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ABSTRACT

The problem consists of finding the pressure response to a
pressureAsoﬁrce in an acoustical system of a stratified fluid
overlying a rigid surface; a uniform gravitational field of
acceleration g is directed normal to the rigid surface. The
stratification is to be understood as implying that v, the
gradient of the velocity of sound,\and.kz, the negative log=
arithmic gradient of the density, are directed parallel or
antiparallel to the gravitational field. The magnitudes of
the quantities involved are assumed to be appropriate to the
atmosphere‘of the.eartha

The first problem treated assumes (L andpp are constant,
a situation which would obtain in an isothermal atmosphere.
The pressure response exhibits 1) an appreciable phase shift
upon reflection from the rigid surface at large angles of
incidence, 2) a surface wave, and 3) appreclable distortion
of the pulse shape.

Th? second problem neglects g and;p . The solution given
is asymgtotioally (high frequency) valid only in regions of the
fluid reached by least time rayé which have not been refracted
through the horizontal, Thisvsolution_indicates that the fime
“average energy flux propagatés along rays which differ from
the least time rays by an amount dependent upon the frequency,
i.e. such an atmospheré exhiblts angular dispersion. Asymp-
totic expressions are derived for the magnitude of the time
average energy flux and for the pressure pulse distortion.

Finally, vériationé in}p and (L are admitted simultane-
ously with the presence of a gravitational field. The solu-

tion is quelitatively the seme as that of the preceding problem
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Lo IWTRODUCTION

The problem to be considered here may be stated as follows; An atmos-
phere consisting of a perfect fluid is bounded below by a rigid plane sur-
face. At a distance h above this surface is located a point source. The

1.
H

source disturbance is considered as a perturbstion of a state of static

equilibrium. It will be assumed that the perturbation (propagation of an
acoustic wave) is a quasistatic adiasbatic process, that the fluid is acted
upon by a constant gravitational force directed everywhere normal to the
plane rigid surface, and that no other forces act upon the fluid. It is
required to find the pressure response.

The symmetry of the problem suggests employing cylindrical coordinates
r, z, and é) oriented so that the plane Z = O coincides with the rigid
surface and located so that the source lies on the z-axis at z = h. Inas-
much as there is no preferred azimuth one may assume that there will be no
dependence upon <Q .

Several special cases will be treated before finally arriving at a

result applicable to the atmosphere of the earth.
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17. DIFFERENTIAL SYSTEM

2.1s IFirst Order Perturbation Equations

Bergmann (1948, pp.329-33) has derived the differential equations
governing the first order perturbation of sound propagetion in a hetero-
geneous nonviscous fluid, The results of this paper will be used with the
following modification in notation {(the associated parenthetical symbol
being that vsed by Bergmamn for the same quantity)s P {po) is the static
(unperturbed) pressure; p (py) is the sound pressure; f)(pﬂ) is the static
density; U‘(Pl) is the variation in density caused by'ﬁhe sound wave; U
(31) is the fluid velocity, k (ko) is the adiabatic bulk modulus of the
fluid; and V (V) is the potential of the force of gravity. P, I k, and
V, the zero corder terms, are assumed to be independent of time. p, ag.,
and y, the first order terms, are in general functions of time.

t will be assumed that the time dependence 1is separable and is given

by e 1“”% thus

. iwt \ iwt
P(Z,T’,t> = P(Z,f‘) e » B(Z,Y‘,t) = B(Z,I‘) 31 » ete.
Unless written out specifically as p{z,r,t) the symbol p will denotes p{z,r);

a similar convention holds for uw and O,
~~

In this new notation Bergmann's equations (28) and (29) become

0 Pp + G Vp (1)
W + P G-vP

o)

= ~{<:>"VIO +K'vP (2)
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Vip twre ~/o"vP-vcr =0, (3)
where QZ: /O/K . (4)

Wotice that G has been defined as the negative of that used by Bergmann.
The quantity L)L is the recivrocal of the velocity of sound and is known
as the wave slowness,

Bergmann's equation (7) may be written as

= ko™ (vp +ovV). (5)
The assunption that' the force of gravity is constent and perpendicu=-

lar to the rigid surface z = 0 may be stated by the equation
wW=94e, (8)
where gzis the unit vector in the positive z direction and g the (constant)
acceleration of gravity. This relation may be combined with Bergmann's
squation (&) to vield

VP = "PE 2z (7)
This implies P = P(z) and P =P (Z) . It will be assumed that ) = £2(z).
Then from (2)
G =909 g, (®)
where /U = -/o" . (9)

These relations permit the simplification of (1), (3), and (5) to

S

Xz(w’-nz + G gz) (10)
v2p FRT t g %%’f =0, (1)

=4 {0"@“ (vp t0g 51) (12)
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where >\ = (w7‘~a 6) 2 . (13}

Bergmann has identified the term
4 =r (14)
from equation (11) of his paper as the energy flux.

In order to express the boundary condition at z = 0 it is neceasary to
have an expression for the vertical component of the fluid velocity. This

may be obtained from (10) and (12); whence

W=wee, = ,(w‘o"x?"(%%+?ﬂ2p)_ (15)

Substitution of (10) inteo (11) leads to

z ! )
z J G ydp
)‘VZP +?G§'£z +w’*(/u+ 3}?)37_
/ -2 2 / -
+w?'[w“-ﬂf-+393 + A 9 .Q?‘G]p =0 (18)
where the prime denotes differentistion with respect to the argument (Z in
this case).
The boundary condition appropriate to the rigid surface z=0 is the

venishing of the vertical component of the fluid velocity. From (185) it is

seen that a sufficient condition that w vanish at 2= 0 is that

[%%*rgﬂlp]l =0. (17)

=0

2.2. Separation of Variables

Following the procedures common to this type of problem, one may now
seek elementary solutions of the differential equation (18). It will be

assumed that an elementary solution may be represented by the product

P = X(zh) 4@ L (wvr) (18)
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_,[P(z) % AR

were xzh) - [ F]E 3G o)

(r} is the ordinary Bessel function, and v is the separation constant,

v(z) is, of course, also a function of v,

By direct operation one may show that

57 LG M6 )y vy 1A Totow),
%;% [5’“(}4()\ 96")y’ (7 ”/+/3i§%z3§—

- %}g}lz)la ] X (z,h) T, (wvr),

L
r\

2 ( 3b) - - vty X(zh) T lavr)

Substitution of these relations into (16) and (17) yields

(&” + ca(z},\) ‘a = O) (20}

[5’4(101-‘2%;\'236’)3]2,0 =0, (21)

where % (Z,/)) = = )? [VZ'Q-J'(Z)] - m*+m’
+ X?'(%G’m "ZL_@G") - 7‘}3‘6”’ /\-“) (22)
m(z)=an2~2‘/u = (/% ‘géff)‘/f (23)

It may be mentioned that a similar problem could be considered which

models the ocean rather than the stmosphere, In this case the z-axis would

be directed vertically downward and the boundary at z = 0 would be a free
surface. The differential equation (20) remains valid; the boundary con-

dition, however, must be replaced by

[3 +(”‘ "”2_,\1)?] (24)
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Because 0f the reversal in the direction of the z-axis it will be found

that g, G, and/.l are intrinsically negative.
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I1I. ISOTHERWAL ATVNOSPHERE

Equations (20) and (21) admit tremendous simplification if one assumes
that both L and-/J are constant. It is possible in this case to study the
effects upon wave propagation of gravity and density gradient isolated from
velocity variaticn. As a mabtter of fact it will be possible to isolate the
effects of density variation alone by making g approach zero.

Tt is of some interest to note that (L and M are constant in a per=
fect gas at constant temperature (isothermal atmosphere). Tor a tempera-
ture of 15%C. the numerical wvalues of some of the constants in the MES
system of units are as follows .

6

Q' = 8.65 x 10” eG - 3,33 x 1074

5 (25)
m = 2.54 x 107 o= 119 x 10~4

These values will be used whenever either numerical or order of magnitude
calculation is required,

In this problem it will be possible to synthesize a pulse from the
steady state solution.

3.1, Proposed Solution

For constant (L and/u equations (20) and (21) reduce to

yﬂ - kz Czy: O, » (26)

(y'+ my),0 = O (27)

where ¢ = (v2 - 112)%; (28)
{

M =(92- \2m?) 2 (29)

Inasmuch as the ultimate synthesis of a pulse will require dealing
with all W, it would be well to adopt a convention now as to the phase of

the radicals having branch points in the @-plane., Without exception the
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phase of these radicals will be specified as zero for large resl w ; the
required cuts, all of which are finite in length, in the W -plane may be
drawn along the real axis. It will be assumed that & has an arbitrarily
small imaginary part.
The complete solution for an isothermal atmosvhere with ﬁZco >0

(where Rw indicates the real part of w ) is given by

3
P (Zﬂ'):-#Z‘Pk(z,r), (30)
where
09410
pyr) =X (Z,R)J T, (wwr) g Actzhl vdv | (31)
o4
00¢40 " .
P?_ (z,r) :X(Z,H)f T, (wvr) g e - vdv) (32)
0t4o
0040
« “Ac(zeh)  vdv ]
P; (zr)=2wm 'X,(Z,L)Lga(wvr) e ¢ (m (33)

The limits of the integrals indicate the path of integration lies slightly
above the real axis. The phase of ¢ 1s chosen to be zero for large real v.
The solution for R w(O may be obtained from (30) by 1) changing
the sign from plus to minus, 2) replacing A by - A, and 3) modifying the
path of integration so that it lies below the real v axis,
¥otice that the sum of the integrands of the three terms of (30) de=-

pends upon z and r as

- bt Nc+m -Xc (z+h)
X (k) Tylovr) [P+ 50 ™0

Because the bracketed quamntity is a solution of the system (26) and (27),
this equation is identical with (18). Thus, insofar as the operations of

differentiation and %im,cmmmute with the integration over v, eguation (30)
>0
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satisfies the differential eguation and elso the boundary condition at
z= 0. It is easy to show that in the vieinity of z2=0 both differentiation
with respect to either z or r and the process %Eﬂ)cammute with the integra-
tion over v by virtue of the uniform convergence provided by e”’\ch, h;é 0w
The fact that the inteprand satisfies the differential equation (16) im-
plies that the diffsrential operator of that equation commutes with the
integraticn. The same argument with suitable changes of sign may be ap-
plied to the case (@ w<O.

It will be shown in the next section that (30) containe a proper
source representation.

3.2« Source and Reflected Vaves

If cne introduces the notation
z,=le - nl, Z,= (z+h), (34)
the integrals of (31) and (32) may be treated simultaneously in the form
0440 ACZ
P;,‘(Z,r) =7C(z,h)S 'J'o(wvr) e ¢ vdv . (35)
X 0+40
This integral may be identified with the classical source representation

(Watson, 1944, p. 416). If one replaces Watson's a, b, t, and y respective-

1y by A Zj’ wr, v, and ', it is found that

_ x(zh) - _ . _
Ib;(z,r) "I-?;—?;T—' exp g;(wt rR; 9})} ) (}—‘,2), (36)
where Rjz(rg-l-Z%}Ef', (37)

2 2. }’2_
.= z p
%= (w 3QZJ/R,) | (38)
The extension of Vatson's formuls teo complex A where X has a positive resal
part is accomplished by analytic continuation.

In the case W0 the expression for pj(z,r} may be obtained from the
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negative of (35) by changing the sign of X and replacing the path of in-

tegration by a path helow the real v sxis. The same integral idewmtity

) mayv be used to reduce the integral to equation (36),

v

, . . - < .. .
The fact that (36) is valid for @W>» O is due to the choice of phase of y .

(Viatson, 1944, p. 416
+ v b 1 vy 3 I 2 m 5
It may be observed that for values of W %}G + T equation

(36) represents a wave propagating outward from the point R.=(0., TFor
J

smaller values of @% no particuler interpretaticn need be attached; it

uffices that (36} is in a form suited to the synthesis of a pulse.

n

Inasmuch as/l) is a constant, equation (9) implies

- p(z-h
,0(2):'/0(5) e W . (39)
The fact that A it a constant implies through (19) and (39) that
=Kz
X(z,h) = e ) (40)

3ede Diffracted Vave

The term pgz(z,r) is most conveniently treated by contour integration

on the complex v-plane, a process which requires that the singularities on

{
», My
the v-plane be known. It will suffice to consider 7 (?G*’ a2/ = : the

results may be extended to smaller values of (W by analytic continuation.

