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Abstract

Of late, there has been need for rigorous first-principles theoretical considerations
of materials that are far removed from equilibrium. This is especially true as
nonequilibrium materials of all shapes (e.g., thin film structures) and sizes (e.g.,
nanocrystalline composites) gain ever-increasing technological importance. To
this end, the main contribution of this dissertation is to the study of the kinetics
of disorder—order transformations in highly nonequilibrium binary alloys, specif-
ically body-centered cubic alloys exhibiting B2, D03, and/or B32 order at equilib-
rium. This study takes several independent approaches. Chapter 2 presents two
analytical methods. The first of these, a master equation method, is formulated
in the Bragg-Williams or point approximation. The second analytical technique
employs the path probability method of Kikuchi in the Bethe or pair approxima-
tion. Chapter 3 employs kinetic Monte Carlo simulations instead. Apart from
the presentation of individual results using these three different techniques, the
thermodynamic and kinetic trends exhibited by these different approaches are
compared and discussed. One of the more compelling features exhibited by all
three of these diverse approaches is the appearance, during ordering, of certain
well-developed transient states, which do not persist at equilibrium, e.g., the tran-
sient appearance of B2 order during ordering in an alloy that exhibits equilibrium
B32 order. These transient states are discussed within the context of pseudosta-

bility. Central to the notion of pseudostability is the concept of a free energy



vii
surface or manifold in order parameter space. While it is quite straightforward
to obtain a closed-form, analytical (albeit approximate) expression for the config-
urational entropy and free energy in the master equation method and the path
probability method, there is no simple, direct means of obtaining the same in the
kinetic Monte Carlo simulations. Chapter 4 seeks to remedy this limitation of
the Monte Carlo method and introduces a hybrid Monte Carlo—cluster variation
method approach to order-disorder kinetics. This method is used to reexamine
some of the results of Chapter 3 in the context of the time evolution of the free
energy. Chapter 5 summarizes the results of the preceeding chapters and suggests

avenues for further investigation.
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Chapter 1

Introduction

Einstein is reputed to have remarked that if any one branch of physics would
stand the test of time, it would be equilibrium thermodynamics. The intervening
years have largely justified that bold statement. The foundations of equilibrium
thermodynamics have withstood the ever-increasing sophistication of experiments
designed to test them. If anything, the field has grown in strength and stature
with such milestones as Onsager’s tour-de-force solution [1] of the two-dimensional
rectangular lattice Ising [2] model and Wilson'’s application of the renormalization
group to the study of critical phenomena [3,4]. There is just one thing wrong with
this rosy picture. Many technologically important materials are not in thermody-
namic equilibrium!

This is not to say that there have been no efforts in the study of nonequilib-
rium thermodynamics and statistical physics. However the traditional emphasis
on equilibrium systems has resulted in kinetic studies being somewhat neglected.
This is further exacerbated by the fact that including time-dependent effects
greatly increases the complexity of the system being studied. As such, many
early theoretical efforts at treating nonequilibrium systems did not stray far from
the relative security of well-established results in equilibrium thermodynamics.

For instance, one of the early forays into nonequilibrium thermodynamics was



Onsager’s linear response theory [5-7], which considered external perturbations
sufficiently weak as to justify a linear approximation to their effects. In contrast,
many of the systems of interest in materials science today are in states that are far
removed from equilibrium, where we would not expect linear response theory to
hold. Tt is one of the theses of this dissertation that a first-principles (inherently
nonlinear) approach is essential for the proper treatment of the kinetics of such
far-from-equilibrium systems.

The main contribution of this dissertation is to the study of the kinetics of
disorder—order transformations in highly nonequilibrium binary alloys. These
efforts take the form of analytical approaches (Chapter 2) as well as the more
brute-force Monte Carlo method (Chapter 3). In addition, I will introduce a
third approach (Chapter 4) which is a synthesis of the two approaches mentioned
previously. In the present introductory chapter, I will set the stage by briefly
reviewing various concepts in equilibrium and nonequilibrium thermodynamics of
relevance to the points raised in the chapters to come. These concepts will serve
as a useful framework within which to discuss (Chapter 5) the core results of the

three central chapters.

1.1 A Brief History of the Study of Nonequi-
librium Thermodynamics and Kinetics

As mentioned previously, one of the earliest attempts at treating nonequilibrium
thermodynamics was linear response theory [5-7], which arose out of the consid-
eration of fluctuations in equilibrium thermodynamic systems [8-10]. The theory
of fluctuations enables us to express the fluctuation in a particular thermody-
namic quantity in terms of the relevant extensive and intensive variables of the

system under study. Perhaps the most well-known of such studies of fluctuations



in equilibrium thermodynamics is Einstein’s seminal treatment of Brownian mo-
tion [11-18]. He was able to demonstrate the relationship between the mobility
of a fluid system and the temperature through what would later be known as
Einstein’s relations. These results are important in answering the question of
how a physical system that is not initially in equilibrium approaches a state of
equilibrium, and led naturally to the later work of Onsager [5,6] and Kubo [7].
The limitation of linear response theory is that it is only valid for small de-
viations from equilibrium. Nevertheless it served as a historical spring-board for
more sophisticated analytical approaches to nonequilibrium kinetics, two of which
are the subject of Chapter 2 of this thesis. For instance, soon after the work on
Brownian motion by Einstein [11-18] and others [19,20], Fokker [21] and Planck
[22] derived a partial differential equation for the probability distribution f(z,t)
of a particle in the Brownian ensemble. The Fokker—Planck equation is a specific
instance of the more general Master Equation, an integral-differential equation

which takes the form

?-f%?t_) - /;O:o i_f(:c,t) W(l‘, I,) + f(xvt) VV(ZJ’Z’)J dl”, (1'1>

where W (z,z') dx’ 6t is the probability of a transition from the position z to a
position in the interval (z', z'+dz') in time 6t, and W (z', 2)dz’ 6t is the probability
of a transition from the interval (z',2’ + dz') to the position z in time 6t [23].
It should be clear from its form that the Master Equation describes a process
that is inherently Markovian—the probability transition function W (z, z'), which
mediates the transition, depends on the position z of the particle at time ¢ but
not on the previous history of the particle. The particular choice of W(z,z') to
be used is model-dependent and determined by the problem under consideration.

This accounts for the versatility and richness of the Master Equation method.



In the first half of Chapter 2 of this thesis, we will adopt and adapt the Master
Equation to our own purpose, viz., the study of the kinetics of disorder—order
transformations in binary alloys.

The path probability method of Kikuchi [24-27] may also be considered as
a special instance of the Master Equation Method. Historically, however, the
path probability method was developed as a time-dependent elaboration of the
the cluster variation method [28-35]. Just as the cluster variation method works
by minimizing a free energy expression in terms of cluster probabilities, the path
probability method seeks the path linking states that is most probable. In essence,
the method replaces the myriad of possible path contributions spanning a time
interval (¢,t + 6t) with a single path. This concept of the most probable path
is akin to Feynman’s path integral formulation of quantum mechanics [36-39]
and Fermat’s principle of least action. In the second half of Chapter 2, we will
apply the path probability method in the pair approximation to the study of
disorder—order kinetics in binary alloys.

The original Metropolis [40] implementation of the Monte Carlo method stud-
ied the equilibrium configurations in the canonical ensemble of an Ising spin system

with Hamiltonian
{4,3) i

where H is the Hamiltonian, J is the nearest-neighbor pair interaction, H is
the external magnetic field, S; € {~1,+1} is the spin at site i, and the first
summation is over all nearest neighbor pairs (i, 5). Later, Fosdick et al. [41-43]
and Guttman [44] adapted the method to the study of binary alloys using a spin-
flip mechanism. Although the initial implementations of the Monte Carlo method

were concerned with equilibrium systems, it was soon realized that the method



could be used to simulate kinetic processes as well [45-48]. With its use in the
study of kinetic processes, it was apparent that the choice of mechanism used in
the Monte Carlo simulation could have a significant effect on the kinetic evolution
and resulting microstructure of the system being studied [45-48]. For instance, in
Monte Carlo simulations of ordering, the pair exchange mechanism and vacancy
exchange mechanism give strikingly different results [41-48]. In contrast, many
equilibrium quantities such as the critical temperature are quite insensitive to the
mechanism of order evolution. In Chapter 3, we will use the vacancy mechanism

in Monte Carlo simulations of disorder—order kinetics in binary alloys.

1.2 Spinodal Decomposition

The notion of a spinodal instability (or Gibbs instability) is frequently illustrated
by considering the dependence of the Helmholtz free energy F' on the composition
¢ for a mixture exhibiting phase separation. Figure 1.1 shows schematically such

an F'—c dependence at some temperature 7. The points labeled B and F in Fig. 1.1

e ; 2

correspond to local minima in the free energy curve (%—g = 0, %C—§ > 0), whereas
. . 2

the point D corresponds to a local maximum (%ﬁl = 0, %—§ < 0). A homogeneous

thermodynamic system in equilibrium at the composition of B is therefore stable
against small local fluctuations in the composition—such fluctuations would resqlt
in an overall increase of the free energy of the system and would not be favored.
In contrast, a homogeneous system at the composition of D will be unstable
against small fluctuations in the composition about D. Such fluctuations along
the free energy curve will result in an overall lowering of the free energy and will
be favored, resulting in the system undergoing a phase separation. The term
spinodal decomposition is commonly used for phase separation processes such as

this, for which there is no free energy barrier to the phase separation [49-51].
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Figure 1.1: Helmholtz free energy F as a function of composition ¢ at some

temperature T for a mixture exhibiting phase separation.




The boundaries between the two types of behavior described above occur where

%265 = 0 (at the points labeled C and E) and are referred to as spinodal points. The

curvature of the free energy is positive in the regions ABC and EFG and negative
in the region CDE. The spinodal decomposition process, if allowed to proceed to
completion, eventually results in a two-phase mixture with compositions near B
and F in Fig. 1.1. This, in essence, is the reasoning behind the familiar common-
tangent construction. Note that the two contact points of the common tangent
with the free energy curve do not necessarily coincide with the two local minima
of the free energy curve (at points labeled B and F in Fig. 1.1).

Recently, Cénédese and Kikuchi [52] have treated the ferromagnetic Ising
model with first-nearest-neighbor interactions on the two-dimensional triangu-
lar lattice. Their approach used the cluster variation method of Kikuchi [28-35].
in a series of increasingly accurate approximations, specifically the 1-, 2-, 3-, 4-,
and 5-triangle approximations. Earlier work by Kikuchi [53] had shown that this
ladder sequence of cluster approximations converged to the exact two-dimensional
solution. In addition, Cénédese and Kikuchi [52] also considered the exact so-
lution of the triangular lattice Ising model. The resulting excess free energy wvs.
composition! curves obtained using this sequence of approximations for a fixed
choice of E;J‘f is shown in Fig. 1.2. The value of Eﬁ was chosen so as to demon-
strate strong phase separation. As can be seen from Fig. 1.2, as the size (and
hence the accuracy) of the cluster approximation is increased, the excess free en-
ergy curves asymptote to the exact solution. This is reassuring. More problematic
is the behavior of the excess free energy wvs. composition for the exact solution,

which exhibits an extended region in the middle of the composition range which

is horizontal and flat with no trace of the central hump exhibited by the lower

1The composition p is simply the fraction of up (or equivalently down) spins.
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Figure 1.2: Excess Helmholtz free energy F as a function of composition p for
a fixed value of E;J—T‘ for the two-dimensional triangular lattice Ising model. The
results shown are for the pair, 1-triangle, and 3-triangle approximations as well

as the exact solution.



order cluster approximations! Furthermore, the curvature of the excess free en-
ergy as a function of composition %271; for the exact solution in Fig. 1.2 is zero in
the flat central region and nonnegative throughout the entire composition range.
The spinodal points have vanished! The central hump in the excess free energy
vs. composition curves exhibited by the lower order cluster approximations—in
particular, the regular solution or point approximation—has in the past frequently
been interpreted as the driving force for spinodal decomposition, as depicted ear-
lier in Fig. 1.1. However, according to the results of Fig. 1.2, it would seem that
this central hump in the free energy is but an artifact of the level of approximation
used and is not present in reality!

As mentioned in the previous paragraph, the spinodal points, defined as the
points on the free energy vs. composition curves where the curvature changes sign,
vanish in the exact solution of Fig. 1.2; at no point does the curvature of the free
energy become negative. However, since the positions of the spinodal points are
well-defined for the finite cluster approximations, it may be possible to define the
spinodal points of the exact solution in a limiting sense. Cénédese and Kikuchi
[52] have attempted to do precisely that and the fruits of their labor are shown
in Fig. 1.3. Their procedure was as follows. For a given magnetization M and
pair interaction J, they found the temperature T, at which M coincided with the

92F

position of the spinodal point (552— = (). Likewise, they found the temperature

T,y at which M coincided with the position of the phase boundary (%% =0). The
above procedure was repeated for a series of triangle cluster approximations (1-,
2-, 3-, 4-, and 5-triangle clusters) and two different values of the magnetization
(M = 0.80 and M = 0.85). Figure 1.3 shows T}, — 75 graphed as a function of

—— for M = 0.80 and M = 0.85, where n is the number of triangles in the cluster

approximation. As can be seen an approximately linear relationship between
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Figure 1.3: Ty, — T as a function of 73—;—1— for M = 0.80 and M = 0.85, where T},
is the temperature corresponding to the phase boundary, T is the temperature
corresponding to the spinodal point, n is the number of triangles in the cluster

approximation, and M is the magnetization.
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Ty, — 15 and T—H% is obtained. Furthermore, the intercepts of the two linear fits to
the data are close to zero, suggesting that lim, . T, — Ts = 0. In other words,
the spinodal point and the phase boundary coincide in the exact solution!

The results of Figs. 1.2 and 1.3 are susceptible of a ready explanation. As the
size of the base cluster (and the accuracy of the corresponding approximation)
in the cluster variation method is increased, the base cluster is better able to
reproduce the cluster probabilities that would be found in a real crystal lattice at
equilibrium. For instance, in an alloy undergoing phase separation, the spanning
length of the base cluster must be at least as large the wavelength of the spinodal
decomposition in order to accurately reproduce the different phases and phase
boundaries in the alloy.? In the limiting case, the exact solution in Fig. 1.2 is
able to reproduce the entire phase separation process. If the exact solution of
Fig. 1.2 can be thought of as corresponding to the cluster variation method using
a triangle ladder cluster of infinite length as the base cluster, then that cluster
would be large enough to reflect the phase separation undergone by the entire
(infinite) crystal lattice. Configurations of such a base cluster which reflect this
phase segregation would consequently have a high probability relative to those
that do not do so. Considered in this light, we see that the excess free energy vs.
composition curve for the exact solution essentially recovers the common-tangent
construction of Fig. 1.1.3

Does the above elucidation imply that the phenomenon of spinodal decom-
position is a figment of our imagination? Not at all. After all, there is much

experimental evidence to support its existence. In addition, Monte Carlo simula-

2The need for large base clusters is less pressing for the case of alloys undergoing ordering
since the base cluster only needs to encompass the period of the ordered structure, and this is
usually quite small. However, even here, larger base clusters are needed in order to accurately
model larger scale features such as antiphase domains and domain boundaries.

3The excess free energy is nonanalytic at the phase boundary.
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tions of spinodal decomposition exhibit microstructural and growth features that
are strongly reminiscent of the experimental evidence. What it does point out
is the need for caution in using equilibrium results to interpret what is really a
kinetic phenomenon. In particular, the common interpretation of the miscibility
gap in the regular solution or mean-field approximation as the thermodynamic
impetus for spinodal decomposition is naive at best.

Cénédese and Kikuchi [52] have proposed a way out of this dilemma by consid-
ering the excess free energy vs. composition curves from a kinetic viewpoint. Their
argument is illustrated by Fig. 1.4. The lower set of free energy curves in Fig. 1.4
correspond to an equilibrium temperature 7}, which is above the temperature at
which phase separation is precipitated in the exact solution.* An alloy with com-
position p = 0.5 at this temperature T}, should be homogeneous and single phase
at equilibrium. Consider what would happen if such an equilibrium system were
instantaneously quenched from the temperature 7}, to a much lower temperature
Ti. Cénédese and Kikuchi [52] argue that the temperature of the allc;y should ho-
mogenize quite rapidly to the heat bath temperature 7). However, it takes much
longer for the configuration of the alloy to equilibrate to the lower temperature
Ti. In other words, immediately after the T}, — T; quench, the internal energy F
and configurational entropy S are essentially identical to the corresponding values
before the quench. We can therefore write a kinetic free energy expression as
follows:

F = E(Ty) - TiS(Th), (1.3)

where Fj is the kinetic free energy immediately after the quench and E(T}) and

S(Ty) emphasize the fact that the internal energy and configurational entropy

4The free energy curve for the pair approximation (and, one would expect, that of the point
approximation as well) at this temperature exhibits some phase separation but this is merely
an artifact of the lack of rigor of the approximation.



13

EXCESS FREE ENERGY

PAIR
- ——
-_0‘ = \\_o" / \\_’ ]
T~ARTY
1 1 1 | |
o} 0.2 04 06 08 10

COMPOSITION, p
Figure 1.4: Excess Helmholtz free energy F as a function of composition p for

the two-dimensional triangular lattice Ising model. The results shown are for the
pair, 1-triangle, and 3-triangle approximations as well as the exact solution. The
lower and upper sets of curves represent the excess free energy before and after a

high temperature (7}) to low temperature (73) quench, respectively.
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correspond to the temperature before the quench. Such an expression for F] was
calculated as a function of composition for various levels of approximation and is
shown in the upper set of curves of Fig. 1.4. As in the case of Fig. 1.2 and the lower
set of curves in Fig. 1.4, these free energy curves converge to the exact solution as
the level of approximation is increased. More interestingly, however, the central
hump in the free energy persists in the exact solution, as do the spinodal points.
Considered in this light, we see that we can salvage the concept of the spinodal if

we are willing to admit a kinetic interpretation of the free energy.

1.3 Stability, Metastability, and Instability

This downhill path is easy, but there’s no turning back.

