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Abstract

In this thesis, we are concerned with the transmission of data over channels with
intersymbol interference. We consider input signals which are multiplexed versions
of several parallel input signals, with the aim of splitting the input signal spectrum
into disparate frequency bands and shaping the input spectrum by adjusting the
power on each of the frequency bands. We introduce a multirate signal processing
framework for the representation of the channel under these conditions and derive

simple equivalents for the channel and the associated processors.

Using the equivalent circuits, we derive simple equalization schemes for the
channel by drawing from the theory of polynomial matrices. We show that vector
equalization can be reduced to a combination of prefiltering, postfiltering and scalar
equalization of a few of the parallel input signals. We also discuss several interesting

properties of this decomposition.

In the case when the channel is corrupted by colored noise, we derive expres-
sions for the optimum prefilters and postfilters with decision feedback equalization
that minimize the mean-squared error between the input and the output, given a
constraint on the input power. For uncorrelated inputs, the scheme leads to a set
of parallel independent scalar channels with the optimum postfilter whitening the

noise, which permits the optimal use of trellis codes for data transmission.

We apply the scheme to a special channel, viz., the ISDN digital subscriber loop.
The main impairments on this channel are intersymbol interference and crosstalk
due to adjacent loops in the same binder group. Crosstalk is an especially interesting
case of noise since it depends on the signal being transmitted; we assume that

all loops in a binder group transmit using the same scheme. We consider two
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cases of crosstalk noise: when transmission between different loops in a binder
group is synchronized, the crosstalk noise is wide-sense cyclostationary, and with a
lack of synchronization between loops, the crosstalk noise is wide-sense stationary.
We present methods to determine the optimum filters for data transmission and
the optimum input power distributions for both these cases. We demonstrate the
possibility of data transmission at the T1 rate, i.e., 1.544 Mb/s over most loops in
the local loop plant. We also find that synchronizing transmission between different
loops in a binder group does not get us much; the difference in the throughputs for
the cases of cyclostationary crosstalk and wide-sense stationary crosstalk does not

seem to justify the effort involved in synchronization.
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Chapter 1 Introduction

Communication is essentially the transfer of information from one point to
another. The information conveyed by a modern communication system comes in
many forms—rvoice, video, music, fax, etc. In most cases, this information has been
represented accurately by an analog waveform; hence it seemed natural to use an
analog communication system and this is what is still in use in the case of radio
and television. However, it is well known that a digital communication system has
several advantages over an analog one, a main one being repeatability. Thus it is
of primary interest to transmit the analog waveform in a digital format and try to
recover the analog information only at the receiving end. However, communication
channels really only permit the passage of continuous waveforms. Hence, we have
to transmit analog waveforms over the channel. These analog waveforms have to
be obtained from digital data and have to be reconverted back to digital data at
the receiving end to ensure more efficient processing. The processed digital data.
is then used to recover the original transmitted source signal. In this chapter, we
shall briefly go over the various steps involved in the transfer of information using
a digital communication system. We shall give some historical perspective about
the various components and identify the parts of the system that we address in this

thesis.
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1.1 A Digital Communication System

A block diagram of a typical digital communication system is given in Fig. 1.1.
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Fig. 1.1 A Digital Communication System
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The source signal is passed through a source encoder, which essentially converts
the analog source waveform into a digital, discrete-time signal. Hence, it involves
the processes of sampling, quantization and any associated data compression to
remove the redundancy in the signal. The output of the source encoder, which is
assumed to be a bit stream, enters the channel encoder, which inserts controlled
redundancy into the signal in order to protect the system against errors which may
occur due to the non-ideality of the transmission medium. Channel encoding is the
domain of the various error-correcting codes found in the literature. A basic tenet of
Claude Shannon [1] is that the source encoding process, which involves the removal
of redundancy, and the channel encoding process, which involves the introduction of
redundancy, can be separated without any loss in information-theoretic optimality,
albeit perhaps with an increase in complexity.

The encoded data is then passed through a modulator, which converts the
bit stream into a discrete-time signal with the symbols taking maybe analog val-
ues. There is much to be gained by combining the processes of channel encoding
and modulation; this is the basic idea behind trellis-coded modulation, which was
proposed in 1982 by Ungerboeck [2]. The transmit filter shapes the discrete-time-
modulated signal to give an analog waveform which is transmitted over the channel.
At the receiving end, the receive filter converts the received analog waveform into a
discrete-time signal, which is passed through the demodulator. Hence, we essentially
have a discrete-time channel between the modulator and the demodulator.

The demodulator essentially reverses the operation of the modulator. The
channel decoder generates an estimate of the binary data that was fed to the channel
encoder and the source decoder attempts to reproduce the original source waveform.

The transmit and receive filter fall in the domain of the various equalization
techniques found in the literature, the basic idea behind which is to account for
the linear distortion introduced by the channel. In this thesis, we shall delve into
the design of good transmit and receive filters for transmission over channels which

introduce appreciable linear distortion. It is possible to find optimum analog filters
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for the transmit and receive filters; however these are seldom realizable at affordable
cost. Hence we shall partition these filters into two parts, a fixed analog part that is
easily realizable and a digital part which we shall try to optimize given the channel
and noise characteristics.

The basic motivation for the schemes we propose in this thesis stems from
a theorem in Information Theory called the Water-Pouring Theorem (3], which
is used to calculate the capacity of a channel with a non-flat frequency response.
One of the basic results of this theorem is that the input waveform to a channel
has to be spectrally shaped to match the channel frequency response in order to
achieve capacity. We will propose a scheme where we attempt to spectrally shape
the input to the channel by partitioning the signal into various frequency bands
and transmitting with unequal energy over each of these bands. This scheme was
motivated in part by sub-band coding [4], which is a technique that exploits the
non-flat spectrum of the source signal to achieve efficient data compression. What
we propose, in essence, is a complement of sub-band coding tailored toward channel-

coding applications.

1.2 Outline of the Thesis

In Chapter 2, we motivate and describe the scheme to be used for data transmis-
sion over the channels of interest. We derive simplified equivalent circuits for this
scheme by borrowing heavily from the theory of Multirate Signal Processing [5].
These equivalent structures give us a framework to propose some simple equal-
ization schemes for such channels using theorems on matrices whose entries are
polynomials. We describe these equalization schemes and elucidate some of their
properties.

In Chapter 3, we are mainly concerned with the derivation of optimum filters
for transmitting data over a channel with a non-flat frequency response and with
correlated noise corrupting the output of the channel. The optimum transmission

scheme leads to a set of parallel independent channels, i.e., no individual input
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signal interferes at the output due to another input signal. In addition, the noise
on each channel is uncorrelated with the noise on other channels. We evaluate the
performance of this scheme and find that it performs much better than traditional

schemes proposed towards the same objective.

In Chapter 4, we apply the filters derived in Chapter 3 to the special case of
the ISDN subscriber loop channel. The aim of ISDN, or the Integrated Services
Digital Network, is to give telephone users all the digital communication links they
require for both voice and data communication through a single set of standard-
ized interfaces [6]. One of the main impairments on this channel is the non-ideal
frequency response of the loops. The noise is predominantly crosstalk from other
wires in the same cable. The crosstalk noise depends on what is being transmitted
in adjacent loops, which are assumed to be transmitting using the same scheme.
Thus the problem of finding the optimum filters becomes more involved, but we
were able to solve it. We present methods to model the statistical properties of
the crosstalk noise in the two cases where transmission on different wires in the
same bundle is synchronized, and when it is not synchronized. Using these models,
we derive optimum filters for data transmission over these loops and evaluate the
performance of the scheme. The main result is that transmission at the T1 rate of
1.544 Mb/s appears to be feasible over a large subset of the local loop plant. Also,
we show synchronization of transmission over various wires in a bundle improves

performance, but not by enough to justify the effort involved in synchronization.

We conclude the thesis in Chapter 5 by briefly summarizing our results and
proposing avenues for future research. There are a host of unsolved problems that
one can envision in this area. We describe some of the unsolved problems that we

encountered during the course of our research.
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Chapter 2 A Framework for Multichannel Data
Transmission

A person dealing with the transmission of data over any real-life channel has to
deal with quite a few impairments, a primary one being noise. Various schemes
have been proposed in the past to effectively combat noise; error-control coding
as envisioned by Shannon has been used for this purpose. Another impairment of
great practical significance is Intersymbol Interference (ISI), which arises due to the
non-ideal transfer function of the channel used. In the words of the good poet [17]
(a technical one, nevertheless)— “Give me a channel without ISI and I will conquer
the world.” In spite of the ubiquitous nature of ISI, traditional solutions proposed
to combat it, like linear equalization and decision-feedback equalization, have been
quite ineffective. We have to qualify that earlier statement; of late researchers have
discovered that optimum decision-feedback equalization can function efficiently if
one used a prefilter to optimize the transmission bandwidth. However, the method
we use to optimize the transmitted signal spectrum is quite different. It is a mul-
tichannel method motivated in part by sub-band coding applications which are
used to exploit the non-uniformity of the source signal spectrum to achieve efficient
transmission of the source data. The main purpose of this chapter is to motivate

the framework we propose to use and to illustrate an interesting application of
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this framework by making use of the framework to derive some novel equalization

schemes.

2.1. Introduction

In this chapter, we consider data transmission over a discrete-time channel with
intersymbol interference. The channel can be represented by its Z-transform. For

example, we have the channel
H(z)=ho+ iz +hez ™ ...+ hy_1z2” V7Y (2.1.1)

where 2! denotes the delay operator and k; (or k(7)) is the ¢ th impulse response

coefficient. The output y(n) of this channel is related to its input z(n) as follows:
y(n) = hox(n) + hix(n — 1)+ hoz(n —2)+ ...+ hn—1z(n = N +1).  (2.1.2)

The channel is said to be ISI-free if h; = 0 for ¢ # 0. Almost all practical channels
suffer from intersymbol interference.

Since we are concerned with data communication, our desire is to recover z(n)
at the output end of the communication system. From the form of equation (2.1.2),
it is evident that some form of processing is necessary at the output end to re-
cover z(n) from y(n). The traditional techniques used to combat the problem of
intersymbol interference include linear and decision-feedback equalization.

Linear equalization merely attempts to invert the channel transfer function, i.e,
the linear equalizer L(z) tries to approximate 1/H(z) as closely as possible. In the
absence of any kind of noise, z(n) can be obtained by passing y(n) through a filter
with a Z-transform 1/H(z). When H(z) has zeros outside or on the unit circle, this
approach leads to problems associated with the stability of the equalizer. When
the output y(n) is corrupted by noise, the noise is also processed by the equalizer.
Hence this technique leads to noise enhancement in spectral regions where H(z) has

low magnitude.
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The problem of noise enhancement is tackled using a technique known as
decision-feedback equalization, which is essentially an ISI-cancellation technique
by knowledge of the channel impulse response and the past estimates of the trans-
mitted symbols. The schematic of the decision feedback equalizer is shown in Fig.
2.1. A variant of this scheme, called Tomlinson Precoding [1], is used to avoid the

problem of error propagation due to incorrect decisions.

x(m)

. - A
Channel ™ o Decision x(m)

Device

H(D)=1+h(1)D+h(2)D*2+....+h(k)D/ k

X

-h(1)
X

-h(2)

«—] T |t— - Tl

@
-h(k)

Fig 2.1. The Decision-Feedback Equalizer

While DFE sounds like a perfectly valid method to combat ISI, our negative
assessment is that we are just trying to modify the channel to be a benign ISI-free
channel without any attempt to tailor the transmitted signal to suit the channel

characteristics. It does not make any sense to transmit data at frequencies where
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the channel frequency response has zeros, since that data will be lost. Intuitively,
it appears as though it is beneficial to tailor the input signal spectrum to match
that of the channel in a certain sense; we want to transmit more energy where the
channel has a high gain and less energy over frequency regions where the channel
has low gain. The fact that DFE does not do very well can be numerically verified
for a variety of channels by finding the capacity of the channel with no constraints,
and the capacity of the channel when DFE is used. The methods to calculate the
capacities in the two cases are elaborated on in the next paragraph for the ISI-
channel and in Section 3.4 for the DFE technique. To give an example, in Fig. 2.2
we plot the capacity of the dicode channel, or the 1—D channel (D is functionally the
same as z~!), versus the capacity of the same channel with DFE. The plot clearly
indicates that significant improvement must be possible over the DFE technique by

using more efficient techniques.

3.5 T T T T T T T T Y

2.5

1.5

Capacity in bits per symbol

0 1 5 L Il 1 L 1 L 1
0 10 20 30 40 50 60 70 80 S0 100

SNR

Fig. 2.2 Capacity of Dicode Channel vs Capacity with DFE
(Dotted Line - No constraints; Solid Line - DFE Used)
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The intuitive idea of tailoring the input signal spectrum is given formal jus-
tification by Information Theory, by determining the capacity of a discrete-time
channel with ISI. The result is known as the Water-Filling Theorem, and was first
proved by Tsybakov in [13] and has been re-derived using different methods by Hirt
and Massey in [12]. With the input power restricted to E,, i.e.,

E[z(k)] < B, (2.1.3)

the capacity of the channel H(z), or equivalently H(e/*) (which is the discrete-time
Fourier transform of the channel or the Z-transform evaluated on the unit circle),

is given by:

C(E,) = -2}7; /07r log[max(8|H(e?“)|?, 1)]dw (2.1.4)

where 8 is the solution to
1 w -
5;/ max(d — |H(e’*)|72,0) dw = E,/Np. (2.1.5)
0

The noise is assumed to be additive, white and Gaussian with variance Ny/2. How-
ever, what is more interesting is that the capacity-achieving inputs are correlated

Gaussian random variables with mean zero and a power spectrum given by

Su(w) = { SHO0—|H(e™)|™?) if 9|H(e™)? > 1 (2.16)

0, else

This theorem can be illustrated in pictorial form as shown in Fig. 2.3.
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H(w)IA2

Channel Frequency Response

1/H(w)Ir2

Water Filling Schematic

S(w)

N1/ N

Optimum Transmitted Signal Power Spectrum

Fig. 2.3. The Water-Pouring Theorem

From this theorem, it is evident that spectral shaping of the input is quite
important in achieving efficiency of transmission over ISI channels. There are var-
ious approaches that one can take to achieve the required spectral shaping. One

approach is to use a single prefilter at the input to the channel. We eschew this
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approach to a multichannel one: one in which we divide the input signal into sev-
eral frequency bands and transmit with unequal energies in each of these frequency
bands to achieve the required spectral shaping. The reason we consider this ap-
proach is that it permits us to use the exciting area of multirate signal processing

in our analysis.

The multichannel approach has received a lot of interest in the last few years
due to the possibility of concatenating multilevel trellis codes in order to achieve
high coding gains over such channels. A host of researchers have considered this
problem(2][5][14]. However, what we find lacking in their presentation is a formal
and rigorous method to represent the channel under such a transmission format.
The main purpose of this chapter is to do so by drawing from Multirate Signal Pro-
cessing principles. Using these principles, we derive expressions for the equivalent
channel model and the resultant form of the preprocessors and postprocessors. With
this representation, we find ourselves in a position to derive some novel equalization

schemes for ISI channels, and we do so.

