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ABSTRACT

A modified three-dimensional Boundary Element Method (BEM) is developed.
This method is specially tailored towards applications in three-dimensional elasti-
city, involving regions containing two parallel planar surfaces. Typical structures
are the three-dimensional plate structures. The formulation makes use of the three-
dimensional fundamental solution of a concentrated load applied in an infinite three-
dimensional plate of uniform finite thickness (obtained by Benitez and Rosakis in
1985). The most attractive feature of this modified BEM is that, for the class of
problems involving structures described above subjected to traction-free bo;mdary
conditions on the planar surfaces, discretization is only required on the lateral sur-
faces of the plate and the surfaces of the cavities, holes, and cracks in the plate.
No discretization is needed on the planar surfaces of the plate. In this initial study,
three problems involving a pressurized hole in an infinite three-dimensional plate
are analyzed. The shapes of the holes include a circular hole and two elliptical holes
with the aspect ratios of 4 and 10, respectively. In all the cases, the accuracy of the
modified BEM is established by direct comparison of its results with those of finite
element calculations. The results of the modified BEM are also compared with the
plane-stress and plane-strain approximations of the problems under consideration.
This comparison make it possible to access the important three-dimensional effects

near the surface of the elliptical hole.



Table Of Contents

1 INTRODUCTION Lo e 1
2: FUNDAMENTAL SOLUTION ..ot 9
2.1 OVeIVIEW .ttt 9

2.1.1 Nomenclature....... .. ... .. . i, 11

2.2 Kelvin Solution . ... 13

2.3 Fundamental Solution For Infinite Plate Problem.............. 17

2.3.1 Numerical Treatment Of Fundamental Solution....... 20

2.3.2  Error Analysis Of The Numerical Evaluation ......... 27

2.4 Comparison Of Fundamental Solution And Kelvin Solution....30

3: THEORY OF BOUNDARY ELEMENT METHODS ................... 36
3.1 Theory Of Conventional Boundary Integral Equation

Method . ... oo 36

3.1.1 Somigliana Identities ............ ... ... ... .. ... 37

3.1.2 Conventional Boundary Integral Equation Method....39

3.2 Theory Of Modified Boundary Integral Equation Method. .. ... 45



_Vi._

3.3 Boundary Element Formulation With Fundamental Solu-

tion Of Infinite Plate Problem......... ... ..o ...
3.4 Element Matrices Construction ............ ... ...,
3.4.1 Numerical Integration Over An Arbitrary Element. ..
3.5 Analytical Integration Of Kelvin Solution ...................
3.5.1 Local Coordinate System ...........................
3.5.2 Coordinate Transformations ........................
3.5.3 Evaluation Of Integrals In G;; And H S rreeeeeeeeenn

3.5.4 Evaluation of H 1*] ...................................

3.5.5 Compare Matrix Results Of Proposed Pro-

cedure With Pure Numerical Integration With

SUbAIVISIONS . oot

3.5.6 Test Problem ... ...,

4.1 Analytical Solution For Pressurized Circular Hole Problem ....

4.2 Modeling Of Circular Hole Surface ..........................

4.2.1 Mesh With Seventy Two Elements ..................

.54

.74



-Vii-

4.2.2 Meshs With One Hundred and Twenty Elements .... 101
4.2.3 Mesh With One Hundred And Ninety Six Ele-

TICIES L. oo ....103
4.2.4 Mesh With Two Hundred And Twenty Four Ele-

IS L ottt e e 104

4.2.5 Mesh With Four Hundred and Twenty Elements..... 105

4.3 Mesh For Finite Element Analysis............... ... ...... 105
4.4 Results And Discussions ... .......c.o.uiiiiiiiieiniananena.. 109
4.4.1 Results Of In-Plane Displacements .................. 109
4.4.2 Results Of Out-Of-Plane Displacement .............. 114

4.4.3 Results Of Displacement Variations Through

T RICKIIESS « v ot et e e e e 117
4.5 ConclUSIonS . . oot 121
5. ELLIPTICAL HOLE SUBJECTED TO PRESSURE .................. 123

5.1 Plane-Stress and Plane-Strain Solutions of Elliptical Hole .... 124

5.2 Modeling Of Elliptical Hole Surface.......... ... . ... . ... 128

5.3 Modeling Of Elliptical-Hole Problem For FEA ............... 133



-Viii-

5.4 Results And DiScUSSIONS « -« v vt ot ee e e e e 136

5.4.1 Results Of In-Plane Displacements For Problem

ot
-
V]

Results Of Out-Of-Plane Displacement For Pro-

blem One . ..o 145

5.4.3 Results Of Displacement Variations Through

T hICKIIEsS . o e 149

5.4.5 Results Of Out-Of-Plane Displacement For Pro-

blemy Two .. oo 160

5.4.6 Results Of Displacement Variations Through

Thickness. ... 162

5.5 Conclusions ... ... 164

5.6 Future Work ... ... 169

6. APPENDIX .. 171

Bibliography . ... ..o 174



CHAPTER 1

INTRODUCTION

Boundary Element Methods (BEMs)[1]{2][3] have grown in the shadow of fi-
nite element methods since their birth. The finite element methods [4][5] have been
widely used in the analysis of problems in various fields of engineering practice
because of the simplicity and flexibility in their formulations. On the contrary,
boundary element methods have not received the attention they deserve. Among
other things, the complexity of the mathematics involved in formulating these meth-
ods perhaps is the single most important obstacle that has prevented many from

seeing the attractive sides of these methods.

Perhaps one way to understand the boundary element methods is to explore
their physical aspects [3]. Many science and engineering problems can be reduced
to mathematical models that belong to a class of problems known as boundary
value problems. These problems are characterized by a region of interest R whose
boundary is 9R. A set of partial differential equations model the physics of the
problem in R, and these equations have to be solved subject to certain constraints
or conditions described on the boundary OR. The basic principles of boundary
element methods can be illustrated with the reference to Figures 1.1. Figure 1.1a
represents a region R. A boundary value problem is considered in the region R in
Figure 1.1a. Figure 1.1b represents an infinite region and R’ is a tracing of the
boundary OR onto the infinite region E5. It is easier to find analytical solutions to
the relevant partial differential equations in the infinite region of Figure 1.1b than

in the actual region R of Figure 1.1a.
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(a) (b)

FIGURE 1.1 Finite Region R and Infinite Region Fj
In particular, the pioneering work by Kelvin has resulted in the analytical solution
for such a problem. The Kelvin problem consists of a concentrated load acting in
the interior of an infinite body composed of homogeneous, isotropic, linear elastic
material. The Kelvin solution gives the displacement and stress at any point differ-
ent from the loading point in the interior of the body. This solution is derived in
Kelvin & Tait’s treatise [6] through a limiting process. The Kelvin solution belongs
to a class of solutions that have the property that when the point of observation

approaches the loading point, the solution becomes singular.

Consider now how a boundary value problem may be solved through the use
of Kelvin’s solution. Suppose for the moment that it so happened that the Kelvin
solution produced precisely the same conditions on the virtual boundary OR' in
the infinite region as those prescribed on the boundary R in Figure 1.1a. If this
were the case then, because the solutions to well posed problems are unique in

elastostatics, the problem in Figure 1.1a is solved by addressing the problem in



Figure 1.1b.

For most problems, the above case is unlikely to happen. However, a numerical
procedure can be developed to find a number of Kelvin solutions which, when su-
perimposed, produce approximately the correct conditions on R'. This is the basic
concept of the boundary element method. This numerical procedure is developed
as follows with the understanding that an approximate solution is considered to be
acceptable when it can match the prescribed conditions on R at some designated
points on JR'. In the numerical procedure, the virtual boundary R’ is discretized
into a number of elements, for instance, the total number is N. For sim_plicity,
the designated points are chosen to be at the midpoints of the elements. The task
is then to find the amplitudes of N Kelvin solutions applied at the midpoints of
the elements. When these Kelvin solutions are superimposed, they will give the
required conditions at the midpoints of the elements. The combination effect can
then be expressed in terms of the amplitudes of the Kelvin solutions, and the final
effect at N midpoints should be the same as that prescribed on the boundary R.
Thus, the N unknown amplitudes can be obtained by solving a system of linear

algebraic equations.

In the early developments, boundary element methods were considered as the
summation of a series of the singular solutions with proper amplitudes as presented
above, and the boundary element method was normally referred to as the indirect
method. However, boundary element methods can be constructed through the so
called direct method as well. The direct method was given the name of boundary
integral-equation (BIE) method by Swedlow and Cruse [7]. Somewhat after that
time, other authors, notably Banerjee and Brebbia, saw the need to relate the

numerical capability of the method to the finite element method, and the name
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boundary element method was coined. In some literature, e.g., [8], the formulation
is referred to as the Boundary Integral Equations (BIEs), while the method of nu-
merical implementation is referred to as the Boundary Element Method (BEM).
The essential elements for building up any boundary integral equations in the di-
rect method are: a) the use of the ellipticity property of the governing differential
equations, b) the use of the reciprocal work theorem, c¢) the existence of an analyt-
ical (fundamental) solution to the governing differential equations. Nonlinear and
dynamic BEM analyses follow the same formulation strategy. This direct method
for BEM formulations is a mathematical approach, and it makes use of the full
Somigliana integral identities. These identities are written directly in terms of the
physical boundary conditions, regardless of the nature of the mixed boundary con-
ditions being considered. The physics involved in the direct method can not be seen

as clearly as the ndirect method.

One significant difference between the boundary element and the finite element
methods becomes clear from the above illustration. The finite element methods
require the discretization of the whole region into elements. The solutions are
evaluated at the element nodes, and the solutions between the nodes are expressed
in a simple, approximate form in terms of the values at the nodes. A system of
linear algebraic equations is formed with regards to the unknown values at the
nodes. This system of linear equations is large but sparse. However, in boundary
element methods, only the boundary R needs to be discretized. The numerical
solution is built on the basis of analytical solutions, such as the Kelvin solution,
that have already been obtained for simple problems involving infinite regions. The
numerical solution satisfies approximately the specified boundary conditions at each
element on OR. Because Kelvin’s solution satisfies the governing partial differential

equations in Fs, there is no need to discretize the interior of R. Hence, the BEM
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reduces the dimension of the problem by one and results in a smaller problem size.
To solve the same boundary value problem, the system of equations generated by the
boundary element methods is much smaller than that for the finite element methods
although the matrix associated with the equations is full and unsymmetric. With
the use of the boundary element methods, it is possible to solve relatively large

engineering problems using relatively small scale computers.

Boundary element methods have emerged as a powerful alternative to finite
element methods. A great advantage of the BEM can be seen from the fact that
the analytical solution, such as the Kelvin solution, satisfies the partial diff;rential
equations in the region R. Once the solution for the problem of interest is numeri-
cally obtained on the boundary, the values in the interior of the region can be easily
related to those on the boundary through the Boundary Integral Equations. No
further approximation is introduced. This feature of the boundary element meth-
ods is particularly advantageous for modeling regions of high stress gradients. The
boundary element methods can deal with this type of problems with great accu-
racy and efficiency [9]. The BEM is also seen as a significant aid to engineering for
fracture mechanics [10], [11], [12], as well as elasto-dynamic problems [13]. Another
great advantage of boundary element methods is its inherent ability to deal with
infinite domain problems [1] [14]. While the boundary element methods have ad-
vantages in many areas, the finite element methods still hold merits in dealing with
stress distributions and natural frequency problems [15]. The BEM has also many
limitations, for example, if the region R of the problem is nonhomogeneous then it
would no advantage to use the BEM since the whole region has to be approximated.

The BEM loses almost all the advantages in this case.

The direct method shines light on how to construct different boundary ele-
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ment methods. A number of publications have shown that, for particular classes of
boundary value problems, different boundary integral formulations may be devel-
oped to take advantage of the properties of the problems under consideration. The
main difference between these methods is the use of diverse fundamental solutions
that are more appropriate to deal with the particular geometries and loading condi-
tions of the problems. The boundary element method using the Kelvin solution as
the fundamental solution has been applied to two-dimensional problems by Rizzo
[16] and subsequently extended to three-dimensional problems by Cruse [17][18][19].
Kermanidis [20] developed a fundamental solution specially for axially symmetrical
elasticity problems, and this fundamental solution is used to construct the boundary
element scheme appropriate to the above type of problems. Mindlin [21] developed
a fundamental solution for the half-space problem, Telles and Brebbia [22] used
the Mindlin solution in their boundary element method. For problems involving a
traction-free flat surface, it is not necessary to model that surface with elements
since the Mindlin solution already satisfies the traction-free boundary conditions
on the same surface. Snyder and Cruse [23] developed a fundamental solution for
anisotropic materials. Their solution modified the two-dimensional Kelvin solution
in an infinite body by including a straight, traction-free crack of length 2a at an ar-
bitrary location and orientation in the infinite region. A boundary element method
is built on the basis of this fundamental solution. In this approach, the fundamental
solution completely accounts for the presence of a crack, thus two-dimensional crack
problems can be solved with no discretization on the crack required. The above are
just a few examples of different BEMs. In all the above examples, the modeling
effort for the particular problem is greatly reduced, and so are the problem sizes.
More importantly, these different boundary element methods have shown great ac-

curacy and efficiency compared with the conventional boundary element methods



which employs the Kelvin solution.

Current research on this subject is inspired by these innovative developments.
A modified boundary element method using a special fundamental solution is de-
veloped through the following chapters. This modified boundary element method is
tailored to deal with problems in three-dimensional regions involving parallel planar
surfaces. Three-dimensional plate structures are the most common structures in-
volving this kind of regions. The fundamental solution used here was developed by
Benitez and Rosakis [24], and it corresponds to the analytical solution of a concen-
trated load acting in an infinite plate of uniform finite thickness. The surfaces of the
plate are traction-free. By making use of this special fundamental solution for the
analysis of problems involving parallel planar surfaces, it will be shown that there is
no need to discretize such surfaces as long as they are traction-free. Compared to the
conventional boundary element method, the problem size may be further reduced
by invoking this modified boundary element method. This method is particularly
attractive in dealing with problems involving multi-crack-interactions. The savings

in not to discretize these planar surfaces of the plate could be tremendous.

In this initial study, three test problems are investigated. One problem involves
a pressurized circular hole embedded in an infinite plate of uniform finite thickness.
The other two problems consist of a pressurized elliptical hole in an infinite plate of
uniform finite thickness. The elliptical holes have aspect ratios of 4 and 10, respec-
tivelyv. These problems are analyzed by means of the modified boundary element
method. This analysis will be compared with the results of the two-dimensional
approximations of plane-stress and plane-strain and the results of the finite element

analysis.

The plane-stress and plane-strain analyses are the two extreme cases of the
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three-dimensional problems, since the two-dimensional cases of plane-stress and
plane-strain represent the limiting cases of infinitesimally thin and infinitely thick
three-dimensional bodies. However, in the pressurized circular hole case, it happens
that the three-dimensional solution coincides with both the plane-stress and plane-
strain solutions. The two-dimensional solutions are the exact solutions in both the
displacement and stress for the three-dimensional pressurized circular hole prob-
lem. In this case, the two-dimensional solutions are used as the bench marks for
the comparisons of the numerical results obtained from both the modified bound-
ary element and finite element analyses. In the cases of the pressurized elliptical
hole problems, the three-dimensional solutions are expected to differ from the two-
dimensional plane-stress and plane-strain solutions. The three-dimensional effect
is observed by comparing the numerical solutions of boundary element and finite
element analyses with the two-dimensional solutions. The results of the boundary
element analysis is further compared with those of finite element analysis in order

to explore the differences in the methods.



CHAPTER 2

FUNDAMENTAL SOLUTION

2.1 Overview

The equilibrium problem of a single plate composed of a homogeneous, isotro-
pic. linear elastic material was first considered by Dougall [25]. Dougall conducted
an extensive study of the thick plate subjected to an arbitrary (surface and internal)
loading using the method of potential functions. He obtained solutions in terms of
infinite series. Teodone [26] studied the same problem using mapping techniques.
Later, Orlando [27] obtained the solution of a plate under surface traction. Lur’e
[28][29] constructed the solution for a plate subjected to surfaces loadings. Shapiro
[30] and Sneddon [31] analyzed the distribution of stress in an infinite plate for
the case of uniformly distributed normal loading over a circular area on the sur-
face. Sneddon also obtained the close form solution of the stress field under an
approximation assumption. His close form solution was expressed in the form of

semi-nfinite integrals.

The fundamental solution presented here was developed by F. G. Benitez and
A. J. Rosakis; the work has been documented in [24]. Some important features of

the fundamental solution are discussed in this chapter for the sake of completeness.
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The fundamental solution is the three-dimensional analytical solution of the
problem consisting an infinite plate with uniform finite thickness h; the plate is
subjected to a concentrated load acting in its interior, and the upper and the lower
surfaces of the plate are traction-free. Moreover, the plate is composed of a homo-
geneous, 1sotropic, linear elastic material. The concentrated load described here is
defined in the sense discussed by Turteltaub and Sternberg [32]. The problem is

shown schematically in Figure 2.1. No additional assumptions are made.

FiGURE 2.1 Definition Of The Problem

The method of solution is based on the transfer matrix formulation used by
Vlasov and Leont’ev [33]. This method was further generalized by Bufler [34] to
the problem of a three-dimensional plate containing a unit concentrated load act-
ing arbitrarily in its interior. Although Bufler formulated the problem using this

method, he never obtained a solution.