The radical ¢ combributes branch points at v =*, 1In order to en-

sure single valuedness one may cut the v-plane vertically downward from

. . . ~1 .
eoch of these branch points (fig. 1)s The factor (Ac - m) ~ contribubes

poles at v= #Q) . Tt is not difficult to show that the pole v=tfL lies on

the upper Riemann sheet, 1.e., the sheet upon which ¢ is real positive as v

spproaches infinit if 1> 0, as would be the case in an atmosphere of a
P y, 3

perfect gas abt a constant temperature subject to gravity. For n <0, as

would be the case if g3 0, the pole lies on the lower Riemann sheet.
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Fortunately, the degenerate case m = 0 leads to no complication since Pz
is identically zeroc. The following itreatment assumes m > O; the modifi~
cations for m < O are nob difficult and will be given later,

For r = 0 and sufficiently large (33) may be evaluated by the

Zoy
2
method of steepest descents (Jeffrevs, 1950, p, 501}, The saddle noint is

s JRe F I b

the root of

de S ayvh

dv ~ cv (V -r ) =Q .

The only root is, of course, v = 0. The path of steepest descents is given
W 2 2 i & Ll

by

$c =+ .

This equation may be converted to the form

(r? 'L)'}?‘ X
X = 4 3 r ~?, >0 .

where v = x 4+ iv. The upper curve in figure 2 is a sketeh of this function.

The path of integration deforms conbtinuously into the path of steep=
est descents. This deformation is completely independent of the existence
of the pole; thus, the result will be equally wvalid for eany m,

On the path of steepest descents the phase of ¢ is such that the
variable part of ¢ is alweys pure real and positive, the imaginary part
being a constant 1‘1. It follows thet the exponential of eguation (33) is
a decreesing function of ve. Then by the application of Watson’s lemma it

is found that
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Fo7urc [

v_'o,ome

FH?Ure 2.
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2m X (z,h) S e

p; (2,0) ~ BV ) (41)

On the other hand when r # 0 the integral of (33) may be transformed
to a more tractable integral by a method which may be referred to as the
Sommerfeld transformation (see Pekeris (1946, p. 305) for a more detailed
exposition of the method). Briefly, the transformation procesds as

: . o
follows: Replace 2J_(¢0 vr) by the sum of the Hankel functions (Hy(wvr) +
L # . . . .
ﬁo¢ovr) ). The introduction of the Hankel functions requires a cut along
the positive imsginary axis (fig. 1). The integral of (33) may be split
. . \ .. m i ¢y
into two integrals, the first containing H, and the second H, , The former
integral may be deformed continuously into an integral slong the right side
of the positive imaginary v-axis plus an integral along an arc of infinite
radius connecting v=100 to v =+93 (fig, 1), The latter integral may be
deformed into a path slong the negative imaginary axis, a branch line
integral (E), a circuit (P) about the pole v =+€L in the negative trigono-
metric sense, and an arc of infinite radius terminating at v=teo(figure 1),
Since

o, @)
Ho (-iy) = - Hg (iy),
it can be shown that the two integrals slong the imaginary axis casncel exw-

sctly. Furthermore, the integrals on the infinite arcs are zero., Then

Aok Vdv
(Ac-m) c

-

ps(zr) = mX(Z,h)j How(ww) e
(e) +(F)

Tor sufficiently large r the Hankel function may be replaced by its

asympbtotic representation, whence

vidv

F:’.(ZIV‘) ~s (.ZL_‘]TUOV‘)'/Z m X (Z,l'\) eA}-ZJ e""f(v) m—“ )

(P)+(£)
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where ﬁ(v) = ' (iwvr +2cZ,) .
This integral may be asymptotically evalusted for large r by steepest
descents (Jeffreys, 1950, p. 503). The saddle point is at v = v,, where

wr
Vo = 3 M- (43)

/

The path of steepest descents is given by

§ o) =,

(44)

where &— denotes the imaginary part of the subsequent quantity. It is not
difficult to show that the path of steepest descents cuts the real axis at

2
v, and ('/VO; this path also asymptotically (large |vl ) approeches
Z
w X i)ﬂa-‘f‘ =0,
where v = X + iy and the upper sign applies to the right half v-plane and

the lower sign to the left half. Generally the path will be of the form

shown in figure 2 (page 12). In this case the standard evaluation gives

2 m X(2,h) LABR
b~ (_)_% - etk (45)
LR (45 2 -m)
For Z,/Ry sufficlently small, say ZE/ Rg (’5?%L s the second crossing of
the real axis lies between the pole and the branch point. It is then neces-
sary to add to (45) the pole contribution, which is found by the method of

regsidues to be

[

P(P)('Z r) ~ ‘)(,(2 ‘\)( war )/z exp{“m(ml‘) 4 (wsrr +Vq)§ ' (46)

Even the sum of (45) and (46) is a rather poor approximation for ZZ/R very
small since the saddle point is close to a pole, 1In order to obbtain =z

better spproximation it is best to start from (42). The pole comtribution
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being given by (46), only the branch line integral (E) need be evaluated.
In this integral it is desirable to make the change of variable from v %o

u = iv. With this change of variable the branch line integral of (42)

becomss
. \ —'/ £ ok
FJ(E)(Z,") ~-i(zTwr) “m Xk e %JG W) du (47)
€’
where
4 Y y . LT
P(u) =- ot Ak (w LG (WerS = [) (e er) =i m] e Uf' (48)

The u=-plane, including cubs, poles, and the path of integration (B'), may
; . o \ o . . :
be obtained from figure 1 by a 907 counterclockwise rotation. TFor consist=-
] 2y pzyt , 1/ .
ency the phase of (u + M")® must be chosen as /2, at u= 190,
The purpose of this change of variable is to reduce the integral to
one trested by van der Waerden (1951, v. 40), Van der Teerden has shown

that the asymptotic evaluastion of the integral of (47) is given by

. ; vl % 21\
—AJ(E)C wm; Pu)du ~ tie m™! (‘J’F) “

e—m(zﬂ») —iwrl-iTy K

e 49\

Za(av)% (29)

where U = f1- l"l (50)
T\% - A , % N

K=2 (3F)* - 2w e (i) erfe (Ciwrv)? (1)

4 ” tz
erfc z = 2rf?'fe‘ dt = 1 = erf z, (823
z

Wotice that the definition of the complementary error function (52) differs
by a factor 2 from that used by van der Waerden.

Rosser (1948, ». 15) has shown that

. )4 [ ¢ ot
erfe (1w ru)?® 2| - 2%e ‘%[C( [awrv/n]/i)i—iS([Zwrv/v]/a)] s (53)
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where C(x) and 8§ (x) are the Fresnel integrals

¥ mx® X 2 X 4Q‘1
c(x) + i8{(x) = Icos a dx+iJ s:‘m%ﬁ dx 2[ e’ X (54)
[e] 0 Pl
Substituting (49) into (47)
e (T

N
P;E)(Z,P) ~ - & X (z,h) e + ‘r{\l (2 Queor ) *

_K,(le\) e-\m(uh)—iwvr‘ K .

Py
en
w

-

The foregeing discussion applies to the case m7” 0., TFor m <0 the pole
at v=L1 lies on the lower sheet and cannot contribute directly to the so-
lution. However, the evaluation of the branch line integral leading to {58
remains valid., Therefore, the pole exerts an influence on the solution
through the term X in (55).

The evaluation of pg(z,r) for &iw(@ may be carried out by a straight=-
forward modification of the above procedure, the principal chenge being
that the v-plane is cut in an opposite manner from that just employed. It
is found that the equations (41), (45), (46), and (55) are valid for all w,

B.4. Total Response for Steady State

First consider the case where R2»>l and ZZ/E2 > 10_2: Since equation
(45), which was derived for large r, reduces in the limit as r=0 to (41),
which was derived for r = 0, it may be presumed that (45) is valid for
small as well as large r. The total response is given by the sum of the

three terms of (30). From (36) and (45)

i(wt-T'R) (ot - MR,Y,)

pzrt) ~ X RV e LR e

El +2m(z{—§—§¢z|”~m)“]j’ {58)
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For w21 the bracketed quantity may be written to a very good apvroxima-

tion as

Zm ¢ - Z, - m’ "'] 57)
L1+ ;L.(/kUJ /k ol ) (
Perhaps the greatest interest centers on the case where Z_<KR., In

2
thi 3 iate b lect & £ order Z2/R% \
his case it is appropriate to neglect terms of order RZ. Then (38)

implies
Z,l\) -4 r
P|(er) + PZ- (Z)Y") ~ 2 )‘XZ)(-—;:—— [ Moo N

The sum of this and (55) is

—-(Z4h) —Awrl? K

P(K)(zr)fv m A (2nﬂvwr) X (z,h) e (58)

For m €0 this represents the total response; for m> 0 there is in addition
the pole contribution (48).

An estimate of the importance of (58) in comparison to (46) may be
obtained rather easily from the asymptotic expansion of X given by van der

Viserden (1951, p. 42):

N’(NP) wrv ( ) - Zwrv +"')-

For large wrv, (58) may be written as

% m -Lwr
P(K)(Z,r) ~ [ 2%"‘-; 'X_(ljk)(ﬁ%r)z e (z+4) e w r']

3 3a
ilom) 2 (1~ som +7) . (59)

)
The bracketed quantity is equal to about QP(Z r) /10 (see (469. It appears
that for sufficiently large r, say r large enough that wvyv?10, p (z r)

) -3
will be less than 19 of pg(z,r}. Suppose w'>10 3 then



18
Wil m*

v~ 7y (1t g ygm* ) .

-5
The conditions that WYy 2?10 and W*? 10 ~ imply

P

r> 20 w ™= - (60)

5 A
Using the values (25), one sees that r »10 w km. It is apparent then that
at any resasonable distance, sav less than 1000 km., the term in XK must be

-3/2

retained in spite of its asymptobic behavior as r

K R
p()(z,r} may be conveniently written as the sum of two terms
® X(Zh) m 2\%  cm@) —iwe
P @)~ Soe (22)° e , (61)
s) o-m ) 21 )VZ -m(ul.)-xwrﬂ_%% . Y
P () ~-y X (W5l evfc (~awvrv)?®, (62)

The error function may, of course, be replaced by (53).
The results of this section may be summarized by observing that the
pressure response for R2>>Zl is given by:
. / N e ‘2
equation (56) if ZZ/R? > 10 7,
equation (61) and (62) if ZZ/RZ < 10-2,
. N -2 5
equation (59) if ZO/R2 10 7 and r > 107 ;
in the last two cases equation (46) must be added if m > O,

3,5, Physical Interpretation of Steady State

It is of some interest to consider first the simple case of the propa-
gation of a pressure wave from 2 point source in an infinite medium, i.e.,
to remove temporarily the complications due to the presence of a rigid
boundary. The solution to this problem is given by (38) with j set equal

2
to unity. For wz>96 f%':;_ the surfaces of constant phase are gilven by
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wt = "R,V .
The surfaces of constant phase are prolate spheroids of ellipticity

- PPN P N 5 ) . JREIEN r 2.
{ratic of the difference of the semiaxes to the semimajor axis) g6/ w™.

The orthogonal trajectories to these surfaces have the same direction at

any point as the vector

G
VIRY, =1 (eg + Far sm 20 e,)

where the notation refers Lo a system of sperical coordinetss the origin
of which lies at the source and the angle o being measured from the

z-axis to the radius vsector, e

sectively i unit vectors
2x respectively being the unit vscto

nd
and Ze
in the radisl and 9 directions. Thess trajectories are not rays, however,
since the influence of gravity has destroyed the isotropy.

The energy flux computed from equations (12), (14), and (36) is

T=owrm [2 Rf?,zto(h)]“' gR,

where terms which average to zero over a pesriod (217/@3) have besn neglect-
ed. The energy vpropagates radially outward from the source, but the source
does not radiate energy symmetrically in &ll directions, the most energy
being radisted vertically and the least horizontally.
How consider the influence of the rigid surface upon the pressure

. R . -2 ; ,
response. Suppose r is large, but Zg/r > 10 "« The pressure response 1is
then given by (66). It is easily seen that the first term represents the

J A I
direct wave from the source, and the second term the wave refllected at the

3

rigid surface. The brackebed quantity which modifies the latter may be
interpreted as a reflection cosfficient. The reflection coefficient is a
complex number of modulug unity; the phase, however, depends upon both W

and ZE/RZ. Therefore, there is a phase shift upon reflection from a rigid



w20
surface which varies witn the angle of incidence and alsoc with W .

Finally, one must consider th

o]

case where R, 1s large and 22/32 <L 1.

The pressure response for this case is given by the sum of (61) and (82)

plus, if m>»0, (46). The r = dependence of (61) identifies it as a body
nl 2 =3 : 2 2,2 b
wave. For w*710 "and neglecting terms in Z9/R2, (61) reduces to

(8) h) —e(zh) (e(-rl
p (z,r,t)A’X%;r)‘emu grotr

X (z,h) -mzth) dw(t-er) L
~o © e (-ggsr).