Christina Rossetti

The concepts of stability and metastability have much currency in materials
science today, and may be illustrated using Fig. 1.1. The point B in Fig. 1.1
corresponds to a global minimum of the free energy. A homogeneous system
corresponding to this point is in stable equilibrium in the sense that any small
fluctuation in the composition along the free energy curve results in an increase
of the free energy. The point F in Fig. 1.1, though at a minimum locally, is not a
global minimum of the free energy. A homogeneous system corresponding to this
point is not in stable equilibrium. If its composition is allowed to vary, as in a
grand canonical ensemble, it will eventually find its way to the point B, which has
a lower free energy overall. In order to do so, however, it appears that the system
will have to overcome the free energy barrier corresponding to the central hump
in Fig. 1.1. Such nonglobal minima in the free energy are commonly referred to as

metastable. For the sake of completeness, we should also mention that a system
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at the point D, which is at a local maximum of the free energy, is in unstable
equilibrium.

As mentioned in the previous paragraph, for an alloy to go from F to B along
the free energy curve, the process would appear to involve a temporary increase
in the free energy. This suggests that such a transition would not be favored.
This would result in the system at the point F being long-lived, which would help
account for the technological importance and usefulness of metastable materials.
In reality, the above argument is specious and somewhat misleading. For instance,
it implicitly assumes that the system changes its composition uniformly and ho-
mogeneously in going from F to B and that it does so along the free energy curve.
In actuality, however, the transition would probably occur nonuniformly and het-
erogeneously via nucleation and growth of the composition corresponding to B. If
this were true, then the system would essentially move along the common tangent
from F to B. In other words, there would be no increase of the free energy in
going from F to B, and no free energy barrier to be overcome! This is concordant
with the results of Cénédese and Kikuchi [52] depicted in Fig. 1.2 of the previous
section, where the free energy in the exact solution follows the common tangent in
the region of phase separation. In a real alloy system, the nucleation and growth
of the state corresponding to B would be hindered by the need for long-range
diffusion and transport of atoms to form the B phase.

However, the above-mentioned absence of the free energy barrier is only true
from a macroscopic viewpoint. At the microscopic or atomic level, there is still
an activation barrier to the nucleation of the phase with the lower free energy.
This nucleation barrier is similar to the ones commonly described in introductory
materials science textbooks [54] and can be illustrated with reference to Fig. 1.5.

Counsider the formation of an incipient spherical nucleus of the phase with lower
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Figure 1.5: The work W required for the formation of a spherical nucleus of radius

T.
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volume free energy (corresponding to B in Fig. 1.1) in the primary homogeneous
phase (corresponding to F in Fig. 1.1). The work required W for the formation

of such a nucleus having radius r can be written as
9 4 3
W(r) =4nry — 3" G, (1.4)

where v is the surface energy of the interface between the two phases and G is the
magnitude of the difference in volume free energies of the two phases. Straight-
forward differentiation of Eq. 1.4 with respect to r gives the critical radius 7 of
the nucleation process as

2
Ferit = -(-} (1.5)

Nuclei with radii less than the critical radius will tend to decrease in size whereas
nuclei with r > 7.y will tend to snowball and precipitate the second phase. The

work required for the formation of this critical radius is

16 3

I/V(T‘Cfit> = —5"71'@ (16)

This energy barrier for the formation of the nucleus must be overcome for the
nucleus to increase in size.

One major difference between the energy barrier to nucleation in the micro-
scopic scenario and the ostensible free energy barrier in the macroscopic picture
lies in the magnitudes of the energies involved. In the former case, the critical
radius is typically on the order of a few atom diameters and the energy barrier to
the formation of a nascent nucleus is small enough to be provided by local thermal
fluctuations. In contrast, the system at F in Fig. 1.1 is to be considered as being
in the thermodynamic (large N) limit, and any free energy barrier would be quite
large and not easily surmountable. In light of this, it is clear why the system at F

in Fig. 1.1 will tend to transform to the point B by heterogeneous nucleation and
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growth of the second phase rather than an homogeneous transformation along the

equilibrium free energy curve.

1.4 Pseudostability

Things are in the saddle ...
Ralph Waldo Emerson

Local minima and maxima are not the only types of stationary points which
may occur in the free energy curve. For instance, in one dimension, there may exist
stationary points of inflection, such as the hypothetical one depicted in Fig. 1.6.
At the point A in Fig. 1.6, the first and second derivatives of the free energy with

respect to composition are zero (%% = 0, %275 = 0). Immediately to the left of

point A, the second derivative of the free energy is positive (‘93—125 > 0), whereas

8F
dc?

just to the right, it is negative ( < 0). A system at the point A, if allowed
to vary its composition homogeneously along the equilibrium free energy curve,
would eventually find its way to point B, which is a global minimum in the free
energy.

In two dimensions, such stationary points may take the form of saddle points

in the free energy surface. A saddle point in the free energy F({¢;}), where {;}

represents the relevant state variables, is characterized by having

OF
o6

0 V& (1.7)

with the additional constraint that the eigenvalues of the Hessian M;;, where

O*F

(1.8)

have mixed signs [55]. An example of such a saddle point in the free energy

surface is shown in Fig. 1.7, which was abstracted from Ref. [55]. The results
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Figure 1.6: Helmholtz free energy F as a function of composition ¢ at some

temperature T for a system exhibiting a stationary point of inflection.
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Figure 1.7: Contour plot of the free energy function in the pair approximation for
a binary equiatomic bee alloy exhibiting B2 order (left) with the main features
of the the free energy surface indicated (right). The random disordered state is
labeled ‘D’, the absolute (global) minima by ‘m1’ and ‘m2’, the absolute maximum

by ‘M’, and the saddle point by ‘P’.
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shown in Fig. 1.7 were calculated for a binary equiatomic bce alloy in the pair
approximation using the Fowler—-Guggenheim entropy correction [56]. The saddle
point in Fig. 1.7 is marked P. In the kinetic path that accompanied this figure
in Ref. [55], an initially disordered alloy (at the point D) underwent a relatively
rapid initial short-range order relaxation to the saddle point P. There was no
significant development of long-range order during this initial stage. Once at the
saddle point, the alloy remained in this quiescent state for an extended period
of time before continuing to develop long-range order as well as additional short-
range order. This process took the alloy from P to one of the two global minima
(either m1 or m2) in Fig. 1.7. This second leg of the kinetic path followed a more
gradual slope with a longer relaxation time than the rapid initial short-range
order relaxation. The difference in the gradient of the free energy surface can be
discerned from the spacing of the contour lines in Fig. 1.7.

Why should such saddle points in the free energy surface be of importance?
The point may be argued as follows [55]. Quite simply, we expect the thermo-
dynamic driving force for the transformation to vanish at such saddle points. In
general, we may take the time rate of change of a given state variable ¢; to depend

on the gradient of the free energy in the following manner

de, oOF
N, OF 1.
dt %?Wa@’ (1.9)

where the ;; are the kinetic coefficients of the system [57]. The above equation

may be familiar from Onsager’s development [5], where the ‘% are our generalized

currents and the g—g our generalized (driving) forces. Substituting Eq. 1.7 into
J

Eq. 1.9, we find that
dg

=0 Vg (1.10)

at the saddle point. This explains why the saddle point is associated with the long-
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lived quiescent state in Fig. 1.7 [55]. The term pseudostable [55] has been coined
to characterize such states which, though neither stable nor metastable, falsely
give the appearance of being stable owing to the vanishing or near-vanishing of
the thermodynamic driving force for change.

The eigenvalues of the Hessian M;; having mixed signs at the saddle point
serves to distinguish it from other stationary points such as local minima and
maxima. More than that, however, it provides the alloy a convenient means of
reaching the saddle point. In fact, that is precisely what happens in the case
illustrated by Fig. 1.7 [55]. The kinetic path of the alloy arrives at the saddle
point by coming down a concave ‘wing’ of the saddle (from D to P in Fig. 1.7)
and leaves via a convex ‘wing’ of the the saddle (from P to either m1 or m2). All
the while, the free energy of the alloy is monotonic nonincreasing as a function
of time. In contrast, even though the thermodynamic driving force also vanishes
at points of local maxima in the free energy surface, it is not at all clear how the
alloy will ever arrive at such a point, at least under isothermal conditions, since
it faces an uphill struggle against the free energy gradient in order to do so. By
this argument, local maxima are generally not expected to play a major role in
the generation of long-lived quiescent states during the relaxation of an alloy to
equilibrium under isothermal conditions. An exception to the above argument
may obtain during nonisothermal processes, when the free energy surface is time-
dependent and an alloy may find itself poised precariously at a local maximum as
a result of, say, a high- to low-temperature quench.

In using Eq. 1.9, we implicitly assumed a linear response of the system to the
free energy gradient. In retrospect, we were justified in making this assumption
since the gradient of the free energy surface is ﬁear-vanishing in the vicinity of the

saddle point. If we make the reasonable assumption that the free energy surface
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is time-invariant (%{— = (), as it would be for a fixed temperature in the canonical

ensemble, we find, using

dF OF 0¢, OF
— = =ty 1.11
DS o i (L11)
and Eq. 1.10, that
dF
@ 1.12
= =0 (1.12)

at the saddle point. In other words, the free energy is stationary at the saddle
point. The fact that the free energy is varying quite slowly as a function of time in
the vicinity of the saddle point suggests that it is reasonable to use an equilibrium
free energy surface to explain the kinetic behavior of the alloy—the slow evolution
of the state of the alloy gives the system ample opportunity to explore most or all
of the accessible points in phase space.

Using the fact that Eq. 1.12 holds at saddle points in the free energy surface
(although keeping in mind that the converse is not necessarily true), we should
be heedful of situations where the free energy is stationary in time as reflecting
possible pseudostable states or saddle points in the free energy surface. Using
this cue, we will propose possible candidates for pseudostability in the following

chapters.
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Chapter 2

Analytical Theories of
Disorder—Order Transformations

In this chapter I present two distinct but related analytical approaches to the
study of disorder—order transformations in binary becc alloys. Section 2.1 employs
a master equation method that is formulated in the Bragg-Williams or point
approximation. The method considers the bce crystal lattice as comprising four
fce sublattices with twice the lattice constant of the parent bece lattice. Both first-
and second-nearest neighbor pair interactions are used in order to allow for the
formation of B2, D03, and B32 order. Section 2.2 makes use of the path probability
method in the Bethe or pair approximation. As in the previous instance, a four-
sublattice model is used together with first- and second-nearest neighbor pair

interactions.

2.1 The Master Equation Method in the Point
Approximation

It is shown that a binary alloy with an ABj3 stoichiometry on a bcc lattice may
develop various combinations of B2 and DO0; order along its kinetic path towards

equilibrium. The temporal evolution of these two order parameters is analyzed
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with an activated-state rate theory. Individual vacancy jumps are treated in a
Master Equation formalism that involves first-nearest-neighbor (1nn) and second-
nearest-neighbor (2nn) interactions. In our formulation, a set of coupled differen-
tial equations is obtained describing the time-dependence of six order parameters.
These equations were integrated numerically for a variety of interatomic interac-
tions and initial conditions. It was found that the relative rates of B2 and D0j
ordering, and hence the path of the alloy through the space spanned by the B2
and DO0; order parameters, depend on the relative strengths of the interatomic
interaction potentials and on the temperature. For very strong 2nn interactions,
a transient B32 structure was observed to develop at early times, although this

phase disappeared as equilibrium was approached.

2.1.1 Introduction

Much interest has centered lately on the kinetics of order-disorder transformations
in crystalline alloys. In moving away from the traditional studies of equilibrium
states to investigations of kinetic phenomena, the first problems to be consid-
ered were temporal dependences of a single observable parameter characterizing
the state of order of the alloy [1-4]. In two of these theories [1-3] (as well as
in studies of diffusion in ternary alloys [5,6]), a variety of independent relaxation
processes were observed, such as relaxations of parameters describing long-range
order (LRO), short-range order (SRO), and ordering of vacancies. Such observa-
tions suggest that it may be possible to observe independent relaxations of two
LRO parameters that could be measured by diffraction experiments.

A crystalline alloy characterized by a single observable order parameter will
necessarily move through the same nonequilibrium states of order for all possible

temperatures and initial conditions. The only anomalies that one might observe
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are reversals and/or overshoots of the trajectory past the equilibrium end state
[1]. With the introduction of additional observable order parameters, however, a
rich variety of “kinetic paths” [7] through the state space spanned by the order
parameters is possible. In a recent paper that treated the case of B2 ordering in
ternary alloys [7], kinetic paths in two order parameters were found to be temper-
ature dependent when the three atomic species differed either in their interatomic
interaction potentials or in their saddle-point energies for diffusive jumps. An
experimental study [8] of B2 ordering in Fe-Co-Mo ternary alloys attributed an
observed temperature dependence of kinetic paths to a high saddle-point energy
for Mo diffusion.

In this paper, we extend the master equation approach used previously [7] to
treat the case of order-disorder processes in alloys exhibiting simultaneous B2 and
D03 order. We follow the relative rates at which B2 and D03 order evolve, and
we investigate how temperature can be used to control the kinetic path through
the two-dimensional parameter space spanned by the LRO parameters (Spo, and
Spy). These efforts were at least partly motivated by our companion experimental

study of B2 and D0j ordering in Fe;Al [9].

2.1.2 Theory

A body-centered cubic (bec) alloy of composition ABj exhibiting B2 and D03
order can be described as comprising four interpenetrating face-centered cubic
(fcc) sublattices, here denoted «, 3, v, and 6. Two of these fcc sublattices, o and
/3, together constitute a simple cubic (sc) sublattice (denoted aU/), and the other
two sublattices, v and 8, form a second sc sublattice (denoted y U 6). (These two
sc sublattices correspond to the “corner sites” and “center sites” of the parent bcc

structure.) These two sc sublattices are the sublattices of B2 order. (Table 2.1
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summarizes these and other definitions.) Figure 2.1 depicts the four fcc sublattices
of the bec lattice structure and the interconnections between them. It is clear that
for a vacancy model of diffusion in which only first-nearest-neighbor (1nn) jumps
are allowed, not all sublattices are equally accessible to the moving atom. The
arrows in Fig. 2.1 indicate the possible interchanges of an atom and vacancy among
these sublattices. For an atom or vacancy on a particular sublattice, only two of
the three remaining sublattices are directly accessible to it; diagonal steps are
forbidden in Fig. 2.1. In order for an atom or vacancy to move from a particular
sublattice to the one diagonally across from it, it must first move onto one of the
two adjacent sublattices.

Figure 2.2 shows the B2, D03, and B32 structures for a binary bce alloy of com-
position AB3. If the composition of the alloy is changed to AB, the D03 structure
is not favored by the stoichiometry, and the sublattices in the B2 and B32 struc-
tures which were previously occupied with equal probability by A and B atoms are
now populated wholly by A atoms. Figure 2.3 shows the corresponding ground
state structures as a function of Inn and 2nn interaction potentials.

For a bec lattice having N sites of which ¢4 N are occupied by A atoms and cg N
are occupied by B atoms, let 4, j, k, and [ denote the number of A atoms on the
a, B, v, and é sublattices, respectively. We concern ourselves with stoichiometric
ABj, where ¢y = L cg = 3, and 0 < 4,5,k 1 < & We also let p, ¢, r, and s
represent the number of vacancies on the a, 3, v, and § sublattices (0 < p,¢,7,s <
cyN). These eight variables, i, j, k, [, p, ¢, 7, and s, serve as our eight order
parameters. Note, however, that only six of these eight order parameters are

independent because of the two constraints:

i+j7+k+1=caN, (2.1)
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Parameter Definition

N The number of crystal lattice sites.

A B The two species of atoms.

CA, CB The concentrations of A and B atoms. (Here, as for
stoichiometric AB3, ca = § and ¢ = 2.)

cy The concentration of vacancies.

a, 3,7, 6 The four interpenetrating fcc sublattices of D03 order.

aUpf, yuUéb The two interpenetrating sc sublattices of B2 order.

i, 7, k, 1 The numbers of A atoms on the «, 3, v, 6 sublattices.

D, q, T, s The numbers of vacancies on the «, 3, 7, 6 sublattices.

2 The first-nearest-neighbor (1nn) co-ordination num-
ber. (z = 8 for a bcc lattice.)

2! The second-nearest-neighbor (2nn) co-ordination

1 1 1
N%A’ N};%B’ N‘%B
NAA7 NBB? NAB

{NV}

1 1 1
VAA? VBB’ VAB

2 2 2
VAA> VBB» VAB

{V}

number. (z' = 6 for a bee lattice.)

The numbers of 1nn A-A, B-B, A-B pairs.

The numbers of 2nn A-A, B-B, A-B pairs.

{NliA? NéB7 NfiB7 NgAv N}%B’ NiB}

The interaction potentials of Inn A-A, B-B, A-B
pairs (in units of kgT).

The interaction potentials of 2nn A-A, B-B, A-B
pairs (in units of kgT').

{V&Av VBle VA}B: VA%A» V}é?Bv V./%B}

Es, Ep The activation barrier heights of A and B atoms in the
absence of chemical interactions (in units of kgT).

{E} {EAv EB}

;“7, etc. The activation energies for jumps of A atoms from the

~ sublattice to the « sublattice (in units of kgT), etc.

{Q} {ngy’ o }

W O‘}y, etc. The rates of movement of A atoms from the v sublat-
tice to the « sublattice, etc.

[} (Wi,

Table 2.1: Glossary of terms.



32

Figure 2.1: The four fcc sublattices of the bec lattice (left) and the interconnec-
tions between them (right). The arrows indicate the possible interchanges of an

atom and a vacancy among these sublattices. -
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Figure 2.2: The B2 (top), D03 (middle), and B32 (bottom) structures for a binary

bee alloy of composition ABj.
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Figure 2.3: The ground state structures for binary bec alloys of composition AB;

(top) and AB (bottom).
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p+q+r+s=cyN. (2.2)

In spite of this redundancy, we chose to work with the eight order parameters as
though they were independent, and we used Eqgs. 2.1 and 2.2 as consistency checks
on the accuracy of our numerical integrations.