2.1.1 Nomenclature

a, b oc ...:

A B I .. . :

X={0;e1,€,€3} :

z=(21,22,23):

H=(0,0,H):

e::(ﬁl,ﬁg,fg)l

IR, R & '7% :

R—{z}.zeR:

k. €k &uf:

1y “igo
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the lower-case, boldface italic letters are re-
served for vectors

the upper—case, boldface ITALIC letters are

reserved for tensors of second order

: the boldface Greek letters are reserved for ten-

sors of second order

: three-dimensional Euclidean space

the proper orthogonal Cartesian co- ordinate
system

the position vector of the observing point de-
scribed in the Cartesian co-ordinate system
the position vector of the point of applica-
tion of the concentrated load described in the
Cartesian co-ordinate system

the concentrated load—vector describ- ed in the

Cartesian co-ordinate system

: an arbitrary regular region in Ej

the boundary, the closure and the interior of
R

the set obtained by the deletion of a point {z}
from R

the Cartesian components of stress, strain and
displacement with the concentrated load act-

ing in the kth axis-direction, respectively
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(R,6,23) : the cylindrical co-ordinates of the observing
point where
R = m, 0 = tan"(z2/2y)
h : the thickness of the plate |
E, G, & v : the modulus of elasticity, the shear modulus,
and the Poisson’s ratio, respectively
b= R/h, x = 23/h,» = H/h : the dimensionless geometric parameters
0B, (&) : the spherical ball centered at the point £ with

an radius of n

Standard indicial notation will be used in connection with the Cartesian com-
ponents of tensors of any order. Subscripts preceded by a comma indicate partial
differentiation with respect to the corresponding Cartesian co-ordinate. For func-
tions having more than one vector variables, the differentiation mentioned before
will be understood to be performed with respect to the co-ordinates of the compo-

nent of the first vector variable, thus

filz,y) = a_fa(%_}_/l (2.1.1)

As to the smoothness of a function, we write g(z) € C(R) if function ¢ is defined
and is continuous on a region R C Ej3. Moreover, if m is a positive integer, we
write g(z) € C™(R) when g € C(R) and its partial derivatives of the order up to
and including m are defined as well as continuous on R and they coincide with

functions continuous on K.

Definition 2.1.1 (an elastostatic state on R).

Write

S = [u,0] € E(E,v,f;R), (2.1.2)
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and say that the ordered array § = [u,0] of displacement and stress field is an

elastostatic state on R corresponding to the body force density f, provided:
a) ue C2(R)NCYR), fFEC(R), withE>0, -1 <v < 1/2;

0
b) u, o, f, E and v satisfy the following equations on R,

V-o+f=0,
(2.1.3)
o= (1+VI)/(E1_2V) [V-u] I+m{Vu+VTu].

Furthermore, if § = [u, 0] is an elastostatic state on R, and ¥ is a regular

surface with the unit normal n, we call t the traction vector of S on ¥ if

*

t; = oiyn;, onx, (2.1.4)

*
where ¥ is the subset of all points of ¥ at which a normal is defined.

2.2 Kelvin Solution

In the present section, the problem of a concentrated load applied at a point of
an elastic solid occupying the entire space Ej is dealt with according to the terms
used by Turteltaub and Sternberg [32]. The solution of this problem was first given
by Kelvin [35]; it is derived in Kelvin & Tait’s treatise [6] through a limiting process,

which is made fully explicit in [36].

Definition 2.2.1 (Sequence of body-force fields tending to a concentrated

load).
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Let £ € E; and let € be a vector. We say that {f"} is a sequence of body-force
fields on E5 tending to a concentrated load € at (the point) £ if:

a) f" € C(E;) (m=1,2,3,...)%

b) f* =0on E; —- B (§), (m=1,2,3,...);

¢) lim frdv =¢ (2.2.5)
E3

Tom—oo

d) the sequence /
E;3

where {B"(§)} is a sequence of spheres such that p — 0 as m — oo.

fr dV} is bounded.

The theorem cited below supplies a representation of the solution to the prob-

lem under consideration.

Theorem 2.2.1 (Limit definition of the solution to Kelvin’s problem).
Let £ € E3 and £ be a vector. Further let {f™} be a sequence of body-force fields

on Ej tending to a concentrated load € at €. Then

a) there exist a unique sequence of states {S}} such that

S = {u;;?,a;;!] € E(E v f" By), (m=1,2,3,...) (2.2.6)

b) {S/*} converges to a state Sy = [ux, o] on E3 — {€}, the convergence being

uniform on any closed subset of E5 — {£€};

c) the limit state Sy is independent of the sequence {f"} and admits the repre-

sentation
SI\"(zvé) = S;((@ 5)()1 = SK(zvgv ei)eh Vz € E3 - {5}5 (227)

where

5}((&7, £> = S;\(Zb - év 0)7 V(ZE, €) € E3 X E3 - D, (228)



and

D= {(z,6)|(z,6) € Es x E3, z= ¢},

E3x E3 -~ D= {(375)1(33 €) € E; x E3> T 7é 6}

(2.2.9)

The displacements and stresses of Si-(-, 0) are, for all £ € E; — {0}, given by

T,

. 1
K = —4 6i 1>
u](:t, 0) 16mp(l — v)r [ r2 + v) ]}

(2.2.10)
i 1 3z . L,
O.jk(;zv 0) = _87'('(1 __1/)7,3 2 +(1_2V)(51]lk+5zk$] —6jk$i) ’
where
E
| = 2.2.1
F=5a =y (2:2.11)
and

r= |z = /2 + 2%+ 2l (2.2.12)

Sk is called the Kelvin state corresponding to a concentrated load € at & (and to
the elastic constant p and v). In particular, we say that Si-(+, &) is the Kelvin state

corresponding to a unit concentrated load at £ in the z;—direction.

The theorem is proved by Sternberg and Eubanks [36]. The need for condition
d) in definition 2.2.1 is also established in [36], where it is shown by means of a
counter-example that conclusions b) and ¢) in Theorem 2.2.1 become invalid if this
hypothesis is omitted. The foregoing requirement is no longer necessary if f is
parallel and unidirectional, in which case condition d) is implied by c) of Definition

2.2.1.
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Theorem 2.2.2 ( Properties of the Kelvin state ).

The Kelvin state Sy corresponding to a concentrated load € at point &€ has the

properties:

a) Si = [ux, oK) € E(E, v, 0, E5 — {£});
b) ur(2,8) = O(|z — &™), ox(2,€) =O0(|lz—&|7%), asz—§&;

o [ tmemdi=t, [ (@-@ntmemdd=0 Vp>o,
8B,(§) 8B,(§)
(2.2.13)
where tr(z,€;n) is the traction vector on the surface of 0B,(£) that faces £. A

indicates the cross-product of two vectors @ and b that is defined as follows,

aANb= e,-]-kaib]-ek, (i,j, k = 1,2,3), (2214)
where
= 1, if the order of 1,7,k is1 —2—3—1;
€k = = —1, if the order of 1,7,k is3 —2— 1 — 3; (2.2.15)

= 0, otherwise.

The formulation of Kelvin’s problem in terms of a) and c) alone is incomplete in
view of the existence of elastic states on E3 — {£} that possess self-equilibrated sin-
gularities at £ In contrast, properties a), b) and the first of ¢) suffice to characterize

the Nelvin state uniquely.
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2.3 Fundamental Solution For Infinite Plate Problem

In this section, we define the problem in mathematical terms. Consider now
a proper orthogonal Cartesian co-ordinate system X = {0; €1, €3, e3}. For the sake
of convenience, we place the x1 — xo plane of the co-ordinate system in the lower
surface of the plate, and choose z3-axis such that the loading point is located at a

distance H from the origin on this axis. Define an infinite region P C E3 occupied

by the body in question as follows:
P={glze E3, 0<z e; <h}, )
OP = 0Py UJP,,
L (2.3.16)

where

OP, = {zlz€ E3, z-e3 =0}, OP; = {z/z€ E3, -3 = h}.
Also, let € be the point of application of the concentrated load €. Again, the con-

centrated load described here is in the sense discussed by Turteltaub and Sternberg

32].

Definition 2.3.1 ( Sequence of body-force fields tending to a concentrated

load ).
Let £ € P and let € be a vector. We say that {f} is a sequence of body-force

fields on P tending to a concentrated load € at (the point) § if:
a) f" € C(P), (m=1,2,3,...)
by f"=00nP-B(&)NP, (m=1,2,3,...);

¢) lim frdv =¢; (2.3.17)
N

d) the sequence {/ Ji
Br(&)nP

A% } is bounded.
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where {B;”(E) N 73} is a sequence of spheres such that p — 0 as m — oo.

Claim 2.3.1 (Limit definition of the solution to the plate problem).
Let £ € P and € be a vector. Further let {f™} be a sequence of body-forée fields

on P tending to a concentrated load € at €. Then
a) there exists a unique sequence of states {§™} such that

S™= {u’"‘,am} € ES(E, v, f™;P), (m=1,2,3,...); (2.3.18)

b) {§"} converges to a state S = [u, o] on P—{£}, the convergence being uniform

on any closed subset of P — {£};

c) the limit state S is independent of the sequence {f"} and admits the represen-

tation
S(z,&) = Sz, E); = S(z, €, €))Ly, Vz e P - {€), (2.3.19)
where
Si(z,€) =S (z—£,0), Yz é€)ePxP-D, (2.3.20)
and

D'={(z.,8)|(z.6) ePxP, z=¢},
(2.3.21)

PxP—-D ={(z,&)|(2,6) e PxP, g+ &}

The displacement and stress fields of the fundamental solution can be written as

u,,0) = |uj(z, )] e

‘ (2.3.22)
o(z, €, 0) = [a;k(z, 5)6,-] e; @ ey.
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where u;-(z, §) and cr;- (%, &) are the Cartesian components of the displacement and
stress fields, respectively. e; @ e, indicates the tensor of second order. The complete
set of the expressions for uj-(:z, £) and U;k(z,ﬁ), with € = Hez and z € P, is given

by Benitez and Rosakis [24].

It is not intended here to try to prove the uniqueness of the solution to the
plate problem. Instead, the solution has been proved to satisfy all the equilib-
rium equations, the constitutive relations of the stress and the displacement, and
the corresponding boundary conditions. Also, the solution satisfies the following

theorem.

Theorem 2.3.1 (properties of the fundamental solution for infinite plate).
The fundamental solution corresponding to a concentrated load € at point £ has the
properties:

a) S=[u0]€&(E, v, 0, P—{£})

Vz € OP for éeP,
b) Hz.£) = o(z.&)n = 0
Vz e 0P — {&£} for €€ 0P,

\
Lim / Hz,8)dds = & (2.3.23)
8B, (§)NP
c) EeP,
lin}) / (z—z)AHz,&) dAz = 0
n—
B, (NP )

) wz8) = 0(|z-¢), o(z8) = O(|z—¢ ) asz— &
where ¥(z,&;n) in b) and c) is the traction vector on the surface of 0B,(§) NP that

faces &.

If the fundamental solution for the infinite plate problem is compared with the

Kelvin solution, it becomes obvious that the two solutions have common asymptotic
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behavior. It has been proved in [24] that the fundamental solution tends to the
Kelvin solution as the point of observation tends to the point of application of the
load. Both analytical and numerical evidence will be given in the next section to

show this important feature.

2.3.1 Numerical Treatment Of Fundamental Solution

For Infinite Plate Problem

Close examination of the expressions for u¥(z, &) and Ufj(m, &) in [24] reveals
that all the expressions for the displacement and stress components can be cast in

the general form shown below

, i "X v A/z2 2 -
v{wy, g, 03) = A/ { 9 (A xs ¥) ,\-]u( l;l+552)_wB€ } da,
0

1+e ™ —(244X2)2 P
(2.3.24)

where v(a1,x2,23) is a displacement or stress component; ¥ = H/h, and y =
z3/h; A = A(E,v,h,z1,29) and B = B(v,z1,22, x,%) are simple functions of the
variables involved; « varies from 1 to 3 for different cases; J,(z) is the Bessel function
of the order v; and ¢'(A, x, ¢) is a function composed of the finite summation of the

products of the following form,

K
g'()\’ X,¥) = Z Ci)\PiX,BiI/)“ﬁ ef\(aiX+bi¢+Ci)’ (2.3.25)
1=1

where C; is a simple constant; p;, Bi, vi, a;, b, and ¢; are integers; p; may vary

from 0 to 4; §; and +4; are either 0 or 1, and a;x + b;% + ¢; is always non-positive.

The second integrand in (2.3.24) eliminates the singularity in A caused by the
first one. In formula (2.3.24), @ = 1 if the order of singularity at A = 0 in the first
integrand is O(1/A), and & = 2 and o = 3 have the similar meaning. If the first
integrand is non-singular, then B = 0. Hence the solution is well behaved for every

A
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The basic idea of evaluating the stress and the displacement components of
the fundamental solution is to compute them partially analytically and partially

numerically. To illustrate this idea, (2.3.24) is written in the following way,

U(fl?l’ﬂjg’fvg):A / gI(A7X,¢’)J,,( $;+$2> d)\
] (2

= g’ x ¥) , A/2? + 22
—g'(A e
+/0 (1+e"4>‘—(2—|—4)\2)e‘2'\ g ’X’d’))']” h
Y
€
— B— | d\
AQ
(2.3.26)
Considering the first integral in (2.3.26), one has
> /a2 + 22
/ g,(/\7 /\'77/))']1/ (—,ll‘j:"}z>(l/\ =
0 ' h
(2.3.27)

K ~00 2 2

E Cixﬂ"'(r/)vli/ )\Pie/\(ai\/‘i‘bilb‘?'ci_)!] (A ! +g’2)d/\
7 v h .

i=1 0

Each individual integral in (2.3.27) can be computed analytically, and they can be

expressed in the following form

/ Ae AT, (bN) d\ = G(v, a,c,b), (2.3.28)
0

where «a, b and ¢ are not functions of A, and they are non-negative. Appendix A

gives the results of G(v, a, ¢, b) for all the required integrals. Therefore, Eq. (2.3.26)



can then be written in a more efficient way as follows,

K
i’($17x27£3) =A Z Ci/\/ﬂizﬁ’WG(Vv Pis/ LC% + .’lf%/h, _(aiX + bﬂb + Ci)).
=1

2 =22y -2 2 2 Y
e R T (PRI (i————v‘”;*ﬂ -BS }dA
€ 1

o,
0

1+ e — (2 +4)2) A
(2.3.29)
Define now,
g(A x,¥) = e g' (A, x, ¥). (2.3.30)
Then
K »
g()\7 X, ¢) — Z Ci/\P;Xﬂi 1/)7i€/\(aix+bi¢+ci_2). (2.3'31)

=1

The most important feature in (2.3.31) is that a;x + b;% + ¢; — 2 is always negative,
and it reaches its maximum at —2. This is the key feature that guarantees the

convergence of the infinite integral in (2.3.29).

The integral in (2.3.29) can not be evaluated analytically. It has to be evaluated
numerically. After checking its denominator, one finds that it’s not necessary to
evaluate the integral over the entire integration region. Instead, it can be computed
approzimately over a region from 0 to P with relatively good accuracy. P is a pre-
set “big” number as compared to 1. The integration interval is extended from 0 to
2P for the second integrand in order to archive the same order of accuracy. The

error caused by truncating the integral will be discussed in the next section. The



truncated version of (2.3.29) becomes

v(21,22,23) ZC \fﬁ'sz‘G(V pi, /2] + 23 /h —(a; \/—%—b?,/)—i—cl))
P

‘),

0

(2+4X =)0 x,9) , (MWETA) _ et
1+e 4 — (24 4X2)e 22 77 h

—B/ <y

(2.3.32)
By substituting (2.3.31) into (2.3.29) and performing variable transformation, one

obtains,

vy, x9,23) ZC \/ﬂ%/ﬂ' (1/ pl,\/zl-’ru/h (az/\+b¢+fz))
P

+)

0

2 K

2 _—
2+4)\ —e — Z Ci/\mXﬁ;¢756A(aix+b;¢+c;—2)
1=1

1+ e — (24 4\2)e

dA

; (}\ /I% T rg) B<e—>\ e—(A+P) )
v —]7——— - -

o T Ot P

(2.3.33)
The Gaussian Quadrature Scheme (GQS) is implemented to evaluate the integral.
Since the integrand varies smoothly over the integral interval, the integration in-
terval is then divided into equally sized integration subintervals. The size of the
subinterval is crucial for the evaluation of an integral involving oscillatory Bessel

functions. In order to determine the right size for the integration sub-intervals, the
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following parameter transformation is performed on the integration variable A. Let

2 2
Mo=Ab and b= YTIFT (2.3.34)

h

For the sake of simplicity, we write A in the place of A, then (2.3.33) becomes

K
v(w17$27$3) = A Z C'ixﬁi’lvz}‘y;G(V’ pi7 b7 ‘_(aiX + bl¢ + cz))

; AN2 _ o—2A3) pi
+ )+4( ) — ° ZC ( ) Xﬁi¢7ie(%)(asx+b;¢+m~2)

1+e—4( )_(7+4A2 —2)‘

L) - e—(3) N e~(3+P)
’ (3 (F+P)

The only oscillatory function in the integrand is the Bessel function J,(2). By

Pb
/0‘

[N E

(2.3.35)

examining the Bessel functions closely, one finds that although they are not peri-
odic functions, they do have similar behaviors to Trigonometric functions with an
approximate period of 27 as x — o0. Considering x to be greater than zero, the
distance between the two adjacent zeros of the Bessel functions is greater than 7.
Therefore, it is decided to choose the size of the integration subinterval to be 3. Let

N be the number of subintervals used. Then
N = [Pb/3], (2.3.36)

where [.] stands for the closest integer to the variable enclosed. For instance, [a] = 1,

if a =1.2, and [a] = 2, if @ = 1.6. The size of the integration subintervals is then

Pb/N, and the subintervals are [aj,aj41] with j =1,..., N, where

Pb
a; = —(i —1), (i=1,...,N+1) (2.3.37)

N



Define now

‘f(Vazl’:EZ?aval»b’)‘) =

2+4(2)? — e UD
1+4e743) — (24 42%)e2

K Pi
Z ( ) Xﬁi¢‘7i6(%)(“:’X+bi'¢’+ci_2)Ju(/\)

-(3) ~(3+P)

€ ) e )

