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Abstract

The modified barrier function (MBF) is examined for linear, convex qua-
dratic and other convex nonlinear constrained optimization problems. This
new method of transforming a constrained problem into a sequence of uncon-
strained ones has elements of both Lagrangian function and barrier function
methods. At each step, the method updates multipliers, which converge to
the optimal Lagrange multipliers. Each such update entails a minimization
using Newton’s method.

We show that there is a ball around the primal-dual solution of the op-
timization problem, a so-called “hot start” ball, such that starting from any
point in this ball, Newton’s method converges quadratically and continues
to do so after each subsequent update. We characterize the “hot start” ball
in terms of the primal-dual solution of the optimization problem.

This means that from the “hot start” on, only O (Inlne~!) Newton steps
are necessary after each update in order to reach the next update (e > 0 is
the desired accuracy for the solution ). Taking into account the basic MBF
convergence properties, one obtains that the number of Newton steps from
a “hot start” to the solution is O ((Inlne?) (Ine?)).

To reach the “hot start” one has to spend O (y/mlnk), where £ > 0 is
defined by the condition number of the constrained optimization problem,
which in turn can be characterized explicitly in terms of quantities defined

at the solution.
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Chapter 1

Introduction

Many methods for solving constrained optimization problems rely on trans-
forming the problem to an equivalent unconstrained one, or to a sequence of
such unconstrained problems, which are usually easier to solve.

Two important classes of such methods are the so called “Lagrangian
function” and “Barrier function” methods. We elucidate these ideas at the

hand of the following inequality constrained problem :

(P)  min{fo(z)|fi(z) 20 i=1,...,m},

where fo(z) and fi(z) € C?(IR"). A local solution to this problem will be
denoted by z*. We also define @ = {z|fi(z) > 0}, the feasible region,
I = {i| fi(z*) = 0} , the active constraint set and J = {z| fi(z*) > 0}, the
passive constraint set.

Under the assumption that at a local solution z* the gradients of the
active constraint functions (¢ € I) are linearly independent , the first order

necessary optimality conditions are given by :



Jur>0 (i=1,...,m) such that

fi(z*) 20 (1.1)
ul filz*) =0 (1.2)
Vfo(a:*) - iu;‘Vf,(:c‘) =0. (1.3)

These conditions are usually referred to as the Karush-Kuhn-Tucker (KKT)
conditions.

Note that since the gradients of the constraint functions at z* were as-
sumed to be linearly independent, the positive constants u? associated with
z* are unique.

Before formulating the second order optimality conditions, we define the

following sets :

T = {yeIR"|Vfi(z) -y <0 Viel}
T = {yeT|Vfi(z)-y=0 if uf>0}.

The second order necessary optimality conditions are then given by :
YoeTy : of (sz;(m*) - Zufvzf,-(:c*)) v>0. (1.4)
=1

Sufficient conditions for z* to be an isolated local solution to (P) are given

by the first order necessary conditions together with :

Yo£0eTy : of (V2f,-(m*) - iu’{v2f,-(m*)) v>0. (1.5)



Lagrangian functions

Defining the “Classical Lagrangian” (CL) as the following real function on
IR" x IR™ :
L(z,u) = { fo(z) =X wifi(z) if v, 20 (i=1,..,m)

—00 otherwise ,
the KKT first order necessary conditions can be expressed equivalently as :

J u* € IR™ such that
L(z*,u") = max L(z",u) and V. L(z",u") = 0. (1.6)

The positive constants u; are the dual variables or Lagrange multipliers.

In the case of a convex problem, i.e., one where the objective function
is convex and all the constraint functions concave, L(z,u) is also a convex
function, and the first order necessary KKT conditions are equivalent to the
following saddlepoint condition for the Lagrangian :

d u* € IR™ such that
L(z*,u*) = max L(z*,u) and min L(z,u). (1.7)

This means that knowledge of the optimal Lagrange multipliers u? en-
ables us in this case to consider the unconstrained problem min, L(z,u*) in
stead of (P). Of course, this is only a conceptual idea since u* is not known
a priori. We also note that since this whole approach was based on neces-
sary optimality conditions, the new unconstrained problem is not necessarily
equivalent to the original constrained one. This can easily be demonstrated

by the following one-dimensional minimization problem :

min{z |z > 0} . (1.8)



The pair (z*,u*) for this problem is given by (0,1). This gives for the CL :
L(z,u*) = 0. Clearly, minimizing L(z,u*) w.r.t. = is not equivalent to the
original problem.

Such deficiencies and the limitation of (1.7) to convex problems can
basically be overcome by introducing the so-called “Augmented Lagrangian”
(AL), a real function on IR" x IR™ x IR, as suggested by Rockafellar [28] :
fo(@) + £y (3eff (@) — wifife)) i fi(z) <%

fo(z) =32, ;—E otherwise .

f/(a:,u, c) = {
The constant ¢ > 0 is chosen such that ﬁ(z,u,c) is convex in z. For ¢ = 0,
we obtain the CL.

Even though the AL is an improvement over the CL, it too has its draw-
backs. The main motivation behind the AL is to be able to establish a
saddlepoint condition like (1.7) which would also be valid for nonconvex
problems. The AL almost achieves this. However (1.7), with L(z,u) re-
placed by I:(ac,u,c), is not exactly equivalent to the first and second order
necessary optimality conditions (see [29]). It might therefore still happen in
some cases where (z*,u*) satisfies the necessary but not sufficient optimality
conditions, that (z*,u*, ¢) is not a saddlepoint for i,(x,u, ¢) for any c.

Furthermore, we note that the Hessian of iL(a:, u, ¢) has jump discontinu-
ities at points z for which fi(z) = % for some i, which means that the AL
does not have the same degree of smoothness as the original objective and
constraint functions.

Computing the AL for our example (1.8), we find :

1.2 ; 1
R ) . e if z<2
L(z,u"¢) = L(z,1,¢) = { xz_ L otherwisé .
C



We see that in this case min,{f,(a:, u*,c)}, for any ¢ > 0 really is equivalent
to the original constrained problem. However we now have to minimize a
function with discontinuous second derivatives.

The Lagrangian function concept is important theoretically and also prac-
tically, as a basis for numerical procedures. For a good overview of such

methods, see for example the book by Bertsekas [2].
Barrier functions

Another important way of transforming the original problem into an un-
constrained one can be obtained by using a so called “Barrier function” (BF).
One such widely used function is the logarithmic BF introduced by Frisch
[9] [10], which for (P) is defined as the following real function on IR" x IRy :

B(z, k) :{ fo(z) = %%l In(fi(z)) if z€ intQ

otherwise .

We call z(k) a local solution of min B(z, k). Then under suitable conditions
it can be proved (see [7]) that, as k — oo, (k) — z*, a local solution of (P).
For convex problems, B(z, k) is also convex and has a global minimum,
converging to the global minimum of (P) as £ — oo.
The first order optimality conditions for the problem of minimizing B(z, k)

can be writen as follows :

Ju; >0 (: =1,...,m) such that

Via(k) = 3wV iz (k) = 0

i=1

wh(a(®) =



fi(z(k)) > 0.
This is clearly a perturbation of the same conditions for the original problem

(P).
Another well known BF was proposed by Carroll [3] as :

Cla, k) _{ fol2) + LR (fil2))! if = € intQ
T ) otherwise .

This function, together with the logarithmic BF, was extensively studied in
Fiacco and McCormick [7].

The way in which one generally proceeds to find z* using BF’s is as
follows : starting with a particular £ > 0 an approximate minimization is
performed. This approximate minimum is then used as the starting point for
the next minimization of the BF with an increased value for k. This process
is repeated for increasing k until a suitable accuracy is reached (see [21]).

A common feature of BF’s is that they grow without bound as one ap-
proaches the boundary of the feasible region, and methods based on mini-
mizing a BF are therefore called “interior point ” methods. They proceed
through the interior of the feasible region towards a solution.

Barrier functions have a serious deficiency in that they are not defined at
the solution of the original problem if this solution lies on the boundary of
the feasible region, as it always does for linear programming problems. This
causes numerical difficulties for the minimization as £ — oo and z(k) — z*.

Let us now go back to the one-dimensional problem (1.8). The logarith-
mic BF for this problem is given by : z — 1 In(z). Minimizing w.r.t. z, one

obtains z(k) = 1. We see that as k — oo, z — 0 = z*, as required. However,



since this minimization will in general be carried out numerically, the process

will become increasingly ill-conditioned as we approach the solution z*.
Modified barrier functions

The Lagrangian and barrier function concepts lead to a new idea, the the-
ory of which was developed by Polyak in 1981 (see [24] [25] [26]), namely the
“Modified barrier function” (MBF). We call {z| fi(z) > —1} the “extended
feasible region” and denote it by ;. The logarithmic MBF is then defined

as the following real function on IR" x IR} x IR, :

F(z,u, k) ={ fo(z) = } TRy wln(kfi(z) +1) if z € intQy

00 otherwise .

Modified barrier functions can analogously be based on any other clas-
sical barrier function. However in what follows we will concentrate on the
logarithmic MBF.

Observing that {z|k~!In(kfi(z) + 1) > 0} = {z| fi(z) > 0}, one has
that (P) is equivalent to : min{fo(z)| k" In(kfi(z) + 1) > 0}. The MBF
F(z,u,k) is therefore a classical Lagrangian for a problem that is equivalent
to (P)!

Another way of looking at the MBF is as a barrier function on €, with
different weights for different constraints. However, contrary to the classical
barrier functions, the MBF’s exist at z*, the solution to (P), even if it is ob-
tained on the boundary of the feasible set. We have that F(z*,u*, k) = fo(z*)

and

VL (et k) = Vio(e™) — 3wV fi(e") = 0. (1.9)

=1



This means that for a convex problem, F(z,u* k) attains its minimum at z*
for any k > 0. Thus, if we know u*, then (P) can be solved by one smooth
unconstrained minimization. As we saw before, this is generally not true for
the CL.

For nonconvex problems, it can easily be shown (see Polyak [26]) that
there exists a kg > 0 such that F(z,u* k) is strongly convex in a neigh-
borhood of z* for all k > ky. Because of this, z* = argmin,{F(z,u*, k)}
remains true for the nonconvex case if k£ > ko. The MBF therefore behaves
very much like an augmented Lagrangian.

We now apply the MBF idea to problem (1.8). For this problem, the
logarithmic MBF F(z,u", k) is given by : z — 1 In(kz + 1). Minimizing this
function yields z* = 0, the correct solution just as in the AL case. However,
unlikein the AL case, the function to be minimized here is twice continuously
differentiable.

Numerically, the procedure for finding z* is rather different from the
BF case. Here, we have two quantities controlling the process : &k and w.
There are two basic ways to proceed. First, starting with a particular k¥ and
Lagrange multipliers u, an approximate minimization is performed. This
approximate minimum is then used both to update the Lagrange multipliers
and as a starting point for the next minimization of the MBF with the
same k and updated Lagrange multipliers. Under suitable conditions, these
Lagrange multipliers will converge to u*.

The second possibility is not only to update the Lagrange multipliers, but

to increase k as well after each minimization. In this work, we will investigate



the first method.
Complexity in Convex Optimization

Lately, barrier function techniques in constrained optimization have gained
in importance after it was discovered that certain implementations of these
methods have polynomial complexity when used for convex optimization and
in particular for linear programming (LP).

The long established simplex method for LP, exhibits exponential com-
plexity in the number of iterations, even though in practice it usually requires
a number of iterations that is close to linear in the dimension of the problem.

Barrier function methods are not the first nor are they the only algorithms
for LP with polynomial complexity. The first such method, the ellipsoid
method, was developed by Yudin and Nemirovsky (1976) [32] as an outgrowth
of the method of central sections of Levin (1965) [18] and Newman (1965)
[20] and the method of generalized gradient descent with space dilatation of
Shor (1970) [31]. The contribution of Khachian (1979) [17] was to prove that
this method could be used to provide a polynomial algorithm for LP (see [5]
for a good overview). However, this method turned out to be extremely slow
in practice.

Another method, which was both polynomial and fast in practice was
discovered by Karmarkar (1984) [15] (and, for more insight, see also [8] and
[5]). This new method seemed to appear out of nowhere until 1986, when Gill
et al. [11] showed that this method was in fact equivalent to a BF method.

It was this discovery and new numerical linear algebra results which had
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been developed in the 70’s and 80’s, which generated renewed interest in BF
techniques.

Gonzaga (1987) [12] was the first to directly prove polynomiality for a
particular version of the logarithmic BF method for LP. Denoting by L the
input of the problem, i.e., the number of bits necessary to specify the prob-
lem, then an accuracy of 2~L is necessary to find the exact solution, i.e., to
determine which vertex yields the optimal value. For this accuracy, Gonzaga
proved a complexity bound of O(mL) in the number of iterations, where m
is the number of constraints in the problem.

Since then many authors have proved similar results for different ver-
sions of BF methods. The best complexity bound for LP at the moment is
O (y/mL) ( see [28] [27] [30] to name but a few). For a unifying theory using
the concept of “self-concordant functions”, see [19].

In all these methods, one tries to stay close to the “central trajectory”,
the trajectory of z(k) as k — oo. In order not to stray too far away from
this central trajectory each time k is increased, k can only be increased by
small increments. This causes those methods to be very slow in practice
and k is therefore usually changed more abruptly, destroying the polynomial
complexity, but yielding a faster algorithm. This has the effect that a lot of
computational effort is spent in reaching a point close to the central trajec-
tory, only to increase k drastically, move away from the central trajectory

and start all over again.
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Objectives of the thesis

In the MBF method with fixed k, the situation is quite different. We
recall that in this method, the Lagrange multipliers are updated after each
minimization, rather than k. There comes a point when, after having reached
the “Kantorovich Ball” (the region in which Newton’s method converges
quadratically) the iterates remain in this region after the Lagrange multipliers
are updated. This point will be called a ‘hot start” for the method. Such
a “hot start” was also observed during numerical experiments with linear
programing problems at IBM’s T.J. Watson Research Center by the author.

