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Chapter 2: Chemical-Scale Studies on the Role of a 
Conserved Aspartate in Preorganizing the Agonist Binding 
Site of the Nicotinic Acetylcholine Receptor* 

 

 

2.1  Introduction 

2.1.1  The Nicotinic Acetylcholine Receptor 

Neuroreceptors are central players in synaptic transmission, receiving and 

interpreting chemical signals between neurons in the nervous system.  Neuroreceptors of 

the ligand-gated ion channel (LGIC) family directly convert incoming chemical signals 

into electrical output.  In the LGIC gating process, neurotransmitters are recognized by 

ligand-binding domains, and binding triggers conformational changes within the structure 

to form an ion-conducting pore.   

The nicotinic acetylcholine receptor (nAChR) has served as a prototype for 

understanding the structure and function of the Cys-loop family of LGICs (also known as 

pentameric LGICs).  In this superfamily of receptors, which also includes γ-aminobutyric 

acid, glycine, and serotonin receptors, the five subunits are symmetrically or 

pseudosymmetrically arranged around a central ion-conducting pore.  Each subunit 

contains a four-helix transmembrane domain that contains the ion channel gate and an 

extracellular ligand-binding domain.  Members of the nAChR family are expressed at the 

neuromuscular junction and in the electric organ of eels and rays (muscle-type receptors), 

as well as in the central nervous system (neuronal receptors).  The muscle-type receptor 

* Reproduced in part with permission from Cashin, A.L., Torrice, M.M., McMenimen, K.A., Lesater, H.A., 
Dougherty, D.A. Biochemistry 2007, 46, 630–639.  Copyright 2007 American Chemical Society 
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is the best characterized, and the form studied here is the embryonic muscle nAChR, with 

a subunit stoichiometry of two α1 subunits and one each of the β1, γ, and δ subunits1.  

The nAChR has two agonist binding sites located at the α/γ and α/δ subunit interfaces2–4.  

The α subunits contribute the primary binding site components, termed loops A, B, and 

C, while the γ and δ subunits contribute the complementary components, primarily loop 

D (with possible contributions from loops E and F).  The focus of this chapter is on loops 

A and B of the α subunit.  

Work over the past several years on acetylcholine binding protein (AChBP) 

orthologs from mollusks has led to important new insights into the structures of Cys-loop 

receptor ligand-binding domains5–8.  AChBP is a soluble, homopentameric protein 

produced in glial cells that is homologous to the nAChR ligand-binding domain.  Crystal 

structures of AChBP with various agonists bound have established that the nAChR 

binding site is comprised of a box of conserved aromatic residues.  One of these 

conserved aromatic residues is a tryptophan on loop B, W149 (Figures 2.1 and 2.2).  

Previous studies by this lab established that this tryptophan makes a strong cation-π 

interaction with ACh in the muscle-type receptor 9, and its role as a component of the 

AChBP “aromatic box” confirmed those findings.  Subsequent work showed that the 

potent nicotinic agonist epibatidine also makes a cation-π interaction with W149 9,10.  

Nicotine is a quite weak agonist at the muscle-type receptor and does not form a cation-π 

interaction; its actions at the neuronal receptors are more substantial. 
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2.1.2  Previous Studies of D89/Loop B Interactions 

The AChBP crystal structures suggest other important ligand-binding domain 

interactions that require verification through experiment.  One structurally interesting 

interaction involves a conserved aspartate on loop A, D896.  This residue is part of a 

highly conserved WxPD motif exhibited across the entire Cys-loop superfamily (Figure 

2.1).  In the crystal structures of AChBP, D89 is positioned to interact with loop B 

through any of a number of hydrogen bonds between the aspartate carboxylate side chain 

and loop B residues T148, W149, and T150 (Figure 2.2).  For the purposes of discussion, 

a schematic of the putative hydrogen bonding network, with potential hydrogen bonds 

labeled, is shown in Figure 2.3a.    The high degree of conservation of the WxPD motif 

and the clear interaction of D89 with a known component of the agonist binding site 

(loop B/W149) have generated considerable interest in D89.  Note that loop A also 

contains a canonical contributor to the aromatic box, Y93. 

 loop A loop B 

AChBP SLWVPDLAAYN IGSWTH 

mmα1 KIWRPDVVLYN LGTWTY 

hα7 QIWKPDILLYN FGSWSY 

hGly- α1 SIWKPDMFFVH IESYAY 

h5-HT3A SIWVPDILINE FESYSH 

 

Figure 2.1.  Alignment of loops A and B for several Cys-loop receptors.  The WxPD motif of loop A and 
the region around W149 of loop B are highlighted in red and blue, respectively.  AChBP:  ACh binding 
protein from Limnaea stagnalis; mmα1:  nAChR α 1 subunit of mouse muscle (studied here);  hα7:  
human nAChR α7 subunit;  hGly- α1:  human glycine receptor α1 subunit;  h5-HT3A:  human 5-HT3 A 
subunit.  Y93 shown in green in the mmα1 sequence. 
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Figure 2.2.  Region investigated in the Chapter 2 study.  Loop A is shown in blue; loop B in green.  
Highlighted are the side chains of D89, T148, and T150, which together can form a network of hydrogen 
bonds.  Also shown are contributors to the agonist binding site:  Y93 from loop A; W149 side chain and 
W149 backbone carbonyl (red star) from loop B.  This carbonyl and the side chain of Trp 149 point directly 
at the agonist, which in this view lies “behind” loop B.  This image results from MD simulations, as 
discussed in text. 

 
Figure 2.3.  Schematics of potential hydrogen bonding interactions between loops A (blue) and B (black).  
(a)  The wild type receptor.  (b)  D89N, highlighting the potential electrostatic clash.  (c)  D89Akp; note the 
lack of an electrostatic clash.  (d)  The double mutant D89N/W149Wah; note how hydrogen bond ii could, 
in principle, be restored. 
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Recently, Lee and Sine11 have investigated D89 and its role in agonist binding by 

combining site-directed mutagenesis with single-channel kinetic analyses.  Neutralization 

of the negative charge at position 89 through a mutation to asparagine or threonine, 

(D89N and D89T, respectively) substantially compromised receptor function, producing 

significant decreases in the bimolecular forward rate constant for agonist-receptor 

binding.  In contrast, mutating residues T148 and T150, singly and in combination, did 

not seriously impact function.  From these results, Lee and Sine concluded that D89 plays 

a structural role in stabilizing loop B, in particular W149, for agonist association.  They 

concluded that essential structural features of the D89/loop B network were the negative 

charge of D89 and hydrogen bonds between the aspartate carboxylate and the amide 

backbones of T150 and T149 (hydrogen bonds i and ii in Figure 2.3a).  They also 

proposed that a possible polarization of the backbone carbonyl of W149  contributes to 

ACh binding6.  