The organization of this chapter is as follows: In Section 2.2, we introduce the
structure to be used in the scheme, which was motivated in the previous section.
Equivalent forms to the structure are obtained using well-known identities of multi-
rate signal processing. In Section 2.3 , we consider the problem of DFE or precoding
of a class of ISI channels and show how this problem can be simplified considerably
by appealing to certain theorems from matrix theory. In Section 2.4, we consider
some interesting properties which arise due to our decomposition, and show how
some of these properties, which essentially involve a shifting of zeros and poles, can

be put to use.
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2.2 Description of the Scheme and Equivalent Structures

The basic structure to accomplish the multiplexing of several parallel input signals

with different powers in different frequency bands is shown in Fig. 2.4.

Noise
X (M) »}M—» Fo (2) Ho@ ——4M—>§<O(n)
i M F @ @ M= )
Ld S(Z) *
. : . L : :
Synthesis Analysis
bank bank

Fig 2.4. Basic System for Frequency Partitioning

The same structure has also been used for implementing transmultiplexers
(e.g., see [6]). The filters Fy(z), F1(2),....., Far—1(2) are referred to as the synthesis
filters and have their passbands non-overlapping while the combination of their
passbands includes the whole frequency band. Typically, Fy(z) is a lowpass filter,
Fy(z) through Fp_2(z) are bandpass filters, and Far—1(z) is a highpass filter. The
filters Ho(z), H1(2),...Hp-1(2) are called the analysis filters and have a similar

frequency structure to that of the corresponding synthesis filters.

The box with the|T M |is called an interpolator; the relation between its input

z(n) and its output y(n) can be described as follows:

y(n) = { z(n/M), if nis a multiple of M (2.2.1)

0, otherwise.
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In the Z-domain, we have the input-output relationship of an interpolator to be

Y(z) = X(zM). (2.2.2)

For the decimator, i.e., the box with the || M|, the corresponding relationship is

y(n) = z(Mn) (2.2.3)

which translates to

1 M-1 1 —i2Tm
Y(2) =+ Y X(zmeTH ) (2.2.4)
m=0

in the Z-domain. In the frequency domain, interpolation compresses the spectrum
and produces images of it, while decimation expands the spectrum and might lead
to aliasing. In Fig. 2.4, each synthesis filter chooses one of the images of the com-
pressed spectrum and passes it through the channel, and at the receiving end, the
corresponding analysis filter extracts the same frequency band out, with the dec-
imator restoring the original sampling rate. The interpolator and decimator can
essentially be viewed as sampling rate changers to be utilized in multiplexing oper-
ations.

The channel transfer function S(z) is given by
S(z) =so+s1z27 F szl 4 ... (2.2.5)

Our initial path of research was to find suitable analysis and synthesis filters
which achieve an efficient multiplexing. The criterion used to judge the efficiency
of multiplexing was the crosstalk between adjacent channels and the flatness of the
resultant spectrum about the band edges. Regrettably, none of the methods we
tried gave us a satisfactory result to design these filters. The problem of finding
efficient filters for transmultiplexing with the presence of a non-ideal channel in
between remains open. However, an examination of the framework and derivation
of its equivalent circuits led to quite a few interesting ideas for the data transmission

problem, and we will address these in the rest of the thesis.
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To simplify the analysis and synthesis filters, we use a tool known as the
Polyphase Decomposition [7]. This is essentially a tool for time-division multi-
plexing. Depending on the numbering of the various multiplexed components, the
decomposition is classified into two types, which, maybe due to a lack of a better
imagination, are known as the polyphase decompositions of Type 1 and Type 2. In

the Type 1 Polyphase Decomposition, a transfer function H(z) is expressed as

M-1

H(z)= ) z7FEu(zM) (2.2.6)

k=0

and the Ey(z) are called the Type 1 Polyphase components of H(z). For example,
if H(z) = ho + h1z7! + hoz™2 + h3273 and M = 2, we have

E()(Z) = ho + hzz—l

and

El(z) =hi + h32_1.

The Type 2 Polyphase Decomposition is an index-reversed version of the Type

1 decomposition. Thus, the Type 2 Polyphase decomposition of H(z) is

M-1
H(z)= Y 2z M1=b R (;M) (2.2.7)

k=0

and the type 2 polyphase components of H(z) are Rx(z) = Epr—1-k(2).

Using the polyphase decompositions of Types 1 and 2, we can express the

analysis and synthesis filters as

M-1
Hy(z)= Y z7'Eu(z™), 0<kI<M-1 (2.2.8)
=0
M-1
Fi(z)= Y M1 ORu(M),  0<ki<M-—1 (2.2.9)

=0
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Noise
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Fig 2.5. Polyphase Representation of the System in Fig 2.4.

This representation leads to Fig. 2.5 where the polyphase component matrices
E (z) and R(z) are such that the (k, )P element of E(z) is Exi(z) and the (k, [)tB
element of R(z) is Rix(z). We now introduce certain identities of Multirate Signal
Processing, sometimes known as the ‘Noble’ identities. These are illustrated in Fig.

2.6. Applying these identities, the interpolators and decimators can be moved to

obtain Fig. 2.7.
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Fig 2.6. Noble Identities of Multirate Signal Processing
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Noise vector added here
xo(n) > L xo(n)
X](n) > il AX](n)
. R@) S(2) E@iz) .
x () * >
M-1 v(n) M-1M

Fig 2.7. Equivalent Structure for the System in Fig 2.5.

In order to simplify this circuit, we use the following result [6]: when an input
u(n) is passed through an interpolator (by M), k units of delay, and a decimator
(by M) (see Fig. 2.8),

u(n) —=rp X i vin)

Fig 2.8. A Circuit with an Interpolator, a Delay and a Decimator

the resultant output v(n) can be expressed in the Z-domain as

s P .
Viz) = 4 27 MU(z), if kis a multiple of M 2.10).
(2) { 0 if k is not a multiple of M (2:2.10)

b

Using this identity, we obtain Fig. 2.9, which is a simplified equivalent representa-
tion of our system. The analysis and synthesis filters are now represented in their

polyphase forms, and are now matrix processors rather than scalar ones. We can
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obtain the channel matrix C(z) by counting the number of delays from each input

branch to each output branch and taking into account the multipliers associated

wih these delays.

Noise vecjtor added here
xO(n) > - - xo(n)
X - - ~ o
X > - - .
2 Mrez) C2) ED |7 x,m
X =) ] >~ - X =2 (M)
> — -
Xp—1(N XM — 1(n)

Fig 2.9. Simplified Representation of the System

The channel matrix C(z) for M = 5 is given by

S1(2)z7t Sy(2)z
So(2)z=t  S1(2)=
C(z) = | Su(2)27? So(2)z
53(2)2_2 54(2)2
S2(2)272  S3(2)z

-1
-1
-1
-2
-2

S3(z)z
522—1
Sl(z)z‘l
So(z)z~1
54(2’)2_2

S3(z)z
53(2)2:
Sa(2)z
Si(z)z
So(z)z

-1
-1
-1
-1
-1

So(2)

54(2)2
S3(z)z
S2(Z)Z
Sl(z)z

-1
-1
-1
-1

where the Si(z) are the Type 1 Polyphase Components of S(z). C(z) is observed

to be a pseudo-circulant matrix. A matrix Q(z) is said to be pseudo-circulant if the

entries ¢; j(2); 1,7 = 0,..., M — 1 satisfy

aus(2) = { 24710

27 qo,j—irm(2),] <i <M -1

0<i<;j

This observation is in accordance with the results of Vaidyanathan and Mitra [9)

that block implementations of digital filters lead to pseudo-circulant matrices.
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In the case when the channel impulse response is of a finite length, C(z) is
observed to be a polynomial matrix. In particular, if the length of the channel
impulse response is not larger than the number of channels, then all the entries of

C(z) are either zero or just a delay. For example, if M = 5, and

S(z) =so 4+ 81271 + 59272

we have 1 .
S1z2 S22 0 0 S0
S0z sy1z71 spz7! 0 0
C(z) = 0 s0z7 1 s1271 s9271 0
0 0 Soz_l S]Z—l 822:_1
S9272 0 0 spz” ! s1271

By way of this derivation, we have shown that the system in Fig. 2.4 is linear
and time-invariant, in spite of the presence of time-variant elements like decimators
and interpolators. With this framework, we are now in a position to derive schemes
to transmit data over such channels, and we shall do so in the rest of this chapter

and the chapters to come.

2.3 A Novel Scheme for Block Equalization

Using the equivalent structure for our transmission scheme which was introduced in
the earlier section, we now derive a scheme to perform block equalization over ISI
channels. Previous schemes introduced to perform this have made use of complete
block processors [3]. However, we show that the problem of block equalization can
be reduced to one of scalar equalization, provided one chooses suitable processors
at the input and output of the channel. We choose our pre- and postprocessors by
making use of a theorem on polynomial matrices. We also illustrate some interesting
properties of this decomposition.

From Fig.2.9, we can write the input-output relationship of the proposed struc-
ture: N

Xo(z) Xo(2)

Xi(z) Xi1(2)

= E(2)C(2)R(z2) (2.3.1).

Xpr-1(2) Xar_1(2)
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Since we want to convert the block equalization problem to one of scalar equal-
ization, we are essentially looking for a decoupling of the above equation so that
Xi(z) is dependent only on X(z). We would also prefer that the dependence be
ISI-free, i.e., we want £x(n) to be a delayed version of zi(n) (in the Multirate lit-
erature, this condition is referred to as perfect reconstruction). In other words, we
want the matrix product E(2)C(z)R(z) to be a diagonal matrix with the diago-
nal entries being, preferably, powers of z~1. We have to choose the matrices E(z)
and R(z) accordingly. Alternatively, we could choose the matrices E(z) and R(z)
to obtain a diagonal matrix product and perform some kind of scalar equalization
to get rid of any ISI created in this process. We examine the latter approach in
this section. For implementation purposes, we would require the entries of these
matrices to represent stable transfer functions. The simplicity of the entries of the
prefilter and the postfilter would also be a factor in judging the implementation

complexity of these processors.

The basic theorem we use to accomplish the diagonalization of the matrix

product E(z)C(z)R(z) is as follows [10,11]:

Smith Form: For any pxm matrix polynomial matrix P(z), we can find elementary
row and column operations, or corresponding unimodular matrices U(z) and V(z),

such that

U(2)P(2)V(z) = A(2) (2.3.2a)
where
/ 0 A2(z) ... 0 0 \
AO= 5o e o 232)
0 0 0 0

\ )

Unimodular matrices are polynomial matrices having the defining property that

their determinants are constant and non-zero. Here r is the (normal) rank of P(z)
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and the {A;(z)} are unique monic polynomials obeying a division property:

Ai(2)|Ait1(2), i=1,...,r—1 (2.3.2¢).
Moreover, if we define
A;i(z) = the ged of all 7 x ¢ minors of P(z) (2.3.2d)
then we have
Xi(z) = A‘?_"(IZ), Ao(z) =1 (2.3.2¢)

The matrix A(z) is called the Smith form of P(z). The {A;(z)} are called the
determinantal divisors of P(z) and the {);(z)} the invariant polynomials of P(z).
We refer the reader to [10,11] for a proof of the above theorem.

The method used to obtain the above decomposition is reproduced here from
[11]. Among the elements p;r(z) of P(z) that are not identically equal to zero,
we choose one which has least degree in z~! and by suitable permutations of the
rows and columns, we make this element p11(z). Then, we find the quotients and
remainders of the polynomials p;;(z) and pix(z) on division by py1(2):

Pi1(2) = p11(2)gi1 (2) + ria(2),
<i1<p,2<k<m

P1k(2) = pra(2)q1x(2) + rie(2).

If at least one of the remainders r;;(2), r1x(2), for example r14(z), is not identically
equal to zero, then we replace the px(z) by the remainder rii(z) by subtracting
the first column multiplied by ¢i1x(z) from the kth column. We note that the
remainder ry(z) has a lower degree than the original element pix(z). Then, we
can again reduce the degree of the element in the top left corner of the matrix by

putting in its place an element of smaller degree in z71.

However, if all the remainders r;;(z), r1x(z) are identically equal to zero, then

by subtracting from the ith row the first row multiplied by ¢;1(z) and from the
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k th column the first column multiplied by ¢1x(2), we reduce our polynomial matrix

P(z) to the form:

P11(2) 0 0
0 p22(2) pzm(z)
0 pa(2) . Pomle)...

If at least one of the elements pik(2),(2 < ¢ < p,2 < k < m) is not divisible by
p11(z), we add that column that contains such an element to the first column and
arrive at the previous case, and can therefore replace the upper left element of the
matrix by one of a lower degree. Since we cannot keep reducing the degree of this

element forever, the process must terminate, giving us a matrix of the form

al(z) 0 0
0 622(2) [ b2m(2’)
0 bys(z) ... bym(2)...

in which all the elements b;x(z) are divisible by a;(2). Now we apply the same
process as before to the submatrix with elements b;x(z) and recursively arrive at
the Smith form of the matrix.

By choosing the matrices E(z) and R(z) to be the appropriate unimodular ma-
trices as per the Smith Form, we can diagonalize the matrix product E(z)C(2)R(z).
We also note that if we choose M >> N, then most of the minors of the matrix
C(z) will be multiples of 2! and hence we can obtain perfect reconstruction of all
but a few of the parallel input signals. For the channels where the {A;(2)} are not
just multiples of z~!, we can attempt to perform some form of scalar equalization
to eliminate the ISI.

We demonstrate the above result using the example of the 1—D (or, the 1—2z71)

channel. For M = 5, we have

—z1 0 0 0 1
271 ! 0 0 0
C(z) = 0 z7!b 71 0 0 (2.3.3).
0 0 271 1 0
0 0 0 z7b =
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Using the Smith Form decomposition, we get

1 0 0 0 0
0 -1 0 0 0
E(z) = 0 -1 -1 0 0 (2.3.4)
0 -1 -1 -1 0
21 1 1 1 1
0 0 0 0 1
01 0 0 1
R(z)={0 0 1 0 1 (2.8)
0 001 1
1 00 0 2z
1 0 0 0 0
0 2=t 0 0 0
Az)=10 0 =z7! 0 0 (2.3.5).
0 0 0 =z 0
0 0 0 0 z7'(1-271)

Thus we have decomposed the scalar 1 — D channel into five channels, four of them
ISI-free and the other also a 1 — D channel, but at a lower signalling rate. Over
this channel, we could use conventional methods of equalization for such a channel,
such as decision feedback equalization or precoding. Over the other channels, we

can use ISI-free signalling,.

We observe that the filters needed to obtain this transformation have a very
low complexity as most of them involve just delays and multiplications by +1 or
—1. Another desirable feature of this structure, from a practical point of view, is
that the DFE over one of the parallel channels only has to take place at a rate which
is (1/M) times the signalling rate over the channel.

2.3.1 Properties of the Smith Form Decomposition

In this sub-section, we present certain properties of the Smith Form decomposition
introduced in the earlier section. We try to find the number of resultant scalar
channels which are ISI-free, the form of the pre- and postfilters and the effect of the

filters on the noise.
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To derive the properties of the system, we modify the original structure to

The modification we make is to introduce

obtain a more tractable equivalent.
a synthetic delay in the channel so that the new channel is 271$(z). With this

modification, the expression for the equivalent channel matrix, e.g., for M = 5,

becomes
So(z)z7t Si(2)z7!  S2z7! S3(2)z7! Sa(z2)z7?
S1(2)272 Sp(2)z7! S1(2)z7' Sa(z)z7! S3(z)z7?
C(z) = | Ss(2)z72 Su(2)z7% Sp(2)z7! Si(2)z7! Sp(2)z7? (2.3.1.1)
S2(2)z7% S3(2)272 Sa(2)z7% So(2)z7' Si(z)z7!
S$1(2)z72% S2(2)27% S3(2)z7% Su(2)z7? So(z)z7!

