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Abstract

The creep buckling of viscoelastic structures is studied analytically and ex-
perimentally to investigate structural stability in the presence of time dependent
materials. The theory of linear viscoelasticity is used to model polymeric column
specimens subjected to constant compressive end loads. A strength of materials ap-
proach (Euler-Bernoulli beam theory) is employed to model the moment-curvature
relation for the column. The growth of initial imperfections is calculated using the
hereditary integral formulation. Solution techniques are developed for small dis-
placements and then generalized to include the effects of large displacements and
rotations. A failure criterion based on maximum deformation allows the column
life to be estimated directly from the material relaxation modulus. A discussion

generalizing the results to include plates and shells is presented.

Rectangular cross-section polymethylmethacrylate (PMMA) specimens with
hinged boundary conditions are used to study viscoelastic buckling experimentally.
Constant compressive end loads are applied using a servo-controlled load frame while
the specimens are kept in a temperature cabinet at elevated temperatures (accel-
erating the creep behavior). Specimen shortening and out-of-plane deflections are
monitored during the tests. The relaxation modulus of PMMA is approximated by
a Prony-Dirichlet series and the model is used to simulate the laboratory experi-
ments. Model and experimental results show good agreement during the “glassy”
and slow growth phases of the column response. As the growth rate increases some
deviations between theory and experiment are seen. It is shown that the devia-
tions are not a result of geometric nonlinearities, but may, in part, be explained by

material nonlinearities not accounted for in the model.
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CHAPTER 1

Introduction

1.1 Motivation

Structures not initially limited by stability considerations may become so if the
environment produces creep in the structural material. The environmental condi-
tions inducing the material creep may consist of excessive load, temperature, mois-
ture absorption or corrosion. Creep manifests itself as an apparent degradation of

material stiffness with increasing time.

Almost all engineering structures contain materials which, under certain con-
ditions, will exhibit creep behavior. This behavior can have a significant impact
on the design of structural systems, and on material processing applications. The
design life of a product can be limited by material failure, or by the large geometry
changes that can result from creep strains. The time scales involved in material
creep can vary dramatically and can result in failure months or even years after the

product has been placed in service.

The term “creep buckling” will be used here to indicate any structural instabil-
ity which progresses temporally while subjected to nominally constant conditions
(e.g., load, temperature). Thus the growth of initial geometric imperfections in
a structure subject to invariant boundary conditions will be referred to as creep

buckling.
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The problem of creep buckling has been treated in a variety of fields by a num-
ber of researchers, the first of which may have been Freudenthal (1946). Geophysical
researchers, including Biot (1959, 1961) and Sherwin and Chapple (1968), have stud-
ied this problem in relation to the folding of mineral veins within a slate matrix and
tectonic folding. Distefano (1965) treated the problem as it applies to the collapse
of reinforced concrete columns and civil engineering structures. Schapery (1987)
considered the problem in relation to ice mechanics. The reentry heating problem
of the manned space flight program led Hoff (1954, 1956), and Libove (1952) among
others to investigate the high temperature creep buckling of aluminum alloys. More
recently the increased use of engineering polymers, often as composite materials, has
spurred the investigation of creep buckling as it applies, for example to aerospace

structures.

Polymeric composite materials have generally used thermosetting polymers as
the matrix material. In the last few years, however, the use of thermoplastic poly-
mers is being investigated. Thermoplastic polymers, as a rule, are tougher than
thermosetting polymers, and it is this toughness that has led material developers to
use thermoplastics as a method of increasing the impact tolerance of fibrous com-
posite materials. A disadvantage associated with thermoplastic polymers is their

higher tendency to creep under sustained loading.

The primary processes® used to manufacture fibrous composites structures re-
sult in slender structures. In addition, the design of aircraft structures, which are
optimized with regard to strength and weight, results in panel and shell structures.
It is thus evident that structural stability issues can be driving design parameters

in composite structures. This combination of structural stability and creep in poly-

1 Lamination and filament winding.
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meric composites is the motivation for the research reported in this thesis.

1.2 Elastic Buckling

The classical buckling theory developed by Euler predicts that slender struc-
tures (e.g., columns, thin plates and thin walled shells) only shorten under applied
compressive loads which are less than a “critical load.” If the load is increased to
such a “critical load,” the theory predicts the appearance of (large) deformations of
an entirely new form. If this behavior were observed in experiments there would be
little disagreement between analysts and experimentalists on the definition of the
critical, or buckling, load. Carefully conducted experiments have shown that the
buckling process is much more complex than the classical theory predicts and that

even the definition of experimental buckling loads is not straight forward.

If a short column, with an elastic buckling stress greater than its material yield
stress, is subjected to a slowly increasing compressive strain a maximum load is
reached after which the load drops slowly or rapidly depending on the load frame
stiffness. Its maximum, or critical, load is always less than the Euler buckling load
which is not unexpected since plasticity plays a role in the short column buckling
problem. The simply supported flat plate can often support loads far exceeding
those predicted by classical theory, while thin-walled cylinders can collapse sud-
denly under loads that are less than one-third of the idealized buckling load. The
discrepancies between analytical and experimental results have usually been ex-
plained either in terms of prescription in boundary conditions or in terms of initial

imperfections (Babcock and Sechler (1963), Koiter (1945)).

Agreement between classical theory and experiment is best for slowly loaded

slender columns. Upon loading the column does not remain straight and simply
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shorten, but begins to bend in response to load misalignment and column geo-
metric imperfections. Deviations fromm straightness remain small until the load
approaches? the Euler buckling load. In a displacement controlled experiment, the
load increases until the maximum load is reached. As the displacement is increased
further the load remains essentially constant for a relatively large range of lateral

(buckling) deflections.

Because of its classical as well as fundamental nature the slender column ge-
ometry was chosen for study here. Since good agreement exists between classical
theory and experiment for the elastic slender column the classical theory also forms
the basis for the time dependent problem. The kinematical assumptions used here
are identical to those of the classical theory, only the history dependent constitu-
tive law differs. By using this approach it is anticipated that the validity of the
analytical model could be assessed by comparing model results with creep buckling
experiments. A similar approach would be more difficult initially if plate or shell

geometries were used.

1.3 Previous Work on Creep Buckling

The first attempt at addressing creep buckling may have been by Freudenthal
(1946) who also reported the analysis in his text “The Inelastic Behavior of of En-
gineering Materials and Structures” (1950). He considered the viscoelastic buckling
of a column assuming a Maxwell material model, strictly speaking a liquid. Using
a method of successive approximations he found a power series solution in terms
of the applied load and time. The existence of a critical time was reported as the

time at which the series diverged. Freudenthal implied that the divergence of the

2 To within a few percent.
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series meant the deformation tends to infinity as the critical time is approached.
Kempner and Pohle (1953) pointed out that Freudenthal’s calculation of power se-
ries coeflicients was in error and that a critical time for buckling, as defined by him,
did not exist for the Maxwell material model. Hilton (1952) used a failure crite-
rion proposed by Shanley which assumes an ultimate moment carrying capability
for the column based on the bending modulus of rupture for the material and its
compressive yield stress. Using this failure criterion Hilton calculated the ultimate

time, which he used to define the life of a viscoelastic column.

Libove (1952) addressed the issue of creep buckling of alloys subject to aero-
dynamic heating temperatures during supersonic flight. For cases of short service
lifetime (minutes or seconds for a missile) he was interested in the primary phase of
creep. He assumed a material without memory and used the following constitutive

relation appropriate for the primary creep of some aircraft alloys®

K(AeBa)l/K N i
e- (/B B

€= (1.3.1)

He simplified the problem by assuming an I-beam geometry with the load being
carried entirely by the two flanges and by assuming the strain within each flange
to be uniform. Libove also assumed that the deformation was separable in time
and space which is an approximation for the nonlinear material model. Under these
assumptions he was able to derive the differential equations describing the growth
of the imperfection. The solution to the constant load problem found that infinite
strains were developed in a finite time (the critical time mistakenly reported by

Freudenthal in the case of a linearly viscoelastic material).

3 e.g., 7075-T6 aluminum alloy and low alloy steel.
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Motivated by the same aerodynamic heating issues, Hoff (1954) addressed creep
buckling of an aluminum alloy under the assumption that the creep process was
dominated by the secondary phase. He modelled the same column geometry and
kinematic assumptions as Libove. He later (1956) included the effect of primary

creep in the analysis using the following constitutive law

= % +h (%)m% + kz(%)n. (1.3.2)

The first term on the right hand side of this equation represents the elastic re-
sponse, while the second term represents the instantaneous plastic response and the

transient creep. The parameter k; is defined by
When ¢ >0,and 6 >0: k; = 1;
When 0 >0,and 6 < 0: k; = 0;
When 0 < 0,and 6 < 0:k; =1if miseven, ky = —1if
m is odd;
When 0 <0,and ¢ >0: k =0.

The third term represents the non-recoverable creep deformations of the sec-

ondary phase. The parameter k; is defined as
When n is even: k; = sgn(o);
When n is odd: k; = 1.

Figure 1 shows the creep strain history for a 2024-T4 aluminum alloy bar at
600° F under constant load conditions with m = 1 and n = 3. The transient and

secondary phases are fitted using the model parameters, the tertiary, or final phase
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is shown for completeness.* The dramatic increase in strain rate in the tertiary

phase results from specimen necking to final fracture.

transient creep

G/ E

FIGURE 1. Creep response of 2024-T4 aluminum alloy at 600°F.

Using this constitutive law, Hoff solves for the critical time which he defines as
the time when the deformation rate becomes unbounded. He solves for this explicitly
in the case where the stress in both flanges remains compressive. When the stress
in one flange reverses sign (i.e., changing from compression to tension), however,

the constitutive equation for that flange changes.® For this case the critical time

4 The constitutive model does not attempt to represent tertiary creep.

5 ky changes from 0.0 to 1.0.
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was not determined explicitly, but bounded from above and below using simplified

analyses.