— B + - .
((%)a (3 +P)“>

°'|/

(2.3.38)
Then
v(ry,2z,23) = A ZC NP G (v, pis b, —(aix + bt + ¢; i)
1=1
(2.3.39)
1L et
+'Z;Z‘/a ‘f(‘yvzlv:l?,?vavx”lvbv)‘) dA
J=1""
By performing the following variable transformation
4t +a; i —a
A= > + 7 t
(j=1,..,N), (2.3.40)

o — .
dA:%dt,

P

(2.3.39) becomes
K

v{y,v2.03) = 4 Z Ci/\"ﬂi 'U/"'%'G(M pisb, —(aix + b + Ci))

i=1

1

+ZGJ+1—GJ/

-1

a a, ; i
f(ya;lfl,ifg,ﬂ,X’,¢, ST Jt+ — +a]> *



Y

Applying standard Gauss Quadrature Scheme yields,

K
v(a1,22,23) = A Z Cixﬁ"’f/ﬂ"G(V, pis b, —(aix + by + Ci))
i=1

N M
+ ﬁilg_z;——ql Zf<’/’l‘1a T2, &, X5, aj+12m i+ aj+12+ aj)“k ;

7=1 k=1
(2.3.42)
where M is the number of Gaussian Quddrature points used, t; and w; with
k = 1,....M are the positions and weights of the Gaussian Quadrature points,
respectively. Eq. (2.3.42) involving different number of points has been tested. It
is found that the six-point GQS produces both good accuracy and good efliciency.
It needs to be emphasized that the numerical part of the integration is convergent
due to the nature of the integrand, referred to Eq. (2.3.29), while the remaining
part can be evaluated in a close form. In addition, the accuracy of the integral in
(2.3.35) will depend on the choice of P. The bigger the P is, the more accurate the

result will be, and the more time intensive it will become.
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2.3.2 Error Analysis Of The Numerical Evaluation

The error introduced in the evaluation of the stress and displacement compo-
nents of the fundamental solution is mainly due to the numerical integration. In
order to perform an adequate error analysis, (2.3.29) is re-written in the following

form,

K
o(er,@2,@3) = A > Cax™ 7 G(v, pi by —(aix + bitp + ¢))
1=1

P
/“

T+e ™ — (24 4A%)e 2

=X o—(AtP)
B |
W FoFPe

o0 2+4)\2 _6—2)\ 6—2)\ /\ /CC2+CU2
+/ ( ) 6—2/\9'()‘7X377b)<]u(__;1"—_—2> dA

p l+e A —(244X2)

(24402 — e 2N . A/z? + z2
A | /=
g (A x,¥)J 3

oo —A
—B/ <
ap AY

Comparing the above formula with the proposed expression (2.3.33), it is found

(2.3.43)

that the error in the numerical integration is mainly due to the truncation of the
integration interval. Another source of the error is due to the use of the Gaussian

Quadrature Scheme, and this part of the error is small compared with the truncation
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error. Define the error caused by the truncation of the integration interval to be

p l+e**r— (24422

—B/ —d/\
p A }

oo 24402 — —2X)—2A I/ x? + z2
ezA{/ ( e o, | YR ) )

(2.3.44)

As indicated in (2.3.25), ¢'(A, x,%) is a summation of the terms of the form:
APighaixtbivted) with ¢ = 1,..., K. Examining the terms carefully, one finds
that the dominant term is the one with zero exponent. The coefficient of this term
is denoted as CAPy#47, in which 0 < p < 3. The truncation error is then bounded

by,

(24407 — e
~/19 14 e %A — ('2 + 4)\2)6_2,\/\ Ju()\b) dA

/ e A
P

oo 2 + 4/\2 o 6—2)\)6—2)\
< |A] { KCxPy (
< |4 { LOXTY L 14 e — (244A2)e—22

e < |A] {chﬂw

+1B|

)} X + |B| 6—2”}.

(2.3.45)

For any Bessel function J,(z), with v integer, the following holds,

|, (z)] <1, 0<z < oo (2.3.46)



Consequently,
o (94 4)\2 — g=2X)e—2X
<4l {KCXW e
P

)\3
T+e A —(244\2)e 22

d\ + | B| e—“’}

o0 —2Ay,—2A
— > /ﬁ Y (2+4)‘2 — € 2 )6 )\3 d\ B —2P
4] {I‘C* 4 /P T4 e _ (24 4)2)e- 0 +IBle™

(2.3.47)
Since for any A such that P < XA < oo and P > 1,
01+ (24 4P?)e™P <14 e - (2 +4)\2)e_2’\. (2.3.48)
The truncation error can then be expressed as follows,
KCxByp > 2 —2x -
c<|4 X b - [ (2400 - )N A+ Bl e L (234
< |{1+6_4p_(2+4p,2)/13 + e + |B] e (2.3.49)

As a result,

<14 KCyBypre 1P
T 128(1 + e4P — (2 4+ 4P2)e2P)

{32621’ (8P5 1+ 20P* + 44P3

+66P2 + 66P + 33) _32P% —24P? — 12P — 3

+|B| e7%F }
(2.3.50)
For P = 10, and P = 20, the error ¢ is of the order of 1073, and 1071°, respectively.
It can be seen from the above result that one may obtain fairly good numerical
results of stress and displacement by taking P = 10, and the results may be im-
proved very significantly by increase the integral limit to P = 20. Both P = 10 and
P = 20 have been used in the numerical calculation to determine the stress and

displacement. The results will be discussed in the later sections.
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2.4 Comparison Of Fundamental Solution And Kelvin Solution

In this section, the properties of the fundamental solution of the infinite plate
problem and the Kelvin solution are compared when the point of observation ap-
proaches the point of the application of the load. Only one stress component
o33(21,22,23) is chosen to demonstrate the process. o35(21,72,z3) is the stress
component due to the concentrated load acting at point & = (0,0, H) in the z;—

direction [24].

The proof that the fundamental solution tends to the Kelvin solution when the
observing point approaches the loading point has been given originally in [24]. The

following states only the basic ideas.

1 — e A/z2 + 22

1 1 1 1 2

e e pa) = | A VLT ) gy
033(1177233/3) 471'(1—1/)]22 l%—f—l,% /(; f33( 7Xad))']1( 3 ) s

(2.4.51)
where
. 1 .
LA yvap) = ———— Av(1 — o h My —

/\3

___2_

+ xsinh A(2 — x — 21[,)]

[(1 —x)(1 —+)sinh A(x + %) + ((4v — 3)x — ¥ + 1)sinh A\(x — %)

9

[t = 3y + 21— 20) 4 ) cosh A(x + )

i

+ (2(2v — 1) + x — ) cosh A(x — )
+((3—=4v)x —¢)cosh A(2 — x — ) + (¢ — x)cosh A(2 + x — ¢)

- (2v — 1)-2 [sinh Ay + ) +sinh A(x —¥) +sinh A\(2 — x — ¢)

—sinh A(2 + y — .Zr/"):’ }

+{)\2(t/\/ —)cosh M(x —¢) — A(2v — 1) sinh A(x —¢)}H(X —1), (2.4.52)
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and
) _JL if x > ;

Hx=¥)= { 0, otherwise.

Define
T /
COSG"—‘:E, R: I%—{—I%
Therefore
cosd

lim 05.13(1,1, T2,T3) =

g

where

4n(1 —v)h? r—

ee . AR
lim /0 f;%s(/\,x,w)Jl(—h—> d\,  (2.4.55)

r= /R A+ (a5 — H). (2.4.56)

The expression for fi5(\, x, ) can be written in terms of exponential functions,

fl’}B()‘vXad)) -

4
1+ e — (2 44A2)e" 22 {
4

%\(1 — ) (6_/\(2—x+¢) + e—)‘(2+\“¢’)>

H X A2—x—¢ A(2 :

- T [(1 - X)(l - 'l[’)(e_ ( _)\_d’) — e ( +/\+¢))
+(4r = 3)x — ¢ +1) (7T A0

+ xo (6—/\(x+w) _ 6—/\(4—X—¢)>}
2

8
+(2(20 = 1) — ¢+ x) (e‘*‘z—”’*’)) + e“*(”x*‘”)

(3 = )y — ) (MY )

+ (4 — X)(6~A(—x+dv) n e—A<4+x—¢))]

e M) o mAx =) At ) | e—A(4+x—¢)J }

A , , "
(=5 =) [T g A

3
+ —-;);—(21/ —1) {6—)\(2—x+w) _ 6—/\(2+X_¢)}

A2 |
+ = {((4'/ —3)x +2(1 = 2v) +¢) <6—/\(2—x—¢) + e—A(2+x+¢))

/\(21/ - 1) I:G_A(Q_X_d’) e AR YY) L mARXFY) L A2 YY)
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2

3

(x — ) [ex(x-w F e AXY) g AAEmXHY) o o~ AEHx—Y)

9= AN2=Xx+¥) _ 26~A(2+x—¢)]
_ 1) [6)\(,\~¢‘) _ e M) A X)) _ A
8 K

_ 9= AZ=xtY) 4 26"/\(2‘*‘X“¢)} >H(>< — ).
(2.4.57)
In both x > ¢ and x < 1 cases, 1t is easily seen that the terms with positive

exponents cancel themselves, only the ones with negative exponents left. Also

~1
(1 +e ™ (24 4/\2)6—2)‘) can be expanded by using the Taylor series since

et~ (2 + 4)\2)6—2)‘

<1, VA € (0, 00).

By expanding (2.4.57), and rearranging terms, (2.4.57) becomes

2

A2 g A . , = )
fashovw) = Sl = gle N S0 = DT LD Can (v p)ate 09,
n=0
(2.4.58)

where a,(x,®) and p,(x, %) Vn =1,2,3,..., are linear functions of x and %, and
Pa(x, ) > 0, Yix,v) €0,1] (n=0,1,2,3,...).

In particular

lim pa(¥) 0, V(u#) €01 (=01,2,3,...)
X—r

From (A.6), (A.7), (A.8), (A.9), (A.10) ... in Appendix A, and for Vp,(x,%) # 0,

1t 1s easily seen that

.  n = Ap(x.d) AR ,

lim Ae TP T b —— 4 dX = 0, Vpu(x,?¥) >0, n > 0. (2.4.59)
0

R—0 h
N
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The integration of the first and the second terms in (2.4.58) may not be computed
using the same method as shown in (2.4.59) since (x —%) — 0 as x — . Therefore,
as the observing point tends to the loading point, they are the only two terms that
dominate the component ol,(zy, 22, 23), and the asymptotic form of o35(z1, z2, x3)

as T — & can be written as,

O L b 5: “alx-vl g [ AR
033(1‘171'27:1’3)asymp - 477'(1—1/)]1sz { IX ¢!6 ']1 h

(9,,_ 1)eAMx— lel(Af) } d,

(2.4.60)
with R << 1, x — ¢ << 1. Define
R - H
p=cos ! == sin_l(x3 );
r r
6 = cos™! % =sin"! iRz—
Since
AR 3h?
—l\ —¢|/ AZem A= w'Jl( ] ) d\ = Q—l—sm © COS ©, (2.4.61)
and
20 —1 _)\|\ UI )\R (1 — 21/)]12 ;
5 /0 Ae Jy e d\ = —ga sy (2.4.62)
Therefore, as r — 0, the asymptotic expression of 033(3;1 T, x3) 18
L B cos § [3/12 . 5 (1 - 2v)h? }
033(1’1-,~1’231'3)avsym]) - 47((1 - I/)h?‘ 273 S @ Cos @ 27‘2 Cos
1
= -—g——(l—)Q cos g cos ¢ [3 sin p — (1 — 21/)}
(1l —v)r
(2.4.63)

ol (21.72,23)a symyp Of the fundamental solution expressed in (2.4.63) coincides with
the same component in the Kelvin solution. By using the same method, it can be
proved that the rest of the stress and displacement components of the fundamental

solution tend to those of the Kelvin solution as the observing point tends to the

loading point.
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The following shows the numerical result of the asymptotic behaviors of both

solutions.
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Fundamental Solution Vs. Kelvin Solution

Gauss

Points

Distance

“loglo(r)

Fundamental

Solution
10%10(*”%3)

Kelvin
Solution

loglo(—-aé;;)

Two

P=10

0.10000000000E+01
0.20000000000E+01
0.30000000000E+01
0.40000000000E4-01
0.50000000000E+01
0.60000000000E+01

0.26814712506E+00
0.22942051483E+01
0.42942526611E401
0.62942527112E+-01
0.82942527112E+01
0.10294252711E402

0.29425272332E4+00
0.22942527233E+01
0.42942527233E+-01
0.62942527233E+01
0.82942527233E+01
0.10294252723E+02

Four

P =10

0.10000000000E+01
0.20000000000E+01
0.30000000000E+01
0.40000000000E+01
0.50000000000E+-01
0.60000000000E+-01

0.26831273086E4-00
0.22942054407E+01
0.42942526614E+01
0.62942527112E+01
0.82942527112E+01
0.10294252711E4-02

0.29425272332E+00
0.22942527233E401
0.42942527233E+01
0.62942527233E401
0.82942527233E+01
0.10294252723E+-02

0.10000000000E+01
0.20000000000E+4-01
0.30000000000E+01
0.40000000000E+01
0.50000000000E4-01
0.60000000000E+-01

0.26830213193E+00
0.22942054264E+-01
0.42942526614E+01
0.62942527112E+401
0.82942527112E+01
0.10294252711E4-02

0.29425272332E+00
0.22942527233E+01
0.42942527233E401
0.62942527233E+-01
0.82942527233E401
0.10294252723E4-02

Two
P =20

0.10000000000E+01
0.20000000000E+01
0.30000000000E4-01
0.40000000000E+01
0.50000000000E+01
0.60000000000E+01

0.26827942995E+00
0.22942053307E+01
0.42942526613E+01
0.62942527112E+01
0.82942527112E+01
0.10294252711E402

0.29425272332E+00
0.22942527233E+01
0.42942527233E+01
0.62942527233E401
0.82942527233E+01
0.10294252723E+02

Four

0.10000000000E+01
0.20000000000E+-01
0.30000000000E+-01
0.40000000000E+01
0.50000000000E+401
0.60000000000E4+01

0.26832789978E4-00
0.22942054942E+-01
0.42942526615E+01
0.62942527112E4-01
0.82942527112E401
0.10294252711E+02

0.29425272332E+00
0.22942527233E+01
0.42942527233E4-01
0.62942527233E+01
0.82942527233E+01
0.10294252723E+02

0.10000000000E+01
0.20000000000E+01
0.30000000000E+01
0.40000000000E+01
0.50000000000E+01
0.60000000000E+01

0.26830961626E+00
0.22942054332E401
0.42942526614E+-01
0.62942527112E+01
0.82942527112E4-01
0.10294252711E+402

0.29425272332E+00
(0.22942527233E+01
0.42942527233E+-01
0.62942527233E+01
0.82942527233E+01
0.10294252723E+02
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CHAPTER 3

THEORY OF

BOUNDARY INTEGRAL EQUATION METHODS

3.1 Theory Of Conventional Boundary Integral Equation Method

The three essential aspects of the Boundary Integral Equation Method (BIE)
are: 1) the use of the ellipticity property of the partial-differential equations, such
as the equilibrium equations in the theory of elasticity; 2) the use of a solution
to the above partial-differential equations as the fundamental solution. Several
“fundamental” solutions are available, such as the Kelvin solution and the solution
for the infinite plate problem in the theory of elasticity; 3) the use of the reciprocal

work theorem of Betti [37].

The current discussion will treat homogeneous, isotropic, linear elastic con-
tinua. The first two aspects of the boundary integral equations have been discussed
1 the previous chapter. This chapter will be devoted to the discussion of the Betti’s
reciprocal theorem, and the generation of the boundary integral equations. The in-
dicial notation is used through most of the chapter. The Latin subscripts vary from

1, 2, and 3; the Greek subscripts vary from 1 to 2.
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3.1.1 Somigliana Identities [38]

The reciprocal theorem of Betti forms the basis of the BIE formulation. The

following discusses the generalization of the reciprocal theorem in elastostatics.

Theorem 3.1.1 (Betti’s Reciprocal Theorem).

Let R be a regular region, and £ € 7%. Furthermore, let S' and S? be two elasto-

static states with the following properties:

Re:

Re:

state St

St = {zﬁ(z),al(z)} € E(E,nf R), flec(Rr), (3.1.1)
with t ! (z; n) being the traction vector, which is defined as
*
tiz;n) = a}j(z)nj(:z), Ve e X, (3.1.2)

*
where ¥ is the regular surface of R, and ¥ is the subset of all points of ¥ at

which normals are defined.
state S?
52 = [uz(z),a?(z’)} € &(E,vf5R).  fPec(R), (3.1.3)

and

*
t3(z;n) = a?j(z)n]-(‘z), Vz e X. (3.1.4)

Then Betti’s reciprocal theorem gives

/R oL (2)e%(2) dVy = /P o2 (2)el(z) dVa, (3.1.5)
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where the superscripts denote the different solution states.

Since the two regions have the same material properties, (3.1.5) can be proved
easily by substituting the form of Hooke’s law for both stress states. In linear

elasticity, the components of the strain tensor can be written as,

(@) = 5 (ul,(2) + uli());

. (3.1.6)
6‘3]-(2:) =3 (u?’j(z) + uii(z)).
Substitution of the second strain component of (3.1.6) into (3.1.5), one has,
Lagj(z)u?,j(z) dVay ::/ a;f’j(z)u})j(z) dVzy. -(3.1.7)

Integrate by parts from the above equation,
/ a}j(z)u?’j(z’) dVg = / (a}j(z)u?(z)) ; dVg
® ~ ’ (3.1.8)
- /7’ a}j_]-(z)u?(:z) dVe,

and apply the divergence theorem to obtain

/7; J}j(z)u?’j(z) dVg = /21 tH(z; n)ui(z) dAg
¢ = (3.1.9)

+ / fHz)ui(z) dVe.
R
After applying the same integration by parts with the divergence theorem on the

right-hand side of the equation (3.1.7), one obtains,

/ U?j(‘”')“%,j(z) dVz = /* (2 n)ul (2) dAg
b (3.1.10)

2
+ | fi(z)ul(z) dVg.
R

Therefore, _
/ « tH(z n)ui(z) dAz + / fHz)ud(z) dV
. " (3.1.11)
- /* 3z n)ul(z) ddz + / fi(z)ul(z) dVi.
s R

(3.1.11) is called the Somigliana Identity.
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3.1.2 Conventional Boundary Integral Equation Method

Let a plate shaped region R C E; be defined as
R={z|zen, 0<z-e3 <h};
OR = 0RL UIR, UL, where
(3.1.1)
IRy ={z|zen, z-e3=0}, OR,={z|z€ 7, z-€5 = h},
L={z|(z e,z -e)€0r, 0<z-e3 <h},

where 7 is the mid-plane of the plate, and 07 is the boundary of «.