We now consider the special case of FIR channels, the length of whose impulse
response is shorter than the number of channels. As mentioned before, the equiva-
lent channel matrix for such channels has entries which are either zeros or delays.

For example, if M = 5, and
S(2) =80+ 81271 4+ 89272,

with an extra delay in the channel path, we have

s0z7 1 81271 sp27 0 0
0 s0z7 1 89271 s9z71 0
C(Z) = 0 0 802’_1 S]Z—l 322_1 (2312)
S22 0 0 soz~ 1 s1z71
51272 89272 0 0 soz~1

The Smith Form decomposition gives us M scalar channels. We consider the
number of resultant channels which are ISI-free. While the exact number of such
channels depends on M and on N, the length of the channel impulse response, and
on the actual impulse response coeflicients, a sharp lower bound on this number is
easily obtained.

Property 2.1 : The number of resultant channels in the Smith Form decomposition
with no ISI is at least M — N + 1.

Proof: We observe that the top left (M — N +1) x (M — N + 1) submatrix of the
We

channel matrix is upper triangular, with the diagonal elements being soz~!.
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denote the g.c.d. of the k x k minors of C(z) as Ag(z). With Ag(z) defined to be
1, we know that the resultant diagonal elements in the Smith form are given by

Ag(z)

Ar(z) = m

(2.3.1.2)

We also know that the division property Agx(z)|Ax+1(2) holds.

It follows that A;(2) is just a multiple of 271, because of the fact that all the
1x 1 minors of C(z) are zero or delays. We claim that Ax(z) is just a multiple of 2!
for 2 <k < M — N +1 too. We prove this claim by induction. For such k, we have
a minor of size k which is just a scalar multiple of z~*, which is the determinant
of the top left k x k submatrix of C(z). We make the induction assumption by
assuming that the result is true for all k¥ < I. Then, it follows that Ax(z) = kgz~*
for such k by recursion starting from k¥ = 1, where ki is a constant. Now A(z)
has degree at least [ in z='. Otherwise, A\i(z) = A(2)/A1-1(z) would have degree
less than 1, i.e., it is a constant or may even imply negative delays. Yet A\;_(2) is
a scalar multiple of 2!, and hence the division property in the Smith Form, i.e.,
Ai=1(2)]Ai(2), would be violated. Since we already have a minor of size [ which is
just a multiple of 27, it follows that A;(z) = x;z~'. This implies that \(z) is a
multiple of 271, and the proof is complete.

The number of resultant channels with no ISI is thus lowerbounded by M —
N + 1. This bound was observed to be an equality for most channels. However, we
did find some cases where more ISI-free channels could be obtained.
Property 2.2: The top left (M — N + 1) x (M — N + 1) submatrices of both
the preprocessor R(z) and the postprocessor E(z) are constants, i.e., they have no
dependence on z7!.
Proof: The proof of this claim follows from the method described earlier to derive
the Smith Form and the structure of the equivalent channel matrix C(z). In the
decomposition, we take care of a row first and then a column. We observe that

for the first M — N + 1 columns, higher degree elements occur only below the
(M — N + 1)th row. Hence the pre-multiplying matrix, which has to cancel these
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elements, has polynomial elements only in these rows for the first M — N +1 columns,
which proves the claim for the pre-multiplying matrix. The same argument can be
applied to the postmultiplying matrix to obtain the result.

This property has its implications in using methods like vector coding [2] over
ISI channels. We could conceivably use a (M — N +1) x (M — N +1) unitary matrix
as a prefilter to our preprocessor to control the input power in a multidimensional
lattice, and obtain improvements in coding gain. The rest of the channels could be
used to transmit unmodified lattice points, which, due to their regular spacing, can
facilitate synchronization. We have not explored this avenue further, and leave it
as a suggestion for further research.
Property 2.3: The postfilter E(z) colors the noise.
Proof: In order that the output noise not be colored by the postfilter, we require

the postfilter to be lossless [15], i.e.,
E(z)E(z) =1

where E(z) is defined as
E(z) = ET(z™).

A general theorem about lossless matrices is that the degree of the system, which is
the number of delays needed to implement the system, is the same as the degree of
the determinant of the matrix [15]. In our case, we know that E(z) is unimodular,
hence its determinant is a constant, independent of z~!. However, the presence of
delays in the matrix indicates that we need at least one delay to implement it, i.e.,
the degree of the system is at least one. Hence E(z) cannot be lossless, which means
the noise at the output will be colored.

This property is one which restricts the use of the proposed decomposition in a
practical environment, where it is easier to deal with white noise than with colored
noise. However, in the next chapter, we will derive an optimum scheme to transmit
over such channels, in which we will find that the optimum filters have far more

desirable properties.
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2.3.2 Effects of the Block Framework on the System

We find that the block framework we use to transmit data over the channel produces
interesting modifications to the poles and zeros of the system. In particular, poles
are shifted away from the unit circle (we consider only stable systems, with all
poles inside the unit circle). The position of the zeros of the channel which lie on
the unit circle are shifted depending on the number of parallel channels used for
transmission. We demonstrate the reasons for these transformations, and the Smith
Form gives us a method to verify that these indeed hold. The properties presented
in this subsection do not depend on the length of the impulse response, specifically
on whether it is shorter than the number of channels used. Indeed, if we consider
a channel with poles, the impulse response is of infinite length and no amount of
parallel decomposition can achieve a situation where the channel impulse response
is shorter than the number of parallel channels used.

Property 2.4: If the original channel has a pole at p, the resultant channels have
a pole at pM.

Proof: Thisis a result of the fact that the elements of the equivalent channel matrix
are the polyphase components of the original channel impulse response. For, if the

Z-transform of the original channel had a component of the form

then a polyphase component has a component of the form
o0
Z ( PM )m Z—m’
m=0

which translates to a pole at p™. The method to obtain the Smith Form of a rational
matrix is basically the same as that for a polynomial matrix; we just convert the
problem to that of decomposing a polynomial matrix by factoring out the least
common multiple of the denominators of all the elements in the matrix (see [10]).

Thus the resultant elements of the Smith Form decomposition will have the poles



30

of the polyphase elements in the denominator, which implies that they have a pole
atpM.

The more interesting property of this block format is how the zeros of the
channel move on the unit circle depending on the size of the blocks used. Property
2.5 elucidates this phenomenon.

Property 2.5: If the original channel has a zero on the unit circle at w = 8, then
the block channel has a zero at w = M6 mod 2~.
Proof: Since the original channel has a zero at w = 6, an input sequence {e/"%}
will produce an output of zero. The corresponding input to the block channel will
be of the form (iMnd

=38 iMn8

u(n) =
e—j(M—{)oejMno

Since each of the individual terms in the input vector has a harmonic component at
the frequency w = M6, or equivalently at w = M6 mod 27 due to the periodicity
of the discrete-time Fourier transform. Thus an input with a harmonic component
at w = M6 mod 27 produces a zero output from the block system, which proves
that the block system has a zero at this frequency.

As an example, we show how a parallel decomposition of the 1+ D channel leads
to several ISI-free channels and an additional channel which, when M is even, is a
1 — D channel. The phenomenon by which the zero of the block channel shifts can
be explained as follows: The 1+ 27! channel has a zero at z = —1. Thus an input
sequence {(—1)"}, which has a period of two, leads to a zero output. However, in

the case of the block channel, the corresponding input sequence to produce a zero

output is a vector sequence of the form (for M = 4)

1 1 1 1
-1 -1 -1 -1

A 1 ? 1 b 1 b 1 ye
-1 -1 ~1 -1

This sequence has a period of unity and hence the zero of the block channel is at

z = 1 and thus the block channel, when decomposed, gives rise to a 1 — 2~ channel
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as one of its parallel channels. When M is odd, the input sequence producing a
zero output has a period of two and thus the zero of the block channel remains at
z=-1

A verification of the above phenomenon can be seen using the Smith Form

Decomposition for the 1+ 2~ channel for M = 4. We have

Pt 0 0 1
271 271 0 0
Clz)=] 0 =zt 27t 0 (2.3.2.1)
0 27! 271 ¢
0 0 2zt 2t
1 0 0 0
0 1 0 O
E(z) = 0 -1 1 0 (2.3.2.2)
—z-1 1 -1 1
0 0 0 1
01 0 -1
R(z) = 00 1 1 (2.3.2.3)
1 0 0 —z7!
1 0 0 0
0 2t 0 0
A(z) = 0 0 o1 0 (2.3.24)
0 0 0 =zz'(1-2z27Y

The importance of this result lies in the fact that it gives us a method to
use codes designed for one ISI channel over another ISI channel. In line coding,
a method of interleaving is commonly used to modify codes having a zero at one
frequency so that the resultant code has a zero at another frequency [16]. We
have essentially found the channel coding analog of this result. In the example
of the 1 + D channel presented above, we can use codes designed for the ISI-free
channel and codes designed for the 1 — D channel by making use of the Smith Form

decomposition.
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2.4 Conclusions

The main purpose of this chapter was to motivate and present a multirate signal
processing framework for data transmission over ISI channels. Using results from
the Multirate Signal Processing literature, we derived simplified equivalent circuits
for the scheme presented. Using this equivalent, we were able to derive a novel
method for equalization of such channels using results from the theory of polyno-
mial matrices. We presented various properties of this decomposition, and showed
how this decomposition could be used to modify channel zeros, which facilitates
coding over such channels. We will find the framework derived in this chapter to
be invaluable in later chapters in deriving a different set of filters and equalizers for

transmission over channels with ISI and colored noise.
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Chapter 3 Optimum Filters for Multichannel Data
Transmission

In the previous chapter, we proposed a framework for multichannel data transmis-
sion over a channel with ISI. In this chapter, we consider the problem of finding
the best prefilter and postfilter possible under certain restrictions, to achieve the
least possible error between the input and the output. We choose our filters to
be reasonably low in complexity, and try to find the optimum filters to transmit
block symbols using the multichannel format. The prefilter and postfilter take care
of the ISI encountered by a single block of data, and the residual ISI is cancelled
using a Block Decision Feedback Equalizer. This is just a generalization of the DFE
introduced in earlier chapters, with the modification that the decision feedback co-
efficients are matrices rather than scalars. It turns out that using these optimum
filters leads to significant performance gains over scalar schemes, and we illustrate

this by analysis and examples.
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3.1 Introduction

As mentioned in the previous chapter, our original plan of research was to find good
analysis and synthesis filters to transmit data over the ISI channel; good filters would
suppress adjacent channel interference while maintaining a rather well-behaved self
frequency response. We were unable to solve this problem, which still remains open.
However, our next train of thought was that we were, in a sense, capturing more of
the channel using a block input than we were while using a scalar input and DFE.
So we might be able to do better using this format by choosing filters to take care
of the ISI within a block, and use a DFE to attend to the ISI outside the block.
This train of thought led us to propose the structure shown in Figure 3.1. Note that
this is essentially the same as the scheme shown in Fig. 2.4, except for the addition
of the Block Decision Feedback Equalizer. We also note the presence of the extra
synthetic delay added in the channel path.

The inputs to the channel are from a zero-mean PAM set and signal values in
the same block may be correlated, but we assume uncorrelated blocks. Mathemat-

ically, this is expressed as

E[X(n)xT(l)] = Rys0ni (311)

where E[ ] denotes statistical expectation, and 8,; is the Kronecker delta func-
tion, which is zero unless n = I, when it is 1. The vector x(n) is composed of
zo(n),z1(n),... tpm-1(n), which are scalar components. By virtue of being a cor-
relation matrix, Ry, is positive semidefinite. The noise w(n) is assumed to be

uncorrelated to the signal.
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The analysis which was performed in the earlier chapter to derive the equivalent
circuit for the structure in Fig 2.4 using Multirate Signal Processing can be carried
out again to get the Equivalent Circuit shown in Fig. 3.2. The channel matrix C(z)
for M =5 is given by

So(2)z7t Si(z)z™! Spz7t S3(2)z7t Sy(2)z7?
Si(2)z72 So(2)z7! Si(2)z7! So(2)z7t  S3(2)z7!
C(z) = | S3(2)z7%2 8S4(2)272 So(z)z7! Si(2)z7! Sa(2)z7! (3.1.2)
Sa(2)272 S3(2)27% Si(2)z7% So(2)z7' Si(2)z7?
S$1(2)z72  S3(2)2z7? S3(2)272% Sa(2)z7% So(z)z7!

where Si(z) are the Type 1 polyphase components of S(z). We observe that C(z)

can be written in the form

C(2) =C127' 4+ Ca272 + Caz7% + ... (3.1.3)
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Using this equivalent circuit with the second order statistics of the input and
the noise, we derive the optimum filters (or rather, their polyphase forms) and the
optimum BDFE that minimize the mean-squared error between the input and the
output.

A similar problem has been tackled by Kasturia et al. in [1] and by Lechleider
in [2]. Kasturia et al. make use of a zero-forcing optimality criterion and an
orthogonal postprocessor in order to avoid coloring the noise. Lechleider considers
the problem of maximization of the signal-to-noise ratios on each of the individual
subchannels created by a biorthogonal set of transmitters and receivers with respect
to the channel. In this chapter, we find the optimum filters to minimize the mean-
squared error between the input and the output, with no restrictive assumptions
on these filters. Our results also include the possibility of the input signals being
correlated.

The organization of the chapter is as follows: In Section 3.2, the necessary
preprocessors and postprocessors are found by minimizing the mean-squared error
between the input and output. In Section 3.3, we investigate the implications
of using the optimum filters in the special case of uncorrelated inputs. In this
case, we find that the optimal pre- and postprocessors give rise to a set of parallel
independent channels, with the optimal postprocessor being a whitening filter for
the noise. The implication of this result is that normal trellis codes, which have
been designed to combat white noise, can be used efficiently over channels with ISI
and colored noise, just by using optimal pre- and postprocessors. In Section 3.4, we
analyze the performance of the scheme with the optimal pre- and postprocessors
and compare its performance to that of a DFE. In Section 3.5, we consider an
example channel and demonstrate the performance of the scheme and present some
physical reasoning for the improved performance. We conclude the chapter with a

brief summary in Section 3.6.
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3.2 Derivation of the Optimum Filters

In this section, we derive the finite-length analysis and synthesis filters that minimize
the mean-squared error between the input and the output. The Block DFE is chosen
to minimize the ISI outside the block in a least squared error sense. We restrict
ourselves to the case where E(z) and R(z) cease to be functions of z, i.e., they
are just scalar matrices B and A respectively. This implies that the analysis and
synthesis filters are of length M, which is the same as the number of parallel channels
being used.

From Fig. 3.2, we can write the expression for the input v(n) to the decision

device in terms of x(n), X(n), and the various circuit elements. We have
v(n) = BC1A x(n—-1)+ Z BCxA x(n —k)+ Bw(n) + Z Dix(n —k). (3.2.1)
k=2 k=2

The term BC; A x(n — 1) in the above equation represents the desired signal at
the output of the channel and the rest of the terms represent the undesirable in-
terference. In Fig. 3.2, we note that the demultiplexing has transformed the noise
sequence w(n) into a noise vector sequence w(n) at the output of the channel ma-

trix. This noise vector is given by
w(n) = [w(Mn),w(Mn —1),...,w(Mn — M +1)]T
= [wo(n), wi(n),...,wy_1(n)T
and its autocorrelation matrix for zero lag is given by

E[w(n)w"(n)] = Rww(0) = Ry,

Elwo(n)wo(n)] . Elwo(n)war—1(n))
_ Elwi(n)wo(n)]  Efwi(n)wi(n)] e (3.2.2)
E[wM_l(.n)wo(n)] . E[wm_l(n.)wM_l(n)

where the matrix R, is symmetric and positive semi-definite. We assume that the
matrix R, is non-singular. In the case when the noise sequence w(n) is wide-sense

stationary, the matrix R, turns out to be a symmetric Toeplitz matrix; a matrix is
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said to be Toeplitz if it has equal elements along the major and each minor diagonal.
If the noise is WSS, then R,, is singular only if w(n) is a harmonic process, i.e., it
consists only of a finite number of sinusoids [5]. Thus the singularity of R, is not
a very restrictive assumption. In case it is singular, we shall transcend the problem
by adding a modicum of white noise to the singular noise already present.