This property leads to a significant improvement in the complexity esti-
mate. In this thesis we will determine a ball with its center at the solution of
the optimization problem and such that each point in the ball is a “hot start”
for the MBF method. The radius of this ball will depend on the condition
number of the constrained optimization problem at the solution, as defined
in Polyak [26], and estimated in chapter 2 of this thesis. We will investigate
the consequences of the existence of the “hot start” on the complexity esti-
mate for nondegenerate linear, quadratic and nonlinear convex optimization

problems.

Organisation of the chapters

In the second chapter we state the basic properties of the MBF method
together with some new results. In chapter 3, we will determine the “hot

start” region for a problem with a convex quadratic objective function and
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linear constraints. Chapters 4 and 5 do the same for LP and for a general

nonlinear convex problem respectively. Chapter 6 is the appendix.
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Chapter 2

Basic MBF properties

2.1 Introduction

In this chapter we give an overview of the basic properties of MBF’s, obtained

by Polyak [26] for optimization problems of the form :
(P)  min{fo(a) | filz) 20 i = 1,.ym},

where for i = 1,...,m : fo(z), — fi(z) are convex and belong to C*(IR™). We
also prove some additional results.

The chapter will have three sections. The first section contains the main
convergence theorem for the logarithmic MBF method, the second section
deals with an upper bound on the condition number of (P) and in the third
section we prove a few inequalities involving the Lagrange multipliers and
some parameters of the MBF method, which will be needed later on.

Let us start with some general notation. As usual, a local solution to
problem (P) will be denoted by z*. Also, as before, L(z,u) will be used for
the Lagrangian of this problem, (2 for the feasible set and I for the set of active
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constraint indices. These indices will w.l.o.g. be taken to be 1,...,r. The set
of the passive constraints is denoted by J. We define o = min{ fi(z*) | : € J},
0* = mim<i<, {ui} and p* = maxi<i<-{u;}. We will also use f(',)(:c) for the
(r X n)- matrix, whose i-th row is given by the gradient of the :-th active
constraint and we define f('m_,_)(x) analogously for the passive constraints.

Throughout this thesis we shall use “LHS” for left-hand side and “RHS”
for right-hand side.

2.2 The basic theorem

Before formulating the main result from Polyak [26], we will need some pre-
liminary definitions.
Given €,6,ko > 0, u* € IR} and 0 < ¢ < min{u} | ¢ € I}, we define for
1=1,..,7:
Di(u*,ko,(s,ﬁ) = {(w’k) € m2 | w2 e ) [w—ufl < ok ’ k 2> kO} ’
and fori=r+1,...,m:
Di(u*7k0’6,€) = {(ka) € m2 I 0 Sw< ok ’ k 2> k()} .

The sets D; are in fact cut cones and are represented in figure 2.2. Setting

z = (u*, ko, 6, €), we define the direct product of the sets we just defined as :
D(2) = D1(z) x D2(2) X ...Dp(2) .
We define, whenever they exist :
Z(u, k) = argmin{F(z,u,k) |z € IR"}
i(u k) = |diag(kfi(@) + 17| u,
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Figure 2.1: The sets D;(u*, ko, 6, €).
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where [diag(a;))?_, stands for the p x p diagonal matrix with the (7,7)-th
element equal to a;.

We note that this last expression is the update formula for the Lagrange
multipliers, as will become clear in the following theorem.

We are now ready for the “Basic Theorem”, which is a restatement of the
part of the basic theorem in Polyak [26], pertaining to convex problems.

For the convex optimization problem (P), the following theorem holds :

Theorem 2.2.1 (Polyak [26])
(1) If @ = {z € Q| folz) = fo(z*)} is compact, then for any

(u,k) € IRT x IR,, there exists &(u, k) such that V,F(3,u, k) = 0.
(2) #(u*, k) = z* and @(u*, k) = u* for any k > 0.
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(3) If there exists u* € IR such that
V.L(z"u*) =0 and fi(z")u; =0

rankf('r)(a:*) =r and u; >0 foriel
yTVEL(z*,u")y > 7lyl|> > 0 Vy #0 such that fy(z*)y=0,

then there exist 6,k > 0 such that for any 0 < € < miny<i<, u and
any (u,k) € D(u* ko,b,¢€) :

- * ~ * C *
max{[|2 — 2™{|oo, [[2 — w"leo} < Fllu — v{leo (2.1)

with the constant C independent of k and F(z,u, k) is strongly convez in
a neighborhood of &.

O

An important result, and one we will use throughout this work, is the
expression for the rate of convergence in this theorem. It states that the
new minimum as well as the updated Lagrange multipliers are closer to the
solution by a factor of % A word of explanation is in order regarding the
constant C. It is defined as C' = max{2071, co}, where ¢y = 2||®; Rol|oo and
the matrices ®, and R, are given by :

e I3 ( 00— fr_y ing(o: + )T )

Qﬂ = 3 RO =
_U*f(r) _lllIr

The expression for C' was derived in the proof of the basic theorem in [26].

We have used L, for VZL(z*,u*), f('r) for f('r)(:v*), f('m_r) for f('m_r)(x*),

—1I, o(rm—r)

U* for [diag(u})]i-, and p for 7. Furthermore, I, is the p x p identity matrix
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and 0(*) is the p X s null matrix. We shall use this notation throughout this
thesis.

The constant C is very important since it determines how small g has to
be in order to achieve convergence. In fact this constant can be considered to
be the condition number of the constrained optimization problem (P). The
larger it is, the smaller 4 has to be and the more numerically difficult it will
be to minimize the MBF.

We conclude this section with another result from Polyak [26], which we
will use in later chapters. In [26] it is shown that it is possible to define an
indicator function v(z,u, k) as follows :

(a0, 4) = mx{ - g (@), 19 (v B 3wl o)}
which converges to 0 at a rate of convergence slower than or equal to the rate

of convergence at which (z,u) converges to (z*, u*).

2.3 Upper bound on C

In order to find an upper bound on C, we will estimate ¢o which was defined
in the previous section. We start by writing down ®;' using Frobenius’
formula (see the first section of the appendix) :
-1 1p—147
. F i
(I)u - 1 ! 1 1 1 ’ 107 ’
WU P =5 (1= U fin 7 £)
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where F = L,, + % f('f)U * f('r) . ®71 Ry is therefore given by :

TF F fn—ry [diag(o: + 1)1
¢ 'Ry =
g 1 177 f! -1 T 177+ £ -1 07T : —_11m
;( r ;U f('r)F (r)) ;:U f(r)F f(m—r) [diag(o: + #) ']
To estimate ||®;! Rol|co , We shall use the fact that for a matrix, composed

of other matrices A,B,C and D :

A B
(2 5)] < mextiale + 181 101+ 101}
and that for a matrix M € IR®) :

Al < VsllA]l -

In order to compute an upper bound for the 2-norm of each of the four
matrices in @' Ry, we shall use three lemma’s from [22], which are restated
in the appendix as lemma’s 6.2.1, 6.2.2 and 6.2.3. The result will be that
for 4 “small enough”, the upper bound on each matrix will be independent
of u.

We rewrite fihU* [ as (U f(',))T (U 1t,)- with

T ’ N\ -1 1
| fyyll = molly|l and || (f(r)f(r)) I < -
implying
*% T " , . T\ ~1 1
NU** fioyull = VOmollyll and | (f(r)U f(r)) | < =

the aforementioned lemmas can easily be applied to our four submatrices.

We look at each of these separately.
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(1) For the first one, we have

: Lpager : ( Lo+l (U*% fm) (U‘% f(,)))—l (U"‘% f(’,))T vt

Taking norms yields :
[

(Lm L1 (U.& f(,)) (U,.; f(',)))_l (U,,; f(,r))»_r

From lemma’s A1l and A2 we have that for

1
L ALallU Sl HU"’f(,)II( L2, b ) (Hq;Lﬂuz)f
p 0*% Vi*mg 2|\ Loz |l L2

(2.2)

1oy
";F ol <

the following estimate holds :

(Lm L1 (U,.% f(,)) (U*% f(',)))—l (U*s f(,r))T 3

20U £ (1 .\ uLmuz)f

0*%m3 lg

This, together with (2.3) , gives

20 fp v (1 | anuz)%

0*%m3 2

]. _1 1T
u'—F ol £
I

Finally,

gal,

1 T
_F—lfr
R

where we have defined

1
2”f(r)”\/_— ||L:c:r||2 2
0= m 12

(2) We now look at the second submatrix :

1F = Sy [diag(oc + )] 1< IE S ery [dinglos + ) 7]

I
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Lemma Al yields :
/ . _q1m 2 _ N
1F 7 fnery |dinglo+ ™7 1< P+ )7

and therefore :

IF~ forr) [diag(ai +p)7 s ez,

where
2 T
az = o,lollf(m—-r)” .

(3) The third submatrix gives :

1 1 ’ T
t Ir—-——U*frF‘lf,)
Hﬂ ( P (r) (r)
. T T
U (Ir _ l (U*%f(’r)) F—l (U*%f(’r)> ) U*_%
7 p
1 ' T ! T
Ir _ = (U*%f(r)) F—l (U*%f(r))
I
For p satisfying (2.2), lemma A3 gives

1

1/ \7 t o \T| _ 26l Lo lIlU7 £ l1? | Lz ) 2
I,- _ 1 (U*f .,.) F-—l (U*i . ) < {r) + Tz
7 fo Joo - (V*myg)® 2

S
By
7

(2.3)

This, together with (2.3), yields

” (Ir -y "oy (r))

N | Leellll i 12 A
oy = ( ) | Lz |l[| fim +||L I
9* 0*%m5 lg

Sa«?»,

with
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(4) Finally, we consider the fourth submatrix :

|t sy Ltineton .

r+1

< ;U*f(lr)F—l (0 +p)"

m—r)

1.,
<\=fn¥ !
I

| N0*11 5

<l ()" 58) |l M7 0
< e oo
P

< > "fm—r)

< o0,
with

”f (m=r)

Since ¢g < 2 H@;lﬁﬂnm, we have obtained that

co <2v/nmax{a; + a3, as +ajas} . (2-4)

2.4 Some inequalities for MBF parameters

In this section we shall prove a lemma, which will provide a lower bound on
the Lagrange multipliers in terms of certain parameters of the MBF method.
The lemma will then be used to derive two inequalities with those same
parameters, one involving §* and the other involving 0. These inequalities

will be needed further on.
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Recalling that €, denotes the extended feasible region and rewriting the

update formula for the Lagrange multipliers as

_
S @)+’

where g = 1/k, the following lemma holds :

U;

Lemma 2.4.1 Let ||u® — u*||c < w for some w > 0 and let v < 1 be the

rate of convergence, associated with p > 0, as in the basic convergence result

(2.1).
Furthermore, let the constraint functions satisfy the following Lipschitz

condition with L > 0 :

Va,y € O, Vi @ |fi(z) - fily)| < Lllz — 9] .

Then the following inequalities hold :
(1) For the active constraints (1 € I) :

u > e:cp(— (1 —7 ) 7Lw\/ﬁ) u® . (2.5)

1 -7 p

(2) For the passive constraints (1 € J) :

ul?) > ewp(—f—o—i) emp(— (1 —7 ) 7Lw\/ﬁ) ul (2.6)
7

l—v I

with o; = fi(z*).

Proof : (1) According to the update formula for the Lagrange multipliers,

we have for the active constraints (¢ € I) :

O puf®

TR T T RED) - A




23

puf®
|fi(z®W) = fi(z*)| + 1

yu®

I — =T 7
pu®

L/ale® — 2

(0)
> kel

vLV/n||[u® — urloo +
-1
> (1 + M) ufo) )
7

Continuing to update in this way, we obtain
—1 -1 -1
L L
USS) > (1 + 73 Lw\/ﬁ) (1 + ,73—1 w\/ﬁ) v (]_ + 7._‘0\/7—)') USO) .
p p p
Now, since 1 + z < €® and therefore (1 + z)~! > e~%, we have :
ul® > ea:p( yLwy/n (1+’7+’7 +- +’7s'1)>u§0) .

Summing the geometric series in vy completes the first part of the proof.

v

v

v

(2) In the same way as before, we can write for the passive constraints

(reJ):
() (0

uM = Huy _ sy
YT T 1 fi(zW) = fi(z*) + filz*) + ¢
pul”
| fe(zM) = fi(z*)| + fi(z*) + o
p”

>
= IO —z(+otn

pul®

LAl — e F o+ 7
-1
> (1 + %4 7Lw‘/—) ul® .
[

,u
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Continuing to update in this way, we obtain

u'('.s) > C:Ep(—s—a-’- _ ‘)’LCU\/E
7 p

(1 +7+’72+-'-+’7"1))u,(0).

Again, summing the geometric series completes the proof.

We now use this lemma to prove the following theorem.

Theorem 2.4.1 Under the same conditions as in the previous lemma, the

following two inequalities hold :

(1)

vLy/n\ .
#S<1_7)0 (2.7)
(2)
p < m . (2.8)

Proof : (1) First we take a look at the active constraints. In order to apply

the previous lemma for given w, we pick u(®) as follows :
W =ur tw i=1,...,m. (2.9)

Then, taking the limit for s — oo in (2.5) , we obtain :

1-— 78) 7Lw\/ﬁ) 4©

lim v > lim emp(— ( -
L de el §—00 _— ”

)

Since we assumed that that the u,(-s ’s converge to the optimal Lagrange

multipliers, this means that

* ")’LLU\/H) ©
u; 2exp | ————|u; . 2.10
" ( w1 -7) (210)
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We now pick an index 7 for which u,go) converges to §*. For this index,

(2.10) becomes :
. vLwvn ) .
>exp| ———— (0" +w),
P ( p(l—7) ( )
and therefore -
5 n
wexp (~1505)

= 1 —exp (—M) ’

#(1-7)

or :
0* > d .
exp (Z5205) — 1

Taking the limit for w — 0 on both sides of the previous inequality, yields :

f o w 11 —7)
0* > lim = .
I e ) 1~ 0

The first part of the theorem follows immediately.