The buckling of viscoelastic columns was treated by Kempner (1962) in the
“Handbook of Engineering Mechanics.” He gave an overview of the research to
date which included simple linear viscoelatic models (Maxwell, Kelvin, and stan-
dard linear solid models) in addition to an idealized nonlinear viscoelastic model
(Maxwell model with nonlinear dashpot). He also covered time domain and Laplace
domain solution methods. Fligge (1975) treated the buckling of linearly viscoelas-
tic columns in his book on viscoelasticity. He solved the small deformation problem
in the Laplace domain and extended earlier analyses by using higher order material

models.

Huang (1976) revisited the creep buckling problem of Libove and Hoff, though
he included the effect of large displacements. His constitutive law combined power
law hardening plasticity with the Norton secondary phase creep law (Norton (1929)).
Two buckling problems were analyzed, the first, a discrete model analyzed assuming
small displacements and then generalized to include large displacements. The sec-
ond problem was the idealized I-beam of Libove and Hoff which-was also analyzed
for small and large deformations. He showed that the existence of a critical time,
in the large deflection cases, was dependent on the tangent modulus resulting from

the plastic hardening.

Schapery (1987) addressed the linear viscoelastic buckling problem as it related
to ice mechanics. He considered the column geometry and analyzed the problem
using Laplace transform techniques. The creep compliance was to characterize the

uniaxial material behavior represented by
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N
D(t) =D, + Y _ Di(1—e"/m) (1.3.3).

i=1
By formulating the problem in terms of the creep compliance, Schapery showed
that the long term deformation occurring during creep buckling is defined by a single
exponentially growing term. To determine the complete time history solution it
would be necessary to perform the numerically unstable inversion of the solution in
Laplace transformed space. Schapery also suggests using an approximate inversion

based on his earlier work.5

This thesis departs from the previous studies by analyzing the problem in the
time domain. It also allows for the easier treatment of general end loading time-
histories. The problem is formulated using the general, hereditary integral form of

linearly viscoelastic constitutive law

o(2,t) = /_ E(t- §)§e_(;€,_£_)d€’ (1.3.4)

where E(t) is the uniaxial relaxation modulus. The solution is developed for small
deformations which results in a linear integro-differential equilibrium equation and
which, for large deformations results in a nonlinear integro-differential equilibrium
equation. Numerical met.hods are developed to solve both problem formulations,

assuming an exponential (Prony-Dirichlet) series representation of the uniaxial re-

laxation modulus.

A series of creep buckling experiments are also reported here. Column buckling
experiments were conducted on polymethylmethacrylate (PMMA) specimens using

an MTS servo-controlled load frame. The experiments were run at elevated temper-

6 Schapery (1974).
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atures to accelerate the creep process. The out-of-plane deflections at the midspan
were measured using a linear variable differential transformer and compared with

the model predictions.
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CHAPTER 2

Creep Buckling Models

2.1 Introduction

With fiber reinforced polymers replacing and supplementing traditional engi-
neering alloys has come renewed interest in the creep behavior of structures. Creep
is often a high temperature phenomenon with high temperature being defined rel-
ative to the melting temperature of the material. For traditional alloys, say based
on aluminum, steel and titanium, the melting temperatures are above 650°C. For
polymers with softening temperatures which are typically at about 100°C the tem-
perature at which creep becomes important is much lower, with room temperature
creep not uncommon. Great care must, therefore, be taken before disregarding

creep considerations in the design of structures involving polymers.

Creep buckling of linearly viscoelastic structures was first investigated in the
1950’s (see section 1.3). At that time the treatment was cursory and limited to
very simple constitutive laws.! The investigators were interested in the creep of
metallic alloys where linear viscoelasticity generally is believed to model only sec-
ondary creep. Though the basis for the development of the theory of viscoelasticity
is rooted in the creep and relaxation behavior of metals and glasses, the departure
from elasticity with these materials is often small. As such, creep buckling of vis-

coelastic materials was usually only a starting point for analyses ultimately devoted

1 Typically involving a single relaxation time.
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to nonlinear constitutive law appropriate for metals. As the fiber reinforced com-
posite industry has grown, however, issues of both creep and structural stability

have surfaced exhibiting extensive viscoelastic material behavior.

Polymeric composites were first introduced to the aircraft industry in the form
of secondary structures. The anticipated weight savings were realized with little
consequence to the overall load carrying capability of the aircraft. As the use of
composite materials progressed the load carrying capability became much more of
an issue. And now that primary structures, in fact entire airplanes at the general
aviation level, are being designed of polymeric composites the optimization prob-
lem of strength/stiffness versus weight is a significant concern. Slender structures
(columns, plates, shells) are a logical consequence of this optimization problem and
hence the structural stability of polymeric composites has received considerable at-

tention (see, for example, Starnes, Knight and Rouse (1985) or Waas (1989,1990)).

In recent years the fastest growing class of new materials has been that of
thermoplastic matrix composites. Thermoplastic polymers are generally less brittle
than thermosetting polymers and it is felt that the higher strain capabilities of
thermoplastic matrices will take more advantage of the embedded high strength
fibers. In fact, advanced composite thermoplastics have elongations to failure in
the range of 30 - 100% while thermosets are typically in the range of 1 - 2%. Also,
the ability of themoplastics to be recured has generated interest in the possibility of
repairing damaged structures through application of an appropriate thermal profile.
These features do not come without a cost. Thermoplastic composite manufacturing
techniques lag those of the more widely used thermosetting composites and creep

issues are more pronounced in thermoplastic materials.

The time dependent behavior of thermoplastic materials coupled with the sta-
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bility concerns generated by structural optimization has led to a revisitation of the
creep buckling problem. Now, however, viscoelasticity is not merely the starting

point of an investigation, but is at the very core of the material constitution.

2.2 Material Properties of Polymers

The microstructure of polymers results in material properties that are much dif-
ferent from traditional engineering materials. Thermosetting polymers, also known
as “network” polymers because of the three-dimensional network of covalent bonds,
are formed by the chemical reaction of a resin and a cross-linking agent which results
in long chain molecules which are (heavily) cross-linked. Weaker secondary bonds
(Van der Waal bonds) also couple the chain molecules. It is in part the breaking
and reforming of these secondary bonds at elevated temperature or by mechanical

loading which leads to the viscoelastic behavior of high polymers.

The basic structure of thermoplastic polymers, known also as “linear” poly-
mers, is the long chain molecule consisting of covalently bonded monomers, see
Figure 2. The long chain molecules are weakly bonded (Van der Waal bonds)
together yielding at least a partially amorphous solid without cross-linking. Ther-
moplastic components are formed by applying the forming loads while the polymer
is in a low viscosity state at elevated temperatures. At high temperatures, the Van
der Waal attractions are offset by thermal agitation and the free volume created
by this agitation allows chain segment slippage and thus material flow. This mi-
crostructure also allows for the reforming of thermoplastics, since reapplication of
high temperature will again allow the material to flow. The cross-linking present
in thermosetting polymers prevents reforming. If the temperature is increased to

allow material flow, the covalent bonds dissociate and the polymer “decomposes.”
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Because of the strong covalent bonds in the molecular backbone of a polymer
(covalent bonds are stronger than metallic bonds) there exists the potential for very
high strength polymers. Aramid fibers? are an example where the alignment of the

long chain molecules produces high strength fibers.

FIGURE 2. Schematic of a generic thermoplastic polymer, from Ashby and Jones
(1986).

Though the intent here is not to investigate the molecular mechanics of poly-
mers, a brief description of polymeric microstructures and their influence on me-

chanical properties will be given. A polymer, by definition, is a high molecular

2 For example Kevlar fibers.
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weight structure represented by a repeat unit, the mer. A representation of the
simplest hydrocarbon polymer, polyethylene in its trax-dimensional amorphous (at-
actic) form, is given in Figure 3. The schematic in this figure represents the repeat

unit, that when bonded end to end using the carbon bonds forms the linear molecule.

_ H -
C
- H -n

FIGURE 3. Schematic of mer for polyethylene.

The stiffness and bulkiness of the mer itself affect the mechanical properties of
the bulk polymer. High stiffness polymers are usually synthesized by including aro-
matic rings or other cyclic structures into the backbone and/or sidegroups, thereby
decreasing the flexibility of the mer. The sidegroups are also important in regard to
the ability of the polymer to form crystalline regions. Partially crystalline polymers,

for instance polytetrafluroethylene (PTFE) and polyetheretherketone (PEEK), can
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result from the folding of the long molecular chain back and forth on itself as shown
in Figure 4. Polymer crystallization requires a very regular sidegroup structure to

allow folding molecules to organize in a crystal structure.
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FIGURE 4. Representation of a crystalline region within a polymer, from Ashby
and Jones (1986).

Processing techniques play a significant role in the degree of crystallinity present
in polymers. The formation of crystalline regions requires concerted segmental mo-
tion so that the cooling of the polymer from melt temperatures must be slow enough
to allow for this molecular alignment. Crystallinity can have a strong effect on me-

chanical properties. For polymers with a high degree of crystallinity the coopera-
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tive motion of crystalline regions actually restricts the deformations possible in the
amorphous regions between the crystallites. In this manner the presence of crys-
talline regions simulates cross-linking or a highly filled polymer, and can delay the
onset of liquid-like flow in thermoplastic polymers. Molecular weight can also play
a large role in determining the mechanical properties of a polymer. If the molecular
chain lengths are insufficient to allow significant entanglements the polymer will
flow like a viscous liquid at low temperatures. Crystallization is also inhibited in

low molecular weight polymers.

Impurities can act as sites for cross-linking and thereby influence the mechan-
ical properties. This fact is particularly true for thermoplastic polymers where no
cross-linking occurs without impurities. The presence of impurities can desti‘oy the
ability of a thermoplastic polymer to crystallize and change the very essence of its
thermoplastic nature by introducing cross-links. The end group (or chain termina-
tor), since by its very nature must be different than the mer, can produce the same

effects as impurities.