In the high-temperature disordered phase, all lattice sites are equally likely

to be occupied by an A atom, and the numbers of A atoms on the «, 3, 7, and

N
16

these sublattices [(§ —4) = (£ —j) = (¥ — k) = (¥ = 1) = 23&]. The two pairs

8 sublattices are equal (i = j = k = [ = %), as are the numbers of B atoms on
of sublattices, « U § and v U §, are the two simple cubic (sc) sublattices of the
B2 ordered structure, and in the intermediate-temperature B2 phase the A atoms
prefer one of the two sc sublattices, say « U 8, over the other (i +j > k +1[).
The maximum amount of B2 order in our ABj; alloy occurs when 7 + 5 = %’- and
E+1 = 0. With B2 order in the absence of D03 order, the A atoms have no
preference as to whether they occupy the o sublattice or the [ sublattice. In
the low-temperature D03 phase, however, the A atoms prefer one of the four fcc
sublattices, say «, over the others (i > j,k,1). For perfect D03 order, i = %1 and
j=k=1=0. Now the A atoms have undergone a secondary ordering on the
a U 3 sublattice, preferentially occupying the « sublattice.

In terms of our order parameters, the conventional parameters for B2 and D0s

order are:

(t+7)—(k+1)

SBZ = N/Q y (23)
@ i)
kE—1

Shes = T (2.5)

where —1 < SBQ,SS;;B ,SEE;S < 1. Note that there are two distinct D03 order
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parameters that describe the secondary ordering of the A atoms on each sc sub-
lattice. The existence of three conventional order parameters is consistent with
our formalism, where we have three independent order parameters among the i,
j, k, and I. The conventional Spg, is simply whichever of Sp;” and Spo. has the

greater magnitude. We also find it convenient to define order parameters for B32

order in terms of those for D05 order:

Uy Uﬁ Ud U/S UdN U

S = Sl + Shae — Max(Shy”,Shoy) = —Sgae, (2.6)
us ug Ué ug U\ U

S8e = Spof — S5Y — Max(Spo?, ~Shoe) = —Sha, (2.7)

where the third term is subtracted, somewhat artificially, to distinguish B32 order
from D03 order.

Each of the eight 1nn atoms around a vacancy is a candidate for a diffusive
jump. In order to move, however, the atom first has to overcome the activation
barrier associated with that jump. These activation energies for A and B atoms,

Q4 and @Qp, are (in units of kgT):

Qa = Ex — NxaAVia — NagVas — NaaVia — NigVis, (2.8)

Qs = Ep — NigVig — NagVag — NigVis — NigVis- (2.9)

In our notation, the V’s and N’s represent the strengths and numbers of the
various interatomic interactions. We consider second-nearest-neighbor (2nn) in-
teractions as well as Inn interactions since D03 ordering cannot take place with
only 1nn interactions. We have also included a term E, (Fg) in the expression
above to account for the activation energy for the jump of an A (B) atom in the
absence of interatomic interactions. We assume that this “saddle-point” energy
depends only on the species of the atom making the jump. Vacancy-atom and

vacancy-vacancy interactions are ignored. The average jump rate of an atom into
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a neighboring vacancy is
W =vexp(—Q/kgT), (2.10)

which is in the usual form of an attempt frequency, v, times a Boltzmann factor.
In what follows, we take v to be unity without loss of generality.

With a vacancy jump as the elementary kinetic step, we used a Master Equa-
tion approach to calculate the evolution of order in the alloy. For a hypothetical
alloy whose state of order is specified by only one order parameter, the Master

Equation assumes its canonical form

%Ai =5 (WA - wial, (2.11)

where the state of order is represented by the vector A, whose components rep-
resent the probabilities of the various possible states of order. Since the alloy can

be in only one state at a time, A is of the form
A =g, (2.12)

where &; is a basis vector of modulus unity. Transitions between states of order
are mediated by the matrix W}, which takes the alloy from &; to &;. Except for
the states of perfect order, a particular state &; is many-fold degenerate; a specific

state of order may be realized through a variety of atomic arrangements.

In our analysis of B2 and D03 ordering, the Master Equation takes the form

d IR N D . N
- . VikUp st 4
%Awklpqrs = > {” ijklpqrs Aijikrrp s
Z‘Ijlklllplq!rfsl
17iiklpgrs
- "sz Pk /Aijklpqrs}. (2.13)

jlkll/plq rls

The state of order in our alloy is now represented by a matrix of rank eight A;;xipgrs,

and transitions between these states are mediated by an operator of rank sixteen
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Witj/klllplqlrlsl

iiklpqrs . Conveniently, the vast majority of the elements of the W-operator

are zero because the elementary kinetic step is a single jump of a single atom into
a vacant neighboring lattice site. Thus, the eight order parameters can change
at most by +£1, making the W-operator “tri-diagonal.” Its only nonzero elements

are of the forms

Wiaj)kalsp7Q7r7s i»jvkvlsp7Q7T73
i1,k FLLpTLgrELs i+1,7,k,IFLpTLg,rsE1)
i,7,k,0,p,q,7,8 ,7,k,0,p,q,7,8
4, LETLLp,gFLrdl,e 0 Li+LEITLp,gT sl

for jumps of A atoms, and

i)j’k)l,p7q7r’3 i?j7k’l’p1q)r)s
&7,k pFl,g,rl,s0 i,5,k,L,pFl,q,r,sE1>
,3,k,0,p,q,7,8 1,7,k,0,p,q,7,8
4,0,k,0,p,gF1lr 1,80 ,3,k,0,p,qFLrs 1)

for jumps of B atoms. These correspond to the allowed atom-vacancy interchanges
along the double-headed arrows of Fig. 2.1. For instance, in the elementary kinetic
step of an A atom jumping from the ~ sublattice to the « sublattice, the only

changes in the order parameters are A7 = +1, Ak = -1, Ap = —1, and Ar = +1.

'i,j,k,l,p,q,r,&

The element of the W-operator inducing this transition is Wby v 0 s

which we abbreviate as Woﬁ/. This rate is composed of three factors:

e the probability that an atom on the 7 sublattice is an A atom, (k/%),
e the probability that one of the  neighboring sites on the « sublattice is
occupied by a vacancy, (p/ %)%,

e the corresponding Boltzmann factor for the jump, exp(— gﬁ,).

The activation energy for this jump, §7 (in units of kgT'), depends on the identi-

ties of the Inn and 2nn atoms of the jumping atom as given in Eqgs. 2.8 and 2.9. Of
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these neighboring atoms, £ — 1 are on the « sublattice,! Z are on the 3 sublattice,

and z' are on the é sublattice. In summary, we write
ko Lp.a,r, _ /
szjl,] kpaql;,;—l,q,r—ﬂ,s = WaA'y = (k/%) (p/%) %exp (_ ﬁy) 3 (214)

where

A =EBa— VitV (¥4 (3-1) /4

— [Viai +Vis (5 -4)] 3/%
- VAV (-] /5 (2.15)

Similar expressions exist for the other fifteen nonzero elements of the W-operator.
In writing Eq. 2.15, we have ignored the distinction between LRO and SRO cor-
relations between atoms and have obtained the local neighborhood of the A atom
from the total sublattice occupancies. This is analogous to the mean field approx-
imation of equilibrium thermodynamics.

For a given set of 1nn and 2nn interactions, these expressions for {WW} depend
only on the order parameters {i,7,k,1,p,q,7,s}. From these {W}, we obtain

expressions for the instantaneous rates of change of the order parameters:

J; = gﬁ = W2 + Wi — Wi — Wi, (2.16)
J; = jt Way + Wis — Wiy — Wi, (2.17)
Iy = 5’% = W, + Wiy — W2, - Wg, (2.18)
gy = % = Wi + Wi — Wi — W, (2.19)
I, = ff; WA + WA — WA — Wi

+ W2+ Wa = W2~ W, (2.20)
J, = ﬁ = W2 + W -"W[;g — W

1One of the sites on the a sublattice is the soon-to-be-occupied vacancy.
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+ Wiy + Wiy = W, = Wi, (2.21)
1= W W WA - W

+ Wo +Wg, - W2, — Wi, (2.22)
Jo= G = Wh+Wh - Wh - W)

+ W + Wgs — Wao, — W (2.23)

This set of eight coupled nonlinear first-order differential equations completely
determines the trajectory of the alloy through (i, 7, k,,p, ¢, 7, s)-space for a given
set of initial conditions {ig, jo, ko, lo, Po, G0, 70, S0} The velocity of this trajectory

at any instant is given by
J=Ji+ Jj+ Lk + J1+ Jp+ J,q+ J,F + J8. (2.24)

For a given set of initial conditions, we use the expression for J to obtain the

kinetic path through (i, 4, k,l, p, q,r, s)-space by numerical integration.
2.1.3 Numerical Computations

Using Egs. 2.14 and 2.15 and their fifteen analogs, Eqs. 2.16-2.23 were integrated
numerically for a variety of initial configurations and interaction energies {V'}
and {E}. The computer code was written in VAX FORTRAN and executed on
a MicroVAX VAXstation II. It proved desirable to use quadruple-precision arith-
metic for increased accuracy. Because the vacancy concentration on a particular
sublattice is usually very much lower than the concentrations of A or B atoms on
that sublattice, the absolute changes in these concentrations in some fixed time
interval have a similar disparity in magnitude. This leads to Eqgs. 2.16-2.23 being
“stiff,” and troublesome to integrate. Various methods of integration were tried

[10,11], from the forward Euler method to the Bulirsch-Stoer method, but the
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one that proved most successful was the fourth-order Runge-Kutta method with
adaptive step-size control. Nevertheless, all methods gave identical results within
the limits of our computational precision when they were stable. Graphs showing
the time evolution of the eight order parameters {7, j, k,{,p,q,r, s} were gener-
ated. Since we are primarily interested in the relative rates of change of the four
order parameters {i, j, k, [}, it proved convenient to plot them against each other,
e.g., 7 vs. i. The axes of such graphs as presented here are labeled in terms of N.
This emphasizes the fact that the calculated kinetic paths scale with the choice
of N. For our purposes, we chose a value of 4 x 10° for N. Using Eqgs. 2.3-2.5,
graphs of Sgy vs. Spp, were also obtained.

One interesting and useful feature of the kinetic paths obtained is that they
are independent of ¢y for ¢y € ¢a, cp [7]. This independence of the kinetic paths
on cy was confirmed empirically by varying ¢y while keeping the other input
parameters unchanged. This meant that instead of using values of ¢y typical of
a quenched alloy (~ 107?) for our numerical integrations, somewhat larger values
of ¢y (albeit values of ¢y < ca,cg) could be used to speed up the computations.
For instance, the kinetic paths obtained with ¢y = 1072 were virtually identical to
those obtained with ¢y = 107 but were noticeably different from those obtained

with ¢y = 1071, For our purposes, we took cy = 1072

2.1.4 Results and Discussion

Figures 2.4 and 2.5 show kinetic paths at two different temperatures for an alloy
in which Vi, = Vg = Vi, = V. (Hereafter, all V’s and E’s will be assumed
to be zero unless explicitly stated otherwise. In these and other figures, the
temperature is expressed in terms of the critical temperatures for both B2 and D03

ordering. Since the relative magnitudes of these two critical temperatures depend
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Figure 2.4: Kinetic path of an initially disordered alloy exhibiting B2 ordering
(Viy = Vgg = Vi = 0.90; T = 0.74T2? = 1.11TP%). The end-points of the i—j
curves are our best estimates of the equilibrium end-points. The values of k£ and

[ decreased to near zero at equilibrium.
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Figure 2.5: Kinetic path of an initially disordered alloy exhibiting B2 and D03
ordering (Vi, = Vgg = VZ, = 1.10; T = 0.61752 = 0.917P%). The end-points of
the 1—7 curves are our best estimates of the equilibrium end-points. The values of

k and [ decreased to near zero at equilibrium.
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on the relative magnitudes the various 1nn and 2nn interaction strengths, a simple
expression for T2? and TP% in terms of the V’s does not exist.) This is one of the
simpler combinations of potentials that is able to generate D03 order. The alloys
were started near complete disorder (i = %Jr?)e, Jo=ky =1y = %——f, where ¢ is
some small positive quantity introduced to force the alloy off the stationary point
at zero order; py = qp = 79 = $p) and allowed to relax to equilibrium. The end-
points of the i—7 curves are our best estimates of the equilibrium end-points unless
otherwise noted. The values of k and [ decreased to near zero at equilibrium. In
Fig. 2.4, 7 and j increased to equilibrium values slightly less than %, whereas k and
[ decreased to equilibrium values close to zero.? This equilibrium configuration
corresponds to B2 order without any DO0j; order. Figure 2.5 was obtained from
an alloy that underwent ordering at a lower temperature. As before, the alloy
initially developed B2 order. However, once near-maximal B2 order was obtained,
1 continued to increase but at the expense of j, which started to decrease. At this
point, the A atoms began undergoing a secondary ordering on the oU g sublattice,
segregating preferentially to the o sublattice. (Meanwhile, & and [ continued to
remain close to zero.) This secondary ordering proceeded until equilibrium DO
order was reached. The time scale on which the secondary D03 ordering took
place was slower than the initial evolution of B2 order by as much as two orders
of magnitude. This difference in time scales can be understood as follows. Before
an A atom on the J sublattice can move onto the « sublattice, it must first move
onto the v or ¢ sublattice. This movement is impeded because by the time near-
maximal B2 order is achieved and D03 ordering begins, the A-atom population on

the v and 6 sublattices has diminished to near zero. Since the v and § sublattices

2Since ky and Iy were chosen to be equal to each other, and the v and § sublattices are
equivalent, k and [ should always be equal to each other and, given ¢ and j, can be deduced
from Eq. 2.1.
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are the immediate source of A atoms moving onto the « sublattice, the migration
of A atoms from the [ sublattice to the « sublattice is severely bottle-necked.

With other choices of interatomic interaction potentials, the evolution of B2
and DO order does not occur in a two-step process in which B2 ordering is essen-
tially complete before D03 ordering begins. With our choice of initial conditions,
the evolution of D03 order involves the net flow of A atoms from the § sublattice
first to the v or ¢ sublattice, and then to the « sublattice. The 1nn environments
for atoms on the « and [ sublattices are identical and consist of atoms on the ~
and 6 sublattices. Similarly, there is no differentiation between the « and g sub-
lattices in the 1nn environments of atoms on the v and 6 (although there must be
a vacant site on the « or 3 sublattice for the jump onto this sublattice to occur).
The « and 3 sublattices are hence identical with respect to 1nn interactions, and
therefore any difference in Boltzmann factors that promotes a net difference in the
flows of A atoms onto the a and 3 sublattices must originate with the 2nn inter-
actions. By increasing V, and Vi relative to V{, and Vig, it should be possible
to force strong D03 ordering initially without having to wait for B2 ordering to
go to completion. (We are justified in neglecting the vacancy concentrations in
this argument because there is no significant redistribution of the vacancy con-
centrations among the four sublattices during the early, near-disorder, stages of
ordering.)

An example of two different kinetic paths is presented in Fig. 2.6, in which
Viy = Vi, = 1.60 and Vgg equals 1.20 and 0.40. With the stronger Vg, the
alloy follows an initial kinetic path that is the growth of essentially pure B2 order.
For the weaker Vi, and hence a relatively stronger V2, the path falls below this
diagonal line of i = j, indicating the initial evolution of some D03 order. (Note,

however, that both kinetic paths in Fig. 2.6 terminate near the lower right corner,
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Figure 2.6: Kinetic paths exhibiting the transition from initial B2 ordering to
initial D03 ordering. Labels indicate values of Vi (Viy, = V&, = 1.60; Vg =
040 = T = 1.21TP* = 0.707P%; Vg = 1.20 = T = 0.53T5% = 0.61T°%). See

text for further explanation.
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where all the A atoms are situated on the « sublattice. This corner corresponds
to Spy = %- and Sg}jf = 1.) As expected, we found that the sharpness of this
transition became more marked at lower temperatures due to the 51; dependence
of the terms in the Boltzmann factor of Eq. 2.14 and its analogs. Similar behavior
was observed for cases in which V!, = Vg and the strength of V?, was increased.

We also investigated the temperature dependence of the kinetic paths in an
alloy having a fixed ratio of interatomic interaction potentials. Figure 2.7 shows
kinetic paths for an alloy in which V}, = 2Vy = V2, = V. Varying V, which
is equivalent to varying 31:, gave widely differing kinetic paths. Here, decreasing
the temperature (increasing V') enhances B2 ordering relative to D03 ordering, al-
though it does not affect qualitatively the two-step nature of the ordering process,
viz., initial B2 ordering followed by D03 ordering. This temperature dependence
is similar to that found in our experimental study of B2 and DO0j; ordering in
rapidly quenched FezAl [9]. In the present work we also observed the greatest
temperature dependence of kinetic paths for ratios of V' parameters near those at
the transition between no initial D03 ordering and initial D03 ordering.

It was determined empirically that the critical potential for D03 ordering for
an alloy in which Vi, = Vip = V2, = V is V = 1.00. This was done by
varying V and observing at which point incipient D03 ordering occurred. This
critical potential of V.(D03) = 1.00 was corroborated by investigations of the
stationary (equilibrium) points of the alloy. The left-hand sides of Eqgs. 2.16-2.23
were set equal to zero, and values of {i,j, k,{,p,q,r, s} which satisfied them were

sought. Just below the critical potential for D03 ordering (V < V.(D03)), the only

stable stationary point (local minimum) occurs at (4,7, k, 1) = (% — €, % — €, €, e).

This stationary point represents equilibrium B2 order. Just above the critical

potential for D03 ordering (V' > V,(D03)), this stationary point bifurcates into
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Figure 2.7: Kinetic paths depicting the dependence of the relative rates of B2 and
DO0; ordering on temperature. Labels indicate values of V, where V = V}, =
Vg = Vi, (V =140 = T = 0.84TP% = 0.76TP%; V = 1.60 = T = 0.74T>? =

0.67TP%; V = 1.80 = T = 0.6572? = 0.59TP%; V = 2.00 = T = 0.59T2? =
0.54TP0%).
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two local minima, one corresponding to B2 order as before, and one at (¢, j, k, 1) =
((% —e)(1+A), (-1 —A),e e) corresponding to D03 order. From Eq. 2.4,
A is just Sggf in the limit ¢ — 0. Further increases in V serve to increase A and
consequently the amount of equilibrium D03 order in the alloy. These observations
are consistent with a second-order phase transition at V.(D03) = 1.00.

