .3 004 3.851 - .. 0202 
18 .16 96 3 .923 -.0315 0.80 .16 96 3.916 -.0271 
19 .1493 3.974 -.0338 0.85 .1493 3.969 -.0302 
20 .1560 4.009 -.0329 0.82 .156 0 4.003 -.0293 

Actuators 0 .6 90 -.5635 63.25 0.676 -.5572 
0.658 -.6507 70 .3 2 0.651 - • 6 53 O 
0 .5 97 - • 5 85 9 70.03 0.585 -.5892 
0 .6 21 -.5758 67.98 0.604 - .. 5799 

Filters -10 .123 -5.202 
-10.085 -5.141 
-10.047 -5.079 
-10.081 -5 .. 135 

Table 7.4 Velocity Feedback with Generalized Lead Compensation 

wa= 1.0, i;;a= 0.7, i;;n= 0.01, NA= 4, S= {3,8,13,19} 

i;;p = 0. 3 

C-L 
I; ( % ) 

34.45 
14 .. 65 

5 .. 23 
2.,86 
1 .. 46 
0 .,91 

I 
0.66 
0 .. 84 
0 .,57 
O .. 74 
0.75 
0.76 
0.89 
0 .. 63 
l>. 6 4 
0. 7 4 
0.53 
0 .6 9 
0 .. 76 
0.73 

63.58 
70.82 
70.94 
69 .. 25 
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indeed so and the outcome is shown in Table 7.,,5 By virtue of the gap, 

the previously unstable modes now reduce to only naturally damped. 

7.6 POSITIVE POSITION FEEDBACK CONTROL WITH TUNING FILTERS 

With filter parameters designed according to the procedure de

scribed in Chapter 5, the closed loop eigenvalues of the system (5.4.9) 

are computed from the state matrix (dimension 2(N + NANf} X 2(N + NANf)) 
N + NANf 

0 

n T T -Eiw ---- -E w 
fi Nf fN 

f 
V 0 

A = 

E w 
l f, 

wfiINA l; 

' I .., 
' I ' ' ' I ' ' ' ' . ' 

EN wf 
wf IN f Nf 

Nf A 
0 ' 27.;;fwf. IN 

,Nf A 

(7.6.1) 

where Ei are as defined in (5.4.13). As a check of the sufficient and 

necessary condition for stability in theorem 5.6, the eigenvalues of the 

matrix P (in (5.4.12)) are also computed. 

When a full complement of filters is available (i.e., NA=Nf) the 

closed loop damping performance for the 3 cases computed: 7.;; =O. 3, 0 .4, 0. 5, 
p 

is very good indeed (see Table 7.6). We can achieve closed loop damping 

as high as 7.;;P = 50% for the first mode ( it is expected that ?;;P can 

even be considerably higher than this) without causing instability or 

undesirable situations. The closed loop damping ratio for the first mode 
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NA= 6, Ne= 3, S= {2,5,8,11,15,18} 

i;n= 0,01, wa= 1.0, i;a= 0.7 
C-L C-L C-L 

Mode y. , Freq. Damping I; ( % ) 

1 .17 94 0.341 - .1130 31.,46 
2 .17 94 0.678 -.,0525 7.72 
3 .17 94 0.959 - .. 0129 1.34 
4 .0000 1.179 - .. 0118 1~00 
5 .0000 1.461 - .. 0146 1.00 
6 .0000 1.735 -.0174 1.00 
7 .. 0312 2 .. 002 -.0173 0.86 
8 .0021 2 .253 -.0224 0.99 
9 .. 0433 2 .496 -.,0221 0,.89 

10 .1071 2 .. 724 - .o 210 0 .. 77 
11 .1071 2 .93 5 - .. 023 9 0 .81 
12 .16 90 3.131 - .023 5 0 .. 7 5 
13 .. 0680 3 .3 06 - .. 0302 0 .91 
14 .1419 34466 -.0293 0.84 
15 .. 1636 3 .6 06 -.0301 0.83 
16 .1718 3.726 -.0314 0.84 
17 .06 27 3.823 -.0362 0.95 
18 .0226 3.900 - .03 83 0 .9 8 
19 .0321 3.956 - .0386 0.98 
20 .07 29 3.989 -.0377 0.94 

