Chemical-Scale Studies of the Nicotinic and Muscarinic Acetylcholine Receptors

Thesis by

Michael McCann Torrice

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology Pasadena, CA 2009 (Defended July 25, 2008)

© 2009

Michael McCann Torrice

All Rights Reserved

In memory of my grandparents: Margaret and Ronald McCann Virginia and Carl Torrice

Acknowledgments

The struggle itself towards the heights is enough to fill a man's heart. One must imagine Sisyphus happy.

- Albert Camus

My six years of pushing the stubborn rock of graduate school uphill have come to an end. Thankfully, I've had many sets of hands helping me shove.

The first set belongs to my advisor, Dennis Dougherty. In my senior year of college, while I was pondering graduate school, Dennis gave two lectures at M.I.T. I attended both and was hooked by his discussions of unnatural amino acids, cation- π interactions, and the brain. His ability to tell engaging scientific stories and to explain his reasoning in a transparent manner continues to inspire me. As an advisor, Dennis has allowed me a great deal of freedom, while also injecting timely doses of guidance. He has stood by me when projects appeared mired in confusion. And he has provided me the space to explore a non-traditional career path. For his support, academic and otherwise, I thank him.

All of the research contained in the following pages would have been difficult to perform without the expertise of Henry Lester and his lab. Henry has served as a fresh set of eyes for perplexing data and a source of new experiment ideas during countless "Unnaturals Club" meetings. I also greatly appreciate his support of my ventures into science writing. Bruce Cohen, a member of the Lester Group, has also been an excellent electrophysiology tutor. I also thank the other members of my committee, Peter Dervan, Bill Goddard, and Dave Tirrell, for their words of encouragement and advice throughout my graduate career.

When I arrived at CalTech I met an amazing collection of scientists in the Dougherty Group who made me feel truly welcome. The Lake Avenue lunch squad of Josh Maurer, Gabriel Brandt, Don Elmore, Darren Beene, and James Petersson were a constant source of engaging discussions about topics serious and silly that often involved list-making. Niki Zacharias, Sarah May, David Dahan, Tingwei Mu, and Steve Spronk were also integral in helping me grasp the basics of graduate school and the ways of the Dougherty Group. Amanda Cashin was my collaborator for the D89 project (Chapter 2) and the project's initiator. Lori Lee has been an indispensable source of scientific and career advice during the past six years; she has also been a great friend.

The current cast of Doughertyites has continued the group's scientific tradition of going where no organic chemist has gone before. I have enjoyed working alongside my fellow classmates, Joanne (Xinan) Xiu, Erik Rodriguez, and Amy Eastwood. Joanne is a dedicated scientist who never seemed to be flustered by the grind of graduate school. Erik's experimental advice has been crucial throughout the years; in particular, I thank him for his assistance with the frameshift suppression work in the D89 project. I thank Amy for commiserating with me over research, graduate school, and whatnot, especially as this document was being prepared. As my Opus co-captain, Ariele Hanek made dealing with an unruly machine a much more manageable job. I appreciate my discussions about the GPCR project, and science in general, with Kiowa Bower; I hope he doesn't regret switching receptors. Jai Shanata, Katie McMenimen, and Kristin

Gleitsman have listened to my ideas, read my writing, and provided me with valuable feedback over the years. I thank all the newer group members—Angela Blum, Noah Duffy, Shawna Frazier, Sean Kedrowski, Kay (Walrati) Limapichat, Darren Nakamura, and Nyssa Puskar—for humoring the grumblings of an older graduate student.

Of course, my past six years haven't solely been spent inside the lab. I've been fortunate to meet many people "on the outside" who have enriched my time at CalTech. I wish to thank a specific few here. My move from research to science writing would not be possible without Doug Smith at *Engineering & Science*. I would like to thank him for the opportunity to write while at CalTech and also for the encouragement to take the plunge into a new career. Roger Donaldson and Ben Collins were two of my several roommates. I simply thank them for all the laughs that carried me through the ebbs and flows of graduate school. Besides proofreading this, at times dry, document, Graef Allen has also been a movie-going, cat-watching, and Thai-food-eating companion. I thank her for her constant support, patience, and understanding during the home stretch of this long marathon.

Finally, I thank my family for their limitless cross-country encouragement. My aunts have been cheering me on at school since kindergarten. My parents' support for my varied pursuits has been unending. Together they have all fostered my curiosity in science that has led me here.