(2) Turning to the passive constraints, our choice of u(® in (2.9) means that

u,(-o):w t€J.

We now pick an index j for which o7 = ¢ = min{o; | ¢ € J}. The basic

convergence result in theorem 2.2.1 then gives

©

u;.s) < ,.),su.7 — ,ysw )

With the previous lemma we can therefore write :

o 2) o (12) 5
7

1 -~ [T

2eaf:5) {4 (125255
2 s\1—-v Iz

This gives :
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Taking the limit on both sides of this latest inequality for s — oo yields :
v > exp ( "). This completes the proof.

“
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Chapter 3

The quadratic case

3.1 Introduction

(i) In this chapter we shall consider the MBF method for solving the fol-
lowing problem :
min -lz—a:TQ:v —sTg

@Qp)  , rdz) >0  i=1,..m ,

where Q € IR(™™ is positive semi-definite and :

ri(z) = afz — b;
z,s,a; € IR"

b; € IR

llaill = 1.

Because of this last assumption, which does not cause any loss of generality,

we have the following Lipschitz condition :
Vz,y € IR" : |ri(z) —ri(y)| < llz — 9. 3.1)

We assume that int {z | ri(z) > 0} is nonempty and bounded, and that
all conditions in the basic theorem 2.2.1 are satisfied. We are therefore

assuming that the problem is nondegenerate.
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(ii) The MBF for this problem is given by :
TQx —sTg — = Zu, In(kri(z) + 1),
kiq
which can be rewritten as follows :
—xTQx —sTz — —-Zu, (ln (r,(x) + ) +lnk) .
ki
Setting u = % , this becomes

TQ:):——S x— Zu,ln(r,(x)+p)+;¢lnu2u, .

i=1 =1

Dividing this last expression by g, we formulate the following definition :
Definition 3.1.1 The Modified Barrier Function for QP is defined as
é(z,u, 1) 2 % (; TQz —s a:) Zu, In(ri(z) + p).
i=1

The reason for this definition is one of convenience only. It makes no
difference whether we minimize the original MBF or ¢(z,u, ) with respect
to z, since they differ only by a constant and a factor, both independent of
z. The update formula for the Lagrange multipliers remains of course the
same, and we shall therefore obtain the same iterates as with the original
MBF. As a result, all previous results continue to hold for ¢(z,u, u).

The first and second order derivatives of ¢(z,u, u) with respect to z are

given by

Qr—s & a;
V_z;(b -'I:, u, = z, u, = —_— U ——————
(z,u, ) = g(z,u, 1) p ;} ) A

T

Vig(z,u, H(z,u,p)=—= —_
2¢(z,u,p) = H(z,u, 1) +; r,(m +ﬂ)
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The Hessian V2¢(z, u, ) is strictly positive definite on the extended fea-
sible set (see [14] [13]) and, as a result of (3) in the basic theorem, its smallest
eigenvalue is bounded away from zero in a neighborhood of the minimum of

é(z,u, p) for fixed (u, k).

(iii) We now state some assumptions about MBF parameters. Throughout
this chapter we shall assume that (u, k) lies in the cut cone as described in
the basic theorem and we shall also assume that g is small enough to obtain a
suitable 7, the parameter responsible for the rate of convergence in the basic
theorem. As was mentioned in chapter 2, this can be achieved by reducing
p and then checking an indicator function v(z,u, ).

In the algorithm, we minimize ¢(z, u, p) for fixed u and g up to a certain
accuracy €, before updating u. When we are far away from this minimum,
we perform a linesearch along the Newton direction. The Newton direction

p(z,u, p) at a given point z for fixed u and g is given by :

P(JJ, u, ,u) == (Vaz:¢($7 U, H))—l V1‘¢($’ U, »u) .

Whenever there can be no confusion, we shall write p,g, H in stead of
p(z,u, u1), Vod(z,u, 1), V24(z, u, p) respectively.

We stop doing linesearches at a point where ||p||lg < B, for a certain S
which will be determined later. This # depends on z, but is bounded away
from zero, so that eventually this inequality will be satisfied. From this
point on, the algorithm takes full Newton steps, without linesearch, until the

aforementioned accuracy is reached.



30

Thus the algorithm contains an inner iteration, where ¢(z, u, y) is approx-
imately minimized, and an outer iteration, where the Lagrange multipliers
are updated. The inner iteration contains two phases. In the first phase, a
linesearch is performed at each iteration whereas in the the second phase full
Newton steps are taken without a linesearch.

We are now ready to formally state the algorithm.

Input :
o (2@ 4 u) satisfying the conditions of the basic theorem;
e 4 such that the rate of convergence v is at least ﬁ;

e Dj and € are accuracy parameters;

begin
=20 ; u:=u®; D:=1
while D > Dy do
begin (begin outer iteration)
while ||p||lgx > € do
begin (begin inner iteration)
while ||p|lz > 8 do
begin
{ := argmingso{¢(z + €p,u, p) | = + p € int F,}
T:=1z+ Zp

end
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r:=x+p
end (end inner iteration)
Vi : u.-:=m";‘h; D := Dy

end (end outer iteration)

end

The parameter Dy is chosen in such a way that the algorithm terminates
with max{||z — z*||co, ||t — ©*||cc} < €, where € is the final accuracy we want

to obtain.

(iv) The aim of this chapter is to show that for (QP) , there comes a point,
a so-called “hot start”, from which all iterates remain well-defined in primal
and dual space, i.e., the iterates remain in the Kantorovich ball for the new
function after each Lagrange multiplier update and the pairs (u, k) remain
in the cut cone as defined in the basic theorem. We call “Kantorovich ball”
the region in which ||p||z converges to zero quadratically, after Kantorovich’s
results in this area (see [15]). This point will be characterized in terms of p
and other quantities which depend on the solution.

In order to do this we will first compute 3(z), which determines the
Kantorovich ball. We will then show that 3(z) is bounded from below by
a positive number $* in a neighborhood of the solution (z*,u*). Finally we
characterize the region where ||p||y falls below this value, and continues to
be below this value for all subsequent iterations. Any point in this area will

therefore be a “hot start”.
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3.2 Basic lemmas for the inner iteration

In this section we shall prove some basic lemmas that will be needed to
determine B3, which was mentioned in the introduction. We start with some

notation :

I = {i|riz)is active}
J = {i|ri(z)is passive}
I

= {ilu>£)

®
|

Joo= filu<$)

the number of elementsin J,

|,

0 = min{u;|:1€ .}

p = max{u;}
n = |Jumax{u|i€ J,}
m = max{y; |1 € J,}
Ay = the smallest eigenvalue of H

O = {z|Vi: r(z)+p>0}.

In the rest of this paper, we will also use the quadratic approximation

q:(d, u, p) for ¢(z + d,u, p) at the point z, defined as
1
¢s(d,u, p) = $(z,u,p) +9"d + 5d" Hd.

We will frequently use the H-norm ||.||x#, defined as

lz|lg = VaTHz.
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Because H is positive definite, ||.||g defines a norm.

As mentioned in the introduction to this chapter, we want to be able to
determine the region in which full Newton steps can be taken. In order to do
this, we have to be able to determine under what conditions, for x € int 4
and d € IR", = + d still lies in int Q.

For the inner iteration, we also have to find a way of measuring the error
in the approximation to the minimum of the MBF, since this error will have
an influence, among other things, on the update of the Lagrange multipliers.

The following two lemmas deal with these issues. In the first one, we
determine a condition on d for r + d to lie in int Q) whenever z does. In
this same lemma, we also compute a bound on the error in the quadratic
approximation to the MBF, which will be needed for the proof of the next

lemma.

Lemma 3.2.1 If z € int Qi and ||d||g < fi(z) , then = + d € int Q.
Moreover, if ||d||g < Bi(z)/2 , then
1

el

|¢(:C + d7 u, /‘) - q:c(dv U, /‘)I <
where :
Ra(z) = min {\/Na(ry(z) +w) | € I,
fi(z) = min {\/@, Rl(w)}

(o) = L (a2l
T2 \Ri@) + V0
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Proof : The proof of the lemma will be along the lines of the proof of
lemma 2.1 in [14]. Expanding ¢(z + d,u, ) in a Taylor series about x, we

can write :

e+ ) = By, + &1 (V0() + 50 (Vuxbl)d + Sth, (32

where the first three terms of the RHS constitute the quadratic approxima-
tion g.(d,u,p) to ¢(z + d,u,u) at £ and i, is the k-th order term in the
Taylor expansion:
9"
S Z ___qi(ﬂ)___d .d:
k! 0z, ...
tly 1k
In this particular case we find by direct calculation that
T4 \*
13 ntu ()
l=1 7'{(.'1,') + H
Setting

Xi =

ald
ri(z) +p|’

we now compute a bound on |tx| by computing a bound on

i=1 i€l

i‘uixf < 4 (
(

IA
S

IN
<
< ~
m
<
N
| 8
N—’
>
gl &)
~——
Ol
+
=3
-d
>
-
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< (dTQd+ 3 (u) x?)g +m Yy xk

t€l, i€J,

< G(M},&) +m ) X

i€d,

For the last step we used the fact that
dT Qd i

ldl|% = + Y uwixi.
=1
Now, if ||d||g < Ri, then
ald | lldll <l &
i = : < <
M= [ 7] = W = V() ¥ )
and therefore
i < Al

Rl(:z)

i“ixfso(ﬂ‘%&)§+n(%)%

=1

This means that

We are now ready to compute an upper bound on the magnitude of the
difference between ¢(z+d, u, #) and its quadratic approximation. From (3.2),

this difference is given by 32, tx, so we compute :

Suf < £ 15 w)

T (oM ) (o )

- (0-%) 1|13 ( n ) i3
= 1 — (||d||z/V0 ) 3R}(z)) 1 —(||d||a/Ru(2))




36

Since this upper bound is definitely finite as long as ||d||# < Bi(z), we con-
clude that z + d lies in the interior of the extended feasible set §).
Moreover, if ||d||g < V0/2 and ||d||m < Ri(z)/2, then :

Sul < 2(Z5+ ) 1l

k=3
n/Ri(z) 3
LB ja

< + 5=

{3
arylldl -

<

36()

0
The following lemma gives a measure for determining the distance to the
minimum for the inner iteration, when we are close to this minimum. See

also lemma 2.16 in [14]. We recall that p denotes the Newton direction.

Lemma 3.2.2 If

Il < fa(e) = min { 2202), S,

then

. 5
llz — &(w, p)llm < il -

Proof :
Take an arbitrary h such that ||k|lz = 2||p|lz. We then consider the
values of ¢ on the ellipsoid : {z+p+ & | ||k||lz = Z||pllz}. We have

)
lp+ hlla < sliplla-



37

Since & (z) < V0/2 and ||plla < &(x)/5 , ||pl|la satisfies the conditions
of lemma 3.2.1 . Using this lemma and the fact that p = argmingg.(y,u, )

we have

$atpthup) > @lp+hup)-gp ( )Ilp+ Al
> alo,um) + g - (5) 36 lel
2

> aolpvuon) + ol = gy lols
9

> gelpyun) + (8uan - s ol
45 125 s

> Qz(pvunu) + (861(3) - 2461(1')) Hp”H

5
> g(pyu,p) + m”l’”?{-

The previous lemma yields :

1
¢(x +p7ua/‘) < qa:(pvuﬂu) + m”?”% .

For ¢(z + p + h,u, ) this means

Hatp+hus) > datpum+ })(1"’2 3) ol

This means that ¢ is less in the center = + p of the ellipsoid than on the

boundary and since ¢ is strictly convex, its minimum has to be in the interior
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of the ellipsoid. In other words :

. )
iz — &(w, p)llm < |Ih+ Pl < 5liplla -

a
As a complement to the previous lemma, we also prove the following
result, similar to lemma 5 in [4]. It gives a lower bound on the reduction of
the MBF that can be achieved after a linesearch along the Newton direction,

when we are far from the minimum.

Lemma 3.2.3 If

o > fale) = min{ 212, S,

then the reduction A¢ in the MBF after a linesearch along the Newton di-

rection p, satisfies

2
Ao > gﬂg(x) .

Proof :
" Let £ be a steplength such that

l¢pllr < Ba(z).

Then from lemma 3.2.1 we have

1
+ ﬁ ] ua S x e 3u7 + ____83 3 D)
¢(z + €p,u, p) < q:(Lp,u, ) ) lpll7
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and from the definition of ¢.(¢p,u, u) we obtain

1

3&1(x)
> ol - 52l - g5 ol

Ellplln

1
$(z) — ¢z +tpu,p) 2 —lp'g— SCp Hp—

Taking for ¢ the value ﬁ%ﬁ% gives

¢(w) — ¢(:1: + fp,u,#) > 52(-’”)“17”11 _ ﬂ%(x) ,33(:1:)

2 34(z)
2 1 :32(33)
2 A=) (1“5*351@))
13,
2 56/62(3)

O

The next step is to determine under what conditions taking a full Newton
step will actually bring us closer to the minimum, and at what rate. In order
to do this we will investigate how successive Newton directions relate to each
other. The main result in this respect will be lemma 3.2.7.