Actuator 0.714 -.7000 70.00 
0.714 -.7000 70.00 
0.714 -.7000 70.00 
0. 56 5 -.6090 73.33 
0.561 -.6700 76.68 
0. 5 92 -.7110 76.82 

Table 7.5 Velocity Feedback with Gap to Suppress 

Actuator Dynamics 
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( i ) (ii) (;;;) 

l;p=O. 3 0 l;f'=O .6076 r;;p=O .40 · r;;l,o., 1141 I':; =O .. 50 p r;f=0.7869 

A.(P) > 0 V. 
J J 

A.(P) > 0 \J. 
J J 

A-(P) > 0 1/. 
J J 

Y1=0 .. 343 0 wf 1 =O .3 6 9 Y1=0 .4773 wf 1 =O .419 Yl=O .5843 wf 1 =O .47 5 
Y2=0 .,2288 wf 2 =O. 7 36 Y2=0 .333 8 Wf 2=0,.835 Y2=0 .4289 wf 2 =O .947 
y3•0 .. 1639 wf 3=1.099 y 3=0 .2456 wf 3 =1. 246 Ys=o .3 23 5 wf 3 =! .414 
y4=0 .1255 W.c, =l .455 y4=0 .1917 wf 4 =1.6 51 Y4=0 .2566 wf 4 =l .87 3 

C-L C-L C-L C-L C-L C-L C-L C-L C-L 
Mode Freq. Damp. I; ( % ) Freq. Damp. r;;(%) Freq. Damp. I':; ( % ) 

l 0 .2 96 -.0875 28.389 0.286 - .. 1172 3 7 .. 846 0.275 -.1473 47. 23 0 
2 0.584 - .o 931 15.742 0.573 -.1298 22 .o 91 0 .. 560 -.1722 29.397 
3 0.883 - .0964 10.854 0 .87 3 -.1389 15.629 0.876 - .. 1926 21.467 
4 1 .. 158 -.0918 7$898 1 .. 138 -.1255 10.959 1.111 -.1627 14.495 
5 1 .. 473 - .. 0365 2.478 1.472 - • 0 528 3 .,583 1.467 -.0711 4 e83 8 
6 1 .. 742 -.0220 1 .. 263 1.745 - .o 27 2 1. 5 57 1.747 -.0341 1.953 
7 2.001 - .o 218 1.091 2.002 - .o 23 4 1 .. 171 2.002 -.0254 1.26 8 
8 2.255 -.0242 1.07 2 2 .256 - .o 261 1 .. 155 2 .257 -.0286 1 .. 26 7 
9 2 .495 - .. o 26 0 1.042 2.496 - .o 27 2 1.090 2 .496 -.0288 1.155 

10 2.722 - .o 27 9 1.024 2. 7 23 - • 0 28 7 1.055 2.724 -.0301 1.103 
11 2.934 -.0302 l. 0.3 0 2 .93 5 - .. 0314 1.011 2.936 -.0333 1.134 
12 3.131 -.0336 1.073 3.133 -.0366 1.167 3.134 - .0409 1.304 
13 3 .3 06 -.0334 1.010 3 .3 06 -.0339 1.025 3 .3 07 -.0347 1.049 
14 3.465 -.0350 1.011 3.466 - .03 56 1.028 3.467 -.0366 1 .o 56 
15 3.604 -.0364 1.010 3.605 -.0369 1.0 23 3.606 -.0376 1.044 
16 3.725 -.0377 1.013 3.726 -.0384 1.032 3.727 -.0396 1.063 
17 3.823 -.0387 1.013 3.824 -.0395 1.032 3.825 - • 0407 1.063 
18 3.901 -.0394 1.010 3.901 -.0400 1.0 25 3.902 - • 0 410 1 .o 51 
19 3.956 -.0398 1 .'006 3.956 -.0401 1.014 3.957 -.0406 1.0 26 
20 3.990 - .0403 1.010 3.990 - .040 9 1 .o 26 3 .9 91 -.0420 1.052 