No discussion of the mechanical properties of polymers would be complete with-
out mention of the glass transition temperature. The glass transition temperature
is a characteristic of all amorphous substances which can be supercooled from a
liquid state (without crystallizing). It is a measure of the temperature at which the
noncrystalline regions of a solid change from a glassy to a rubbery state. There is
still a controversy over whether the transition is a second order phase transforma-
tion or merely a kinetic process. In any event, the transition from glassy to rubbery
is gradual, occurring over a range of temperatures. Figure 5 shows the manifesta-
tion of the glass transition in the tensile, constant strain rate tangent modulus of
three different polymer types: a thermoset, an amorphous polymer, and a partially

crystalline polymer. It is seen, as mentioned earlier, that the presence of crystalline
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regions can act as cross-links causing a thermoplastic to approach thermosetting

behavior in the rubbery region until the crystalline region begins to melt.
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FIGURE 5. Effect of glass transition on the stiffness of a polymer.

The transition itself has been described in terms of a free volume theory.® In
this theory for temperatures below T, the free volume is small enough that molecular
rearrangement is inhibited and thus a relatively stiff material exists. Above the glass
transition temperature many of the secondary bonds dissolve and the free volume

increases allowing the cooperative movement of a significant segment of the chain

3 See, for instance, Williams, Landel and Ferry (1955).
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molecules. Deformation in response to stress becomes easier and the stiffness of the

polymer is reduced, approaching the rubbery plateau.
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2.3 Geometrically Linear Model

Buckling of elastic structures is most often discussed in terms of a bifurca-
tion or eigenvalue problem. The question has been considered whether for the
time dependent problem a similar formulation exists such that a perfectly straight,
slender column experiences lateral deformation under axial load after some (criti-
cal) time and then proceeds to grow at a determinable rate. The problem has not
been approached in this manner, instead the understanding expressed by Tvergaard
(1985) though with respect to rate sensitivity of elasto-plastic materials is followed
analyzing the response of an initially imperfect structure. To investigate time de-
pendent buckling in polymeric structures, a one-dimensional problem is formulated
paralleling the classical theory of column buckling. This strength of materials ap-
proach was used in modelling the structure as a simply supported Euler-Bernoulli
beam/column. With these limitations in mind, the analysis attempts to determine
the time evolution of an initial geometric imperfection. In the following analysis
wo(z) represents the initial geometric imperfection (i.e., the location of the col-
umn neutral axis when no load is applied), and w(z,t) is the additional lateral
displacement in response to end loading. Consider the viscoelastic column shown
in Figure 6. The spatial coordinates z and z represent the thrust and lateral di-
rections, respectively; u and w are the corresponding displacements in the z and z
directions. The axial displacement of the neutral axis with respect to the unloaded

configuration is u,.

If, for a first investigation, small rotations of the column are assumed, the

strain-displacement relation can be approximated by

Ou  Ou, %w
€zz(T,2,t) = €(z,2,t) = il (2.3.1)
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w(x,t)+w° (x)

P(t) P(t)

FIGURE 6. Problem geometry.

The hereditary integral for the uniaxial stress-strain relation of a linearly viscoelastic

material is given by the convolution

t E(t - 5)-‘-9—6«15. (2.3.2)

ozz(2,2,t) = o(z,2,t) = / ‘

Then the bending moment for a section of unit depth and thickness h located at
r can be obtained by combining equations (2.3.1) and (2.3.2) and integrating as

follows

[YEd

M(z,t) = /_ h z{ /_ ; E(t—¢) a% [3%5;0,5) _zazgiﬁ’é)]dg}dz, (2.3.3)

which yields
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Buw(z,§)
= — — ) ———22~d¢. 2.3.4
Ma=-2 [ Be- o025 mta (234)
For an initial geometric imperfection of w,(z) when P(t) and M(z,t) are zero, the

equation of motion requires that for any z

h3 t 5 2 2 d? o
5 | Be-0 255 ke = ga,0)- T - P | TS+ ST

12
(2.3.5)

where p is the mass per unit length of the beam/column and g(z, t) is the distributed
lateral load. If the problem is now restricted to a quasi-static column (i.e., p
and ¢(z,t) are assumed to vanish) then equilibrium determines how the initial

imperfection is magnified as time progresses.

R® [ Bw(z,§) 62w(.1: t)  dPw,(z)
- . Eit—§8)—FF= FT: dé¢ = P(t) + = (2.3.6)
subject to the boundary conditions
w(0,t) =w(l,t) =0 M(0,t) = M(l,t) = 0. (2.3.7)
The moment boundary conditions can be rewritten as
0 w(z,t) _ 0%w(z,1) —0 (2.3.8)
dz2 |,._, 022 |._, e

To facilitate the solution of equation (2.3.5) a Fourier series expansion of the
displacement is performed. The geometric imperfection w,(z) and the additional

lateral displacement w(z,t) can be represented by a Fourier sine series:
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[e o] [o e}
w(z,t) = Z An(t)sinﬁ%{ wo(z) = Z aninn—?. (2.3.8a,b)
=1 n=1

Note that the components of the sine series are merely the eigenfunctions of the
associated elastic problem and will be termed buckling modes. The fourth spatial

derivative of w(z,t) is then

H*(w(z,t)) = ntrt . nuT

n=1
and similarly for the fourth spatial derivative of the initial imperfection. Then com-
bining equation (2.3.9), (2.3.8a,b) and the quasi-static equation of motion, equation

(2.3.6), yields

dA, .

{ 5 / E(t—¢&)Zfns) (£)d§+P(t)A,,(t)+P(t)Bn] sm"—’l‘f} =0. (2.3.10)
Multiplication of this equation by sin(mwz/l) and integration over z from 0 to
[ uncouples the summation into a series of equations involving the response of a
single buckling mode, A,,. This is due to the orthogonality of the components of

the Fourier sine series. The equations resulting from this uncoupling are then

:ii2z_3 m1227r2 /j E(t - £) dAm(é) dé 4+ P(t)Am(t) + P(t)B,, = 0. (2.3.11)

The analysis is normalized using the following definitions:

E(t)h3n?

Fet) = =1op

(2.3.12a)
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P(t) E@®)

p(t) = X0k r(t) = £0) (2.3.12b,c)
an(t) = émT(t—), Bm = ]—Bhln— (2.3.12d,e)

Substituting these definitions and writing the convolution in Riemann form renders

equation (2.3.11) as

dam(f)

—m?r(t)am(0T) —m / r(t —§) dé + p(t)am(t) + p(t)Bm = 0. (2.3.13)
Solution allows construction of the lateral displacement, w(z,t), on a mode by mode
basis. Equation (2.3.13) is a Volterra integral equation of the second kind; it can.
be solved numerically for quite general material properties and load functions. Nu-
merical techniques for accomplishing this are presented in the following subsection.
If the material property r(t) can be expressed in the form of an exponential (Prony-
Dirichlet) series, the integral equation (2.3.13) may be reformulated as an ordinary

differential equation. The details of this can be found in Appendix A.

2.3.1 Numerical Solufcion of the Linear Problem

For nontrivial forms of the uniaxial relaxation modulus E(?) and loading func-
tion P(t) the solution of equation (2.3.13) must be accomplished numerically. Two
numerical schemes are presented; the first one can accommodate a general linearly
viscoelastic material, the relaxation modulus of which may be in the form of a data
set, while the second allows only material properties in the form of Prony-Dirichlet

series.
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2.3.1.1 Scheme 1 - General linearly viscoelastic material model

Integrating equation (2.3.13) by parts yields:

mr(Bam(07) 4 m? [ (¢ = am(€d = [p(t) = mFr(0) cn(t) + B
(2.3.14)

Where the prime (') denotes differentiation with respect to t—¢£. If one now considers
the discrete analog of this equation the convolution can be expressed as a sum

(Hopkins and Hamming, 1957).

t;

[, - 0an(ae = Y ot [T - e, (2.3.15)

i=2 ti-1

where a}, corresponds to a,,(0) and af, corresponds to am(ts). Extracting the last

term out of the summation and rearranging equation (2.3.14) yields

plta) = mr (@) = 2m? [ (e — 1], =

th-1

2 nz_:l {ain + 7;204;1 /ti P (tn — §)d§] (2.3.16)
i=2

ti-1

n—1

tn
+m? af; /t r'(tn — €)d€ + r(tn)ap, — Bmp(tn),

which after some manipulation can be written as

2

[p(tn) = m?r(0*) = T (r(tn = tn-1) = 7(0)) | o =
m? "21 [gfnﬂ-zcy_i;'i (r(tn —tic1) —r(tn — t,-))] (2.3.17)

1=2
n—1

[r(tn = tams) = 1(0%)] + m?r(tn)at, — Bmpltn).
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This, then, allows for the solution of o provided

p(t) -;- [(0%) 4 r{tn —ta)] £ 0. (2.3.18)

Note that this condition is valid unless the applied load exceeds the “glassy buckling
load” defined by P.(0).