Due to the non-linear relationship between v(n) and X(n) (which arises due
to the decision device), a rigorous mathematical analysis of equation (3.2.1) is in-
tractable. However, under the assumption of perfect decisions, i.e., X(n) = x(n),
we shall proceed and derive an expression for the mean-squared error. This will, of
course, be a rigorous lower bound to the mean-squared error attainable. This bound
could actually be achieved by using a block precoder [11] at the input to the channel
instead of the block DFE at the output of the channel. The block precoder gets
rid of the problem of error propagation, which is the main reason for the non-ideal
decisions of the DFE.

The mean-squared error E between v(n) and x(n — 1) is given by
€ = E[(v(n) = x(n - 1)) (v(n) - x(n — 1))]
. (3.2.3)
= E[Tr[(v(n) — x(n — 1))(v(n) — x(n — 1))7]]
where Tr[ ] denotes the trace of a matrix. Using equations (3.1.1) and (3.2.2), we

get
£ = Tr[(BC1A —TI)R..(BC;A —I)T + BR, BT+
> 3.2.4
> (BCiA — Dy)R,.(BCLA — Di)"]. (3:24)
k=2

Since the contributions due to the individual terms in the above expression are

additive (the trace is additive), we can set
BCLA = Dy ; k>2,

and cancel the contributions of these terms altogether, thereby contributing the

minimum possible amount to the mean-squared error. This gives us

£ = Tr[(BC1A - I)R.:(BC1A - 1) + BR,,BT]. (3.2.5)
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We first find the optimum B, assuming A given. This problem can be solved by
completing the square, a standard approach in estimation theory. We observe that

the matrix whose trace is being taken in equation (3.2.5) can be written in the form
(B-QP(B-Q)T+M

where P is positive definite and M is independent of B. Thus, to minimize &, we

set B = Q, which gives us the optimum By:
By = R,;,ATC{(R,, + C;AR,,ATCT)"! (3.2.6)

and a corresponding mean-squared error of
£ = Tr[Re: — RezATCT(R,, + C1AR,.ATCT)"1C,AR,,]. (3.2.7)

We now want to find the prefilter A so that this £ is minimized. However,
for this problem to be useful or even to make sense, a power constraint must be
considered at the input to the channel. Otherwise, we could choose the elements of
A to be very large and the elements of B to be essentially zero, thus cancelling the
effect of the noise altogether. All practical channels have restrictions on the power
that can be transmitted. For example, on a telephone line, the phone company
restricts the power used for transmission in order to operate longer on batteries
during power outages, although this is not an overriding consideration.

The power constraint we consider is an average power constraint:
E[(Ax(n))T(Ax(n))] = E[Tr[(Ax(n))(Ax(n))T]] = Tr[AR..AT] = P. (3.2.8)

In order to minimize £ under the constraint in (3.2.8), we follow an approach similar

to the one in [3]. We make the substitution
A=GU (3.2.9)
where U is the unitary matrix that diagonalizes R;;. In other words,

UR,. U7 = A = diag{\1, \o,... Am}, M1 > A2 >...> Au. (3.2.10)
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The matrix G in equation (3.2.9) is the one to be found in order to minimize the
mean-squared error. We note that since U is non-singular, then for any A, there

exists a matrix G so that (3.2.9) holds. Using (3.2.9) in (3.2.7), we get
€ = Tr[Res — R UTGTCI (R, + C1GAGTC)™'CiGUR,,].  (3.2.11)

Using the fact that the trace is invariant to cyclic permutations together with equa-

tion (3.2.10), we obtain
£ = Tr[R.. — A’GTCT(R, + C;GAGTCT) ', G]. (3.2.12)
In Appendix 3.A.1, we show that this equation can be rewritten as
£ = Tr[Res — A)+ Tr[(I+ AV2GTCTR1C,GAY/?)14A]. (3.2.13)
Since the trace is invariant to cyclic permutations, it follows that
Tr[A] = Tr[UR,,U7] = Tr[R,,UTU] = Tr[R,,].
Hence we have
£ =Tr[(I+AYV2GTCTR'C;GAY?) 4] (3.2.14)
Thus, we now have to find G to minimize Tr[W ~!A] where
W =1+ AY2GTCTR;'C,GA2, (3.2.15)

In other words, we have to find G to minimize Zile[W‘l]ii/\i. Since the \; are
non-negative, we essentially have to minimize the individual diagonal elements of
w-L

We note that W is positive definite. For such a matrix, it can be shown that

{W™i > wiit (3.2.16)
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with equality only if W is diagonal. One proof of the above inequality is given in
Appendix 3.A.2; an alternative proof of this inequality can be found in [9]. Thus
it follows that in order to minimize £, we need AY2GTCTR;1C,GA? to be
diagonal, which implies that GTCTR1C;G be diagonal. Denoting the columns

of G by g;, this condition can be expressed as
gl CTR;'Cig; = kibij. (3.2.17)

The optimal solution we now derive will be consistent with the above condition.

Assuming GTCTR!C; G is diagonal, the quantity to be minimized is
g 1 Hw

-1

M
€= Z (1+ Xigl CTR;'Cigi) ™ M. (3.2.18)

Since A = GU, the power constraint can be rewritten as
P =Tr[AR..AT] = Tr[GAGT].

As the trace is invariant to cyclic permutations, we obtain
P =Tr[AGTG] = Z \ig! gi. (3.2.19)

Using a Lagrange multiplier, we can now routinely minimize the mean-squared

error. The result is
MCTRGLCigr = p(1 4+ Mgl CTRZL Cigi) g (3.2.20)

Thus the optimal gi’s are eigenvectors of the matrix CTR,;}UCI. Since this matrix
is symmetric, we can find enough orthogonal eigenvectors to satisfy the diagonality
constraint (3.2.17). As usual, u is a Lagrange multiplier to be determined so that
the power constraint is satisfied.

The astute reader might note the fact that the imposition of the diagonality

constraint in equation (3.2.17) seems independent of the constraint (3.2.19) on G,
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and thus may not necessarily result in the optimal constrained solution. We put
any aspersions to rest by pointing out that premultiplying G by a unitary matrix
does not change the constraint, but would be sufficient to achieve the diagonality
condition.

Having determined the optimal G, the corresponding A,B and the decision
feedback coefficients D;, can easily be found. Though equation (3.2.6) involves the
inversion of a matrix in determining the optimal B, we can modify this matrix
inversion problem into one of inverting a diagonal matrix by use of the so-called

matrix inversion lemma [4]. Details are given in Appendix 3.A.3.

3.3 Implications of the Optimum Filters

In this case we consider the special case when the input symbols on each channel
are uncorrelated. In this case R;, is a diagonal matrix A and U is the identity

matrix. In this case, the optimal matrix B has the form
B =A(I-A1A;A)ATCTRY (3.3.1)
while the matrix product BC; A is obtained as
BCiA = A(I—- A1AzA)A,, (3.3.2)

where the matrices A; and A2 are as defined in Appendix 3.A.3. We find a surprising
result while considering the autocorrelation function at zero lag of the noise passed

through the optimal postprocessor Bg. This autocorrelation is given by
E[Bow(n)wT(n)Bl = ByRywBT
= A(I- A1 AMATCTR, R, R CIA(T — A1 A M)A

= A*(I—- A1A2A)A,
(3.3.3)

which is a diagonal matrix. In other words, the optimal postprocessor, in the case
of independent inputs in each subchannel, is, in a sense, a whitening filter for the

noise. The implication of this result is that normal trellis codes [6], which have
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been designed for detection in white noise, can be used efficiently over channels
with colored noise (e.g., the ISDN subscriber loop, where the primary impairment
is crosstalk from adjacent channels [7]) by making use of the optimum pre- and
postprocessors.

In the case of white noise, we observe that the columns of B are orthogonal
and the matrix product BC; A is diagonal. Both these are assumptions made in [1]
by Kasturia et al. We also observe that B is, in a sense, a matched filter to C; A,
except for a premultiplying diagonal matrix. In his paper, Lechleider [2] has given
a physical argument that BC; A be diagonal for optimality. We have been able to

mathematically arrive at the same condition, albeit for a slightly different problem.

3.4 Performance Evaluation

We have derived an optimum scheme for the transmission of blocked data. The mo-
tivation for this scheme was that we could find a scheme which would perform better
than a scalar transmission scheme with decision feedback equalization. Hence, in
this section, we evaluate the performance of the proposed scheme by determining
its capacity under the constraint that the input power is limited. We then com-
pare the performance of this scheme to scalar transmission with decision feedback
equalization and demonstrate that gains can be obtained by using the proposed
scheme.

We will evaluate the capacity of the two schemes under the following assump-
tions. We assume the noise to be additive white Gaussian with variance ¢2. The
total power in each block input to the channel, blocks being of size M, is con-
strained to be equal to P. Correspondingly, the input power of ‘ea,ch symbol when
using scalar transmission with DFE is restricted to be equal to P/M. In the block

case, the noise correlation matrix R,, is now given by
R, = o’L (3.4.1)

The columns of the prefilter are the eigenvectors of the matrix C{ Cy, and we denote
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the eigenvalues of this matrix as «;. In other words,
CTc,a; = aja. (3.4.2)

We note that the eigenvalues are positive since the matrix in question is non-
singular.

The basic theorem of Shannon we will use to evaluate the capacity of the two
transmission schemes is as follows [8]: A discrete-time memoryless channel (i.e., a
channel with no ISI) with additive gaussian noise of variance 02 and a gain a, with

2 9

In the case of scalar transmission with DFE, the resultant channel is one with no
IST since the ISI is ideally cancelled by the decision feedback equalizer. We thus
have a channel of gain sy, with additive noise variance o2, and with an input power
constraint of P/M. Thus the capacity of scalar transmission with DFE, expressed

per block of M symbols, is given by

C, =

9-2/!— log(1 +

siP
0 2).

T (3.4.4)

For the block case, when the parallel input symbols are independent, the re-
sultant is a parallel set of independent channels, each of which is ISI-free, due to
the ideality of the Block DFE. The capacity of the block scheme is thus the sum of
the capacities of the individual parallel channels under the constraint that the total

block input power is constrained to be P. We have
C}rcl a; = o;a;
and assume that the energies of the columns are $%. In other words,

ala; = 2. (3.4.5)
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With the input correlation matrix being A, which is diagonal with elements \;, the

input power constraint to the channel can be expressed as

M
P= Z; )\,-a;ra,-

M
= Z Aiﬂ?.
=1

(3.4.6)

It is evident that we can set 7 = 1 and optimize the \;’s to maximize the capacity

of the scheme. We shall do so , and thus the power constraint translates to

M
P=> . (3.4.7)
i=1

Using equations (3.3.2) and (3.3.3), we obtain the gains of the individual chan-

nels to be
= i 3.4.8
Y=+ ar) (3:48)
and the noise variances at the outputs of the individual channels to be
Nayo?
2 i 247 (3.4.9)

g; = (o2 +)\iai)2.

The input powers to each of the channels is given by A;. Using equation (3.4.3), we
thus obtain the total capacity (per block) of the proposed scheme to be

Ak

). (3.4.10)

o2

M
C = ZE log(1 +
=1

This is to be maximized with respect to the A; under the constraint given in equation
(3.4.7). The A, being input powers, are non-negative.

It can be shown that the function to be maximized is a concave function. Thus
we can use the Kuhn-Tucker conditions [10] to find the maximum. The conditions

turn out to be
(87

S TS0 (3.4.11)
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with equality if \; is non-zero. Here p is a Lagrange multiplier, and is chosen so
that the power constraint is satisfied. Let A be the set of indices for which J; is

non-zero. Then we have
1
Ai = W(P t+o Z —) -— (3.4.12)

and the capacity is given by
1 a;
=3 Z 1og[‘—A—|(P/a + Z ) (3.4.13)
t€EA 1€A
This can be rewritten as
I 1
C= L (pfo? + Z |+ log II o (3.4.14)
2 |A| Py

If the input power P is large enough, then A = 1,2,... M and |[A| = M. In

this case, we have

M

C=%

log(.Mi2 + Tr[(C?Cl)_l]/M) + % log[det(CT Cy)]. (3.4.15)

From the form of Cy, it is evident that

det(CTC,) = s2M (3.4.16)
which gives us
M s2P T el
C=— log(M =+ seTr[(C{ C1) ')/ M). (3.4.17)

We compare this with the capacity obtained when using scalar transmission with
DFE, which is given by equation (3.4.4):

M s3P

C, = 3‘ log( Mo? + 1)

It can be shown that s3Tr[(C¥C;)~!]/M has a minimum value of 1, which implies
that the optimized block transmission scheme always outperforms scalar transmis-

sion with DFE. The minimum value occurs when the matrix C; is a scalar multiple
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of the identity matrix, which implies that there is no ISI within the block, hence
the scheme is ineffective in taking care of ISI within the block; thus we must obtain

no performance improvement over the DFE technique.

3.5 An Example Channel
In this section, we present numerical results for data transmission using both the
scalar DFE scheme and the optimum block scheme for the special case of the “di-
code” channel and white noise. The dicode channel has a Z-transform which is
given by

H(z)=1-2z"1. (3.5.1)

The frequency response of this channel is plotted in Fig. 3.3. We observe that the

channel has a spectral null at zero frequency.

35+

25

1.5F

Squared Magnitude
o

0 0.5 1 1.5 2 2.5 3 35

Normalized Angular Frequency

Fig. 3.3 Frequency Response of Dicode Channel
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The columns of the optimum prefilter, as discussed before, are the eigenvectors
of the matrix CTC;. For a given signal to noise ratio, the input power to each
of the individual parallel channels is chosen as per the procedure outlined in the
Section. 3.4. We plot the capacity of scalar transmission with DFE over this chan-
nel and compare it with transmission using the block scheme with input powers
optimized. The results are shown in Fig. 3.4, and clearly demonstrate the superior

performance of the block scheme.

14 T T T T T T T T T

Capacity in bits per block

0 1 1 1 i 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Block SNR

Fig. 3.4 Capacities of Scalar DFE and Block Schemes- Dicode Channel
(Solid Line - Block Scheme; Dotted Line - Scalar DFE)
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We now address the question of why the block scheme appears to perform so
well. To obtain the answer, we need look only as far as the frequency domain. We
note that all our optimization was done in the time domain; however, the optimum
filters we obtained have desirable properties in the frequency domain too. We
plot the frequency responses of the synthesis filters at the input to the channel in
Fig. 3.5. We observe that these filters have the property of splitting the spectrum
into various frequency bands, though not with a whole lot of attenuation between
adjacent bands. Thus, the block scheme, in a way, achieves what we had set out to

do initially, but failed in the process.