Filters 
1 0.249 - .13 96 48.850 0.217 -.1848 64.871 0.163 - • 23 06 81 • 6 26 
2 0.508 - .3 56 5 57.470 0.431 -.4668 7 3 .485 0 .266 -.5927 91.255 
3 0.746 - • 5 523 59.500 0.631 - • 7 06 4 7 4 .56 2 0.422 -.8189 88.895 
4 1.0 93 - • 7 97 2 58.920 1.040 -1.051 71.058 0.966 -1.298 80 .23 0 

Table 7.6 Positive Position Feedback Control with Tuning Filters 
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turns out to be within 6% of the actual prescribed value. This error is 

mainly attributed to the presence of off-diagonal couplings. (By ignoring 

the coupling terms, the closed loop damping ratios forthe first mode in 

each of the 3 cases are 0.2903, 0.3914, 0.4971 whereas actually they are 

0.2839, 0.3785, 0.4723 respectively.) As predicted from theory, the 

uncontrolled modes all result in higher than natural closed loop damping. 

If fewer filters than controlled modes are used, the technique still 

applies though the performance deteriorates. This is expected since we 

are using less resources to do more work. If we assumed that NA= 4 and 

Nf = 2, so that one filter is used to tune the first and second mode and 

the other used to tune the 3rd and 4th, and filter parameters are selected 

more-or-less by intuition, the outcome for r;, = 0,3 
p 

is as shown in 

Table 7.7 (i). Note that the scalar gains are now considerably higher 

than before, and one of the filter modes actually degenerates into 2 real 

roots, one of which is only marginally stable. Also the importance of 

fine tuning the filters is clearly demonstrated in Table 7.7 (ii), where 

the first filter frequency is slightly altered from 0.5 to 0.48. As a 

result one filter mode becomes unstable. Note that even though all the 

Y; are less than unity, one eigenvalue of P has become negative hence 

indicating instability. Furthermore, note that the allowable ~p is 

much more restricted in this case and the prescribed value is not quite 

the same as the actual value [compare the values of 58.33 and 52.72 with 

the prescribed value of 0.3]. This can be attributed to the decrease in 

closed loop frequency of the first mode from its open loop frequency. 
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( i ) (ii ) 

wf1 =O .,50 Wf1 •0 .,4 8 
wf 2 •l .10 Wf2'"'l.lO 

:\.(P)>O V. 
J J 

l e.v. of Pis negative 

Yl =O .. 6861 y 1 =O .6322 
Y2 =O .6793 y 2 =O .87 39 
Y3 =0.1621 y 3 •O .1621 
Yi. =0 .1620 Yi+ =O .1620 

MO,DE 
C-L C-L C-L C-L C-L C-L 
Freq, Damp. z:;(%) Freq. Damp. d % ) 

1 0.135 - .. 0967 58.330 0.155 -.0961 52.720 
2 0.679 - .0187 11.520 0.694 - .. 0778 11 .150 
3 0.882 -.0968 10.910 0.882 - • 0 96 8 10 .. 910 
4 1.204 -.0873 7. 232 l.,204 -.0873 1. 23 2 
5 1 .. 474 -.0364 2.467 l.474 -.0363 2.466 
6 1.744 - .. o 216 1. 23 9 1. 7 45 -.0219 1.255 
7 2.003 -.0214 1.070 2.003 - .o 214 1 .. 069 
8 2.255 - .o 240 1.064 2.255 -.0240 1.064 
9 2 .. 496 -.0257 1.030 2 .496 - .. o 257 1.030 

10 2 .. 7 22 - • 0 27 8 1.022 2.722 - • 0 27 8 1.0 22 
11 2 .934 -.0303 1.028 2. 934 -.0302 1 .. 028 
12 3.130 -.0325 1.039 3.130 -.0325 1.039 
13 3 .3 06 -.0334 1.010 3 .3 06 -.0334 1.010 
14 3.465 -.0350 1.010 3.465 -.0350 1.010 
15 3.605 -.0363 1.006 3.605 -.0363 1.006 
16 3.725 -.0377 1.012 3.725 -.0377 1.012 
17 3.823 - .03 86 1.009 3.823 -.0386 1.009 
18 3.901 -.Q393 1.009 3.901 -.0393 1.009 
19 3.956 -.0397 1.004 3 .956 -.0397 1.004 
20 3.990 - .0401 1.006 3.990 - .0402 1.006 