2.3.1.2 Scheme 2 - Prony series material model

The numerical scheme just derived is applicable to general linearly viscoelastic
materials. A drawback of its generality is the explicit calculation of the convolution
at each time step; for small time steps, or long time responses, these calculations can
be prohibitively expensive. In this subsection a pumerical scheme, based on work
documented by Zak(1968) and Taylor, Pister and Goudreau (1970), is developed for
analysis of materials which can be represented by a uniaxial relaxation modulus in
the form of an exponential (Prony-Dirichlet) series. In this case the current solution
can be determined using the previous (known) solution and a small array* which is
updated at each time step. Assume a uniaxial relaxation modulus with n relaxation

times:

r(t) = E(t)/Ey =7 + zn:r,-e"’\‘t. (2.3.19)

Referring to equation (2.3.13), the convolution can be approximated at time ¢; by

o t ) dam({') _ d ) Oap,
I = /0 e — =g = ;r(t, ~ te) | At (2.3.20)

4 The array size depends on the number of terms in the Prony-Dirichlet series.
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where the continuously varying function a,, has been replaced by a function which
is constant over each time interval. Upon defining Aa¥ = am(tx) — am(tk—1) and

using a finite difference approximation for the differentiation one has

Oam Aafn
= . 2.3.21
o¢ ’k Aty ( )

Substituting this into equation (2.3.20) gives

J—1
Ij = r(tj - tj_.l)Aa‘,in + Z 7"(tj - tk—l)Aafn- (2'3°22)
k=1

The Prony-Dirichlet series representation for r(t) from equation (2.3.19) in connec-

tion with equation (2.3.22) results in

n 7—1 n
I; = [T'oo + Z rie_’\‘(t"_tf‘l)} Aafn + Z [roo + Z rie” 2l _t"‘l)] Aafn. (2.3.23)
=1 k=1 =1
Interchanging summations allows this to be written as

Ij — [roo + Z rie—Ai(tj —tj—l)] Aa}"n + Too(amj_l - ag) + Z Tili j, (2324)

=1 =1

where

j-1
ol =a, + Z Aok,
k=1
has been used along with the definition

j-1
Pij = Z e~ Mli~th- Ak | (2.3.25)
k=1
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Then y; ; can be written as

72
fij = e—Ai(tj —t,'_z)Aazn—l + e—A.’At Z e—z\i(t,'_l—tk_l)Aafn. (2326)
k=1

This equation can be put into a recursive form by consideration of time t;—1. From

equation (2.3.25), y; j_; is

-2
i1 = Z e—)\-'(tj-l—tk—l)Aafn, (2.3.27)
k=1

and the last two equations yields the recursive relation

pi; = e Pti—ti-) Agi=1 4 e“"-'(ti“i-l)u,-,j_l. (2.3.28)

Equations (2.3.24) and (2.3.11) together yield

—m2r(tj Jam(0F) — m2Ij + p(tj)a{n + p(t;)Bm = 0. (2.3.29)

Substitution of af, = Aa, + oJ7! and equation (2.3.28) into this equation

renders

p(t)[Bad, + ol = mllres + Y riem N ~4-D|Aad, =
=1 (2.3.30)

n

m*Too(am? ™! = ag) = p(t;)Bm + mPr(t; Jam(0F) + m? Y ripy ;.
k=1

which can be solved for AaZ, to yield
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n

{m2r(tj)am(0+) + mPreo(am?™ — a,) + m? Z ripi,; — p(t;)[edt + ﬂm]}.

=1
(2.3.31)

Finally, the current solution may be determined from
ol = all 4 Add. (2.3.32)

It is thus seen that the current solution can be determined merely by knowing the
solution at the end of the previous time increment, the current load, the mate-
rial parameters (r;, \;), the initial imperfection, the “glassy” response and the N

dimensional array u; ;.
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2.4 PMMA: A Numerical Example

An analysis of a polymethylmethacrylate (PMMA) column will be used to
demonstrate an application of the numerical technique. PMMA is an engineering
polymer known by various names, including: acrylite, lucite, plexiglass, and per-
spex. It has a high optical transmissivity, a good resistance to weathering, and
a hard, glossy surface. As such PMMA is widely used in automotive, aircraft,
medical, industrial and consumer applications. For the present purposes it serves
as a model material because it possesses viscoelastic properties typical of thermo-
plastic polymers and because, with suitable temperature control, experiments are
easily performed in the laboratory on a reasonable time scale. The only mechanical

property required for the analysis is the uniaxial relaxation modulus.

A master curve of the uniaxial relaxation modulus for PMMA referenced to
75° C is shown in Figure 7. The computational costs associated with calculation
of the column response can be prohibitive unless an analytical representation of
the measurements is found. To this end a method based on the work of Emri
and Knauss (1985) was used to fit a Prony-Dirichlet series to the experimentally

determined relaxation modulus. The structure of the Prony-Dirichlet series is

N
E(t)=Ec+ Y  Eie™™". (2.4.1)

i=1
The Prony-Dirichlet curve fit is the most commonly used analytical approxi-
mation of measured relaxation data. The terms in equation (2.4.1) are E, the long
term or rubbery modulus; E;, the i** relaxation spectrum line; and 1/);, the as-
sociated relaxation time. The procedure for fitting the Prony-Dirichlet parameters
to the data consists of: selecting the number of terms in the series, requiring the

spectrum lines to be equally spaced along the logarithmic time axis, defining Eo,
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FIGURE 7. PMMA uniaxial relaxation modulus, 75°C.

to be determined by the last point on the experimentally measured master curve,

and iterating to arrive at the appropriate spectrum lines E; such that positive E;

result.

The fitted series representation of the master curve is shown by the continuous
curve in Figure 7 while the experimentally measured data are shown by the boxes.
Thirteen terms were used to obtain the fitted curve, the parameters which are given
in Table 2.1 along with the rubbery modulus logE(o0) = 8.26 where E(c0c) is in
dynes/cm?. It should be noted that PMMA is a thermoplastic polymer and in

its commercial and uncrosslinked form does not possess a true long term modulus.
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Thus for very long term loading one expects the steady flow of a viscous fluid.
Progression towards this behavior can be seen in the experiments of McLoughlin
and Tobolsky (1952). In spite of this observation the rubbery plateau of Figure 7
will be referred to as the rubbery or long term modulus because the issue does not

arise in the experimental work reported here.

Relaxation Modulus Parameters

log E; log( 1/X;i) log E; log (1/X;)

dynes/cm? seconds dynes/cm? seconds
9.233 -5.556 9.707 2.444
9.539 -3.556 9.456 3.444
9.224 -2.556 9.021 4.444
9.556 -1.556 7.947 5.444
9.322 -0.556 7.397 6.444
9.539 0.444 6.903 7.444
9.427 1.444

Table 2.1 Prony-Dirichlet series parameters for PMMA at 75°C.

Equations (2.3.31), (2.3.28), (2.3.32) along with the glassy response, a¥,, form
the system of equations which define the time evolution of the imperfection. A
Fortran program was written implementing the solution of this system and some

example calculations are presented here.

Since the lateral displacement reponse was decomposed as a Fourier series the
response of each Fourier component is calculated independently. In addition, it can
be shown (see appendix B) that the response to the first (m = 1) component grows
much faster than the next higher order component. Thus as time progresses the

total column response becomes dominated by the response of the m = 1 Fourier
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component. This result is true even when the component of the first component in
the initial imperfection is much smaller than the components of the higher compo-
nents (provided it is not identically equal to zero). With this observation in mind,
the following calculations consider only the response of the m = 1 component;

calculation of the higher order components is identical.

To illustrate the application of the model its response to step function loading

is calculated. Three general classes of behavior are obtained:

1) elastic buckling which occurs when the end load (per unit depth) is greater

than the glassy buckling load defined by

pe_ E(0)w2h3

¢ = e (2.4.2)

2) creep buckling which occurs when the end load is less than the glassy buckling

load, but greater than the rubbery buckling load, defined by

poo E(oco0)m?h3

e — ——]2?—, (243)

and finally,

3) “non-buckled equilibrium” is approached asymptotically when the applied load

is below the rubbery buckling load.

Model calculations were performed for a case of creep buckling and for an
asymptotic equilibrium case. The results of these two calculations are given in
Figure 8 where the time histories of the midspan displacements (normalized by
column thickness) are plotted. For p = 0.0075 the load is greater than the rubbery

buckling load of p, = 0.00646 and the imperfection grows unboundedly (for the
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linearized case). Of course at some point the small displacement and rotation
assumption associated with the linear model is violated and the solution accuracy
degrades. When p = 0.005 the load is below the rubbery buckling load and an
equilibrium position is approached asymptotically. This equilibrium position can
be determined using the classical elastic solution with Young’s modulus replaced by

the rubbery modulus.

3 Y T Y ~T Y T

r_ =0.00646

log (a/B)

logt, tin hrs.

FIGURE 8.PMMA example response to constant end loads, 75°C.

While the model demonstrates the existence of an asymptotic equilibrium for
a range of end loads, this clearly depends on the existence of a nonzero long term

modulus. As such, it is only strictly applicable to polymers with some degree of
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cross-linking. For polymers without any cross-linking there exists no load range
leading to asymptotic equilibrium, thus any end load will eventually lead to “un-
bounded growth.” This conclusion is intuitively obvious and has been known for

many years, and may have first been observed by Kempner and Pohle (1953).

Further model evaluations in the sequel will be limited to constant end loads in
the range leading to unbounded growth. From equation (2.3.13) it is seen that once
the column material is defined, its behavior is characterized by the sensitivity to
variations in initial imperfection, 3,,, and end load per unit depth, p,. Further, from
equation (2.3.13) the response an,(t) depends linearly on the magnitude of the initial
imperfection. To illustrate this and for comparison with the model sensitivity to
load, Figure 9 shows the dependence of an,(t) on the initial imperfection by p'lotting
the time history of a;(t) at fixed load for a number of different initial imperfections.
Since the logarithm of a;(t) is plotted the response for different imperfections may
be obtained by shifting a single curve vertically. This is particularly valuable as it
regards measurement of geometric imperfections in the experimental portion of this

work.

It is convenient to distinguish in Figure 9 three different response regions. The
first, termed glassy, is characterized by the relatively flat portion of the curves where
the imperfection is growing slowly. This range is followed by a transition in which
the combination of loading history and modulus reductioﬁ (compliance increase)
accelerate the imperfection growth. The third region is the terminal phase in which
the rate of growth can be characterized by a single exponential term. The existence

of this terminal phase can be demonstrated using Laplace transform techniques.5

The existence of the glassy response region can be used to advantage in experi-

5 See Schapery (1987).
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FIGURE 9. PMMA column imperfection sensitivity, p, = 0.50,75°C.

mental investigations of creep buckling involving column-like structures. Agreement
between the analytical prediction and experimental observation of slender columns
(a rarity in buckling problems) allows the confident use of some model results in
assessing experimental observations. An example of this agreement is the use of
the glassy response region in determining the initial imperfection. If the time scale
involved in a creep buckling experiment is such that a glassy region can be dis-
tinguished, the initial imperfection can be delineated using the experimental re-
sponse. This observation expedites experimental work since the measurement of

initial geometric imperfection need not take place independent of the loading phase
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of experiment. In fact it is not a simple experimental task to characterize the ini-
tial imperfect shape of a column. Then, given the magnitude of the applied end
load and the column geometry, the glassy response can be compared to the model

predictions and the initial imperfection determined.