 

2.1.3  Project Goals 

In the present study, we sought to further probe the role of the conserved D89 in 

the nAChR ligand-binding domain.  Through the incorporation of unnatural amino acids 

using two different suppression methodologies12–15, we introduced more subtle 

modifications to the side chain of D89, allowing what we have termed “chemical-scale” 

studies of such complex receptors.  By chemical scale we mean, in effect, the distance 

scale to which chemists are accustomed:  the functional group, the specific bond rotation 

or local conformational change, or the precise noncovalent interaction. We have also 
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incorporated amide-to-ester backbone mutations into loop B to probe proposed hydrogen 

bonds to this region. We conclude that the significantly disruptive D89N mutation affects 

receptor function in several ways: a distortion of the hydrogen bonding network, the 

introduction of an electrostatic clash between the asparagine amide side chain and the 

backbone amides of loop B, and, to a lesser extent, a neutralization of charge.  We also 

find that, of the network of hydrogen bonds implied by the AChBP structure (Figure 

2.3a), no one hydrogen bond is singularly important.  Rather, maintaining the overall 

network of hydrogen bonds and avoiding electrostatic and/or steric clashes are essential 

for proper function.  To support our unnatural amino acid mutagenesis studies, we 

conducted molecular dynamics simulations of the wild-type and D89N mutant ligand-

binding domains in an effort to evaluate the hydrogen bonding network. 

 

2.2  Results 

2.2.1  Conventional Mutants, D89N and D89E 

In this project, we evaluated receptors using the macroscopic parameter EC50, the 

effective concentration of agonist necessary to achieve half-maximal response, rather 

than the more information rich, but more time consuming, single-channel analyses of Lee 

and Sine11.  We made this choice both to examine a large number of mutants and to avoid 

the additional challenges of performing single-channel studies at the low expression 

levels often associated with unnatural amino acid mutagenesis.  Of course, EC50 is a 

composite value that could be influenced by changes in agonist affinity or in gating.  

Since the mutations we are evaluating are proximal to the agonist binding site and are 
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quite remote from the gate of the channel, we interpret changes in EC50 as affecting 

binding more than gating.  Consistent with this view, single-channel analyses of several 

D89 mutants reveal much more substantial changes in binding parameters than in gating 

parameters11.  

For comparison, we first studied two conventional mutants, D89N and D89E, that 

were also studied by Lee and Sine. The D89E mutant produced a modest 4-fold increase 

in EC50 for both ACh and epibatidine.  However, the D89N mutant produced substantial 

23- and 28-fold increases in EC50 for ACh and epibatidine, respectively (Table 2.1).  Our 

results parallel the single-channel work, in which D89N produced a significant decrease 

in rate constants for ACh association while D89E resulted in a modest decrease in 

association rates and barely any change in the overall agonist binding equilibria. 

 

2.2.2  Unnatural Mutants, D89Nha and D89Akp 

Unnatural amino acids were incorporated at D89 through frame-shift suppression, 

instead of nonsense suppression.  We used the frame-shift methodology because of the 

high level of misacylated THG73 incorporation at this position.  Currents with an average 

magnitude of 0.29 ± 0.03 μA (Figure 2.4a) were observed when we performed the 

misacylation control experiment (injection of 74 nt THG73 tRNA).  The dose-response 

relationship for this misacylation current (EC50 = 1.2 ± 0.1 μM; Figure 2.4b) suggested 

that Asp or Glu may have been the amino acid on the misacylated tRNA.  When we 

performed a similar control experiment with the frame-shift suppressor tRNA, YFaFS, 

we observed negligible misacylation currents (0.05 ± 0.01 μA; Figure 2.4a). 
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Figure 2.4.  D89 misacylation data.  (a) Comparison of currents from the misacylation control experiment 
for nonsense suppression (injection of 74 nt THG73 tRNA) and frame-shift suppression (injection of 74 nt 
YFaFS tRNA).  Currents were 0.29 ± 0.03 μA for THG73 (N = 13) and 0.05 ± 0.01 μA for YFaFS (N = 5).  
(b) Dose-response relationship for misacylated THG73 currents.  Hill equation parameters: EC50 = 1.2 ± 0.1 
μM, nH  = 1.9 ± 0.2, N = 6 cells 

  The essential role of D89 is confirmed by the large perturbation of the D89N 

mutant.  While generally considered a subtle change, an Asp-to-Asn mutation does more 

than simply neutralize charge.  It also replaces a hydrogen-bond-accepting O atom with a 

hydrogen-bond-donating NH2 group, and in the context of this system, this change 

introduces a possible electrostatic clash between position 89 and loop B (Figure 2.3b).  

The amide side chain of asparagine places an Nδ-–Hδ+ bond dipole proximal to the Nδ-–

Hδ+ bond dipoles of the loop B amide backbone at T150 and W149.  This possible 

repulsive interaction between the Nδ-–Hδ+ dipoles could contribute to the deleterious 

effects of the D89N mutant. 

In an attempt to dissect these two features of the D89N mutant, we incorporated 

two unnatural amino acids that neutralize the negative charge of Asp without introducing 

an electrostatic clash.  A nitro group (NO2) is isoelectronic and isosteric to a carboxylate, 

but it has no negative charge (Figure 2.5).  Also, a nitro group is a substantially weaker 
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hydrogen bond acceptor than carboxylate16; the measured difference in energetics of 

carboxylate and nitro hydrogen bonding is 1.5–2.0 kcal/mol17, corresponding to a factor 

of 10–20 in an equilibrium constant. The ideal residue would be nitroalanine (Noa), the 

nitro analog of Asp, but it is not chemically compatible with the nonsense suppression 

methodology (see Appendix A for details). Therefore, we studied nitrohomoalanine 

(Nha), the nitro analog of Glu (Figure 2.6). Since the D89E mutant produces only a 

modest change in receptor function, comparing the Nha mutant to the Glu mutant was 

deemed meaningful.  
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Asp Asn Nha Akp  
Figure 2.5.  Functionalities of side chains used in Chapter 2.  Space-filling models shown.  Note the greater 
steric similarity between Asp and Nha and between Asn and Akp.  