In a similar manner, the case in which V{, = Vg = V and V}, is nonzero was
studied for a range of values of V;,/V. Critical potentials V.(B2) and V,(D03)
were obtained for various VZ,/V and are plotted in Fig. 2.8. Here, the V.(B2)
and V,(D03) correspond to the critical values of V. Similarly, Fig. 2.9 shows
critical potentials for the case in which Vi, = V&, = V and Vg is nonzero.
The dashed parts of the curves for V,(B2) indicate the critical potentials at which
incipient B2 ordering occurs without simultaneous D03 ordering. (The right-hand
region of Fig. 2.8 and the left-hand region of Fig. 2.9, therefore, are not meant
to indicate potentials for which D03 order can evolve without simultaneous B2
order.) The data of Fig. 2.6 were obtained above and below the cross-over point
Vee/V ~ 0.55 of Fig. 2.9. Figures 2.8 and 2.9 lend further support to our earlier
argument that increasing V3, and VZg relative to V3, and Vg should enhance
D03 ordering relative to B2 ordering. However, we hasten to remark that since
cg > ca, increasing Visp will affect D03 ordering differently from increasing V2,.

We have also found it possible to form a third ordered structure corresponding
to equal A atom occupancies on adjacent pairs of sublattices in Fig. 2.1, such as
a U~y or aUé. This is a partially ordered B32 structure. At low temperatures
the B32 structure is not chosen in equilibrium over the D03 structure when lnn
interactions favor bonds between unlike atoms [12,13]. Nevertheless, we have
observed the B32 structure as a transient kinetic phase when the 2nn interactions

are very strong. In cases where the 1nn interactions favor bonds between unlike
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Figure 2.8: Critical potentials for B2 and D03 order as a function of VZ,/V,
where V!, = Vag = V. The dashed parts of the curves for V.(B2) indicate the
critical potentials at which incipient B2 ordering occurs without simultaneous D03

ordering.
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Figure 2.9: Critical potentials for B2 and D03 order as a function of Vgg/V,
where Vi, = V£, = V. The dashed parts of the curves for V,(B2) indicate the
critical potentials at which incipient B2 ordering occurs without simultaneous D03

ordering.



52

1.0_H'I|HH|H'l!!'ll|lHr(unlu..l.;”l,..,l.,,,_
! DO
_ 0.8} 3
= i
"g i
5 0.6 ]
© B .
T 04l ]
o B B32 B2 -
© 0.2:— _
0.0 el i N

0 2000 4000 6000 8000 10000
Integration Step

Figure 2.10: Evolution of B2, D03, and B32 order parameters (V}, = VZ, = 1.60;
T = 3.38T%2 = 0.67T"%),
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atoms, the kinetic path eventually leads away from this transient kinetic structure
towards an equilibrium state with B2 as well as D03 order. An example of such
a time-dependence of the B2, D03, and B32 order parameters is presented in
Fig. 2.10. In this case there was a quick, and nearly equal, increase in the numbers
of A atoms on the « and 6 sublattices, while the number of A atoms on the § and
~ sublattices approached zero. After about 4000 integration steps, the A atom
population on the the ¢ sublattice began to decline, and the D0; and B2 order
parameters increased to approximately their maximum values.

Figure 2.11 shows the evolution of the internal energy, configurational entropy,
and free energy for the system of Fig. 2.10. All three quantities show a monotonic
decrease as a function of integration step. Furthermore, all three quantities exhibit
three distinct stages of quiescence. The first of these corresponds to the initial
disordered state whereas the third corresponds to the final equilibrium state of B2
and D03 order. It is the second quiescent state which corresponds to the transient
B32 state of Fig. 2.10, and the stationary nature of the free energy during this state
that lends credence to the hypothesis that this transient B32 state corresponds to
a nonequilibrium stationary point or saddle point in the free energy surface and
is a pseudostable state.

We attempted to verify this conjecture by examining the free energy manifold
for this particular choice of 1nn and 2nn interaction potentials. Unfortunately,
even if we justifiably ignore the four order parameters or state variables p, ¢, r,
and s, which correspond to vacancy occupancies on the four sublattices, we are
still left with three independent variables among the four order parameters i, j,
k, and [ because of the constraint of Eq. 2.1. Displaying and visualizing such a

three-dimensional free energy manifold can be daunting. For this reason, we chose



0-7:""‘|\'"‘[””!""[””l"“[""I""]""l"":
06F £
osp e
;’—; 0'4;— EConfigurationa'l"""""""u\..:-.‘.,)‘ —
< ogfp  EMropy T >
0.2F :

- F ]
0.1F "\ Energy :
O_OEr.n|....I....x....l...m,u...l.“.l.“i

0 2000 4000 6000 8000 10000

Integration Step

Figure 2.11: Evolution of the internal energy, configurational entropy, and the free
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Figure 2.12: Surface plot of the free energy as a function of ¢ and £ for the system

1.60; T = 3.38T5% = 0.677P0%).
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Figure 2.13: Contour plot of the free energy as a function of ¢ and k for the system

of Fig. 2.10 (Vi = Vi, = 1.60; T = 3.38T75% = 0.67TP%).
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to additionally impose the equality constraint
Jj =1L (2.25)

Note that even though this is a somewhat artificial constraint, it is nevertheless
a fairly reasonable one in that it still allows for the possibility of developing B2,
D03, and B32 order. Equation 2.25 reduces the number of independent order
parameters to two, say, i and k, and a two-dimensional free energy surface can
be more readily visualized. Such a free energy surface is displayed as a function
of i and k in Fig. 2.12. In preparing this free energy surface, we took N to be
equal to 4, with the result that the maximum possible values of 7, k, and i + k
was caN = 1. For this reason, the range of allowed values of the ordered pair
(i, k) is restricted to the triangle with vertices at (0,0), (0,1), and (1,0). To aid
in visualizing Fig. 2.12, a contour plot of the same free energy surface is shown in
Fig. 2.13.

The initial disordered state of Figs. 2.10 and 2.11 corresponds to the point
(i,k) = (0.25,0.25) in Figs. 2.12 and 2.13. This point is a local maximum in the
free energy surface and the system is in unstable equilibrium. Note that this is
quite different from the initial disordered state at the point D in Fig. 1.7. In that
figure, the axes correspond to short-range order parameters, in contrast to the axes
of Figs. 2.12 and 2.13, which reflect long-range order parameters. Furthermore,
the initial disordered state in Fig. 1.7 is not at a local maximum in the free energy
surface, but sits on a steep slope in the free energy surface. This distinction is
important for the following reason. A system that is at the point D in Fig. 1.7 will
invariably move away from D in the general direction of the saddle point P since
that is the direction of steepest descent. On ‘the other hand, a system which is

exactly at (7, k) = (0.25,0.25) in Figs. 2.12 and 2.13 will remain there indefinitely
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in the absence of external perturbations. In a real thermodynamic system at a
finite nonzero temperature, there will always be thermal fluctuations which will
provide the necessary perturbation to nudge the system off its apex. However,
since there are no fluctuations in the analytical theory being considered here, it
is necessary to introduce such a perturbation manually. This is what was done in
the case of Figs. 2.10 and 2.11.

The kinetic path of the system initially took it from (4, k) = (0.25,0.25) to the
neighborhood of (i, k) ~ (0.5,0.5), accompanied by a lowering of the free energy.
The point near (i, k) ~ (0.5,0.5) corresponds to the transient B32 state observed
in Fig. 2.10, and, as can be seen from Figs. 2.12 and 2.13, it is a saddle point
in the free energy surface. This is entirely in keeping with our earlier conjecture.
This saddle point is pseudostable, which helps account for the relatively long-lived
nature of the transient B32 state. The system eventually leaves the neighborhood
of the saddle point and evolves in the direction of the global minimum at (¢, k) ~
(1,0) [or, equivalently, (i,k) ~ (0,1)]. This corresponds to the disappearance of
the transient B32 state and the development of equilibrium D03 order, as observed
in Fig. 2.10.

We repeated the numerical integration of Fig. 2.10, but this time we set the
the Vl, and V?, potentials equal to zero after 10 000 integration steps. This
corresponded to changing the temperature to oo. By this time, equilibrium D03
and B2 order had developed. Figure 2.14 shows the variation of the B2, D03, and
B32 order parameters that resulted. There was a very rapid decrease of the B2
and D03 order parameters to zero, but the time constant for the decay of DO;
order was significantly greater than that of B2 order. Note that there was no
appearance of a transient B32 state during the disordering process, unlike the

case during the initial ordering stage.
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Figure 2.15 shows the corresponding variation of the internal energy, configura-
tional entropy, and free energy. During the disordering stage, the internal energy is
identically zero in the absence of any nonzero pair interaction potentials, whereas
the configurational entropy rapidly returns to its initial (0 integration steps) value
as the alloy recovers its initial random disordered configuration. During each of
the two stages, ordering and disordering, the free energy decreases monotonically,

as befitting an isothermal canonical ensemble.

2.1.5 Conclusions

We have developed a theory to describe the kinetic paths of ordering in alloys
possessing both B2 and D03 order. For various values of the interatomic inter-
action energies, a rich variety of kinetic paths in (Spo,, Sp2)-space was obtained
during ordering of an initially disordered alloy. In general, a large value of V3,
relative to Vi, and Vig tended to enhance the kinetics of D03 ordering relative
to B2 ordering, changing the ordering process from one in which B2 ordering goes
to completion before D03 ordering starts, through strong D03 ordering with the
minimum consistent B2 ordering, to the case in which B32 order develops initially
before being overtaken by D03 order. Although the B32 structure cannot be an
equilibrium phase at low temperatures when Inn interactions favor bonds between
unlike atoms, in cases with very strong 2nn interactions we were able to observe a
transient formation of B32 order before equilibrium B2 and D05 order developed.
We were able to verify that this transient B32 structure corresponded to a saddle
point in the free energy surface.

The kinetic paths also showed a marked dependence on the ordering temper-
ature. For realistic (V! > V?) interactions, decreasing the annealing temperature

tended to slow down the rate of D03 ordering relative to B2 ordering. This de-
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pendence of relative rates of ordering on annealing temperature suggests that by
suitably varying the thermal treatments of these materials, it should be possible to

choose from a wide variety of nonequilibrium combinations of B2 and D03 order.

2.2 The Path Probability Method in the Pair
Approximation

A kinetic theory of ordering based on the path probability method was imple-
mented in the pair (Bethe) approximation and used to study the kinetics of short-
and long-range ordering in alloys with equilibrium states of B2, D03, or B32 or-
der. The theory was developed in the superposition approximation for a vacancy
mechanism on a bec lattice with first- (1nn) and second-nearest neighbor (2nn)
pair interactions. Chained 1nn conditional probabilities were used to account for
the entropy of 2nn pair configurations. Comparisons are also made with the pre-
dictions from the kinetic theory of Section 2.1, which was implemented in the
point (Bragg-Williams) approximation. For both calculations (point and pair),
critical temperatures for B2 and D0; ordering are reported for different Inn and
2nn interaction strengths. The influence of annealing temperature on the kinetic
paths through the space of B2, D03, and B32 order parameters was found to
be strong when the thermodynamic preferences of the alloy were not too great.
Transient states of intermediate order were also studied. A transient formation
of B32 order in an ABj; alloy was found when 2nn interactions were strong, even
when B32 order was neither a Richards-Allen-Cahn ground state nor a stable
equilibrium state at that temperature. The formation of this transient B32 or-
der can be argued consistently from a thermodynamic perspective. (However, as
will be demonstrated in the next chapter, a second example of transient B2 or-

der in an AB alloy with equilibrium B32 order cannot be explained by the same
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thermodynamic argument, and we believe that its origin is primarily kinetic.)

2.2.1 Introduction

In a previous section of this chapter, we developed and implemented a kinetic
theory of B2 and D0j ordering using a master equation method (MEM) in the
point (Bragg-Williams) approximation [14]. Those efforts were motivated by our
experimental work on ordering kinetics in FegAl [9]. In this section, we formulate
an alternate theory of ordering in bee alloys using the pair (Bethe) approximation
and the 4-sublattice model of the previous theory. In addition to the increased
accuracy obtained by using a larger base cluster, viz., the pair instead of the
point, the new theory also provides short-range order (SRO) parameters. It is
interesting to identify the qualitative similarities of the long-range order (LRO)
kinetics in the point and pair approximations. The point and pair approximations
were compared by examining their predictions of the “kinetic paths” taken by the
alloy.

One of the more surprising results from our work using the MEM in the point
approximation [14] was the observation of transient B32 order that occurred for
certain choices of the interaction potentials, particularly ones where the 2nn in-
teractions were quite strong relative to the Inn interactions, but both favored
the formation of unlike pairs. Under these conditions, B32 order was neither a
Richards-Allen-Cahn ground state [12,13] nor a stable equilibrium state at that
temperature. Surprisingly, however, B32 order appeared transiently during the
disorder—order transformation. This transient B32 order was not metastable in
that it did not correspond to a local minimum in the free energy surface. One of
the members of our group has obtained experimental evidence for the formation

of such a pseudostable B32 state during low-temperature annealings of disordered
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FesAl [15]. Recent theoretical investigations have suggested that such transient
or pseudostable states may correspond to saddle points in the free energy surface
[16]. In the course of calculating kinetic paths of ordering, we found examples
of transient states of order that are nonintuitive from thermodynamic arguments.
We made some effort to maximize the appearance of these transient states, and

we discuss them here.

2.2.2 Theory

One of the earliest successful applications [17,18] of the path probability method
(PPM) was to the study of the kinetics of disorder—order transformations in
binary body-centered cubic (bcc) alloys [1,19]. The present derivation is based
on the PPM in the pair approximation. It applies to a bcc binary® alloy with
first- (1nn) and second-nearest-neighbor (2nn) interactions, and which can have
B2, D03, or B32 ordered structures. Vacancy motion is assumed to occur only
between 1nn sites. The three species are the vacancies V, and the two atomic
species A and B. They will be denoted by subscripts 0, 1, and 2, respectively.
The four fcc sublattices are denoted «, 5, v, and 6 [14]. In the manner of Sato
and Kikuchi [1], we introduce the state variables, which describe the state of the
system at time t. The probability that a { lattice site is occupied by the species
718 xf(t), where ¢ € {a,3,7,6}, and i € {0,1,2}. There are 4 x 3 = 12 such z
state variables.

Similarly, the probability that adjacent lattice sites on the ( and n sublat-
tices are occupied by the species ¢ and j, respectively, is yfj"(t), where ((,n) €
{(a, ), (2, 6),(8,7),(B,8)}, and 4,5 € {0,1,2}. There are 4 x 3* = 36 such y

state variables. Note that in our notation, yfjn(t) = y?f(t) (Table 2.1 summarizes

31t is straightforward to extend the derivation to ternary and quaternary alloys.



these and other definitions.)

In the manner of Sato and Kikuchi [1], we write the following constraints:

2
1= "=(t), (2.26)
=0
2
T (t) = S ys(t). (2.27)
j=0

There are a total of 1 x 4 x 1 = 4 constraints of the type in Eq. 2.26, and a total
of 4 x 2 x 3 = 24 constraints of the type in Eq. 2.27.

Atom conservation requires:
2 (t) + 2l () + 2] (1) + 2} (t) = 4p;, (2.28)

where p; is the overall time-independent concentration of species ¢, and ¢ &€
{0,1,2}. There are a total of 3 such constraints. Furthermore, the p; satisfy
the closure relation:
2
dopi=1 (2.29)
i=0
We also write the B2, D03, and B32 LRO parameters in terms of the z state

variables. The conventional LRO parameters for B2 and D03 order are:

Ser = |(@$(t) + 2] (1)) = (21(t) + 25 ()], (2.30)
Spoy = x5 (t) — 2/ (t), (2.31)
Shos = () — 2(8), (2.32)
Spo, = Max(IS5e? |, 1Sl ), (2.33)

where 0 < Sgs, Spg, < 1. Following our previous work [14], we find it convenient
to define order parameters for B32 order in terms of those for D03 order:
Uy ug 1) . ol yUb
Spay = Sgag - S%Og — Max( 305751)03)
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o . alJ & 3 ol Ué
Sest = Spel — S3° — Max(S5y7, —Shit)
= - S8837, (2.35)

5332 = :\Aax(‘ g;f;h IS]%C:%SD, (236}

where 0 < Sg3s < 1 and the third term in Egs. 2.34 and 2.35 is subtracted,
somewhat artificially, to distinguish B32 order from D05 order.

In a parallel manner, we can write the path variables corresponding to the state
variables. Following Kikuchi [17,18], the path variables are denoted by the corre-
sponding upper-case letters. They represent the probability of a particular change
in the corresponding state-variable in an infinitesimal time At. For instance, the
probability that a lattice point on the { sublattice is occupied by an ¢ species at
time ¢ and by an ¢’ species at time t+ At is written as an-,(t,t—%At). Correspond-
ing quantities can be written for the pair path variables, viz., Ylg'z,],(t t + At).
Since we are implicitly assuming a vacancy mechanism of ordering with nearest-
neighbor jumps, only those path variables represented in Tbhls. 2.2 and 2.3 are
allowed. It is necessary to assign a “weight” to each path variable in order to
account for its degeneracy.