Abstract

This dissertation describes three chemical-scale studies of neuroreceptor structure and function. Incorporation of unnatural amino acids into two acetylcholine receptors the nicotinic acetylcholine receptor (nAChR) and the M_2 muscarinic acetylcholine receptor (M_2AChR)—and an electrophysiology assay of receptor function were performed in each of the studies. The nAChR is a ligand-gated ion channel (LGIC) and the M_2AChR is a G-protein-coupled receptor (GPCR).

In Chapter 2, a highly conserved aspartate residue (D89) that is near the agonist binding site of the nAChR was probed for its role in agonist binding. We found that the side chain of D89 establishes a redundant network of hydrogen bonds and preorganizes the agonist binding site by positioning a critical agonist-binding residue, tryptophan 149 (W149). Previous studies of a D89N mutant led to the proposal that a negative charge at D89 was essential for receptor function. However, our studies show that neutral side chains at position 89 function well, only if an unfavorable electrostatic clash is avoided.

Chapter 3 describes our attempts to incorporate unnatural amino acids into the M₂AChR, a GPCR. GPCR activity is assayed through second messenger signaling pathways, unlike the direct readout assays of LGICs. These second messenger pathways require significant amounts of optimization to create assays that produce reliable and robust data. In our experiments, variability of dose-response relationship data between batches of cells was the most significant concern. Several factors were investigated to reduce this batch-to-batch variability. After a reliable means to assay M₂AChR function

was found, we performed a preliminary search for tryptophan residues in the agonist binding site that form a cation- π interaction with acetylcholine.

Finally, in Chapter 4, we discuss the use of hydroxy acids to scan the α M1 transmembrane helix of the nAChR for residues that undergo structural rearrangements during gating. Hydroxy acids disrupt hydrogen bonding in protein backbones and thus provide a means to detect backbone interactions that form or break during gating. The hydroxy acid analog of valine, valic acid (Vah), was incorporated at ten positions along the α M1 helix. Backbone mutations at five residues on the intracellular side of a conserved proline (P221) produced shifts in dose-response relationships.

Table of Contents

Acknowledgements	iv
Abstract	vii
List of Figures	xiv
List of Tables	xvii

Chapter 1: An Introduction to Chemical-Scale Neuroscience 1

1.1	Chemistry and the Brain	1
1.2	The Unnatural Amino Acid Methodology	3
	1.2.1 The Power of Unnatural Amino Acids	3
	1.2.2 Incorporation of Unnatural Amino Acids into Neuroreceptors	5
1.3	Dissertation Work	12
1.4	References	12

Chapter 2: Chemical-Scale Studies on the Role of a Conserved Aspartate in Preorganizing the Agonist Binding Site of the Nicotinic Acetylcholine Receptor

15

2.1	Introduc	tion	15
	2.1.1	The Nicotinic Acetylcholine Receptor	15
	2.1.2	Previous Studies of D89 / Loop B Interactions	17
	2.1.3	Project Goals	19
2.2	Results		20
	2.2.1	Conventional Mutants, D89N and D89E	20
	2.2.2	Unnatural Mutants, D89Nha and D89Akp	21

ix

	2.2.3 Loop B Backbone Mutations	26
	2.2.4 D89N and Ester Double Mutants	27
	2.2.5 Molecular Dynamics Simulation of nAChR Ligand-Binding Domain	28
2.3	Discussion	32
	2.3.1 AChBP and the D89 / Loop B Network	32
	2.3.2 D89 / Loop B Unnatural Amino Acid Mutations	33
	2.3.3 D89N Mutation and Implications for the Role of D89 in Ligand Binding	36
2.4	Materials and Methods	38
2.5	References	44

Chapter 3: Incorporation of Unnatural Amino Acids into theBinding Site of the M2 Muscarinic Acetylcholine Receptor46

3.1	Introduction	46
	3.1.1 The G-Protein-Coupled Receptor Superfamily	46
	3.1.2 The Aminergic Class of GPCRs and Muscarinic Acetylcholine Receptors	50
	3.1.3 GIRK 1/4 Readout of M ₂ AChR	52
	3.1.4 Goals of Project	54
3.2	Results	55
	3.2.1 Electrophysiology of M ₂ AChR-GIRK 1/4 System	55
	3.2.2 Co-Injection of $G\alpha$ mRNA Blocks $I_{K,Basal}$	57
	3.2.3 RGS4 and Current Trace Kinetics	58
	3.2.4 Dose-Response Relationships for Conventionally Expressed <i>M</i> ₂ <i>AChRs</i>	60
	3.2.5 Wild-Type Recovery of M_2AChR	62