 
Figure 2.6.  Structures of hydroxyl acids, natural, and unnatural amino acids used in Chapter 2.  (a)  
Natural and unnatural amino (and hydroxy) acids structures.  (b)  Consequences of incorporating an α-
hydoxy acid into a protein.  The critical ester linkage is highlighted in bold; the carbonyl that is modulated 
is noted with a star. 
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Table 2.1.  D89 Mutantsa 

 
 

 Wild Typeb D89Nb D89Eb D89Nha D89Akp 

ACh 
 

EC50 
nH 
N 

0.83 ± 0.04 
1.8 ± 0.1  
22 

19 ± 1 
1.6 ± 0.1  
8 

3.4 ± 0.3 
1.6 ± 0.1  
9 

14 ± 1 
1.3 ± 0.1 
8 

8.0 ± 0.7 
1.7 ± 0.2 
5 

Epi 
 

EC50 
nH 
N 

0.60 ± 0.04 
1.6 ± 0.1  
22 

13 ± 1  
2.0 ± 0.2  
5 

2.4 ± 0.1 
1.7 ± 0.2  
3 

11 ± 1 
1.7 ± 0.3 
8 

5.0 ± 0.5 
1.5 ± 0.2 
5 

aEC50 (μM) and Hill coefficient ± standard error of the mean.  The receptor has a Leu9’Ser mutation in M2 
of the β subunit.  bData reported previously10,18   

 
Figure 2.7.  Representative dose-response relationships for D89Akp (a) and D89 wild-type recovery (b).  
(c) Data from same conditions as (a) and (b) fit to the Hill equation 

Incorporation of Nha at position 89, D89Nha, resulted in a modest 4-fold increase 

in EC50 when compared to that of the isosteric D89E receptor for both ACh and 
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epibatidine (Table 2.1).  This change is comparable to that of the original D89E mutation.  

The D89Nha mutant behavior suggests that charge neutralization is no more deleterious 

than an increase in side chain length at position 89.  

The second neutral unnatural amino acid we incorporated was 2-amino-4-

ketopentanoic acid (Akp; Figure 2.6), producing D89Akp.  Akp is a direct analog of Asp, 

and the ketone side chain of Akp is sterically similar to the Asp and especially the Asn 

side chains (Figure 2.5 and 2.6).  However, Akp lacks the Nδ-–Hδ+ bond dipole (Figure 

2.3c), and so does not contribute an electrostatic clash. When Akp was incorporated at 

position 89, 8- and 10-fold increases in EC50 were observed for ACh and epibatidine, 

respectively, relative to that of wild type (Table 2.1 and Figure 2.7).  The ~ 2.5-fold 

difference in EC50 between the D89Akp and D89N receptors can be attributed to the 

electrostatic clash produced by the Asn Nδ-–Hδ+ dipole.  

Table 2.2.  Nicotine Dataa 

 Wild 
Typeb 

D89Eb D89Nb D89Nha D89Akp 

EC50 57 ± 2 59 ± 6 1600 270 ± 60 110 ± 10 
nH    1.9 ± 0.5 2.7 ± 0.6 
N    9 5 
aEC50 (μM) and Hill coefficient ± standard error of the mean.  The receptor has a 
Leu9’Ser mutation in M2 of the β subunit.  bData reported previously18   

These two unnatural amino acid mutations were also studied with nicotine as the 

agonist.  While nicotine is a full agonist at neuronal receptors, it is a weak partial agonist 

at the muscle type of nAChR.  Incorporation of Nha produced a 4.5-fold shift in nicotine 

EC50 relative to that of the D89E mutant, and the incorporation of Akp produced an 

almost 2-fold shift relative to that of wild-type (Table 2.2).  (Unlike ACh and epibatidine, 

the D89E mutation did not shift the nicotine EC50; the wild-type nicotine EC50 was 57 ± 2 



26 
μM and the the D89E mutant EC50 was 59 ± 6 μM18.)  The negative charge of Asp 

appears to be of equal importance to nicotine as it is with ACh and epibatidine.  But, 

when compared to the D89N mutation (EC50 = ~ 1600 μM18), the slight shift in EC50 

caused by the  D89Akp mutation suggests that the electrostatic clash of Asn affects 

nicotine binding more than ACh and epibatidine.   

 

2.2.3  Loop B Backbone Mutations 

Of the four possible hydrogen bonds in the D89/loop B network, two involve 

side-chain–to–side-chain interactions, and two involve hydrogen bonds with the loop B 

amide backbone (Figure 2.3a). The side chain interactions (iii and iv) have been probed 

by conventional mutagenesis11.  T148L, T150A, and T148L/T150A mutants were not 

substantially disruptive, suggesting hydrogen bonds iii and iv are not crucial.  By 

inference, backbone hydrogen bonds i and ii have been proposed to be especially critical 

to receptor function11. 

Table 2.3.  Loop B and Double Mutantsa 

 
 

 Wild Type T150Tah W149Wah D89N D89N / 
T150Tah 

D89N / 
W149Wah 

ACh 
 
 

EC50 
nH 
N 

0.83 ± 0.04 
1.8 ± 0.1  
22 

0.25 ± 0.01 
1.4 ± 0.04 
17 

0.81 ± 0.03 
1.6 ± 0.1  
7 

19 ± 1 
1.6 ± 0.1  
8 

15 ± 1 
1.4 ± 0.2 
7 

2.2 ± 0.1 
1.8 ± 0.1  
6 

Epi 
 

EC50 
nH 
N 

0.60 ± 0.04 
1.6 ± 0.1  
22 

2.2 ± 0.2 
1.3 ± 0.1  
16 

1.6 ± 0.1 
1.6 ± 0.1  
5 

13 ± 1  
2.0 ± 0.2  
5 

2.9 ± 0.3 
1.2 ± 0.1 
6 

0.76 ± 0.05 
1.7 ± 0.1  
6 

aEC50 (μM) and Hill coefficient ± standard error of the mean.  The receptor has a Leu9’Ser mutation in M2 
of the β subunit.  Data reported previously10,18 

Probing backbone hydrogen bonds requires the power of unnatural amino acid 

mutagenesis.  Appropriate amide-to-ester mutations remove the backbone NH group that 
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can contribute to the hydrogen bond (Figure 2.6b).  In this system, the T150Tah mutation 

disrupts hydrogen bond i, and the W149Wah mutation disrupts hydrogen bond ii.  The 

W149Wah mutation produced very modest effects (Table 2.3), suggesting that hydrogen 

bond ii is nonessential.   