Let state~1 be a well-posed boundary value problem in the plate shaped region

with the following properties,

Re: state S (regular state)
@) S = |u(a), &(2)] € E(B,v, 0, R)
b) H(z;n) = o(z)n(z) = 0, Vze IR, UIRy; (3.1.2)
c) Hz;n) = t, Vze L

where #(z; n) is the traction vector.

Let state-2 be the “singular” state S7 with j being the direction of the unit
concentrated load. For the conventional BIEs, the singular state 1s provided by the

Kelvin problem with the following properties,

Re: state & Kj (Kelvin problem)

a) Spl = [uk-j(z),aﬁj(z)} €& (E,u, 0, FE; — {6})

b) upd(z. €) = 0('% £!~1>7 ori(z,€) = O(Iz— g]_z), as T — &;

C) / tl\’;—j(zv 67 n) dAz - C]‘, / ($ - é) A tf\'j(zv éa n)dAz - 0V77 > 07
8B, (&) 0B,(§)
(3.1.3)



FIGURE 3.1 Interior point

where the subscript I{ indicates the Kelvin solution as opposed to any other funda-

mental solution; #x7(z,§;n) is the traction vector acting on the surface of 9B,(€)

that faces €.

It is important to notice that R C Ej3. Both elastostatic states have no body
forces. For a unit concentrated load acting in the interior of the region R, as shown
in Figure 3.1, the Somigliana Identity gives

/* tl‘(z; n)’ll,j\'g(z, f) (1.43; = /* f]({(t,f; n)u.i(z, f) CZAQ;, (3‘1.4)

-

oy

where

ReRs

S = OR + 0B, (&), (3.1.5)

and

OR = OR, UOR, U L, (3.1.6)
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then (3.1.4) becomes

/ ti(z; nyug (2, &) dAg + / ti(z; n)ugl(z, & n) dAg

38, (&) oR (3.1.7)

- / 1 (2, & m)ui(z; m) dAg + / £ (2, & n)ui(z, €) dAs.
a8, (&)

However, the boundary value problem under consideration (state S) does not have a
spherical cavity of B, (&) in its interior. The spherical region is artificially excluded
to avoid the problems caused by the unit concentrated load. This problem can
be remedied by taking the radius 5 of the small spherical ball B,(£) to zero in
a limiting process. Recall that the Kelvin solution has the asymptotic property
ug(z, & =0 (!2:-— f[_l) as £ — &. Since the surface area of the cavity is of the order

|z — &|?, the integral of uy!(z, &) over 0B,(§), as |z — &| — 0, vanishes, i.e.,

lim / ti(z; n)ttl\—f(z, §) dAz = 0. (3.1.8)
9By (§)

7-+0

To obtain the limiting form of the other integral over the cavity surface 9B,(£) in
equation (3.1.7), then this can be rewritten as follows,
/ t](2.€ n)ui(z) dAg) = / til (2,6 m)(ui(2) — wi(€)) d4g
88, (&) 88, () (3.1.9)
+i(€) til(z.€m) dAg.
a5,(§)
By doing so, the term (u;(z) — u;(€)) is of order |z — €| due to the continuity of the
displacements; thus, the first integral in (3.1.9) is of order |z — £|, and it vanishes

in the limit as £ — & Only the last integral in (3.1.9) is non-zero. Also, by employ

property ¢) of the Kelvin solution, one obtains,

/ tl\'{(:za &n)dAg = 6. (3.1.10)
8B, (&)
where.
1 ife=y;
$:: = J 1.
" { 0 otherwise. (3-1 11)



Thus,

n—0

lim /as,,(&) th-'(_as, & n)u(z) dAz = u;(§), (3.1.12)

and (3.1.7) becomes

u;(€) +/ trl(z, & n)uy(z) dAg =/ ti(z; n)upl(z, €) dAg. (3.1.13)
R R

This boundary integral equation can not provide the solution for the displacement u;
at any interior point £ unless the boundary data are totally specified, which means
that tractions and displacements at all the surface points have to be specified. Since
among the displacement and traction at a particular point, only one is specified,
a method of obtaining the rest of the required information in equation (3.1.13) is
essential. A significant contribution in this aspect has been made by Jaswon and
Ponter[39] and Rizzo[40], and their effort made it possible to evaluate the rest of
the unspecified values on the surface. The bottom line of their approach is to take
the interior point in the boundary integral equation onto the surface in a limiting
process, see schematics shown in Figure 3.2. By doing so, the boundary integral

equation yields,

ti(z n)uil(z,€) dAg = trl (2, & n)ui(z) dAg,

/a'/c.ws,,(fmn /E)R*—%EJB,,(G)OR

(3.1.14)
where
IR, =0R — IR N B,(§). (3.1.15)
Then (3.1.14) becomes,
/ | ti(z; n)'w‘-{(z,ﬁ) dAg + / ti(z; n)u,ggf(z, §) dAz
aB,(E)NR OR. (3.1.16)

- / £ (2, & n)ui(z) dAg + / £ (2, & n)ui(z) dAg.
86,(&)NR AR,



FIGURE 3.2 Surface Point

For the same reason, 1 is taken to be zero in a limiting process. If the surface

at point £ is smooth (no corner), then

n—0

lim / ti(zt)u/({(\z, &n) dAz = 0;
28, &% (3.1.17)

; ; , ; 1 .
fim [ i@ g mn(e) dis = Sus(€).
10 JaB,(§)nR 2

The above is the well-known result for flat surfaces. Physically, only the traction
on the half-sphere inside the region R contributes to the load applied at the point

&. the contribution of the traction from the other half-sphere outside the region R

is not computed, this results in 1/2 in the formulation.

Mathematically, the general case of the above integral for a flat surface was cal-
culated first by Jaswon and Ponter [39] and Rizzo [40]. The historical breakthrough
of Jaswon and Rizzo cannot be overstated since this classical effort can not be ap-

plied to physical problems involving corners in the regions of interest. However,
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when the surface is not flat, the value of the integral may be found analytically in
two dimensions; the three-dimensional result is rather difficult to obtain in general.

Cruse[8] introduced the simple way of evaluation by imposing virtual “Rigid Body

Motions”. Define

—0

C;i(¢) = lim / tK{(z, &n)dAg (3.1.18)
a8, (€)nR
In the case of “Rigid Body Motions”,
tiz;n) =0, Vz € IR, (3.1.19)

and let 1) u;(2z) be unity along direction 1, compute Cj1(§); 2) ui(2) be unity along
direction 2, compute Cj3(&); 3) u;(z) be unity along direction 3, compute Cj3(§).

In all the above steps, ¢+ and j vary from 1 to 3. Then (3.1.16) gives,

Cue) == | tilmgim dae (3.1.20)

In the limiting case, the integral should be understood as in the sense of Cauchy
Principal Value. In general, the principal value in Eq. (3.1.20) may be computed

with good accuracy. In particular, for a point where the boundary surface is smooth,
1
C;i(&) = ;7—5]-,~. (3.1.21)

Therefore, when the unit concentrated load is acting at a point on the boundary

surface, (3.1.16) becomes,

tid (2, & nui(z) dAg = / t;(z; n)u,;(f(z, §) dAz.  (3.1.22)
IR.

Cii(&)ui(€) + /

OR«

The integral over the surface OR., should be considered as in the sense of Cauchy

Principal Value.

Equations (3.1.13) and (3.1.22) are the two most important boundary integral
equations. These two equations indicate that all the displacement components at

any points either in the interior or on the surface of the region can be expressed
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solely by the values on the boundary of the region.

It is important to point out that, if the Kelvin solution is used as the solution
of the “singular” state, the integrations in the BIEs are over the entire surface of
the region. In current research, this Kelvin solution is replaced by the fundamental
solution of the infinite plate problem, and the integrations are computed only over

the lateral surfaces of the region. The following section illustrates the difference.

3.2 Theory Of Modified Boundary Integral Equation Method

Let the regular state be the same as the state-1 defined in the previous section.
Let the “singular” state be identified by the infinite plate problem as indicated in
Theorem 2.3.1 in previous chapter. Since the properties of the fundamental solution

are vital to the modified BIEs, they are repeated as follows,

Theorem 2.3.1 (properties of the fundamental solution for infinite plate

problem).

The fundamental solution corresponding to a concentrated load £ at point € has the
properties:
a) S§=luo]c&(E, v, 0, P—{€});

V€ P for e 7%a
b) Uz, &n) = o(z,&)n = 0,
Vze 0P — {&} for &€ OP,

b, / o &in)ddz = & (3.2.1)
B, (&)NP
c) ‘ EeP,
1in}) / (z—z)ANHz,&n) dAg = 0
n—
8B,(E)nP )

d) wz&) = Ole—€|7"). o(26) = O(jz—¢7) szt
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where t(z,&; n) in b) and ¢) is the traction vector on the surface of 0B,(£) NP that

faces §.

It is important to notice that R C P. For a unit concentrated load acting in
the interior of the region R, as shown in Figure 3.1, the Somigliana Identity gives
(3.1.12), in which

S = OR, UOR, U L + 9B, (£). (3.2.2)

The left hand side of (3.1.12) can now be expressed as,

/* t:(=; n)u{(z, §) dAz = / ti(z; n)uf(z, §) dAz
b OB, f)

bl
+/ ti(z; n)uf(z,ﬁ) dAz
O | (3.2.3)
+/ ti(z; n)ul(z, &) dAz
IR,
+/ti(z; n)uf(z,f) dAg.
c

Since the boundary value problem satisfies the traction-free boundary condition on

the upper and the lower surfaces of the plate,
ti(z; n) =0, Vz € OR1 U OR3, (324)
the second and the third integrals in (3.2.3) are therefore zeros.

From the right hand side of (3.1.12) one obtains,
/ « t](z,& n)ui(g) dAg = / (2, & njui(z) dAa
> 08, (&)
—l—/ t?(z,f; n)u;(z) dAg
OF (3.2.5)

+ / (2, & n)ui(z) dAg
OR»

1 /C t1(z, & n)u;(z) dAg.
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Since the fundamental solution satisfies the traction-free boundary conditions on

the upper and lower surfaces of the plate,

| | Vz € ORy U R, Ve e P,
tl(z,& n) = ol (z,&)ni(z) = 0, '
(3.2.6)

then, the second and the third integrals in (3.2.5) are zeros. Thus,

/ tg(z, &n)ui(z) dAz + / tl-i(z, &nu(z) dAz
25:(8) c (3.2.7)
:/ u{(z, Eti(z;n) dAg + / u{(z, Eti(z;n) dAg.
88, (&) c

Same as in the previous section, the spherical cavity i1s artificially excluded from
the region to avoid the singularity problem at point £ This problem is cured by
taking the radius of the spherical ball to zero in a limiting process. When the unit
concentrated load is acting in the interior of the region, by the use of the properties
of the fundamental solution and following the same procedure as illustrated in the

previous section, one has,

n—0

lim / ti(z; n)u{(z, §)dAz =0;
aB,(E)NR

» (3.2.8)
lim / tH(z. & nui(z) ddz = uj(§).
10 JoB,(&)nR
Then, equation (3.2.7) yields,
u; (&) + / tf(z, & nju(z) dAg = / ti(z; n)uf(z, §) dAg. (3.2.9)
c L

Similarly, when the unit concentrated load is acting on the lateral surface of the

plate, as shown in Figure 3.2, one has,

Cil@ui@ + [ o mule) dte= [ t(egmud(ee dds (3210

*
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where
1
5 for smooth surface at &,
ciey={ % (3.2.11)
— / t!(z,€;n) dAg otherwise,
C*
and
L.=L-{&}. (3.2.12)

The integrations over the lateral surface £, should be understood as in the sense of

Cauchy Principal Values.

It can be easily seen from (3.2.9) and (3.2.10) that the integrations over the
upper and lower surfaces of the plate are not necessary since the integrands are
zero. Therefore, the displacements either in the interior or on the boundary of the
region can be expressed by the data only on the lateral boundary. The savings in
not computing the surface integral on the two planar surfaces is a great advantage
compared to the conventional boundary element method. The savings in modeling
effort and the reduction in the final problem size will be tremendous especially in

the analysis of problems involving multi-crack interactions.

3.3 Boundary Element Formulation With Fundamental Solution Of

Infinite Plate Problem

The boundary and boundary data will be approximated in order to solve the
boundary integral equations numerically. The approximations involve replacing the
lateral boundary by a complete set of surface patches called boundary elements, and
this process is the so called discretization. The boundary data is then interpolated

over each boundary element. Writing the discretized boundary integral equation
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(3.2.10) for every nodal point yields a system of linear algebraic equations. Once
the boundary conditions are imposed, the system can be solved to obtain all the
unknown values. Consequently, an approximate solution to the boundary value

problem is obtained.

Because of the complexity of the fundamental solution, the boundary elements
are taken to be flat in the process of discretization, and the boundary data is taken

from the element centroid. In other words, “constant elements” are used.

It is now more convenient to work with matrix notation rather than carry
on with the the indicial notation. To this effect, define the displacement and the

traction vectors that apply over the element [ by the values at its centroid, i.e.,

u(,€) = {v'}.
(<) {4}

where the superscript [ denotes the element, and { ul} and { tl} indicate the dis-

(3.3.1)

placement and traction vectors at the element centroid 2'. They are usually called

the element nodal values.

Denote the coefficients of the fundamental solution as,

ti(z, &n) th(z,&n) ti(z,&n)
[t*]: 2(z,&n) ti(z,€n) ti(z, € n) ’ (33.2)

t}z,&n) t3(z,&n) t3(z,&n)

and

ul(z, &) ti(z,€) ui(z §)
[u*] _ U(lz(x, 6) u%(z> 6) Ug(:lg 5) . (333)
ui(z,€) ui(z.€) ui(z,€)
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Suppose that the unit concentrated load is acting at the centroid of the /th element.
Substitute the above functions into equation (3.2.10), and discretize the boundary

to obtain the equation corresponding to the displacement vector at the nodal point

Z / dAz— Z / t"’ dA:z:, (3.3.4)

m=1 Li m=1 Lupn

L,

where L, is the surface of the mth element, and the point £ is excluded from this
surface element if it is on the element. N F stands for the number of elements used.
[C)] (I =1,...,NE) are a series of 3 X 3 submatrices,

[Ci] = (3.3.5)

O Ol
O O
Wi O O

Since {u’"} and {tm} are constants vectors over the mth element, they can be

taken out of the integrals. Thus,

Z/ | a4z { Z/ dag {t"}.  (336)

m=1 m=1

where the superscript ¢ denotes the position of the unit concentrated load, and j
indicates the element at which the response is computed. Both ¢ and j vary from 1

through N E. Once the terms are integrated, (3.3.6) can be written as,

o)+ 3 [ (e} - X[ ). 337

2 dm
The influence matrices {H 7 } and [Glm} are 3 X 3 matrices, and they are defined

as.

~ Im

H

n\z?\

d4z,
(3.3.8)

Gl m d 4$’

*m



and

*m *m

/ﬁ ti(z,g;n)dA,;/c t%(z,f;n)d,Az/ t3(z,&;n) dAg
F" = /E t?(z,ﬁ;n)dfla:/ﬁ t%(z,ﬁ;n)dAz/ t3(2, & n) dAg

/L g dis / £(z, € n) dAs / £2(z,6;1) dAq |

[ e [

*m

[G[m] — /£ u?l‘(z,f) dA_z A 'll,g(.’l:, 6) dAx / Ug(z, 5) dAZ

*m *m *m

/c ud(z,€) dAg / ud(z,€) dAg /E ul(z, £) dAz/

c

*m

ul(z,€) dAz / ul(z, &) dAz

*m ["m

*m *m *m

(3.3.9)
From (3.3.7), the following holds,
[Hlm} = lﬁlm} ; if [# m;
{H{m] = {ﬂ[mJ + {Cl], if l=m. (3:310)
Equation (3.3.7) for node [ then becomes
NE NE
So[Em{wry = (e [{er} (33.11)

Similarly, the contribution for all the nodes can be written. The equations can then

be assemble into the global system of equations according to the nodes, i.e.,

[H [{u} =[G ]{1}. (3.3.12)

Matrices [H ] and [G ] are both 3NE x 3N E matrices, {u} and {t} are 3SNE x 1

vectors.



_592-

In the actual situations, the full [H ] and [G ] matrices are never stored accord-
ing to these sizes. As the system of equations is generated, the known boundary
conditions are multiplied to generate the right-hand side vector; the coefficients of
the unknown terms — either the displacement components or the traction compo-

nents — populate the coefficient matrix [4 ],

4] {9} = (), (33.13)

where [4 ] is a 3N E x 3N E matrix, {y} is the vector of unknowns, {b} is the known
right-hand side. {y} and {b} are both 3NE x 1 vectors. Equation (3.3.13) is the
actual form of equations that is to be solved. The Gauss matrix reduction method

will be used to solve the equations.

3.4 Element Matrices Construction

~lm
The evaluation of the element matrices [H ] and [Glm] 1s crucial to the mod-

ified boundary element formulation. Since the components of the matrices involve
the integration of the fundamental solution, and the expressions of the fundamental

solution are very complicated, the integrals can not be computed analytically.