Magnitude response

35

Normalized Angular Frequency

Fig. 3.5 Frequency Responses of Synthesis Filters
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To obtain some further insight, we also look at the spectral properties of the
signal at the input to the channel. This signal is characterized best as a cyclosta-
tionary signal [12] and does not have a power spectrum in the true sense of the
word. However, we plot a pseudo power spectrum, which is the average of the
power spectra of the signals on each of the individual subchannels, in Fig. 3.6. We
observe that this power spectrum is quite similar to the one dictated by the wa-
terpouring theorem for the input signal achieving capacity. Thus, we find that the
block scheme succeeds in the desired spectral shaping of the input, and we believe

this is the main reason for its superior performance.

Power Spectrum

1 1 1

0 0.5 1 1.5 2 25 3 35

Normalized Angular Frequency
Fig. 3.6 Pscudo Power Spectrum of Optimum Input -- Dicode Channel
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3.6 Conclusions

In this chapter, we derived the optimum finite-length prefilters and postfilters that
minimized the mean-squared error between the input and the output of a channel
with ISI, where decision-feedback equalization was used to counter the ISI present
outside the block. The optimum prefilter was found to be a matrix of the eigenvec-
tors of the correlation matrix of the channel impulse response and noise combined;
hence, in a sense, it represents the Karhunen-Loeve transform [13] of the channel
and noise. For the case of uncorrelated input symbols, the technique gave us a set
of parallel independent channels, with the postfilter whitening the noise the best
it could. Thus we obtained an efficient technique to transmit existing trellis codes
over channels with ISI and colored noise.

We also evaluated the capacity of the proposed scheme and compared it to the
capacity of the channel when using DFE. We found that substantial improvements
could be obtained by using the block transmission scheme. We also observed that
the block transmission scheme, along with an optimized input distribution, attempts
to mimic the optimum input power spectrum as dictated by the water-pouring

theorem, thus giving us a physical explanation for its superior performance.

3.A.1 Appendix: Using the Matrix Inversion Lemma
In this section, we show the following relationship:
Tr[A’MT(MAM” + P)™'M = Tr[A — (I1+ AV2MTPIMAY/?)~1A]. (341.1)

In order to show this we make use of the matrix inversion lemmal[4]:

IfA=B+CD!CT
(341.2)
then A™' = B™! - B~!C(CTB~'C+D)"'cTB.

Applying this lemma to the R.H.S. of (3A1.1) (where D is replaced by P ) gives us
Tr[A — (I _ AI/ZMT(P + MA1/2A1/2MT)'1MA1/2)A]

which can be seen to be equal to the L.H.S. of (3A1.1), using the fact that the trace

is invariant to a cyclic permutation.
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3.A.2 Appendix: A Property of Positive Definite Matrices

In this section we show that for a positive definite matrix W,
[W—l],’i > [w,-,-]—l (3A2.1)

with equality only if W is diagonal. Since W is positive definite, it can be written

as
w =VvTrv (3A42.2)
where
VIV =1
and

T = diag{v1,72,-.-,Yym}, 7i>0,0=12,..., M.

We note that

wl=vTirly, (342.3)
Thus, we have
M
Wik = Z’yiv?k (342.4)
and
M1
(W ke =Y —v. (342.5)
—1 Vi

Hence, it follows that

M M
W eewre = 3 3 okl

1 =1V
=1 j=1
. M M . . (3A2.6)
=3 D>+ kol
i=1 j=1 BE !

where the last step follows due to symmetry.
Using the fact that (z + 1/z) has a minimum value of 2 for positive z (this
minimum occurs when z = 1), we obtain

M M
- 2.2
(W ek wer > E E VikVjk-

=1 j=1
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From the unitary property of V, it follows that the right-hand side of the above
inequality is unity, from which the inequality (3A2.1) follows.
To prove that equality occurs in (3A2.1) only if W is diagonal, we write

Lyl _2te; ,e;20 (342.7)

Vi 7
where ¢;; is zero if ¢ = j. We thus have
M M
W kwie =1+ 5> ) eijohol. (3A42.8)
i=1 j=1

For the case when all eigenvalues of W are distinct, €;; is positive for ¢ # j; therefore,

N

for equality in (3A2.1) we must have
vikvjEr =0 for z # 3.

This implies that there can be only one non-zero element in each column of V and
this element has to be unity due to the fact that V is unitary. In other words, V is
a permutation matrix and it follows that W is a diagonal matrix.

For the case when the eigenvalues are not distinct, the proof is more involved.
In this case, v; = vj, i.e. € = 0 for ¢ # j. For such ¢,j, we assume, without loss
of generality, that v;xv;r # 0 for all k. Let S be the set of indices for which the

eigenvalues are equal. Then, it follows that
vgkVik =0
where ¢ € S and [ ¢ S. This implies that, for all k, v;y =0for { ¢ S. From equation
(3A2.2), we obtain
M
Wk = Z’)’ivikvil- (342.9)
=1

In the case of equality in (3A2.1), the arguments above indicate that this is equiv-

alent to

Wkl = Z YiVikVil. (342.10)
i€s



57

From the definition of the set S, it follows that

M
Wil =7y Z VikVil = 7Y Z VikV4l. (3A211)
i€S =1

The last step follows since vix = 0 for I € S. Due to the unitary nature of V, we

have
M

Zvikv“ =0 fork#I (342.12)
i=1

which proves that the off-diagonal elements are zero.

3.A.3 Appendix: Simplifying the Postfilter

In this appendix, we use the matrix inversion lemma to simplify the form of the
optimal postfilter, which, as a function of the prefilter A, is given by equation
(3.2.6):

By = R, ATCT(R,, + C;AR,,ATCT)1, (343.1)

Using equation (3.2.9) this can be rewritten as
B = R, UTGTCT(R, + C;GAGTCT) !, (343.2)

Application of the matrix inversion lemma in equation (3A1.2) to equation (3A3.2)

results in

B, = R, UTGTCT (R;‘—

R;!CiGAY?(AY2GTCTR'C,GAY? + I)‘1A1/2GTCITR;1).
(343.3)
We note that GTCTR;!'C; G is a diagonal matrix due to (3.3.17). We denote this
matrix A;. Since the inverse of a diagonal matrix is a diagonal matrix, it follows
that the matrix (AY/2GTCTR;'C;GAY? + 1)~ is diagonal, and we denote this

matrix A2. Thus we obtain
By = R, UTGTCTR ' - R,, UTA A2 A,AY2GTCTR !
(343.4)
=R, UT(I- A1 AA)GTCTR .
where we have conveniently used the fact that multiplication of diagonal matrices

1s commutative.
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Chapter 4 The ISDN Digital Subscriber Loop

In the next few decades, one expects the Integrated Services Digital Network to
revolutionize the communications industry. Obtaining services like voice, video,
digital television, fax, etc. over the telephone lines is of great interest both to
subscribers and the telephone companies. The use of telephone lines to provide
imaging services necessitates the transmission of data at very high rates over these
lines. While one can envision fiber optic lines being brought to the desktop in the
next few decades, there is a wealth of infrastructure already present in the form
of the twisted-pair copper loop. We investigate the possiblity of using the local
loops already available to provide data rates as high as the T1 rate, i.e., 1.544
Mb/s. While this research may have the side effect of delaying the advent of fiber
to the home, it nevertheless gives us a stopgap arrangement for the use of ISDN
before an all-fiber local loop is installed. Thus it may really hasten fiber-to-the-
home (FTTH). In this chapter, we will investigate multichannel transmission over
the ISDN digital subscriber loop. The principal impairments on this channel are
intersymbol interference and noise. The noise is predominantly crosstalk, which
depends on the transmitted signals from neighboring loops assumed to be using
the same scheme for transmission. Hence the noise on the channel depends on the
transmitted signal, and this complicates the problem of finding the optimum filters.

However, we have been able to obtain a solution to this problem. We will evaluate
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the performance of this method over some representative loops using models for the
loop and the crosstalk and demonstrate the possibility of T1 transmission over a,

large subset of the local loop plant available.

4.1 Introduction

In this chapter, we investigate the application of the multichannel method derived
in the previous chapter to the special case of the ISDN subscriber loop. Though
both market forces and current technology have contributed to limit rates on the
local loop to about 160 kB/s, we believe that T1 transmission on a large subset
of the loops used is feasible. In our analysis, we are able to present a method to
include crosstalk models explicitly in the calculation of the optimum filters to be
used. This is an area where previous researchers have found little success.

The main impairments on the local loop are intersymbol interference and
crosstalk from adjacent loops in the same bundle [6]. We will provide plots of
typical impulse responses of some loops. The impulse responses of the loops were
obtained from Bell Communications Research. We use these impulse responses to
generate the impulse responses of the resultant channels at the required signalling
rates.

The noise on the local loop is predominantly crossalk from adjacent loops in
the same binder group. We also present models for the crosstalk noise. This is a
particularly interesting case of noise since the noise depends on the signals being
transmitted in adjacent loops, which, we assume, are transmitting using the same
scheme. Hence, finding the optimum input power allocation and the filters to achieve
the minimum mean-squared error is a difficult problem, but we have been able to
obtain a method to solve it. With synchronized transmission between loops in a
bundle, the crosstalk noise is accurately modeled as cyclostationary. I there is a
lack of synchronization between loops, the crosstalk noise is wide-sense stationary.
We present methods to consider both these cases and observe that the performance

is not too different in the two cases. We will find the optimum filters to maximize
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the throughput, given a certain probability of error and a restriction on the input
power to be used.

The organization of this chapter is as follows: In Section 4.2, we present some
physical characteristics of the local loop plant and its classification depending on
length and physical structure. In Section 4.3, we present models for the transfer
characteristics of some of the loops over which we perform our simulations. In
Section 4.4, we present models for the crosstalk transfer functions involved. In
Section 4.5, we determine expressions for the correlation of the crosstalk noise as a
function of the input correlation and the crosstalk transfer function. We do so for
two cases; cyclostationary crosstalk and wide-sense stationary crosstalk. In Section
4.6, we demonstrate how to determine the optimum filters and the optimum input
power distribution over these channels for both cases of crosstalk noise. In Section
4.7, we present some experimental results applicable to much of the local loop plant.

We conclude the chapter in Section 4.8 by briefly summarizing our findings.

4.2 Loop Characteristics and Classification

A single pair of copper wires is used to provide plain old telephone service (POTS).
This pair serves three purposes: provision of DC power for the instrument, a path for
the 20Hz signal used to ring the phone and an analog voice frequency link typically
used in the range of 300 to 3600 Hz. At the end office, pairs are bundled together
at the exit from the main distribution frame. Usually 50 pairs are placed together
in a single casing known as the binder group. The wire is covered with insulation;
usually polyvinyl, and sometimes paper. Pairs are twisted to provide some degree
of interference rejection from other pairs. Nevertheless, crosstalk from other pairs
is a major impairment on the local loop.

The size of the wire is of particular importance in determining the performance
of transmission systems, since the losses on the wire vary according to its size. The
size of the individual wires in the group varies from 22 gauge down to 26 gauge.

The binder group may have both splice and gauge changes. Frequently, a pair may
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be tapped at more than one location, thereby resulting in several terminations.
The unterminated end of the tap leads to reflections towards the binder group and
distorts the signal received, both in magnitude and phase. At voiceband frequencies,
the bridged taps have little effect on the performance of the system, since the length
of the bridged taps is only a small fraction of the wavelength. But as we transmit at
higher rates, e.g., T1, we use significantly higher bandwidth, and the effect of these
taps will be highly detrimental. We shall, however, not work with a transmission line
model for the loops. Instead, we will use simple models for the frequency response
(or equivalently the impulse response) and use this to evaluate the performance on

these loops.

In order to provide some degree of loop classification, the Bell System, prior to
divestiture, created an administrative division of loops known as the Carrier Serving
Area (CSA) in the early 1970’s. The CSA consists of all loops meeting the following
restrictions. The maximum length of a loop is restricted to 12000 feet. No wire
smaller than 26 gauge may be present. If 26 gauge is present, then the length of the
loop, along with all the bridged taps, may not exceed 9000 feet. The total length
of all bridged taps may not exceed 2500 feet and no one tap may be longer than
2000 feet. These restrictions serve to bound the total amount of attenuation due to

losses in the copper and the possible degradation due to bridged taps.

4.3 Loop Responses

We need models for the impulse responses of the loops to assess the performance of
the proposed transmission schemes on them. The modeling of the loops was done
at Bell Communications Research. The Bellcore research staff generated the pulse
response of the loops using a square pulse with a duration of 62.5 ns. We plot the
pulse response of a representative loop, which consists of 12 kft of 24 gauge wire,
in Fig. 4.1. We acknowledge the help of Dr. Kamran Sistanizadeh of Bellcore in

obtaining these loop responses.
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Fig. 4.1 Pulse Response of a Representative Loop

When using the local loop for transmission, we append certain filters at the
transmitting and receiving ends. These are called the hybrids associated with the
loop. We assume transmission at 640 kHz in this discussion. At the transmitting
end, we have a rectangular pulse of duration 1.5625 ps to modulate the discrete-
time input signal, a lowpass filter which has a 3dB cutoff frequency of 320 kHz,

and a transformer to filter out d.c. We model the transformer as an RC filter, with
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a single zero at d.c. and a 3dB cutoff frequency of 300 Hz. At the receiving end,
the signal is passed through a transformer and a lowpass filter which has the same
characteristics as the one used at the transmitting end. We assume that the lowpass
filters are 4th order Butterworth filters. The resulting signal at the output of the
hybrids at the receiving end is then sampled to obtain a discrete-time output signal
which is then demultiplexed and passed through the postfilter.

The overall channel we have is a discrete-time channel, whose impulse response
is obtained by sampling the continuous-time impulse response of the loop with the
associated hybrids. We plot this response for the same loop mentioned previously

in Fig. 4.2.
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Fig. 4.2 Impulse Response of Loop with Associated Hybrids
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We note that the long tails of the channel impulse response suggest the use
of a pole-zero model to represent the channel. This may be used to simplify the
form of the block decision feedback equalizer by using a pole-zero decision feedback
equalizer as has been done in [1]. We have not investigated this aspect further and
propose it as a suggestion for further research. In this thesis, we use the estimates
of the channel impulse response to assess the performance of the block transmission

scheme over the local loop, while assuming a perfect decision feedback equalizer.

4.4 Crosstalk

The most important impairments in a cable system are thermal noise due to ran-
dom motion of the electrons in conductors, impulse noise caused due to switching
elements, and crosstalk noise. The thermal noise is almost always Gaussian, and
is uncorrelated to the transmitted signal. It is typically modeled as additive white
Gaussian noise. The characteristics of impulse noise are not as well known. In order
to ensure that impulse noise is suppressed, and to account for losses due to timing
recovery, performance margins are commonly specified for any transmission system
used.

Since the dominant impairment on the loops is crosstalk, we can include these
performance margins in our analysis by increasing the magnitude of the crosstalk
noise. Crosstalk noise is a result of the proximity of the wire-pairs within the binder
group. The twisting of the wire-pairs is able to reject some of the interference, but

the residual interference is a considerable impairment.