For the proof of this result, we will need the following three lemmas
which give bounds on the change in various quantities depending on = when
evaluated at different points.

We first define the following quantity.
Definition 3.2.1

B(z) = miin{r,-(x) + pu} .
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40

lo—ul < 22 (@s), (3.3)
then
o 1 1 « 1
(a+1) ri(z) + p = ri(y) + p = (a—l) ri(z)+p
Proof :
1 < 1
ri{y) +p T ri(@) = rdz) - ri(y)| + o
1
S @ Te—l+n
< 1
T ori(z) +p =g (@) +p)
S (81

On the other hand we have

Cri(y) +

v

v

This completes the proof.

(a — 1) r,-(:c)1+p ’

1

ri(z) + lr.i(y) —ri(z)| + 4

ri(z) +llz -yl + 4
1

ri(z) + p+ £ (ri(z) + p)

( o
a+1

) Ti($)1+ ©
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Lemma 3.2.5 If

w—mnsﬁgl (a>1), (3.4)
then
(W+J«FH@M<d”ﬂwd<( )(ﬂH@) (3.5)

Proof : Using the previous lemma, we can write

m Td
i = S (rE) ) Wy
Qi [ a & (afd)
p +(:5) L ) T i)

(ﬁ%fﬂmmt

IA

On the other hand we have

THy)d = —=+Y

(A
)
QD
I
N
R
+|R
[y
~—
~
[~]=

This completes the proof.



42

Lemma 3.2.6 For z,z + p € int 4 with ||p|| < Eg—") (a > 1) the following

inequality holds :

V6 + D)l < ((——17‘/—;—(—)) el

Proof : We have by expanding in a Taylor series that

LEELIE I8 X IS SO
P 0

dz; Oz; dz0x; 2 52, 0 axtaszsp‘ ’

wherei=z+(p (0<(<1).

From the definition of p this means

’Qﬂii_l’_)

5 OP4(F)
Oz =2 2 0

z,02.0z; 9z.0z,0z. Pt -

s,t=1

We now compute a bound on the expression in the RHS :

1| & [0%6(z + Cp) _
Z ( 0z ,07,0z; Pspz>’ o

2

i—'_‘; “ ((1,' p) (ai)j

(ri(z + (p) + p)°

m  (aFp)” (),
= g{u'(f’i(r+@)+u)2 r£($+Cp)+#l'

Because |(a;);] < |la:|| £ 1 and ||z + {p — z|| < ||p|| and because of the

assumption on [[p[|, we can use lemmas 3.2.4 and 3.2.5. This gives

w  (ofp) ()
; (ri(z + (p) + p)° i($+CP)+#'
m (an)2 a
Z_: “(ri(z + Cp) + p)? ((a— 1)(’":'(93)'*‘#))
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(2)’

S T D A e

< ZE—_I)E(:B—)I)TH(Q: + (p)p
Y TH@)
(a —1)° B(z) '
We therefore have
d4(z + p) l o
52 < e

Squaring the LHS and summing over j gives :
" |84(z + p)|” ( o )2 4
A< —_— .

i=
Taking the square root on both sides completes the proof.

0
The next lemma will determine the rate of convergence for the norms of

the Newton directions in the inner iteration.

Lemma 3.2.7 Let p,q and H,H be the Newton directions and Hessians at

z and z + p respectively, with z,z + p € int Qi and ||p|| < —B'—(f) (a>1).

Then :
ldg . c*vm
Pl = (o —1)* Bo)\ D

Proof : We have

Hp=-Vé(z) and Hq=-Vé(z+p).
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Therefore, with the previous lemma :

3 2
g = [Tl = IV6(e + I < 0 () ol

On the other hand one has

—l 1
¢Hq = (H*q)"H(H?q)
1
> Mgl H?q|?
> Agllall% -

Therefore we can write

ety <0 () ol

which gives

oy < () ((—J_—l‘—‘)——m) Il -

Dividing both sides by ||p||4; and taking the square root completes the proof.
O

We now define a quantity fs(z,a, @), depending on x and two positive
parameters, o and &.

Definition 3.2.2

oo min{R12($), 6ix) 1 B(ng/x;, (2= 1)3 B(;i/\;/{ﬁ} |

We will show that for certain values of a and a , the following property

holds :
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If, during the inner iteration (fixed u and p)

”p(z7 u7 I"’)“H(.‘B,u,ﬂ.) S ﬂ3(x, a, C—Y) 9 (3.6)

then if full Newton steps are taken from this point on, the algorithm converges

and each new iterate y generated in this way will satisfy :

(1) yE int

(2) lp(y, v, /‘)“H(y,u,u) < Ba(y, o, @) .

Before we can do this, we must find a bound on the change, after one full
Newton step, in the quantities B(z), Ay, Ri(z), and & (z), which determine
Bs(z, e, &). The next lemma will provide this.

We will use the following notation :

p = p(z,u,p)

I = z-+p

g = p(Z,u,p)

Ay = the smallest ergenvalue of H(z,u,p)

Ay = the smallest eigenvalue of H(Z,u,p) .

Lemma 3.2.8 If
B(III)\/ /\H
o b)

Ipllz <
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then
W (227) B@ < B@) < (“22) B@)
@ (37) =¥=(GE)
® (35)mEe<rE < (55) ke
@ () aw<ae@ < () aw.
Proof :
We start by noting that
lz -z = [lpll < \/———”PHH (3.7)

(1) Because of (3.7), the first part of the proof follows immediately from
lemma 3.2.4 and the definition of B(z).

(2) Again, because of (3.7), the assumption in the statement of the

lemma means that
B(z)

o

e —2| <

Lemma 3.2.5 then gives

( e )2dTH(x)d <dTH(z)d < (a‘i

2
T
— 1) TH(z)d,

and therefore

( a >2fH(x)d<fH(f)dS( a )2dTH(:1:)d

a+1l/) |dz T |d|? a—1 l|d]|?
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Recalling that Ay = ming %ITEI"’%‘-’- (and the analog for Ag), the proof of the

second part follows.

(8) From lemma 3.2.4 and from the definition of R;(z) we have that

(a; 1) (ri(z) +p) <r(Z)+p < (a: 1> (ri(z) + )

(A=) min (@) + ) < min (i@ + ) < (S22 ) min (o) + )

() (%) Rie) < By(a) < (221 (g)%&(z) |

With lemma 3.2.5, the proof of part three follows immediately.

(4) For the proof of part (4), we start with part (3) :

a+1\3
1) B)

a——

(j:)aﬁ‘:(x) < B < (

(EHh) s > (251) 2

() () = = (50) ()

Taking the reciprocal of all three expressions, multiplying through by v/

and recalling the definition of {;(z) completes the proof.
O
We are now ready for the main results of this section. In the following
result we will use the previous lemma and lemma 3.2.4 to find a relation

between o and @ so that (3.6) will be satisfied at the point Z also.
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Lemma 3.2.9 If ||p||x £ Bs(z, a,a) with

a > 1

3
& > (a+1)(a+1) ,
o a—1

then “q“*ﬁ' S ﬂ3(i,a, C_Y) .

Proof :

From lemma 3.2.7 we have that :

el < (2) B(z‘)f:‘@-upu%,
() e (e P,
< é(}g)%npu,{
< = (55) 1ol

Now, we assumed that

ile) ) 1 BT (2= 1)’ B(z)m} |

< @) = mi
Ipller < Bs(z, @, @) mm{ 2 "5 ' a a ay/n

so from lemmas 3.2.8 and 3.2.5 we have

Ri(z) < (" + 1) Ri(3)

1
&Li(z) < ( )351(57)

R

R
+

[a—y

R
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Bayw < (227)B@V ),

and therefore

Iolls < (257) 4u(a,,3)

We have obtained that

ot < 3 (25 (““) Bo(3, 0, ) .

« «

The assumption on @ concludes the proof.
i}
A convenient choice for a and & is 6 and 12 respectively. This choice
satisfies all conditions imposed on a and @ and we will use it in our next

definition.
Definition 3.2.3

A 125, &i(z) 1 B(z)VAn
,B(m):ﬂ3(x,6,¥)_m1n{ 52 6yn }

Note that Ry(z) < /Ay B(z) so that it could be left out of the definition.

Substituting those same values for a and & in previous lemmas, we have

proved the following theorem, which summarizes the results of this section :

Theorem 3.2.1 (1) If ||p|la# < B(z) , then

@) Nz — & @il < 2lpln
(li) ”q”H < 2\/_

1ol = B(z) /oy

(iii) flqllF < gllPIIH-
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(2) Ifllplls > B(=) , then Ag > 2B%(x) .

3.3 The Lagrange multiplier update

The expression for the rate of convergence of the algorithm in theorem
2.2.1 was derived under the assumption that the minimization w.r.t. z of
é(z,u,p) (fixed u and p) is carried out exactly. This exact minimum is then
used to update the Lagrange multipliers.

However, since in practice this is impossible, we will have to investigate
the effect of inexact minimization. There are in fact two problems to consider.
First we must decide on the accuracy we want to achieve and secondly we
have to be able to measure this accuracy.

The answer to both questions is given by the following lemma. In this
lemma we assume that we are close enough to the minimum so that we can
apply lemma 3.2.2 to measure the distance to the minimum in terms of
llplla-

We also recall that the accuracy required of the solution to (QP) was

given by ¢, i.e., we want to obtain
max{||z — 2"[|oo, [lu — u7||o} < €.

In the lemma we will now prove, we will use the following notation :

u; : old multipliers
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U; : ezxact new multipliers

p : max {a:}

u; : approximate new multipliers

z : approzimate minimum of ¢(z,u, )
z exact minimum of ¢(z,d,p) .

Lemma 3.3.1 Let ||@—u*||oc > € and let p be such that if exact minimization

of ¢(z,u, p) were to be performed, the convergence rate would be given by -

4/n"
If
Il < S22 min {2, 205 )
then
max{z = 2%, Ju = 0} € 5ol - 7)o
Proof :

We start by writing :

e —uloo < Jlu—iflo + Ilﬁ — 4l

IA

llu — @fleo + \/—Hu —u" oo -
(3.8)

Now, for all z we have

Uig U
riz)+p @)+ p

a;plri(z) — ri(2)|
(ri(z) + p)(ri(2) + p)

lu; — ;]




wiplle — 2|

(ri(z) + p)(ri(2) + 1)’

and since [|p[lg < B(z), lemma 3.2.2 yields

1 5
— 7 < .
,—)‘Hllz Eln £ 5 ,——-/\HIIPHH

Substituting this back into (3.9) gives

lz— & <

[ui — ] < 5t plp|la ‘
CT T 2V () + p)(ri(E) + )

With the definition of 3(z) we also have from (3.10) that

e — 3] < sz—HB(g\)/?;S Bgv)_

From lemma 3.2.4 we therefore have

1 2
- < .
ri(Z) +p T ri(z)+p

Substituting this back into (3.11) yields

5a;p|pll#

Vag(ri(z) + p)?

lu; — @] <

52

(3.9)

(3.10)

(3.11)

(3.12)

The assumption on ||p||y in the statement of the lemma then gives

. € 1 . .
Ju =il < 77 < gl = o

Finally, using this last inequality in (3.8), we obtain

e — oo < el — o

2n
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On the other hand, recalling that
Iz = &l < llo — 2 < —=lle ~ &l < —=llol

and with the assumption on ||p||#, we also have

lz—2"lle < Iz =2l + £ — ="l

6
< i =l

3 1 = oo + el — ]
~ 4yn “ " 4yn °°
< sli- il

This completes the proof.
a

Definition 3.3.1 We define the quantity €;(z), used to determine the accu-

racy of the minimization w.r.t. = of ¢(z,u,p) (fired v and p ) :

a(r) 2 ;‘0/5_13 min {2, B;E;E)} . (3.13)

Note : In practice, we minimize up to accuracy €;, with y small enough

to achieve a convergence rate of ﬁ This lemma then shows that in the
worst case, p should be such that for exact minimization of ¢(x,u,p), the

1
convergence rate would be ; e
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3.4 Bounds on algorithm parameters in a
neighborhood of the solution

So far we have derived results for points that were not necessarily close to
the solution. However, since we are ultimately interested in finding a lower
bound on f(z) in a neighborhood of the solution, we will now consider the

algorithm for (z,u) lying in the set S; , which is defined as follows :

Definition 3.4.1
A * *
s 2 {(x,u) | max {J|z — a°[l, VAl — u”lloo} < g} .

In this section we will compute bounds on S; for previously defined quan-
tities in terms of their values at the solution. These bounds will be used in
the next section to prove the final results.

The first lemma gives bounds on the Lagrange multipliers and on the

quantity r;(z) + ¢ in Sy.

Lemma 3.4.1 Let (z,u) € S; and let the rate of convergence of the algo-
rithm be given by v = ﬁ;
Then

(1) for the active constraints (1 € I) :

—ul <u; < uf (3.14)

and
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(2) for the passive constraints (1 € J) :

Lol

r;(a:)—%—,u>d+2

Proof :

(1) From theorem 2.4.1 with vy = 5\—1/—;, and recalling that L = 1 (L was
the Lipschitz constant for the constraints), we have that g < 8* . Therefore,

for any u such that
0*

o T
2y/n = 2\/n’

llu = wfloo <

the following inequalities hold :

* *
U ———=<u; <U; + —=.

Y2y 2\/n
For the active constraints this means

1
§u:‘<u;<gu: (tel).

We now turn to the second set of inequalities. Since
ri(z) +p=ri(z) —ri(z") + 4,
we can write
p—lri(z) —riz®)| < ri(z) + 1 < p+ i) — iz

p=lle—2 <ri(z)+p <p+z -2

The proof then follows because ||z — z*|| < £ .
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(2) For the proof of the second part, we write

ri(z)+p = riz) —ri(z) +ri(z7) +p
> o+ p—|ri(z) —ri(z")]
> o4p—|z—27.