The T150Tah mutation has been studied previously10.  It is unique among the 

mutations considered here in that the results for ACh and epibatidine are qualitatively 

different; the EC50 for ACh decreased ~ 3-fold, while that for epibatidine increased ~ 4-

fold.  Ester backbones not only eliminate a hydrogen bond donor in the backbone, but 

also weaken the corresponding (adjacent) carbonyl as a hydrogen bond acceptor.  The 

carbonyl perturbed by the T150Tah mutation, the W149 backbone carbonyl (star in 

Figures 2.2 and 2.6b), points away from the region being probed here and directly into 

the agonist binding site.  Epibatidine can make a hydrogen bond to this carbonyl, and the 

ester mutation weakens the hydrogen-bond-accepting ability of the carbonyl, accounting 

for the increase in EC50.  No such hydrogen bond is possible for ACh.  As such, we 

consider ACh the better gauge of the importance of hydrogen bond i, and we ascribe a 

nonessential role for it.   

 

2.2.4  D89N and Ester Double Mutants 

Backbone ester mutations in loop B were also produced in an attempt to recover 

wild-type receptor function from the D89N mutant.  If indeed a Nδ-–Hδ+•••Hδ+–Nδ- 

dipole-dipole clash is introduced by the D89N mutation, an appropriate backbone ester 

would not only alleviate the clash, but would replace it with a potentially favorable 
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hydrogen bond (Figure 2.3d). Two double mutants were evaluated, D89N/T150Tah and 

D89N/W149Wah (Table 2.3).  The D89N/T150Tah double mutant (attempting to rescue 

hydrogen bond i) did not fully recover wild-type receptor function: 18- and 5-fold 

increases in EC50 were observed for ACh and epibatidine, respectively.  In contrast, the 

D89N/W149Wah double mutant (attempting to rescue hydrogen bond ii; Figure 2.3d) 

produced near wild-type activity, with EC50 increases of only 2.7- and 1.3-fold for ACh 

and epibatidine, respectively.  These results suggest that there is an asymmetry in the 

D89/loop B network that allows the electrostatic clash of the Asn side chain to be 

relieved through an ester at position 149 but not at position 150.  Note that the 

D89N/W149Wah mutant receptor is an example of a receptor that contains no negative 

charge in the vicinity of position 89, but retains nearly wild-type activity.   

 

2.2.5  Molecular Dynamics Simulation of nAChR Ligand-binding Domain 

We performed two simulations of the mouse muscle nAChR ligand-binding 

domain, one without and one with the agonist carbamylcholine (CCh) bound.  Other 

simulations of AChBP and variants of the nAChR have appeared19–24. The agonist-free 

structure is based on Unwin’s model of the receptor from T. marmorata, which is nearly 

identical in sequence to the mouse muscle receptor.  CCh was then docked into this 

structure in a manner compatible with the crystal structure of AChBP that contains CCh 

in the agonist binding site6.  We monitored hydrogen bonds i through iv, considering both 

oxygens of the D89 carboxylate (called OD1 and OD2; Figure 2.9), for a total of eight 

possible interactions.  Along with the D89/loop B hydrogen bonds, we monitored two 
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“control” hydrogen bonds that are part of a well-defined α-helix in the ligand binding 

domain.  The results summarized in Figure 2.8 and Table 2.4 are calculated from the final 

500 ps of the 5 ns simulations.   

 
Figure 2.8.  Analysis of hydrogen bonding in the molecular dynamics simulations of the nAChR ligand-
binding domain without (a) and with (b) CCh bound.  Hydrogen bonds were monitored between both D89 
carboxylate oxygens (OD1, white bars, and OD2, black bars) and the four loop B hydrogen bond donors.  
(c)  Control hydrogen bonds between the backbone amide of K10 and the backbone carbonyl of R6 
(K10R6, white bar) and the backbone amide of L11 and the backbone carbonyl of L7 (L11L7, black bar) 
were also monitored in both structures.  All observations were made during the last 500 ps of the 5 ns 
simulations.  Data expressed as the fraction of the 1000 observed frames where a given hydrogen bond was 
present   

 

 

 
Figure 2.9.  Two views of hydrogen bonding interactions for the receptor.  Structure without (a) and with 
(b) CCh bound shown.  Generated with the g_cluster program of the GROMACS suite from the final 500 
ps of the 5 ns nAChR ligand-binding domain simulations 
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Table 2.4.  Molecular Dynamics Simulationsa 

 D89-Loop B Distance (Å)b Number of D89-LoopB 
Hydrogen Bondsc 

rmsdd

WT Agonist Free 
 

4.3 ± 0.2 4.7 ± 0.8 -- 

WT CCh Bound 
 

5.2 ± 0.3 3.4 ± 0.8 1.5 ± 0.2 

D89N1 
 

5.3 ± 0.3 1.6 ± 0.6 2.5 ± 0.1 

D89N2 
 

8.1 ± 0.5 1.5 ± 0.9 3.8 ± 0.3 

aAll statistics averaged over the last 500 ps of the given simulation (1000 frames) and presented as mean ± 
standard deviation of the mean.  bDistance measured from D89 or N89 γ carbon to the W149 α carbon.  
cAll hydrogen bonds between position 89 and loop B residues, T148, W149, and T150.  Includes both 
oxygens of D89 in wild-type simulations.  drmsd calculated in reference to the average structure from the 
last 500 ps of the agonist free wild-type simulation.  Average structure from g_cluster program of 
GROMACS suite 

The agonist-free structure shows a very well-defined hydrogen bonding network.  

In a representative structure (Figure 2.9a), one carboxylate oxygen (OD2) makes 

hydrogen bonds to the two backbone NH groups (i and ii), while the other carboxylate 

oxygen makes hydrogen bonds to the two side chain OH groups (iii and iv).  These are 

strong hydrogen bonds, being present more frequently than the reference hydrogen bonds 

of the α helix.  Occasionally, one carboxylate oxygen simultaneously makes three 

hydrogen bonds; on average, there are 4.7 hydrogen bonds between D89 and loop B.  

Note that the orientation of the carboxylate in this simulation (Figure 2.2 and 2.9a) differs 

from previous models, the side chain having rotated to enable formation of four hydrogen 

bonds.   