	3.2.6 cEC ₅₀ Variability in Nonsense Suppression M ₂ AChR Experiments	65
	3.2.6.1 G α and Higher cEC ₅₀ Values	68
	3.2.6.2 Batch-to-Batch cEC ₅₀ Variability	71
	3.2.6.3 Explanations of the cEC_{50} Variability	74
	3.2.7 Fluorinated Trp Series at W3.28, W6.48, and W7.40	78
3.3 E	Discussion	81
	3.3.1 Optimal Conditions for the Incorporation of Unnatural Amino Acids into M ₂ AChR	81
	3.3.2 What Causes cEC_{50} Variability in Suppressed M_2AChR Experiments?	82
	3.3.3 No Cation- π Interaction Site at W3.28, W6.48, or W7.40	85
	3.3.4 Other Possible Cation- π Interaction Sites and Future M_2AChR Experiments	87
3.4 N	Interials and Methods	90
3.5 R	References	92
Chaj Chai Rece	pter 4: The Use of Hydroxy Acids to Probe Structural nges in the αM1 Helix of the Nicotinic Acetylcholine eptor during Gating	97
4.1 Iı	ntroduction	97
	4.1.1 Nicotinic Acetylcholine Receptor Gating	97
	4.1.2 Use of Hydroxy Acid Scanning to Study Receptor Gating	100
	4.1.3 Project Goals	102
4.2 R	Results	103
4.3 C	Discussion	104
4.4 N	Interials and Methods	106
4.5 R	References	107

Appendix A: The Synthesis of Nitro Amino Acids: Nitro and Nitrohomoalanine	alanine 109
A.1 Introduction	109
A.2 Results and Discussion	110
A.2.1 Noa Synthesis	110
A.2.2 Nha Synthesis	112
A.3 Materials and Methods	113
A.4 References	119
Appendix B: Assessing the Statistical Significance of Shi Cell EC ₅₀ Data with Varying Coefficients of Variation	fts in 120
B.1 Introduction	120
B.2 Methodology	120
B.2.1 Definitions and Assumptions	120
B.2.2 Derivation	122
B.3 Results and Discussion	123
B.4 References	125
Appendix C: Simulation of M ₂ AChR Dose-Response Relationship Data Using an Asymmetric Current Chang Model	e 126
C.1 Introduction	126
C.2 Methodology	127
C.2.1 Mathematical Model for Simulating M ₂ AChR Data	128

C.2.2 Implementation of the Mathematical Model 129

C.2.3 Seed EC_{50} Value and Dose-Response Relationship Data Generation	131
C.2.4 "Correcting" Actual Data with the Asymmetric Current Change Model	133
C.3 Results and Discussion	133
C.3.1 Comparing Simulated Data with Actual Data	133
C.3.2 Data Not "Corrected" Through α Values	135

List of Figures

Figure 1.1.	Synaptic transmission	2
Figure 1.2.	Fluorinated Trp analogs and cation- π binding energies	5
Figure 1.3.	Overview of unnatural amino acid (UAA) incorporation	6
Figure 1.4.	Implementation of nonsense suppression methodology in <i>Xenopus laevis</i> oocytes	7
Figure 1.5.	Method for chemically acylating unnatural amino acids to the acceptor stem of suppressor tRNA	8
Figure 1.6.	Basics of electrophysiology assay	10
Figure 1.7.	Classic Zhong plot for α W149 residue of nAChR	11
Figure 2.1.	Alignment of loops A and B for several Cys-loop receptors	17
Figure 2.2.	Region investigated in Chapter 2 studies	18
Figure 2.3.	Schematics of potential hydrogen bonding interactions between loops A and B	18
Figure 2.4.	D89 misacylation data	22
Figure 2.5.	Functionalities of side chains used in Chapter 2	23
Figure 2.6.	Structures of hydroxyl acids, natural, and unnatural amino acids used in Chapter 2	23
Figure 2.7.	Representative dose-response relationships for D89Akp and D89 wild-type recovery	24
Figure 2.8.	Analysis of hydrogen bonding in the molecular dynamics simulations of the nAChR ligand-binding domain without and with CCh bound	29
Figure 2.9.	Two views of hydrogen bonding interactions for the receptor	29
Figure 2.10	• D89 unnatural mutation data compared between ACh, epibatidine, and nicotine	35
Figure 3.1.	GPCR signaling and desensitization pathways	47
Figure 3.2.	Schematic of aminergic GPCR binding sites	51
Figure 3.3.	Inward rectification	53