Again, the proof follows from the asumption that ||z —z*|| < & .

O
We can use the results from the lemma we just proved to draw the fol-

lowing picture.

Figure 3.1: Location of Lagrange multipliers.

T T T T T

0 L £ u; [ 0*

a

It shows that for (u, u) € S;, the sets I, and J, are identical to I and J

respectively, since all active Lagrange multipliers will lie to the right of %‘-.

We will now have a look at the eigenvalues of the Hessian in S;. The
following lemma gives upper and lower bounds for the smallest and largest
eigenvalues of the Hessian of the function ¢(z,u, 1) for fixed v and p and for

(.’II, u) S Sl.

Lemma 3.4.2 For (z,u) € S1, the smallest and largest eigenvalues of the
Hessian of ¢(z,u,p) at z for fired u and p are bounded as follows :

: 2/ (7 +4)
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AT <A <6AT+ e ;:ga:iy .
2
Proof :
We use the previous lemma to obtain the following inequalities, valid for
1 € I and for any d :
L PG

1 " (afd)?
2% Gu = @)+ e

RREmER

<3
2
and therefore

T 7\2 T J)2 T
Zu;(az Q) oy ad) < 6u . (af d)?
9" rid@) + p)? I

With the help of these inequalities, and recalling that

Ay = mln dTHd and Ay = max dTHd
lldll=1 lldlj=1

we have for the lower bounds :

min S (ad) min @ - (afd)? }
”d”=1{ Iz Z (ri(2) + #)2} 2 udu=1{ 7 * Z Hri(x) + p)?
> 2 min {@ + Xr:u’!‘ (a?d)z} .

=

The exact same procedure goes through for the largest eigenvalue, if we
take max in stead of min in the above expressions.
Similarly, we have for the upper bounds :

L {dQd ¢~ (ddd) }
I|r5|1|=1{ p +,-Z=; (ri(z) + p)?
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(aTd i (ald)?

@ _d]
5 b B

. [d'Qd ¢ *(a.'Td)2} p(m—r)
Gwnt‘ri{ PR TR P A

IA

In the last step we have used the facts that |afd| < |lai|||d]| < 1 and
that, since (z,u) € Sy, u; < ﬁ’-l
Again the same can be done for the largest eigenvalue, with max replacing

min and this completes the proof.

We now define the following two quantities :

Definition 3.4.2

+ oA 2
A = =A".
9

2\/n (0’+ 52‘—)2

Here, A* and A* are the smallest and largest eigenvalues of V2¢(z*, u*, 1)

respectively.

The following lemma gives a lower bound on A(z) in Sy, but first we will

define the following quantities :

Definition 3.4.3 Definition of £* and 3*.

ea 1(va, mene |7
0 \Vo " 4/anxt (o4 4)
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o fl X
ﬁ - mln{§’€,18\/2_\/ﬁ}

Lemma 3.4.3 For (z,u) € 51, B(z) > p* .

Proof :
From the definition of B(z) and lemmas 3.4.1 and 3.4, we have imme-

diately that

A*
B(z) > g and B(z)\/Ag > l;\\//__; .
For R,(z) we have with the previous lemma , since J, = J :

Ri(2) 2 VX (0 +4)

whereas for 7 we can write :

< (m—r)p

m= 2\/n
We now use these bounds and lemma 3.4.1 to compute the lower bound

on {;(z) in Sy :

(1, n Y (vE, omens )
=5 (75 ) 22(¢a‘:+4m»;(a+g)3) |

From these bounds and from the definition of S(z), it follows that

B(z) > B* .
=

In the final lemma of this section, we compute a lower bound on the

accuracy € in Sj.
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Lemma 3.4.4 In S;, the accuracy €; is bounded from below as follows :

epvV22*

(e) 2 g (3.15)

Proof : With the previous lemmas we have for (z,u) € S :

e(z) =

25/\; . {2 Bz(x)}_\/ﬁ;f\/\/_/_v . {2 _,%} 616)

We know from lemma 3.4.1 that % < % < 2, and from lemma 2.4.1 that

p < 0* < p*. Therefore

_ (ﬁi)<1
4p  4p* \p 2

This means that min {2, Z‘iﬁ} = z‘%.

Substituting all this back into (3.16) gives as a lower bound for €; in S :

\/—e\/)?u.

alz) 2 360/rp*

This completes the proof.

We now define this lower bound as €j.

Definition 3.4.4 The lower bound €] on € in S; is defined as

o2 euV2X*
17 360p/n
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3.5 Behavior of the algorithm in a neighbor-
hood of the solution and final results

In this last section we consider the behavior of the algorithm in a subset of
51 and present the final results. The subset S C S; we will look at is defined

as follows :

Definition 3.5.1
S & {(m,u) : max {{|z — %||co, ||t — vl } < 5%} .

Starting from a point (z(®,4(®)) in S, let us now examine the iterates
(z(®), u()). We will use the following notation :

o ¢._1 = d(z,ul=V p).

o z(9) is the s-th iterate, i.e., the approximate minimum of ¢,_;.

e &0 is the exact minimum of ¢,_;.

o H®)(z) is the Hessian of ¢, at the point .

e p,(z) is the Newton direction of ¢, at the point z.

e ) (z) is the smallest eigenvalue of H*® at the point z.
Figure 3.5 illustrates the labelling of the iterates.

All the iterates will lie in S because of the basic convergence theorem.

They satisfy :
max{[|e) — 2*[loo, Ju®) — w0} < 7w,

1 —
where’yzz—\/—r_;andw_ﬁ .
We now recall that, starting with z(%), the algorithm first checks whether

this point is in the Kantorovich ball for ¢¢. If not, we perform a linesearch
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Figure 3.2: Labelling of the iterates.

5S4t

X

and continue to do so until the Kantorovich ball is reached, from which point
on full Newton steps are taken until a point close enough to the minimum
is reached and accepted as the new iterate z(!). This point is then used to
update the Lagrange multipliers and construct ¢;. We then, again, check if
this point lies in the Kantorovich ball for ¢, and so on.

The next lemma is the last one we need to prove our main results. Its
purpose is to provide a few bounds, which will be used to determine if there
is an 3 for which z(® lies in the Kantorovich ball for ¢5; and whether this will

remain so for subsequently generated iterates.

Lemma 3.5.1 Assuming that ¢ < 4nvy*t'w, we have

(1) [ =2 < 2v°wv/n

2A
(2) lps(zEN) | grogeiony < \/—X’st\/ﬁ-
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Proof :
(1) We begin with the first part.

o) = S0 < [ o] + 5 — 27|
T B R e
< Ywyn+ ’7’+1w\/r_z+4\6/ﬁ
< 29°w\/n,

where we have used the following :

1
(s+1) _ (40| < ||g(etD) _ (D)
T z < T 3 esy
n IS Sl T
< __.._..?__.__||ps(:1:(s+1))”Ha(x(a+l))
21/ A5 (z(s11)
5 e/ As(z(s+D) o
< \/—ﬁ ( accuracy of the minimization )

2/ As(zl+D))  10V/n

€

< .
~ 4yn

(2) The second part follows almost immediately from part (1) and from
a standard theorem about convex functions which is stated in the appendix

as lemma 6.5.1 :

1

A
[Vs(z)] < —=27°wi/n .
A N

1125 (2| pro(ater) <

In the first inequality we used the fact that ¢(z,u, p) is strongly convex.
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This completes the proof.

We are now ready to state the main results of this chapter.

Theorem 3.5.1 When the algorithm reaches a point (2%, w3 satisfying

. ] 1 X ‘
max{|[z® — 27]lec, [fu!® — v oo} < == min{ g, %ﬁ" . (3.17)
. T

2/

with € < (iﬁ)sﬁﬁ- (otherwise we have reached the desired accuracy and
there is no point in continuing the algorithm) | then z'9) will lie in the “Kan-
torovich Ball” for ¢5 and the same will be true for each subsequently generated

pair of primal and dual iterates.

Proof :

Suppose we start {rom some initial point in S, then the iterate ) will
certainly lie in the Newton arca for ¢; if |[p|ly for this point falls below A%,
which is a lower bound on F(z) in 5.

With the previous lemma this means :

AL
Q—j”/sw\/g < g
A
We therefore have -
] A
vw < g

This completes the proof.

Following this theorem we define the {ollowing set :
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Definition 3.5.2

Vi

A

T 2 {(z,u) : max{|z — "[|oo, Ju — v ||} < B*

1 .
W min { y,
Theorem 3.5.2 Let the algorithm have reached the point (z(),u(®), satisfy-
ing the conditions of the previous theorem and let € also be as in this theorem.
Then from this point on, the convergence of ||p||n to zero in any inner it-

eration (fized u and p) will be quadratic with the rate of convergence given

by :
ol - 1
iz — 36

The same notation was used as in lemma 3.2.7.

B

<

Proof :
When we start from a point (y,v) in T, the iterates obtained in the inner
iteration will converge to § = argmin,¢(z, v, p), and all of them will satisfy

llpll# < B*. This inner iteration terminates with a point g, satisfying

o €
17 -dll < —=

4y/n’
as is shown in the course of the proof of lemma 3.5.1.

We therefore also have

lg—=*| < llg—39ll+ g —=|
< g =9l + vrllg — 27l
€ 1
< = L a*
<

ﬁ(we)-
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We now show that any iterate w, obtained during the minimization of ¢(z, v, u)
starting from (y,v) € T, is such that (w,v) lies in S.

We start by looking at what happens to the first iterate z, obtained by
taking a full Newton step from y. We show that (z,v) lies inside S.

=3l < - fu(z)npxz)um)

52
2/ A(2) 9
VAauly) 1
\//\U(Z) \/Xu—(y—)”pv(y)”Hu(y)
7 1

p* ( from lemma 3.2.8)

IA

lpe(Wl o) ( from theorem 3.2.1)

IA

6./ 2 ()

71 u\/i

6./, (y)12vn
7

72\/}2” ’

IA

VAN

IA

We can therefore write

lz=2llee < llz =" < llz—gll + 1§ — 2"l

IA

7 + = (1 +¢€)
N WA

AW
< [25418=
- ( i 8#)72s/ﬁ

B
2yn
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This means that (z,v) € S. The exact same procedure can now be carried
out with z instead of y and we obtain in this way that all iterates lie in S.
This can now be used together with the rate of convergence result in lemma
3.2.7. Since all these iterates lie in S C S, we can apply the bounds on
various quantities which were obtained for this set.
This gives
lally 27 _ (B@v)ﬁ:) wi)
pllz — B(x)\//\t = \a/n

This completes the proof.

IN

(8
=»
¥

3.6 Conclusions

With theorem 3.5.1, we have found the region in which the “hot start”
occurs. This region depends on several parameters and in order to have a
clearer picture, we will make a few simplifying assumptions. First, from the
form of the Hessian of ¢(z, u, 1), it is reasonable to assume that A\ ~ O(g~1)
and A ~ O(p~?). We also know from theorem 2.4.1 that for vy = 5—\% (as we
assumed), 6* = p and o = p1n(2/n) in the worst case. We will assume this
worst case. We note that we wrote “worst case”, because those values will
make 3* smaller.

For £* this gives

2

1R
(== EENVTEN

27( ) -
(\/5 ! 44/2n(In 2\/n + %)S(u/\,.)g) . (3.18)
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This means that ¢* ~ O (p%) or*~0 (1_’%(:—“:7ELS u%) , depending on whether
the first or the second term in the sum in the RHS of (3.18) is larger.

In the definition of 8* we also have the expression %7?‘[;:_', which in view of
our assumptions will be O (%) .

If we put all of this together, we obtain for the RHS in (3.17) :

oo frf-elemm(222)

and we define the following :

Definition 3.6.1

P ——}—min{u ﬁﬂ"‘}
= 5 '3
a . J1 (Inn)®

¢ = mm{;’—n—;———r} .

From any point in the set 7', each outer iteration will need O (Inlne™?)

(since O (Inln(e})~!) ~ O (Inlne~?!)) inner iterations, whereas O (%)
outer iterations are needed to obtain an accuracy of e.

Since it takes O (y/m In &) iterations to reach a point in T using the loga-
rithmic barrier function (see [4]), the overall complexity to reach a point with

accuracy ¢, using the logarithmic BF until T is reached and then continuing

with the MBF method, is given by
-1 __ -1
(@) (\/ﬁln (p()_l) +0 ((lne In (u€) )lnln e"1> .

Inn

In view of the definition of C in chapter 2, this can also be written as

-1 _ _ -1
0(\/r_nln0+\/aln¢-l+(1”€ In€ —In¢ )mlne-l). (3.19)

Inn



69

Under the assumption that € < g, this represents a significant improve-
ment over the classical barrier method where the complexity is given by
O (y/mlne?).

The implications for linear programming problems will be dealt with in

the next chapter.
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Chapter 4

The linear case

In this chapter we consider the following problem :

min bz

(LP) st. ri(z)>0 1=1,...,m

where, as before :
ri(z) = afz — b;
a; € IR" and ||a;f] =1
b; € IR .

We again assume that int {z | r;(z) > 0} is nonempty and bounded, and
that all conditions in the basic theorem 2.2.1 are satisfied. We are therefore
considering a nondegenerate linear programming problem.

For Karmarkar’s algorithm (with n > m), the number of iterations needed
to reach an accuracy of 2%, where L is the number of bits necessary to specify
(LP), is given by O (nL). The best bound on the number of iterations for the
Classical Logarithmic Barrier Function at the moment is O (/mL). We now
compare these bounds with the bound we will obtain for the MBF method.