One way to evaluate the matrix components is to use the Gaussian Quadrature
scheme. But when an element is very close to the unit concentrated load or when
the load is on the element, the variation of the fundamental solution is great. In
such cases, the Gaussian Quadrature scheme is effective only if many Gaussian
points are used. Because of the consideration of the computational time, it is not
practically feasible to employ too many Gaussian points because of the complexity

of the fundamental solution.
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One alternative way is to evaluate the matrix components partially analytically
and partially numerically. This procedure is called the proposed procedure to eval-

uate the matrix components. The idea of the proposed procedure can be expressed

H”” / —t,\ dAz-t- / [t,\} dAg;
L. L

" o (3.4.1)

/ vt — ug dAz+/ [u;\] dAg,
c c

*m *m

as follows,

II

where

-u)-

ti(zv 6, n) - tlx"’%(:ﬁ ga n) t‘.12(27 67 n) - tl\'i(zv €7 n) t%(z> é) n) - tl&'—%(za 67 n)
t%(z,f; n) _tl\"%(zvé; n) t%(xa f n) —tl(%(zv é; n) t%(mvf; n) _‘tKi(‘%&; n)
f%(z$€a n) _tl\'}(zv 5’ n) tg(zaéa n) _tl\’%(z> &3 n) tg(m, 67 n) _tf\’%(zvg; n)

(3.4.2)

and

[u* - ul\—} -

ui(z, &) —uxi(z,€) ui(2,8) —uxi(28) ui(2,€) —uxi(z§)

. . \ , 3.4.3
U,.]Z(‘z* g) - U'I\"i(,zag) u%(z, 6) - U[\'}(.’E, €) ug(za 6) - U’Ki(za &) ( )

ui(z.€) —uri(2,€) w(2,8) —uni(z,€) ui(z,€) —uxi(z§)

The subscript I denotes the I<elvin solution, while t* and 4* are the fundamental
solution of the infinite plate problem. The first integral of each equation in (3.4.1)
is to be integrated numerically, and the second integral of each equation is to be

integrated analytically.
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As illustrated in the previous chapter, although the fundamental solution and
the Kelvin solution deal with totally different problems, they exhibit the same
singular behavior. When the unit concentrated load is acting in the interior of
the infinite plate, the fundamental solution tends to the Kelvin solution as the
observation point approaches the loading point. Therefore, when the two points
approach each other, the result of the subtraction of the fundamental solution by
the Kelvin solution tends to zero. When the points of observation and loading
are far apart, both the fundamental solution and the Kelvin solution are expected
to be small in the in-plane directions since they vary as O(1/r?). In general, the
fundamental solution may not be comparable to the Kelvin solution in the out-
of plane direction as the two points are far away from each other since they are

different solutions.

3.4.1 Numerical Integration Over An Arbitrary Element

The first integral in each equation in (3.4.1) is to be computed numerically.
The numerical integration of all the above components over an arbitrary element

can be abstracted to the following simple expression,
v :/ f(z, €)dAg, (3.4.4)
L.,

where v stands for any matrix component, and f(z, §) stands for the corresponding
traction or displacement component of the fundamental solution of the infinite plate

problem. Take a four noded flat element as an example, see Figure 3.3.

Any four-noded flat element can be obtained from a four-noded square element,



-55-

n
3
X3
4
X
0 2

FIGURE 3.3 Arbitrary Element In Space

FiGURE 3.4 Parent Element
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see Figure 3.4, by using the following mapping,
z1 = Pi(&,n)ey + P&, m)a] + P3(€,m)e] + Pa(€, mzy;
2y = Pi(€,m)x5 + Py(€, )25 + Ps(€,n)25 + Pu(€,m)z5;

T3 = Pl(fv T])IL’% + PZ(E» 77)$§ + P3(§a77)$§ + P4(€a n)mga

(3.4.5)

where (z;,%2,z3) is the global coordinate of a point inside the element; (&,n) is

the local coordinate of the same point; (z1,23,23), (22,22,22), (23,23,23) and

(21, 2%, 23) are the global coordinates of the four corners of the element; finally,

3

Pi(€,7m), Py(€,m), P3(€,m) and Py(€,n) are the so called shape functions, and they

are given by,

Pi(E ) = 3(1- )1 — )
PyE,m) = 11+ €)1~ )
Py€m) = $(1+ €)1+ 1)
Pi(g,) = 31— (1 + ),

For surface transformation,
dA.‘E = 1](57 77)' (ng?],

1s called the Jacobian of area transformation.

where |.J(€,7)

ar ., ar

: € an
[Tl =\ )
%5

where

_(_9_1_‘ _[Oxy Oxy Oaz\
9t~ \ 06’ 0’ 9E )’

Il

Qf Oxy Oxg Oxj
In oy’ o’ on )’

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)
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Since

a$i _ aP](ﬁvn) 1 aP’z(fﬂ?) .2 8P3(§777) .3 8P4(€777)$4_

oc ~ ee T T ae T e T Tae ¢
' =1,2,3),
or, _OP(En) ,  OPAED) 5 OREM) o o), DY
on Oy : on In ' on v
(3.4.10)
where

OP (€, 1

% = =71 =)

OPy(€,n 1

“‘“—““a(g e 7(1=m);

OP 1

“‘“%(?l) = 7140

OPy( 1 .

i) 1

OP(E.m) . (3.4.11)

oy —7 (=&

0P (&, 1

—'8(5 L =7 (L)

OPs(&,n) 1 ,

o 71+

JPy(€, 1

_——”48(5 n - (19

It can be easily seen from Eq. (3.4.5) that z; = fi(¢,n), (¢ = 1,2,3), are single
valued continuous functions; Eq. (3.4.8) shows that |J] is finite at any point (£,7),
where —1 < ¢ <1, and —1 <15 < 1. These two facts gives the sufficient conditions

for the mapping in (3.4.5) to be one-to—one mapping. Then (3.4.4) becomes,
1ol ’
v = / FEMII(E,n)| dédn, (3.4.12)
~1J-1

where

F(&m) = f(=(&m), &) (3.4.13)



From the Gauss Quadrature Scheme,

N
v ZZ~f(§i’77i)|J(fi7’71‘)|wiwj, (3.4.14)

=1 3=1
where N? is the number of Gaussian Quadrature points; (§;,7;), and w;, wj, (4,7 =

1,...,N), are the positions of the Gauss Quadrature points, and the weights. All

the values used in the Gauss Quadrature Scheme can be obtained from [41].

Equation (3.4.14) is the result of the numerical integration of function f(z,§)
over an arbitrary element £, . Therefore, the evaluation of all the components in

[H{ m] and {Glm} may follow suit.

3.5 Analytical Integration Of Kelvin Solution

This section gives the detailed formulation for the analytical integration of the
Kelvin solution over an arbitrary flat-element in the Eulerian space. The formula-
tion was originally outlined by Thomas A. Cruse in 1969. In the following sections,
the indicial notation is used, 7, j and & vary over 1, 2, and 3, and they will be
specified otherwise. The displacement and the traction components of the Kelvin

solution are as defined in (2.2.10),

o) = L | 3-dv 1 |

L Z, = ii — 7

RS i ) T =)

; : 1—2v or 3

t"‘(ztéi n) = _877('1 — v)r? [57; ((Slj * 1-— 21/7 A7 ’])} (3.5.15)
1 -2

5 (7?,]'7"‘,' — T )

+ 87(1l — v)r?

where

r=lg) = Vz12 4 252 + 152, (3.5.16)
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the superscript ¢ denotes the direction of the unit concentrated load; the subscript
7 indicates the component. For the convenience of the illustration, let the tractions

be decomposed as follows,

ti(z, O;n) = t7'(z, 0, n) + 7' (2, O;n), (3.5.17)
where
- 1—2v or 3
0t )= ——oe | — (8 + ——— 7 )
5= 0, n) 8n(1 —v)r? {an ( ij 1— 21/7",17 ’])} ’ 3.5.18
1—2v (3.5.18)

t;i(z, O;n) = S (7 — nir ;).

8r(1l —v)r

The integrations of the displacement and the traction components of the Kelvin

solution over an arbitrary flat-element AS are given as,

Gij = // ué-(:l:; 0) dAg;
AS

= [ t5ite o) daz (3.5.19)
JJAS

HY = / / t3%(z, 0;n) dAg,
AS

and
. . 5, 3
HU :Hlo]'f'HU (3020)
For the sake of simplicity, a three noded element is chosen to demonstrate the
process (Figure 3.5). The corners 1, 2 and 3 are located in the right-hand sense
with respect to the normal at the element. The global Cartesian coordinate system
is indicated by X = {0; e, €2, €3} with the axes z1, z, and 23 as shown in Figure

3.9.
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FIGURE 3.5 Orientation Of Element In Global Coordinate System

3.5.1 Local Coordinate System

Because of the complexity of the integrands, the direct analytical integration
of the above integrals may not be obvious. However, as will be shown later, by
using coordinate transformations, the above integrals can be reduced into the com-
binations of the standard elliptical or pseudo elliptical types of integrals, which are

tabulated in [42].

Introduce a local coordinate system as shown in Figure 3.6, and denote this
coordinate system as Z = {0;¢1,¢2,¢3} with the axes (;, {» and (3. The local

coordinate system is defined such that
1) the element AS is located in the (; — (2 plane;

2) (3-axis is chosen to be in the direction of the element normal, and the loading

point € = 0 is located on the (3—axis. The intersection of the (3 —axis and the



-61-

FIGURE 3.6 Orientation Of Element And Coordinate Systems

element plane determines the origin of the local coordinate system;

3) the edge 1-2 of the element is parallel to the (; —axis and it goes in the direction

of —¢ (unit vector along ().

The above conditions uniquely determine the local coordinate system. The
shaded part is the element over which the Kelvin solution is to be integrated. Call
the edge opposite vertex 3 edges; the edge opposite vertex 1 edge;; and the edge
opposite vertex 2 edge,. Call the distance between the loading point and the element
AS b: the distance between the projection o and the edge that determines the (-
axis d: the angle between the line op and the axis (3 8. where p is an arbitrary point
on the element AS. It is important to notice that b is positive if the loading point

15 located in the side that the element normal is pointing, and negative otherwise.

From Figure 3.6, it can be easily seen that

dAg = pdpdé,



and
r=/p? + 02 (3.5.21)
Then
rdr = pdp. (3.5.22)
Define
1] : |d]
k= b = .5.
d? + b2’ d? + b2’ (3.5.23)
Then
k |5}
ybrt (3.5.24)
Define also,
1 — k2 sin? 6. (3.5.25)

By using the chain rule of partial differentiation,

L _Or(op  Op N O
ri= ap<a<1”“ + %521) + e (3.5.26)

where £q;, €9; and ¢3; are the direction cosines of the (;, (3 and (3 axes with respect

to the global system. From simple geometry,

P dp dp b
o sin #; 20 cos §; ac, = ( )
and from (3.5.22)
ar p
— ==, 3.5.28
9y r ( )
Then
P b
r; = —=(sin6 ey; + cos b eq;) — ~E3i. (3.5.29)
, -
Hence,
TAT = /)_; sin® @ €1i€15 + cos? 6 £94€95 + sin € cos 9(61,‘62]' + 62551]')}
2

b? bp . .
-+ T_2€3i53j — -7—2 81119(512‘63]‘ + 632'51]') -+ cos 9(62,'63]' + 63,‘52]')] .

(3.5.30)
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Along the edge

and

2 p0)A  d A

r(8) = /b2 +

3.5.2 Coordinate Transformations

cos?8 k' cosB k'

(3.5.31)

(3.5.32)

Since the variable transformation will not alter the result of an integral, the first

two integrals in (3.5.19) can be obtained by the following three steps. Because of

the special property of t;i(z, 0; n), the evaluation of H +; will be discussed separately.

G,

FIGURE 3.7Ta Integration Over AS,,



)
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integrate the displacement and the traction components over the shaded trian-

gular sub-area ASy,, as shown in Figure 3.7a. In this case, the local coordinate

system 1s called

Z% = {o:43,43,43}, (3.5.33)

with the axes (¥, ¢3 and (3. Call the angle between line ol and axis (3 as 63,
the angle between line 02 and axis (3 as 63; the distance between the projection

point o and the edges as d3. The integrals can then be expressed as,

G} = // ul(z, 0) dAz
ASloa
r3(9
/ / u’ (:z: 0) rdrdé,
63 b|

HY = // t9(z, 0;n) dAz
Asloo
rs(8)
- /‘9q / t7'(z, 0;n) rdrds.

The subscripts of AS are written in such a order that the direction marked by

(3.5.34)

the subscripts coincides with that by the integration argument 6.

re-orient the (;— and (,— axes with respect to edges according to 3), and then
mtegrate the corresponding components over the shaded triangular sub-area

ASs3, as shown in Figure 3.7b. Call the local coordinate system here
7% = {054,435, 43}, (3.5.35)

with the axes (7, (5 and (3. Call the angle between line 03 and axis (7 as 63,

the angle between line ol and axis (7 as 67; the distance between the point o
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FIGURE 3.7b Integration Over ASsy,

and the edges as dy. The integrals are then given by,

; :// uj-(:z:, 0) dAzx
As'ﬂo
T‘-)(e)
:/ / (z,0) rdrdéd,

i — / / 19i(z, 0;n) dAg
ASSIO
r2(6)
/9 / t7'(z, 0; n) rdrd6.

¢) re-orient the (;— and (,— axes with respect to edge; according to 3), and then

(3.5.36)

integrate corresponding components over the shaded triangular sub-area AS3q,

as shown in Figure 3.7c. The local coordinate system is expressed by

7' = {o;4, 45,4}, (3.5.37)
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FIGURE 3.7c Integration Over ASy3,

with the axes ({, (3 and (j. Call the angle between line 02 and axis (3 as 63,
the angle between line 03 and axis (5 as 83; the distance between the projection

point o and the edge; as d;. The integrations over the shaded area can now be

Gllj = //AS uj—(z, 0) d/lz

6._% ry(6) )
= / / us(z, 0) rdrd®,
b5 1l

_my:/y t9(z, 0;n) dAg
ASa3z,

03 pri(6)
:/ / 19i(z, 0: n) rdrdo.
o i

As shown by the shaded areas, the components of the Kelvin solution has been

written as,

(3.5.38)

integrated once over the triangular sub—area AS3s,, and the second time over the

triangular sub-area AS,3,. The sum of the two integral over AS39¢ and the integral
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over AS330 vanishes. This can be illustrated as follows,

let p denote the intersection of lines ol and 23. Case 1, the components of the

Kelvin solution is integrated over the sub-area ASs;, through

// ui(z,0) ddz = // ul(z, 0) dAz
A5‘320 AS‘p2o

+ / / ui(z, 0) dAg,
AS3p,

// t;i(z, O;n) dAg = // t?i(z, 0;n) dAg
ASsa, AS

r22o

+ / / t2(z, 0; n) dAg,
AS3p,

where, AS)9, is a part of the area of AS);, as shown in Figure 3.7a; while

(3.5.39)

AS3,, 1s a part of the area of ASsq, as shown in Figure 3.7b.

Case 2, the components of the Kelvin Solution is integrated over the sub-area

AS»3, as shown in Figure 3.7¢ and (3.5.38).

In both cases, the components of the Kelvin solution are the same, and the
integration argument 8 sweeps through the same angular range. However, in

both cases, § is opposite in signs. Therefore,

// u.;(::z:, 0) dAg + // u;'-(:z, 0) dAz
DSy N
+ // u;(m, 0) dAz = 0;
ASQSO

// t%(z, 0;n) dAz + // t2(z, 0;n) dAg
Aspza ASapo

+// t%(, 0;n) dAz = 0.
AS230

(3.5.40)
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So, the result of (3.5.19) can be written as,
1 v 3 .
G” = Gl] + Cr G”,
, (3.5.41)
‘ro rTol 22 103

3.5.3 Evaluation Of Integrals In G;; And H°

The advantage of placing the local coordinate system in the way shown is that
all the components of the Kelvin solution can be expressed by the known arguments
b, d, 6, etc. All the integrations can be computed by the use of the tables of integrals

of elliptical type or pseudo elliptical type. Examining the G} G?j and G?J- closely, it

1] 3
can be easily seen that all the integrals have the same structures. This observation

is also true for H o3

o, HP? and HP?. Thus, if the expressions for GY; and HY? are

obtained, the others can follow suit by changing the variables d, b, and 8 to the
appropriate ones. This section is devoted to the derivation of the expressions for
G, and I;Ti"f’. By substituting uj(z, 0) in equation (3.5.15) and t‘;-i(x, 0; n) in equation

(3.5.18), G34 and f]9.3 can be written as,

ij T dmp 63 . 4(1 —v) i

2 2
m{ ;P__ sm 961161] -+ p— COs 96’),621

2 2
) e
+7—~sm€cos€(ehevj +69l61])+ — €3/€3;
e

e
- _p sinf(ey e3; + ezier;) — 75 cosf(eziesj + 63,-62]-)}> dr;

‘ 7"

. 1 —2v 63 r3(6) €
Ho? = ———— 16 — b
Y St(1—v) Jor /e re

3 ep2 ep2 5
+ £ sin? ferier; + —- cos” feajes;

1—2v ) rt rd



For the sake of simplicity of later discussion, define each term
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ep? e?
+ 7— sin @ cos B(ey;e2j + ezieq;) + —€3i€3j

2 2

r

expressions as follows,

and

r3(9)
1%, (6) = /da/
7‘3(6) p
12;9(9) /Sm 6 do / = dr,
2 e 3
r3(8) 2
5.(8) = 2 HEAYN
IG3(9) = /cos 6 dé /é (1 r2> dr;
ra(8) 2
Igh(e) = /sinGCOS9 dé / (1 _%) dr
& r

ra(8) 2
Igs(e):/ dé)/: — dr;

T‘3(9)
Iéb(ﬁ) = /si119 d9[ _eg dr;

7

r3(8)
Ik ()= /cos() d@/ %)— dr,

r3(8) 2
Iih(e) = / sin? 9(19/ 67/)4

r3(6) 6(7,2 _ 62)
I?{3(9):/ cos? 9(19/ — dr

€ r

ra(0) (.2 _ 2
1?14('9) :/ sin @ cos 0 d9/ 6(77~—46 ) dr:
r3(0)

IH / dé/ - d,

'"3(9) e2p
I%IG(H) :/ sinéd (19[ — dr;

r3(f) 2
I3 (6) = / cos 8 d6 / 2 ar.