Filters 
1 0.429 -.2061 43. 3 00 0 .412 -.1945 42.730 
2 0.000 - .3 86 7 100.00 0.000 +.0427 *-100.0 

0.000 -.0619 100.00 0.000 - .46 91 100.0 
3 0. 7 53 -.5482 58.880 0. 7 53 -.5481 58.880 
4 0.766 -.5767 60.170 0.766 -.5767 60.170 

Table 7.7 Position Feedback: Effect of Fine Tuning 

NA= 4, NF= 2, z;;p= 0.3, ,f= 0.6, z;;n= 0.01, S= {3,8,13,19} 

* Unstable Mode 
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7.7 STABILIZATION BY QUASI-LINEAR STIFFNESS MODIFICATION 

Unlike all previous cases, where linearity permits the evaluation of 

system's eigenvalues;, the present technique is nonlinear, and hence the 

damping characteristics of the modes can only be studied by direct in

tegration of the equations of motion. It is convenient to examine the 

system in the modal space; hence, the differential equations to be 

integrated are 

(7.7.1) 

(7.7.2) 

(7.7.3) 

in the case of "Global" control and 

(7.7.4) 

in the case of "Local" control. 

In order to highlight the non-linear damping, the natural viscous 

damping .is assumed zero (ie. v,= O]. Since we have not come up with an 

optimal way of determining the scalar gain tk, k = 1,---n, we shall 

compute with various values of -~ ck and present the best case only. 

The equations (7.7.l) and (7.7.2) are solved using a 5th and 6th order 

Runge-Kutta-Verner differential equation subroutine, and due to the re

stricted capacity of this subroutine, we shall only consider an N = 5 
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elements example. The other system parameters chosen for simulation are 

n = 2, S = [1,3}, (i.e., 2transducers are placed across the 1st and 2nd, and 
k 

the 3rd and 4th elements). _£. = 1.0 (and hence the 5 modal frequencies 
mo 

are respectively 0.5176, 1.000, 1.4142, 1.7321, 1.9319). The initial 

conditions are chosen such that all 5 modes are excited initially and 

each is given unit initial velocity. A representative case for each of 

"Global" control and 11 Local 11 control is presented in Fig. 7.1 to Fig. 7.6 

where the energy (total and individual), modal displacement and physical 

displacement are plotted as a function of time. We shall summarize our 

experimental findings in the following points. 

(l) In the "Local II control case (Fig. 7.4-7 .6), the energy decay 

cha racteri sti cs are very good indeed; tot a 1 energy is reduced to about 

2% of its initial energy after 20s. Although energy OJ individual 

modes fluctuates, the total energy decreases monotonically. It is also 

observed that the higher order modes generally decay faster than the 

lower order modes which is consistent with intuition. 

(2) In the "Global" control case, the total energy decay is good 

up to about 20s. From then on it follows a flat plateau where there is 

very little appreciable decrease in energy. The main bulk of the total 

energy is contributed by the first mode. 

(3) The choice of transducer location plays an important role in 

determining the energy decay characteristics, but is unfortunately de

pendent on the initial conditions of the system. For example, if S 

were chosen to be [l ,4}, then the 1st mode is found to be better con

trolled but the 2nd mode is not controlled at all; as a result the 2nd 

mode's energy remains constant! This is easily explained as the pairs of 
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elements (1,2) and (4,5) have zero relative displacement in the 2nd mode; 

hence, the transducer across them cannot exhibit any control over them. 

In order to minimize control effort, the transducer should be placed 

near the node (where the s1ope is the greatest) of the modes which are 

more likely excited. 

In comparison, the existence of an energy plateau in the "Global" 

control indicates that "Local" control is really the better of the two; 

it also has the added advantage that it is easier to implement physically. 
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CHAPTER 8 

CONCLUDING REMARKS 

Neither seeking nor avoiding mathematical exercitation, 
we enter into problems solely with a view to possible 
usefulness for physical science. 

Lord Kelvin and Peter Guthrie Tait 
11 Treatise in Natural Philosophy11 Part IIL 

8, l ACKNOWLEDGEMENT OF PREVIOUS RESEARCH l~ORKS 

It was directed to our attention that certain works, not widely 

available, [39]-[42] contain some overlap with materials considered in 

this report. Since this notice came at a rather late date we regretably 

have not been able to include these works in our literature survey. 