Consider an ¢ atom (7 # 0) on a ¢ sublattice. Its neighbor atoms will affect its

energy through the pair potentials V1 and V2, and this chemical energy will affect

13?
its probability of exchange with a vacancy neighbor. Af" is the average Boltzmann
factor contributing to the jump probability of that i atom from an atom on the

Inn 7 sublattice. A'S” is the average Boltzmann factor for that i atom from an

atom on the 2nn 7 sublattice. For instance,

AT = Zy exp(V, (2.37)

AP = ZZyzk A’/;zs,c ) exp(Vi3), (2.38)

7=0k=0
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Path Variable Weight Note Number of distinct variables

X:(tt+ At) 1 4x3=12
Xiolt t + At) 8 i %0 4x2=28
X5 (t,t + At) 8 i # 0 4x2=8

Total = 28

Table 2.2: The path variables for a point. Unless it is stated otherwise, { &

{a, 8,7,6} and i € {0,1,2}.
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Path Variable Weight Note Number of distinct variables

Y (¢t + At) 1 4x3x3=36
Yialo(t, t + At) 7 j#0 4x3x2=24
ng"oj(tt+At) 7 i #0 4x2x3=24
Vil i(t,t + At) 7 j#0 4x3x2=24
Yoli(tt + At) 7 i #0 4x2x3=24
Yw”m(tmm) 1 i #0 4x2=28
Yo(t,t + At) 1 j#0 4x2=28
Total = 148

Table 2.3: The path variables for a pair. Unless it is stated otherwise, ({,n) €

{(,7), (@, 6),(8,7),(8,0)}, 7 € {0,1,2}, and j € {0,1,2}.
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where i € {1,2}. Since our base cluster is a Inn pair, we use a sum over con-
ditional probabilities °2_, yf}](yfﬁ/xl) in Eq. 2.38 above to obtain the 2nn pair
probabilities. Similar expressions exist for A%, AP OAPE AT ADP A AP AT

AP and A'Y7. Also, T$" is the total Boltzmann factor for a jump of that i atom

from the ¢ sublattice onto a 1nn vacant site on the 7 sublattice. For instance,
D37 = (AT /af) (A ) (N7 ), (2.39)

where i € {1,2}. The exponents 3, 4, and 6 in Eq. 2.39 above arise from the fact
that the ¢ atom on the « sublattice which is about to jump onto the v sublattice
has 3 neighbors on the < sublattice, * 4 neighbors on the & sublattice, and 6
neighbors on the (3 sublattice. Similar expressions exist for I'%, F? 7, F? ir I
6

7%, 1% and 1%,

With the above definitions, it is now possible to obtain expressions for the
Y;gz,j,(t, t + At) path variables.® There are three classes of Yi_gg,j,(t,t + At) path
variables. The first set of Y;g?i,j, (t,t + At) path variables accounts for the proba-

bility that the pair configuration does not change in the interval At:

¢ ¢
Vil (tt 4+ At) = ;' (1), (2.40)

tj5ig
where (C,n) € {(a,7), (0,8, (4,7), (8,6)} and i,j € {0,1,2}.
The second set of Y;g?i,j,(t,t + At) path variables accounts for the probabil-
ity that one of the members of the pair configuration changes identity due to a

vacancy-atom interchange between that site and one other neighboring site. For

instance:

L oT(t) exp(Vi
oty An = Y ( )N;ip( is)
J

17340

40ne of the sites on the v sublattice is the soon-to-be-occupied vacancy.

51t is not necessary to work with the X;:i,(t,t + At) path variables in order to compute the
azg(t) state variables. The :vf(t) point state variables can more conveniently be obtained from
the yg’(t) pair state variables.
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3 ¥ a 4 B I¢)
< |Su @y + S ery] . (2.41)
oy
Yio (1)
Vil (t e+ Af) = S
3 ay ay 4 By By
X §?Jj0 ()" + ;yjo Hri, (2.42)
where 7 € {0,1,2}, and j € {1,2}. Similar expressions exist for Yi;‘go, Yi‘gﬁj, Y;'/]B'g@,
6 86 a a 8 B8s 4
Yiohss Yigios Yioass Yiinis Yoy Y Yo Yius, Yoris Yia; and Yo,
The third set of Yéz,j,(t,t + At) path variables deals with a vacancy-atom

exchange occurring between the two sites of the pair:

)/;(C)?Oi(t>t + At) = yfg]“)rfn (2'43)

Yoo (.t + At) = yi (T, (2.44)

where (¢,7) € {(a,7), (,6),(8,7),(8,6)} and 2 € {1,2}.

By identifying the path variables that connect the state variables at time ¢ with
the state variables at time ¢ + A¢, and using a subscripted ¢ for the Kronecker

delta function, we obtain the following relations:

2§ (t) = X5i(t, t + At) + 8(1 — 6i0) X5o(t, t + At)

1

+ 860 > Xin(t t + At), (2.45)
m#0

2i(t+ At) = X (6t + At) + 8(1 — 8i0) X§i(t,t + At)

+ 860 > X5 (t t+ At), (2.46)

m#0

where ¢ € {a, 3,7,6}.

vl (8) = Yil;(t,t + At)

(L = Sip) VSTt t+ At) 4+ T(1 — 6;0) YS!

17;05 i7;10

(t,t + At)

T80 S VEL (bt At) 4 T80 S YL (8t + At)

m#0 m#0
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iy ]Z

+ [8in(1 = 650) + 6j0(1 — 8i0) | Yihi(t, t + Ab), (2.47)

ysl(t + At) = Ylg””(t t+ At)

+ (1 = Gi0) Yo (bt + At) + T(1 — 6;0) Yl (¢, t + At)

07,15
+ T6i0 Y Yo (tt -+ At) + 7650 Y Vil (¢t + At)
m#0 m#0
+ [8i0(1 = 8j0) + Bjo(1 — 80)| Y, (£t + Ab), (2.48)

where ((,n) € {(a,7), (@, ), (8,7),(8,6)}.

The changes in the state variables can then be written as:

Azt = 28t + At) — 25 (t)
= 8(1 = 8i0) [ X§,(t, t + At) — Xio(t,t + At)]

+ 88 Y [Xoilt,t + At) — X{, (1t + At (2.49)

m#0

where ¢ € {a, 3,7,6}.

Ayl = yil(t + At) — yi (1)

= T(1 = 8i0) [V (b, t + At) = VST

17;07

(t,t+ At)]
+ (1= 830)[Vigh (.t + At) = YTo(t, + At))]

+ T 3 [V (bt + At) = Y5 (4t + At)]

mj; Z]
m#0

+ 7650 S0 [Vim (bt + AL = YT (¢ + At)]

im;ig
m#0

+ [8i0(1 = 850) + 650(1 — 8io)]

X (VAT (6t + At) = YT (¢t + At)], (2.50)

Juseg ij;gi

where (¢, n) € {(,7),(,6),(8,7),(8,6)}.
For the most probable path, the path variable for, say, Y;{: 02(t7 t + At) is pro-

portional to:

e the probability of the corresponding initial state, 355 (t),
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e the attempt frequency of the atom belonging to species i, v;,
(53

e the corresponding Boltzmann factor for the jump, T,

e the time interval, At.

The Boltzmann factor, ')y, depends on the identities of the Inn’s and 2nn’s

z
2

of the jumping atom of species ¢. Of these neighboring atoms, 1 are on the
« sublattice § are on the 8 sublattice, and 2’ are on the ¢ sublattice.

In the limit At — 0, Eq. 2.50 results in a set of coupled nonlinear first-
order differential equations, which may be integrated to obtain the kinetic path
of the alloy. The numerical integrations were performed for a variety of initial
configurations and interaction energies {V'}. The computer code was written in C

and executed on a DECstation 3100. A fourth-order Runge-Kutta method with

adaptive step-size control was used to integrate the differential equations.

2.2.3 Results and Discussion
Kinetic and Thermodynamic Trends

The steady state of any viable kinetic theory of ordering and disordering should
be the appropriate state of thermodynamic equilibrium. In particular, the kinetic
theory in the pair approximation should be consistent with the cluster variation
method (CVM) in the pair approximation. This is what we found when we cal-
culated the critical temperatures for B2 and D03 LRO using our kinetic theory in
the pair approximation. Figure 2.16 shows the resulting critical potentials for B2
and DOj order as a function of Vi, /V. These curves were obtained by considering
alloys which had Vi, = Vigy = V and V7, as the only nonzero pair potentials,
varying V for a fixed ratio of V2, /V. This is equivalent to maintaining the same

interatomic potentials and varying the temperature. We tried a range of different
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values of V', and tested for the occurrence of incipient B2 and D03 ordering. Also
included in Fig. 2.16 are the corresponding critical potential curves from our ear-
lier work with the MEM in the point approximation (see Fig. 2.8). Both sets of
critical potentials display similar general trends. The ordinate intercepts of the
VB% curves correspond to the B2 critical potentials for the familiar case of 1nn
interactions only. These B2 critical potentials agree with corresponding critical
potentials obtained from equilibrium theory. As the 2nn interactions are turned
on (increasing Vi, /V), the VB? curves increase and the VP% curves decrease.
This is the expected behavior since the positive 2nn interactions (V?) tend to
suppress B2 ordering and enhance D03 ordering.

The same interatomic interactions that determine the thermodynamic critical
potentials also set the Boltzmann factors in the kinetic rate equations. Although
the rate equations depend also on the number of available paths between the vari-
ous state variables, the kinetic rate equations can be dominated by the interatomic
potentials when the ratio of V?/V! is near zero or infinity and V', V? > 0. In
these extreme cases of all Inn (or all 2nn) interactions, there is no possibility for
the evolution of D03 (or B2) order. The thermodynamic equilibrium states of B2
(or DO3) order are forced to evolve, and there is little of interest in the kinetic path
through the parameter space of B2 and D03 order. We expect that for kinetic ten-
dencies to produce thermodynamically nonintuitive behavior, the best choices of
V2 /V! will be near the intersections of the VF? and V% critical potential curves

in Fig. 2.16.° It is in the neighborhood of these intersections, where the critical

¢We were unable to determine the intersection point of the V32 and VP9 critical potential
curves for the case of the pair approximation. These critical potential curves rose sharply in the
neighborhood of the presumed intersection of these curves and the integration of the resulting
differential equations became prohibitively slow. This steep rise in the critical potential curves
may be an artifact of the fact that the pair approximation used only the 1nn pair as the base
cluster, but used both Inn as well as 2nn pair interaction potentials.
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potentials for B2 and D03 are of comparable magnitude, that we would expect
to see strong temperature-dependence of the kinetic paths. This is because the
thermodynamic driving forces for B2 and D03 ordering are approximately equal
for values of V2, /V corresponding to these intersections. It is then possible for
the kinetic path to be influenced strongly by kinetic factors such as the number of
paths between state variables. This conjecture was borne out in our earlier work
in the point approximation, where the strong variations in kinetic paths depicted
in Fig. 2.7 were obtained for V2, /V = 1.25, which is near the intersection of the
B2 and DOy critical potential curves for the point approximation (see Fig. 2.16).

We used temperature to control the shapes of kinetic paths, such as those in
Fig. 2.7. Figure 2.17 shows kinetic paths in (Spo,, Sps)-space for Vi, = Vg =
V,VE,/V = 0.75 in the pair approximation for three different values of V (V =
1.60, V = 1.80, and V = 2.00). The kinetic paths began at near-complete disorder
in the lower left corner [(Spo,, Sp2) = (0,0)] and evolved toward equilibrium order
near the upper right corner [(Spo,, Sp2) = (1,1)]. The kinetic paths for the cases
V = 1.80 and V = 2.00 showed a distinct two-stage ordering process. Such a
two-stage ordering process was absent for the case of V = 1.60. For the cases
V =1.80 and V = 2.00, a significant amount of D03 order had evolved before the
B2 order parameter began to increase. We attribute this rapid relaxation of D0,
order to the stronger driving force for D05 ordering relative to B2 ordering at this
particular value of V},/V. The degree of D03 order obtained before significant
B2 order began to develop varied inversely with annealing temperature. In other
words, the two-stage nature of the evolution of order in the alloy was accentuated
by lowering the annealing temperature. This heightening of the two-stage ordering
process with decreasing temperature had been observed earlier in our work using

the MEM in the point approximation [14] and in our experimental work on B2 and
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DO0; ordering in FesAl [9]. This characteristic is a general feature of temperature-
dependent kinetic paths, caused by the larger range in Boltzmann factors at lower
temperatures. (The paths between state variables are of course independent of

temperature.)

Transient B32 and B2 order

We attempted to reproduce the formation of transient B32 order using the pair
approximation with the same set of interaction potentials used previously in the
MEM in the point approximation (V}, = V2, = 1.60) [14]. Figure 2.18 shows
the result, which includes a transient appearance of B32 order. This figure is
qualitatively similar to Fig. 6 of Ref. [14], but in the present case, the transient
B32 state is not as persistent. As in the case of the point approximation, the
details of the transient behavior were found to be sensitive to the choice of initial
conditions of the alloy.

The transient appearance of B32 order can be argued consistently by the theory
of spinodal ordering, which is based on the sensitivity of a free energy to static
chemical concentration waves [20,21]. The AB; alloy of Fig. 2.18 is unstable
against the (%%%) concentration wave, which would normally produce B32 order
in equilibrium. However, the AB; stoichiometry cannot support the B32 structure.
As the intensity of the (%%%—) concentration wave grows, the free energy difference
between the disordered state and that of the alloy increases as well. It is no longer
sufficient to consider only the quadratic term in the free energy expression—the
higher order terms in Eq. 5 of Ref. [21] will become significant when the alloy
is partially ordered. In particular, the cubic term in the free energy expression

111

would lead to a mixing of two different (555) concentration waves, giving rise

to a (111) concentration wave. On a bcc lattice, the (111} concentration wave
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is equivalent to a (100) concentration wave. The combination of the (1) and
(100) concentration waves will provide the growth of D03 order. While the theory
of spinodal ordering is consistent with our present observations of transient B32
order at the ABj stoichiometry, we will find in the next chapter, an example of
transient order at the AB stoichiometry which cannot be explained by spinodal

ordering.

2.2.4 Conclusions

We have developed a theory of ordering kinetics with vacancies in the pair ap-
proximation using the superposition approximation with chained probabilities for
alloys with equilibrium states of B2, D03, or B32 order. By varying the inter-
atomic pair potentials and the annealing temperature, a rich variety of kinetic
paths through order parameter space was obtained. These kinetic paths were
qualitatively similar to those obtained previously using a point approximation.
Significant variations of kinetic paths were obtained when the critical tempera-
tures for B2 and D03 ordering were not strongly different. In these cases the
annealing temperature can be used as a means of controlling kinetically the for-
mation of a wide variety of nonequilibrium states of order. We were also able
to reproduce the previously-reported transient B32 order in alloys with ABj stoi-

chiometry using both the path probability method in the pair approximation.
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Chapter 3

Monte Carlo Simulations of
Disorder—Order Transformations

In this chapter, I present the results of my investigations into the kinetics of
disorder—order transformations in binary bcc alloys using Monte Carlo simula-
tions. The method was used to study the development of short- and long-range
order in alloys with equilibrium states of B2, D03, or B32 order. The Monte
Carlo method was implemented on a simulated crystal lattice containing up to
approximately half a million atoms and employed a vacancy mechanism for atom
movement. Both first- (1Inn) and second-nearest neighbor (2nn) pair interactions
were considered. The results of the Monte Carlo simulations were compared with
the results that were obtained using two different analytical techniques in Chap-
ter 2. For all three calculations (point, pair, and Monte Carlo), critical tempera-
tures for B2 and DO0; ordering are reported for different 1nn and 2nn interaction
strengths. The influence of annealing temperature on the kinetic paths through
the space of B2, D03, and B32 order parameters was found to be strong when
the thermodynamic preferences of the alloy were not too great. Transient states
of intermediate order were also studied. A transient formation of B32 order in

an ABj; alloy was found when 2nn interactions were strong, even when B32 order
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was neither a Richards-Allen-Cahn ground state nor a stable equilibrium state
at that temperature. The formation of this transient B32 order can be argued
consistently from a thermodynamic perspective. However, a second example of
transient B2 order in an AB alloy with equilibrium B32 order cannot be explained
by the same thermodynamic argument, and we believe that its origin is primarily

kinetic.

3.1 Introduction

In the previous chapter, we developed and implemented a kinetic theory of B2
and D03 ordering using a master equation method (MEM) in the point (Bragg-
Williams) approximation [1]. Those efforts were motivated by our experimental
work on ordering kinetics in FegAl [2]. We also formulated an alternate theory of
ordering in bcc alloys using the pair (Bethe) approximation and the 4-sublattice
model of the previous theory. In addition to the increased accuracy obtained by
using a larger base cluster, viz., the pair instead of the point, the new theory also
provided short-range order (SRO) parameters. It was instructive to identify the
qualitative similarities of the long-range order (LRO) kinetics in the point and
pair approximations by comparing their predicted “kinetic paths” for the alloy.
In this chapter, we test further the reliability of those computations by performing
Monte Carlo simulations (MCS) of ordering [3-7]. These MCS employ a single
vacancy and the same mechanism of atom movement as the analytical theories,
but are essentially exact for the large crystal lattices (containing up to half a
million atoms) used in the present work.

One of the more surprising results from our work using the MEM in the point
approximation [1] was the observation of transient B32 order that occurred for

certain choices of the interaction potentials, particularly ones where the 2nn in-



84

teractions were quite strong relative to the 1nn interactions, but both favored
the formation of unlike pairs. Under these conditions, B32 order was neither
a Richards-Allen-Cahn ground state [8,9] nor a stable equilibrium state at that
temperature. Surprisingly, however, B32 order appeared transiently during the
disorder—order transformation. This transient B32 order was not metastable in
that it did not correspond to a local minimum in the free energy surface. One of
the members of our group has obtained experimental evidence for the formation
of such a pseudostable B32 state during low-temperature annealings of disordered
FezAl [10]. Recent theoretical investigations have suggested that such transient
or pseudostable states may correspond to saddle points in the free energy surface
[11]. In the course of calculating kinetic paths of ordering, we found examples
of transient states of order that are nonintuitive from thermodynamic arguments.
We made some effort to optimize the appearance of these transient states, and we

discuss them here.

3.2 Theory

The algorithm for our MCS is identical to that used in our earlier studies of
vacancy diffusion and ordering, and is described in detail elsewhere [3-7]. In
brief, we employed a bcc lattice of 32 x 32 x 32 x 2 = 65536 atoms for most of
this work, although we performed some work with larger lattices. Initially the
lattice was réndomly populated with A and B atoms in a 1 : 3 ratio for the AB;
stoichiometry (or 1 : 1 for the AB stoichiometry) except for one of the sites which
was left vacant. This solitary vacancy was the agent for the atom movements
that produced ordering. Prior to each vacancy jump, the bond energies for the
eight first-nearest neighbor (1nn) atoms surrounding the vacancy were computed,

together with the corresponding Boltzmann factors. This Boltzmann factor was
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of the form
exp [NgAVgA + NppVag + NapgVig + NiAVia + NagViss + Nig VQB} , (3.1)

where, for instance, N}, is the number of Inn A~A bonds, and V}, their energy
in units of kgT. It was necessary to consider second-nearest neighbor (2nn) as
well as 1nn bond strengths since D03 order cannot develop with 1nn interactions
alone. Competition among the eight Inn atoms for the vacant site was resolved
probabilisticaglly with the outcome weighted by the respective Boltzmann factors.

