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Appendix C: Simulation of M2AChR Dose-Response 
Relationship Data Using an Asymmetric Current Change 
Model 

 

 

C.1  Introduction 

To try to understand the source of the variability in suppressed M2AChR cEC50 

data, we performed an experiment in which we repeated the same concentration of ACh 

(0.3 μM) at various intervals throughout a dose-response experiment (see Figure 3.22).  

Current responses to the same dose of agonist increased on average throughout the course 

of the experiments.  More importantly, this change was not constant: current changes 

appeared to be low at the early doses in the series, but increased at the half-way point of 

the series. 

What effect does asymmetric current change have on a dose-response 

relationship?  Figure C.1 provides an illustration of the effect.  Before we fit our data to 

the Hill equation, we normalize IK,ACh measurements (Figure C.1a) to the maximum value 

in the dose series.  This maximum response is often found in the last two doses of the 

series.  Our interpretation of the current change data suggests that this maximum response 

is higher than what it would be absent any current change mechanism.  Therefore, the 

other IK,ACh values would appear to be smaller relative to this maximum dose than they 

would without the current changes.  In other words, the normalized responses for the 

current change data would be smaller at each dose, effectively shifting the cEC50 to 

higher values (Figure C1b). 
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Figure C.1.  Example of how asymmetric current changes can affect dose-response relationships.  (a) IK,ACh 
data for an unaffected cell and a cell that experiences asymmetric current changes.  The affected data were 
derived from the unaffected data by applying a set of current change values (α) used in the data simulation 
exercises.  (b) Both data sets from (a) are normalized and fit to the Hill equation.  The unaffected data has a 
cEC50 value of 200 nM, while the current change cEC50 value is 370 nM. 

Once we realized the effect these current changes could produce in our cEC50 

data, we wanted to determine if we could use the current change data we had collected to 

simulate dose-response data.  Would this simulated cEC50 data exhibit variability similar 

to the actual data we had collected?  This appendix describes the method we used to 

simulate 10.10.0 W7.40Trp data and how this generated data set matched real data. 

 

C.2  Methodology 

We decided to try to simulate 10.10.0 W7.40Trp data because it employed the 

experimental conditions that we had used to generate the current change data and was the 

largest suppression data set (N = 42).  Our goal was to generate five different sets of N = 

42 cell dose-response relationships and then compare each set to the actual data for 

differences in mean (t-test) and variance (F-test).  The actual 10.10.0 W7.40Trp data had 
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a mean of 230 nM and a standard deviation of 120 nM (CV = 0.52; the ln transformed 

data set had a mean of 5.3 and a standard deviation of 0.5).  

 

C.2.1 Mathematical Model for Simulating M2AChR Data 

Let ܻ  be an ideal set of dose-response data, where ܻ  refers to the 

IK,ACh measurement at dose ݊ of the dose-response series.   
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Let ܺ  be the normalized ܻ  data set such that ܻ , where ߚ is 

the maximum current of ܻ  or max(ܻ ). 

Let  be the set of current data that has been modified through 

asymmetric current changes such that ܼ , where ߙ  is 

the set of percent changes in current relative to dose ݊ ൌ  of the dose-response series 

ߙ) . 

Let ܹ  be the normalized ܼ  data such that ܹ . 
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In the end, ܹ . 
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C.2.2 Implementation of the Mathematical Model 

The above derivation provided us with an equation for normalized simulated data 

(ܹ ) expressed in terms of ideal normalized data (ܺ ) and a set of current changes at 

each dose in a dose-response series (ߙ ).  Ideal normalized data were generated by 

evaluating the Hill equation at the ten doses used in our dose-response experiments 

(0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and 100 μM) using a seed EC50 and nH.   