Nevertheless, despite different approaches, these works turn out to be 

supportive and consistent with our present work. In particular, when the 

number of inputs and outputs are small, the concept of roll-off in the 

frequency domain analysis of Greene and Stein [39] [40] allows more 

sophisticated compensation networks to alleviate instability in the 

case of velocity feedback control. We wish to point out that the 

generalized lead compensation technique discussed in Chapter 3 is just 

one special case of these compensation techniques. 

8.2 AN OVERVIEW OF DIRECT OUTPUT FEEDBACK CONTROL TECHNIQUES 

In retrospect, the technique of direct velocity feedback is simple 

and efficient to use only when the actuator dynamics is infinitely fast. 

With finite actuator dynamics however, complications arise and unless 
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appropriately designed, certain uncontrolled modes are likely to become 

unstable. The stability of other modes are also strongly dependent on 

the natural damping of the structures, which unfortunately remains rather 

uncertain in practice. Two methods, namely, generalized lead compensation 

and gap creation are proposed as possible solutions to overcome these 

potential instabilities. Even though we have not been able to derive 

necessary and sufficient conditions for stability, our numerical 

simulation shows that these methods are indeed feasible under appropriate 

design conditions. 

Under the assumption that the rigid body modes can be decoupled from 

the vibrational modes, the use of positive position feedback proves to 

be another useful technique. Note that this assumption is necessary since 

otherwise the rigid body modes are likely to be destabilized by the use 

of positive position feedback. Additional features in the form of tuning 

filters are included in the feedback to enhance the closed loop damping 

of the controlled modes. Position feedback is concluded to be the 

potentially more important one of the two DOFB techniques primarily 

because, firstly, necessary and sufficient conditions for stability can 

be derived and are easily satisfied; and secondly, it is far less 

dependent on the uncertain natural damping of the structure. Other 

factors, such as the fact that the maximum attainable closed loop damping 

can exceed what is normally required for vibration suppression purposes; 

that uncontrolled and unmodelled modes result in higher than natural 

damping, and that accurate prescription of the controlled modes closed 

loop damping is possible, render it an attractive technique to use. 

Intuitively, position feedback is also attractive because of the fact 
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that position feedback basically retains the 11 symmetry 11 of the overall 

system. In multidimensional control this property is very important, as 

powerful analytical tools have been developed for symmetric systems but 

not for non-symmetric systems, which occur in the case of velocity 

feedback. 

In the event that conventional external actuation is not feasible, 

a possible alternative is internal or relative actuation, which we 

treated only superficially in Chapter 6. Of course, this can be imple

mented as a direct output feedback control but we choose to examine the 

use of a quasi-linear stiffness modification technique. As the systems 

are now non-linear and multi-dimensional, detailed rigorous analytical 

treatment has not been touched upon, but from numerical simulation we 

have found that, in some cases at least, this is indeed a simple, 

efficient and stable method. Two different stiffness modification 

schemes were proposed, and it was found that the "Local II control 

approach is better than the 11 Global II control approach. 

8.3 DIRECTIONS FOR FURTHER RESEARCH 

There remain a multitude of unanswered questions and unsolved 

problems in the control of QDPS. We shall list just a few below. 

(1) A necessary and sufficient condition for any control system to 

be stable is that all the eigenvalues of the closed loop system have 

negative real part However, without resorting to brute force 

computation of eigenvalues, we have not been able to establish any 

useful form of global stability theorem, either sufficient, necessary or 

both 1 for the velocity feedback system. Conceptually this is not a 

trivial problem as there is no inherent symmetry involved. Extremely 
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restrictive sufficient conditions for stability may be obtained by means 

of a vector Liapunov function [28]. Other sophisticated techniques, for 

instance, the generalized Nyquist stability criterion and multivariate 

root loci concept (43] [44]t are available in the literature, but these 

are extremely complex to use and applicable only to low order multivariate 

systems with a single parameter. Hence, they are unsuitable for our 

present application. What is really needed is a general stability 

criterion for a non-symmetric multivariate system. 

(2) There exists plenty of room for future research in the general

ized lead compensation technique discussed in Chapter 3. In particular, 

the frequency domain method of Green and Stein [39] [40] should be 

extended to the case of multiple-input multiple-output systems. Also, 

the parameters T1 and r2 in the lead network may conceivably be 

generalized into matrices to improve the overall performance. 