Periodically during the MCS runs, information on the SRO and LRO was ex-
tracted from the simulated lattice. The Warren-Cowley SRO parameters were
obtained by counting the numbers of A—A, B-B, and A-B pairs for various coor-
dination shells. The LRO parameters were obtained by simulating the diffraction
pattern of the lattice. Besides its similarity to experimental observations, this
method had the added advantage of not being adversely affected by the domain
structure [12]. (The domain structure in our MCS alloys impeded quantification
of LRO by overlaying the ordered structure on the lattice.) To determine the kine-
matical diffraction intensities from our MCS lattice, we performed the following
sum of phase factors

2
|

> expliAk -1l (3.2)

I

I(Ak) =

where the summation is performed over the positions of the A-atoms, ry, for a cu-

bic volume of edge length %&%ZZ around the %%%, 100, and 110 points in Ak-space.
These superlattice and fundamental diffraction intensities were monitored during
the MCS runs, and were converted into B2, D03, and B32 LRO parameters as
follows. We used the square root of the (313) and (100) superlattice intensities,
normalized by the intensity of the (110) fundamental, and corrected for multi-

plicity. The conventional B2, D03, and B32 LRO parameters for the AB3 (1 : 3)
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stoichiometry were then obtained as:

e Gy 1\1111([1 1 [100) 2
Sti, = I J (3.3)
110
1
5% _IIO() 2 959,
S = [—} - 5123‘0'3} (3.4)
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where 0 < bff[{; S SE% < 1. For the AB (1 : 1) stoichiometry, the conven-

tional B2 and B32 LRO parameters were given by:!

Tion2
s =22 (3.6)
110
o [2hss)’ .
Sha? = [;120“ (3.7)

(/ C
where 0 < S307%, Sp3% <

3.3 Results and Discussion

3.3.1 Kinetic and Thermodynamic Trends

The steady state of any viable kinetic theory of ordering and disordering should
be the appropriate state of thermodynamic equilibrium. In particular, the kinetic
theory in the pair approximation should be consistent with the cluster variation
method (CVM) in the pair approximation and the MCS critical potentials should
provide essentially exact results (making allowance for finite-size effects). This is
what we found when we calculated the critical temperatures for B2 and D03 LRO
by these two methods. Figure 3.1 shows the critical potentials for B2 and DO0;

order as a function of Vi, /V. These curves were obtained by considering alloys

1Since the AB (1 : 1) stoichiometry is not conducive to the formation of DOy order, we are
able to identify the (é i, é) peak with the presence of B32 order and the (100) peak with the
presence of B2 order without any ambiguity.
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88

which had Vi, = Vily = V and V}, as the only nonzero pair potentials, varying V'
for a fixed ratio of V2, /V. This is equivalent to maintaining the same interatomic
potentials and varying the temperature. We tried a range of different values of V,
and tested for the occurrence of incipient B2 and D03 ordering. Also included in
Fig. 3.1 are the corresponding critical potential curves from our earlier work with
the MEM in the point approximation (see Fig. ba of Ref. [1]). All three sets of
critical potentials display similar general trends. The ordinate intercepts of the
VB2 curves correspond to the B2 critical potentials for the familiar case of 1nn
interactions only. These B2 critical potentials agree with corresponding critical
potentials obtained from equilibrium theory. As the 2nn interactions are turned
on (increasing V2, /V), the VB? curves increase and the VP% curves decrease.
This is the expected behavior since the positive 2nn interactions (V?) tend to
suppress B2 ordering and enhance D03 ordering.

The same interatomic interactions that determine the thermodynamic critical
potentials also set the Boltzmann factors in the kinetic rate equations. Although
the rate equations depend also on the number of available paths between the vari-
ous state variables, the kinetic rate equations can be dominated by the interatomic
potentials when the ratio of V?/V! is near zero or infinity and V!, V2 > 0. In
these extreme cases of all 1nn (or all 2nn) interactions, there is no possibility for
the evolution of D03 (or B2) order. The thermodynamic equilibrium states of B2
(or DO3) order are forced to evolve, and there is little of interest in the kinetic path
through the parameter space of B2 and D03 order. We expect that for kinetic ten-
dencies to produce thermodynamically nonintuitive behavior, the best choices of
V?/V1 will be near the intersections of the VB2 and VP% critical potential curves
in Fig. 3.1. It is in the neighborhood of these intersections, where the critical

potentials for B2 and D0; are of comparable magnitude, that we would expect
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to see strong temperature-dependence of the kinetic paths. This is because the
thermodynamic driving forces for B2 and D03 ordering are approximately equal
for values of V2, /V corresponding to these intersections. It is then possible for
the kinetic path to be influenced strongly by kinetic factors such as the number of
paths between state variables. This conjecture was borne out in our earlier work
in the point approximation, where the strong variations in kinetic paths depicted
in Fig. 4 of Ref. [1] were obtained for V2, /V = 1.25, which is near the intersec-
tion of the B2 and DO0; critical potential curves for the point approximation (see

Fig. 3.1).
3.3.2 Transient B32 and B2 order

We attempted to reproduce the formation of transient B32 order that had been
obtained previously in Chapter 2 using both the master equation method in point
approximation and the path probability method in the pair approximation. Fig-
ure 3.2 depicts the B2, D03, and B32 LRO parameters as a function of Monte
Carlo step (analogous to a time axis). The interaction potentials used in obtain-
ing this figure were V¢, = Vi = 1.00 and V2, = 2.00. We observed that after
about 200 Monte Carlo steps, a significant quantity of B32 order had developed,
without much DO0; order. However, as the simulated lattice continued to evolve
toward equilibrium, the B32 LRO began to decrease while the D03 LRO continued
to increase to its equilibrium value. The equilibrium condition consisted almost
entirely of D03 order; the residual quantity of B32 LRO that seemed to persist at
equilibrium can be attributed to the manner in which we have extracted our LRO
parameters using Eqs. 3.3 — 3.5. The noticeable kink in the two LRO curves be-
tween 10 000 and 15 000 Monte Carlo steps is due to the annihilation of antiphase

domain boundaries.
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Figure 3.4: Surface plot of [110] zone axis diffraction pattern obtained from the

Monte Carlo simulated lattice of Fig. 3.3 at 0 Monte Carlo steps.
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Figure 3.6: Surface plot of [110] zone axis diffraction pattern obtained from the

Monte Carlo simulated lattice of Fig. 3.3 at 3000 Monte Carlo steps.



95

All of the results discussed thus far were obtained for the AB3 (1 : 3) sto-
ichiometry. We repeated the MCS discussed in the previous paragraph for the
AB (1 : 1) stoichiometry and a slightly different choice of interaction potentials
(Viy, = Vag = 1.00, V2, = 1.40). Figure 3.3 depicts the corresponding variation
of the B2 and B32 LRO parameters with Monte Carlo step. Here, the equilibrium
state exhibits a strong (113) peak with negligible intensity in the (100) superlat-
tice peak. This is indicative of equilibrium B32 order. However, the appearance
of a transient (100) superlattice peak after about 300 Monte Carlo steps indicates
transient B2 order. This can be clearly seen in Figs. 3.4 — 3.6 which shows surface
plots of the [110] zone axis diffraction pattern obtained from the simulated lattice
after 0, 300, and 3000 Monte Carlo steps. Compared with the previous behavior
at the ABj; stoichiometry, we have gone from a condition of equilibrium D03 order
with transient B32 order to one of equilibrium B32 order with transient B2 order.
By altering the stoichiometry of the alloy and its interaction potentials, we were
able to alter not only its equilibrium state but also its transient microstructure.
We also examined the simulated AB lattice at 300 Monte Carlo steps, and found
that it consisted of small well-defined domains of B2 and B32 order of a few lattice
constants in diameter.

The transient appearance of B32 order can be argued consistently by the theory
of spinodal ordering, which is based on the sensitivity of a free energy to static
chemical concentration waves [13,14]. The ABj alloy of Fig. 3.2 is initially unstable

/111

against the (5335) concentration wave, which would normally produce B32 order in

equilibrium. However, the AB; stoichiometry cannot support the B32 structure.

As the intensity of the (%%%> concentration wave grows, the free energy difference

between the disordered state and that of the alloy increases as well. It is no longer

sufficient to consider only the quadratic term in the free energy expression—
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Ref. [14] will become significant when the alloy is partially ordered. In particular,
the cubic term in the free energy expression would lead to a mixing of two different
(333) concentration waves, giving rise to a {111) concentration wave. On a bcc
lattice, the (111) concentration wave is equivalent to a (100) concentration wave.
The combination of the (1) and (100) concentration waves will provide the
growth of D03 order.

While the theory of spinodal ordering is consistent with our observations for
the ABj; stoichiometry, it cannot explain the transient formation of B2 order at
the AB stoichiometry. It is impossible to mix two (100) concentration waves
to create a (%% ) concentration wave. Spinodal ordering is a thermodynamic
idea without any features that are uniquely kinetic, e.g., paths between state
variables. Although spinodal ordering may be a useful concept for alloys near
thermodynamic equilibrium, it is not generally applicable to kinetic phenomena

in alloys far from thermodynamic equilibrium.

3.4 Conclusions

We have used Monte Carlo simulations to study the ordering kinetics of alloys
with equilibrium states of B2, D03, or B32 order. By varying the interatomic pair
potentials and the annealing temperature, a rich variety of kinetic paths through
order parameter space was obtained. These kinetic paths were qualitatively similar
to those obtained in the previous chapter using the point and pair approximations.
Significant variations of kinetic paths were obtained when the critical temperatures
for B2 and D03 ordering were not strongly different. In these cases the annealing
temperature can be used as a means of controlling kinetically the formation of a
wide variety of nonequilibrium states of order.

We were also able to reproduce the previously-reported transient B32 order in
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alloys with ABj; stoichiometry using Monte Carlo simulations. For another alloy
with AB stoichiometry we were able to obtain transient B2 order with D03 order
as the equilibrium state. The transient microstructure was an admixture of B2
and B32 ordered domains of a few lattice constants in diameter. It is not possible
to account for the formation of these transient kinetic states using conventional

thermodynamic arguments.
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Chapter 4

The Hybrid Monte
Carlo—Cluster Variation Method

In the previous two chapters of this thesis, I presented two philosophically differ-
ent approaches to the study of kinetic phenomena in general and order-disorder
transformations in particular. In Chapter 2, I considered two analytical models
(the master equation method and the path probability method) as used in the
study of disorder—order kinetics in binary bcc alloys exhibiting B2, D03, and/or
B32 order as possible ordered states. Chapter 3, in contrast, presented a more
brute-force approach to alloy kinetics (the Monte Carlo method) as applied to
various systems in two and three dimensions.

Each of these two approaches has its own particular merits and demerits. With
the analytical techniques (cluster approximations), we are able to obtain closed-
form albeit approximate expressions for the configurational entropy and the free
energy. On the debit side, such mean-field approaches are inaccurate unless the
clusters involved are fairly large. Unfortunately, any increase in the size of clusters
considered is generally accompanied by increased complexity of the path probabil-

ity expressions as well as the configurational entropy and free energy expressions.’

IThere are notable exceptions to this rule. For instance, in the two-dimensional triangle and
square lattices, there exist sequences of base clusters, sometimes called “ladder clusters,” for
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The resulting path probability expressions in the path probability method are dif-
ficult to maximize with respect to their constituent path variables. The same is
in general true for minimizing the free energy expressions with respect to their
constituent state variables in the corresponding cluster variation method. How-
ever, the situation is not as dire in the latter case since for a given base cluster
set, the free energy expression is far less complicated than the corresponding path
probability expression (there is no time dependence to be considered). Further-
more, it is possible to avoid the multivariable minimization of the free energy
altogether by using a technique known as the natural iteration method [2]. The
natural iteration method has been proved rigorously to converge to the minimum
free energy and in practice does so quite rapidly [2].

The Monte Carlo simulations, on the other hand, face no such daunting propo-
sition of having to deal with a multivariable maximization or minimization. If the
critical temperature of ordering is to be used as a measure of the method’s worth,
Monte Carlo simulations are also quite accurate provided the lattice sizes are suffi-
ciently large. In any event extending the method to larger crystal lattices is trivial
compared to the effort required to extend the path probability method to larger
base clusters. Monte Carlo simulations of vacancy ordering are also a reasonable
model of the actual ordering process from a mechanistic viewpoint. The concepts
of bond-breaking energies and activation barrier heights have a certain logical and
intuitive appeal.

However, there is no simple method of obtaining the configurational entropy
and free energy directly from the crystal lattice during a kinetic Monte Carlo

simulation, such as those of the previous chapter. There do exist indirect tech-

which simple recursion relations can be written for the cluster configurational entropy. Using
these, it is possible to obtain expressions for the cluster configurational entropy and free energy
which contain relatively few terms, even when the base cluster is very large [1].
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niques for calculating the configurational entropy and free energy but these have
only been demonstrated for equilibrium Monte Carlo systems and in any event
are computationally quite expensive [3].

In this chapter, I present a novel technique for calculating free energies of al-
loys during kinetic Monte Carlo simulations. We are particularly interested in the
changes of the free energy during the evolution of chemical order. As mentioned
previously, it has always been possible to keep track of the free energy in kinetic
studies using the path probability method (PPM) [4,5]—the present method con-
fers a similar capability upon kinetic Monte Carlo simulations. To calculate the
free energy during a Monte Carlo simulation, we borrow ideas from the cluster
variation method (CVM) [6,7]. In practice, the Monte Carlo simulations are car-
ried out in the usual manner. In addition, however, the simulated crystal lattice
is periodically sampled for the probabilities of various cluster types. These clus-
ter probabilities are used directly in the CVM formulae for the configurational
entropy and free energy. This simple but powerful idea combines synergistically
the best of both worlds—the relationship between free energy and kinetics (such
as provided by PPM) and the accuracy of Monte Carlo simulations. This method
of obtaining the free energy of the Monte Carlo simulated lattice is also compu-
tationally cheap since it is only required to quantify the frequencies of occurrence
of the various clusters—again no multivariable minimization of the free energy
expression is required.

After this idea of using CVM entropy and free energy expressions in Monte
Carlo simulations was developed and implemented, we were made aware of similar
exploratory work by Schlijper [8,9] and others [10]. Schlijper et al. [8,9] demon-
strated a CVM-Monte Carlo method for the estimation of free energies in the

two- and three-dimensional three-state Potts model. In additon to the CVM en-
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tropy expressions, their method used an alternative Markovian estimate for the
configurational entropy. Bichara et al. [10] then applied the CVM-Monte Carlo
portion of Schlijper’s technique to the study of Fe—Al alloys in the tetrahedron
approximation. However, those efforts were directed at equilibrium systems. To
the best of our knowledge, the present work is the first application of such hybrid
CVM-Monte Carlo techniques to the study of nonequilibrium systems.

Before plunging headlong into the details of this hybrid CVM-Monte Carlo
method, it will probably be useful to present a brief synopsis of the rest of the
chapter. T will set the stage by briefly reviewing the original cluster variation
method of Kikuchi [6,7]. In the process I will point out those aspects of the
method that are of particular relevance to our needs. While on the subject of the
cluster variation method, I will present a computer algorithm for the automatic
generation of CVM free energy expressions for a specified set of base clusters. This
algorithm makes use of ideas from an elegant reformulation of the cluster variation
method using group theory [11]. The original cluster variation method is silent
on the choice of base clusters to be used except for a vague notion that bigger is
better. However, it is not always true that increasing the size of the base cluster
improves the accuracy of the approximation. I will deliberate at some length on
the various criteria and conventional choices for the cluster hierarchy and I will
supplement these with some heuristic ideas of my own. With these preliminaries
out of the way, I will enter into the description of the hybrid cluster variation—
Monte Carlo method. Finally, I will conclude by presenting and discussing some

representative results obtained with this method.
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4.1 The Cluster Variation Method

The statistical mechanical basis of the CVM has been treated at great length in
the many papers by Kikuchi and his coworkers [6,7]. Many workers have also
attempted to clarify or reformulate its mathematical machinery [12-14,11,15,16].
The exposition of the cluster variation method in this chapter follows that of
Refs. [14] and [11] but will be somewhat terse—the reader is referred to the above
references for details. The essence of the cluster variation method can be summa-
rized as follows: Given a specification of base (or maximal) cluster(s) of the parent
crystal lattice (the choice of base cluster(s) essentially sets the degree of the ap-
proximation and the range of correlations to be considered), the CVM formalism
provides an explicit albeit approximate expression for the configurational entropy
and free energy of the system in terms of cluster probabilities of the base cluster(s)
and its subclusters. In general, the equilibrium free energy is obtained by minimiz-
ing the free energy expression with respect to these cluster probabilities subject
to one or more constraints, such as composition, long-range order (LRO), short-
range order (SRO), etc. These constraints are typically incorporated through the
use of Lagrange multipliers in the free energy expression. Such enterprises do
not interest us here as we are only concerned with the free energy expression as
a function of the various cluster probabilities—the Monte Carlo portion of the
method will automatically take the necessary constraints into account.

Although the CVM was originally developed to deal with equilibrium struc-
tures, the CVM free energy expression remains a useful quantity in the considera-
tion of nonequilibrium systems as well. In fact, in the PPM (the extension of the
CVM to time-dependent processes), the (nonequilibrium) free energy is obtained

as a by-product of maximizing the path probability. Some may question the ap-
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plicability of the free energy concept to nonequilibrium systems in general and
kinetic Monte Carlo simulations in particular. Consider the familiar expression

for the Helmholtz free energy?,
F=F— TSconﬁga (41)

as it applies to Monte Carlo kinetics. In the canonical Monte Carlo simulations
employed here, the temperature T is always a well-defined quantity. In a pair
interaction model, the internal energy F can, at any time, be obtained by sim-
ply examining all the atom pairs in the Monte Carlo crystal and summing their
interaction energies. Whereas the configurational entropy Sconsg i proportional
to the logarithm of, in principle, at least, a purely combinatorial term—one that
is divorced from considerations of whether the system is in equilibrium. So we
can conclude that both Sins, and F' are well-defined quantities in our Monte
Carlo simulations. It remains, however, to demonstrate that they are useful for

understanding the kinetic evolution of an alloy.