There are two crosstalk mechanisms which are modeled differently. Near-end
crosstalk is due to other transmitters located at the same end of the cable as the
receiver in question. The interference due to the transmitter on the same cable pair
is called the echo and is cancelled to facilitate full-duplex transmission. In this work,
we assume that the echo has been cancelled, and that any residual distortion can
be accounted for by performance margins. Far-end crosstalk is due to transmitters

located at the far end of the cable. This excludes the transmitter at the far end on
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the same wire pair since this transmits the signal we want to receive. We illustrate

the crosstalk and echo mechanisms in Fig. 4.3.
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Fig. 4.3. Crosstalk Mechanisms in the Local Loop

The near-end crosstalk can be modeled as the input signal passing through a

transfer function of the form (2]

I
HyexT(w) ==jw/ ez ¢(5)de (4.4.1)
0

where [ is the length of the wire, ¢(z) is representative of the capacitive coupling
between wires as a function of length, and I'(w) is the characteristic impedance of

the wire as a function of frequency. We have

T(w) = V(R +jwL)(G + jwC) (4.4.2)

where R,L,C and G are, respectively, the resistance, inductance, capacitance and

conductance of the wire per unit length. Other transfer function models for the
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crosstalk exist, a simple one is of the form [3]

|Hnext(f)|* = Knpxrf?? (4.4.3)

where KygxT is a coupling constant, which has been empirically determined to be
of the order of 10712, We note that this model lacks phase information, which is vital
to the modeling of the crosstalk as a cyclostationary process. However, we shall use
it to obtain the performance of the scheme under the assumption that the crosstalk
noise is wide-sense stationary. The model in equation (4.4.1) does not agree very
well with the measured crosstalk frequency responses given by equation (4.4.2),
hence we shall not use it to estimate the performance of our scheme over the local
loop. We shall, however, use it to compare the performance of the scheme under

the disparate assumptions of wide-sense stationary and cyclostationary crosstalk.

Far-end crosstalk is modeled by the transfer function
|Hrext(f)* = Krext|C(f) f2 (4.4.4)

with Krgxt being a coupling constant and C(f) is the frequency response of the
wire. We neglect far-end crosstalk noise in comparison to near-end crosstalk noise

since it is attenuated by the length of the wire.

We will derive the optimum filters to transmit data in the presence of near-end
crosstalk. In order to do this, we need accurate statistical models for the crosstalk
noise. In the next section, we will characterize the crosstalk noise and present

expressions for its correlation matrix.
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4.5 Statistical Modeling of Crosstalk Noise

In Fig. 4.4, we present the scheme used for transmission over the local loop. The
discrete-time input signal is passed through a shaping filter and fed to the loop,
which is padded with transformers at either end to filter out d.c. The output from
the channel is passed through a receive filter and then sampled to obtain a discrete-
time output signal, which is then passed through the postfilter and equalizer. As
shown, the crosstalk noise is modeled as being added at the output of the loop, hence
the discrete-time noise sequence at the postfilter input is a filtered and sampled

version of this signal.
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Fig. 4.4. Crosstalk- The Whole Picture

The statistical model for the crosstalk noise is obtained by passing the input
signal through the crosstalk transfer function, as shown in the figure. We now

present a way to model the crosstalk noise statistically, so that we can use the
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expression for the correlation matrix of the crosstalk noise to obtain the optimum
pre- and postfilters. But first, just to add to the suspense, we shall finally formally
define a cyclostationary process.
Definition: A discrete-time signal g(n) is said to be cyclostationary with period M
[4] if

Elg(n + kM)] = E[g(n)] forall k,n

and

Elg(n + kM)g(l + kM)] = Elg(n)g(1)] ~for all k,n,L.

Analogously, a signal g(¢) in continuous time is said to be cyclostationary with period
T if
E(g(t)] = Elg(t + kT)] for all t and integer k

and
Elg(t1 + kT)g(t2 + kT)] = E[g(t1)g(t2)] for all t1,%2, and integer k.

The discrete-time input vector signal x(n) has been assumed to be a wide-sense
stationary (WSS) vector process, correlated only within blocks, with the individual
z;(n), ¢=20,...M — 1 being uncorrelated. The correlation matrix of x(n) is A,
a diagonal matrix, with the diagonal elements being non-negative. This is passed
through the matrix A, which is a linear-time invariant vector system; hence the
output g(n) = Ax(n) is a WSS vector process. We assume that x(n) is zero mean,
which implies that g(n) is zero-mean. The vector signal g(n) is then multiplexed

to give a scalar signal which given by
g(Mn + M —1—1) = gi(n). (4.5.1)

Given an index ny, we can always express it as n;y = M+ M — 1 — 1 for some [ and
t, where 0 < ¢ < M — 1. Thus we have
Blg(ny + kM) = Elgi(1 + F)
= Elgi(1)) (4.5.2)
= Elg(n1)]-
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where we have used the fact that the mean of the WSS process g(n) is independent
of the position n. Thus

Blg(n)] = Elg(n + EM)]. (45.3)
We similarly have

Elg(n1 + kM)g(ly + kM)] = E[gi(p + k)gj(q + k)] =
= Elgi(p)g;(q))

where ny = Mp+ M —-1—tandl; =Mq¢+M —-1~j with0<1¢,j < M—-1. We
also find

(4.5.4)

Elg(n1)g(l)] = Elgi(p)g;(2))- (4.5.5)

Thus
Elg(n)g(1)] = Elg(n + kM)g(l + kM), (4.5.6)

Since g(n) satisfies equations (4.5.3) and (4.5.6), which define a discrete-time wide-
sense cyclostationary process of period M, we have

Fact 1: The multiplexed output g(n) of the synthesis bank is wide-sense cyclosta-
tionary with period M.

The crosstalk noise added at the output of the loop is obtained by passing the
input process to the loop through the crosstalk transfer function. The input to
the loop is a continuous time signal which is obtained by passing the discrete-time
signal g(n) through a transmit filter with impulse response p(t). In our case, Fig.
4.4 shows that the transmit filter is a cascade of the pulse shaping filter and the
transformer. We can now characterize the input to the channel statistically.

Fact 2: The input to the channel 7(t) is a wide-sense cyclostationary process in
continuous time with period MT, where T is the symbol duration.
Proof:

The signal 7(t) is given by

[ @]

n(t)= Y g(n)p(t—nT). (4.5.7)

n=—o0
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Hence we have

En(t+kMT)] = i Elg(n)p(t — nT + kMT))

= m;oo Elg(m + kM)p(t — mT)) (45.5)
= Y Elg(m)p(t — mT)]
= E[n(t)]

where we have used the wide-sense cyclostationary property of g(n) in discrete time.
We also have
E[n(ty + kMT)n(ty + kMT)] =
Z Z Elg(n)g(m)p(ty — nT + kMT)p(t; — mT + kMT)]

n=—oo m=-—0o0

=3 S Elg(i + EM)g(G + EM)lp(ts — iT)p(ts i)

t=—00 j=—o00

= > Y Elg(i)g()lp(ts —iT)p(t2 — jT)

t=—00 jJ=—00

= E[n(t1)n(t2)] (4.5.9)

where we have again used the wide-sense cyclostationarity of g(n). The result
follows.

We have two cases to consider. The first case is when we assume that trans-
mission on all the wires is fairly well synchronized. In this case, we shall see that
the crosstalk noise turns out to be cyclostationary. However, if we assume a lack
of synchronization between different wires, then our time origin is random, and we
assume it can occur anywhere between 0 and MT with a uniform probability dis-
tribution, thus rendering the crosstalk noise to be a wide-sense stationary process.
We shall analyze these two cases separately, and in each case, derive an expression
for the noise correlation matrix at the input to the polyphase matrix of the analysis

bank, i.e., the postfilter.
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4.5.1 Cyclostationary Crosstalk Noise

When transmission on the loops in a binder group is synchronized to a fair
degree, the noise that is added at the output of the loop is well modeled as n(t)
passed through the crosstalk transfer function. This noise N(t) can be viewed as
being obtained by passing the discrete-time wide-sense cyclostationary process g(n)
through a transmit filter which is a cascade of the shaping filter, the transformer
and the crosstalk transfer function. Hence N(t) is wide-sense cyclostationary with
period MT. N(t) is passed through the receive filter; the output of this filter W (%)
is also wide-sense cyclostationary with the same period. It is then sampled (and

maybe delayed) to obtain the discrete-time noise sequence w(n).
We have
w(n) = W(nT) (4.5.1.1)

where W(t) is wide-sense cyclostationary with period MT. We note that

E[w(n + kM)] = E[W(nT + kMT))]
= E[W(nT)| (4.5.1.2)
= Efw(n)]
and
Efw(ny + kM)w(ng + kM)] = E[W(niT + kEMT)W (nyT + kMT))]
= E[W(niT)W(n,T)] (4.5.1.3)

= Efw(n1)w(ns)]

where we have used the wide-sense cyclostationary property of W(t). Equations
(4.5.1.2) and (4.5.1.3) show that w(n) is a discrete-time wide-sense cyclostationary
process with period M.

The input to the postfilter B is a blocked version of w(n). It can be expressed

as

w(n) = [w(Mn),w(Mn —1),...,w(Mn - M +1)]*. (4.5.1.4)
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We wish to find the correlation matrix, at zero lag, of w(n), since this is essential

to find the optimum filters A and B, as we found in the previous chapter. We have

oo

W(t)y= ) g(n)h(t —nT) (4.5.1.5)

n=—oo

where h(?) is the impulse response of the cascade of the transmit filters, the crosstalk

transfer function and the receive filters. Thus

oo

w(m)= Y g(n)h(mT — nT), (4.5.1.6)

n=—o00
which is a convolution of g(n) with the sampled version of h(t), which we shall
denote h(n).

Between g(n) and w(n), we recognize that we have the same structure we had
analyzed before in Chapter 4. Hence we have w(n) as the output of the filter H(z)
to the input g(n), where H(z), for M = 5, is given by

Hi(2)z™' Ha(z)z™' Hs(2)z™' Hi(2)z™!  Hy(z)
Ho(2)z™' Hy(2)z7!  Hyz™? H3(z)z7! Hy(z)z™!
H(z) = | Hy(2)z™? Ho(2)z™' Hyi(z)z™! Ha(z)z7! Hjz(2)z™? (4.5.1.7)
H3(2)z=% Ha(z)z™? Ho(z)z™! Hi(2)z™! Hy(z)z™!
Hy(z)z™2 Hs(z)z7? Hy(z)z™? Ho(z)z™! Hy(z)z™!

Here the Hi(z) are the Type 1 polyphase components of H(z), which is the Z-
transform of h(n).

We wish to find the correlation matrix at zero lag of w(n). This can easily be
found since w(n) is the output of the linear system H(z) to the input g(n), whose
statistics we know. Recall that g(n) was obtained by passing x(n) through the
prefilter A. We now state a fact that enables us to find the necessary correlation
matrices.

Fact 4.5.1.1: Let x(n) be an N x 1 vector WSS input to an M x N transfer matrix
H(z), or equivalently to H(e/*). The power spectral density of the output M x 1
WSS vector process y(n) is given by [5]

Syy (%) = H(e/)Sx(e*)HT (/) (4.5.1.8)
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where H]L(ej“’) is obtained by transposing the matrix in which the elements are the
conjugates of those in H(e’*).

This can easily be proved by using the convolution expression for y(n) and the
definition of the power spectral density. Details are omitted.

We know that the autocorrelation of x(n) is given by
Ryx(n) = Aé(n) (4.5.1.9).
Thus the power spectral density of x(n) is given by
Sxx(e?¥) = A (4.5.1.10)

We obtain g(n) by passing x(n) through a linear filter with impulse response A§(n)

or equivalently, a frequency response of A. Thus we have
See(e’”) = AAAT. (4.5.1.11)
The power spectral density of w(n) is given by
Sww(e’) = H(e’*)AAATH! (e7%) (4.5.1.12)

Thus, the correlation matrix at zero lag of w(n) is obtained as

R, = Ruw(0) = -217; H(c™) AAATHT (7). (4.5.1.13)

-7

In order to guarantee that this matrix is non-singular, we assume a modicum of
white noise with a power spectral density of 02 to be present along with the crosstalk
noise at the output of the loop. At the input to the postfilter B, the contribution of
this white noise is a colored noise component which is obtained by passing the white
noise through the receive filters and sampling the result. We denote the correlation
matrix of this noise for a white noise power spectral density of unity to be R. Since

R is the correlation matrix of a real wide-sense stationary process, it is symmetric,
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Toeplitz and, in general, non-singular. This gives us an equivalent noise correlation

matrix of
R, — 51_ / H(e**)AAATH! (e79)dw + o?R. (4.5.1.14)
TJ-=m

We observe that the noise correlation matrix depends on the prefilter A and the
input correlation matrix A. In later sections, we shall see how to find the optimum

filter and the optimum input powers to satisfy a certain criterion.

4.5.2 Wide-Sense Stationary Crossstalk

When there is a lack of synchronization between loops in a binder group, the
crosstalk noise is no longer cyclostationary. In this case we make the assumption
that the phases of the block inputs from the interfering transmitters are randomized
and that the randomization is so that the interfering process can be represented as
i(t) = n(t — 0) where 6 is a random variable with a uniform probability density
in (0, MT). Since (%) is cyclostationary with period MT, it follows that 7(%) is a
wide-sense stationary process. A proof of this well-known result can be found in
[4].

We now attempt to find the correlation matrix of the crosstalk noise w(n) in
this case. In the derivation, we shall freely assume that integrations and summations
can be interchanged at any point, without worrying about the mathematics behind
such interchanges. First, we find the power spectral density of the process 7().

From [4], we have
MT

Ran(7) = 7= [ Bt + (45.2.1)

By the definition of n(t), we have

MT oo oo
Ris(7) = -J\%;/O E[ Z _z: g(n)g(m)p(t —nT)p(t+7—mT)|dt (4.5.2.2)

Weset m=n+qandt —nT =v to get

(M—-n)T oo

R =577 > | S Elg(n)a(n+)]p(o)p(v+r—gT)do. (4.5.23)

n=—oo VV="0T (=T
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We now rewrite n as mM + | where 0 <! < M — 1. Thus the summation over n

becomes a double summation over m and . We thus have
Rya(r) =

1 M-1 oo M-mM-l ©o©
=3 /_ D (E[g(mM FgmM +1+ 9] gy

=0 m=—o0 g=—oc

p(v)p(v+ 71— qT)) dv.

Using the wide-sense cyclostationary property of g(n), we obtain

M-mM-l o

1 M-1 (o)
Ria(7) = 377 > Y /_mM_I > E[g(Dg(l + ¢)]p(v)p(v + T — ¢T)dv
(4.5.2.5)

=0 m=—oc0 g=-—00

which can be expressed as
1 M-1 .0 o
Rii(7) = 377 ; /_ _ q;ooE[g(l)g(l +)]p(v)p(v + 7 — qT)dv  (4.5.2.6)
Equivalently, we have

Rys(r)= [-}4— AglE[g(l)g(Hq)]]%/

g=—c0 -

oo

p(v)p(v + 17— ¢T)dv. (4.5.2.7)

We note that this expression depends only on 7, which is indicative of the process

being wide-sense stationary.