{3} The design procedure for position feedback is far from perfect, 

in particular, when there are fewer filters than controlled modes. Some 

considerations regarding the optimal number of filters are also desirable. 

(4) Throughout this report, the issue of robustness has not been 

discussed rigorously. An extensive study of the problem of robustness 

will not be trivial but would surely be valuable. 

(5) An optimal design for the set of feedback gains in the quasi

linear stiffness modification technique also deserves some attention, 

though again this is not a trivial problem. The non-linearity and high 

order of the system have given rise to a number of elusive but 

interesting phenomena. For example, the existence of a plateau in the 

energy decay history of the "Global" control case suggests the possibility 
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of a multi-dimensional limit cycle. This is expected to be related to 

some controllability conditions, but the details of the mechanics are 

not clear at this time. 

Other efforts, such as a detailed examination of the inter-dependence 

of the transducer locations and the controllability of various modes and 

the interaction of the transducer dynamics with the non-linear system 

are also worthwhile. 

This report is theoretical, and all theories rely heavily on 

certain basic assumptions. In the present problem, for example, if there 

exists an unmodelled system pole in the position feedback case, then it 

is quite possible that instability may result and dependence on inherent 

natural damping may become prominent again. 

In conclusion, it must be stressed that the problem of active control 

of QDPS is by no means straightforward. No one can boldly claim certainty 

in his theory, In particular, in the application to LSS, there have been 

no experiments carried out in gravity-free conditions to verify any 

of these theories. Such experiments will continue to be expensive and 

difficult to perform; but they may be required before the theories are 

ever put into practice. The multitude of ground experiments carried out 

recently (see, e.g., [45] [46]) must be regarded with some caution, as 

their resemblance to actual space structure is arguable. 
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Appendix A DERIVATION OF ASYMPTOTIC FORMULAE FOR STABILITY BOUNDARY 

Assuming that z;;n << 1 or that terms in O(z;;~) are negligible, let 

R = and rewrite (2.3.8) as 
Wa 

+ (;;nR + z;;a) ✓ (1 - R2)2 + 8z;;nz;;aR (1 + R2) 

For R < 1, and 0(1 - R2
) >> O(z;;n) 

If we assume z;; << 1, then n 

For R >> 1, and O(R 2 
- l) >> O(z;;n) 

R < l 

...:1. = 4z;; z;; (z;; R + z;; )R + (z;; - z;;nR)(l - R2
) wa n a n a a 

[ 
81; z;; R(l + R2

) ]1/2 
+ (z;; R + z;; )(R2 - 1) 1 + _n_a ___ _ 

n a ( R2 _ 1 ) 2 

= 41; z; R( z;; R + l;; ) [1 + R
2 

+ 1] + 2z;; R( R2 
- l ) 

n a n a R2 _ 1 n 

= 2z;; R3 + 2rR[4z;; 2 
- 1] + o(lR) + O(z;; 2

) n ~ a n 

D 



so that 

and hence 

or w**(y) 
l 
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4z:; 2 
- 1 

(R + _a __ ) 
3 

= Y + o{}) + 0(2;;~) 
3R 2i;nwa 

R + 
4z;;2 - 1 a 

3 ~ -(2,:wJ ½ 

1 a n a ~ 4(4z:;
2
-1) (2z:; w )

213 
l 

- 3 y j ' 
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Appendix B STABILITY ANALYSIS OF A SCALAR LEAD COMPENSATED SYSTEM 

The closed loop characteristic equation for the system (3.1 ,7) -

(3 L9) is 

(B, 1) 

Settings= iw, the real and imaginary partsof f(s) are 

(B,2) 

+ [T w~w2 + S-w2 + S w~ + y.w2 ] w 1 1 a 1 a a , 1 a (B.3) 