We proceed exactly as in the quadratic case and define :
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Definition 4.0.2 The Modified Barrier Function for LP is defined as
a bl &
¢(£II, u, /L) = 7 - Z Uy ln(r,(m) + ﬂ)

i=1

The first and second order derivatives of ¢(z,u, p) are given by

b & a;
Vad(o,w ) = gl p) = = D wi
T
Vid(z,u, p) = H(z,u, p) = Z m“z"

The Hessian V2¢(z,u, u) is strictly positive definite on the extended fea-
sible set as in the quadratic case and, again, because of (3) in the basic
theorem, its smallest eigenvalue is bounded away from zero in a neigborhood
of the minimum of ¢(z,u, p) for fixed (u, k).

All lemmas and theorems for the quadratic case remain valid for LP.
However, the conclusions about the order of magnitude of the set 7" are now
slightly different, since in this case it is reasonable to assume from the form
of the Hessian of ¢(z,u, u), that X ~ O(u~2) in stead of O(u~1).

In the worst case, 8* ~ O (min{ﬁ, \/ﬁ}), and therefore

Vi .
2]\\/5,3 NO(mm{n \/ﬁ}) .

Now suppose that we want to achieve an accuaracy of 2-L in order to

find an exact solution to the LP problem. In that case, (3.19) will give us

an overall complexity of

O (\/ﬁln0+\/r—rz—lnn+ (lnL——lnC—lnn) L) .

Inn
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Name Size No. of iterations till “Kantorovich Ball”
SUHLPIPU 48,15 9,6,2,1

LSEUNEW 134,28 8,6,3,1

GM291U 543,250 8,10,3,1

IBM118 657,359 9,8,2,1

GMLP 3801,1065 16,23,8,2,1

Table 4.1: The number of iterations until the “Kantorovich Ball” is reached
for five IBM problems.

Since, typically, L ~ O (mn), this gives a significantly better complexity
bound than what so far has been obtained, as long as In C' <« L. If this were
not the case, then we would obtain the same complexity bound as for the
classical logarithmic barrier function.

We conclude this chapter with some numerical results obtained at IBM by
the author. In table 4.1, the first column gives the name of the problem as it
appears in the IBM problem library, the second column contains the number
of variables of the problem (first number) and the number of constraints
(second number), whereas the third column gives the number of iterations
necessary to reach the “Kantorovich Ball” after each Lagrange multiplier
update (the updates are separated by commas).

Over the past year, more than 60 more LP problems have been solved at

IBM with the MBF method (not by the author), all yielding similar results.
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Chapter 5

The nonlinear case

5.1 Introduction

(1) In this chapter we shall consider the MBF method for solving the fol-

lowing problem :

min  fo(z)
st. fi(z) >0 1=1,...,m ,

where z € IR" |, the objective function is convex and all constraint functions
are concave. We will assume w.l.o.g. that fo(z) is linear. In case it is not,

we can add an additional variable z,4; and an additional constraint

fO(m) - xn-&-l S 0 9

and take z,41 as the objective function to be minimized. We will therefore
consider the following problem :

min bz

(NLP) st. fi(z)>20 :=1,...,m ,

We define the extended feasible set {}x completely analogously to €2 in

the quadratic case.
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We shall assume that all constraint functions are twice continuously dif-
ferentiable on Q) and that they all satisfy the following Lipschitz conditions
on () :

AL >0 : Vz,y € U : |fi(e) — fi(y)| < Lll=z -yl (5.1)

dM >0 : Vz,y € Q,Vd e IR" :
|dTV2 fi(z)d — ATV fi(y)d| < M|z — y||(=d"VPfi(z)d) . (5.2)

This condition is very similar to the one used by Jarre [14].
As in the quadratic case, it is assumed that int {z | fi(z) > 0} is
nonempty and bounded and that all conditions in the basic theorem from

chapter 2 are satisfied.

(i) We now define the MBF for (NLP) :

Definition 5.1.1 The Modified Barrier Function for (NLP) is defined as

m

> uiln(fi(z) + ).

i=1

A —blz

é(z,u, p)

The first and second order derivatives of ¢(z,u, i) are given by

=% m Vf;
Ved(z,u, p) = g(z,u, p) = - ;ut#ﬂ

, e B (V(a) | V@)V
V(e u ) = H(z,u, ) = 30 ’(f;(x)+y i ) |

=1
The Hessian VZ¢(z,u, u) is strictly positive definite as in the quadratic case,

and because of condition (3) in the basic theorem, its smallest eigenvalue will

be bounded away from zero in a neighborhood of the minimum of ¢(z,u, pt)

for fixed (u, k).
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(iii) The algorithm is exactly the same as in the quadratic case, with fi(x)

replacing r;(z), except that x should now be such that « is at least 2(T|-11)—\/ﬁ

(iv) In this chapter we will show that, as in the quadratic case, there exists
a “hot start” for (NLP), which we will again characterize in terms of y and
other quantities which depend on the solution.

This chapter will resemble chapter 3 very much and the steps leading to
the final result are exactly the same as in that chapter. The proofs are a little
bit more involved, but the motivation behind the lemmas hasn’t changed.
We will therefore not repeat all the explanations from chapter 3 in the same

detail.

5.2 Basic lemmas for the inner iteration

In this section we shall prove some basic lemmas, analogous to the ones
proved in the quadratic case, that will be needed to determine £.

In the following two lemmas we compute a bound on the error in the
quadratic approximation to the MBF. This is done in two stages, first for
the case where all functions are linear or quadratic, and then this result is
extended to nonlinear functions, using the relative Lipschitz condition ( 5.2).

We will follow the same notation as in the previous chapter.

Lemma 5.2.1 If all functions f;(z) are linear or quadratic with positive

definite Hessian matriz,and if ¢ € int Qi and ||d||lp < Bi(z),
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then x + d € int Q. Moreover, if ||d||g < B1(z)/2, then :

6(z + d, u, ) — go(dy u, )] < il

36()

where :

N VAr(fi(z) + ) ;
Ry(z) = {”ij(a:)” + [[V2£5(2)|l 7€ Ju}

pi(z) = min {\/5, Rl(:v)}

Rl(-T) + ﬁz(—y\/-

Proof : Expanding ¢(z +d,u, ¢) in a Taylor series about z , we can write :
1 o0
¢(z + d,u, i) = $(a,u, p) + dT(Va:¢($)) + —2—dT(VM¢(x))d+ Z L -

The first three terms of the RHS constitute the quadratic approximation
q(d,u, pu) to ¢(z +d,u, pu) and t; is the k-th order term in the Taylor expan-

sion:

,,,,,

We now use the following results which follow immediately from lemma 2 in
[4] :

Setting  g¢i(z) = fi(z) + p , and
d'Vigi(z)d  _ d"Vg(z)

YT T YT I

3

we have that
| m L5

ty = k' Z Uy E A tX_I; 21'(/)1

The ax; ’s are constants that are nonzero only for 0 < ¢ < | % 1.
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We are therefore interested in finding a bound on the value of the objective

function at the solution in the following constrained maximization problem :

U
maz yzujzak,i)(j—' i
. J=1 =0
st Doui(xi+ ;) = |1k
7=1
x; 20
$; 20.

This problem was examined in [4] for the case where Vi : u;, = 1 and it
was shown that the solution to this problem satisfies : x; > 0 and ¢; =0 .

This gives as the maximum value :
1 & P
Z; Z Uj; X i
J=1
and therefore : t; < %Z}“:l u;x¥ . It is not difficult to see that this result
is equally true in our case. We shall now compute a bound on #; exactly as
in chapter 3, the only difference being the definition of R;(z). We note here

that the definition of R,(z) implies that

VAU ) |
VAT € J“} |

The rest of the proof is exactly as the proof of lemma 3.2.1.

o <min |

Lemma 5.2.2 Ifthe functions f; satisfy the relative Lipschitz condition ( 5.2),
with constant M, if x is feasible and if

ldllar < Ba(=)
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then = + d is feasible and

1
|¢(3 + da”) /‘) - q:':(d,u) /‘)! < %Z_(x)”d”?’-{ 3

where &;(z) is as before and

o (AU )
file) = { Vs “EJ"}

s = (2605 (542 (4F)' )

Proof :
Defining

W@ 2 o)+ & (Va(e)) + 5" (Tg(z))d

gi(z 4+ d) — qi(d)
gi(d) ’

e

we have g;(z + d) = (1 + r;)qi(d), and

gz +d)— g(d)] = 2 |d" (Vgle + Cd) — Vai(2)) d]

< %Mcudn,,ngV?g;dl (¢ €©,1).

Now
A Ml gy el (s d
w4 =2 (1 ﬁl(x)) O+ gy (ﬂ‘( )udny) ’
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and, since ¢; (ﬂl(m)ﬁ;) >0:

a(d) > ( W) 40).

We now estimate |r;|:

‘ 1 |dT V2g;(z)d|
Il < 5M|d ”W

< M| i 'ﬂmgx)‘z' S (sinee gi(2) = 0(0)

This means that for ||d||g < B1(z)/2 :

—dTV?g;(z)d
ri| < M||d|——————.
I < Ml =
For ¢ € I, this means:
M
| < —=|d|I3
lr!—omll ”H,

whereas for ¢ € J, we have (with R,(z) as in the statement of the lemma ) :
M
ri| < R—2||d”?1 .
Therefore, if we choose
. [VE Ri(z) 1(Ra()\? 1(0v0m\"
< —_— — -
“d”H _mln { 2 ) 2 ’2 M ?2 M Y

then Vi : |rj| <1
For |¢(x + d, u, ) — ¢(d,u, p)| this gives:

T m
_ b__(%ﬂ — > wln((1 + ) gi(d)) — ¢-(d, u, #)l
=1
T m
_|.b (:v+d =S wiIn(gi(d)) — go(d, u, ) — Zuiln(1+ri)
im t=1
b d) & 3
< —ﬁf—“ = Y wiln(gi(@) — gy ) + 1o fuiIn(1 7).
=1 =1
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Because g; is quadratic, the first part can be estimated using Lemma 2.1 and
since |r;] < %, which implies that |In(1 + r;)| < S|r;| (see appendix), the

second part can be estimated as follows

m m 8
Z|u,'ln(1+r,-)| < Z;u;lr,-l
i=1 =1
8 m o dTV%g(z)d
< =M|d U .
L Py
So finally
1 8M
— < R Tl 3
e+ du) ~alatdun)l < (g + o) Il
1
< —||d|f3 -
— 362(:'3)“ ”H

0
The following two lemmas are stated without proof since the proof is

exactly the same as in the quadratic case.

Lemma 5.2.3 If

I < fs(e) = min{ e, 2201,
then

. 3
e = 2(u, )l < 5liplla -

Lemma 5.2.4 If

Il > fe) = min{ p2), 42},

then the reduction A¢ in the MBF after a linesearch along the Newton di-

rection p, satisfies

A$> 2Hi(a).
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We now define the following quantities :
Definition 5.2.1

B(z)
C(z)
D(z)

Hliill{fi(x) + p}
max{[V (o))
m?.x{llv2fi($)”} .

>

>

As in the quadratic case, the next two lemmas will determine the rate of

convergence of the iterates in the inner iteration.

Lemma 5.2.5 For z,z + p € int ) with

B(z) B(z)

1 1
< mi
HP” 1n{ al’ a 'aM

1
o’ 2aD(a:)} (@>1),

the following inequality holds :

a(a+1)(a+2)vm [(M+1)B()+20() + D)\ , 1
V)l < Lt LIV ( — ) i

Proof : We have by expanding in a Taylor series that

olaty) o) P L LS DD
0

oz; Oz 9.0z 97,02,0z, Tt

=1 s,t=1

wherez=z+(p (0<(<1).
From the definition of p this means

z": ¢(2)

2= 02,02,07;0 7

d¢(z+p)| 1
0:1)_,' -2
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We now compute a bound on the expression in the RHS. From lemma

6.4.3 in the appendix we have :

Pé(z+ (p)
Z 0z ,0x.0x; 0z,07,0z; TP
((M +1)B(z + {p) + 2C(z + {p) + D(z + (p)
B(z + ¢p)

s,t=1

) pTH(z +Cp)p

Because ||z + (p — z|| < ||p|| and because of the assumption on ||p||, we

can use lemma 6.4.4 from the appendix. This gives

(M + 1)B(z + (p) + 2C(z + (p) + D(z + (p)
< (M +1) (2E2) B(e) + 20() +2(1 + Ml Il D(z) + (2
< (M+1) (O‘: 1) B(e) +20(z) + L& 1(1(2“”)
Lot Da+?)

a+1

) D(z)

D(z)

(M + 1)B(z) + 2C(z) + D(z)) .

We now use this bound, together with lemma 6.4.6 from the appendix

to obtain

™ Pz

2 ai (axfaizj)p &

< 20 (a+ 1) (a+2) ((M+1)B(z)+2C(z)+ D(z)\ ¢
1) ( B@) ) p H(z)p.

s,t=1
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We therefore have

0¢(z + p) ala+1)(a+2) ((M+1)B(z)+2C(z) + D(=) 2
o e B )it

Squaring the LHS and summing over j gives :

¢z +p)|° _ (ale+1)(a+2) ((M+1)B(x)+2C(2) + D)\,
Hern)f , (aletDlord) ( 42 ) e

Taking the square root on both sides completes the proof.

n

D

=1

[m]

Lemma 5.2.6 Let p,q and H, H be the Newton directions and Hessians at

z and = + p respectively, with z,x + p € int Q. and

lpll < min{%, ’i(jif), ajw, QDl(x)} (a>1),

then :
lallzr _ (e +1) (@ +2)va ((M+1)B(z) +2C(z) + D(2)
Pl = (a—1)° B(z)\/\z '

Proof : We have
Hp=-V¢(z) and Hg=-Vé(z+p).