. 8) : . .
In this form p ( (z,r,t) may be recognized as the sum of the direct and
reflected waves.

In so far as @rv is small, equation (62) has the characteristics of
a surface wave, i.e., the amplitude depends upon the inverse square root of
r and is exponentially attenuated with incressing z. As r increases and
WrY becomes 8o large that the complementary error function may be replaced

. 3 > : : 3 (s)/ i
by its asymptotic representation, it is found that p "(z,r, approaches

() N iy e . | X
-p 7 (z,r). In this case it is convenient to revert to equation (58) and
. . . . ¢ .
its asymptétic expansion. The behavior of » {z,r,t) is that of a sur-
face wave at moderate distances and of a body weve at distances of the

- 10% k £ e . . . ()

order of 10" km(see (80)). 1In view of this behavior p (z,r,t) may be re-
ferred to as a psuedo-surface wave.,

For the case m >0 there is in addition the pole contribution (46)., Ais
one might expect this wave has all the attributes of a pressure surface
wave and may be referred to as such. The associated particle motion is com-
pletely horizontal. The phase velocity is the Laplace velocity of sound
Q.‘ 2 £ 1., 2 1 v Ty 3 {‘ 5 i, it

s The free wave which corresponds to this surface wave 1s the "general=-

£

ized sound wave' of Bjerknes (1933, p. 335).

The pressure response at the surface for m> 0 may be described as
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follows: At a moderately large distance the response is made up of the
sum of a surface wave, a psuedosurface wave, and s body wave. The first
two add to an amplitude of about half that of the pure surfece wave alone;
the total surface wave 1s much smaller than the body wave, As r incrsases,
the psuedo-surface wave behaves more as a body wave, ultimately canceling
the true body wave and leaving only the pure surface wave, It appears as
if +the energy of the body wave is transferred to the surface wave through
the intermediary of the psuedo-surflace wave.

The same end result must, of course, be obtained from the steepest
descents eveluation, i.e., the sum of (56) and (46). For very small Zg/ﬁ2

]

the reflection coefficient {the bracketed quantity) in (56) approaches =l.
Close to the surface the reflected wave, having undergone a 1BOOphase shift
upon reflection, interferes destructively with the direct wave. The body
wave 1s virtually cancelled, leaving only the surface wave (46).

It is of some interest to note thalt the surface wave, the only wave
propageting as a purely elastic wave, depends upon the influence of gravity
at the surface (n> (0 implies g>2%¢ } for its excitation, In this con=~
nection it mey also be remarked that no pure gravity weves are excited al-
though a free gravity wave exists (Bjerknes, 1933, p. 33%), The boundary
condition at a free surface (24) would introduce a pole leading to these
gravity waves,

The solution for pressure response is exponentially sttenuvated with
increasing z by the factor X (z,h) (see (40)). Quite the contrary is the
case for the fluid velocity. From (12) and (56) it is seen that the veloci-

ty amplitude of the body waves depends upon

() X(z,h) = ef/a(z-k)j
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e

for the surface waves, equations {12} and (47) imply a dependence of

+GZ

Pi@ X (2,h) et < e,

The fact that the velocity amplitude can become arbitrarily large con-
tredicts the basic assumption of the linearized equations employved. This
is not as serious as it appears. The steady state solution is merely a
mathematical tool for generating a pulse solution. In the pulse solutiocn
the disturbance is confined to a finite region of space at any given time.
The initial amplitude may then be chosen so that the amplitude remains
sufficiently small up to any preassigned time; the pulse solution will then
remain valid at least up to that time.

There are some advantages, however, Lo supposing the atmosphere to be
bounded by a perfect absorber at a level z = H which may be selected suf-
ficiently remote from the source and the rigid surface. The condition to
be imposed at this level is that all propagating waves crossing it pass
from the atmosphere into the absorber and not in the reverse direction,
This overcomes two objections: 1) that the differential system is not
valid for very low densities, and 2) that the steady state solution remain
bounded. The concept of an absorber lying above a certain level does, in
a rough way, take account of the fact that absorpbion, not allowed for in
the equations used here, plays an increasingly important role as 2z increases,
In any case a pulse solubion synthesized from such soluticns will not be
affected by the introduction of this artificial boundary until such a time

as the pulse fromt first reaches the level z = I,

3,6, Synthesis of a Pulse

A pulse may be synthesized by a linear integral operation upon the
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steady solution. One such operation which is convenient here is

400-4 0

P(Z)r,‘t) = (2m) JF(CJ) P(Z,r',t) deo. (63)

-00-40

#{w ) may be chosen as a convenient function of w subject to the restriction
that the integral must exist,
As an example of the procedure to be employed, a pulse solution may be

generated from (36). Let F(w )=1; then

“) $A0+0

— - X, \ st

P, (z,rt) 3 Cy 7l %(s) cls-_l (84)
J’ Zio0+Q

where the variable of integration has been changed from w to 8+ 1 W,

The gquantity £, (s) appearing in (64) is defined as follows

J
r‘%l??’ ___(“é-c 6’“}'“3) c"Ri(prsn')

=% e . (65)

The tilde (%) indicates that in the gquantity so modified () is to be re=-
placed by -is,and the phase of this new quantity taken to be O for very

large real s; thus,

(szfgézg/Rg)/‘" =AY (66)

t L4
The advantage of this transformation is that the bracketed quantity in

(64) may be identified as the complex inversion formule {Widder, 19486,

Ps 66) applied to the Laplace transform fj(s}. Then, (64) may be written as

X (z,h) -
P}(Zr,t) = ; b4 {ﬁ(s)% ) (67)

-t
where the symbol Zf ( } indicates the inverse Laplace transform of the
quantity enclosed in braces.

The first term on the right of (65) is a well known transform:
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oz"”{ia“ e N1 - 1(z,) :E,[(g,«s)‘/’~ %—; tﬂ, (63)

where 1% is the retarded time

Y = (t-QR;) (69)

and 1 () is the unit step function

1 T>0
The second exponential on the right of (65), being anelytic at infinity,
may be developed in a power series of inverse powers of s. Widder (1948,
p. 94) has shown that such a series may be inverted term by term to form an

-

entire series in +.

Ri(Tg -sn
{7V Lo 1w v - o

where S (t) is the Dirac delta functiom. It is important to obssrve that
the coefficients Cl’ Cg, oeos are all of order Rj and must approach zero if
Rj becomes ‘erbitrarily small,

Finally, the transform of fj(s) itself may be formed by taking the cone

volution (classical resultant) of (68) and (71) (Widder, 1946, p. 91). Thus,

i"{{é(s)} 1(7:)[\1’(r t) -Gt + 5 B S, (72)

2

2
where B. ¥ 1%3 Q (gGZj/R' + mg/j)_?‘ ). (73)
o s, J

From (67) one finds

P, GoD) = ’%{}"—’ 1| 7, (g& 2 17,) - By 4 B e ] oo

The source is found from (74) by neglecting all terms enclosed in brackets
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except the first,

Applicetion of the operation (83) to (58), (48), (81), and (62) leads
to

— ' ) 2.
b (z,n,t) = L%L ur,)[qa(@g 2v) - 8r, +-]

+7-‘-(3)—‘"—)1(r)[:r(9e P, ) - (6, - 22%) 1, 4o ] )

)
F(P)(Z,r,t) = §m XL (7 h) e'mz”') A( )( ) [l—,;jGt +...]) (76)
= (B) z ~wm (z+h) A m \
p (zrt) ~F X(zh) e 1) [ 1-Frafr - ]) (77)

—

y
P(S) (z,v,t) ~ -Z2m X (2, h) e‘maﬂ)i(’t) (;!) -
( - rl VY\ r{L m 7‘ i
[ 1-(55 (&= )% -] -
where T = (t = v ).

3.7, Special Cases

. . . . T
m = 0. Cerbainly the simplest speciel case is m = 0 (gfL =)J/2).

The diffracted wave vanishes identically and the total response is given by

the sum of 07 and D. But for m = 0

v}

a:?N

f:} (S) :Daol e*.Q.Ra

.

This is & known transform {Bateman, 1954, p. 248). The pressure response

is given exactly hy

7))

p(zrt)» X(zh) = 1( [r R (r; 12 R Q)% ‘]

+X(z,h) 1“‘ | [I’"ﬁ 2"‘ (fc 12k 0t)%] |

The source behavior is ;nﬂludpd in the first term as 21~*“O.

g = 0, This case is of some interest in that it isolates the effects




of density variation. Some simplification results if the operation (83)

. . ’ My -
is performed with Fl W ) = (UJZ"JE}) . Then, operating upon (38)

If the same operation is applied to (61) and (82) it is found that
both (77) and (78) remain valid. There is, of course, no direct pole con-
tribution,

3,8, Comments on the Pulse Solution

Admittedly there is no interest in making detailed calculations on
pulse distortion due to propagation in an isothermal atmosphere. Howsver,
there is some interest in the magnitude of the distortion introduced by
gravity and density gradients. It will be found that in certain regions
of the atmosphere the effects of gravity, density variation, and the varia-
tion of the velocity of sound are all comparable. Thus, an estimate of the

pulse distortion may be obtained from the results in an isothermal atmos-

The behavior of the source is given by the limit as Ry™ 0 of (74) with

J set equal to 1, Thus, the source pressure is given b
o 4 )

Ps (z,rt) 1(,3') T(J'G )

{

s

It is apparent that the source pressure is not spherically symmetric but

restricted to the

[N
w

depends upon the ratio Zl/ﬁl. However, if interest
first several seconds of the pulse, the pressure input closely avproxi=-
mates a spherically symmetric pressure source having a unit step function
time devendence; in fact, for the first eleven seconds (11.& 11) the

source pressure differs from svherical symmetry by less than 1%.



Suppose h 1s so large that at the time t under consideration, T, < 03
the boundary at z = O can have no effect upon the solution under these cir-
cumstances. The pressure response is most conveniently given by the first
term of (75). 1In order to find the magnitude of the distortion of the pulse
induced by gravity and density variation, consider the case R, = 200 km,

-
&4

Then, from (73) it is seen that .02 £ 81 £ 212, the exact value depending

upon Zl/ﬁl. Substituting into the first term of (75), one sees that a

N

sguare pulse of two seconds duration may be distorted at the rear end by

%

3
i

from 4% for Z,/R. = O to 249 for zl/nl- 1. The effects at moderately
large distances upon moderately long pulses may be appreciable.

o s

f one includes the effects of the boundary it is seen from (75) that

bt

there is added a reflected pulse, i.e., a pulse which appears to coms from
an image source located a distance h below the rigid surface. In general,
this pulse will be more distorted than the source pulse. In the case wherse
o << RZ it is no longer convenient to divide the response into a dirsct
and reflected wave; the natural division appears Ho be a surface wave and

a body wave, It is of inberest to find at what distance the surface wave
attains the same amplitude as the body wave, From (78) and (77) it is seen

he surface and body waves are approximately equal

that the amplitudes of ©
at r = 570/@’ km. For esrample, suppose the source input is a square pulse
of two seconds duration; the surface wave will attain an amplitude equal
to that of the body wave at a distance of 280 km. If one includes the
psuedo-surface wave as part of the surface wave it is found that equal am-

plitudes are attained at a distance r = ZSOQ/U m., eg., for the example

cited before)r must be 1150 km. before equsl amplitudes are attained.
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The special cases require little discussion. Their chief interest
in the fact that a part of the solution or even all of the solution

e obtained in an elementary closed form.
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IV. SOLUTION FOR AN ATNOSPHERE IN WHIcy Q= 0 (z)

'In the preceding section it wasg possible to obtain some
estimate of the effects of gravity and density variation upon -
wave propagation. Actually the principal complications of
-the problem of souﬂd pfopagation in.é stratified fluld are
due to the fact that the wave élownéss is not a constant. For
definlteness a veloclty variation of the form found in the
atmosphere of the earth will be considered. Figure 3 shows
the general form of this function; there are two maxima, z
z47 and Zs and one minimum, z = Zoy o Typlcal values of zq, Zg
and Ze respnectively might be 15, 58, and 90 km,

In order to study the veloclity veriation as simply as
possible one may assume that g =M= 0'(0) and also that
~the source is at the surface. In section V a general solu-
tion not restricted by these assumptiOHS will be given.

It will be convenienf in this problem to use the concept
of an artificial absorbing boundary which was introduced in
section %.5. For the methods which will be employed in this
séction 1t is renuired that there exist a true minimum of the
wove slowness below the absorber and that the value of 0 af
this minimum be less that (1(H). In. figure 3 the minimum z,
will serve this purpose provided H is near zgz. Subject to
this assumption it will be shown at the end of this section
that the waves crossing the level z - H have an upward compo-
nent in their direction of propagation.