By the same argument, we have, for the crosstalk noise at the sampler,

o0

M-1
1 1 [
Rww(r) = q;oo [}\-/I— ?_:0 Elg(Dg(l + q)]] T /_Oo h(v)h(v + 7 — ¢T)dt (4.5.2.8)
where, as stated before, h(t) is the impulse response of the cascade of the transmit
filters, the crosstalk transfer function and the receive filters. The sampled version
of W(t) is w(n), which is multiplexed to obtain the noise vector w(n) at the input

of the postfilter B. We now state, without proof, that the sampled version of a
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continuous time WSS process is wide-sense stationary in discrete time. For a proof,

we refer the reader to [4]. The autocorrelation function of w(n) is given by

oo M-1
Ryw(n)= ) [-}4- > Elg(hg(l + q)]]Rh(n —9q) (4.5.2.9)
g=—00 =0
where -
Ra(m) = 7 / h(v)h(v + mT)dt (4.5.2.10)

We note that w(n) is obtained by passing a discrete-time WSS process §(n) with

autocorrelation function

1 M-1
Biy(m) =37 2 ElaCha(t+ )|

=0

through a transfer function A(n) which is the impulse response corresponding to a

spectral factor [4] of
S; (e?%) = Z R; (n)e=i+m,

n=-—-o0
The vector process w(n) which is given by

w(n) = [w(Mn),w(Mn —1),...,w(Mn— M +1)|T (4.5.2.11)

is the noise input to the postfilter B. w(n) can be equivalently obtained by passing

the vector process
g(n) = [§(Mn),§(Mn - 1),...,5(Mn — M +1)]T

through the transfer matrix [6]

_lgo(z) g:l(z) PR Z:M_l(z)
A=~ A:H(z) 0:(2) ,1_(2) Mjr"(z) (4.5.2.12)
z"lffl(z) z—lﬁg(z) ﬁo(z)

The correlation matrix at zero lag of the noise vector w(n) is given by

1 T . . A ,
Ro = 5= [ Ti(e)Sy(e) il (c)do. (452.13)
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The power spectral density matrix Sz(e’*) of the vector process g(n) is the discrete-

time Fourier transform of its autocorrelation matrix sequence, which is given by
R;(n) = E[g(m)gT (m + n)]. (4.5.2.14)

Expressing this in terms of the autocorrelation sequence of the scalar process §(n),

we have
Rgg(Mn) Rgg(Mn—{—l) Rgg(Mn—I-M—l)
Rgg(MTl—l) Rgg(M’n) Rgg(Mn+M—-2)
Ré(n) = : : .. :
Rgg(Mn-—M-i—l) Rgg(Mn—M-I-Q) Rgg(Mn)
(4.5.2.15)

which is a Toeplitz matrix.

In our case, we have

1 M-1
Ry4(n) =[ﬁ ; Elg(Dg(1 + n)]]. (4.5.2.16)

We also know that E[g(1)g(I+n)] is non-zero only if both [ and I+n are in [0, M —1],
since g(n) is correlated only within blocks. Thus R;;(n) is non-zero only for —(M —

1) £n < M — 1. Hence, the autocorrelation matrix sequence of the vector process

g(n) has only three terms, those corresponding to n = —1,0,1. These matrices are
given by
r(0) r(1) r(2) oo (M -1)
1 r(1) (0) r(1) v (M =2)
Ry(0) = — , _ . _ ( , (4.5.2.17)
M : : : .. :
r(M-1) r(M-2) r(M-3) ... r(0)
and
0 0 0 0
r(M —1) 0 0 0
1 | r(M-2) r(M-1) 0 0
Rg(D =37 r(M-3) r(M-2) r(M-1) B E (4.5.2.18)

r(.l) r(.2) r(-3) . 0
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where
M-1—-k

r(k)= Y Elgi(n)girr(n)]. (4.5.2.19)

=0

The other autocorrelation matrix coefficient is given by

Rs(-1) = Rg7(1). (4.5.2.20)

We have the autocorrelation matrix of g(n) to be given by

R = AAAT
E[g3(n)] Elgog1(n)] .o+ Elgo(n)gm-1(n)]
_ E[gog1(n)] E[g'f’(n)] ... Elgri(n)gm-1(n)] | . (4.5.2.21)
Elgo(man-1(n)]  Elgs(mgm—s(m)] .. Elghs(n)]

We want to express the autocorrelation matrix coefficients of g(n) in terms of

Rg. This can be done as follows:
1 M-1 M1
Rg(0) = 3-[Re + > PiRgP{ + > PiRgPy] (4.5.2.22)
k=1 k=1

where P is defined such that

(Prlii+k =1 0<i<M-1-k%

(4.5.2.23)
(Pk)i,j =0 otherwise.
We also have
1 M-
=17 k}: UrR Vi (4.5.2.24)
where, for 0 <:,7 < M -1,
(Vk)i,jzl fie+yj=k—-1
(4.5.2.25)
=0 otherwise
and
(Uk),',j=1 fi+j=M+k-1
(4.5.2.26)

=0 otherwise.
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Equations (4.5.2.22) and (4.5.2.24) can be proved simply by direct substitution and
we shall not go into the proofs. The interested reader may convince himself of these
identities by trying some simple examples.
The power spectral density matrix Sg(ej“’) of the vector process g(n) is thus
given by
Sg(e’) = Rg(0) + e 7“Rg(1) + ™Ry T (1). (4.5.2.27)

The correlation matrix at lag zero of the noise process at the input to the postfilter

B is given by

Ro=o [ [ﬂ(ef“)Rg(mﬁf(efW)

-

+ e RI(e/) Ry (1)ET (%) + ﬁ(efW)RgTu)ﬁf(eiw)efw] dw.

(4.5.2.28)
Hence we have
11 [~ T
- Jw
Ry = 3 o /_W[H(e )[AAA
M-1
+ > PrAAATP] + P{AAATP;
k=1

+e WU AAATV + eikaAAATUk]ﬁT(efw)} dw.
(4.5.2.29)
Thus we have an expression for Rw in terms of A and A. We shall use this
expression in a later section to find the optimum prefilter A, which, as we know, is
a matrix of the eigenvectors of the matrix C; R, ~!C;. In this case too, we assume
the presence of white noise at the output of the loop in addition to the crosstalk

noise.
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4.6 Derivation of the Optimum Filters

In this section, we shall derive the optimum filters to be used for block data trans-
mission over the local loop, with the main impairment being crosstalk. We shall
derive the results in detail for the cyclostationary crosstalk case; the extension to
the wide-sense stationary crosstalk case is straightforward.

The criterion we use to define the optimality of the system is the throughput of
the system or the data rate, given a constant probability of error and a constraint
on the input power. Stated differently, we want to restrict the input power to P
and maintain a constant probability of error P, on all channels, while maximizing
the total number of bits transmitted per block of symbols.

For a given signal set, the minimum distance of the signal set and the noise

variance at the output of the channel have to satisfy

d. -
2010g10< f;;“) > 13.5dB (4.6.1)

in order to achieve a probability of error of less than 10~®. Hence, in order to

maintain a probability of error lower than 10~%, we require

d2 1.35

If we use a PAM signal set, the average energy of the symbols can be expressed in
terms of the number of levels used, m, and the distance between the levels, d. The

relationship is
(m? — 1)d?

F =
12

(4.6.3)

Coded modulation schemes or trellis codes increase the distance between the trans-
mitted levels, but the price to be paid is the higher number of levels being used. For
example, a 4-dimensional 16 state code [7] increases the squared minimum distance
by a factor of 4, while doubling the number of levels in the constellation. Thus, d? is
replaced by 4d? and m by 2'/4m for this code, in the expression for energy in terms

of minimum distance and the number of levels. While using a trellis code, there is
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an additional contribution to the probability of error due to an increased number of
nearest neighbors, but we neglect this contribution to a first order approximation
at low error rates.
While using the aforementioned trellis code over a channel with output energy
E; and an output noise variance of o2, we require, as a consequence of equation
(4.6.3),
4d? 12E;

= = K. .U.
402 o}(21/72m? —-1) (4.64)

Here, we see that the number of levels at the output of the channel per dimension

is 2/4m; and the minimum distance has been increased by a factor of 2. Thus the

number of signal points m; is given by

12E;
2 _9-1/2 ==
m; =2 (1 + Ko? ) (4.6.5)

Therefore, the number of bits which can be transmitted per symbol over this chan-
nel, while maintaining a probability of error of 107%, is given by

1 12F;
b; = log,m; = —2-log2 (1 + Kaf) -1/4. (4.6.6)

In the previous chapter, we derived the gains and the noise variances of the
subchannels formed by the block transmission technique described in that chapter.
These are repeated here. With the eigenvalues of the matrix ClTRw"lcl being
denoted by #;, and the input powers to the corresponding channels being );, the

gains of the channels are given by

Aivi
P = 4.6.7
=T ) (46.7)
and
A2,
2 i7 (4.6.8)

0] = ———.
o+ A)?
Thus, over such a channel, the number of bits that can be transmitted with a

probability of error of 107 using the 4-d 16-state trellis code is given by

1 12X9;



83

which we rewrite as

1 )‘171
bi = 210g2(1 5 ) ~1/4. (4.6.9)

This formula for the throughput assumes that the noise is Gaussian, which may
not seem to be a very valid assumption for crosstalk noise; however, we can assume
that the crosstalk noise is Gaussian by appealing to the central limit theorem. The
crosstalk noise is obtained by passing a set of random variables through various
linear filters, thereby involving numerous summations of the random variables; the
resultant random variables are close to Gaussian.

Since the subchannels formed by the block transmission scheme are indepen-
dent, the total throughput of a block is simply the sum of the throughputs of the

individual subchannels, and is given by

M
Rtotal = Z bz
AZ 1
- Z[ log, (1 + ?7) - 1/4]

We note that if the input power to a certain subchannel is zero, then no bits are

(4.6.10)

transmitted over it, thereby transcending the need to double the number of levels
required in the trellis code. In this case, the extra 1/4 bits of redundancy will not
figure in the throughput. We want to maximize this throughput under the condition
that the input energy be constrained to some P. We had solved essentially the same
problem earlier in Section 3.4 while finding the capacity of the block transmission
scheme over an ISI channel with white noise. Using the same techniques, we obtain

ﬁ +pu<0 (4.6.11)
with equality if A; is non-zero. Here u is a Lagrange multiplier, and is chosen so
that the power constraint is satisfied. Let U be the set of indices for which \; is
non-zero. Then we have, for these indices,

K

1
A= P+ K —. 4.6.12
|U|( 1;} D ( )
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We note that for a real transmission system, the number of bits transmitted
per PAM symbol will have to be a quarter-integer (while using a 4-d code), hence
the optimization has to be over quarter-integer values, which makes the problem
computationally quite complex. Hence, we shall find a real solution and perform
round-off operations to obtain sub-optimum integer solutions.

In the last section, we had derived the correlation matrix Ry, of the noise at the
input of the postfilter. With the crosstalk noise being cyclostationary, this matrix
was given by

R, — 51; / H(e*)AAATH! (¢7)dw + 0?R (4.6.13)

Using Parseval’s theorem, this expression can be rewritten as

R, = i h(n)AAAThT(n) + o’R (4.6.14)

n=0
where h(n) is the matrix impulse response sequence corresponding to the matrix
transfer function H(e’*), and is assumed to be causal, i.e., it is zero for nega-

tive n. We require the prefilter A to be the orthogonal matrix that diagonalizes

C?RW"ICI. In other words, we want

o] -1
ATcT ( > h(n)AAATh(n) + a2R) CiA=T (4.6.15)

n=0

where we require the A;’s and the ~;’s to satisfy equation (4.6.12). By taking the

inverse of both sides in equation (4.6.15), we obtain

oo
> h(n)AAAThT(n) + 0’1 = C,AT'ATCT (4.6.16)
n=0
We note that I'™! exists due to the fact that Ry, is non-singular.
We first consider the special case when the set of indices U with \; > 0 is the
whole set ¢ =1,2,... M. In this case, we have
Y1, K

1
Ai=—(P+K —)—-— 4.6.17
P - (46.17)
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and thus

A=—=(P+KTrl7'DI-T"L (4.6.18)

1
M
If we denote

Q= AT AT (4.6.19),

we find that equation (4.6.16) can be rewritten as
> 1 . T 2 T
) h(n) 77 (P + EKaTr(Q)I- K1Q )h"(n) + 0’R = C1QCT,  (4.6.20)
n=0

where we have used the invariance of the trace of a matrix product to cyclic per-

mutations to obtain

Tr(Q] = Tr[AT AT
= TT[F_IATA] .
= Tr[l[7

By the definition of the trace of a matrix, we have

M
Tr(Q] =) gii (4.6.21)

Hence, it is evident that equation (4.6.16) gives us a set of linear equations in the
elements of Q, which can be solved in a straightforward manner to obtain Q. Once
Q is obtained, finding the prefilter A and the A; boils down to a simple matter of
calculating the eigenvalues and the eigenvectors of Q.

When the optimality conditions force some of the A;’s to be zero, however,
the problem becomes much more involved. We do not have an exact solution for
this case, but we present an algorithm to determine the solution. We do not have
a definitive proof of the convergence of this algorithm, but it did converge in a
wide variety of examples. We do present an incomplete proof of the existence of a
solution.

The proposed algorithm to determine the optimum A and the ); is as follows:

Initialization: Determine Q using equation (6.6.16). Let

Q=vrivT
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where 47! are the eigenvalues of Q and V is a unitary matrix of the eigenvectors

of Q. Calculate
1
Q: = M(P + K\ Tr[Q))I - K, Q

We have
Q; = VAVT
where
1 M
_ -1\ -1
A = M(P+K1;7, ) Kiv; .

If A; > 0 for all I, then we have a solution, hence we terminate the process. Other-
wise, we define Q; = (P/M)L.
Step 2: Set Q1 = Q2. Determine Q using

> h(n)Q;h"(n) + ¢’R = C;QCT.

n=0

Step 3: Find the eigenvalues ~;! and the unitary diagonalizing matrix V of
Q.
Step 4: find A; using

Yi
K+ Aivs

with equality if A; is non-zero. For ¢ € U, the set of indices where ); is non-zero,

+u<0

1 1 K,
N=—(P+K S =)L
K”( ‘é;w) Vi

Step 4 : Determine
Q, = VAVT
If

norm(Q2 — Q1) < some e,

Stop. Otherwise, go back to Step 2.
An incomplete, pseudo-proof of the existence of a solution using the above

algorithm can be presented as follows. We note that at any stage, Q; and Q; are
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both positive semi-definite matrices with a trace equal to P. Steps 2 through 4 of
the algorithm present a mapping Q2 — Q;, i.e., a mapping from the set of positive
semi-definite matrices with trace P to itself. This set can be shown to be closed,
convex and bounded. The mapping Q2 — Q; can be shown to be continuous if the
eigenvalues of Q are distinct at any stage; this implies, in most cases, that both the
eigenvalues and eigenvectors of Q are continuous functions of a perturbation [8].
Thus we can apply a variant of the Brouwer fixed point theorem [9], which states
that a continuous mapping from a closed, bounded convex set to itself has a fixed
point. This theorem implies that there exists a Q; equal to its Q2, which implies
that we have a solution to our problem.

For the wide-sense stationary crosstalk case, we have a very analogous situation,
except that the expression for the noise correlation matrix as a function of the
input correlation matrix AAAT is far more complicated. Nevertheless, the same
techniques and the same algorithm as described above apply to the wide-sense

stationary crosstalk case too.

4.7 Numerical Results

We numerically obtained the performance of the optimum block transmission meth-
ods over some of the loops, data on whose impulse responses was provided by Bell-
core. As stated before, the loop was padded with a transformer, a Butterworth
lowpass filter to 320kHz and a rectangular pulse shaper of duration 1.5625 us at
the transmitter side. At the receiver side, we have a transformer and a Butterworth
lowpass filter.

From the plot of the impulse response of the loop in Fig. 6.2, it can be seen
that the impulse response is low up to a certain time whereafter it is quite high. It
would certainly be preferable to have an impulse response coefficient matrix whose
entries are high so as to obtain maximum signal power at the output. Hence we
have to take into account the ISI due to the previous impulse response coefficients.