4.1.1 The Cluster Configurational Entropy

A cluster is simply a set, usually finite, of points in a crystal lattice, usually infinite.
It can be specified uniquely by two variables, r and ¢, and is frequently denoted by
the ordered pair (r,t). Here, r is an integer equal to the number of points in the
cluster and t is a cardinal number used to distinguish between distinct clusters
having the same number of points, 7 (r and ¢ are positive integers). A cluster
containing r points is also sometimes referred to as an r-point cluster [14]. Any
two r-point clusters are considered equivalent if they are related to each other by

the symmetry operations of the crystal lattice, 1.e., if at least one of the elements

2The present Monte Carlo simulations employ a rigid crystal lattice. Consequently, the
Helmholtz and Gibbs free energies only differ by a fixed constant, PV.
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of the space group of the lattice maps one of the r-point clusters onto the other.
We will use this property later in our computer algorithm to determine if any two
given r-point clusters are equivalent.

For a crystal lattice with p atomic species, there are p” possible configurations
of a particular (r,t) cluster if we allow each site of the (r,t) cluster to be inde-
pendently occupied by one of the p atomic species. However, some of these p”
configurations may be indistinguishable from each other. Such equivalent con-
figurations are related by an element of the point group of the (r,t) cluster. In
general, then, the number of distinguishable (r,t) cluster configurations is given
by the variable s(, ), where sq; < p". We can therefore denote any given con-
figuration of the (r,t) cluster by (r,¢,1), where 1 < [ < s44. The degeneracy
of a given (r,t,1) configuration, a(r,t,1), is the number of distinguishable (r,¢,1)
configurations that are related by the point group of the (r,¢) cluster. It follows,
then, that

S(r,t)

Yoalrntl)=p (4.2)

=1

for any given (r,t) cluster.
We can now write the configurational entropy density (the configurational

entropy per lattice point or per atom) as

S(r,t)
S=kp> y(r,t) Y a(rtl)z(rt1)log z(rt,1), (4.3)
(r,t) =1
where kp is Boltzmann’s constant and z(r,¢,1) is the concentration of the (r,t)
cluster in the [ configuration with the normalization condition
Sty
> z(rt,l) = 1. (4.4)
=1

In Eq. 4.3 above, the summation over (r,t) is carried out over the base cluster(s)

and all subclusters of these base cluster(s). When (r,t) is one of the base clusters,
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the quantity v(r,t) is given by
v(r,t) = —N(r,t), (4.5)

where N(r,t) is the number density of that cluster (the number of such clusters
per lattice point or per atom). For all other (r,¢) (that are subclusters of the base

clusters), we have

y(rt) = —=N(r,t) — > > M(r,t;q,5)v(q,s), (4.6)
g=r-+1 §

where M (r,t;q, s) is the number of (7,¢) clusters contained in a (g, s) cluster.

In general, the summation over (r,t) in Eq. 4.3 should be carried out over all
subclusters of the base clusters. It would seem, therefore, that we would need to
calculate y(r, t) for all subclusters of the base clusters. However, the structure of
the expressions for v(r,t) in Eqs. 4.5 and 4.6 is such that many of these y(r,t) are
identically zero. For instance, if (r',¢') is the largest proper subcluster® and if it is
not wholly included in the intersection of any two of the base clusters, the latter
being related by the symmetry operations of the crystal lattice, we can write

N t) = Z M@’ t;r, t)N(r,t), (4.7)
(rt)

W”here the summation over (r,¢) takes into consideration all the base clusters
greater than the (r',¢') cluster. The result is that y(r',t') vanishes according to
Egs. 4.5 and 4.6. It follows then that beginning with the base clusters and working
our way down to smaller and smaller proper subclusters, we need consider only
those proper subclusters that are wholly contained in the intersection of any two
of the larger subclusters with nonvanishing ~, the latter once again being related
by the symmetry operations of the crystal lattice. Finding all nonvanishing v is

thus quite straightforward.

3 A proper subcluster is a subcluster that is not identical to any of the base clusters. (c.f.
proper subset)
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4.1.2 Computer Calculation of Cluster Entropy Expres-
sions

Although we have shown in the previous section that many of the v(r,t) coef-
ficients in Eq. 4.3 vanish, there can still be enough nonvanishing v(r, ) to be a
nuisance. This is especially true as the sizes of the base clusters are increased in a
desire for greater accuracy. It would be useful to have a means of automating the
calculation of the v(r,t) coefficients. Successful implementation of an algorithm
for doing so requires, among other things, a simple and efficient means of calcu-
lating N(r,t) and M(r,t;q,s) in Egs. 4.5 and 4.6. We therefore introduce a few
concepts from group theory that should prove useful for the purpose of quantifying
N(r,t) and M(r,t;q,s) for arbitrary clusters.

We begin with the definition of the normalizer of a cluster [11]. The normalizer
Ny (G) of a cluster (r,t) with respect to the space group G of a crystal lattice

is the subset of the elements of G which leave the cluster (r,t) invariant:
Newn(G)={g € Gig(r,t) = (r,1)}. (4.8)

Ni@p(G) is a subgroup of G of finite order. Furthermore, the order of the point
group I of the crystal lattice is an integral multiple of the order of N, (G). This
follows from the fact that N, (G) is also a (finite) subgroup of I', which latter
also happens to be finite. The number density N(r,t) of the cluster (r,t) is then

given by the order |I'| of T' divided by the order [N, 4 (G)| of Nippy(G):
N(r,t) = [I/INwa (G- (4.9)

So we see that a simple means of calculating N(r,t) for arbitrary (r,t) presents
itself: We simply count the number of elements of I which leave N(r,¢) invariant
and apply Eq. 4.9. This algorithm is the core of the subroutine clus_count() in

Appendix C.
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We illustrate the above method by calculating N(r,t) for the 4-point irregular
tetrahedron cluster on the body-centered cubic lattice and the 4-point square
cluster on the two-dimensional square lattice. The point group I' is m3m for
(face-centered, body-centered, and simple) cubic lattices and its order |I'| is 48.
The normalizer NV, ;)(G) of the tetrahedron cluster with respect to m3m is mm?2
and its order [N, (G)| is 12. Using Eq. 4.9, we obtain 48/12 = 4 for the number
density N(r,t) of the tetrahedron cluster on the body-centered cubic lattice. The
point group of the two-dimensional square lattice is 4mm, which has order 8 and
is also the normalizer of the square cluster with respect to the square lattice. It
comes as no surprise then that the number density of square cluster on the square
lattice is 1.

We next require a scheme for calculating M(r,t;q,s) for arbitrary clusters
(r,t) and (g, s). The idea which comes to mind is to consider all (f) r-point sub-
clusters of (q,s) and keep a running tally of how many of these are equivalent
to the given (r,t) cluster. This is in fact the algorithm that is used in the sub-
routine sub_count () in Appendix C. The source file clus.c, which contains the
subroutine sub_count (), is generated by the program gen_clus.

We had mentioned in the previous section that only relatively few of the sub-
clusters of the base clusters contribute terms with nonvanishing (7, t) to Eq. 4.6.
There we outlined a method for weeding out subclusters with trivial v(r,t). In
the present implementation of the program for calculating the v(r,t) coeflicients,
we use the more straightforward technique of checking all subclusters of the base
cluster. This brute force method for considering subclusters of the base clusters,
while easy to implement, has a computational cost that goes as 2" for each r-point
base cluster. This results in the execution time of the program increasing quite

rapidly with the size of the base clusters. While this was not a major obstacle
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for the results presented here—the largest base cluster considered here was the
15-point “stellated cube” cluster on the body-centered cubic lattice—we intend
to improve upon this procedure along the lines sketched above in future work.

We are not yet done, however. We still need a means of deciding if any two
given clusters are equivalent. Obviously, for this to be true it is, at a minimum,
necessary that the two clusters have the same number of points. Given this fact,
we then use the property mentioned in the previous section that any two r-point
cluster are equivalent if they are related to each other by at least one of the
symmetry operations (space group elements) of the crystal lattice. Finding such a
space group element is not as formidable as it may seem. This is because although
the space group G of the crystal lattice is of infinite order, it is, thankfully, not
necessary to consider all its elements. We need only consider all the elements
of the (finite) point group ' of the crystal lattice and determine if the result of
the operation of one of these point group elements on one of the clusters differs
from the other cluster by a translational vector of the crystal lattice. If we can
find at least one such point group element, the two clusters are equivalent. The
above method for determining if two arbitrary clusters are equivalent is used in
the subroutine clus_comp() in Appendix C.

In summary, the algorithm for the determination of y(r, t) for an arbitrary set

of base clusters is as follows:

e calculate the number densities N(r,t) of the base clusters,

e enumerate all distinct subclusters of the base clusters,

o calculate the number densities N(r,t) of the nonequivalent subclusters of
the base clusters,

e beginning with the largest clusters and working our way down to the small-

est, calculate M(r,t;q,s) and ~(r,t).
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The implementational details are somewhat more involved than this but have less
to do with the physics of the problem than with mere computational contrivances,
and need not concern us here. The complete source code for the computer program

gcvm for the calculation of the y(r,t) coefficients is given in Appendix C.

4.2 The Choice of Base Clusters

It has been pointed out earlier that the CVM formalism does not prescribe the
choice of base cluster(s) to be used. Traditionally, the critical temperature T,
predicted by a particular choice of base cluster(s) has been used as one of the
measures of that method’s accuracy. By this yardstick, it has been found that
employing larger base clusters generally gives better approximations [14,17-19].
Exceptions abound however—for instance, it is well known that in fcc systems that
the double-tetrahedron approximation gives a less accurate value for T, than the
(single) tetrahedron approximation in spite of the larger base cluster of the former
[14]. For the purpose of the present work, we employed the entropy and free energy
expressions corresponding to a variety of base cluster sets on the bce lattice. In
order of increasing accuracy, these are the: a) point, b) pair, ¢) tetrahedron, d)

octahedron, and e) octahedron—cube approximations (see Fig. 4.1).

4.3 The Hybrid Monte Carlo—Cluster Varia-
tion Method

The algorithm for our Monte Carlo simulations has been described in detail else-
where (see Ref. [20] and the references therein) as well as in Chapter 3 of this
thesis. For the present work we used a bcec lattice of 64 x 64 x 64 x 2 = 524 288
atoms, unless stated otherwise. The crystal lattice was initially randomly seeded

with A and B atoms in a 1 : 1 ratio (AB stoichiometry) with one of the sites left



112

Figure 4.1: A portion of the bcc lattice showing (from left to right) the a) point,

b) pair, ¢) tetrahedron, d) octahedron, and e) cube clusters.
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vacant. This latter vacancy served as the agent of the mechanism of ordering.
In our vacancy mechanism of ordering, the eight first-nearest neighbors of the
vacancy had Boltzmann probabilities for exchanging sites with the vacancy. A
pair interaction model using first- (1Inn) and second- nearest-neighbor (2nn) pair
interactions was used for obtaining the Boltzmann factors, which were used as
weights in the random selection of an atom-vacancy interchange. B2 and/or B32
order was allowed to develop in the initially disordered crystal lattice by annealing
at a fixed finite temperature below the critical temperature for ordering. During
the Monte Carlo simulations, we kept track of the SRO and LRO parameters.
The Warren-Cowley SRO parameters were obtained by counting the A-A, B-B,
and A-B pairs for each near-neighbor shell and applying the usual formulae. The
LRO parameters were obtained from the diffraction pattern of the crystal lattice,
calculated by obtaining the three-dimensional Fourier transform of our alloy. The
intensities of the ($31) and (100) superlattice diffraction peaks were normalized
by that of the (110) fundamental peak and used as measures of the B32 and B2
LRO parameters, respectively.

In addition, we periodically computed the configurational entropy and free
energy of the crystal. This was done by counting the frequencies of the various
cluster types that enter into the well-known CVM formulae [14] for the entropy.
Knowing the value of S in the various cluster approximations, we computed E
by summing the energies of the various 1nn and 2nn pairs, and then used Eq. 1
to obtain the corresponding approximations for F. In principle, the statistical
accuracy of F' is limited by the size of the Monte Carlo crystal being studied. In
the present study, we chose to maximize the accuracy by counting all the clusters

of a given cluster type in the crystal lattice. This was possible as there were only

about half a million atoms in the Monte Carlo crystal. (The number of clusters
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of any given cluster type is equal to a small integral multiple of the number of
atoms.) We had no problems with statistical accuracy or reproducibility, but
problems could arise with larger base clusters. The larger the cluster type, the
smaller (on average) the individual cluster probabilities for that cluster type, and
the more susceptible these are to statistical fluctuations. It could therefore become
necessary to use as large a crystal lattice as possible, or to perform ensemble

averaging in order to maximize the precision of the estimated S and F'.

4.4 Results and Discussion

Using this new computational tool to monitor the free energy in our Monte Carlo
simulations, we followed the change in the free energy density as an initially disor-
dered alloy developed order. Figure 4.2 shows the change in the (100) superlattice
intensity as a function of Monte Carlo step for an equiatomic binary alloy with
Viy = Vgp = 1.00. The interatomic interaction potentials are in units of kgT', and
this particular choice corresponds to a temperature-of 0.3157,.. The (100) super-
lattice intensity increases monotonically until it reaches an approximate plateau
at about 250 Monte Carlo steps. This increase of the (100) intensity reflects the
growth of B2 order, which is the equilibrium phase for this particular choice of pair
interactions. At this point (at ~ 250 Monte Carlo steps) the alloy has reached
equilibrium and consists of a single well- ordered B2 domain. (The additional
very slight increase in the (100) intensity after 250 Monte Carlo steps is due to
the “annealing out” of some of the single-site defects in the alloy [21].) Also
shown in Fig. 4.2 are the point (solid line), tetrahedron (dotted line), octahedron
(dashed line), and octahedron-cube (dotted dashed line) approximations to the
free energy density (in units of kgT'). These exhibit the same general trend of a

monotonic decrease in F until about 250 Monte Carlo steps, from which point on
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there is only a barely perceptible additional decrease and the alloy is essentially
at equilibrium.

It is interesting to compare the results for the different approximations of F'
(Fig. 4.2). Initially (at 0 Monte Carlo steps), the configurational entropy density is
In 2 for all levels of approximation. This is because the initial random configuration
corresponds to T = oo; and all CVM configurational entropy and free energy
expressions are exact in the high-temperature limit [14]. As order evolves in the
alloy, however, the free energy curves from the various approximations begin to
deviate from each other, although all four curves show the same qualitative trends.
In the point-approximation, the free energy density is just the internal energy
density offset by In2. The free energy densities from the tetrahedron, octahedron,
and octahedron-cube approximations are similar to each other, suggesting that
they are probably close to the exact value. The deviation among these three curves
gives a rough estimate of the error resulting from truncating the approximation at
the octahedron—cube level. Another estimate can be obtained from the absolute
value of F at equilibrium—for the exact case corresponding to Fig. 4.2, we must
have F' ~ 0 for nearly perfect B2 order because F =~ 0 (very few lnn A-A and
B-B bonds) and S ~ 0 (nearly perfect order).

The above approximations of F obtained using our hybrid CVM-Monte Carlo
technique are in principle quite different from the corresponding approximations
using conventional CVM and PPM. This is because while both approaches em-
ploy the same level of approximation in obtaining the configurational entropy S,
the same is not true of the internal energy E. The internal energy in the hybrid
CVM-Monte Carlo method is essentially exact for the large crystal lattices used
here, irrespective of the level of cluster approximation used to calculate the con-

figurational entropy. In contrast, the internal energy in conventional CVM and
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Figure 4.2: Graph showing the growth of the (100) superlattice diffraction in-
tensity (diamonds) as a function of Monte Carlo step for an initially disordered
equiatomic binary alloy with V}, = Vg = 1.00 (in units of kgT). Also shown, on
the same horizontal axis, are the point (solid line), tetrahedron (dotted line), octa-
hedron (dashed line), and octahedron—cube (dotted dashed line) approximations

to the free energy density (in units of kgT).
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PPM is limited by the same level of approximation as is used in calculating the
configurational entropy.

Figure 4.3 shows the variation of the ($13) and (100) superlattice diffraction
intensities as functions of Monte Carlo step for an equiatomic binary alloy with
Viy = Vag = 1.00; V2, = Vg = 0.70 (in units of kgT). For this particular
choice of pair interaction the equilibrium state is one of B32 order. The (533)
superlattice intensity, which reflects B32 order, increases monotonically until it
reaches its equilibrium plateau after about 1500 Monte Carlo steps. (The sharp
increase in the ( %%%) superlattice intensity at about 1000 Monte Carlo steps,
just before equilibrium is reached, is due to the annihilation of antiphase domain
boundaries.) Meanwhile, the (100) superlattice intensity, which reflects B2 order,
increases initially until it reaches its maximum value at about 10 Monte Carlo
steps. After that, it begins to decrease monotonically until it has practically
vanished by the time equilibrium is reached. Also shown in Fig. 4.3, on the same
horizontal axis, is the octahedron—cube (dotted dashed line) approximation to the
free energy density, which decreases monotonically until it reaches its equilibrium
value of approximately 1.97 (in units of kgT') after about 1000 Monte Carlo steps.
For the exact case corresponding to Fig. 4.3, we would have F' =~ 2.0 for nearly
perfect B32 order because F =~ 2.0 (approximately one Inn A-A bond and one
Inn B-B bond per atom) and S & 0 (nearly perfect order).

The transient appearance of B2 order in this simulation has analogs in similar
studies of disorder—order transformations carried out using analytical techniques
such as the master equation method and PPM [22-25]. Such transient states
have been termed “pseudostable” elsewhere in the literature [23,24]. In the ear-

lier analytical work, such transient or pseudostable states have been shown to

be associated with a stationary point or saddle point in the free energy surface
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1
amonds) superlattice diffraction intensities as a function of Monte Carlo step
for an initially disordered equiatomic binary alloy with V}, = Vgg = 1.00;
Vi = Vg = 0.70 (in units of kgT). Also shown, on the same horizontal axis,

is the octahedron-cube (dotted dashed line) approximation to the free energy

density (in units of kgT).
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[24]. Based on the approximation to the free energy shown in Fig. 4.3, a similar
association appears to exist here. As expected, the free energy density decreases
monotonically with Monte Carlo step. However, there appears to be an approx-
imate plateau in F where the (100) superlattice intensity reaches its maximum.
This is not unlike the behavior of the free energy density reported in Ref. [23]. The
often long-lived nature of those transient states was attributed to the vanishing
of the free energy gradient, and hence the thermodynamic driving force, in the
vicinity of the stationary point in the free energy surface [23,24].