7

7P . cop )
1 81119(611'63]' + 632‘61]’) - _;Z— COSs 9(62,‘63J' -+ 632'62]‘) dT.

(3.5.42)

in the above two

(3.5.43)

(3.5.44)
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Then the integrations of the Kelvin solution over the triangular sub-area AS)s, as

shown in Figure 3.7a can be written as,

1 3—4v
Gl =- 1. ()85
1] 47('#{4(1—1/) Gl( ) 7
1 _
+ 4(1 —v) {E§2(6) €1i€1j +'Ié3(9)52162j'+-E§4(9)(51i52j + €9i€15)
03
+16,(0) esics; — 16, (0)(erica; +enier;) = 16, (8)(eziea; + €3iezj)] } ;
63
; 1—2v . _
HY = — ———q I}, (8)5;;
Y 8n(1 — 1/){ a,(0)05
3 1, ; 3
+ 1-— 91/{1}{?(9) c1i€1j + Ly, (0) e2:825 + Iy, (0)(e1ic2; + €gi€15)
, y
+ I, (O)esics; — I, (0)(eniess + saier;) — 18, (0)(eaics; + 631‘52]')] }
o7
(3.5.45)

In the results shown below, the superscript 3 of 63 and 65 and the subscript 3 dj,

As, kg and k'3 are left out for simplicity. We write

d— d37 A — A37
k— ks, B — &y (3.5.46)

6, — 63, 6, — 63.

Using equations (3.5.31) and (3.5.32) and evaluating equations (3.5.43) and (3.5.44),

one has,

d (A + &'sin g

.‘3v g — -
IG‘(H) 5 A —Lk'sinf

=

) + sgn(d) |b]sin™! (ksin 8) — |b|6;

1%, (6) = —d(%) sin 6 + sgn(d)|b| sin~" (J sin 6)

+ gln(%z—i—g—g> — 18] (9 — % sin29);

<



and

where

71-
3 Sgl’l(d) : =1 .
I, (0) = Ib[—T——AmnH + sgn(d)|b] sin™ " (k sin 8)
1
— [6|(8 + 5 sin 26);
I, (6) = —%A cos § — |b|sin? 6;

Iés (6) = |b|{9 — sgn(d) sin”! (k sin 9)};

I} (6) = %]:—I In(kcos8 + A) — sgn(b)dln(,_bl_i_ioig + %) (3.5.47)
+beos6(In %).

12,0 = -3 (00 + bsin&ln(l_lb.%%%)
+ sgn(e)mn(l + ‘f i ilsﬁnei)’

[:13—11(9') = Sgn(b){H —sgn(d)sin~ (k sin 0) }

bk! sinf Ok
300y = — cosZh AR o
I,(6) P cos” 3/ Sk sin”!(ksin 4)

U
+ gsgn(b)(G — 5 sin 26);

, k! sin @ bk'!
I3 (8) = 2 —1—cosb _ 20 gnt
1, (0) 34 —( 1 — cos” 6) X vy sin~*(k sin 6)

1 : 1
+ §sgn(b)(€ +5 sin 26);

bk' cos® 6 1 . (3.5.48)
3 (0) = — Zsp in2 9
I3;,(0) 73 + 3sgn(b) sin” 6;
. 1 - E*bsin g
3 I .
Iy (6) = 3 {sgn(b)@ + BTN

— sgn(b)sgn(d) sin™*(k sin 9)} ;

k' cos @
I (6= — :
(%) 3N
. P sind
I3 g) = .
H,(0) SA

b d sin 6
sgn(e) )’ sgn(d) ) sgn(d) = Gk

(3.5.49)
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=

The physical meaning of b # 0 is that the unit concentrated load is applied at
a point away from the element. Theoretically, the displacement and the traction
components are not singular with respect to the points on the element. Thus, the

above integrals can be computed without any problem.

However, when the unit concentrated load is applied on the element, b = 0,
the displacement and the traction components are both singular at the point of
application of the load. Therefore, special care has to be taken in order to evaluate
the above integrals correctly. In stead of taking b as 0, a limiting process is employed
such that the integrals are evaluated as the limit case as b — 0. In this case, k¥ — 0,
k' — 1, and A — 1 as b — 0. By taking limits of the integrals in (3.5.47) and

(3.5.48), the following is obtained,

d 1+4siné
3 — .
16, (6) = 2 hl(l — sinG)’
d 1+siné )
3 — . ;
1g,(8) = 3 hl<1 — sint9> dsin 6,
I}, () = dsin 6; (3.5.50)

I?Ju(()) = —dcos;
I%,(8) = I, (8) = I}, (8) = 0.

Since dr/dn = 0 when the loading point is on the element, t?i(z, 0;n) = 0 from

(3.5.18). Thus,

L7, (6) = Ipp(8) = I5(6) = I}y(6) = Iyys(8) = Ifys(6) = I}-(8) = 0. (3.5.51)

Therefore, the full expressions of G,‘?j and H ;}3 can be obtained by substituting
(3.5.50) and (3.5.51) or (3.5.47) and (3.5.48) into (3.5.45) depending on whether

the loading point is on or off the element.
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G2, H"2 and G1.

i ij» HY! can be obtained in the similar manner by following

step b) and step c), respectively.

3.5.4 Evaluation of I—:Tz*J

In general,

U 1 -2y —(nyr ) dA (3.5.52)
Ty — T 4 . Q.
as 87(1 —v)r? T i ’

Since

1 -
S (= nyr i) = €jrersknty (—-) R (3.5.53)

P r/,

By using direct application of the divergence theorem, HY; can be written as

- -2
H = —1—Veijk fersknr(l) ds
o 8x(l—v) r/ s (3.5.54)
_1-2 "fld'
-~ 8x(1—v) ik P Atk

day = 13 dCy + €91 dCo + £31d(3, (3.5.55)

where

and § stands for the line integration along the outside edges of the element AS.

. 1—2u 2 1 3 1 1 1
Hf = —— €. —dxy ~dxy —dxy ). 3.5.56
Y 8'.'(1——1/)6]}' (/1 r Tk+l r Tk+/3 r Tk> ( )

The above integrations can be evaluated easily by using the local coordinate systems

Thus,

introduced before, see Figures Ta, Tb and 7c. In particular, on the edges, see Figure

3.7a, d(3 = d¢3 = 0, then day = £3,d(3, where ¢, are the direction cosines of the

¢

—axis with respect to the global coordinate system:.
d
/ —(I'lk = z]k/ Clk Cl
1 8 (1—-v \/b2+(C1)2 42)2
1-2v

:mel]kglk lll(cl + Tg)

(3.5.57)
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On the edge,, see Figure 3.7b, d(? = d(2 = 0, then dz} = €3,d(}, where €2, has a

similar meaning as 3,. Then

;dﬂ:k 871'(1 €ijk \/b°+(C )2+(C )2
* s 1 2 (3.5.58)
—2v
me”ke“ h](Cl + 7‘2)‘3.
On the edge;, see Figure 3.7¢c, d(3 = d(3 = 0, then dzj = €1,d(}. Thus,

/3 1d 1 - 21/ / el dG
—daxy €ijk
: v sn(l-v) )y R (D (Q)

1 B 21/ (3.5.59)
mel}kslkln(CI +71)12-
Thus,
. 1-2v 1 11 N 2 1o 3 g
Hij = mﬁijk (Elkln((.d —I—7‘1)1?+61k1n((1 +7'2)1 +51k1n(C1 +T3)l ) (3560)

Having obtained the expressions for G2., G?. G}, and Ho3 H??, HP

50 Gijo i Hi, H the integra-

tion of the Kelvin solution over an arbitrary element AS, as show in Figure 3.6,

can be given as,

Gi = G, +G7 —t—G,l];
(3.5.61)
& _ 703 'y 02 ‘7ol T *

Thus, the evaluation of the integrations of the Kelvin solution over an arbitrary

element is now completed.

3.5.5 Compare Matrix Results Of Proposed Procedure With Pure

Numerical Integration With Subdivisions

Because the integrands of the numerical integral in (3.4.1) do not vary very
much with distance due to the subtraction of “singularities”, a few Gaussian points
are expected to capture the variation well. The analytical part of the solution can be
obtained accurately. Therefore, by using the proposed procedure, the components
of the matrices [H;;] and [Gyj], (¢,7 = 1,2,3), can be evaluated with good accuracy

using only a few Gaussian Quadrature Points.
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The above argument can be verified by direct calculation using many Gaussian
Quadrature points in an element. One way to do this is to subdivide the element if
the fundamental solution is expected to vary highly in it. The rules for subdividing

the most commonly used three-noded and four-noded elements are set as follows,

FIGURE 3.8 Subdivision Of An Element With Four Nodes
1) find the mid-points on the edges of an element, i.e., a, b, ¢, and d for an element
with four nodes, or «, b and ¢ for an element with three nodes;
2) connect the mid-points on the opposite edges as shown in Figures 8 and 9.
Several criteria have to be used in order to control the subdivision process.
1) the length criterion:

The subdivision stops if the distance between the loading point and the
element is larger than or equal to Clengss (a prechosen number) times the

length of the smallest edge of the subdivided element.
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FIGURE 3.9 Subdivision Of An Element With Three Nodes

2) the area criterion:

The subdivision stops if the area of the smallest subdivided element is less
than or equal to Cyreq (a prechosen number) times the area of the original

element.

3) the above two criteria may both be in effect at the same time, such as in the

case when the loading point 1s on an element or close to it.

An element is then subdivided into sub-elements. It is important to point out
that both criteria must be compatible, otherwise, the singularity property of the
fundamental solution can not be captured. The compatability of the two criteria
means also that the above two criteria are not independent, i.e., if one criterion

is specified, the other criterion can be derived. This can be done by the following



simple calculation. Let

d: be the distance between the loading point and the element;
L. be the typical length of the undivided element;
l: be the typical length of the smallest subdivided element;
Clength : be the designated number for length criterion, and
Carea : be the designated number for area criterion.

then the area of the undivided element is of the order of L?, and the area of the

smallest subdivided element is of the order of /2. From the length criterion,-

d
l= . 3.5.62
Clenglh ( )
while from the area criterion,
I* = Chpea x L?. (3.5.63)

In order for the two criteria to be imposed properly, the following equations has to

be satisfied,

d 2
: = Curea X L?, 3.5.64
(Clen.gth> ( )
thus
d 2
C'a,rea =\ . -9,
(L X C'Ien,gth> (3 5 65)



FIGURE 3.10 Dimensions of Test Element

3.5.6 Test Problem

In the example, a four-noded element, as shown in Figure 3.10, is chosen to
demonstrate the accuracy of the proposed procedure. This process consists of two

steps,

a) the matrices [Gy;] and [H;j;], using only the Kelvin solution, are evaluated
over the element show in Figure 3.10 with both the analytical calculation and
numerical calculation with subdivisions. The correctness of the subdivision

scheme 1s established by comparing the analytical and the numerical results;

b) the matrices [G;;] and [H;j], using the fundamental solution of the infinite
plate problem, are evaluated over the same element with the proposed proce-

dure and the numerical calculation with the same subdivision scheme. The
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correctness of the proposed procedure is shown by comparing the results of the

two calculations.

In Figure 3.10, point p is the point at which the unit concentrated load is acting;
while point ¢ is the projection of p along the direction of the element-normal onto
the element. Eight subdivision cases are shown for different distances d between
the loading point and the element. The length criterion is set as Clengin = 2 for
all the cases. Figures 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, show the subdivisions with
d = 0.00001, d = 0.0001, d = 0.001, d = 0.01, d = 0.1, respectively. Figure 3.16

shows also the subdivision with d = —0.1.

FIGURE 3.11 Subdivision with 796 Elements

The materials are idealized in this example, F = 1, v = 0.3, and the thickness
of the plate is taken to be i = 1.0. The result of this calculation can be trivially
generated to a realistic value of Young’s modulus. However, if a different value

of Poisson’s ratio is desired, the calculation should be repeated. In the part of
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FIGURE 3.12 Subdivision with 640 Elements

FIGURE 3.13 Subdivision with 484 Elements

numerical integration with subdivisions, 4, 16, and 36 Gaussian points are used.

The results of the matrix components involving only Kelvin’s solution computed by
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FIGURE 3.14 Subdivision with 316 Elements
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FIGURE 3.15 Subdivision with 148 Elements

numerical integration with subdivisions are shown in Tables 1a, 1b, and 1c, and the

results of the same integrals computed by the analytical integration are shown in



F1GURE 3.16 Subdivision with 16 Elements

Table 2.

Comparing Table 1la, 1b, and 1c with Table 2, 1t can be easily seen that the
results of the numerical integration with subdivisions are very close to the results of
the analytical integration. The errors are negligible. This supports the correctness

of both the analytical integration and the numerical integration with subdivisions.

The matrices [G;;] and [H;;] involving the fundamental solution of the infinite
plate problem are computed over the same element. The results of the matrices
[Gij] and [H;;] from the proposed procedure are shown in Tables 3a, 3b and 3c,
while the results from the numerical calculation with subdivisions are shown in

Tables 4a, 4b and 4c.

Comparing Tables 3a, 3b, 3¢ with Tables 4a, 4b, 4c, the errors are also negli-
gible. This fact proves the feasibility of the proposed procedure. The tremendous

savings of the computational effort introduced by the proposed procedure is vital
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to the later application to the boundary element method.
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CHAPTER 4

CIRCULAR HOLE SUBJECTED TO PRESSURE

In this chapter, a simple problem is used to test the idea of the n}odiﬁed
boundary element method. The problem involves a circular hole in an infinite
plate of finite thickness. The hole is subjected to uniform pressure applied on the
surface of the hole. Furthermore, the upper and the lower surfaces of the plate are
traction-free. Although this testing problem is strictly to be a three-dimensional
one, its solution happens to coincide with both the plane-stress and the plane-strain
solutions for the corresponding two-dimensional problems with the same in-plane
geometry and loading. By taking advantage of this fact, the known solution of the
corresponding plane-stress problem is used as the bench-mark case for comparison

with our numerical results.

Besides the modified boundary element scheme, a finite element analysis scheme
is also employed for further comparison. The results of both the numerical schemes

are presented.
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4.1 Analytical Solution For Pressurized Circular Hole Problem

Consider a problem involving a pressurized circular hole in an infinite plate
of finite uniform thickness h. The pressure is uniformly applied on the surface of
the the circular hole. The plate also has the traction-free boundary conditions on
its upper and the lower surfaces. The radius of the hole is denoted as a, and the
magnitude of the applied pressure is p. Figure 4.1 shows the problem schematically.
The Cartesian coordinate system is placed at the bottom surface of the plate. The

origin of the coordinates is located at the center of the circular hole.

FIGURE 4.1 Pressurized Circular Hole In Infinite Plate

The traction is denoted as #(z; n), where z = re, + feg + z3e3 and n = n,e,. +

ngeg + nyez. The vectors e, ey, and e3 are the unit vectors of the cylindrical
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coordinate system. The boundary conditions then become:
Yz, e3) =0 Vz e Il;,
Hz;—e;) =0 Vz € Il,, (4.1.1)
i(z; —e,) = —pe, Vz e L.
The in-plane stress components corresponding to the two-dimensional plane-stress

and plane-strain approximations of the three-dimensional problem is given in [43],

and the components of the stress fields expressed in the polar coordinates are,

9

o2
p, Vr > aq; .
r2! (4.1.2)

ore(r,0) =0, 0<6<2n.

orr(r,8) = —ogg(r,0) = —

In this particular problem, e;3.(r,8), €34(r, 8), €33(r,8) and o3,(r, ), o34(r,0),

o33(r,8) are zero simultaneously.
o33(r,8) = o3.(r,0) = 034¢(r,0) = 0. (4.1.3)

In addition, the displacement fields for both cases are identical and they can be

expressed as,

\ 1 d?
o(r,8) = — —
up(r, 0) o 1 P,
11‘6(736) = 07 (414)
usz(r,6) = 0.

Therefore, the solutions of the plane-stress and the plane-strain approximation
of this three-dimensional problem coincide. This fact suggests the possibility that
the two-dimensional solutions may also be the solution of the fully three-dimensional
problem. Indeed, if the above solutions in Eqs. (4.1.2), (4.1.3), and (4.1.4) are

substituted into the three-dimensional governing equations for linear elastostatics,
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all the governing equations are satisfied identically. In addition, the boundary
conditions on the upper and the lower surfaces of the plate are trivially satisfied. For
convenience, call the solution in (4.1.2), (4.1.3), and (4.1.4) the analytical solution
to the pressurized circular hole problem, and choose the diameter of the hole the

same as the thickness of the plate.

4.2 Modeling Of Circular Hole Surface

Recall the modified Boundary Integral Equations, the displacement field in
the interior of the three-dimensional plate can be related to the traction and the
displacement fields of only the lateral surfaces of the plate. This relationship is
shown in Eq. (3.2.9) in Chapter Three. Because of the difficulty in solving the
integral equations analytically for the tractions or the displacements on the lateral
surfaces, the discretization scheme has to be introduced. However, in the modified
boundary integral equations, the discretization is limited only to the lateral surfaces.
This fact is also the key difference between the modified boundary element scheme
and the conventional one, which employs the Kelvin solution as the fundamental

solution.