Inssmuch as constant density and zero gravity imply
X(z,h) = 1, the form of the elementary solution (18) 1is

simplifisd somewhat. One may seek a solutlion of the form
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P(Z,r) = [Dj;(wvr) \a(z) Vclv (79)

where the path D lies wholly in the first quadrant of the v-plane and joins

the origin tec positive real infinity. The differential system (20) and (21)

becomes

v ..w?-agy = 0, (80)
y' (0) =0, (81)
where a?-: v2 - O%z). (82)

Numerical valuss appropriate to the earth's atmosphere will be used
wherever order of magnitude calculstions are required. The Rocket Panel
(1962, p. 1027) has given a tabulation which suffices for order of magni-
tude computation.

4,1, The Green's Function

A tool which will be required in the general solution of the differen-
tial system (80) and (81) is the appropriate Green's function. This func-
tion may be defined as a solution of the differential svstem {Ince, 1926,

Pp. 254-7)

L[%zl¥)] = o,
liwn 3zl 7) =0,

(83)

[ 4@, -0, (s)

G(2+10) - 9(r-19) =0,
Feawl , -lg2ae], . -1,

where

L[?] z ka” - [w142(2)+ M (Z,v)]\d ) (88)
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/ “ ] 1) p
Wz,v) = 3/4 {(ar/a) - L (a"/a) = a7 Yo~ (a 7). (81)

Define

g3

(7 ; »V) T exp {? ooLza.(x)ch}, (88)

The phase of a(x) is chosen as zero for very large real v.

Direct substitution shows that

1
(z18) = ‘EIZQ [ac) a(2)] Q[E(i‘;,v) v EGgv) E(- f,v)]) (89)

where the ¥ ambiguity is resolved by choosing the sign to agree with that
of ( ;”- z). In substituting into (84), one should keep in mind the assump-
tion that )(0) = o.

4.2, Source Representation

The values which the separation variable may assume lie on the path
D, i.e., v must lie in the first quadrant of the v-plane. TFor such values
of v the real part of a(z) cannot vanish. Erdélyi (1956, pp. 83-4) has
shown that the asymptotic solution of (80) is given by a linear combination

of
ve (2) = 2 7(2) B(& %,v),

provided that@ia(z) does not vanish.
From such soluticns ome can form a function which repregents a source

at z = h and which also satisfies (81), namely

-k
go(2) = Lo a T *[e(rpv) + ECo ECYHV) T,
In the limit as h->0

Yo = 2[a@)a)] ™ E(-3,v) . (0)
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Unfortunately, in this form it is not apparent that (81) is satisfied.

Howsver, upon substitution into the form of (79) one finds

po(Z,r)‘ZL Tolwve) [a@a@]* E(-2v) vdv. (91)

In the limit as z-» 0 this integral may be identified with that of (35),

Then, for sufliciently small =z

2 -2k ]
—— b
Po (Z)r) ~ &R ) (92)
1
- 2 2% |
where R = (2 + r )| (93)

In the form (92) it is easy to show that the normal component of the fluid
velocity vanishes at z = 0, i.e., since g =0, (92) satisfies the boundary

condition (17).

4.5, Solution by Successive Approximations

In order to arrive at an exact solution of the problem a method of
successive approximations will be employed. For this purpose set
ylz) = 7(z) + v (2). (94)
Then,

L [-V(z)] = - Mz,v) [ V(z) + yg(z)] s (95)

v (0) = 0. (96)
The differential svystem (95) and (96) may be solved by a method of succes-
sive approximations due to Liouville (Ince, 1926, pp. 263-4). JSriefly, the
method consists of solving the inhomogeneous differential systen

L [Vn(z)] = o~ M(z,v) [Vn-1<?‘} + yo(z}] 5

7y (0) = 0,

where V_(z) = 0,
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Ince (1926, p. 256) has pgiven the solution of this system as

H
V, (2) = ~fo 3(2,7) MZW)[ V,, (2) + Yo @]d7, (57)

where it will be recalled that H is the height of the absorbing laver in
the atmosphere. The solution of the system (95) and (96) is the limit of
the sequence {Vh(z}} , provided such a limit exists,.

The method may be formulated as a series solution if one defines

volz) = Vn(z) - Vn“1<z>: (n= 1,2, +.s)e
This equation implies

n

Vﬂ(z>=g yk(Z).

From (97) " (98)

yn@) ==}, 210 M) Yo (87, (we12,00) o

It remains to establish the uniform convergence of the series yq(z)
nzy -
Fal
%

o]

and 2{ y;(z}. On the path D, |ul has an upper bound 1, and la| has a
nse 1

lower bound a(v). If Y is the upper bound of ‘yh(z}l , it is a conse-

quence of (98) that

lv,lsy, & (B/20%) v (99)

1.
xR
For sufficiently large W, (99) implies the convergence of J. Y, , which in
) "=
turn implies the uniform convergence of 2{ yn(z).
ns

-

Differentiation of (98) leads to

( - f‘QjZ. ) )
yn(2) =-) 5z M(LV) 4, (£ de7
Inasmuch as all the terms in the integrand are bounded, there exists an A

independent of n such that

ly%ﬁz)\ < AY -
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Uniform convergence of Z:yé(z) follows from this,
n=t T

It might be mentioned that uniform convergence of both of these series
may be established by virtue of the exponentials contsined in fl@zlgj
independent of the finiteness of H. However, this generalization is not
required,

o0

Substitution of the solution y(z) = yb{z><+ Vnlz) into (79) leads

n

to

p(zr) =L3'a(wvr) Bo(z) vdy + fo T, (wvr) Z Ya(2) vdv . (100)

Since the path of integration sxtends into the complex v-plane, the
singularities of the integrand of equation (100} must be investigated., It
i3 3 - kg Ed . Z 3
is shown in appendiz A theat the singularities of E(-b,v} are branch points
at v=¥Q(z),* 2 (h), and also at v=tL(z,) where Sl(zi) is any maxi-
mum or minimum of €){x), h<x<z, The remaining singularities may be
identified by insvection. The v-plane may be made single valued by draw=-
ing cuts from the branch points wvertically downward in the right half plane
and vertically upward in the left half plane. All singularities are on the

N 2 .
real axis and in the intervals defined by KL (0,H)& v" £ SL (0,H) where
& (0,H) and § (C,H) are respectively the smallest and largest values of
N (x), 0 €£x&L1. The cut v-plane is sketched in figure 4.

The number of branch points, and therefore the number of cuts, depends
upon the value of z., For example consider the wave slowness versus altitude
funetion shown in figure 3. It is seen that for z<z_ there will be two

1

pairs of branch points, for zl<z< Zo there will be three pairs;, for z2< z &

Zg there will be four pairs, and for z,< z there will be five pairs,
.
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For convenience the path D may be thought of as consisting of two

parts. The first part D1 is an arc in the first quadrant connecting the
-

origin to a point on the real axis to the right of S {o,ud; the’second
part D2 lies on the real axis joining the right terminus of Dy to pogi;
tive real infinity. Consider the last integral in (100). Along the path
D, the integrand is bounded for any finite @Wr; on the path Dy the inte-
grand is bounded and for sufficiently large v behaves as v ~. It is a
consequence of these facts that the integral converges absolutely; this

absolute convergence permits the interchange of the order of integration

and summetion. Bquation (100) becomes

0
o(z,r) = 2 p,(z,r), (101)
n=o

where

Pn(2)r) =S T, (avr) \3,,\(2) vdv (102)
. 2]

Although (101) is a wvalid solution of the problem, its usefulness is
restricted to regions of z and r such that the first few terms completely
dominate the solution., Inasmuch as y(z) has been developed as a convergent
asymptotic series, it is logical to investipgate under what conditions is
the asymptotic property transferred to the series (101). One should no-

™

tice that on the section of the path D which is a finite distance above the

. : . . ; -1 vr
real axis, the Bessel function will behave for large r as e where

v has a positive imapinary part. If succeeding terms are to be neglected

on the basis of the largeness of @ it is necessary that there be an ex-

: . 4 ) : - P -1 Qv
ponential quantity common to all terms of (101) which will dominate e

for sufficiently large W. A term that will ssrve this purpose in a limit-

. zZ . ; .
ed region of the r, z plane 1s E(—G,v}, wnich may be factored from sach of
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the terns yn(z). If on D the real part of (ivr + j- a(x)dx) is greater

(]

than or equal to zero, (101) is an asymptotic series in w . A somewhat
less stringent condition will be derived in section 4.5, 1In any case, it

is apparent that for r = C the series of (101) is asymptotic in w for all z.

The initial term of the series of (101) has been written out sxplicit-

ly in {91). The seccnd term may be conveniently divided into two terms on

the basis of the two terms of (z]4). Thus,
Pl(z,r) = p11<zsr> + ?12(Z,1‘}, (103)
There

_ f T(wvr) vdv
[a(z) a(0)]*

— [ Tolwvr) vdv
zZr) = w 9 -
pr G o [a(z)a ()%

P (z,7) ;)M(%’V) E(+;V)E( (104)

H

(D MGV EES) E(—g,v) dz. (105)

[u
}

4.4, Evaluation on z-Axis

As was mentioned in section 4,3 the series (101) is both convergent
and asymptotic for r = C. Therefore, an asymptotic expression for p{z,r)

may be obtalned from the asymptotic evaluation of the sum of equations (91)
Y i H]

For r = 0, (91) becones

t 1 ..wzf(VZ) PN
po(z,o)=zfa/2(z)a/z(o) e 7 vdv, (106)
D
-1 (%
where fO(v,z> =z }; a(x)dx, (107

quation (106) is in a form convenient for the application of the method of
steepest descents (Jeffreys, 1950, vp. 501-8) in the form of Watson's
lemma,

The saddle point is given by the root v of the equation

Z
L f(y2) = vz a'(ady -0
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An obvious solution is v = O,

The path of steevest descents C_ 1s given by
Z
$£,(v2) = $£(0,2)= 2" L ) dx ,

where sr denotes the imaginary part of the subsegusnt guantity. It is not

difficult to show that C, must 1) leave the origin of the complex v-plane
450 a4 ) .

at a 45° slope, 2) asymptotically (large |v| ) approach

z
dv~ z“fon(x)dxj

and 3) not cross the real axis in the right half plane. CO is sketched
in figurs 4.
The path D readily deforms into C_; therefore, (106) may be written

—wzh(o,2) (|

Po(2,0) =2 e () a9 e v d v,

. = { Yoo {
where é? £ (v,z) fO(Q,z)

is a real positive cuantity on the path Cye

0
A4

his integral may be conveniently evaluated by Watson's lemme vpro-

. R . 2 . . . ;
vided it is possible to develop v~ as a power series in « This may be
accomplished by expanding the definition &fgf in a power series in v and

then inverting the seriss. Hext one changes the variable of integration

from v to.£ and then applies VWatson’s lemma; whence

~w§lamdx
Z~ e o 4 b (Z) ; %

P, (2, a) ~
where

- 7A
bo@) = 2*[f a0 dx] Z{é[n'l(z) ¢ )] [ a0l

-z"fn’3(x)c)x } .
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Turning now to equations (104) and (105), one notices that the order

of integration may be reversed; thus
Lol 0% 2 2

(" M) et
P‘j (2,r) = w LJ:L%(OOW) D[ atz) a@]% VC’V’ (111)

where

e

0

2 4
iLa(x)Jx + J amdx (j=1
(112)

z 4
L a()dx  + ZLa(X)Jx (3=2)

For r = O the inner intepgral of equation (111) is in the seme form as
the integral of egquation (108) and may be evaluated by the method of steep-
est descenbs. The saddle point is found to be at v = 0 and the path of

‘stespest descents sssentially the same as CO. Straightforward evaluation

leads to

Mo .
. -1 H(;’o) e-wzﬁ} ©)
Py (zr) ~ @ Zjo 0(2) [a@ @] zm;'(o)l 7. (113)

Since

z 7
wz2f,0) = ivl [omdx +2£.Q(x)c’x] )
equation (113) with j = 2 is in a form suitable for evaluation by the
method of stationary phase (Jeffreys, 1950, p. 505)., There is no point of
stationary phase within the interval of integraticn; thus, Pios being of

-3 .
order W7, may be negleched,
For the case j = 1, equation (113) may be broken into two integrals on
the basis of the interval of integration, the first integral being over the

interval 0<Z€z and the second over the interval z<L& H, The method of

stationary phase may be applied to the latter to prove that it is of order
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w?, Therefore,

-wzf nu)dx

J _iM(G0)
0

poar) ~ an(;,)dzf +O(@-3)‘ (114)

Z

[22)20]* o o' odx

The asymptotic behavior of the pPressure response 1s given by the sunm

of (109) and (114), whence
, 2

2 emie o atdx Arhe (7 MG .