௡ ௡

௡

To generate sets of α values, we utilized the current change data set we had 

obtained from the 10.10.0 W7.40Trp experiments.  In those experiments, we measured 

the change in current of a test dose of ACh at three positions within the dose-response 

series, thus obtaining sets of α values.  (For the purpose of these simulations, we 

numbered the test doses as follows: the test dose between 0.01 μM and 0.03 μM was 

numbered as n = 3.5, the test dose at 0.3 μM as n = 6, and the test dose between 3 μM 

and 10 μM as n = 8.5.  This numbering system allowed us to refer to the ten doses within 

the dose-response series as n = 1 through n = 10.)  Our proposed current change model 

consisted of linear progressions connecting the three measured α values (Figure C.2). At 

dose n =1, α = 0 and α values increased linearly through dose n = 2 and n = 3 towards the 

α value measured for n = 3.5.  Similar progressions were created to connect n = 3.5 with 

n = 6 and n = 6 with n = 8.5.  At doses n = 9 and n = 10, we set α at the value measured 

for n = 8.5. 
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Figure C.2.  Model for progression of α values throughout a dose-response relationship series.  Dotted red 
lines denote the data points for α values measured during the current change experiments described in 
Section 3.2.6.3 and above.  We refer to these data points as doses n = 3.5, n = 6, and n = 8.5, where the 
0.001 μM dose is n = 1 and the 100 μM dose is n = 10. 

With this model of current change, we then randomly generated α values for n = 

3.5, n = 6, and n = 8.5.  To generate these values (#1, #2, and #3) we randomly sampled 

from three data sets using the MiniTab software package: #1 was generated from the set 

of n = 3.5 current change percentages, #2 was generated from the set of differences 

between n = 6 and n = 3.5 percentages, and #3 was generated from the set of differences 

between n = 8.5 and n = 6 percentages.  α values for n = 6 and n = 8.5 were then 

produced by adding the randomly generated #2 to #1 and adding randomly generated #3 

to the previous sum (#1 + #2), respectively.  This method for randomly generating values 

at n = 6 and n = 8.5 was used to provide the context of current change observed in the 

cells to our generated numbers.   

Once n = 3.5, n = 6, and n = 8.5 α values were obtained, the rest of the α values 

were determined by linear progressions between them as described above (Figure C.2). 

An Excel (Microsoft) spreadsheet was used to program the equations that described the 
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lines connecting n = 1 with n = 3.5, n = 3.5 with n = 6, and n = 6 with n = 8.5.  Figure C.3 

shows the mean of generated α values at each dose for the five sets of 42 dose-response 

relationships compared with the actual measurements at n = 3.5, n = 6, and n = 8.5. 

 

Figure C.3.  Comparison of measured and randomly generated α values.  The measured α values (red) 
were only determined at doses n = 3.5, n = 6, and n = 8.5.  Randomly generated α values (black) were used 
in the five sets of 42 simulated dose-response relationships; these values were generated from the measured 
data as described in the text.  Right: The ACh concentrations for each numbered dose 

 

 

C.2.3. Seed EC50 Value and Dose-Response Relationship Data Generation 

After five sets of 42 α value progressions were created, we took one set, Rand1, 

and used it to determine the appropriate seed EC50 value.  We sought a seed value that 

generated dose-response data with a mean cEC50 value similar to that of the actual data.  

We tested seed values of 200, 190, 170, 160, 150, 140, and 135 nM and plotted the mean 

of the resulting cEC50s versus the seed value (Figure C.4a).  Because cEC50 data is log-

normally distributed, we made a similar plot for the mean cEC50 of the ln transformed 

simulated data (Figure C.4b).  Using the linear equations from both plots, we solved for 
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the seed value that would produce the mean cEC50 of the actual data (230 nM or 5.3, for 

the ln transformed data).  Both equations yielded 140 nM. 

 

 
Figure C.4.  Determination of simulated data EC50 seed value.  (a) Mean of generated cEC50s plotted 
versus the seed value for that data set.  (b) Mean of the ln transformed data set plotted versus the seed 
value.  Both plots show the equation of the line that fits the data.  These equations were used to determine 
the appropriate seed value as discussed in the text. 

The five sets of 42 simulated dose-response relationships, referred to as Rand1 

through Rand5, were then created using the randomly generated α values and the 140 nM 

EC50 seed value (the nH seed value was set at 1, because only one ligand binds to each 

GPCR).  To create these data sets, we programmed the ܹ  equation derived above into an 

Excel spreadsheet and fit the normalized data to the Hill equation (ܫ

௡
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, 

where A is the concentration of drug) with the Origin software package (Origin Lab, 

Northhampton, MA).  Each cEC50 data set’s mean and variance were compared to those 

of the 10.10.0 W7.40Trp data set through t- and F-tests, resepectively.     
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C.2.4. “Correcting” Actual Data with the Asymmetric Current Change Model 

After generating random M2AChR-like data, we attempted to use this model of 

asymmetric current changes to “correct” our measured dose-response relationships.  By 

“correct” we mean remove any effect current change had on the dose-response 

relationship and leave what should be a more accurate cEC50 value. 