In this test problem, the lateral surfaces coincide with the surface of the circular

hole L.

Seven mesh schemes are employed for the modified boundary element scheme.
One mesh is designed to suit the finite element scheme, in which 700 eight noded
brick elements with 1008 nodes and 3024 degrees of freedom are used. In the
boundary element mesh schemes, 72, 120, 196, 224 and 420 elements are used.

Three different mesh arrangements are made involving 120 elements.
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Call the dimension of an element in the z3 direction the element-thickness, and
the corresponding dimension in the circular direction the element width. All the
elements used have the same width unless the mesh is locally refined. The elements

in a layer have the same thickness.

For the modified boundary element scheme, the circular hole is modeled by
flat rectangular elements of the same width. The thickness direction of the hole is
modeled by an odd number of layers that are symmetric about the mid-plane of
the plate. In all the calculations, constant elements are used. The displacement
and the traction are computed only at the element centroids, which are called the

element nodes.

The fundamental solution for the three-dimensional infinite plate problem 1s
evaluated partially analytically and partially numerically over an infinite integral
interval [0, c0). To avoid the numerical difficulties, a pre-set designated number P is
introduced so that the numerical part of the integrals are evaluated over a truncated
interval [0, P]. By increasing the number P, the accuracy of the numerical integrals
can be improved. This scheme is justified by the results shown in Table 1a through

4c in Chapter Three. In the following mesh arrangements, P is chosen to be 10 or

20.

Two groups ( Group A and Group B) of internal points are placed in the interior
of the plate. The 48 internal points in the Group A are selected to examine the
displacement variation along the radius direction; the other 44 internal points in

Group B are assigned to observe the displacement variation through the thickness.

The points in Group A are placed in three radial arrays at different depths. All

the arrays contain the same number of points (16 points each), and the points in the



_99.
three arrays have the same radial positions respectively. The first array of points
1s usually placed in the element nodal plane of the top layer; the second array of
points is placed in the plane three quarters of the thickness from the bottom surface
of the plate; the third array of points is placed in the mid-plane of the plate. Since
the displacement field is expected to exhibit higher gradient with respect to r near
the surface of the hole, the points in each array are placed closer to each other when
they are near the circular hole surface, and further apart when they are away from

the hole surface. The position of the points in the r direction are,

r=a+ 0.01h, a«+0.03h, a+ 0.05h, a+ 0.07Th, a + 0.09h,
a-+0.11h, a +0.13h, a+ 0.23h, a+ 0.33h, a + 0.43A,

a+ 0.50h, a+ 0.70h, a+0.90h, a+ 1.1k, a + 1.30h, a + 1.50A.

where h stands for the thickness of the plate.

The points in Group B are positioned along four different lines through the
thickness of the plate. On each line, the displacement is evaluated at eleven points.
The positions of the lines are r = 0.53h, 0.73h, 1.00h, and 1.60h. The positions of
the points on the line at » = 0.53h are x3 = 0.030A, 0.124A, 0.218k, 0.312h, 0.406h,
0.500h, 0.594h, 0.688h, 0.782h, 0.876Ah, and 0.970h. The positions of the points on
the other three lines are r = 0, 0.1%, 0.2k, 0.3k, 0.4k, 0.5k, 0.6A, 0.7h, 0.8h, 0.9A,

and 1.0h.
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4.2.1 Mesh With Seventy Two Elements

The cross section of the circular hole is modeled by 24 elements of equal width,
and the hole is modeled by three layers of elements in the thickness direction. The
thicknesses of the layers are 0.2h, 0.6k, and 0.2h. P is taken to be 10 for this mesh
arrangement. Furthermore, the Group A points are placed in the radius direction
at the depths of 23 = 0.9h, 0.75h and 0.5h. The Group B points used are the same
as discussed before. The element and the internal-point arrangements are displayed

in Figure 4.2.

a1 T T
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FIGURE 4.2 Mesh With Seventy Two Elements
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4.2.2 Meshs With One Hundred and Twenty Elements

Three mesh schemes are made involving 120 elements.

a) The cross section of the circular hole is modeled by 24 elements of equal width,
and the circular hole is modeled by five layers of elements in the thickness
direction. The thicknesses of the layers are 0.1k, 0.2k, 0.4k, 0.2k, and 0.1A.

P =10.

b) The cross section of the circular hole is modeled by the same 24 equally sized
elements. However, the hole is modeled by five layers with the same thickness

in the thickness direction, which is 0.2h. P = 10.

¢) The modeling of the surface of the hole is the same as in case a). However

P = 20 for this case.

The positions of the Group A points in the 23 direction for cases a) and c¢) are
x3 = 0.95h. 0.75h, and 0.5h; for case b), they are at 3 = 0.9k, 0.75h, and 0.5h.

The positions of the Group B points are the same as discussed before.

The arrangements of the elements and the internal points are displayed in

Figures 4.3 and 4.4.
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FIGURE 4.3 One Hundred and Twenty Elements, Different Thicknesses

- \
1 ] FFM
1>>1<: :>[<<: e
& “’/// \\\\ : / .......
> 1] Rk
g%::/ ‘f: N »
. ;’//: :\\\\
L L
NP“L/ . N X
SRR
\k ' ))

FIGURE 4.4 One Hundred and Twenty Elements, Same Thickness
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4.2.3 Mesh With One Hundred And Ninety Six Elements

The cross section of the circular hole is modeled by 28 elements. This mesh
arrangement is similar to the ones in which the cross section of the hole is modeled
by 24 equally sized elements, but this mesh is locally refined. The difference is that
one of the elements in the 24 element case is subdivided with five fine elements.

The thickness direction is modeled by seven layers. The thicknesses of the layers

are 0.1h, 0.1k, 0.2R, 0.2k, 0.2k, 0.1k, 0.1A.

The internal points in this case are still arranged in two groups: Group-A and
Group B. The arrays formed by the Group A points are located in the extension
of the center of the hole and the center of the five fine elements. The depths of
the arrays are at @3 = 0.95h, 0.75h, and 0.5h. The Group B points are the same
as discussed before. The arrangement of the elements and the internal points are

shown in Figure 4.5.

T

=l

/i
Wi

\Y
-__\I.
|
iy
"
)
/

| W<<j =
sl [ H
. {1 Gy ]
VEE/‘E : ";J\'
.\ .‘—
] —
R MRS,
~L_ | A

FIGURE 4.5 Mesh With One Hundred and Ninety Six Elements
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4.2.4 Mesh With Two Hundred And Twenty-Four Elements

In this mesh arrangement, the cross section of the circular hole is modeled by
32 equally sized elements, and the thickness of the plate is modeled by seven layers

of elements. The thicknesses of the layers from the top to the bottom are 0.1h,

0.1h, 0.2h, 0.2R, 0.2h, 0.14, 0.1A. P is chosen to be 10.

The positions of the Group A points in the z; direction are z3 = 0.95h, 0.75h,
and 0.5h. The positions of the Group B points in the thickness direction are the

same as discussed before.

The arrangement of the elements and the internal points is shown in Figures

4.6.
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FIGURE 4.6 Two Hundred and Twenty-Four Elements
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4.2.5 Mesh With Four Hundred and Twenty Elements

This mesh arrangement is very similar to the case with 196 elements. The only
difference is that the thickness of the circular hole is modeled by 15 layers instead
of 7 layers. Both the Group A points and the Group B points are the same as in

the case with 196 elements, respectively. The arrangement of the elements and the

internal points 1s shown in Figure 4.7.
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FIGURE 4.7 Mesh With Four Hundred And Twenty Elements

4.3 Mesh For Finite Element Analysis

The three-dimensional Finite Element Analysis Program, FEAP, has been
adapted in the present study. The FEAP was originally developed by R. J. Taylor
[4] of U. C. Berkeley and later revised at Brown University. The code was made

available through the courtesy of Dr. Ravichandran.
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The eight noded tri-linear brick elements are used in FEAP. FEAP computes
the displacement components at the nodes of the brick elements. The nodes for an
element are located at its eight corners. The displacements in the interior of an
element are evaluated through linearly interpolating the values at the nodes. The

stress and the strain components are evaluated at the elements centroids.

The three-dimensional problem involving pressurized circular hole in an infinite
plate is axially symmetric regarding the geometry and the loading. The modeling
effort can be greatly reduced by taking advantage of the symmetry. In the imple-
mentation of the FEAP, one eighth of the plate is modeled. The same FEAP will be
used in the analysis of the pressurized elliptical hole problems in the next chapter.
The finite element model is depicted in Figure 4.8. The model is bounded by six
surfaces, which are: the two orthogonal surfaces through the thickness, the top free
surface and the midplane of the plate, a quarter of the circular hole surface enclosed

between the two orthogonal surfaces, and a remote surface.

The remote surface is chosen to be concentric to the circular hole surface.
The radius of the remote surface is denoted by b. Because of the characteristics
of the pressurized hole problem, the stress and the displacement vary inversely
proportional to r? and r, respectively. When the radius of the surface is large
compared to the radius of the circular hole, it can be assumed that the stress and
the displacement on the remote surface are negligible. It is justifiable that when
the radius of the remote suiface is 20 times the thickness, the ratio between the
stresses on the remote surface and on the circular hole is of the order of O(107%),
and the ratio of the displacements is of the order of O(107%). Therefore, in the
model for finite element analysis, the three-dimensional infinite plate is truncated

by a remote concentric surface at the radius about 20 times the thickness of the
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plate, and the traction-free boundary conditions are applied on this remote surface.
The geometry of the finite element model is shown in Figure 4.8, and the mesh
geometry of the simulation 1s shown in Figures 4.9 and 4.10. Portions of meshes
shown in Figures 4.9a and 4.10a are embedded in the meshes shown in Figures 4.9b

and 4.10Db, respectively.

FIGURE 4.8 Geometry of Finite Element Modeling

The finite element mesh models the cross section of the circular hole surface
using 7 brick elements. The surfaces of the brick elements along the circular hole
surface have the same geometries as the elements used for the modified bound-
ary element scheme. The entire model consists of 700 eight noded brick elements
arranged in 5 layers. 1008 nodes are involved and 3024 degrees of freedom are gen-
erated. These 5 layers of elements are arranged through one half the thickness of
the plate. Starting from the midplane, the thicknesses of the layers are 0.1k, 0.15h,

0.15h, 0.05h, and 0.05A.
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FIGURE 4.9 Detail Of In-Plane Mesh For Finite Element Analysis
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FIGURE 4.10 Detail Of Mesh Variation Through Thickness
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4.4 Results And Discussions

In this section, the results from all the mesh arrangements are analyzed with
the hope of establishing some insights to use the modified boundary element scheme.

The sources of discrepancy are also discussed.

In this particular problem, the full three-dimensional solution is identical to
those of the plane-stress and the plane-strain approximation. All the numerical
results obtained from both the modified boundary element method and the finite
element method are plotted against the analytical solution. In all the calcul;xtions,
the Young’s modulus E and the Poisson’s ration v were chosen to be 1 and 0.3,

respectively. The cases involving different Young’s modulus and Poisson’s ratio can

be computed from the above results through simple mathematical operations.

4.4.1 Results Of In-Plane Displacements

The result from the finite element analysis agrees well with the analytical so-

lution.

Recall the solution of the stress field of the pressurized hole problem, for a
finite radius of the circular hole, the stress field does not appear to have a strong
stress concentration even near the surface of the hole. Furthermore, because of the
axially svmmetric property of the problem, it is expected that any local refinement
of the numerical mesh in the circular direction would not affect the final result very

much.
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Figures 4.11 and 4.12, 4.13 and 4.14, 4.15 and 4.16 show the normalized dis-
placement component u, vs. the normalized radius r. In these cases, u, is evaluated
at the Group A points. It can be seen from Figures 4.12, 4.14, and 4.16 (finite el-
ement results are included) that, although the mesh is locally refined for the cases
involving 196 and 420 elements, the result of in-plane displacements obtained from
the modified boundary element method does not seem to change much compared
with the case using 120 elements. Unless the mesh is uniformly refined greatly, the

results of the modified boundary element method would not be changed significantly.

.8 T T T T
ANALYTICAL SOLUTION -
_______ 120 ELMTS, 24 ELMTS/LAYER, 5 LAYERS, 10
L 120 ELMTS, 24 THK ELMTS/LAYER, 7 LAYERS, 10
sl \,\ ........... 72 ELMTS, 24 ELMTS/LAYER, 3 LAYERS, 10 |
. T 224 ELMTS, 32 ELMTS/LAYER, 7 LAYERS, 10
A= 120 ELMTS, 24 ELMTS/LAYER, 5 LAYERS, 20
g af -
~
[
po
2t 1
ELEMENT NODAL SURFACE
o 1 i i 1
0 5 1.0 1.5 2.0 2.5

r/H

FIGURE 4.11 Normalized Displacement u, vs. Normalized Distance r; Results Ob-
tained At Element Nodal Plane Of First Layer

Figures 4.11. 4.12, 4.13, 4.14, 4.15, and 4.16 show that the in-plane displace-
ment u,. calculated from the modified boundary element method, differ from the

analytical and the finite element results by less than 5%.

Two aspects contribute to the above error accumulation. One source of error
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FIGURE 4.12 Normalized Displacement u, vs: Normalized Distance r; Locally Re-
fined Mesh; Results Obtained At Element Nodal Plane Of First Layer
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FIGURE 4.13 Normalized Displacement u, vs. Normalized Distance r; Results Ob-
tained At Depth Three Quarters From Bottom Surface
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FIGURE 4.14 Normalized Displacement u, vs. Normalized Distance r; Locally Re-
fined Mesh; Results Obtained At Depth Three Quarters From Bottom
Surface

comes from modeling. Since the polygon is used to model the circular hole sur-
face, and the nodes of the elements are located at the centroids, the radius of the
modeled “circular hole” is smaller than the actual one. This fact would result in
approximately 1% of error in all the stress and the displacement components, and
it may also be the reason that the results in Figures 4.11 and 4.13, obtained from
various mesh arrangements, have little difference. Since the cross section of the hole
is modeled by 24, 28, and 32 elements, respectively, the change of radius caused by
these models are very small compared with the actual radius of the hole. The sec-
ond source of the error comes from P = 10. As was demonstrated in Chapter Two,
when P is chosen to be 10, the order of the error in the stress and the displacement
components of the fundamental solution for infinite plate problem is at the order of
O(1072). Thus, the error of the numerical integrations of the fundamental solution

over the mesh elements can not be smaller than that presented in the fundamental



-113-

.8 T T T '
——————— ANALYTICAL SOLUTION
——————— 120 ELMTS, 24 ELMTS/LAYER, 5 LAYERS, 10
————————— 120 ELMTS, 24 THK ELMTS/LAYER, 5 LAYERS, 10
sl e 72 ELMTS, 24 ELMTS/LAYER, 3 LAYERS, 10 |
. s 224 ELMTS, 32 ELMTS/LAYER, 7 LAYERS, 10
S 120 ELMTS, 24 ELMTS/LAYER, 5 LAYERS, 20
w
£ .4 1
N
[ &
3
2 F 1
MEDIAN SURFACE
.0 : : ' '
.0 5 1.0 1.5 2.0 2.5

r/H

FIGURE 4.15 Normalized Displacement u, vs. Normalized Distance r; Results Ob-
tained At Median Plane Of Plate
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FIGURE 4.16 Normalized Displacement u, vs. Normalized Distance r; Locally Re-
fined Mesh; Results Obtained At Median Plane Of Plate
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FIGURE 4.17 Normalized Displacement us vs. Normalized Distance r; Results Ob-
tained At Element Nodal Plane Of First Layer

solution. This error can be a major source.

In order to verify the assertion, a mesh with 120 elements is used with the
choice of P = 20. The result from the modified BEM is excellent. The result agrees
with both the analytical and the finite element solutions up to the point very close

to the surface of the hole.

4.4.2 Results Of Out-Of-Plane Displacement

The accuracy of result of the modified BEM in the vicinity of the surface of

the hole depends on the combination of the discretization sizes and the choice of P.

Figures 4.17 and 4.18, 4.19 and 4.20 show the results of the normalized out-of-
plane displacement for the pressurized circular hole problem. The displacement is

evaluated at the Group A points.
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FIGURE 4.18 Normalized Displacement ug vs. Normalized Distance r; Locally Re-
fined Mesh; Results Obtained At Element Nodal Plane Of First Layer
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FIGURE 4.19 Normalized Displacement uz vs. Normalized Distance r; Results Ob-
tained At Depth Three Quarters From Bottom Surface
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FIGURE 4.20 Normalized Displacement uz vs. Normalized Distance r; Locally Re-
fined Mesh; Results Obtained At Depth Three Quarters From Bottom
Surface
The displacement uz has good agreement with the analytical and the finite
element results away from the circular hole surface. But the results deviates from
the analytical and the finite element solutions when the displacement is calculated

near the surface of the hole. The displacement computed in the element nodal plane

of the first layer exhibits a drop near the surface of the hole.

A case involving 420 elements and P = 10 was run to establish the sense of
how the discretization may affect the results. In this case, the cross section of the
circular hole is modeled by 28 elements, and the thickness of the hole is modeled
by 15 layers. Denote the overall size of an element as the largest dimension of
the element. The overall sizes of the elements are reduced in the case with 420
elements compared with those in any other mesh. It can be seen from Figures 4.18

and 4.20 that the magnitude of the drop near the surface of the hole is reduced.
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This fact shows the effect of the discretization error. It shows as the overall sizes
of the elements decrease, the error caused by discretization decrease. Although the
region in which the drop occurs is still not significantly reduced, the result of this
displacement component is quiet acceptable. Further tests using P = 20 are in
progress. It is expected that with the choice of larger P mated with fine mesh, such

as the case with 420 elements, the solution can be improved.