Therefore :
¢H'q=|Hq|?* = |[Vé(z +p)|*.
On the other hand one has
1 1
¢H'q = (H’q)"H(H?q)
1
Mgl H q|)?

Vv

v

Mrllaliy -



84

Therefore we can write
Mgl < IVé(z +p)l|? -

With the previous lemma, this gives

lalle a(a+1)(a+2) ((M+1)B(z) +2C(z) + D)\ " I
S /\ (a—1) B(z) o
Dividing both sides by ||p||}; and taking the square root completes the proof
O

We now define a quantity f4(z, a, @), depending on z and two parameters

a and & ¢

Definition 5.2.2

Vg B)VAx

irsan) & min {1, F1(2) 6le) Bi(@) 033 i g
ammE 2 2 75 CopmYyloMi aM’ a '2aD(z) al
B(z)vi ;( (a—1)° > B(z)vAr }
a al\ala+1)(a+2)\/n) (M +1)B(z)+2C(z)+ D(z) ) ~

As in the quadratic case, we will show that for certain values of @ and &

the following property holds :
If, during the inner iteration (fixed u and p)

[p(2, v, )| B uw) < Pale, 0, 8)
then if full Newton steps are taken from this point on, the algorithm converges
and each new iterate y generated in this way will satisfy

(1) yewmt

(2) Ny u, Wl < Baly, @, @) -
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The next lemma will be needed to show this . We will use the same

notation as in the quadratic case, which we repeat here for convenience :

P = p(:z:,u, /‘)
T = x+4+p
q = p(fi), u, nu‘)

Ay = the smallest eigenvalue of H(z,u, )

Ay = the smallest eigenvalue of H(Z,u,p) .

Lemma 5.2.7 If ||p||lg < Bu(z,a,a) with

oo () (F)

then ||qll77 < Ba(Z, 2, @) .

Proof :

From lemma 35.2.6 we have that :

lglly < &Lt Dle+2)vn ((M 1+ 1)B(z) + 20(2) + D(x)

(a— 1)3 B(x)\/:\% ) ”P“%{ -(5.3)

Now, we assumed that

lple < Ba(z,0,a)
1 ( (a—1)° ) Blo)/3
al\a(a+1)(a+2)y/n) (M+1)B(z)+2C(z)+ D(z)

<
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Substituting this value for one of the ||p||#’s in the RHS of (5.3) gives

1/A
labw < % (52) il
H
V2 fa+1
< 22 (222) ol (5.4)

Since
1
z—z| = |lpll £ —=llPil#
I | = llll \/;\;H I

and because of the condition on ||p||y, we can use lemma 6.4.7 with y = Z.
From the statement of this lemma and the definition of B4(z, a, &), it is clear
that G4(Z, o, &) will in the worst case be smaller than f4(z, , @) by a factor

of
o (a —1)°

23 (a+1)°’

Ipll < (M) Bu(z, ) -

ab (a—1)°

and therefore

Together with (5.4), this gives

lalr < 2 (221) (27 et ) ) iz 00)

a as(a—1)°

The assumption on & concludes the proof.
(]

We now have to choose a and & and a convenient choice is 15 and 9;73

respectively. It can easily be verified that for these values o and & satisfy the

conditions imposed on them earlier. This leads to the following definition :
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Definition 5.2.3

343 . 1 Ry(z) Eg(:z:) Rz(x) 05/\6 VA VAx VAr
B(a) = Bala,15, ) = min {2 2 "5 ' oM% oMI’15M° 15 ’30D(z)’

B(z)vAg B(z)VAa B(z)Vu }
15L 15 '15y/n((M+1)B(z)+2C(z)+ D(z)) |

Substituting those same values for a and & in previous lemmas, we have

proved the following theorem which summarizes the results of this section :
Theorem 5.2.1 (1) If ||plla < B(z) , then

@) o= 2w m)ln < 2lpla
Gy Lol o 3V +1) B) +20(:) + D(a)

el = 2B(z) s

1
(i) |lgllz < < llplla-
6

(2) Ifliplla > B(z) , then Ag > F8%() .

5.3 The Lagrange multiplier update

In this section we determine the accuracy to which the minimization w.r.t.
z of ¢(z,u,p) (fixed u and g ) should be computed. It is very similar to the

section bearing the same title in chapter 3 and we will state and prove the
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following lemma without further ado. In it we use the same notation as in

the quadratic case, which we repeat here for convenience :

4; : old multipliers

4; : exact new multipliers

p i max {u:}

u; : approrimate new multipliers

z : approrimate minimum ¢(z,U,u)

8>

ezact minimum of ¢(z,a,p) .

We also recall that the accuracy required of the solution to (NLP) was
denoted by e.

Lemma 5.3.1 Let ||[u—u*|lc > € and let p be such that if exact minimization

of ¢(x,u, ) were to be performed, the convergence rate would be given by

1

AL /n”
If
e An . B?*(z)
llplle < mmm{Q, _/EL_’ ﬂ(m)} )
then

1
max{]|z — £||co, [lu — u"[|ec} < Wﬁ”ﬂ — U™ oo -

Proof :
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We start by writing :

lu—uflo < flu—dfleo + |2 — vl

<

= o + el — o]
- T 4(L+1)vn <
Now, for all z we have
Uipt Ui
@ tr @) TR
wip|fi(z) — fi(2)]

(@) + D) + )
dipLl|e — 2]

(filz) + W) (fi(@) + 1) 7
and since ||p||y < B(z), lemma 5.2.3 yields

| — ]

(5.5)

lz — 2|l <

L e = #llr < ——— |l
iy i

Substituting this back into (5.5) gives

al<— Smullpls
= 2R (@) + (@) + 1)

With the definition of 8(z) we also have from (5.3) that

lz — 2] < 5 B(:c)\/_ B(z)
~92J/Ag 1L — 2L °

(5.6)

(5.7)

From lemma 6.4.1 we therefore have

1 < 2
f@)+p~ f(z)+n
Substituting this back into (5.6) yields

s — ] < S5uiplL|pl|n
= VAr(fi(z) + p)?
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The assumption on |[p||g in the statement of the lemma then gives
€ 1
—dll, < <
=2l < TR S T@T DR
Finally, using inequality (5.5), we obtain

Iz — vl -

1
—_— e << — Mg — u*l| .
=l < 5yl = 'l
On the other hand, recalling that

|z =2l < llz — 2] <

Lz — #llx < |l
v H =9 Ay P

and with the assumption on ||p||g, we also have

le =l < Iz = lloo + I3 = 7]l
< SR S——
S IC+DAE I )R -
P S O (SIS S S
= L+ Dvm *TIL+1)v/n %
PR

2L +1)/n

This completes the proof.
O

Definition 5.3.1 We define the quantity €,(z), used to determine the accu-
racy of the minimization w.r.t. = of ¢(z,u, ) (fired v and p ) :

Pay € /\H min Bz(m)
O =BT+ Ve {2’ Pul } |

Note : In practice, we minimize up to accuracy €;, with g small enough

to achieve a convergence rate of mfl)—\/ﬁ This lemma then shows that in
the worst case, p should be such that for exact minimization of ¢(z,u, p),

the convergence rate would be Z(ﬂlﬁ\"/_ﬁ'
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5.4 Bounds on algorithm parameters in a
neighborhood of the solution

As in chapter 3, we now consider the algorithm for (z,u) lying in the set

Si , which is defined as follows :
Definition 5.4.1

s, 2 {(:c,u) : max{”:n —z*||, v/n|lu —u"‘”oo} < %} .

In this definition,

b~
Il
=
Y]

»
—
-
=~

| o
F
|
)
*
=
|
="
e

In this section we will compute bounds in S; for previously defined quan-
tities. We proceed almost exactly as in the quadratic case.

We start with the following lemma :

Lemma 5.4.1 Let (z,u) € S and let the rate of convergence of the algo-

rithm be given by v = 2(T|-117717
Then

(1) for the active constraints (1 € I) :
1
§u;‘ <y < g-u;-“ (5.8)
3p

o : il
9 <fz(33)+/l< 9

and
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(2) for the passive constraints (1 € J) :

ol

flg)+p>o+3

Proof :

(1) From theorem 2.4.1 with v = 2(L+1—1)\/E7 we have that p < * . There-

fore, for any u such that

0*
= w0 < —m

<
2L\n T 24/n’

the following inequalities hold :

0* *

=<y <u; .
N A N

For the active constraints this means

1
§u;-“<ui<gu’; (tel).

We now turn to the second set of inequalities. Since
filz) + p = filz) = filz") + o,
we can write
p—fi(z) = filz")] £ filz) + u < p+ | fiz) — filz™)]

p= Lo - < fil@) + < p+ Llle — 2.

The proof then follows because ||z — z*|| < £ .
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(2) For the proof of the second part, we write

fi(z) = fi(z*) + filz") + o
> p—|fi(z) - fi(z")|+ o
> o+p—Lljz -z .

Il

fi(z) + 4

Again, the proof follows from the asumption that ||z — z*|| < & .
a
Exactly as in the quadratic case, the previous lemma means that for

(u,p) € Sy, the sets I, and J, are identical to I and J respectively.

We will now have a look at the eigenvalues of the Hessian in S;. The
following lemma gives upper and lower bounds for the smallest and largest
eigenvalues of the Hessian of the function ¢(z,u, ) for fixed v and p and for

(z,u) € Si.

Lemma 5.4.2 For (z,u) € Sy, the smallest and largest eigenvalues of the
Hessian of ¢(z,u,p) at z for fired u and p are bounded as follows :

1 p(m—r) | D* O
A< Ap <1203 4+ —— +
o 2L ("*g (o8

1 p(m—r) | D* Cc*
A< A <12A* + = + .
g = "H= 2l /n (a+—gﬁ (U+%)2

Proof :
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We use the previous lemma to obtain the following inequalities, valid for

t € I and for any d :
L (Vi@)Td? _ (Vf(=)Td)? _ 3 .(VSi(z)"d)?

24T T R@ e T2 G
| (V@) | (dVia)d) _ 3 (~dVRi(z)d)
2T QW S F@ts o2t Ge

Therefore :
2 (V@) (VAT _ . L (Vi(z)'d)?
g e U@ s e
and

luf(~dTv2fi($)d) < o, CEVi(2)d) 3u,(—JTV2fi(fL‘)d) .

3" p - f@) e T p
From lemma 6.4.2 and 6.4.7 with # = z* and y = z and with the

condition we assumed on ||z — z*||, we have

(VAE)T)" D (1 + Mz — 2" o = =" (-7 V*fi(s")d)

(fo(wfd)? S L
Iz 2 e p
1 (Vie)Td)* g (~d"V2fi(e")d)
2 @ i ? ’
and also

(—d"V2fi(z*)d)

)

N

(—d"V2fi(z)d) (1 - M|z — z*|
U

& =

(—dTV2fi(z*)
I

Wi
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Similarly :
(Viyrd)” _ (VEG)T) 2D (Lt Mz =2l flz - 2| (-7 V2 f(")d)
e T T w
o L(VEYTd) 16 (=" V2 i(a)d)
= #2 ﬁ P ’
and

(-d"V2fiz)d) (14 Mllz - &7||) (~d"V?fi(z*)d)
7 I

(=4 V2fi(=)d)
p .

4
3

Combining all of the above inequalities, we obtain

2

(=2 fi(z)d) (Vfi(I)Td)z] , L (V@) 2 (VAE)T)

u

1

I p

“ filz) + ¢ +(f,-(x)+,u)2 - 3" L 9 ¢ 2
> Ly | EIVAE) | (VT ] ,
Iz p?
and
[V i@)d) | (Vi) d)? f(—JTV2f,-(a:)d) . (Vfi(z)Td)’
L fle)+m +(f,~(:c)+,u)2] = o p H
< 12u (=d"V2fi(=")d) N (Vsi(ar)"d) } |
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With the help of these inequalities, and recalling that

Ay = mindTHd and Ay = maxd’Hd,
lldli=1 [lj=1

we have for the lower bounds :

e [(~EVi@)d) | (V)T
A {E“‘ [ f@re (@ +">2]}

< min {i:u [(‘ﬂv2fi(w)d) N (Vf,-(a:)Td)2]}

=1

= lldll=1 fi(z) +p (fi(z) + p)?

1 [ [(~avrfied)  (Vhi)Td)
Sgﬁg{gw p + " .

The exact same procedure goes through for the largest eigenvalue, if we
take max in stead of min in the above expressions.

Similarly, we have for the upper bounds :

filz)+p (fi(z) + u)?
r [(~EVi)d) (Y fiz)Td)
{ZUI [ fi(z) +p T T@+ar

IV fi(2)d) | (Vfia)"d)
filz)+u (fi(z) + )

i=1

e [(CEVE()) (Vi) d)?
e S e G )

< min
fldli=1

m
+ > w
1=r+1

5
| Comiend) e

<12 min
lidli=1 % p?

+p(m—7') D~ + C*
21:;\/7{ U—{-% (O’+-’2ﬁ)2 .
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In the last step we have used the following notation :
C*=C(z").
Again the same can be done for the largest eigenvalue, with max replacing

min and this completes the proof.

We now define the following two quantities :

Definition 5.4.2

>

N 1
A =A"
9

. ”(m _ T') D* c* - ’
12" + + | -
2/ (”% (o+5)

[l

A

Here, A\* and A* are the smallest and largest eigenvalues of V2¢(z*, u*, u)
respectively.
The following lemma gives a lower bound on f(z) in Sy, but first we will

define the following quantities :

Definition 5.4.3 Definition of R*, £* and B*.

oo s [3VE () V(e +4)s
16(C*+ D*)’  8M3D*

o8 2(V2 Sumor)CtDP 36\
5\V0 5L n(A)Eo+ 43R TV
/B* = min l,R*,é*, (9*)3(1A*)E,#\/§;, ﬂ\/)? .
2 63 901, * 180y/n (M + 1)y + 2C* + D)
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Lemma 5.4.3 For (z,u) € 51, f(z) = B* .