Addition of the agonist CCh leads to a weakened interaction between D89 and 

loop B.   In the agonist-free simulation, D89 interacts with all four loop B hydrogen bond 

donors in 94% of the frames, but that number drops to 34% of the frames in the CCh-

bound simulation.  Hydrogen bonds to the loop B backbone, interactions i and ii, are 
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present less frequently in the CCh-bound structure (decreases of 17% and 50%, 

respectively, in the number of frames with a hydrogen bond present), while the side chain 

interactions, hydrogen bonds iii and iv, remain.  The average number of hydrogen bonds 

drops from 4.7 to 3.4 when agonist binds, and the distance between D89 and W149 

increases from 4.3 Å to 5.1 Å (measured from the D89 γ carbon to the W149 α carbon; 

Table 2.4). We also observed a similar decrease in hydrogen bonding between D89 and 

loop B when analyzing the last 500 ps of an α7 simulation25 (3.97 ± 0.05 compared to 

3.73 ± 0.05 hydrogen bonds for the agonist-free and CCh-bound structures, respectively).  

In the CCh-bound structure, OD1 makes the majority of the interactions with loop B, 

while OD2 only interacts with the T150 hydroxyl side chain (Figure 2.9b).   Structurally, 

the changes between empty and occupied agonist binding sites arise because the D89 side 

chain rotates to a less symmetrical arrangement that favors one carboxylate oxygen over 

the other in hydrogen bonding (Figure 2.9).  Also, the T150 side chain reorients, but the 

OH group ends up in a similar location.  In addition, as others have noted, the side chain 

of W149 reorients to make a cation-π interaction with the agonist. 

Simulations of the D89N mutant were performed on the agonist-free structure 

only, because the Asn mutant mainly affected the kinetics of association of the agonist 

with the unbound nAChR11.  Two simulations that differ in the initial orientation of the 

Asn side chain were considered.  In the D89N1 simulation, the N89 amide nitrogen was 

placed in a position comparable to that of OD1 of the agonist-free wild type structure, 

while in D89N2, the nitrogen was placed in the OD2 position.   

As summarized in Table 2.4, both simulations show that the D89N mutant 

substantially disrupts the interaction between position 89 and loop B.  The average 



32 
distance between N89 and loop B (measured from the N89 γ carbon to the W149 α 

carbon) over the final 500 ps was larger for both D89N1 and D89N2 simulations (5.3 Å 

and 8.1 Å, respectively) than either wild-type simulation. Also, in the D89N mutant 

simulations the 4.7 hydrogen bonds seen in the agonist free wild-type simulation are 

reduced to ~ 1.5, and many of these hydrogen bonds do not correspond to hydrogen 

bonds i–iv, but are new hydrogen bonds involving the backbone of N89.  The substantial 

disruption of the D89N mutant structures was also observed in the loop B region.  A 

comparison between the final loop B structure of the agonist-free wild-type simulation 

and comparable structures from the D89N1 and D89N2 simulations yielded rmsds of 2.5 

Å and 3.8 Å, respectively (Table 2.4).  

 

2.3  Discussion 

2.3.1  AChBP and the D89/Loop B Network 

The study of the nAChR ligand-binding domain has been transformed by 

information gained from the AChBP crystal structures.  Structural interactions found in 

the AChBP crystal structures have served as a starting point for new mutation studies in 

the nAChR and other Cys-loop family receptors26,27.  However, since the AChBP is not 

an actual LGIC and is < 25% homologous to the closest nAChR relative, α7, experiments 

are necessary to test the relevance of interactions found in the crystal structures.  The use 

of unnatural amino acids has allowed us to probe the relevance of these AChBP 

interactions at a chemical scale unavailable with conventional mutagenesis10,12,13,28. 
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In this study, we have evaluated the structural role of the highly conserved 

residue, D89.  According to the AChBP crystal structures, D89 provides the contact point 

between loop A, which contains D89 and agonist binding site residue Y93, and loop B, 

which contains the critical agonist binding site residue W149 (Figure 2.2).  In the AChBP 

structures the D89 carboxylate forms hydrogen bonds with the backbone amides of loop 

B residues T150 and W149, while also interacting with the hydroxyl side chains of T148 

and T150.  This network is conserved among the primary ligand-binding subunits of the 

Cys-loop family of receptors (Figure 2.1).  As noted before, D89 is part of a highly 

conserved WxPD motif found in essentially all known Cys-loop receptors.  The residues 

aligning with T148 are conserved as hydroxyl side chains, serine, or threonine.  W149 is 

part of the conserved aromatic box that comprises the agonist-binding site.  In three 

different Cys-loop receptors—the nAChR considered here, the 5-HT3 (serotonin) 

receptor, and the GABAC receptor—the aromatic residue that aligns with W149 makes 

direct contact with a bound agonist through a cation-π interaction 9,10–28,29. 

 

2.3.2 D89/Loop B Unnatural Amino Acid Mutations 

The essential role of D89 was established by the severe consequences of the 

relatively modest mutation D89N, an effect reported previously11.  Such a mutation could 

disrupt any or all of the four potential hydrogen bonds suggested by the AChBP 

structures (Figure 2.3).  Conventional mutagenesis previously showed that hydrogen 

bonds iii and iv could be removed without significant disruption of receptor function.  

Using unnatural amino acid mutagenesis, we have now ablated hydrogen bonds i 
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(T150Tah) and ii (W149Wah), and neither change is seriously disruptive. Clearly, no 

single hydrogen bond between loop B and loop A is critical to receptor function. 

Beyond disruption of the D89 / loop B hydrogen bond network, the D89N 

mutation neutralizes the negative charge of the wild-type Asp.  Others have concluded 

that binding of cationic agonists such as ACh requires a negative charge in the loop 

A/loop B interface region.  However, more subtle charge-neutralization strategies, such 

as incorporation of Nha or Akp, do not reproduce the full D89N effect.  This suggests 

that another factor is operative. 

We propose that the D89N mutation also introduces a destabilizing Nδ-–

Hδ+•••Hδ+–Nδ- dipole-dipole clash between position 89 and loop B.  The other charge-

neutralizing mutations, D89Nha and D89Akp, do not experience such a clash and so are 

less disruptive.  Also, the introduction into the D89N mutant receptor of a second, 

backbone mutation that removes one of the offending Nδ-–Hδ+ dipoles (D89N/W149Wah) 

restores near wild-type behavior.   This double mutant has no negative charge at the loop 

A / loop B interface yet is near wild type in behavior. 