/:(Z,r)~ v (. 1ol 5 F9) Z] + 0w,

[QU)QKM]‘wLnJﬂJx °

Identifying the quantity in braces as the first two terms of an exponen=-

tial expansion, one may write the above eguation as

b,@)

2 - ‘
bot)~ 2 [a%@) Q%) wLSL"(X)Jx] exp 4w {t t 2

~LI[Q(Z) + M(f;o();)]dif + 0¢w3) | (115)

For sufficiently large z the term in b, may be neglected,

4e5. Asymptotic Evaluation r;fo

Equation (91) may be reduced by means of the Sommerfeld transforma-

tion (see section 3.3) to the form

b= [ H ) [ac)a@] ™ E(-2v) vdv . (116)

The path of integration B joins v = -io0 to v = &0 R

avolding the singularities and staying on the upper Riemann sheet of the
v-plane. This path is sketched in figure 5. For sufficiently large r the
Hankel function may be replaced by the first two terms of its asymptotic

expansion; thus
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7 )
et -ru V) v "
z2r) ~ ! —, 8 {
'%(,r) (xwr)? 38 [aa)a@ﬂélj‘+( @vr) ]Jv’ (117)
-1 (%
where uc(v) = iv4r ‘j'a(x> dx. (118)

)
The form of equation (117) suggests evaluation by steepest descents. The

saddle points, being the zeros of ué(v}, are the roots of

z

ro= v, s o{%x,vo)dx, (119)
0 4

where %(X)\’) = =4 a(x) = [QZ(X)“VT'] L, (110)

It will be supposed that the ratio r/z is sufficiently small thet a root
A
v =v, exists on the real axis in the interval Ogvoé 0 (0,z). v, is the
L
only root of (119) existing on the axés of the v-plane on the upper Riemann
sheet,

It remains to consider the possibility of the existence of gaddle
voints elsewhere in the v-plane. The major portion of the v-plane may be
excluded on the basis of the condition implied in {(119), namely

y 2 5 X

- - 5 =
RM a'(x) dx] = f lacl® R(va*w) dx = 0,

0 0

* . . . : : : . .
8  being the complex conjugate of a. To the right of the cuts in both the

a * . .
upper half and lower halfl v—plawa,&iva {(x) has a single sign for all =x,
0 <x < z3; thus, the integral cannot vanish. A similar statement applies
to the region to the left of the cuts in both upper and lower half planes,
If other saddle points exist they must lie in the strips bounded by the
cuts and the real sxis,

The path of steepest descents through v =v  is given by
& u (v) = lu (v ﬂ .

o\ o\Vo

If v = x 4 iy then asvmpbotically the path of steepest descents must approach



Z
rxtoy = v p+ j o (x,v )dx,
o 0 o

the upper sign being valid in the right half plane and the lower sign in
- :
the left half plane. The fact that in the interval 0£ v < £20,z) the
maximum value of Qm%)is attained at the saddle point implies that the
N
path of steepest descents can cross the real axis to the left of v=£) (0,z)

only at v = v The path of steepest descents begins in the third guad-

D.
rant, crosses the real axis at v = Vos arches up into the first quadrant,
and then turns downward to intersect the real axis at a point to the right
= -
of v = £ (C,x). Consider the path A, which follows the path of steepest
descent from the point at infinity, through the saddle point, to a point
a finite distance above the second crossing of the real axis; from this
point AO parallels the real axis to positive infinity. The path A, is
sketehed in figure 5. On the section of A, which parallels the resl axis,
the integrand of (117) is exponentially attenuated by the real part of
- Rru, s . : .
e ; consequently, the integral over this path becomes arbitrarily
small as r increases. The remainder of A, 1s & path of steepest descents.
It is easily seen that the path B deforms continuously into Ay. lHore-
over, the asymptotic evaluation of the integral of (117) over the path Ag

may be accomplished by the application of the method of steevest descents
¥ P 3 2 S

at the saddle polnt v = v ; whence

hor) ~ B X(r2v) ™ (14 thartd)y o)

wr (121)
where
v'/" _L
X(vzv,) = + [oL(Z,Vo) o(0,v,) lulv)] ™ (122)
J .

Z
Wo (V)ZJVo) = Vor o+ L o((x,vo)Jx , (123)



) ( (? Ir (v,2)
lu) W) | = [53 (Vy OC‘(X,V)JX)] = vt 3y (124)
0 Y=V,

The expression on the extreme right of (124) is derived from the quantity
to its left by considering (119) es a definition of r = r{y2). The term in
bl(z,r,vo} is derived and defined in appendix B; it is included here only
for completeness since 1t will be neglected later on the basis of the
largeness of r.

The second term of the series (101) must also be evaluated, Equation
(111) gives this term in its most convenient form. By applying the Sommer-
feld transformation to the inner integral and substituting for the Hankel
function its asymptotic representation, equetion (111) may be transformed

to

% o (K ;i
pr(zr) ~ w'e (emowr) /ZLAszge‘“’ ML)

a (%) vi [a(z) a(o)]‘/ldv) (125)

where u. , = iv z £, (v)/r
The inner intepgrsl may be evaluasted by steepest descents for at least &

limited region of the r,z plane. Saddle points are defined as the reoots of

2
tvgg,o‘:'(x,v)dx fVLZDCl(X,V)CIX (3 =1)
. = ,‘ (126)

4
+VLzoC'(x,v)Ax +ZVL a"(xjv)dx (3= 2)

T will be supposed that r and z are such that for a1l Z , 0 £€ 1,

(126) =dmits =a positive real root v :'vlj( Z ) less than the smaller of

Q(0,z) and (0, £).

3
<t
i

he path of integration B may be deformed continuously into a path



wl B
Alj which, being analogous to Ay consists of a portion of the path of steep-
est descents and a line parallel to the real axis, An argument similar to
that employed previocusly shows thet for sufficiently large wr the asvmp~
totic exvression for the imner integral depends only upon the integral over
the neighborhood of the saddle point v = vy 4 Z ). This contribution is

J
found by steevsst descents to be

H . '
t —AMENvg) , Y Lk %
po o3~ i [ A0 ) o) o)1)

e ™M dL. (127)
But

Z

v, r :tj;((x,vu)éx +jfo<(x,v.,)clx (;=1)

WYy = Aw 9 , .
14

Viz ¥ +L «(x,wz)dx+zjuo<<x,\f.z)4x (3= 2)
For j =2, equation (127) is in a form suitable for evaluation by the
methed of stationary phase. It is easily shown in the case j = 2 that the
point of stationary phase Vig:zﬁl( 7)) does not lie in the interval of in-
tegration., The inbegral must be of order @'and Pygs being of order 60‘3,
may be neglected.

For j =1 it is convenient to split the integral of equation (127)

into two parts, the first part covering the interval 0< %<z and the
second, z<Z<H. The argument applied to the case J = 2 shows that the

gecond of these integrals is alsc negligible. However, for j= 1 and
L&z, V19 becomes identical with v, (see equation (119)). In this case

the exponential 1s no longer a function of ;; which, of course, eliminates

the possibility of evalustion by the method of stationary phase., lteglect-

ing terms of order ufg, one finds
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'4. M(Z,,Vo)

4
par) ~ & X(rz,v,) e J Z co o (Z)%)

d7, (128)

In deriving (121) and (128), one has supposed that r and z are such
that there exists for sall zﬂ, ()5{2 H, a positive real number Vo (Z’}
such that

2
4
r + vaj;cx"(x,v)clx + VBL «'(x,v) dx )

Q (0,2) z >%

O
N
<

3
7N

o
£(0,1) <X
It may now be shown that {129) is a sufficient condition that plz,r)
s
A~ Polz,r) + py(z,r).

From equation (100)

P(z,r) -za P (2r) = So T, (wvr) vz“;& Yn (z)vdv,

Replacing y (z) by (98), one finds

. H
P(z,r)- V:Z; Py (zr) = - [D T, (wvv) VC’VL ﬁ(ﬂf) M({,v)
2‘3"" () dz.

For n%2 it may be shown by induction that

7
Yni (8) = ! g hamdx o (Zv)

where Fp(g?,v) contalins only exponentials of +the form sxp{:-u)j

g

z
a(x}dx_},

¢
$Z_> éz « The proof of section 4.3 may be used to prove that the series

¥ ,Z:Fn converges for sufficiently large ¢9. Thus eguation (100) becomes
n=2

P(z,r)-"z‘;.o Pu(z,r) =~w-'50 Tolwvr) vJvLHB’?(zIf) M(Zv)

b4
e-wﬁd(x)clx F(;j\/) le)
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-wfo;:l(X)c/K

! H
par) -3 py ) = -wrf 4z gw) e Flsv)

M) 2 (z1%) vdv .

The interchange of order of integration is justified provided (129) is
satisfied, since a path D has already been described on which | Jg {wvr)
9%}){ (D§a<X/dY}) is bounded. The inner integral may be transformed by
the Bommerfeld transformastion and evaluated by steepest descents. The ex-
istence of a root vg of (129) gusrantees that there will exist a saddle
point on the positive real mxis to the left of the singularities. The in-
. - -2 -, . . N
tegral is thus shown to be of order W (an @ is included in j{zl?}, an
-2
w? is introduced when the Hankel function is replaced by its asymptotic
2
> e} > I3 " Iy s
representation, and an additional @ ~ is contributed by steepest descents
evaluation)., Therefore, the existence of a root of (129) is a sufficient
condition that

p(z,r) - gpnu,r) = ol w?),

or, what is the same thing,
1

(z,7) ~2 P(z,r). (130)
n=0

Substituting (121) and (128), one may write (130) as

/‘. b (2 r,Vc)

- 1 W, A2
P(z,r) ,v% X (rzv,) € 4o [ i+ v

-4 ), Zg:> dz] vow?).

Pinally, one may identify the bracketed term as the first two terms of the

sxpansion of an exponential. Then

s
ok
A

P(z,r,t) ~ ;Z,X(r,z)vo) eiw(t'W) + O(arz)}

where



D

W - w - b, (Z,r,v) M(fVo) clf o
o ot r + zw’- A o((zva (132)
For sufficiently laree r one nmay neglect the term in b1 {z,r,vg}; then
: M5y
Wi(rz,v,) ~ v, r j Ak 123)
} i} 0) 0 + 0 [“(x,vo) "' sz“(:'va) ]dg‘ (..v,'jg/

It should be recalled that a sufficient condition that (131) be valid is

211 4, 0 € 2L .

o

that a root vo ( 4 ) existe which sabisfies (129) for

4,6 Physical Interprstation

Geometrical acoustics is the hiph freguency limit of the solution of
the wave equation. Specifically, it is derived (appendix C) by assuming a
solution of the form (131, will satisfy the differential equetion (16).
It appears likely then thalt geometricsal sacoustics will provide a conven-
ient framework upon which to hang the interprebtation of the results of the
preceding section.

It is shown in appendix C that the system of surfaces W, = constant
is the eikenal. The orthogenal trajectorlies to this system are the rays.

It follows that the unit vector tesngent to the rav at any point is given

by

-1,
| = Q_xz\}[v@ S+ X(2,7,) gz] (134)

The sttitude to be adopted in this investigation is that the receiver is

ep = VIl QW

located at the point (z,r). Reflerence to a ray should always be understood
to mean the ray passing through the point (z,r) (it will be shown that
within the region of validity of the asymptotic approximation (131) only
one ray passes through each point). It is convenient to define a quantity
{}(gf as the complement of the angle betwsen the upward vertical and the
ray tangent at altitude ;’. From (134) it is seen that v, = §0(z)

cos #(z). TFor any given ray, v, is a constant; therefore,

&)
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v = z) cosP(z) =Y (€) cos B (7)), (185)
which is, of course, Snell's law. It follows that

(£v) = [ Q2) -vi]*= (@) sn 92) . (156)

The ray theory given above, being valid only for very large frequencies,
may be referred to as the zero order ray theory. A more precise theory
will be formulated on the basis of (131),

Equation (129), which provides a sufficient condition for the validity
of (181) is susceptible of a zero order ray theorv interpretation. Inas-
much as vz is less than the smaller of Ei(@,z) and Ei((L fw, it is possible
to define a real variable v/(z,r, Z,’) by vz = Q (0) cos v/ . Suppose z>Y% ;
then u’ is no longer dependent upon éf. Equation (129) requires that a

V’ exist such that

Z !
F= Q) cos ‘I’L[ﬂ‘(x) - 0F0) cos? Y] édx)

ol
Q(0) cos ¥ < N (072) .
Suppose one identifies W=%H0). The first of these equations becomes the
equation of the zero order ray leaving the source at an angle f;(@) and
alweys having a slope tan ¢ {z) ? 0. The second equation is a necessary
condition that such a ray can reach the point (z,r) (see appendix C,
equations {186) and (187)). 1If one supposes z <&, (129) requires that

there be no 90 such that

L 7 -4
r:Q(t){LZ[Q‘(x%ﬂz(z)] I+ Lf 2o -] *dx § .