Proof :
We start by observing that since (z,u) € Si,
. /L o 11 1}
- <Xt <« e £ - -
lz=2"ll < 57 < mm{2’2L’3D*’ 3M’3)
(m—r)p

<\
"="9/m
and we also recall that J, = J .

From the definition of B(z) and lemma 5.4.1, we have immediately that

A*
£ < B(e) < 37" and  B(z)y/hg > ’“g_ .

We also have from lemma 6.4.4 with = 3 that

D(z) < %D*

C(z) + D(z) < %@(c*w*)

90(z) + D(z) < 19_7(20*-1—0*) .

The following inequalities are now straightforward :

Vi o WA VR
D(z) = 4D* = 4D+’
B(z)vn S pVx
(M +1)B(z) +2C(z) + D(z) ~ 6((M +1) (%) + 1 (2C* + D))
> px

12(M +1)p+2C*+ D*)’
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(6)3(A*)# S (07)3(X*)¢
2135 T 63
Wi(g +4) L 3WF(o+4)
16(C*+ D*) = 8(C*+ D*) ’
3\/§(a + -‘%)% S \/X“T(a + %)%
4D - 4D~ ?

B3
S
m@lu

IV

b

=
&
IV

b=
[T RITY
oS
8
j —
v

1/1 7 -1

6@ = 335+ )
L(VE , 8um—r)(C+DP\”
2\Vo- ' B4Lr(A)i(o + £)3 ’

v

Gle) = (&?@ * 7\%‘;) )

V2 8u(m —r)(C* 4 D*)3 2\
. (2 (\/«9_ T BAL R 3(o § 4)3 ) " 7\/}7) '

From these bounds and from the definition of 3(z), it follows that

plz) 2 B .

(]
We conclude this section with a lower bound on the accuracy of the inner
iteration €;. This lower bound is given by :

A mus
360L (L + 1) p*+/n

*
€

The proof is exactly as in the quadratic case and will be omitted here.
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5.5 Behavior of the algorithm in a neighbor-
hood of the solution and final results

In this last section we consider the behavior of the algorithm in a subset
of S; and present the final results.
The subset S C S; which we will look at is defined as follows :
Definition 5.5.1

s2 {(:c,u) : max {[|z — 2*[|oo, [[u — u*[|e0} < 2{:/5} :

Starting from a point (z(®,u(®)) in S, let us now examine the iterates
(), u)). Again we will follow chapter 3 and for convenience restate the
notation used there :

o doo1 = Pz, ulN, p).

o 209 is the s-th iterate, i.e., the approximate minimum of ¢,_;.

o #(3) is the exact minimum of ¢,_;.

° H(s)(a:) is the Hessian of ¢, at the point z.

¢ p,(z) is the Newton direction of ¢, at the point z.

o A,(z) is the smallest eigenvalue of H* at the point z.

All the iterates will lie in S because of the basic convergence theorem.

They satisfy :
max{]|z® — &*(|oo, [[u® — w0} < Y,

wherev:Wandw:i—i“V_; .
We now recall that, starting with (%), the algorithm first checks whether

this point is in the Kantorovich ball for ¢o. If not, we perform a linesearch
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and continue to do so until the Kantorovich ball is reached, from which point
on full Newton steps are taken until a point close enough to the minimum
is reached and accepted as the new iterate z(1). This point is then used to
update the Lagrange multipliers and construct ¢;. We then, again, check if
this point lies in the Kantorovich ball for ¢, and so on.

The next lemma is the last one we need to prove the main results. Its
purpose is to provide a few bounds, which will be used to determine if there
is an 3 for which z® lies in the Kantorovich ball for ¢; and whether this will

remain so for subsequently generated iterates.
Lemma 5.5.1 Assuming that € < 4(L + 1)ny**'w, we have
(1) |z -2 < 2v°wi/n
@ I < %v’w\/ﬁ-

Proof :
(1) We begin with the first part.

2@ — e < 2t — 2| + 2 — 27|

< ”x(s) — :z:*” + “z(s+1) _ x*” + ”'77(s+l) _ j:,(s+1)”
R L D N

< Ywvn+y w\/ﬁ+4(L+1)\/ﬁ

< 27wy,

where we have used the following :

2o — gt < L jjpten

5(s+1)
- 8 x(a )
\As(zs+1) oo )
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3

—‘“—‘_”Ps(x(sﬂ))”m o(s+1)
21/ A, (z(s+1) ( )

5} € As(m(s+1)) ( f th L. . )
accuracy o e minimzization
2/ A, (24D (10(L + 1)v/n)
€

IN

<
T 4(L+1)n

(2) The second part follows almost immediately from part (1) exactly as
in the quadratic case.

This completes the proof.

We are now ready to state the main results of this chapter.

Theorem 5.5.1 When the algorithm reaches a point (2, u()) satisfying

1 o lu \/E
min e
2/n

max{[[z®® — z7|[e, [Jul) — u|} <

A

1 y ise w . -

with € < (2@“)\/5) ZL[i/E (otherwise we have reached the desired accuracy
and there is no point in continuing the algorithm) , then =) will lie in the
“Kantorovich Ball” for ¢s and the same will be true for each subsequently

generated pair of primal and dual iterates.

Proof : The proof is exactly as in the quadratic case.

Following this theorem we define the following set :
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Definition 5.5.2
T2 {(w,u) :max{||z — £)|oo, ||t — ||} < =—=min {—;, —p* } )

Theorem 5.5.2 Let the algorithm have reached the point (z®, u(®), satisfy-
ing the conditions of the previous theorem and let € also be as in this theorem.
Then from this point on, the convergence of ||p||g to zero in any inner it-

eration (fized u and p) will be quadratic with the rate of convergence given
by
ol . 1
lpllz — 108~
The same notation was used as in lemma 3.2.7.

Proof :

When we start from a point (y,v) in T', the iterates obtained in the inner
iteration will converge to § = argmin,¢(z,v, ), and all of them will satisfy
IIp|lg < B*. This inner iteration terminates with a point g, satisfying

€

- - <________.

We therefore also have

g -2l < llg—3gll+llg—=z|
< g =gl + vallg — 2*||w
€ N
< a*
S T30 Tl Wk
< ¢ + a
T 4(L+1)vn  4AL(L+1)vn
<

iR Gt



104

We now show that any iterate w, obtained during the minimization of ¢(z, v, )
starting from (y,v) € T, is such that (w,v) lies in S;.

We start by looking at what happens to the first iterate z, obtained by
taking a full Newton step from y. We show that (z,v) lies inside .S;.

. 5
lz—dll < 5 /\U(z)”pv(z)”Ho(z)

< 5 i(z)%”pv(y)”m(y) ( from theorem 5.2.1)

o (BY YA 1 ]

< (3) ) Pl
1612\ /5 1,

< (-—1—5—) (1—2-> —-——-——-—mﬂ ( from lemma 6.4.7)
16v2\ (5 1 u\/i N

< (%8) (%) /—,\v(y)(30f,) (A=3")

< 2k

= 135]

We can therefore write

Iz = 2"l < flz—2"| < Iz =3Il +llg — 27|

2 (i‘_) I (_/f n e)
135 \L./] " 4(L+1)/n \L

135  135¢L\ u
2+ —+ .
( 4 4y ) 1351

135 135\ 4
2+ 185, 185) 1
( 4 "8 )135L

IA

IA

AN
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This means that (z,v) € S;. The exact same procedure can now be carried
out with z instead of y and we obtain in this way that all iterates lie in S;.
This can now be used together with the rate of convergence result in lemma
5.2.6. We can apply the bounds on various quantities which were obtained
for S;.

This gives

lallz o 3vn((M +1) B(z) + 2C(z) + D(z))
IpllE — 2B(z)\/ M
2B(z)\/ Az )‘1

(3\/_( M +1) B(z) +2C(z) + D(z))

T -
( M+1)ﬂ+2C’*+D*))

- 10[3*

This completes the proof.

5.6 Conclusions

Under the same assumptions as in chapter 3 and with the additional assump-

tion that (Mp) ~ O(1), we can see from the form of 3* that the orders of
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magnitude will not change much compared to the quadratic case. The only

difference is caused by the factor L.
R alfl (ln n)?
T ilnm=r|’

we obtain, exactly as in the quadratic case, that the overall complexity to

Defining :

reach a point with accuracy ¢ is given by :

o (\/r_n_ln (uf)_1> +0 ((m < ”hir;(”f)-l) Inln e-l) .

As in chapter 3, this can also be written as

Inn

. -1 _ —1n /-1
(’)(\/r_ﬁlnC+\/ElnC“+<ln€ InC —In¢ )lnlne‘1>.
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Chapter 6

Appendix

6.1 Frobenius’ formula

The following expression is valid if the appropriate matrix inverses exist :
(see [6] p.102)

A B\ (A— BD-1C)! —(A— BD-'C)"'BD-!

C D ~\ -D'C(A-BD7C)"! D'+ D 'C(A-BD-'C)'BD!

6.2 Some lemmas on the norms of special
matrices

For AcIR™  CecIR™ | zcIR", ye IR with:
(1) “C'Ty" > molly]l (mo>0) Vy€ IR, which implies
- 1
[ (ccm)™

S
(2) (Az,z) 2 l||z]|* Vz such that Cx =0,

my

the following three lemma’s hold (see [23]).
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Lemma 6.2.1

1 2||An||cn2( 2 lo)
rpo — AN 2y ,
a2 T ATV

2

then < —.
l

1 -1
(A + —CTC)
/)

Lemma 6.2.2

2\ 3
o Lyl (HnAu) |

M L) £

2\ 3
< 2L (1 LAY

3 2
mg L5

then

-1
(A + %CT(,‘) cT

Lemma 6.2.3

2\ 2
o Lp AL 1ap)

©®o my 13

2 2\ 3
then < HIAUCE (1A}

Mg 15

1 1 T 7 T
I, --ClA+-C'C| C
17 17

6.3 An inequality for In(z + 1)

We want to estimate |In(1 + z)| for |z| < L. From inequalities 4.1.33 in

Abramowitz & Stegun [1] we have

T
—_—< < -1).
1+m_1n(1+w)_w (z > -1)
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Therefore, since |z| < £ :

|In(1+2)] < max{l, ! }}xl

This means that
8
[In(1+ z)] < ?|m| . (6.1)

6.4 Some inequalities based on the relative
Lipschitz condition

Lemma 6.4.1 If the functions f; satisfy the relative Lipschitz condition with

constant M, then the following inequalities hold :

1) (A =Mz —yDIV @) < IV < 1+ Mz =y DIV fi(2)]
2) IVEWI < IVAET+ A+ Mz - yl) |z - yllIV*fi(=) .

IVA@I < IVEAE@I + 0+ Mz - yl) llz -yl V*fiy) -

Proof :
We start by observing that for any positive definite symmetric matrix A,

the largest eigenvalue of which we denote by A4, the following is valid :

Al = ma lAd) _ L dTAd

= = Inax .
1€l < ldfi?
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We also note that for the same matrix A :
47 4% = (A3d)" A (a}d) < Al|A3d|? = ||A] (7 Ad) .

Using the relative Lipschitz condition on V2 f;(z) and noting that —V2f;(x)

is positive definite, this means that

IV = mpe = A0
_ (—d™V2fi(y)d + dTV2 fi(z)d) — dTV?fi(z)d
B Tk
. V@it AV )] - T (@)
S max ”d”z
- (1+ Mz — y]}) (—d7Vfi(2)d)
- Tk

AN

1+ Mllz — yDIVfi(2)]] -

On the other hand we also have

—dTVfi(y)d

[
(V2 fi(y)d + TV fi(x)d) — dTVfi(z)d

lld]|2
— |-d"V2 fi(y)d + d*Vfi(z)d| - ATV fi(z)d

a P

(1 = Ml - y|l) (-d"V?fi(z)d)

l14]|2

(1 =Mz -y DIV £i(=)] -

IV = max

= maX
d

v

Y

v
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This proves the first part of the lemma.
For the second part, we develop V f;(y) in a Taylor series about z, which
gives :

IV£i(y) = V@) < IV L@y - =l

where Z is a point between = and y. Using the first part of the lemma yields

VAW < IVE@I+ VL@ -yl
< AVA@I+HIVEAE@IHlz -yl
< IVAEI+ 1+ Mz =yl llz - ylIV ()]l -

A

or .

AN

IV £l + (1 + Mz —yll) = = gl V2AE@)I -

This completes the proof of the lemma.

a

Lemma 6.4.2 If the functions f; satisfy the relative Lipschitz condition with

constant M, then the following inequalities hold :

(dTVfi(y))2
<2(d"Vfi(2)) + 2V @) A + Mz - y])? | - ylI? (~d" V3 fi(z)d) .

(T 5(y))’
2 % (@Y fi(2)) = (1 + Mz — gl 1z = y[PIV2fi(o)l| (—dT V2 filz)d) -
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Proof :
Developing dTV f;(y) in a Taylor series about z gives :

d'Vfy) = A"V fi(z) + IV fi(E)(y — 2)

where % is a point between = and y. Using the previous lemma and

bearing in mind that (a + b)? < 2(a? + %), we can write

(@ 5i(y)*
<2 (dTVf,(x))2 (V2 £(@)(y — ]
<2 [(@VAi@) + llo -yl IIV2f=(x)dH2]

VAN
)

"l = PV @) (~dTV?fi(@)d)]

(1+ Mllz — yl)* 2 = yPIV @) (~d"V*fiw)d)] -

(&)

I
N
e~~~

(2))