While the lateral displacement is proportional to the initial imperfection it is
seen from equation (2.3.13) that this is not the case for sensitivity to end load.
Here, even for constant end loads, an(t) is a more complicated function of applied
load. Figure 10, which plots the lateral deflection normalized by the geometric
imperfection, shows the results of a parametric study on the effect of end load on
column response. The time history responses of a PMMA column to different end

loads are shown.®

2.5 Design Lifetime

Unlike some models using nonlinear constitutive relations to assess the effect of
metallic creep, no “critical time” exists for linear viscoelastic columns. The “critical
time” found in studies by Libove (1952) and Hoff (1954, 1956) was defined as the
time at which the growth rate becomes unbounded. This critical time became useful
as a design tool defining the usable lifetime of the column. For linearly viscoelastic
columns the lateral displacement is predicted to grow without bound, but at a
finite rate, for all times thus there is no apparent time (limit) at which “dynamic
conditions” take over. Therefore the criterion for column “failure” must be based
on either load carrying ability (Hilton (1952)) or on maximally achieved deflection.
Using the latter criterion the column lifetime is then defined as the time needed for

the imperfection to grow to the specified critical deflection. For a PMMA column

6 Columns assumed to have identical initial imperfections.
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FIGURE 10. PMMA column end load sensitivity, 75°C.

with an initial imperfection of 81 = 0.012 a plot of design lifetime, ¢., as a function
of applied end load can be constructed from Figure 10 (with additional curves for
other values of p,). Noting the time when a specific response curve reaches the
critical displacement (say a; = 2.4, which corresponds to 2.4 times the column

thickness) allows one to plot end load against the corresponding design lifetime.

An example of the column design lifetime as a function of end load is given in
Figure 11. The initial imperfection for this calculation was 8; = 0.012 as in the load
sensitivity study. From Figure 11 it can be seen that there is a vertical asymptote

such that for loads below a specific value, p;, the column possesses an infinite life:
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it will not “buckle.” For loads greater than the glassy buckling load the column

fails instantaneously and thus has no lifetime.
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FIGURE 11. PMMA design lifetime, 4, = 0.012,75°C.

If the axes from Figure 11 are interchanged (plotting load as a function of
design lifetime) as in Figure 12 the resulting curve has the same form as the relax-
ation modulus. For comparison the relaxation modulus for PMMA, normalized by
its glassy modulus, is plotted in the same figure. 7 It can be seen that the design

lifetime curve can be obtained by a horizontal shift of the normalized relaxation

7 Horizontal scale in Figure 12 represents real time, ¢ for relaxation modulus and design lifetime,
tc, for the lifetime curve.



-40-

log r (t¢)
log p (t¢)

-3 i 1 " | a _3

-6 -1 4 9

logte, t. in hrs.

FIGURE 12. PMMA modulus and design lifetime, 5; = 0.012,75°C.

curve. This observation suggests that a conservative estimate of the column life-
time may be obtained by using the unshifted relaxation modulus in place of the
actual design lifetime curve (using the appropriate scaling). In fact, if one were
to use the quasi-elastic technique suggested by Vinogradov (1987) and Halpin and
Meinecke (1969) among others, to calculate the imperfection growth, the associated
design lifetime curve would exactly® overlay the normalized relaxation modulus. An

analytical formulation of the design lifetime for a material with a single relaxation

time is developed in appendix B.

8 To within the approximation that the critical displacement is much greater than the initial
imperfection.
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To this point all analyses have been subject to the limitations of small rota-
tions. Physically it is obvious that as time increases the imperfections cannot grow
unboundedly. To assess the range of validity for the geometrically linear assump-
tion in the context of viscoelastic behavior a nonlinear analysis is developed in the

following section.

2.6 Geometrically Nonlinear Model

From the results of the geometrically linear model it is seen that for end loads
greater than the “rubbery buckling load,” the lateral displacement grows unbound-
edly as time increases. Since the linear model assumes that all displacements and
rotations are small, the geometrically linear assumption becomes poor as displace-
ments increase. Further, the validity of the linear model may be inappropriate even
for loads less than the “rubbery buckling load” if the asymptotic equilibrium posi-
tion results in large displacements or rotations. To investigate the range of validity
for the geometrically linear model a finite deformation, strength of materials model
was developed. The Euler-Bernoulli kinematic relations are still assumed to be
applicable, but the exact moment curvature equation is used. This problem may
be thought of as the viscoelastic equivalent to the classical elastica problem (the

viscoelastica problem).

Figure 13 shows the deformed geometry with the associated coordinate and
displacement variables labelled. The curvilinear coordinate system consists of the
arclength along the deformed column, s, and the normal to it, z. The strain dis-

placement relation becomes with 8 = §(s,t)

€(s,t) = €o(t) — z%l, (2.6.1)
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FIGURE 13. Viscoelastica problem geometry.

where €,(t) is the strain of the neutral axis. Substitution of this equation into the

uniaxial constitutive law yields

t €o 26(s,
o(s,t) = /_ E(t - )2 af) 9 g(af)ws (2.6.2)

Integrating o(s,t)z across the thickness and using the neutral axis as the origin for

the integration allows the moment at a cross section to be written as

M(s, t)_-i‘i E(t - )329(3 ,6)

5/ e (2.6.3)

The moment at a cross section resulting from the applied end load is

M(s,t) = P(t)[w(s,t) + wo(s)]. (2.6.4)



-43-

Differentiating with respect to arclength, s, and using the geometry of the deformed

configuration gives

OM(s,1)

Bs = P(t) [sinG(s, t) + Sineo] . (265)

If equation (2.6.3) is differentiated and combined with equation (2.6.5) the following

quasi-static equation of motion is obtained

E(t)aze(s t) B / E'(t —5)6;(2%;)({{:P(t)(sz’n9+sz'n€o), (2.6.6)

where the prime (') denotes differentiation with respect to (¢ — £). This nonlinear
integro-differential equation for 6(s,t) is subject to the following conditions at the

column ends

w(0,t) =w(l,t)=0  M(0,t) = M(l,t) =0. (2.6.7a,b)

From equation (2.6.3) the end moment boundary conditions may be rewritten as

06

o0 _ — 2.6.
5. =0 at s=01 (2.6.8)

while the displacement boundary condition at s = [ may be written as

w(l,t) = /0’ stnb(s,t)ds = 0. (2.6.9)

The simply supported “viscoelastica” thus becomes a two point boundary value

problem which will again be approached numerically.
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2.6.1 Numerical Solution of the Viscoelastica

Equation (2.6.6) can be written in dimensionless form by recalling the defi-
nitions of equations (2.3.12d,e) together with a dimensionless arclength parameter

¢ = s/l. In dimensionless form equation (2.6.6) becomes then

— (t)a 9(4’0-’-) /+ r(t — ) 8?:g§d€ = p(t)7r2 [sinﬁ({,t) + sinGO(C)] (2.6.10)

The numerical solution of this equation will be developed using the same technique
as in section 2.3.1.2. Since the solution of this nonlinear equation will be much
more computationally intensive a numerical scheme for general relaxation modulus
data will not be presented. Instead, the solution technique will be restricted to

relaxation moduli representable in the form of a Prony-Dirichlet series.

Focussing first on the numerical approximation of the convolution integral in

equation (2.6.10) define

J(C,t) = / r(t — 5)802(2%? de. (2.6.11)

Then the discrete analog to this convolution can be approximated at time ¢t = ¢; by

3
J; _J(t1)~Zr(t —tr_1) 6?22 2l Aty (2.6.12)

Applying a finite differencing scheme to approximate the time derivative and using

the following notation

9%6(s,t)
0C? =t

6" (s, te) = (2.6.13)
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allows equation (2.6.12) to be written as
j—1

Jj ~ T(tj - tj_l)AG;’ + Z T(tj — tk_l)AB}c’, (2.6.14)

k=1

and note that A8} = 6"(tx) — 6"(tx—1). With the Prony-Dirichlet series representa-
tion for r(t), equation (2.3.19), and using manipulations seen in the geometrically

linear problem, equation (2.6.14) can be written as

n n
Jj~ [roo + Z rie—’\‘(ti"ti—l)] AO}' + 7‘00(9;'_1 — 9’;) + Z TiVi j, (2.6.15)
i=1

=1

where the definition

Jj—1
vig =y e NETh-0Ag (2.6.16)
k=1

has been used. Again using similar arguments to those of the geometrically linear

model allows v; ; to be put into recursive form

vij= e"\"(ti‘tf'z)AGy_l Fe Mt~y L. (2.6.17)

Combining equations (2.6.10) and (2.6.11) yields

—r(t;)67(¢,0%) = J; = p(t;)n* [Sin[Mj(C) +0;-1(O] + Sineo(C)]- (2.6.18)

Substitution of equation (2.6.15) and some rearranging then allows this to be for-

mulated as
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-1
o S e )

AG(¢) = {reo(A6_1(0) - 85O+

. (2.6.19)
> rivi i (€) + plt)n? [sin[A8;(C) + 85-1] + sinbo(€)] }.
=1

This equation together with equation (2.6.17),

0;(¢) = 0;-1(¢) + A6;(¢) (2.6.20)

and the boundary conditions, equation (2.6.7a,b) yields a two point boundary value
problem which must be solved to yield the evolution of imperfection growth of the

viscoelastica.

The shooting method was implemented to solve the two point boundary value
problem numerically. In the shooting method the dependent variables at one bound-
ary (in this case 6(0,t)) are chosen consistent with the boundary conditions at the
starting point (w(0,t) = 0 and §' = 0). An initial guess is made for 6(0,¢) and
the differential equation (2.6.19) is numerically integrated to the other boundary
(s = 1). The boundary conditions at this end (w(l,t) = 0 and 6'({,t) = 0) are .
then compared with the conditions obtained via the integrated guess and the initial
boundary guess is modified and reintegrated to the second boundary point. This
process is continued until convergence to the correct boundary conditions at the sec-
ond boundary. When convergence is obtained the solution for é(s, t;) is updated and
another two point boundary value problem at the incremented time is solved. This

procedure was implemented using a fourth order Runge-Kutta integration scheme.