Nicotine data for the D89 mutations diverges from that of ACh and epibatidine, 

which are quite similar to each other.  While the D89E and D89Akp mutants produce 

modest shifts in the ACh and epibatidine EC50s, nicotine potency is barely affected.  In 

contrast, the wild type to D89N and D89E to D89Nha nicotine EC50 shifts are similar to 

those for ACh and epibatidine (Figure 2.10).   

The most glaring difference in the nicotine data is found when comparing the 

D89N and D89Akp EC50 shifts for each agonist (Electrostatic Clash in Figure 2.10).  
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There is a 14.5-fold improvement in nicotine potency when the Asn amide NH2 group is 

substituted with the CH3 group of Akp; ACh and epibatidine only experience a ~ 2.5-fold 

improvement.  Relieving the electrostatic clash between Asn and loop B returns nicotine 

potency almost to that of wild type.  Because ACh and epibatidine EC50 values are still 

quite shifted, we concluded that the Akp mutation still disrupts the loop B structure  

possibly through general steric perturbations or destruction of the symmetry of the D89 / 

loop B interactions.  Because nicotine only makes one contact with loop B, a hydrogen 

bond to the W149 carbonyl10, the loop B binding requirements for nicotine are fewer than 

for the stronger agonists, ACh and epibatidine.  These observations suggest that ACh and 

epibatidine are more sensitive to perturbations in loop B structure than nicotine.     

 

 
Figure 2.10.  D89 unnatural mutation data compared between ACh, epibatidine, and nicotine.  Three 
different EC50 comparisons are made for each agonist and plotted as the log of the ratio of the two EC50s 
(log [EC50(1) / EC50(2)]).  D89N: EC50(1) is D89N and EC50(2) is wild type; Charge: EC50(1) is D89Nha 
and EC50(2) is D89E; Electrostatic Clash: EC50(1) is D89N and EC50(2) is D89Akp. 
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2.3.3  D89N Mutation and Implications for the Role of D89 in Ligand Binding 

Another proposed role for D89 is a polarization of the W149 carbonyl (star in 

Figure 2.2), which points into the agonist binding site and can directly contact agonists6.  

An amide carbonyl is highly polarized Cδ+=Oδ–, and the partial negative charge on 

oxygen could contribute to binding of cationic agonists.  It has been proposed that the 

negative charge of D89 could enhance this polarization6, although we are unaware of any 

precedent for this type of effect.  Our results do not appear to support this suggestion.  

For the mutant T150Tah, the key carbonyl is much less polarized, as it is now an ester 

carbonyl rather than an amide carbonyl.  However, this mutation decreases ACh EC50, the 

opposite of expectations from the polarization suggestion.   

The picture that emerges for the role of D89 is not simple.  It seems certain that 

hydrogen bonding between the side chain of D89 and loop A is involved.  However, no 

one interaction is singularly important.  A subset of the full complement of interactions 

between D89 and loop B is required to stabilize the nAChR ligand-binding site. 

Another possible indication of the disruptive nature of the D89N mutation can be 

found from a pair of Cys-loop receptors that are gated by serotonin.  The 5-HT3 receptor 

has a Trp that aligns with the nAChR Trp α149, and it makes a cation-π interaction with 

the agonist serotonin.28  Interestingly, the MOD-1 receptor from C. elegans naturally 

contains the D89N modification, a rare exception to the highly conserved WxPD motif. 

Also, even though MOD-1 is highly homologous to the 5-HT3 receptor, and binds the 

same neurotransmitter, the cation-π interaction in MOD-1 has moved away from the loop 
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B aromatic residue to a different residue in the aromatic box on loop C. 30  This could 

reflect the disruption of loop B caused by the D89N substitution in MOD-1.  

Molecular dynamics simulations generally support the experimental data of others 

and ourselves. In our simulations, a sharp reduction in the level of hydrogen bonding in 

the position 89/loop B network suggests that the D89N mutation severely disrupts 

interactions between position 89 and loop B.  In fact, in one of the D89N simulations, the 

Asn side chain ceases to interact at all with loop B. Both D89N mutant simulations 

produced loop B structures that differed from their wild type counterparts.  From these 

observations we conclude that loop B adjusts in structure to accommodate the Asn.  

From our molecular dynamics simulations of the mouse muscle nAChR ligand-

binding domain, it appears that D89 interacts with loop B more in the agonist-free state 

than in the agonist-bound state.  Relative to the agonist-free structure we find an average 

of approximately one fewer hydrogen bond between D89 and loop B; and D89 is almost 

1 Å further from loop B in the CCh-bound structure.  Because loop B itself does not 

relocate substantially on agonist binding (as revealed in the comparison of our agonist-

free and CCh bound wild-type simulations), the role of D89 is to preorganize the empty 

agonist binding site into a conformation that favors binding, an effect that would enhance 

binding affinity31.  Apparently, once the agonist is bound, the stabilization of loop B 

provided by D89 is no longer necessary, and the interaction between the two is 

weakened. This is consistent with an earlier conclusion that the D89N mutation affects 

agonist association but not subsequent steps in the channel activation mechanism11. 
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In conclusion, chemical-scale studies of the D89/loop B network have further 

refined our understanding of this interesting and highly conserved structural feature.  D89 

and loop B form a redundant network of hydrogen bonding interactions, no one of which 

is essential.  In addition, the charge on D89 is not essential for receptor function.  The 

D89N mutation both disrupts the hydrogen bonding network and introduces a repulsive 

electrostatic interaction, significantly destabilizing the D89/loop B network.  These 

results, along with molecular dynamics simulations and earlier single-channel studies11, 

indicate that the role of the D89/loop B network is to preorganize the agonist binding site 

for ligand binding, with no significant contribution to the gating mechanism.  

 

2.4  Materials and Methods 

Unnatural Amino Acid Suppression 

Synthetic amino acids and α-hydroxy acids were conjugated to the dinucleotide 

dCA and ligated to truncated 74 nt tRNA as previously described32,33.  Aminoacyl tRNA 

was deprotected by photolysis immediately prior to co-injection with mRNA, as 

described previously32,34.  Typically, 25 ng of tRNA was injected per oocyte along with 

mRNA in a total volume of 50 nL/cell.  mRNA was prepared by in vitro runoff 

transcription using the Ambion (Austin, TX) T7 mMessage mMachine kit.  The site of 

interest was mutated to the amber stop codon by standard means, verified by sequencing 

through both strands.  Mouse muscle embryonic nAChR in the pAMV vector was used.  