These are referred to as the precursor. The ISI due to the postcursor, or the portion
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of the impulse response after the ones in the impulse response coefficient matrix,
is taken care of by the decision feedback equalizer. Interestingly, the techniques
described in this chapter make it very simple to take the precursor into account.
This procedure is described in Appendix 6.A.1. While optimizing the prefilter and
the postfilter, the precursor term adds another term to the noise, and this term has
essentially the same form as cyclostationary crosstalk. In all our simulations, the

precursor was taken into account.

We first compare the performance with synchronization between adjacent loops,
i.e., the crosstalk noise is cyclostationary, and without synchronization between ad-
jacent loops, which implies that the crosstalk noise is wide-sense stationary. We
performed these simulations over the 12kft, 24 gauge loop, with an input power
limitation per transmitted symbol. When the noise is the dominant impairment, we
found that both schemes gave essentially the same throughput. However, when the
noise is low enough so that crosstalk is the dominant impairment, the throughput
under the assumption of cyclostationary crosstalk was higher than the throughput
for the wide-sense stationary crosstalk noise case. However, the difference in per-
formance was just of the order of a few percent in the cases simulated. Hence, we
tentatively state one of the main results: Synchronization does not appear to get
us a whole lot. The model used for the crosstalk is the one in equation (6.4.1), with
values for the various parameters being taken from [11]. Eight parallel channels

were used in these calculations.

The results for this simulation are shown in Table 4.1 and Table 4.2. In Ta-
ble 4.1, we show the comparative throughputs of the scheme for the two cases of
crosstalk noise for different transmission schemes ranging from simple PAM to the
most complicated one that achieves capacity. The input power is assumed to be
10mW and the variance of the white noise is assumed to be 10~1*W/Hz. In Table
4.2, we show similar results when using an input power of 20mW. This is equivalent
to using a lower noise variance, since an increase in input power also increases the

crosstalk noise by the same amount. We note that in addition to coding gain, the



89

use of a high dimensional code gives us the ability to transmit a fractional number
of bits per dimension on each channel. For a further discussion of this aspect, see
[10]. We find that the throughputs are slightly higher in the case of cyclostationary
crosstalk but the difference in throughput is not very high. This indicates that there
is not a whole lot to be gained in terms of throughput by synchronizing transmis-
sion on different loops in the same binder group. In Tables 4.3 and 4.4, we present
similar results for a different crosstalk transfer function for a 9kft, 26-gauge loop.
The impulse responses for this latter case were obtained experimentally by Dr.D. D.
Falconer’s research group at Carleton University, Ottawa, Canada. We acknowledge

the help of Brent Petersen of Carleton University in obtaining this data.

Scheme Used | CSS Crosstalk WSS Crosstalk
PAM 960 Kb/s 960 Kb/s

4 — d Trellis Code 1.48 Mb/s 1.48 Mb/s
8 — d Trellis Code 1.58 Mb/s 1.58 Mb/s
Capacity 1.941 Mb/s 1.936 Mb/s

Table 4.1. Throughputs over the 12kft,24-gauge loop
with 10mW Input Power and T'wo Cases of Crosstalk

Scheme Used | CSS Crosstalk WSS Crosstalk
PAM 960 Kb/s 960 Kb/s

4 — d Trellis Code 1.52 Mb/s 1.5 Mb/s
8 — d Trellis Code 1.63 Mb/s 1.61 Mb/s
Capacity 1.982 Mb/s 1.971 Mb/s

Table 4.2. Throughputs over the 12kft,24-gauge loop
with 20mW Input Power and Two Cases of Crosstalk
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Scheme Used | CSS Crosstalk WSS Crosstalk
PAM 880 Kb/s 880 Kb/s

4 — d Trellis Code 1.46 Mb/s 1.44 Mb/s
8 — d Trellis Code 1.57 Mb/s 1.54 Mb/s
Capacity 1.92 Mb/s 1.89 Mb/s

Table 4.3. Throughputs over the 9kft,26-gauge loop
with 10mW Input Power and Two Cases of Crosstalk

Scheme Used | CSS Crosstalk WSS Crosstalk
PAM 880 Kb/s 880 Kb/s

4 — d Trellis Code 1.56 Mb/s 1.49 Mb/s
8 — d Trellis Code 1.65 Mb/s 1.58 Mb/s
Capacity 1.99 Mb/s 1.93 Mb/s

Table 4.4. Throughputs over the 9kft,26-gauge loop
with 20mW Input Power and Two Cases of Crosstalk

We also determined the throughput with different input power constraints and
a squared crosstalk transfer function of K f3/2 with K = 10~*® and a white noise
power spectral density of 10~*W/Hz. We performed this calculation over two loops
the carrier serving area, the 12 kft,24-gauge loop and the 9kft,26-gauge loop. These
loops have been reported to be at the lossy end of the carrier serving area. We
found that T1 transmission is possible over these loops at nominal input powers by
using powerful multidimensional trellis codes. The 4-d,16-state code was used in

these calculations.
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No. of Channels

12kft,24-gauge loop

9kft,26-gauge loop

8
16
24

1.48 Mb/s
1.54 Mb/s
1.56 Mb/s

1.42 Mb/s
1.51 Mb/s
1.5133 Mb/s

Table 4.5 Throughputs over the two loops
with 10mW Input Power,K f3/? Crosstalk, K = 1013
using the 4-d, 16-state Trellis Code

No. of Channels

12kft,24-gauge loop

9kft,26-gauge loop

8
16

1.52 Mb/s
1.6 Mb/s

1.48 Mb/s
1.56 Mb/s

Table 4.6 Throughputs over the two loops
with 20mW Input Power,K f3/2 Crosstalk, K = 10~13
using the 4-d, 16-state Trellis Code

No. of Channels

12kft,24-gauge loop

9kft,26-gauge loop

8
16

1.9 Mb/s
2.02 Mb/s

1.9 Mb/s
2.03 Mb/s

Table 4.7 Throughputs over the two loops

with 10mW Input Power K f3/2 Crosstalk, K = 10~14
using the 4-d, 16-state Trellis Code

We also calculated the throughputs for the two loops with 24 channels and using
an 8-dimensional trellis code, which doubles the minimum distance, while doubling
of the number of the levels in 8 dimensions [7]. On the 12kft,24-gauge loop a rate
of 1.677 Mb/s could be obtained using this code and the corresponding rate on the
9kft,26-gauge loop was 1.623 Mb/s. These results suggest that T1 transmission can

be obtained over a large subset of the carrier serving area by using multidimensional

trellis codes.
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4.8 Conclusions

In this chapter, we determined the optimum filters for block data transmission over
the ISDN subscriber loop. The main impairment over this channel was crosstalk,
which depended on the input being transmitted. This led to a joint problem of
determining the optimum inputs and the corresponding optimum filters. We con-
sidered two cases for the crosstalk noise; when transmission is synchronized on all
loops in a binder group, the crosstalk noise is cyclostationary, but with a lack of
synchronization, the noise is wide-sense stationary. We characterized the correla-
tion of the crosstalk noise as a function of the input correlation matrix and the
crosstalk transfer function in both these cases. For both cases, we presented meth-
ods to solve the problem exactly when all subchannels had positive input powers
and proposed an iterative solution for the case when the input powers over some of

the subchannels were zero.

We found that T1 transmission was possible over some of the most lossy loops in
the carrier serving area using input powers of the order of 10mW. We also observed
that the throughput was slightly higher when the dominant crosstalk noise is cyclo-
stationary than when it is wide-sense stationary. However, the ensuing improvement
in throughput does not seem to justify the effort of synchronizing transmission over

the loops.
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4.A.1 Appendix: What about Precursors?

In this appendix, we show how the proposed multichannel scheme is equipped to
handle precursors. We demonstrate that the interference caused by the precursor
is statistically similar to crosstalk noise; hence the techniques we derived in this
chapter can be directly applied to derive optimum filters in the presence of precursor
ISI.

Let the channel matrix be given by

K-1 o
C(z)= ) Ciz7'+Cgz7¥+ ) Ciz7" (441.1)
=1 =K1
Here C;, : =1,...,K — 1 constitute the precursor, Cg is the cursor matrix and
C;, :=K+1,...,00 constitute the postcursor.

The relationship between the input and the output (see Fig. 3.2) is

K-1 oo
v(n)= ) BCkAx(n-1)+ ) BCkAx(n-k)
k=1 k=K+1 (441.2)
+BCkA x(n—K)+Bw(n)+ » Dik(n—k).
k=K+1
We know that x(n) is correlated within blocks with
E[x(n)x(m)] = Rzz6nm. (441.3)

If we choose the decision feedback optimally as described in Chapter 3, we can cancel
the ISI due to the Cy’s for k > K, i.e., the postcursor. The resulting mean-squared

error is given by
K-1
£ = Tr[(BCkA - D)R,,(BCxA —-1)" + ¥~ BCiAR,,ATC,"B” + BR,,B]
k=1
(441.4)
where we have used the fact that x(n) is correlated only within blocks. This can

be rewritten as
K-1
£ =Tr[(BCkA —I)R,,(BCxA -T)T + B( > CLAR, ATCT + Rw) B7).
k=1
(4A1.5)
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From equation (4A1.5), it seems evident that the interference term due to the
precursor adds as an extra noise term. The form of the noise added due to the
precursor indicates that it is quite like crosstalk noise. Indeed, a noise vector with
such a correlation matrix can be obtained by passing a random process g(n), one

which has the same autocorrelation as x(n), i.e.,
E[g(n)g(m)] = Rzz0nm, (4A13)

through a filter with impulse response

H(k) = Cy, k=1,...,K -1
(4A1.6)
=0, otherwise.

Thus, it is evident that the noise due to the precursor can be modeled as a form
of crosstalk noise. This chapter has essentially dealt with obtaining the optimum
filters in the presence of crosstalk noise, so the same techniques could be applied in

the presence of the precursor too.
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Chapter 5 Conclusions and the Future

The reader will probably heave a sigh of relief, having come to this point in the
thesis; the author certainly did. In this final chapter, we briefly summarize our
results and present suggestions for further work. Our work is barely the tip of the
iceberg in an interesting and increasingly important area, and there are a host of
problems for future researchers to tackle. This chapter will describe some of the
interesting unsolved problems in mathematics and communications that arose in

the course of this research.
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5.1 Summary and Conclusions

In this thesis, we were mainly concerned with the transmission of data over channels
with intersymbol interference and colored noise. Our objective was to derive good
transmit and receive filters to improve the efficiency of data transmission over these
channels. Motivated by the Water-Pouring Theorem from Information theory, we
proposed a parallel multichannel scheme for data transmission over these channels.
The basic idea was that by partitioning the input signal into various frequency
bands, we could control the signal power in each frequency band, thereby shaping
the signal spectrum.

In Chapter 2, we introduced the scheme to be used and derived simple equiv-
alent circuits for the scheme by applying Multirate Signal Processing techniques.
This led to an equivalent structure where the prefilter, the postfilter and the chan-
nel could be represented as matrix transfer functions. By recognizing this, we were
able to propose simple equalization schemes for channels with ISI by using theorems
from matrix theory. We demonstrated certain interesting properties of these equal-
ization schemes, and showed how some of their properties could lead to interesting
methods of coding over ISI channels. In particular, we showed how codes designed
for the 1 — D channel could be used over the 14 D channel. A pleasing aspect of this
research is that the tool we used, viz., the Smith Form Decomposition, has hitherto
only found application as a theoretical tool, but we have been able to propose a
practical application for it.

In Chapter 3, we derived optimum finite-length filters for the transmission of
data over channels with ISI and colored noise. We assumed that the prefilters
and the postfilters took care of the ISI within a block and we used block decision-
feedback equalization to tackle the ISI outside the block. In a sense, the optimum
prefilter could be viewed as the Karhunen-Loeve transform of a combination of the
channel and noise autocorrelations. We derived the performance of the mutichannel
schemes when using the optimal prefilter and postfilter and found that the multi-

channel scheme was superior in performance to a single channel scheme employing
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decision-feedback equalization. We explored the reasons for this improved perfor-
mance and conjectured that the performance improvement is a result of the spectral

shaping obtained due to the scheme.

In Chapter 4, we applied the multichannel scheme to the special case of the
ISDN digital subscriber loop channel. This is an ISI channel where the noise is
predominantly crosstalk due to adjacent loops in the same binder group. Hence,
we had a channel where the noise depended on the transmitted signal. Depending
on whether transmission over different loops in the same bundle was synchronized
or not, the crosstalk noise could be modeled as cyclostationary or wide-sense sta-
tionary. For both these cases, we presented methods to obtain the correlation of
the crosstalk noise and showed how to derive the optimum filters and the optimum
input power distribution. We then applied these results to some representative
loops from a subset of the ISDN subscriber loop called the Carrier Serving Area.
We found that T1 transmission over these loops is definitely a feasibility. Also,
synchronization between different loops seemed to improve throughput, but not by

enough to make it worthwhile.

Our main conclusion is that optimum multichannel techniques seem to be an
attractive way of achieving efficiency of transmission over practical channels. We
hope that this work will stimulate interest in the application of these techniques to

practice and the building of products and services involving these techniques.
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5.2 Suggestions for Future Research

In the course of our research, we seem to have unearthed more problems than we
could solve. We present a host of problems for future researches to tackle, these

problems fall under the realms of mathematics and engineering.

In Chapter 2, we were originally interested in finding good analysis filters and
synthesis filters which give a set of independent channels without any crosstalk
between the channels and with a reasonably flat frequency response in each of the
frequency bands. This problem has been solved as a variation of the QMF problem
[1] in [2], but only for the case when the channel in between is ISI-free. Our aim was
to generalize this result to the case of a channel with ISI, but we were unsuccessful.

This problem remains for future research.

We also notice that our equivalent structure led to a polynomial matrix de-
scription of the channel. The Smith Form Decompostion we used was a tool to
diagonalize the polynomial matrix, and it gave us a set of independent channels
with no crosstalk. Do other such techniques exist for obtaining independent chan-
nels? In particular, we know of lossless matrices, which are a generalization of uni-
tary matrices to the polynomial matrix domain. Does there exist a generalization
of singular-value decomposition for polynomial matrices, where the premultiplying
and postmultiplying matrices are lossless? These are questions in the theory of

polynomial matrices that are unsolved to the best of our knowledge.

The Smith Form technique for equalization required knowledge of the channel
characteristics. We have not investigated its application to a practical situation
where the channel characteristics may be varying. The question of whether the

Smith Form Decomposition could be done adaptively is also an open one.

In Chapter 3, we derived optimum filters for block data transmission with the
knowledge of the channel and noise characteristics. Adaptive techniques for doing
the same in the case of time-varying channels and non-stationary noise are worth

investigating.
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In Chapter 5, we showed how to obtain the optimum filters in the case when
the noise is crosstalk. We assumed homogeneity of all the wires in a binder group
and all loops transmitting using the same scheme. A question that could be asked is
whether improvements can be obtained by transmitting using different schemes on
different loops and exploiting this to mitigate crosstalk. We were able to present an
exact method to find the optimum filters only in one special case, i.e, all channels
had a positive input power. Our method to solve the problem in the other cases was
a crude iterative method that was not guaranteed to give a solution. A method to
solve the eigenvalue problem involved in finding the optimum filters in the crosstalk
case is a problem of great interest, and we hope future researchers will attempt it.
We have also noted that the decision-feedback equalizer could probably be simplified
by using a pole-zero model for the loops; an investigation of this aspect may be an
avenue for further research.

In summary, there is a host of problems available in this area for future re-

searchers to tackle, and we hope they will have success in doing so.
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