Figure 3.4. I	Example of a GPCR electrophysiology experiment	56
Figure 3.5. I	Example of $I_{K,Basal}$ suppression through injection of G α mRNA	57
Figure 3.6. I	Experiments with $G\alpha_{oA}$ mRNA injections	58
Figure 3.7. I	RGS kinetic effect	59
Figure 3.8. S	Scheme for spare receptors	60
Figure 3.9. (I	GIRK:M ₂ AChR mRNA injection ratio comparisons of cEC ₅₀ , $_{K,ACh}$, and $I_{K,Basal}$	61
Figure 3.10.	Conventional M ₂ AChR / GIRK 1/4 ACh dose-response relationship experiment	62
Figure 3.11.	$I_{K,ACh}$ and number of suppressor tRNA injections	63
Figure 3.12.	Cell-to-cell variability for nAChR and M2AChR suppression data	65
Figure 3.13.	Comparison of batch-to-batch variability for conventional and suppression M_2AChR data	67
Figure 3.14.	Suppression M_2AChR experiments exhibit higher cEC_{50} values in cells with low $I_{K,ACh}$	68
Figure 3.15.	Possible explanation of low $I_{K,ACh}$ / high cEC ₅₀ phenomenon	69
Figure 3.16.	$G\alpha_{oA}$ / cEC ₅₀ mRNA experiments	71
Figure 3.17.	Cell-to-cell variability for conventional wild-type, 20.5.2 W7.40F ₁ Trp, and 20.5.0 W7.40F ₁ Trp	72
Figure 3.18.	Batch-to-batch variability for conventional wild-type, 20.5.2 W7.40F ₁ Trp, and 20.5.0 W7.40F ₁ Trp	72
Figure 3.19.	M ₂ AChR:GIRK mRNA injection ratio improves cell-to-cell variability	73
Figure 3.20.	Variability of data from suppression experiments with 10.10.0 injection conditions	73
Figure 3.21.	Sample of C _m measurement	75
Figure 3.22.	Varying responses to a test dose of ACh throughout the course of a dose-response experiment	76
Figure 3.23.	Histogram of actual 10.10.0 W7.40Trp data with five simulated data sets	78
Figure 3.24.	Dose-response experiment for 10.10.0 suppression conditions	79

Figure 3.25.	I _{K,ACh} comparison between W7.40Trp and W3.28dCA	80
Figure 3.26.	F_n Trp data analyzed in terms of cation- π binding energy and ring dipole moment	85
Figure 3.27.	Alignment of $\beta_2 AR$ and $M_2 AChR$ binding site sequences	88
Figure 4.1.	nAChR structure and gating model	98
Figure 4.2.	nAChR SCAM studies	99
Figure 4.3.	Comparison of backbone hydrogen bonding	100
Figure 4.4.	α M2 hydroxy acid data	102
Figure 4.5.	αM1 hydroxy acid data	104
Figure 4.6.	Cryo-EM structures of $\alpha M1$ and $\alpha M2$ helices studied with hydroxy acids	105
Figure A.1.	Structures of nitroalanine and nitrohomoalanine	110
Figure A.2.	Synthetic route for the attempted synthesis of NVOC-nitroalanine cyanomethyl ester	111
Figure A.3.	Synthesis of NVOC-nitrohomoalanine cyanomethyl ester	113
Figure B.1.	The confidence levels of <i>t</i> -tests comparing cEC_{50} means with z-fold shifts	124
Figure B.2.	The effect of sample size on discerning 3-fold shifts in mean cEC_{50} using the <i>t</i> -test	125
Figure C.1.	Example of how asymmetric current changes can affect dose-response relationships	127
Figure C.2.	Model for progression of α values throughout a dose-response relationship series	130
Figure C.3.	Comparison of measured and randomly generated α values	131
Figure C.4.	Determination of simulated data EC ₅₀ seed value	132
Figure C.5.	Simulated and randomly generated 10.10.0 W7.40Trp data	134
Figure C.6.	Original and "corrected" 10.10.0 W7.40Trp data	135

List of Tables

Table 2.1.	D89 mutants	24
Table 2.2.	Nicotine data	25
Table 2.3.	Loop B and double mutants	26
Table 2.4.	Molecular dynamics simulations	30
Table 3.1.	cEC_{50} values for conventional and suppressed wild-type experiments based on $I_{K,ACh}$	67
Table 3.2.	EC_{50} values for conventional and suppressed wild-type experiments with varying amounts of co-injected $G\alpha_{oA}$ mRNA	70
Table 3.3.	Actual 10.10.0 W7.40Trp data and five simulated data sets	77
Table 3.4.	F _n Trp series data at W7.40, W6.48, and W3.28	80
Table 3.5.	M ₂ AChR binding site residues and mutational data	89
Table 4.1.	Hydroxy acid mutational data	103