To perform this “correction”, we used the measured n = 3.5, n = 6, and n = 8.5 α 

values for each cell to generate current change progressions as illustrated in Figures C.2 

and C.3.  With α values for doses n = 1 through n = 10, the actual measured response for 

each dose was divided by the quantity 1 ൅ ߙ  to produce “corrected” current responses.  

After normalizing these “corrected” responses, the data were fit to the Hill equation to 

obtain “corrected” cEC50 values.  These values were compared to the “uncorrected” data 

through t- and F-tests. 

௡

 

C.3.  Results and Discussion 

C.3.1.  Comparing Simulated Data with Actual Data 

As described in Section 3.2.6.3, Figure 3.23, and Table 3.3, the five simulated 

data sets had similar means and variances to the 10.10.0 W7.40Trp data set.  The p-

values for the Rand4 t-test and the Rand5 F-test were only slightly above 0.05.  Visual 

inspection of the distribution of these two data sets confirms these slight deviations from 

the actual data (Figure C.5a).   
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Figure C.5.  Simulated and randomly generated 10.10.0 W7.40Trp data.  (a) Distribution of actual 10.10.0 
W7.40Trp data and simulated data sets Rand1 through Rand5.  Open squares denote the cEC50 mean.  (b) 
Distributions of 204 cEC50 values randomly generated from a log-normal distribution with the shape 
parameters μ = 5.3 and σ = 0.537 and the 204 simulated cEC50 values shown in (a).  Comparisons of 
groups in both (a) and (b) described in the text 

To further confirm that the simulated data fit a distribution similar to that of the 

actual data, we randomly generated 204 cEC50 values from a log-normal distribution with 

shape parameters μ = 5.3 and σ = 0.537 and compared them to the 204 simulated cEC50 

values (Figure C.5b).  The mean and variance of the two sets of numbers were not 

significantly different (t-test p = 0.4 and F-test p = 0.8).   

We therefore conclude that our model for generating M2AChR data is capable of 

reproducing the means and variability of data that we observe in the laboratory.  More 

specifically, this exercise suggests that asymmetric current changes during the course of a 

dose-response relationship experiment introduce both variability and a general upward 

shift in cEC50.  The fact that the seed value that best replicates the mean cEC50 of our 

actual data was 140 nM, almost 40% lower than the measured mean cEC50, suggests the 

actual ACh EC50 for M2AChR may be lower than 230 nM.  If a more direct readout of 

receptor activation were used, we predict that the dose-response relationship would be 

shifted to lower cEC50 values. 
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C.3.2.  Data Not “Corrected” Through α Values 

Given the success of the data simulation exercises, we predicted that the 

“corrected” 10.10.0 W7.40Trp data would have a lower mean cEC50 value and a lower 

standard deviation.  Both predictions were incorrect.  As shown in Figure C.6, the 

original and “corrected” data are indistinguishable; the means are 230 nM and 290 nM, 

while the standard deviations are 140 nM and 260 nM for the original and “corrected” 

data sets, respectively.  In fact, the two variances are significantly different as determined 

by the F-test (p = 0.01). 

 
Figure C.6.  Original and “corrected” 10.10.0 W7.40Trp data.  22 cells of data were “corrected” through 
the use of current change data collected during the dose-response relationship experiment.  Comparisons of 
the two data sets are discussed in text.  

Why did this “correction” fail to lower data variability or change the population 

mean?  One possibility is that the less variable 10.10.0 injection conditions may have 

mitigated much of the current change-induced variability and that the remaining 

variability emanates from other sources within the cell.  Although if this were true, the 
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data simulation exercise should not have been as successful at replicating data variability.  

We believe that the asymmetric current changes are not the sole source of variability in 

the M2AChR-GIRK 1/4 signaling system.  If another data set with higher cEC50 

variability were “corrected”, it is possible that more of its variability would come from 

current changes and would thus show a greater degree of “correction”.  Despite the 

failure of the “correction” methodology with this data set, this procedure should not be 

abandoned; future data sets may show improvement through this methodology and 

produce less variable data from this complex signaling system. 