This equation may be recognized as that of the zeroc order ray psath which

hags had & positive slope from z = 0 to ;9 and then a negative slope from



=H1=
Z’to Z., Buch a ray, 1l.e., one which has reversed its vertical direction
of propagaticn, may be referred to as a "completely refracted" ray. There-
fore, & sufficient condition that (131) be a valid asymptotic approxima-
tion is that the point (z,r) lie on a zero order ray which hss maintained a

positive slope and that that point does not lie on 2z "completely refracted”
ray.

A second order ray theory may be deduced from equation (131). In that
equation the surfaces of constant phase are given by W = constant. Tnas-
much as isotropy obtains, the orthogonal trajectories to these surfaces
are the rays. From {133)

s f ’W(;WJ <J§
e ] ZeFa(Bv)
By direct operation

M(Zv% A

v W~ [Q(Z)+ 2 19_(2)]8,, + Zu)l[N( Vc) Q(Z)

MS)(.Z(V;) ctn 9(2)] en (137)
where
1
Ir(v,z) 7! gL( M(Cva)) ;
N<st0> = [W(Z,\/a) avc ] Io ;Vo K(; V° (Jf, (_1_38)
2, =.8p sin U (z) -8, cOS é}{z}. (139)

It is apparent from (134) that g is the unit principal normal te the zero

order ray at altitude z. The unit tangent vector to the second order ray

e
0

at any point

,,; vi/ e wl
~ gy * gz;,z[N(z,vo) MG, )

@) cta '9(2.)] €,

Fam
!‘*’5
K
IS

g

The second order ray path is, btherefore, frequency dependent.
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It is of some interest to have an estimate of &
of magnitude of the brackefed ausntity in (140). From (87),
(135), end (138) one finds
W(z,vy) My (z) sin” {}(7) - Mg(z) 9in'@79(z), (141)

p] t,o g 79 Y, ‘ . :
A ZIE;)Q) = Cs,:a"“}%z) [A’M,‘(z‘) sinH(Z) - 3M,(2) sin 219(521 (142)

, SN = e a ’ 2 2 . -
where Ml(z) = (5/¢c)(£f(z)/£1(z)) » Uo(z) = ; ,41 2 ) (143)
For the lower 70 km. of the earth's atmosphere

: 10, -2
H Ay * 10 (meters)™™,

]

vfiz(z) iy 105 (meters/ﬁeco)i (144)

w/cl(z) = 10“5(\siﬂméﬁ(z)]+lsin“%9(z)l)' (sec.) ™7

[ ]

vy

where the symbol & is to be read "ie the sawe order of

maznitude agh,
In view of these magnitudes one may say that the devia-

tion of the second order ray from the zero order rav 1s likely

)
small.é} , say lese than 10°.

to be of Importence only for
Consider 2 point (z,r) lying near the zero order limit-
ing ray (the boundary of the shadow zone correspon ing to

Vo =Q(0)), e.2., the point A in figure 6. On this ray é}(g)
is small near & = O; from equations (138) and (142) 1t is
geen that this implies a larie positive W(z,v,). It follows
from (140) that the rcecond order rays are directed somewhat
into the zero order shadow zone, the deviatlion from the zero
order ray bheing grester the lower the freouenc

At a point near the apex of a ray, €.g., B in figure 6,

$(2) is emsll; this implies large N and M ctnf%@l}. YWoreover,

[
i
o
e
0

=

ntly close to the limiting ray then the former
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dominates the latter. It follows from (140) that the second order ray
will have a smaller slope than the zero ordser ray; in fact, for sufficlent-
ly large W and snzll {}(z}, the second order ray may be horizontal or even
sloping dowrward, It is, of course, impossible to trace the second order
ray bsyond, or even all the way to, the limiting ray on the basis of the
theory presented here.,

A natural questiém which arises here concerns the possibility of
assigning to the wave a phase velocity which is not dependent upon r such
that the second corder rey may be traced by Snell's law; in other words,

does there exist a v = v(z,®) such that

v{z, W) frngg):‘v(z;aJ) cos <§rt§g) ) = constant.
From (140) it may be shown that

ergp ° Q(z) { 7o + %m”‘[o((z,vgm(z’v()} - v M(z,v,)/ Q(z) -»0(03'3)}‘

This expression, being a function of r, rules out the possibility that s
velocity of the hypothesized form may exist.

It is of great importance to state specifically the limitstions of
the second order ray theory. At any point of the region of z and r in
which (131) is a valid asymptotic solution it is possible to choose O so

-

large that (131) differs from the true pressure response by less than any
preassigned quantity. Unfortunately, there is no easy way of determining
just how large w mnust be to obtain the desired accuracy. Generally, howe
ever, it may bs presumed that if the second order term is small then the
sum of the higher order terms will be negligible., Thus, the second order
ray theory given here can at best give only small differences from the zeroc

order ray thesory.

It is of some interest to consider the energy flux., TFor this purposs
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it will be advantageous +to write (131) in the form
ple,r,t) = 2 ' X exp { iwt - il 4+ S/w* + 0(cn3}}

where S, a function which will be determined in section V, is independent

of w, Since g = 0, (12) implies

22X iot-ioW + w28
£= e {

= YWt i+ 0(w)]

u (z,r,t) =

From (14) it is seen that the energy flux is the product of the two pre=-
ceding equations. The complex phase representation is, of course, unsat-

»

isfactory for such a product; it is, therefore, necessary to form the pro-
duct from only the real parts of each expression. lloreover, the energy
flux is of interest only insofar as it represents propagating energy; thus
it will suffice to compute only the time average energy flux 3 which is

~S

equal to ths energy flux J less terms sinusoidal in time, e.g., sin @

v

(t - Weosw (t -~ W), Taking account of these considerations, one finds

9 (r ) = sz eawZRS{VW ' O(w-a)}

2Xn(z) -@2RS + <2‘f’ (2.)
e 1%

From (137) and (140) 9 (rz)- '+C)Gﬁ”) (145}
The fact that the time average energy flux flows along the second order

rays pives a significence to these rays. The discussicn of this equation
in its complete form must be deferred until the function S is found in
section V. However, some significance may be attached to (145) by con-
sidering only terms of order w’  Then

2X*0@)

o €, *t 0 (),

¢ @)

Using (122), (124), (135), and (136), one may write this as
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_ 20 [ Jr(v,2) ]'l ‘
3(1»*) T pwtrsn @) LI(sm @) 1 Cp - (146)

For the interpretation of (146} it is desirable to know the time

sverage rate of

energy emission E from the source. Computation of E re=-
guires = knowledge of % in the immediate vicinlty of the source. This wmay
-~

be computed from (12), (14), and (92). Integrating the 9 so found over an
P

arbvitrarily small sphere enclosing the source, one finds

E - 87 Q{o)/{Pw‘E + 0™ . (147)
With this information one may calculete the energy flux at the point (z,r)
from the simple assumpbion that energy flows unimpeded in tubes bounded by
the zero order rays. In appsndix {, where this has been done, it is found
that one arrives at equation {148). This provides the physical signifi-
cance of X, namely it is the factor which takes account of the geometric
divergence of the wave energy. In a homogeneous medium X = R as may be
shown directly.

In the foregoing paragraphs attention has heen devoted to the case
r # 0. It will now be shown that (131) includes (115) as a special case
vrovided that R is sufficienﬁly large; specifically, neglecting bO(z}/(w‘z)
in (115) and bl(z,?,VO}/Xafr) in (131), one may show that the limit of

(131) as r-»0 is (115). In the speciel case r = 0, v >0, q;(x,vo}?ﬁlix},

From (124)

From (122)



x> [ Q@) .ﬂ(O)]J/z [Lﬂ(x) Jx]q .

(148)
From (13%)
Z
M(7,0)
ir,z,v ) ) [+ 55| d7. (149)
Substituting (148) and (149) into (131), one finds
2.[ 4 P 2 -t
p 0 =% [a*@ 0% | nodx]
. 2 M(z0)
X «un{t—j (2) + ""‘"""“] )2
exp 0@+ 555140 %
Comparison of (115) and (150) shows that they differ only by a term of order
-2 =z o . . e s s
(W7"z277), a term which is negligible for sufficiently large z.
Although equaticn (150) is a very special cmse, nevertheless, it is of
scme Iinterest because only along the z-axis do all frequencies travel ident-
ical ray paths. Thus, in this case on€ may speak of group velocity. TFrom

(150) the phase velocity is found to be

- (z,0)
Vv ~ ﬂ'(?.) [ |- ZL}:‘%{’?;)-'] + O(w™)

The group veleocity

dv 0)
Usve Vgan ~o'a L 5G]+ 0w,

In the lowest 40 km.

of the atmosphere 1(z,0) 20; from 40 to 70 km. alti-
tude 1(z,0) € 0. Thus a wave packet would undergo anomslous dispersion
(Udv) in the former region and normel dispersion in the latter.
Finally, it is desirable to obtain some information on the initisl be-
havior of en acoustic pulse. The operation and methods of sectlion 3.6 are
applicable.

The operation (63) will be emploved with ¥{w )} set equal %o
\ b o /
unitye

Pirst, the source behavior should be specified. Applying the
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operation {63) to (92, one finds by the procedures of section 3.6 that
the source pressure is given by

(z,r,t) => 2t 1{t -QRr) . (1

3]
fod
p——

3

The problem of finding the pressure response at some point (z,r)

which is distant from the source is, unfortunately, not so straightforward.

The difficulty arises from the fact that (131) is an asymptotic solubtion

ring not only large r, but also large W, for its validity, Thus,

]

the overation (83) applied to (131) yields an ssymptotic approximation to

the Laplace transform of the pressure response at (z,r), namely,

of{pu,r,t)} -2X ™ [+ +z"§zjo LA d7 +0G3)] .

xX(2,v%)

. . N We . s .
The inwerse transform of e 'O is known to be the Dirac delta function

»  The bracketed gquantity is not known Lo be analybic at infini-

ty; consequently, the justification for term by term inversion used iz

oo

section 3.6 is no longer applicable. KXaramata's theorem (Widder, 1946,
p. 197) may be used provided one is willing to make certain plausible
assumptions about the pressure response. Specifically, it must be assunm-
ed thel the pressure response is bounded for all t and maintains the same

sign for at least a finite interval of time aftsr zero, i.e., the function

is not infinitely oscillating in. Subjeect to these assumps

o

tions the bracketed quantity may be inverted term by term. The convolu-

o Ao

for o particle to travel from the source to the
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point (z,r) along the zero order ray path, the particle
having a velocity (f%x) appropriate to 1its instantanecus
altitude x.
since M(Y,v, )/ (Z,v. ) >0 in the lowest 40 km, of the

earth's atmosphere there 1ig a tendency for the amplltude of
he pulse to increase slightly after onset. At points (z,r)
near either the limiting ray (VO =Q(0)) or near the spex of
a zero order ray, the coefficient of the term in (152) which
is lineaf in time becomes quite large; at such points/the
pulse 1s significently distorted evenvin the first few
seconds after onset. It 1g Interesting that the distortion
is such as to lnecresse the amplitude of the pulse.

'Y

Finally 1t must be established that the waves crossing

the level z = H have an upward component in thelr direction
of propagation. TFor z = H there is always a root of (129).
Thie may be seen by cbserving that in the vicinity of the
minimun Zey

2,4€ "

-l

1im g“-(x,v Jix > o0,
) 2,-¢
Thus, for any r one may choose v, sufficlently close to Ofzo)
go that (129) is setisfied. It follows that the plane z = H
ig included in the region in which the solution of this sec-
tion is valid. DBut the solution (131) represents an upward

propagating wave. Therefore the boundary condition a2t z = H
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Vo GENERAL ATHOSPHERE

)

he purpose of this section is to gemneralize the results of the pre=-
ceding section in order to arrive at equations applicable to the idealized
atmosphere of the earth., For this purpose the rsstriction imposed in sec-
tion IV that p/=h = {0} = g = 0 will be removed. The concept of an
absorber at altitude H will be retained,

Wherever order of magnitude calculations are required numbers ap-

propriate Lo the physical properties of the earth's atmosphere will be em-

o

ployed,

9e1ls Asympbotic Solution

It will be assumed that a sclution of the differential system (18)
and (17) may be formed from the supsrposition of the elementary solutions

(18); then

plz,r) = Al(z,n) | J(wvr) y(z) v dv, (153)
D
v{z) must, of course, satisfv (20) and (21). By expandinz q(z,A) in =

R

power series of inverse powers of @ , one may write equation (20) as

0o
y'(z) + 2 q.(s) = 0, (154)
n:zo
where  qo .4(z) =0 (n =0, 1, 2, ...})
Go(z,v) = = 2%(2), (155
qz(z,v) = ~m? + n' o ag(z)gG/

The asymptotic solution of (154) is a linear combination of the two

. . e gl . .
solutions Yj given by Brdelyi (1956, pp. 83-4),

Z
(z) expftolla(s) - w?a(f,v)/a(2)] a2
0

.2 ‘
r Qlz,v)/(2a° (2) w) 4 O w‘ﬂ}
)

o
e
[t
[ex3

N



=] =

the upper sign being chosen for j = 1 and the lower sign for j = 2.