Application of this algorithm was made using the PMMA column analyzed

in section 2.4. Figure 14 shows the evolution of an imperfection identical to that
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FIGURE 14. PMMA viscoelastica response at 75°C.

used in the load sensitivity analysis of the geometrically linear model® for an end
load which is 60% of the glassy buckling load. Also shown, for comparison, is
the response of the geometrically linear model. At this point the failure criterion
preposed in the analysis of the linear model is reexamined. Because use of the
“exact” moment-curvature relation shows the existence of a maximum midspan
deflection it is obvious that the critical deflection used in determining column life

must be less than or equal to this maximum. If the maximum deflection is used to

9 A half sine wave of amplitude 0.012h.
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define failure!® two observations are then in order. First, as expected, the solution
follows the linearized behavior for a substantial fraction of the deformation history
and second, it is clear that the linearized version provides failure times that error on
the conservative side of the geometrically nonlinear model. This observation would
seem important in interpreting the buckling behavior of viscoelastic structures based

on a geometrically linear model.

10 From a practical point of view this will generally be much greater than allowable in engineering
structures.
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2.7 Evaluation of Results and Generalizations

Return now to the results of the linearized solution, in particular to Figure 12
and note that the plot of applied load against the time to failure (¢.) looks like the
relaxation modulus normalized by its glassy value; this function is also shown in
. Figure 12. For the realistic material these two curves are identical except shifted

11 Thus the failure time

relative to each other along the logarithmic time axis.
for time invariant axial loading may be approximated by a formula simulating the

quasi-elastic buckling behavior of simply supported columns in the form

bc = ate) ~ Po(tc)B (2.7.1)

~ r(dte) — po(te)’

where §. is the critical deflection. Earlier it was stated that for loads obeying the
inequality

Po < Too (2.7.2)

a stable deformation results. While this latter condition implies that displacements
will not grow without bound below this level, it does leave open the question whether
a critical displacement will, nevertheless, be achieved in a finite time. Clearly,
there will be some load level below ro, which may satisfy the critical displacement
criterion, and that load will depend on the magnitude of the critical displacement
chosen. This issue is not pursued further in detail, but refer to equation (2.7.2) as

providing the (approximately) lower instability boundary.

Recalling equation (2.7.1) it is seen that the shift factor ¢ multiplying the
failure time t, depends on the size of the critical displacement chosen; because of

the proportionality of the deformations to the initial imperfection, the dependence

11 The relaxation modulus appears more uneven; this is a result of the Prony - Dirichlet series
representation.
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of the shift ¢ depends also, in a simple way on this quantity. If it could be shown
that its value is generally smaller than unity one would deduce that a choice of
unity of this factor (no shift) would always lead (implicitly) to conservative time
estimates through the quasi-elastic formula
t

b = ate) = r—(t%, (2.7.3)
which is the simple Euler formula with Young’s modulus replaced by the relaxation
modulus as a function of the failure time ¢.,. An answer to this question could be
provided by repeated computations as those shown in Figure 12 with various ratios
of critical deflections to the initial imperfection. Instead of offering a numerical
development this dependence is elucidated using a simple though explicit result
in terms of the standard linear solid. The normalized relaxation modulus for the

standard linear solid is

r(t) = roo +rie” r(0) = 1. (2.7.4)
Using the analytical response of the standard linear solid developed in appendix B,
equation (B.1.6), and writing it for a(t.) = 6. yields

§e=afte) = | PP _Po | ez __PoP (2.7.5)
1-po  po—reo Po —Too

It follows that

_l l_pol 1+%(1_%)

= n
APo—Too 1+ Bzl

te (2.7.6)
A plot of the buckling time as a function of applied load is shown in Figure 15.
The material properties used in the curve are the same as used in appendix B and

the normalized relaxation modulus of the material is also plotted in Figure 15.
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FIGURE 15. Buckling time for standard linear solid.

Two observations are evident from the figure: first note that if one were to
estimate the buckling time using the normalized relaxation modulus in place of the
actual buckling time curve the error would be conservative by about three orders of
magnitude, secondly note that for the simple material model (standard linear solid),
the predicted buckling time curve is not represented by the relaxation curve shifted
along the log-time axis as was the case for the results based on realistic properties for
PMMA. This observation is in keeping with results from other viscoelasticity prob-

lems (Schapery (1962)) and hinges on the rate with which viscoelastic properties

change in the transition region.
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Next equation (2.7.6) is used to demonstrate explicitly how the shifting between
the relaxation function and the curve representing the buckling failure depends on
the critical displacement and the initial imperfection. This is done by estimating
the time scales for the two curves when either r(t) or p(t.) have dropped by 1/e of
the initial value (c.f. Figure 15). From equation (2.7.4) one has then (r(0) = 1)

roo + e )r = % rn=1-re (2.7.7)

which, because roo € 1/3, r1 ~ 1 yields

(te)r = :1\_, (2.7.8)

while the failure time determined from equation (2.7.6) with p, = 1/e yields

e—1 b¢
- (1 + -I'B—)] (279)

(t)y = 35(c = Din|

or,if e ~3

(t), ~ %ln[g(l + %)] . (2.7.10)

The shift factor ¢ between the curves for buckling failure and relaxation response

1s thus

¢~1 2(1+5°) 2 (2.7.11)

~In|= — 7.
3 B

which, since typically §/8 > 1 renders a logarithmic dependence on the ratio é./8.

It is interesting to note that the shifting depends on the nondimensional ratio of

the final or maximal (6.) to initial or minimal (3) column deflection.
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At this point it is of interest to observe that Halpin and Meinecke (1969) exam-
ined experimentally the proposition that the buckling load of a viscoelastic column
be given by the quasi-elastic result embodied in equation (2.7.3). While several of
the tests conducted under different load levels and at different temperatures seemed
to follow that behavior to some extent, a portion of the tests did not conform to
that relation; in light of the present results it seems that the initial imperfection
has a significant effect on the “buckling time” and since that fact was not consis-
tently accounted for (initial deformations were assumed to vanish) in these early
experiments, one should not expect a unique relation between the applied load and

the “failure time,” however consistent the latter may be defined.

2.7.1 Generalization to Other Structures

It is useful to consider the implication of the results in this section to columns
with other boundary conditions and to plate and shell configurations. While de-
tailed results have to be reserved for further investigations, the following general
observations are in order, simply on the basis of analogy to the buckling of the

elastic counterparts.

With respect to columns subject to different boundary conditions it is clear that
identical results prevail as long as integer multiples or subdivisions of the column
length produces boundary conditions contained in the present solution. The cases
of other end supports can be treated in a similar manner. Guided by the simply
supported solution where the first mode rapidly dominates the deformation response
one can readily perform the creep buckling response analyses for other boundary
conditions. In this case the normalized quasi-static equilibrium equation is identical

to that of the simply supported column (equation (2.3.13) written for m = 1) when
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the end load is normalized by the glassy buckling load for the boundary conditions
of interest. For the case of elastic plates and shells the equilibrium equations depend

on the elastic modulus as well as the bending modulus of rigidity

D_

T 1-02

(2.7.12)

If one allows for constant Poisson’s ratio, a not unreasonable approximation if
one is interested in still rigid or near glassy behavior for structural purposes, then
this factor is the classical Euler buckling load for the plate or shell problem. It
would stand to reason that in the event of such geometrical shapes the growth of
the (imperfection) deformations would be governed by a function similar to that
of the simple column problem. One might consider further, postulating a critical
deflection as a failure criterion, that the failure time of the structure would be given
by a curve “A” in Figure 12, which is approximated in a rather conservative way

by the relaxation function.

So far, only examples of time invariant loads have been treated. While there
are many different kinds of load histories that may be considered those of typical
engineering interest are monotonically (linearly) rising loads and/or repeat on-off
loading. The latter would correspond to typical load cycling experience by an air-
craft component under repeat use. Similarly, it would be of interest to consider
cyclically varying temperatures in conjunction with similarly varying loads, simu-

lating a typical loading cycle of the type encountered by future high speed aircraft.

The detailed responses for these kinds of loadings are not developed here,but
it is noted that the solutions presented here provide first estimate bounds on the
duration of such histories. In the event of repeat loads at constant temperature,

the total deflection under repeat loading of, say constant amplitude is smaller than
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the deflection resulting from constant load of the same magnitude.!? It follows
that the total time required to achieve for the on-off load is given conservatively
by the time for the constant load. The general development of the model was not
restricted to constant end loading® and although no examples of variable loading
have been included here analysis of variable loading is the next logical step. Next
a comparison of model results and experimental results for constant end loads is

presented.

12 Provided the material constitutive law does not change for cyclic behavior.

13 Recall equation (2.3.13) .
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CHAPTER 3

Creep Buckling Experiments

3.1 Introduction

Agreement between theoretical and experimental determination of buckling
loads in “slender” elastic structures has met with varying degrees of success. For
instance the simply supported flat plate can withstand loads in excess of the (bi-
furcation) buckling load predicted by classical analysis (a result explained by von
Karman) while the collapse loads of thin-walled cylinders may occur at loads less
than one-third of classical predictions. The disagreements in these comparisons are
generally due to two classes of inconsistencies between analysis and experiment: (1)
geometric imperfections in the experimental structure, and (2) inability to correctly
model experimental boundary conditions. The slowly loaded slender column, where
the buckling load is less than the yield load, is the case with the best agreement
between classical theory and experiment: upon loading the column does not merely
shorten as analysis predicts, but begins to bend in response to moments induced by
geometric imperfections and load misalignment. However the bending deformations
remain small until the load approaches the Euler buckling load. If the experiment is
conducted under displacement control the load increases to a maximum and as the
displacement is increased the load remains virtually constant as large deformations

occur.
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Since the slender viscoelastic column model is “exact” to within the restrictions
of the kinematics of Euler buckling assumptions and the numerical solution of the
equilibrium equations, experimental verification might seem unnecessary. However
to examine the agreement between analysis and those of controlled conditions in
the laboratory, an experimental investigation of viscoelastic column buckling was
undertaken. The lack of experimental work involving the creep buckling behav-
ior of columns is surprising. Isolated studies have been reported, but when these
are contrasted with the need for fundamental understanding of the failure modes
unique to thermoplastic matrix composites the experimental studies seem woefully

inadequate.

