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Abstract 

 
This dissertation describes three chemical-scale studies of neuroreceptor structure 

and function.  Incorporation of unnatural amino acids into two acetylcholine receptors—

the nicotinic acetylcholine receptor (nAChR) and the M2 muscarinic acetylcholine 

receptor (M2AChR)—and an electrophysiology assay of receptor function were 

performed in each of the studies.  The nAChR is a ligand-gated ion channel (LGIC) and 

the M2AChR is a G-protein-coupled receptor (GPCR). 

In Chapter 2, a highly conserved aspartate residue (D89) that is near the agonist 

binding site of the nAChR was probed for its role in agonist binding.  We found that the 

side chain of D89 establishes a redundant network of hydrogen bonds and preorganizes 

the agonist binding site by positioning a critical agonist-binding residue, tryptophan 149 

(W149).  Previous studies of a D89N mutant led to the proposal that a negative charge at 

D89 was essential for receptor function.  However, our studies show that neutral side 

chains at position 89 function well, only if an unfavorable electrostatic clash is avoided. 

Chapter 3 describes our attempts to incorporate unnatural amino acids into the 

M2AChR, a GPCR.  GPCR activity is assayed through second messenger signaling 

pathways, unlike the direct readout assays of LGICs.  These second messenger pathways 

require significant amounts of optimization to create assays that produce reliable and 

robust data.  In our experiments, variability of dose-response relationship data between 

batches of cells was the most significant concern.  Several factors were investigated to 

reduce this batch-to-batch variability.  After a reliable means to assay M2AChR function 
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was found, we performed a preliminary search for tryptophan residues in the agonist 

binding site that form a cation-π interaction with acetylcholine. 

Finally, in Chapter 4, we discuss the use of hydroxy acids to scan the αM1 

transmembrane helix of the nAChR for residues that undergo structural rearrangements 

during gating.  Hydroxy acids disrupt hydrogen bonding in protein backbones and thus 

provide a means to detect backbone interactions that form or break during gating.  The 

hydroxy acid analog of valine, valic acid (Vah), was incorporated at ten positions along 

the αM1 helix.  Backbone mutations at five residues on the intracellular side of a 

conserved proline (P221) produced shifts in dose-response relationships.   
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