From such scolutions one may construct a function which asymptotically

satisfies (21), namely

- pd .
(2) = [a(z)a(n)] ™ { B(7 ) v) K (2,7) +

Z % ey - ;
B() E(-2 ,ME(-h, 5, ()] (156)
where
2z
X (z,v) = sxp{ius‘fhm",v>/a<;> ar+its(z,v) 4 olw?y, (159)
2 h
52,0 = e{wfo@/a@) T vutfat /e o7
~d 0 N
+ w?s{z,v) ¢ \(m'”} (160}
3
B{v) = 1 - ¢ar(0)/a"(0) - 2n(0 0)/a(0)
1, . 2, . :
+ 26l (0)/a%(0) - 2n(0)/2(0) ] % + o w, (161)
AP V2, , 2
s(z,7) - 2[ez,m)/e"(z) - am,v)/a" ()], (162)

The ¥ ambiguity in (158) and {159) is resolved by choosing the upper sign
if 2>h and the lowser if z < h.

Substitution of (158) into (153) leads to

K
P,(z,r) =X(2)k)f J;(wvr) E(-‘Ff,v) m]%_ vclv’ (1864

F (zr) = X(z, k)j I (wvy) B(v) E( v) E(- O)V) L vdv. (165)

[a( ) (W]

As z-2h and r-0

P.tzm)-‘*fDTo (wer) o'(1) e Vv 10w 4 0 aok)

Notice that exp(2 w'gGalz-hl) has been retained from the K, term since it
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g an increasing function of vy it is this extra term which ounts
£ 3 ~h accounts for

the dependence of the exponent upon A rather than WwW. In complete analogy

with the transformation from (35) to (36), one may employ Watson's interral

identity to show that as z->h and r-0

-1
pl<zgr} ""Rl 7| {""ﬂ ‘1 0' /s (

-
¢
St

where R, and v, were defined in (37) and (38), This is an acceptable source
reprssentation.

It is worth pausing a moment to compare the procedure above with that
employed in section IV. In the latter section a convergent series solwtion

was found for y(z): in the present section one has taken advantage of an

by wrd81”1 One may show the two methods to be eguiva~

nethod used by Erdélyi to establish the asymptotic

nature of (156) is 11y the method of Liouville,

One may evaluate (154) asymptotically by first applying the Sommerfeld

transformation and then replacing the Hankel function by its asymptotic

of TRL

representation. Thus

X(z,h) T | e, A K.(z,v)

,r) ~ c v 1673

P~ Graes €, [a a 7%~ e
4 2

where u1{v} = iv ¥ 7 I a(x) dx . (188)
h

For sufficiently large w, K1<z,v} is a slowly varying functiong consequent=
lv, (167) may be evaluated by steepest descents in a manner completbely
analogous to that employed in reducing (117) to (121). DNeglecting terms in

@?*r, one finds that

b (z,r) ~ ‘”‘) Lotz m) aCiv) Tu w11 K (z,w)

o
et
o2
O

S

exp{—iw [vr* Jh;(f,v,)cllf]} +0 (w) ,
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where
Z
n Pl -1 R d r(v, )
)ul(vl)l = 3%[ ivii‘OC(x5vl) dx] v’ (170}
1
vy being defined by
rA
-t 5 = 4
r =% vlj’og (x,vy) dx , vi-< QO (h,z). (171)
h

The ambiguity of sign in each case is resolved by cho

osing the sign of

i kY - » - N s " a »

{z-h}. The partial derivative on the right hend side of (170) is made mean-
ingful by considering (171) as the definition of r = T<VTZ>’

A

A similar treatment applied to (165) leads to
FE(Z')

bl B(v) K,(z,v.)

1
2

* [0(. (Zyvz.) oc(\\,VZ) 'M;’(VZ)IJ

exp{dw [Vzr fjozix(évz)df +£“O((Z;V?_)J;} 4 O(w-‘f),)

(172)
where
) z h Ivriv,z)
lu/(vy) | =>”\7z[vas ot (x,v,) dx +szox“(x,vz)cf*] = 5-\7}“ ) (173)
© 2.
Vo heing defined by
z h o
RA [ x(x,v,) dx +sz «'(n,v,) dx, v, <Q0,7) , 1(0,h) . (174)

It is, of course, necessary to specify the region of 2 and r in which

(169) and (172) aré valid asymptotic approximations; in other words, for

what values of z and r can one neglect terms on the basis of the largeness
of W7 This question has already been discussed in the paragraph following
equation (102); it was shown in that paragraph thet a sufficient condition

is the existence of an exponential factor in y(z) that is capadble of
asymptotically dominating J_(ewvr) on the path D. 1In (158) the only ex-

ponentials which are increasing functions of W are the terms of the form
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E(mg,v); these, then, must be the terms upon which the validity of the
asymptotic approximations depends. But these terms are independent of/p s
z, and inﬁ}. Thus, it appears that the region of validity of the asympe
totic approximation depends upon the zero order terms in the approximation

of y{z). In these terms the approximations of the present section and sec-

o+
-
o]
e
by
wetd
jo s

differ only in that h is zero in the latter. It may be presumed

&

upon this basis that the region of r and z for which the assvmptotic ap=-
- fuel &/ e

proximations are valid is given by the same criterion as that found in

section IV, namely the point (z,r) must lie on a zero order ray but must

ha

not lie on a " completely refracted" zero order ray.

5.2 Physical Interpretation

By neglecting terms of order “ft one can see that pyand py réspective»
ly reduce to representations of the direct wave and the wave reflected at
the rigid surface. Presumably, this interpretation can be extended to the
more complete approximations of Py and Py thus, (169) will be referred
to as the direct wave and (172) as the reflected wave,

Equa tion (131) may be profitably compared to (169). Many of the
differences between these eguations are merely & consequence of the fact
thet h = 0 in the former equation. TFor instance, the factor 2 in (131)
expresses bthe fact that the reflected wave reinforces the direct wave in-
mediately since the source lies on the reflecting surfsce. Moreover, u
{equation (118)) differs from u; (equation (168)) only in that h = 0 in
the former; a similar statement applies to the pair Vo{equation (118))

and vl(equatiom (171)). A very real difference, however, is the factor

X (z,h) in (169). From (19)

EaN
=
-3
e

N

X(z’h) = e-égk/y(”‘;x{[i - Zw‘(G(z) —G(O) ] + O(w-“)}
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i -2
Inesmuch a8 gG™10  sec, <$he bracketed quantity in (178) differs from
unity by an amount which will generslly be unimportant, Quite the con~

N 2 . s Lo "4 2 2 s
trary is the case for the exponential, Since )U = 10 7 it is obvious thatb
for values of z of the order of say 10 km. the exponential of (175) is one
the most important factors determining the pressure amplitude. The fac-

tor X(z,h) provides an exponentisl decrease in pressure amplitude zs z in-
creases; from (12) it may be seen that the velocity amplitude increases
with altitude exponentially. The product of the two amplitudes does not
depend exponentially upon z as must be the case, the product being propor-
tional to the energy flux (14),

It remains to compare the complex phase factors of the two equations

(169) and (131). The phase factor of {169) is given by

z
E(F i)") F‘(z,v) = exp {-iwv,r‘ iiwf“[d(;;v') + 50’1 %]C’Z

tw? S,u) + 0w,
and that of {131) by

. z (
exp{—xmvor —ijo[oc(z’;va) + Zi? /:(ZV)]C/Z’ + O(w-z)j

It has already been mentioned that if h = 0, vl = vg. Thus, neglecting

differences arising solely from the fact that h d4iffers from zero in the

former of these two phase factors, one may see that the phase factors differ

7

wavs: 1) the phase factor corresponding to (169) has

|8
&

in two si

been carried to a higher order of approximation by inecluding the term S,

jote

and 2) to the order of terms in g the phase factor corresponding to (16%)
may be formed from that co

UTvy).

"4

responding to (131) by replacing %ﬁ(},vo) by
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The second difference will be considered first. From (157) it is
1 L Egr) y A 1

seen that gMQf,VQ} differs from Q(f,vo; by §qz{f,vo}, from (155)

z qz(f,VO> = “ﬁ%t)fm}ﬂv—a§<f,ve>gG{é) o lﬁnlg {mﬁters)ng

What is of interest is whether the term\quf,vg} is likely tc be of 3im-
portance in comparison with H{f,vo}_ In order to discuss this question
one must resort to the zero order ray theory of appendix C. The deriva-
tion there is velid even if/p and g differ from zero. Consequently, the
guantities tX{ZZvl} and 7y respectively may be ldentifiled withjl(z’}
sind(Z) and Q(2) cosd(z) in the same manner as the corresponding
identification in equations (135) and (136)., The magnitude of M(f,vo)
is then given by (144). It appears that as long as -F (&) is nowhere on

A

the ray less than, say*%@o, 4 and I are of comparable magnitude; however,
as B (%) becomes smaller U(4,v, ) completely dominates ap(f,v, ). Now, it
was shown in section IV that it is only in regions reached by rays which
have at some point been nearly horizontal that the term in M(§2v0> is of
any real importance. It follows then that the ferm 9, is likely to be
completely negligible,

The first difference betwsen the phase factors cited concerns the
factor 3. It ig one of the advantages of the method employed in this sec-
tion that the higher order approximation &Aﬁ‘ could be obtained so

).

So far atbention has been devoted solely to the direct wave. The

>
V3

easily. It is this fasctor which was required in equation (14
reflected wave (172) differs from the direct wave (169) in two important
respects: 1) it appears to originste from an image source at z = -h,

r = O, and 2) its amplitude is modified by & reflection coefficient B(vg}.
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The first difference is, of course, expected; the second difference merits

some discussion. Equation (181) mav be written as

B{VE} = exp (ib/w ) + 0(w3) (176)
where
n'co) m (o)
! — AL
by 3?2 j =2 [ “lO@(O V) x(0,v,)

The quantities & (0,v,) and v, respectively may be identified as )(0)
sind(0) and N(f) cos&(#) where F now refers to & ray starting from the
image source and traveling to the peint (z,r). It may be shown that
b“—‘:m"g(%sin_g%{o} + 2 sinnlé}(g}},

{}(O} is the complement cf Tthe angle of incidence. It appears that for an
angle of incidence greater than, say 600, the phase shift of (176 becomes
important.

5.%, Conclusions

The purpose of this section will be to generalize the discussion of
section 4.6, It will be convenient to choose h to be arbitrarily small.

Then the sum of (169) and (172) mayv be written as

X(Z,O)

P(Z’P) = ( 24 B(Vo)) X exP{,‘ww.'_wZS(z Vo) + O(w,g)} (17?}

where

s}

3
/

L2
L +w"2jo W& )/ alZv ) af . « (a7

Votice (178) reduces to (133) for g and M both zero; thus, (178) is the

generalization of the definition (133},
g

(sb B
{1 + B(vz}} = 2 exp{ 2w 8o+ + O(w‘a)} .
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This equation may be employed tc rewrite (177) as
p(zr) = Z—-E-g—’—o-)- X exp{—jw (W - b/zw)
bl
ror (%) 10 )
: (179)
Inasmuch as the influence of gravity has destroyed the isotropy, the
orthogonal trajectories of the surfaces of constant phase are not necessari-
ly rays. As was pointed out in section 4.6 the physicsal signifi@anee of the
rays is that the ray tangents at each point give the direction of the time
évefage energy flux at that point. Thus, the ray directi@n may be determire
ed from the time averapge energy flux 3’.
e

It may be shown by the same methods employed in section 4.8 that

E ,r) = X X {20 e_w~2(as ) { w(W-Y..)

£

G IW,
157 et + 0w,

By direct operation this expression may be reduced to

2X* A*(z2,0) 1 (z) Mot
e

%(z,r) == e e ep’  t0() ) (180)
Where
- b Q@v) 6“1'9(2) ;

N=7-28 ‘(“(zv, +c((1v,,)?6(2)) YO (181)
and

@ TR N (AD, (b0 yor
gP ~ =p ‘f‘wz{[/(),)‘;-o(“(;‘vo))Jf 2 ()V ][D((Z V]

Qz,%). cos@(z)}
[gé o) (Z)OQ(Z)%)] Q(2) €n (182)

The definition of the second order ray tangent unit vector in (182) is the

generalization of the definition (140).