The 4 possible Nyquist diagrams for this characteristic equation 

are shown in Fig. Bl. The stability of the system is determined by the 

cross-over of the Nyqui$t plot with the real axis. Denoting the first and 

second cross-overs on the real axis as t1 andt:.2, respectively, then the 

system is stable iff t:.1 < 0 and t:.2 > 0. If there is no cross-over, as in 

case four, the system is unstable, so a sufficient condition for in

stability (or a necessary condition for stability in reverse) is 

82 < 4 AC (B,4) 

where A= T1 

B = T1(w~ + w2 + s.s) + {S. + S) (B,5) 
1 a , a 1 a 

C = T1 w~w2 + S,w2 + B w~ + y.w2 
1 a 1 a a , 1 a 



Im 

Case I , L\ 1 < 0 , .6. 2 > 0 

STABLE 

Im 

Case 3, .6. 1 < 0, L\2 < 0 
UNSTABLE 
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Re 

Re 

Im 

Re 

Case 2 1 .6. 1 > 0, .6.2 > 0 
UNSTABLE 

Im 

Re 

Case 4, NO CROSS OVER 

UNSTABLE 

Fig. B,1 Nyquist Diagram for Lead Cor.ipensated System 
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Substituting (B.5) into (B.4) and after some algebra, the sufficient 

condition for instability is 

y
1
• > l ([T1w2 

- S,] 2 + [T1w~ - S ] 2 + T21S~B2 + 2T21B·S (w~ + w2
) a 1 1 a 1a 1a 1 a 

4T1w: 

+ 2T1(wiBi + w!Sa) - 2Trw1w: + 2S;Sa[l + T181 + T1Ba]) 

(B,6) 

From observing Fig. B.1, a sufficient and necessary condition for 

stability (stability boundary) is obviously 

More specifically, 

Re f(w*) · Re f (w**) < 0 ~STABLE 

where Re f(w) is given by (B.2) and 

w* ,w** = 

where A,8,C are defined in (8.5) 

(B.7) 

(B.8) 

The conditions for stability (or instability) given by (8.6) & 

(B.8) are nevertheless messy expressions, and involve more than one 

adjustable parameter, (yi' T1 ,and T2)·and hence are not likely to be very 

useful. 
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Appendix C MODAL FILTERING BY LAGRANGE INTERPOLATION 

Without loss of generality, consider the physical state y(x1,t) of 

a chain of N point masses distributed in the open interval (0,1) of the 

real line at S = {x 1 ,X2; ••• ,xNi with homogeneous boundary conditions at 

x0 = 0 and xN+l = 1 .0. Suppose we have Ns sensors distributed at 

Ss = { X,, JC,, ... XNs} s ' N < N , s- ( C. 1) 

and Xo=O,xN +l = 1. o. The modal state of the system ;ER N is given by 
s 

y(x1,t} 
y{t) = y(x2,t) (C,2) 

where~ is the modal matrix of the system, Assuming that the sensors can 

measure accurately with no dynamics for all frequencies,theidea of modal 

filtering is to construct a full state estimate of the modal state ~ 

by a reduced order measurement of 
y{x , t) 

_1 
y(t) = Ssy(t) = y(~2,t) (C.3) 

where Ss is the NsxN sensor location matrix defined by (C.1), Unless a 

full complement of sensors is used, the full state y(t) is unknown but 

an estimate "' _ I Y ( ~ 1 , t )] 
y(t) - A• 

y(xN,t) 

can be constructed by interpolating the sensor 

use of the Lagrange interpolation formula 

(C,4) 

measurement y(t) by the 



A 
y(x,t) = 

where 

or 
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NS 
I tJ. (x)y(xJ., t) 

j=l 
(C,5) 

(C. 7) 

An explicit formula to generate these coefficients a1j in terms of 

{)<0 ,xi, ... xN +l} can be found in [47], Consequently 
s 

and hence 

where 

and 

(
Ns ~ N +l 

+ .l aN +1 J. y(xJ.,t) x 
5 

J=l s ' 

A 
y(t) = r A y(t) = r Ass y(t) 

l X1 

1 X2 

r = 

l 

N +1 s 
• X1 

N +l s 
, X2 

'N +l 
X S 
N 

(C.8) 

( C. 9) 

(C.10) 
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A = (C.11) 

A 
The estimated modal state ~(t) is then obtained from the estimated 

A 
state y(t) by modal filtering 

(C,12) 

Finally the matrices G and H as required in Chapter 4 are given by 

and 

G = 4lTrAS
5

'P 

H = q,TfA 

(C.13) 

(C.14) 
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