A total of 4.0 ng of mRNA was injected in an α:β:γ:δ subunit ratio of 10:1:1:1.  In all 

cases, a Leu-to-Ser mutation at a site 50 Å from the nAChR ligand-binding domain in the 
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M2 helix, known as 9’, was used to lower EC50 values to a measurable range10,28.  

Previous work on this mutation has shown that a Leu9’Ser mutation in the β subunit 

lowers EC50 values 40-fold without changing trends in EC50 values13,28.  In addition, the 

α subunits contain an HA epitope in the M3-M4 cytoplasmic loop for Western blot 

studies.  Control experiments show that this epitope does not detectably alter EC50.  As a 

negative control for suppression, truncated 74 nt tRNA or truncated tRNA ligated to dCA 

was co-injected with mRNA in the same manner as fully charged tRNA.  At the positions 

studied here, no current was ever observed from these negative controls.  The positive 

control for suppression involved wild-type recovery by co-injection with 74 nt tRNA 

ligated to dCA-Thr or dCA-Trp.  Frameshift suppression at αD89 was utilized as 

described by Rodriguez et al35.  

 

Electrophysiology 

Stage V-VI oocytes of Xenopus laevis were employed.  Oocyte recordings were 

made 24 to 48 h postinjection in two-electrode voltage clamp mode using the 

OpusXpressTM 6000A (Axon Instruments, Union City, CA).  Oocytes were superfused 

with Ca2+-free ND96 solution at flow rates of 1 mL/min before application, 4 mL/min 

during drug application, and 3 mL/min during wash.  Holding potentials were -60 mV.  

Data were sampled at 125 Hz and filtered at 50 Hz.  Drug applications were 15 s in 

duration.  Acetylcholine chloride was purchased from Sigma/Aldrich/RBI.  Epibatidine 

was purchased from Tocris as (±) epibatidine dihydrochloride.  All drugs were prepared 

in sterile ddi water for dilution into calcium-free ND96.  Dose-response data were 
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obtained for a minimum of 10 concentrations of agonists and for a minimum of three 

cells.  Dose-response relations were fitted to the Hill equation to determine EC50 and Hill 

coefficient values.   

 

Generation of Mouse Muscle nAChR Heteropentamer Computational Model 

A model of the mouse muscle ligand-binding domain was created by first aligning 

the mouse muscle nAChR sequence with the sequence of the Torpedo marmorata 

acetylcholine receptor, the structure of which had been determined using electron 

microscopy by Unwin36 and resolved to 4 Å resolution37.  An alignment was generated 

using the T-Coffee website.  A homology model was then built with this alignment using 

Prime38, within the Schrödinger suite of programs.  The individual chains of Torpedo 

structure 2BG9 were used as templates for each subunit type. Chain A of the Torpedo 

structure was used as a template for both α subunits of the mouse muscle nAChR.   Each 

subunit was exported as a PDB file and aligned in Swiss PDB Viewer39.  This structure 

was imported back to Prime where a side-chain prediction algorithm was used.  

This heteropentamer was converted to GROMACS40 format and inserted into a 

periodic box with 7 Å gaps between the protein and the box edge for molecular 

mechanics minimizations and simulations.  SPC water molecules40 were used to add 

explicit solvation to the model followed by the insertion of sodium and chloride ions to 

bring the molarity of the box to 150 mM.  An excess of sodium ions was added to 

neutralize the charge of the protein. 
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Ligand Incorporation into Mouse Muscle nAChR Model 

Using this heteropentamer, another structure was generated containing 

carbamoylcholine (CCh) in the ligand-binding pocket.  CCh was inserted into the two 

binding pockets of the mouse muscle nAChR.  This was performed by aligning the box 

residues of the mouse muscle model with the D binding site of the AChBP structure 

containing CCh (1UV6).  Gromacs parameters for the ligand (CCh) were initially 

generated using ProDRG (http://davapc1.bioch.dundee.ac.uk/programs/prodrg/)41.  The 

charges generated by ProDRG for CCh were modified due to a large positive charge that 

was inaccurately placed on the nitrogen atom of the ammonium.  Instead, ChelpG 

charges from HF/6-31G** calculations were used with some attenuation of the partial 

charges between carbamoyl protons and oxygens to fit within GROMACS MD 

parameters.   

 

Generation of the D89N Mutant Structures 

D89N mutant structures were made from the homology model PDB file by 

mutating D89 of both α subunits to Asn using Swiss PDB.  The two structures differed in 

their orientations of the NH2 group of the side chain: D89N1 placed the NH2 group in a 

position analogous to that of OD1 of D89 in the wild-type model, while D89N2 placed 

the NH2 group in a position analogous to that of OD2.  The mutant models were then 

placed in a hexagonal periodic box and treated like the wild-type model. 

 

http://davapc1.bioch.dundee.ac.uk/programs/prodrg/
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Molecular Dynamics Simulations   

All four nAChR structures (agonist free wild type, CCh bound wild type, D89N1, 

and D89N2) underwent one minimization step.  Then, under the GROMACS force field, 

MD simulations were begun.  The MD simulations started at 0 K and warmed to 310 K 

over the first 25 ps.  The protein and drug (CCh bound structure) were highly restrained 

during this warmup, followed by 100 ps of slowly releasing the restraints.  All 

simulations after this point continued unrestrained for 5000 ps (wild type-structures) or 

7500 ps (D89N mutant structures).  α7 model and molecular dynamics simulations were 

performed by E. James Petersson25.   

 

Analysis of Molecular Dynamics Simulations 

All molecular dynamics trajectories were analyzed using the tools included in the 

GROMACS suite(26).  All characterizations were performed on the last 500 ps of the 

simulations.  Each trajectory file contained data for every 0.5 ps, yielding 1000 frames of 

analysis per simulation. 

Distances and hydrogen bonds were analyzed using the g_dist and g_hbond 

programs, respectively.  The default g_hond hydrogen bond structural cut-offs (a 

donor/acceptor distance of 3.5 Å and an acceptor-hydrogen-donor angle of 30°) were 

used when monitoring hydrogen bonds. 

rmsd values for the CCh bound wild type, D89N1, and D89N2 simulations were 

calculated using the g_rms program.  All comparisons were made with respect to the 
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average loop B structure of the last 500 ps of the agonist-free wild-type simulation 

obtained from g_cluster, using the gromos method and an rmsd cutoff of 0.14 Å.  The α 

carbons of the two structures to be compared were aligned prior to the rmsd calculation.  