B
The exact behavior of the second order ray would be wvery difficult
to ascertain; nevertheless, a great deal of information may be gained
from (182) by inspection. The second order term in (182) is generally
very small; however, this term becomes of major importance if, on the ray

path under consideration, the angl w'ﬁ\ Z) (and, *thus, Oi(f,vo)) bhecomes

C)

fD

moderately small. Therefore, rays which have a steep slope throughout
their length will d4iffer only trivially from the zero order rav. On the

nearly horizontal will dif-

[
)

other hand, any ray some section of which
fer appreciably from the zero order ray. 1If the horizontal section is
somewhere other than in the neighborhood of the scurce, it is not 4diffi-
cult to show that the important terms of (182) are the same as those of
{(140). The same result holds even if the horizontal section is in the

neighborhood of the origin provwaed'gfﬁ} is sufficiently smell. It fol=-

hat the Time averags energy flux either near the apex of a zero

-
o
i::a'
o]
e

order ray or near the limiting ray may be resolved into two components one

of which is parallel to the zero order ray and the other normal to the zero

order ray, the latter being directed into the shadow zone, The results are,
N

therefore, qualitatively the sams s8s those obtained in sectlon 4.865 in fack,

Linit of smell & they are the same as those of 4.6,

Jete
o
oy

N

The quantity A in (181) may be rewritten as

_ Qlz,w) , b Q0w
A= g O Sy + [ o, ] 3(’,(2) sint ).

or sufficisntly nsar

At any point either sufliclently nsar the
the apex of & zero order ray [\¥C. It follows from (180 that the ensergy

flux at such points is somewhat less than might be expected from the zero



order ray theory. It should be noted that the apparent exponential dew-

pendence upoﬁ[\ in (180) is deceptive. It would be better, perhaps, to

write

.y
e = - Arwr + 0(7),

since it is only to This accuracy thet the approximation is valid.
The principsl interest in the foregoling snalysis relates to the evi-
dence of dispersion in the atmosphere. This dispersion manifests itgelf

)

principally by a separation in the dirsction of propagation of the time

£ £
average energy Ilux of the various frequencies., This phenomenon is then
related to what is called angular dispersion in optics {e.g., the angular
dispersion of light by a prism). The deviation of the second order ray from
the zero order ray, of Géurse, accounts for the leskage of energy into ths

shadow zone,

There 1is, perhaps, & more interssting aspect of this arnguls

a
s
‘ o
W

e
&
i1
feal

i

ion. Consider a point near the apex of a zero order ray, 2.g., B in figure

5. In order thal the sescond order ray theory be applicable it is necessary
- 1 1 1 L2 2 2 A 4 (2) e N ooty g
that the second order guantities in the vsotor & {equation (182} be

. | . . (2) o , )
small, i.e., the direction of e, way differ from e by only & small amount.
A “~

However, if‘%(z} ig sufficiently small then the ssecond order quantity (the

. @ ) . . , @) )
component of e;) may be greater than the vertical component of e . In
=, 3

[ ]
~ ~i_;

n
such a case the second order ray has reached its spex and at the point (z,r)
has a downward vertical component. Therefore, for sufficlently high fre-
guencies at least, the path of the time average energy flux reaches 1ts apex
at a smaller r than the corresponding zero order rav, the value of r at

which the apex 1s reached increasing as O increases. Unfortunately, it

fads
ez
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not possible to trace the second order ray bevond, or even quite up to,
the limiting ray. The conclusion of this theory must be that anpgular dis-
persion is likely to be of importence at points reached by reys which have
been "completely refracted® or even almosh "completely refracted™.

Cox (1949, pp. 13-16) first suggested that angular disversion might
be of some importance in the atmosphere on the basis of observations made
Cduring the Helgoland blast,

These observations showed a predominately low frequsncy pressure re-
sponse at the inner edge of the first zone of abnormal audibility (point ¢

in figure 6); et points farther from the source the spectrum of the response

shifted toward higher frecguencies. The theory proposed by Cox to account

for angular dispersion is not satisfactory (Cox, 1949, p. 501). It
teresting to note thabt the observed phenomsnon is what would be predicted
by the extrapolation of the theory presented in this paper.

It is hardly surprising that the atmosphere should behave es a dis
persive medium. Although very short wave lengths may propagate locally
prauuLLaliy vndisturbed by Tthe stratificebion, longer waves will not. Probabe

s

1y an even more sericus hindrance to the propagation of long waves is the

curvature of the wave front induced by the velocity variastion of the atmos-
pheref Although the causes of dispersion in the atmosphere sre obvious,
nevertheless, it is difficult to predict what the effects of these causes
will be. The present theory would indicate the effects are principally

1) low frequency waves are more sharply refracted than high frequency waves,

g

istorted, and 3) the reflection coeffi

b

2) pulse shape is ¢ cient of even a

i

rigid surface is considerably modified. If the receiver should lie on a
zero order ray some portion of which is nearly horizontal, then thess ef-

>

fects are grestly magnified,



Special attention must be devoted to the identification of the

w T s ar B o s A . .
singularities B( he V). wince this function is an exponentisl it is ap=-
rarent that its singularities are the same as those of the exponent
Z
(2 z \.\% o N . oy s .
hﬁ - Q(x))"dx. Horeover, the singularities of the integral must lis

on the locus of the singularities of the integrand, i.s., on the line seg=

ts defined b o }(2 ]2 3 A S 3
ments defined by f(h,z) €v°¢Q (h,z) where Q(h,z) snd O(h,z) are re-
spectively the largest and smallest values of 1(z) in the closed interval
(h,z).

The nature and logation of the singulerities of this integral may be
3 3 » > 2 » e (o]
investigated qualitatively by considering only real v. For v (h,z) the
integrel is pure real since the integrand is pure real by choice of the
[ oy
phase of a(x). For v slightly less than SL(h,z) the integral has a small
imeginary part of ambiguous sign; this portion corresvonds to integration
) L. 2 2 . .

over those values of a{x) in which v €Y {(x). The sign of this imaginary

. . ; ; : + . . -
portion is ¥ according to whether v has a -~ imaginsry part. Thu

w
»

point v = £L(h,z) is a branch point. The property which this point pos=-

sesses that identifies it as a branch point is that it is a local extreme

value of L {x). The other wvalues of x which yield local extreme values of
1 . . L.

Q' are h,z, and any of the maxima or minima Z1s Zgy Zzs ees OF Q(x) which

lie in the closed interval (h,z); these values of x will be denoted by xj3.

A b
By an argument similar to that employed for v = Q(h,z) one can show that

v = Q(x

;) is & branch point.
A more precise investigation may be formulated as follows: Using ths

N

definition of x_ piven in the paragraph above
i

z X 2
5 a(x) dx = j a(x) dx 4 ... + J, a{x) dx.
h h X
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It will suffice to consider only one of these integrals, say the lsst.
o3 ™y 4 sy y
Suppose v = L(X), S (X) # 0, where %, & X < z,

1

Define six) = (v“ Q(x))". Then x is a unigue analytic function of s in

the neighborhood of s = 0 {Jeffreys, 1950, p., 380)., Therefore, a(x)
N : . 2 . - .
may be expanded as power series in 57 with a finite radius of convergence,

let }{35 lie within this region of convergence., Then
2 XS 2 s(x+4)
; . 2
j’a{x) dx =’{&(X)dx +Valx)de 4 (ols + ’ozs4 + o..0)ds
X X

A A €31 s(X-§)
*S Z b 4 S
\ ] = X+
=Ja{x} dx 4 {a{")df 4[§b1(v-—_()_(x})‘3+... ]
A X+§ X-§

In this form i1t is apparent that for small variations in v {which implies
varistions in X) all terms are uniquely defined, Thus points on the resl
axis other than v =.fl(xi) sre regular,

Avpendix B

Equation (117) may be reduced to the form of Watson's lemma (Jeffreys,
1950, p. 501) by deforming the path of integration into the path of stespest

descents and changing the varisble from v to‘§ where

£ = u,(v) - u vy,
A1l of the terms of the integrand with the exception of the exponential may
be developed in a power series in g’. The resultant series may then be in-
tegrated term by term to yield the desired asymptotic series,

The most convenlent way of accomplishing the expansion in terms of gb

. . . 2 2 . .
iz to develop f7as a power series in T =(v —VO); this series may then

be inverted to obtain ¥ as o power seriss in é’. Thus if

N . 3 4
lg - {111 -Cz v + 0574'...




The

then

7f=f(—az)

N

[1t4()iEa-9)ii, .1

(s(@ a(0))7% ; 12y be expanded in a power series in F; then by means
of the equation above, this last series may be converted to a power series

7 i . Application of Watson's lemma leads to equation {121) in which

by (z,r,v,) = {(

+ $[5(z0) +2 2 (zw) x?(0,y,) 4 5 (0,v,) ]

§ea

Nlw

C, -3 bver) [ oo, v,) +x2(0,v,)]

5 2 3 ¢ 5 -4 L L ;
16 (§cl-¢) -2 v % }sc, 8V, , (18%)
where
P _‘. ( -3 - * "3 )Cl ) - .(A (Vo)‘
G = lvi4r') « (x v,)dx/ = B

(.

(S v (P -s
iec, (v0 -y ‘L & (x,vo) Jx)}

2
G =;'2£§E; (v;’ +v” So oC"(X,vo)dx).

Appendix C

A zero order ray thecry may be derived from equation (18) by the
method of the eikonal (Sommerfeld, 1954, page 207). OCne assumes that a
solution of (16) exists in the form
olz,v) = Alz,r) exp(-i@7,)
Substitution of this expression into {16) leads to
(g ﬁojg = (2) + o( )
Anasymptotic solution of this equation is given by (123), It is shown in
section 4.6 that from the eikonal W = constant one may derive the ray

equation (Snell's law)

0 (z) cos{}(z} = constant, (184)




T B
{}(z) being the complement of the angle between the vertical and the ray
tangent at the altitude z.

In order to derive the equation of the ray path it is more convenient to

write (184) in the form

2 _ Q*(h) cos® Hh)
2*(z) - O2(h) cos*H(h)

"
foud
oo
(o]

S

ctntdz) = ( 5‘5)

£
wd

i

o

p—1

An integral of (1

2
Fr=2% Q) cos ) L [.Qz(x) - Q*(h) cos? &(k)]'&clx . (188)

in order that all quantities in (185) be real. Suppose a ray starts from

the source at an angle ¥(h) and that there exists sn altitude z = Z; such that
Q) =0 (n) cos(n), (188)
Then (185) implies that this ray can never pass above z = o 3 it may, how=-
ever, pass continuously from a positive to a nsgative slope at this altitude

since a slope of either sign is an equally valid root of (185}, 1In this

case the equation of the ray psth becomes

4 2 g; - |
r =n<4;)Uh [ -02)] dx + L [oror-cr@)] 2de §, (e
the first guantity in the braces being an integral of the positive root of
(188) and the second guantity an intepral of the negative root. Other in-
tegrals of this form are possible if there is e reflector below the source;
however, the ray paths of equations (186) and (188) will suffice for the
purposes of this paper.

For sufficiently high frequencies it is generally supposed thal ensrgy

propagates unimpeded along the zerc order rays. On the basis of thi

ed]



-
assumption one mey arrive at an asymptotic expression for the energy flux
et any point not lying in the shadow zone.
Consider first the ensrgy flux slong the z-axis due to & source which

3

emits energy at a time average rate E. It will be supposed that the emission

7

ig uniform in all directions. Let dE be the Time average ensrgy flow into

a vertical tube which is bounded bv the bundle of raves leaving the scurce at
wf £vd fwl

such an angle that the ray ftangents make an angle € with the vertical, €
. N ‘ .. TW(ER)T 2
being sarbitrarily small; then df = lim E = = e’

o R0 41 R*
The radius of the tube at any altitude z is given by (188),

Z
Q) € fk Q' dx + 0.

The rate of energy emitted by the source is given by (147). The time

averape energy flux 9 at altitude z is giv V48 where d8 is the dif-
~ 0

ferential cross sectional area of the tube (T r°). Thus,

-2
30 :ﬁcsmh)wt[ﬁ.zﬂ"“"d"] : 150)

Haskell (1951, p. 157) has found for the more genersl case r # O that the

time average energy flux is given by

-

2Q(h) swm'#@) 1 r(wz) 17"
19 @, =
9, o(h) o r [ I GmB) )
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