The above results can also be explained heuristically as follows. The phase
boundary between B2 and B32 in the ground state (T' = 0) occurs at g—f = 2 [26].
This is close to the value of % used in the simulation of Fig. 4.3. We therefore
expect the thermodynamic driving forces for the formation of the two types of
order, B2 and B32, to be very similar for the conditions of this simulation. The
alloy in its initial random configuration is in a highly nonequilibrium state. Its free
energy is very much higher than what it would eventually be in the equilibrium
B32-ordered state. It can begin to dispose of this excess free energy by forming
domains of not only B32 order but B2 order as well. Some local regions in a
random alloy are B2-like, and can form B2-type order more expediently than B32.
(Although the B2 domains in this simulation may have a higher free energy density
than the B32 domains, it is still much less than that of the initial disordered state.)
This accounts for the large drop in F' in the early stages of the simulation (from 1 to
about 10 Monte Carlo steps). In fact, examination of the simulated microstructure
of the transient state (at ~ 10 Monte Carlo steps) showed it to consist of small
domains of B2 and B32 order of a few lattice constants in diameter. However,
once the initial disordered state has been replaced by these microdomains of B2

and B32 order, any further decrease in the free energy can only be achieved by
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the growth of the B32 domains at the expense of the B2 domains. This is indeed
what occurs in the next stage of the simulation (from ~ 10 Monte Carlo steps
onwards). As expected, the resulting additional drop in F' is much less than that
in the first stage because of the presumably much smaller free energy difference
between B2 and B32 order.

We repeated the simulation of Fig. 4.3 using a crystal lattice é the volume of
the previous crystal lattice but performed 8 times with 8 different random number
seeds. The resulting aggregate (%%%) and (100) superlattice diffraction intensities
and free energy density in the octahedron-cube approximation as a function of
Monte Carlo step are shown in Fig. 4.4. These can be seen to be essentially identi-
cal to the corresponding curves obtained in the previous figure. However, a couple
11

of dissimilarities are worth noting. The sharp increase in the (333

) superlattice
intensity which previously occurred at about 1000 Monte Carlo steps in Fig. 4.3
and which we attributed to the annihilation of antiphase domain boundaries ap-
pears shifted slightly to the left in Fig. 4.4. Furthermore, the averaging process
has also smeared out this previously sharp increase in the (37) superlattice in-
tensity and made it less distinct. This is because the precise moment when the
annihilation of the antiphase domain boundaries occurs varies stochastically from
one Monte Carlo run to another when different random number seeds are used.
These minor differences aside, the similarities between Figs. 4.3 and 4.4 suggest
the feasibility of using ensemble averaging in concert with the methods described
above to increase the precision of our free energy estimates. This should be a

particularly useful capability when extending our scheme to larger base clusters.
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Figure 4.4: Graph showing the variation of the ($11) (circles) and (100) (dia-
monds) superlattice diffraction intensities as well as the octahedron—cube (dotted
dashed line) approximation to the free energy density (in units of kgT) as a func-
tion of Monte Carlo step. The data were obtained under conditions identical to

those of Fig. 4.3 except that 8 independent simulations were performed using a

crystal lattice % the size of that in Fig. 4.3, and their results averaged.
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4.5 Conclusions

We have developed and implemented a technique for extracting configurational
entropies and free energies from kinetic Monte Carlo simulations. The method
uses ideas borrowed from the cluster variation method. The Monte Carlo sim-
ulations are carried out in the usual manner; in addition, the simulated lattice
was periodically sampled for pertinent cluster probabilities, which were then used
in the cluster variation method’s free energy expressions. A computer program
facilitated the derivation of the coefficients in these free energy expression for any
given choice of base clusters. We were able to obtain a range of approximations
to the free energy depending on the choice of base clusters used. Using the best of
these (the octahedron—cube approximation), we were able to verify that the free
energy density decreased monotonically with time as order evolved in an initially
disordered alloy. We were also able to show that the free energy versus time curve
approximated a plateau in the neighborhood of a transient B2 state in system
that exhibited B32 order at equilibrium. Based on these findings, we speculate
that this transient B2 state, which appears to be at or near a nonequilibrium
stationary point in the free energy surface, could be an example of a psuedostable

state.
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Chapter 5

Summary and Perspective

In the previous three chapters, I presented and discussed representative results
of kinetic processes obtained using three distinct methods. We were able to dis-
tinguish various points of commonality among the results obtained using these
different approaches. Furthermore, significant trends were observed as the level of
approximation was increased, from the point approximation of the master equa-
tion method through the pair approximation of the path probability method to the
nearly exact hybrid Monte Carlo—cluster variation method. In this final chapter
of the thesis, I shall compare and summarize the main results obtained previously.
In the process, I shall present experimental evidence from the FesAl system which
is supportive of some of these conclusions. Finally, I shall conclude this chapter by
presenting some of my thoughts on the future directions of the research presented

in this dissertation.

5.1 Comparison of Analytical and Monte Carlo
Results

Using the three kinetic models, we were able to obtain equilibrium critical poten-
tials for B2 and DO0; order as a function of the ratio of 2nn to Inn interaction

strengths. These showed the expected thermodynamic trends. For instance, with
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only Inn interactions, the critical potentials for B2 order increased (the critical
temperature decreased) with increasing level of approximation. As the ratio of
2nn to 1nn interaction strengths were increased, the critical potentials for B2 or-
der increased, whereas the critical potentials for D05 order decreased. However,
the critical potentials for the path probability method in the pair approximation
exhibited pathological behavior for intermediate values of this ratio. This is prob-
ably due to the fact that we used chained 1nn pair probabilities to obtain 2nn pair
probabilities in an implementation that has only Inn pairs as the maximal cluster.
One possible means of avoiding this problem would be to use larger base clusters,
such as Inn and 2nn pairs together or the tetrahedron cluster. Another possibility
might be to obtain the 2nn pair probabilities as products of corresponding point
probabilities.

Both analytical methods exhibited strong temperature dependence of kinetic
paths through order parameter space. In general, as the temperature was lowered,
the evolution from initial disorder to equilibrium order displayed more of a two-
stage ordering process. In other words, as the temperature is lowered, the initial
growth of one of the two order parameters is suppressed relative to that of the
other. This can be understood as a difference in the effective activation energies for
the two types of ordering. Lowering the temperature, then, will tend to accentuate
the difference in the kinetics of the two types of order.

We were able to obtain transient B32 order along the way to equilibrium D0j
order using all three techniques. As the level of approximation was improved, this
transient B32 order became less prominent, and the B32 order parameter showed
less of an extended plateau as a function of integration or Monte Carlo step and
more of a log-normal peak. We were able to show that during the appearance of

this transient order, the free energy was approximately stationary in time. In the
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case of the point approximation, we were further able to associate this transient
state with a saddle point in free energy surface as a function of order parameter.
Using the Monte Carlo method, we were able to demonstrate that this transient
order was most pronounced near the (equilibrium) phase boundary between the

two competing types of order.

5.2 Experimental Evidence

In this section, I shall present some of my experimental work on the temperature
dependence of kinetic paths in rapidly solidified powders of FezAl. I shall also
present some results obtained by Gao et al. which exhibit evidence of transient
B32-like order obtained during the early stages of ordering in splat-quenched foils
of FesAl.

5.2.1 Temperature Dependence of Kinetic Paths in FesAl

The Fez Al materials used in this study were rapidly solidified powders (RSP) made
by the Pratt and Whitney Corp. using centrifugal atomization. The cooling rate
was estimated to be 10* K s7!. Chemical analysis of the powder by inductively
coupled plasma analysis gave a composition of 74.0 at. % Fe and 26.0 at. % Al. The
powder was sealed under vacuum in borosilicate glass ampules and the ampules
were annealed for various times at 200 °C, 250 °C, 300 °C, and 350 °C. These
temperatures were chosen because they were well below the critical temperature
for D03 ordering (550 °C). Thus, we would expect the equilibrium LRO parameter
at these temperatures for both B2 and D03 ordering to be very close to unity,
and thus also very close to each other. In this way, we can ensure that any
“equilibrium effects” are equal for the various temperature series. Any differences

in the evolution of LRO in these temperature series could then be attributed to
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“kinetic effeéts”.

The x-ray diffractometry measurements were performed at room temperature
with a GE XRD-5 6-260 diffractometer using Cr Ka radiation. To obtain D03 and
B2 LRO parameters, we used the (331) and (100) x-ray diffractions, respectively,
because these were the most intense peaks indicating those degrees of order. We
examined some sample-to-sample variations in the ratios of fundamental peaks in
order to identify crystallographic textural effects and found these variations to be
small, as expected in powders.

For calibration purposes, we performed calculations of the Cr K« x-ray diffrac-
tion intensities by means of a Rietveld [1] powder diffraction code that was modi-
fied to include Lorentz polarization factors and x-ray atomic scattering factors for
Cr Ka radiation. Using a model crystal of Fe3Al with stoichiometric composition
and perfect D03 order, from these calculations we obtained (%—é)calc = 7.38%
and (%)Calc = 3.68% (corresponding to the LRO parameters: Spg, = 1.0, and
Spz = 1.0). We used these results as scaling factors for converting our measure-
ments of superlattice peak intensities into the LRO parameters Spg, and Sgy. We
point out that our principal result of a temperature dependence of the kinetic
paths will not be qualitatively affected by inaccuracies in the intensity calcula-
tions (such inaccuracies would merely scale the axes of the (Spo,, Sp2)-space in
Fig. 5.1).

Intensities of the (311) and (100) superlattice peaks, and of the (110) fun-

damental peak, were obtained from the diffraction profiles by integrating the

background-corrected peaks. The intensities of the (111) and (100) superlattice

peaks were first divided by the intensities of the corresponding (110) fundamen-

tal peaks. The B2 and DO0; order parameters were then obtained by taking the

square roots of the ratios of these normalized intensities to those obtained from
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the intensity calculations for perfectly ordered stoichiometric FezAl

S (%%;) /(%%) : (5.1)
o [110 exper 1110 calc ’ .
1
IIGO ILOO :
o= () J(d) ] 52
B2 li\IllO exper 1110 calc ( )

When the LRO parameters Sg, and Spg, were plotted against each other, it
was found that the relative rates of increase of Sp, and Spy, had a significant
temperature dependence. Figure 5.1 presents our experimental data on the tem-
perature dependence of the kinetic paths of the order parameters Sgy and Spg,.
The straight line represents a linear least squares fit to the experimental data
obtained for that particular annealing temperature. It is possible to quantify this
temperature dependence of the relative rates of increase of Sgy and Spy, in terms
of a difference in the activation energies of the two types of ordering. We write

the rates of change of the LRO parameters, S’Bg and S’Dog, as

SBQ = 5g2 exp(_QBQ/RT), (53)

SDOZS - S]%Og eXp(_QD()a/RT); (54)
where (e and QJpo, are the activation energies for B2 and D0; ordering respec-

tively. It follows that

. .
p2 _ 55‘*2 exp(AQ/RT), (5.5)
SDO3 SDO;}
and
0
552 _ S o (AQ/RT), (5.6)

dSpo, 8P,
where AQ = Qpg, — UBa-
The slopes of the lines in Fig. 5.1 correspond to dSgs/dSpy, in Eqn. 5.6. These
slopes decrease with increasing temperature, suggesting an Arrhenius-type depen-

dence. We performed an Arrhenius analysis of data by plotting log(dSg2/dSpo,)
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vs. (RT)™! (not shown). From the slope of the linear fit to the data, we ob-
tain a value of 11.2 kJ mol ™" or 2.7 keal mol™" for AQ. (The activation energy
for D05 ordering is higher than that for B2 ordering by this amount.) These
temperature-dependent kinetic paths were not reported in a previous study [3],
perhaps because the annealings in this previous study were performed at the two

rather similar temperatures of 363 and 380 °C.

5.2.2 Transient B32 Order in Fe3zAl

Foils of Fes Al were prepared as chemically disordered bec solid solutions by piston-
anvil quenching and annealed at 300 °C to induce order. The evolution of order
was measured using x-ray diffractometry and Mdssbauer spectrometry. Figure 5.2
shows the growth of the (%%%—) and (100) x-ray superlattice diffraction peaks in one
of these initially piston-anvil quenched foils that had been annealed at 300 °C for
increasing lengths of time. During the first 5 minutes of annealing, the (%%%) and
(100) peaks increase in the approximately 2 : 1 ratio expected for D03 order. How-
ever, between 5 minutes and 120 minutes, the (%%%) peak shows a nearly two-fold
increase in intensity while the (100) peak intensity is virtually unchanged. This

growth of the (533) peak without any increase in the (100) peak is indicative of

i
the development of transient B32 long range order. Further annealing of the sam-
ple to 2800 minutes recovers the approximately 2 : 1 intensity ratio as equilibrium
D03 order is achieved.

Figure 5.3 shows the 3"Fe hyperfine magnetic field distributions obtained from
Méssbauer spectrometry of piston-anvil quenched FezAl foils for various annealing
times at 300 °C. The numbers at the top of the figure identify resonances from 5" Fe

atoms with different numbers of Al neighbors. The as-quenched sample exhibits

an approximately binomial distribution of 1nn Al atoms for the "Fe atom, as
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expected for a random solid solution of Fe and Al. During the first 10 minutes
of annealing, there is an increase in the 4- and 0-Al peaks in the approximately
2 : 1 ratio expected for D03 order. However, between 10 minutes and 100 minutes,
the hyperfine magnetic field distribution is virtually unchanged. It turns out that
the hyperfine magnetic field distributions for a random solid solution and for B32
order are very similar, and we may possibly attribute the stationary hyperfine
magnetic field distribution during this time to the transient formation of B32
order from chemical disorder. At any rate, this would be consistent with the x-ray
diffractometry data of Fig. 5.2. Further annealing of the sample for longer times
than 100 minutes recovers the approximately 2 : 1 intensity ratio of the 4- and
0-Al peaks as equilibrium D03 order is obtained. The above x-ray diffractometry
and Mossbauer spectrometry evidence of transient B32 order are supportive of

similar theoretical results obtained in Chapters 2 through 4.

5.3 Future Efforts

From Chapter 2, it is apparent that going from a point approximation to a pair
approximation involves a significant increase in the number of state variables
(nominally, from 12 to 36) and the complexity of the resulting rate equations.
Extending the analytical techniques to even higher cluster approximations should
be correspondingly more complicated. As a matter of fact, I must confess that I
have attempted to extend the path probability method of Chapter 2 to the tetra-
hedron approximation, but the difficulties involved have forced me to shelve the
project, at least temporarily. However, I take some solace in the knowledge that
the tetrahedron approximation has proved to be a worthy challenge to greater
minds than mine [5]. At least part of the reason for the difficulty in extending the

path probability method of Chapter 2 to the tetrahedron approximation lies in
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the use of a vacancy mechanism of ordering. The presence of vacancies effectively
introduces a third species, and contributes to the proliferation of state and path
variables in the path probability method. More than that, however, the vacancy
is unlike the other species (say, the A and B atoms in a binary alloy) in that it
mediates the ordering process and therefore has to be given special treatment in
the derivation of the rate equations. Removing this asymmetry in the formulation
of the rate equations should greatly simplify matters. As a matter of fact, Mohri
has successfully implemented the path probability method in the tetrahedron as
well as octahedron approximations in fcc systems by using a pair exchange mech-
anism without the need for vacancies [6]. In going from the vacancy mechanism
to the pair exchange mechanism, the number of species is reduced by one; but
more importantly, the rate equations for the remaining species have a similarity
of form, making them much easier to derive and implement.

Even though the analytical techniques presented in Chapter 2 are not as ac-
curate as the Monte Carlo simulations of Chapters 3 and 4, they were able to
provide provide us with much valuable insight. For instance, the relative ease
with which we were able to calculate and visualize the free energy surface in the
point approximation of Section 2.1 provided us with an intuitive thermodynamic
interpretation of the occurrence of certain transient states during the evolution of
order in an initially disordered alloy. In comparison, attempting to map out such
a free energy surface as a function of the long-range order parameters in the case
of the Monte Carlo simulations should prove to be a much more involved task,
even assuming that such a free energy surface can be uniquely determined. One
possible way of doing so would be to use the hybrid Monte Carlo—cluster variation
method of Chapter 4. For a given set of interatomic potentials, we may choose

different initial conditions for the alloy and thus obtain different kinetic paths in



136

order parameter space. Since we are able to obtain an estimate of the free energy
at any point along any of the kinetic paths, we can, in principle, map out at least
a portion of the free energy surface as a function of the order parameters, specifi-
cally those regions of order parameter space that happen to be accessible via our
kinetic paths.

It would be interesting to see how a free energy surface obtained in this manner
compares to that obtained using a low order cluster approximation, such as the
point approximation of Section 2.1. For instance, will we be able to associate the
transient states obtained in Chapters 3 and 4 using Monte Carlo simulations with
saddle points or other stationary points in such a free energy surface? To what
extent will such a free energy surface depend on the choice of base clusters in the
hybrid Monte Carlo—cluster variation method? In Section 1.2 we discussed how
convexities in the equilibrium free energy function were suppressed as the order
of the cluster approximation (the size of the base cluster) was increased, and
vanished in the rigorous limit. Does a similar fate await the free energy surface
obtained using the hybrid Monte Carlo—cluster variation method?

Extending the hybrid Monte Carlo-cluster variation method to even larger
clusters on the bce lattice, such as the 15-point stellated cube cluster, should
improve the accuracy of the free energy estimates. The effect of the choice of base
cluster sequences on the convergence of the free energy estimates is also worth
investigating. It should also be relatively straightforward to apply the hybrid
Monte Carlo—cluster variation method to other crystal lattices, such as the fcc,

square, and triangle lattices.
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