Early in the history of creep buckling investigations Rosenthal and Baer (1951)
performed a series of experiments on 99.5% pure aluminum. They used circular
cross-section specimens and performed the tests at a slightly elevated temperature
(35°C). The results were interpreted with regards to primary and secondary creep
and they used viscoelasticity to model the secondary creep. Hoff and his coworkers
also studied this problem experimentally, again using aluminum alloys and per-

formed creep buckling tests on column and cylindrical shell geometries.

With regards to polymeric materials Halpin and Meinecke (1969) performed a
series of experiments using circular column geometries of SBR rubber and analyzed
the results based on the quasi-elastic approach to creep buckling as discussed earlier.
Salchev and Williams (1969) also reported creep buckling experiments involving
polymeric materials, specifically Nylon 66, PMMA and PVC, and also analyzed
the results using the quasi-elastic approach with reasonable success. But when
one considers the dramatic increase in the use of engineering polymers there is

considerable room for more experimental investigations in this area.



-58-
3.2 Description of the Experiment

To investigate the creep buckling behavior of viscoelastic columns a series of
experiments was performed on polymeric rectangular cross-section specimens. The
specimens were held at constant elevated temperature, to allow creep to occur for a
convenient time scale, by an electrical resistance heating element temperature cabi-
net. An MTS servo-controlled load frame was used to apply an initial load ramp and
maintain a fixed end load for the remainder of the test. The lateral displacement at
the column mid-span and the axial displacement of the actuator were measured us-
ing linear variable differential transformers (LVDT’s). The conditioned transducer
outputs were recorded at uniform time intervals using a 12 bit A/D board on the
hard disk of a micro-computer. A schematic of the experimental setup is shown in

Figure 16 and a photograph of the setup is given in Figure 17.

All specimens were machined from a cell cast sheet of commercially obtained
PMMA (CYRO industries Acrylite GP acrylic sheet).! The relaxation modulus
was determined experimentally and is shown, at a reference temperature of 75°C
together with a Prony-Dirichlet series approximation in Figure 7. The specimens
used were nominally 15.24¢m in length, 2.54¢m in width with a thickness of 0.635¢m.
This geometry has a length to thickness ratio of 24 and a glassy Euler load of 658 Nt.
Hinged end conditions were simulated by loading the specimen at the centerline of
axles which are supported by a pair of ball bearings at each end of the specimen.
Consistent load alignment was accomplished by notching each specimen end across
the width at the mid thickness. Each notch was then mated with a key which was
press fit into the‘ bearing axle keyway. For clarity a grip with the bearing axle

removed is shown in Figure 18 and a schematic of a specimen end supported by the

1 Reported to have an average molecular weight between 1.4 million and 2.0 million. No valida-
tion of the reported molecular weight was attempted.
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FIGURE 16. Schematic of creep buckling experiment.

bearing axle is shown in Figure 19. Note also the mount used to secure the lateral

displacement LVDT in the photograph.

The experiments were conducted by first allowing the specimen and grips to

reach thermal equilibrium at 75°C? while the specimen was subjected to a small

compressive preload.® The preload was necessary to maintain contact (at a con-

trollable load) between the specimen and grips while thermal equilibrium was ap-

proached. A smooth sinusoidal load ramp of the form

2 This is below the glass transition temperature of 105°C.

3 About 10 Nt which is 1% of the load cell range.
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FIGURE 17. Photograph of experimental setup.
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FIGURE 18. Photograph of spec
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P(t) = P,[1 - cos( 0>t>T, (3.2.1)

was then initiated at the end of which the load was held constant at P,. The test
duration was defined by limiting the lateral displacement at the specimen midspan
to 2.0cm. This displacement limit was set to prevent the specimen from snapping
out of the grips when the bearing axle rotation became excessive. During the
experiments the error introduced by unwanted torsional loads was minimized by
taking advantage of the second control channel availible on the load frame controller.

By controlling the torque input to the specimen the maximum torque introduced
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was less than 0.5Nt - m.

3.3 Results and Discussion

A comparison of the numerical and experimental results is given for four dif-
ferent end loads in Figures 20 - 23. Also included, to make more concrete the
magnitude of displacements experienced, are two sequences of photographs (Fig-
ures 24 and 25) depicting the displacement development for the cases p = 0.480
and p = 0.579. The numerical results were calculated using the first buckling mode
and the geometrically linear model since the linear model is adequate for the dis-
placement levels experienced in the experiments. In the figures the midspan lateral
displacement (normalized by specimen thickness) is plotted as a function of time in-
cluding the portion derived from the initial sinusoidal load ramp. Since the response
a(t) is a linear function of the initial imperfection 4* the response to different initial
imperfections can be determined by vertically shifting the response curves. Because
it would have been difficult to measure the initial imperfections this technique was
used to determine them for the specimens tested. By including the initial load
ramp in the numerical response the short term response of the numerical and ex-
perimental responses were matched, using the initial imperfection of the first mode
as a parameter. This single parameter fit results in excellent agreement between
theory and experiment during the slow growth phase of the response. Even when

the growth accelerates the model predicts the measured response reasonably well.

It can also be seen that when the theoretical and experimental results diverge at
higher strain levels there is no consistency of error. That is, for the cases shown: in

Figures 20 and 22 the model predicts larger deflections than were measured while

4 Any load misalignment term can easily be included as part of the initial geometric imperfection.
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FIGURE 20. Experimental results for p = 0.462,T = 75°C.

in the other two, Figures 21 and 23, the model predicts smaller deflections than
were measured. These discrepancies cannot be explained through misalignment
of load. First, great care was taken to assure alignment consistency from test to
test, and second, the method used to determine the initial imperfection, by its very
nature, includes the effect of any load misalignment though in this analysis only the
component of the first mode is considered. It is also unlikely that the differences
between theory and experiment result from differences in boundary conditions since
two mechanisms exist to inhibit the introduction of end moments to the column;

the ball bearing grips and the cornered keys (in the bearing axles) used for load
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FIGURE 21. Experimental results for p = 0.480,T = 75°C.
alignment.

One possible explanation for the differences observed at higher strain levels
involves the consideration of material nonlinearities. The model assumed linearly
viscoelastic material properties for the PMMA column and the experiments gen-
erated strain levels in excess of 1.0% (near the termination of the tests) where it
is known that material nonlinearity becomes significant. Under these conditions
residual stresses in the PMMA may have a measurable but uncontrollable influence
on material rigidity. The relaxation modulus, on the other hand, was determined at

strains below 0.5% and no attempt was made to characterize material nonlinearity.
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FIGURE 22. Experimental results for p = 0.579,T = 75°C.

Quantification of the effect of material nonlinearity would involve further material
characterization and study. It should be mentioned here that there was no evidence
of crazing in post-test visual inspection of the specimens. An additional factor pos-
sibly influencing the deviations seen in Figures 20 - 23 is the temperature variation
experienced during testing (though the temperature used in the experiments, 75°C,
is not near enough to the glass transition temperature, 105°C, that large deviations
would be associated with a 0.5°C' temperature drift). The temperature cabinet used
was able to control temperatures to £0.5°C though this could be improved only by

using an additional chamber within the cabinet as a thermal mass.



-67-

1 1 v ) M
p=0.604
B=0.0432 ;
of -
te]
m -
)
-1pPF -
;/  m==-- numerical
L [/ —o—o—  experimental
/
/
y
-2 A | . A L A
-3 -2 -1 0

logt, tin hrs

FIGURE 23. Experimental results for p = 0.604,T = 75°C.

In summary, the linear model together with the use of a single parameter,
which characterizes the geometric imperfection and load alignment, has been used
to simulate creep buckling experiments in the laboratory. The short term and slow
growth phases of the response are predicted reasonably well, while there is some
variability in the prediction of the accelerated growth phase due to two possible

explanations.
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APPENDIX A

Differential Equation Derivation

A.1 A Material Possessing n Relaxation Times

When the isothermal relaxation modulus is in the form of a Prony-Dirichlet
series, equation (2.3.13) can be reformulated as a differential equation. Consider

the following relaxation modulus

E(t)=Ew+ Y _ Eie ™. (A.1.1)

i=1

Then the normalized modulus is

r(t) = E(t)/E(0) =re + zn:rie_’\‘t. (A.1.2)

Differentiating equation (2.3.13) with respect to ¢ yields

m? /0 , (t — 5)‘2‘;‘—6’”015 = p(t)am(t) + p(t)am(t) + p(t)Bm

- mzr"(t)am(O"') - mzr(0+ Yam(t),

(A.1.3)

where the dot (e.g., p(t)) denotes differentiation with respect to ¢. If this is, in turn,

differentiated s — 1 times the result is

t
dam,
mt [ 1Ot - % de <lplt)an(] + 516
s—1
- mzam(O'*')r(’)(t) —m? Z r(i)(0+)am(’—i)(t),
=0

(A.1.4)
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where the superscript (s) indicates the s** time derivative. Differentiating equation

(A.1.2) s times renders

r@ () = (-1)* En: Afrie N1, (A.1.5)

=1

This equation allows r(™)(t) to be expressed in terms of the lower order derivatives

of r(t).
r(M(t) = (=1)" i: APre it

IS AT D) - IS8 T m2)
[;A,] - (A.1.6)

i=1 =1
J#s

=D > 2@ — = [T M) = reo)-

i=1 j=1 k=1 i=1
jE k#j
ks

Then the left-hand side of equation (A.1.4) can be expressed as

[ - tamae -
1—1 i=1

(Sl [ vz
ZZZ“M/ O - ) Gl ..