Figure 2.9 was produced from PDB files generated by g_cluster, using the conditions 

described above on the agonist free and CCh bound wild-type simulation trajectories.     

 

Synthesis of Wah cyanomethyl ester  and dCA-Wah 

Syntheses for both molecules performed by Amanda L. Cashin18. 

 

Synthesis of t-Butyl 2-Diphenylmethyleneimino-4-nitro-butanoate, 

nitrohomoalanine, NVOC-nitrohomoalanine, NVOC-nitrohomoalanine 

cyanomethyl ester, and Nha-dCA 

Described in Appendix A. 

 

Synthesis of Akp-dCA 

The synthesis of 2-amino-4-ketopentanoic acid and preparation of Akp-dCA were 

described previously42. 
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	2.1  Introduction
	2.1.1  The Nicotinic Acetylcholine Receptor
	Neuroreceptors are central players in synaptic transmission, receiving and interpreting chemical signals between neurons in the nervous system.  Neuroreceptors of the ligand-gated ion channel (LGIC) family directly convert incoming chemical signals into electrical output.  In the LGIC gating process, neurotransmitters are recognized by ligand-binding domains, and binding triggers conformational changes within the structure to form an ion-conducting pore.  
	The nicotinic acetylcholine receptor (nAChR) has served as a prototype for understanding the structure and function of the Cys-loop family of LGICs (also known as pentameric LGICs).  In this superfamily of receptors, which also includes (-aminobutyric acid, glycine, and serotonin receptors, the five subunits are symmetrically or pseudosymmetrically arranged around a central ion-conducting pore.  Each subunit contains a four-helix transmembrane domain that contains the ion channel gate and an extracellular ligand-binding domain.  Members of the nAChR family are expressed at the neuromuscular junction and in the electric organ of eels and rays (muscle-type receptors), as well as in the central nervous system (neuronal receptors).  The muscle-type receptor is the best characterized, and the form studied here is the embryonic muscle nAChR, with a subunit stoichiometry of two (1 subunits and one each of the (1, (, and ( subunits1.  The nAChR has two agonist binding sites located at the (/( and (( subunit interfaces2–4.  The ( subunits contribute the primary binding site components, termed loops A, B, and C, while the ( and ( subunits contribute the complementary components, primarily loop D (with possible contributions from loops E and F).  The focus of this chapter is on loops A and B of the  subunit. 
	Work over the past several years on acetylcholine binding protein (AChBP) orthologs from mollusks has led to important new insights into the structures of Cys-loop receptor ligand-binding domains5–8.  AChBP is a soluble, homopentameric protein produced in glial cells that is homologous to the nAChR ligand-binding domain.  Crystal structures of AChBP with various agonists bound have established that the nAChR binding site is comprised of a box of conserved aromatic residues.  One of these conserved aromatic residues is a tryptophan on loop B, W149 (Figures 2.1 and 2.2).  Previous studies by this lab established that this tryptophan makes a strong cation-π interaction with ACh in the muscle-type receptor 9, and its role as a component of the AChBP “aromatic box” confirmed those findings.  Subsequent work showed that the potent nicotinic agonist epibatidine also makes a cation- interaction with W149 9,10.  Nicotine is a quite weak agonist at the muscle-type receptor and does not form a cation- interaction; its actions at the neuronal receptors are more substantial.
	2.1.2  Previous Studies of D89/Loop B Interactions
	The AChBP crystal structures suggest other important ligand-binding domain interactions that require verification through experiment.  One structurally interesting interaction involves a conserved aspartate on loop A, D896.  This residue is part of a highly conserved WxPD motif exhibited across the entire Cys-loop superfamily (Figure 2.1).  In the crystal structures of AChBP, D89 is positioned to interact with loop B through any of a number of hydrogen bonds between the aspartate carboxylate side chain and loop B residues T148, W149, and T150 (Figure 2.2).  For the purposes of discussion, a schematic of the putative hydrogen bonding network, with potential hydrogen bonds labeled, is shown in Figure 2.3a.    The high degree of conservation of the WxPD motif and the clear interaction of D89 with a known component of the agonist binding site (loop B/W149) have generated considerable interest in D89.  Note that loop A also contains a canonical contributor to the aromatic box, Y93.
	Recently, Lee and Sine11 have investigated D89 and its role in agonist binding by combining site-directed mutagenesis with single-channel kinetic analyses.  Neutralization of the negative charge at position 89 through a mutation to asparagine or threonine, (D89N and D89T, respectively) substantially compromised receptor function, producing significant decreases in the bimolecular forward rate constant for agonist-receptor binding.  In contrast, mutating residues T148 and T150, singly and in combination, did not seriously impact function.  From these results, Lee and Sine concluded that D89 plays a structural role in stabilizing loop B, in particular W149, for agonist association.  They concluded that essential structural features of the D89/loop B network were the negative charge of D89 and hydrogen bonds between the aspartate carboxylate and the amide backbones of T150 and T149 (hydrogen bonds i and ii in Figure 2.3a).  They also proposed that a possible polarization of the backbone carbonyl of W149  contributes to ACh binding6. 
	2.1.3  Project Goals
	In the present study, we sought to further probe the role of the conserved D89 in the nAChR ligand-binding domain.  Through the incorporation of unnatural amino acids using two different suppression methodologies12–15, we introduced more subtle modifications to the side chain of D89, allowing what we have termed “chemical-scale” studies of such complex receptors.  By chemical scale we mean, in effect, the distance scale to which chemists are accustomed:  the functional group, the specific bond rotation or local conformational change, or the precise noncovalent interaction. We have also incorporated amide-to-ester backbone mutations into loop B to probe proposed hydrogen bonds to this region. We conclude that the significantly disruptive D89N mutation affects receptor function in several ways: a distortion of the hydrogen bonding network, the introduction of an electrostatic clash between the asparagine amide side chain and the backbone amides of loop B, and, to a lesser extent, a neutralization of charge.  We also find that, of the network of hydrogen bonds implied by the AChBP structure (Figure 2.3a), no one hydrogen bond is singularly important.  Rather, maintaining the overall network of hydrogen bonds and avoiding electrostatic and/or steric clashes are essential for proper function.  To support our unnatural amino acid mutagenesis studies, we conducted molecular dynamics simulations of the wild-type and D89N mutant ligand-binding domains in an effort to evaluate the hydrogen bonding network.
	2.2  Results
	2.2.1  Conventional Mutants, D89N and D89E
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