1i=1 j=1 k=1
J#EL k#S
k#s

n t
- [,I=Il/\i] [/0+ r(t — 5)%1%6 — oo /0+ fig—é”-df]

NN / r* (e - )d""‘

(A.1.7)

By using equation (A.1.4) successively for s = n,n—1,n—2,...,1,0 and substituting
the results in equation (A.1.7) a single n** order ordinary differential equation is

obtained; the solution of which is an,(t).
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The solution of the resulting o.d.e. requires n — 1 initial conditions. If the initial
load begins smoothly from zero (with zero valued derivatives) these are simply
r(’)(O) =0 for s = 0,1,...,n — 1. For more general loading the situation is more
involved and requires successive integration of equation (A.1.7) and the use of a
limiting procedure to arrive at a loading function with a step increase at t = 0. An

example of this procedure for a simple material model is presented in the following.

A.2 A Material Possessing Two Relaxation Times

This section presents a specific example elucidating the procedures presented.
It also serves to compare the different solution methods derived and thereby validate
the computing programs written for problem solution. Because the development
is algebraically ungainly, only the first buckling mode response will be treated;
generalization to other modes is trivial and tedious. In what follows the subscript

m will be dropped and it is understood that the analysis treats only m = 1.

A normalized relaxation modulus of the following form is assumed:

r(t) = reo +rie” M £ rpe™ 22, (A.2.1)

Since the material has two viscous time constants, its corresponding differential
equation will be of second order. Substituting equation (A.1.4), for s = 1,2, along

with equation (A.1.6) into equation (A.1.7) yields
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[ =5 de = S lp0a(o)] + H08 - mPa(0*)5(0) - r(0)a(t) ~ F(0%)a()
= ~(h + 2)[B(B)a(®) + p(B)a(t) + )8 — a(0*)i(®) = r(0*)a(t)]

t da

— (M) [p(t)a(t) + p(t)B — r(t)a(0F)] + A1 )s /(;+ roo—&Edf.

(A.2.2).

Rearranging, cancelling terms and using r(0%) = 1 gives

0 = [p(t) — 1Ja(t) + [2p(t)+ (M + A2)(p(t) = roo) — A2r1 — Aira]é(2)
+ [B(t) + (A1 + A2)B(t) + A A2 (p(t) — roo)] a(2)

+ B[B(E) + (A1 + A2)B(E) + A dap(t)] .
(A.2.3)

This equation along with the appropriate initial conditions allows determination of
the growth of the first buckling mode present in the initial imperfection. Note that
the number of initial conditions required increases with the number of terms in the
Prony series expansion for the relaxation modulus. In this example only a(0*) and

&(0%) are required.

To determine a(0%) requires substitution of ¢ = 0% in equation (A.1.4), noting that

the integral vanishes renders

__ Bmp(0)
am(0+) = —W__l. (A24)

The correct determination of ¢(0%) is more involved and requires a limiting pro-
cedure similar to that used in Gurtin and Sternberg (1962). If the end load, p(t),
is nonzero at ¢ = 0%, an approximating function ps(t) is introduced such that

ps(t) = p(t) when t > 6. This function is required to have the property that ps(t)
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and as many of its time derivatives as necessary (in this case, only one) are zero at

t = 0%. Then as § approaches zero, ps(t) approaches p(t).

Substituting ps(¢) into equation (A.2.3) and integrating the result in time from
t =0to t =§, yields a relation for &, (07). First, consider the integration of the &

term in equation (A.2.3)

5 5 p
| sty - viade = ps(0) - 1660, - [ styact
’ ° (A.2.5)

6 5 6
= lps(t) ~ (0], = pa(t)ao)], + [ Falt)adt

Focussing now on the & term in equation (A.2.3), renders

é
| [26a(6) + (1 4 20)04(0) = r) = dars = A =
{[m(t) + (A1 + 22)(Ps(t) — roo) — Agr1 — Alrg]a(t)iz (A.2.6)

é
— /0 [255() + (A1 + A2)ps()] a(t)dt.

Integrating the remaining terms in equation (A.2.3) and combining with equations

(A.2.5), and (A.2.6) yields

s

{ [ps(t) — 1]c(t) + [=ps(t) + 285(t) + (A1 + A2)(Ps(t) = Too) — Aoty — Arra]a(t)

0

é
+ /0 { [Bs(t) — 2ps(t) — (A1 + A2)ps(t) + Ps(t) + (M1 + A2)ps(2)

+ M A2 (p(t) — roo)] a(t) + B[Bs(t) + (M + A2)ps(t) + Asdaps(t)] }dt =0.
(A.2.7)
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Cancelling terms and using the fact that the system is quiescent at ¢ = 0~ results

in

[ps(6) — 1]&(8) + [Ps(8) + (A1 + A2)(P6(6) — Too) — Aot — Airz]a(6)

5
+/(; {[)\1>\2(P6(t) — roo]a(t) + B[Bs(t) + (A1 + A2)Ps(t) + A1 A2ps(t)]dt = 0.
(A.2.8)

Upon integration this becomes

[p5(8) — 1]a(8) + [Ps(8) + (M X2)(Ps(8) = Too) — A2ry — Mar2]a(6)

1
+ Bl5s(8) + (O + d)ps(O)] + [ {Phdalpe(t) = reollatt) + BAidaps(®) =0,
(A.2.9)

Taking the limit as § goes to zero from the right causes the integral to vanish since

the integrand is finite, thus

[p(0*) = 1]&(0™) + [B(0™) + (A1 + A2)(P(0T) = roo) = Aor1 — Arrz] a(07)

+ B[P0 + (M + X2)p(01)] = 0.

(A.2.10)
Then the necessary initial condition is
-1
L0+ — .+ +y _
&(0 )—p(0+)_1{[p(0 )+ O +22)(3(0%) = o)
(A.2.11)

= dars = hira]a(0%) + B[5(0%) + (A + da)p(0)] }

Equations (A.2.3), (A.2.4), and (A.2.11) completely describe the problem for the
given relaxation modulus. Given a loading time history, column geometry and

initial imperfection the lateral deformation evolution can be determined.
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APPENDIX B

Standard Linear Solid

B.1 Standard Linear Solid Example

The standard linear solid has some of the important characteristics seen in the
description of many engineering polymers. The mechanical analog of this material
model is a linearly elastic element in parallel with a Maxwell material model. We
note that the analysis of the problem for constant loading though accomplished in

a different way, has been reported previously.!

The analysis begins by differentiating the equilibrium equation (2.3.13) with

respect to time, rendering

2. ! . dam(f) 2 .
—m?7(t)am (01) — m? /;+ r(t — f)Tf——df — m*r(0)dm(t) (B.1.1)
+5(t)om (t) + p(t)am(t) + B(t)Bm = 0,

where the dot (e.g., 7(t — €)) implies differentiation with respect to the argument.

The isothermal relaxation modulus of a standard linear solid is

r(t) =reo + rie” M "M +re=1 (B.1.2)

in its normalized form. Since, by equation (B.1.2)

rt—&) = =Ar(t =€)+ Areo (B.1.3)

1 See, for instance, Schapery (1987) or Kempner (1954).
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combining equations (B.1.3), (B.1.1) and (2.3.13) yields a linear differential equation
for the growth of each buckling mode as

[p(t) = m*]&m(t) + [B(t) + Ap(t) — Am’rec]am(t)+

p.(t)ﬂm + /\p(t)ﬂ =0,

(B.1.4)

where r(0) = 1 has been used. This equation may be solved analytically for simple
forms of the loading function, p(t). For constant end loading, p(t) = p,, equation

(B.1.4) becomes

[Po — M?|am(t) + A[po — M?roo]am(t) + Apofm =0 (B.1.5)

which has a solution, characterized by a single exponential term, that can be written

for p, < 1 as

-m2r
am(t) = [am(0) + —Lelm | A

Po = Moo (B.1.6)
PoPm

Po — M1

The nature of this solution depends on the magnitude of p,; there are three distinct

cases:

1. When p, < m?ry i.e., when the load is less than the “rubbery buckling load,”
the response has a decaying exponential term and asymptotically approaches

a long term equilibrium state;

2. When m?rq, < p, < m? the response has a growing term 2 and creep buckling

occurs;

3. When m? < p, immediate or “glassy buckling” occurs.

2

2 The growth is exponential for po > m2reo and proportional to ¢t when po = mreo.
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Solutions of equation (B.1.6) for the lowest mode (m = 1) and for two different
end loads are plotted in Figure (26), where calculations were made assuming 3
Teo = 0.00646 and A\ = 0.23hrs~!. For p, = 0.0005 equilibrium is approached
asymptotically since p, < r. For p, = 0.0075, however, creep buckling occurs,
leading to unbounded deflections as time progresses. Shown in the figure are the

responses of the first buckling mode to the indicated loading.

r_ =0.00646

p=0.005

log (a/PB)

-3 " 1 M 1 A
-3 0 3 6

logt, tin hrs.

FIGURE 26. Constant end load response of standard linear solid column.

Of significant practical importance are the growth rates of the buckling modes,

for these rates determine which of the modes will ultimately dominate the defor-

3 This value is characteristic of medium molecular weight PMMA.
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mation process. The case in which creep buckling occurs (ro, < po/m? < 1) is

considered here. Defining the growth exponent g for this case renders
Y i) B
g(mapo) = m? — p, . ( 1.7)
This growth exponent is a discrete function of the mode number m, and is mono-

tonically decreasing in m, but increasing in the load p, and becomes unbounded as

po/m? — 1.0.

It is seen that the lowest buckling mode grows the fastest and that as the glassy
buckling load for the first mode is approached from below, its growth rate becomes
unbounded. Thus, as the glassy buckling load of the first mode is approached the
first mode grows infinitely faster than the higher modes. However, even when p,
approaches the rubbery buckling load from above the first mode growth rate is
still significantly higher than the growth rates of the higher modes. In fact, if only
load cases in which at least two modes grow unboundedly are considered then it
can be shown that for ro, < .25 the ratio of growth exponents, g(1,p0)/9(2,po)
has a minimum with respect to load. This minimum approaches 4.0 as roc — 0
and becomes unbounded as ro — 0.25.* From this assessment it is seen that for
significant deformations (unless the m = 1 component of the geometric imperfection

is identically zero) the response of the first mode will dominate the column response.

4 roo = 0.25 corresponds to the case when glassy buckling of the first mode occurs at the same

load as rubbery buckling of the second mode.