4.4.3 Results Of Displacement Variations Through Thickness

It can be seen from the Figures 4.21, through 4.27 that the displacement vari-
ation u, through thickness are horizontal straight lines except the ones computed
very close to the hole surface at r = 0.53h, where both the discretization and
the effect of P have strong influence. The uniform variation of the displacements
through the thickness indicates the two-dimensional nature of the problem. The
error between the results obtained from the modified boundary element scheme and
the analytical solution is about 5%. As the distance from the center of the hole

increases, the thickness variation of u, approaches the analytical solution.

The deviation in the displacement wuz from the plane-stress solution near the
surface of the hole at » = 0.53h are presented in Figure 4.24, 4.25. This deviation
from the analytical solﬁtion 1s caused by the combining effect of the element size
and the choice of P. By reducing the element size and increasing P to 20, this

deviation will be reduced.
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FIGURE 4.21 Normalized Displacement u, vs. Normalized Depth z3
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FIGURE 4.22 Normalized Displacement u, vs. Normalized Depth z3
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FIGURE 4.23 Normalized Displacement u, vs. Normalized Depth z3
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FIGURE 4.24 Normalized Displacement ujz vs. Normalized Depth z3
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FIGURE 4.26 Normalized Displacement ug vs. Normalized Depth z3
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FIGURE 4.27 Normalized Displacement uz vs. Normalized Depth z3; Locally Re-
fined Mesh

4.5 Conclusions

All the above examples are designed with the sole purpose of obtaining insights
in the use of the modified boundary element method. It can be concluded from the
above results that, by properly modeling the circular hole surface and adequately
choosing P, the modified boundary element scheme gives good results to the pres-
surized circular hole problem. However, these examples may not be the best ones
to show the time advantage of the modified BEM. In these examples, the modified
BEM runs much slower than the FEM, and this aspect will be discussed in in detail

in the conclusions of the next chapter.

Two sources contribute to the error in using the modified boundary element
scheme. One source is the discretization error. The overall element size affects the

results. By reducing the overall size of the elements, the displacements obtained by
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<

the modified BEM approach the analytical solution. The other source of error is
the choice of P. By choosing P to be 10, the fundamental solution for the infinite
plate problem can not be calculated with good accuracy, which results in about 5%
of the error in the final results for displacements u, and u3. By choosing P to be

20, an excellent solution has been obtained, and the error is less than 0.5%.

The accuracy of the results depends on the combination of the element sizes
and the choice of the value of P. Since the pressurized circular hole problem is
axially symmetric, unless the mesh is uniformly refined, the results would not be
changed significantly. Compromises have to be made between the desire of é‘etting
accurate results and the expense of obtaining them. Indeed, it is expensive to use

both small elements and P = 20.
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CHAPTER 5

ELLIPTICAL HOLE SUBJECTED TO PRESSURE

This Chapter considers two problems involving an elliptical hole in an infi-
nite three-dimensional plate of uniform thickness, h, subjected to uniform internal
pressure p. The upper and the lower surfaces of the plate are traction free. The
geometry and loading of the problem is similar to the one shown in Figure 4.1
in Chapter Four. The displacement and the stress fields near the elliptical holes
are three-dimensional in nature. Unlike the pressurized circular hole problem, the

three-dimensional analytical solutions are not available for these two problems.

These pressurized elliptical hole problems are studied by both the modified
boundary element method and the finite element method. One of the problems
involves an elliptical hole whose major axis is four times its minor axis, and the
other consists of an elliptical hole whose major axis is ten times its minor axis. The
boundary element results are compared with the finite element results and with the
plane-stress and plane-strain approximations to these problems. The purpose of
such comparisons is to identify the region near the elliptical hole surface where the

three-dimensional effects are dominant.
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5.1 Plane-Stress and Plane-Strain Solutions of Elliptical Hole

Subjected to Pressure

Consider the two-dimensional plane-stress and plane-strain approximations of
the three-dimensional pressurized elliptical hole problem. The two-dimensional ap-
proximations have the same in-plane geometry and loading. Denote the major axis
of the elliptical hole as ay and the minor axis as by. The magnitude of the ap-
plied pressure is p. The shear modulus and the Young’s modulus are E and v,

respectively.

At this point, only the plane-stress approximation of the pressurized elliptical
hole problem is analyzed. The plane-strain approximation of the same problem can
be easily formulated by changing the Young’s modulus E and the Poisson’s ratio v

in the plane-stress problem to E/(1 — v?) and v/(1 — v), respectively.

In the plane-stress problem, the thin plate is loaded by pressure applied on the
boundary, parallel to the midplane of the plate and distributed uniformly over the
thickness, the stress components o33, 013, 023 are zero on both surfaces of the plate.
It may be assumed that they are zero also within the plate. The state of stress is
then specified by o011, 022, and oy5. The corresponding displacement components
are u; and uy. The stress and displacement components are independent of zj.

Furthermore, this problem can be decomposed as shown in Figure 5.1.

From Figure 5.1, the displacement field of the pressurized elliptical hole problem

can be expressed as the superposition of the displacement fields of problems a) and

b).

ui(e, 2) = u1, (1, ®2) + w1, (21, 22),

(5.1.1)

QLQ(;L‘h{L’Q) = Uz, (:L’l,.'.tg) + UQb(.Il,:IZz).
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FI1GURE 5.1 Problem Decomposition

It is trivial to evaluate the displacement components for problem a).

. . v—1
uy, (21, 22) = E PTi;

L1 (5.1.2)
Uz, (T1,22) = pT2.

E

The solutions for the stress and displacement fields of problem b) can be found in

[42]. The solutions are described in the elliptical coordinates, which are defined as,
a1 = ¢g cosh £ cosn, x9 = ¢p sinh € siny, (5.1.3)

where ¢y stands for the focal length of the ellipse, and €, n are the elliptical coordi-

nates. The inverse transformation of the above equation for any z; and z9 1s given

by,
£=In a -+ b'

Cg

-1 T2 e .
sin (—C—;J—S—;l—lh_é>7 if o > 0; (5.1.4)

| €9 ) .
T — sin —_— if 29 <0
(co sinh &/’ 2 ’

n =
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where

(5.1.5)

The in-plane displacement fields for the plane-stress problem are given by,

ug, (€,m) = {——Ac [sin nsinh & (cos nsinnsinh?® € + cos n sinn cosh? {)
+ cosn cosh € (c052 7 cosh € sinh € — sin® 7 cosh ¢ sinh ¢ )]

/ (cos2 n sinh® € + sin? n cosh? ﬁ)

— Bccosnsinh f/ (cos2 n sinh® € + sin? 7 cosh® f)

+ Accosn(3 —v) sinhf/(l - y)}/(gu);

ug, (E,m) = {—Ac [COS 7 cosh ¢ (cos 5 sin nsinh® £ + cos 7 sin n cosh® f)
— sinn sinh £ (c052 7 cosh € sinh € — sin® 5 cosh £ sinh f)J
/ (cos2 ysinh? € 4 sin® 9 cosh? f)
— Besinncosh {/ <0052 n sinh? € + sin® 5 cosh? ﬁ)

+ Acsinn(3 — v) cosh{/(l - 1/)}/(2#),
(5.1.6)
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where p is the shear modulus, and A, B and &, are defined as follows,

_P
A= 5
1
B = —~Acosh2f = —5P cosh 2&g, (5.1.7)
b
_ -1({Z0
&0 = tanh (ao).

The above is the plane-stress solution of the pressurized elliptical hole problem.
An estimation of the out-of-plane displacement uj for the pressurized elliptical hole
problem can be obtained as follows. From the three-dimensional strain-displacement

relationships, one has,

ug(ay,xa,23) = / €3z, 29, 23) dog, 0< a3 <h. (5.1.8)
hf2

The coordinate system for the above expression is located at the bottom surface of
the plate. The origin of the coordinate system is at the center of the ellipse. The z;
and x4 axes are placed along the major and minor axes of the ellipse, respectively. z

axis is along the minor By using the constitutive law, the above equation becomes,

/13 v(oyi(a1, @2, x3) + o22( 1, 22, 73))
uz(wy, ¥2,23) = —
L FE
’ (5.1.9)
033(171,12,1'3)
1 -— - - d.fb'g.
v(oy1(@1, T2, 23) + 022(21, T2, 23))

When the ratio of o33(21,22,23)/(v(o11(21, 22, 23) + 022(21,22,23))) is zero, and

plane-stress conditions are achieved, then the above equation reduces to,

v h ,
uz(x1,29,23) = ‘—E(!L‘B = 5 Non(eg, z) + o92(21,22))

v h 2p sinh 2€ . (5.1.10)
=gl T3 —2p|,

E 27| cosh2¢ — cos2ny
where o11(21,%2) and o92(@1,x2) arve the plane-stress thickness averages. The first
term in the square bracket comes from problem b), while the second term comes from
problem a). Eqs. (5.1.1), (5.1.2), (5.1.6) and (5.1.10) provide the approximations

for the displacement fields for the analytical solution.
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As mentioned before, the plane-strain solution of the pressurized elliptical hole

problem can be easily obtained by replacing E and v in equations (5.1.2), (5.1.6).

In addition, both €33 and w3 vanish identically in the plane-strain solution.

5.2 Modeling Of Elliptical Hole Surface

Similar to the circular-hole case, this pressurized elliptical hole problem is self-
equilibrated. The upper and lower surfaces of the plate are traction-free. The
modeling and discretization of the problem is only limited on the elliptical hole

surface.

The Cartesian coordinate system for this problem is located in the lower surface
of the plate; the origin of the coordinate system is located at the center of the
elliptical hole. The x; and the 24 axes are in the directions of the major and the
minor axes of the ellipse, respectively. The z3 axis is in the thickness direction

pointing towards the upper surface of the plate.

Two problems involving different elliptical holes are analyzed. The ratios of
the major and the minor axes of the elliptical holes are 4 and 10, respectively. This
ratio is referred to as the aspect ratio in the following sections. Three boundary
element meshes are used to model the two elliptical holes. Two meshes involving
280 and 336 elements are used to model the elliptical hole with the aspect ratio of
4, and the other involving 280 elements is used to model the elliptical hole with
the aspect ratio of 10. Two finite element meshes are also used. One mesh consists
of 1045 elements with 1440 nodes and 4320 degrees of freedom, and it models the
elliptical hole with aspect ratio of 4. The other finite element mesh is composed

of 1200 elements with 1638 nodes and 4914 degrees of freedom, this mesh models
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the elliptical hole with the aspect ratio of 10. It is important to point out that the
boundary element meshes coincide with the finite element meshes along the surface

of the elliptical hole.

All the elements used are flat rectangular elements. The displacement and the
traction variations over an element are assumed to be constant. The cross section
of the elliptical hole is modeled by 40 elements with different widths. In the case
involving 336 elements, the mesh for modeling the cross section is locally refined.

Two of the biggest elements on both sides of the ellipse are subdivided with five

fine elements, respectively.

FIGURE 5.2 Local Refinement Of Elements

The thickness of the hole is modeled by 7 layers of of elements. The thick-
nesses of the layers are 0.1h, 0.1h, 0.2h, 0.2h, 0.2k, 0.1k, and 0.1h. Because of the

limitation of the computational time, only P = 10 is used in all these mesh schemes.
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Four groups (Group A, B, C, and D) of internal points are used to examine the
displacement field inside the plate. For the elliptical hole with the axial ratio of 10,

only two groups (Group A and Group B) of internal points are used.

Group A contains 48 internal points, and the points are equally divided, and
they are placed in three arrays at three different depths along the extension of the
magjor axis of the ellipse. The first array contains 16 points and it is located in
the element nodal plane of the first layer, the depth of which is: 3 = 0.95h; the
second array contains the same number of points and its depth is 0.75h, apd the
third array of points is located in the mid-plane of the plate. The positions of the
points in an array in the z; direction are: x; = 0.51h, 0.53h, 0.55h, 0.57h, 0.59A,

0.63h, 0.73h, 0.83h, 0.93Ah, 1.0%, 1.2k, 1.4h, 1.6k, 1.8h, and 2.0h.

Group B has 55 internal points, and these points are placed in five lines through
the thickness. These lines are parallel to one another, and they are placed along the
extension of the major axis of the ellipse. The positions of the lines are: z, = 0 and
x; = 0.51h, 0.53h, 0.73h, 1.0, 1.6h. The displacements are evaluated at 11 points
in each line. The first and the last points at both ends of the lines are: z3 = 0.03h
and 0.97h for the first and the second lines; and z3 = 0 and z3 = 1.0Ah for the rest

three lines.

Group C also contains 48 internal points. Contrast to the Group A points,
these points are placed in three arrays along the extension of the minor axis of
the elliptical hole. All the arrays contain the same number of points, and they are
located at the same depths as those placed along the major axis, respectively. The
positions of the points in an array in the x5 direction are: z; = 0.13h, 0.15h, 0.17h,

0.19h. 0.21h, 0.23h, 0.26h, 0.45h, 0.64h, 0.83Ah, 1.0k, 1.2h, 1.4h, 1.6k, 1.8k, 2.0A.
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Group D has also 55 internal points. Similar to the Group B points, these
points are placed in five lines through the thickness. The lines are parallel to one
another, and they are placed along the extension of the minor axis of the ellipse.
The positions of the lines are: ; = 0 and zo = 0.13k, 0.15k, 0.45h, 1.0A, and 1.6A.

The positions of the points in each line are the same as those of the Group B points.

For the elliptical hole with the aspect ratio of 4, the internal points in the
Group A, B, C, and D are used in the mesh with 280 elements; only the Group A,
C, and D points are used in the mesh with 336 elements. For the elliptical hole

with the aspect ratio of 10, the internal points in the Group A and B are used.

Figure 5.3, 5.4 show the meshes and the internal points for the elliptical hole
with the aspect ratio of 4. Figure 5.5 shows the mesh and the internal points for

the elliptical hole with the aspect ratio of 10.
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5.3 Modeling Of Elliptical-Hole Problem For FEA

Similar to the circular hole problem, only one eighth of the truncated plate is
modeled for the finite element analysis. By analyzing the two-dimensional plane-
stress solution of the pressurized elliptical hole problem, when the remote surface
is chosen to be at the radius of about 20 times the thickness, the stress and the
displacement at the remote surface are of the order of O(107%), and O(1072). It is
then assumed based on the above facts that the traction-free boundary conditions
can be applied on the remote surface. The schematic of the finite element model is
shown in Figure 5.6. The finite element meshes for both elliptical holes are shown

in Figures 5.7, 5.8, 5.9, and 5.10.

FIGURE 5.6 Model For Finite Element Analysis

The boundary conditions for the finite element model are:

1) us = 0 at the nodal points on the z1—z3 plane;
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u; = 0 at the nodal points on the zo—23 plane;

3) us = 0 at the nodal points on the z;-z; plane;

4) t; =t = t3 = 0 at the nodal points on the top surface of the plate;
5) specified traction boundary condition on the elliptical hole surface;
6) traction-free boundary condition of the truncated cylindrical surface.

All the elements are placed evenly in five element layers. The thicknesses of the
layers from the midplane to the top of the plate are 0.1h, 0.15%, 0.15h, 0.05%, and
0.05h. The elliptical hole with the aspect ratio of 4 is modeled by 1045 elements
with 1440 nodes, and the other elliptical hole is modeled by 1200 elements with 1638
nodes. Each nodes have six degrees of freedom, in which three degrees of freedom

are specified.

5.4 Results And Discussions

In this section, the results of the proposed BEM are presented. These results
are compared with the finite element results. In addition, all numerical results are
compared with the plane-stress and plane-strain approximations of the problems.
By including comparisons of the three-dimensional results with the two-dimensional
approximations, the regions at the vicinity of the elliptical hole, where the three-
dimensional effects dominate, can be identified. Furthermore, the two-dimensional

idealizations will be proved to be inadequate in this region.
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The results are summarized in Figures 5.11 through 5.48. When the displace-
ments are computed at the Group A points, the normalized displacements u; and
ug are plotted versus the normalized distance z1; when the displacements are com-
puted at the Group C points, the normalized displacements uy and usz are plotted
against the normalized distance x; finally, when the displacements are computed
at the points in Group C and D, the normalized displacements u;, us and us are

displayed with respect to the normalized depth z3.

The tips of the ellipse are located at y/h = £0.5, o =0 and 0 < z3/h < 1.0.
For the same reason as in the pressurized circular hole problem, the Young’s modulus

E and the Poisson’s ratio are taken to be 1 and 0.3.

Call the pressurized elliptical hole problem with the aspect ratio of 4 problem
one:; call the pressurized elliptical hole problem with the axial ratio of 10 problem

two.

5.4.1 Results Of In-Plane Displacements For Problem One

The in-plane displacements do not show strong three-dimensional signs as com-
pared to the out-of-plane displacement. The results of the displacement u; com-
puted at different cross sections of the plate (nodal surface 0.95h, three quarter
surface 0.75h, and midplane 0.5h) along the a2y direction are shown in Figures 5.11,
5.12 and 53.13; the results of the displacement u, evaluated at the same cross sections
along the x5 direction are show in figures 5.19, 5.20, 5.21. The numerical results
obtained from both the modified BEM and the FEM are in fairly good agreement,
and theyv are situated between the plane-stress and the plane-strain solutions with

the plane-stress solution acting as the lower limit of the three-dimensional solutions.
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FIGURE 5.11 Normalized Displacement u; vs. Normalized Distance z;; Results
Obtained In Element Nodal Plane Of First Layer.
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FIGURE 5.12 Normalized Displacement u; vs. Normalized Distance z;; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.
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FIGURE 5.13 Normalized Displacement w; vs. Normalized Distance z;; Results

Obtained In Median Plane Of Plate.

The BEM results of the displacement u; along the z; direction shows better
agreement with the plane-stress solution. Because of the finite thickness of the
plate, and the fact that the dimensions of the elliptical hole are comparable to
the thickness of the plate, the displacements will not be close to the plane-strain
solution unless it is observed very close to the surface of the elliptical hole and near
the midplane of the plate. Figure 5.14 and 5.15 show the strain €33 and stress ratio
o33/(v(o11 + 022)) along the @ direction obtained by the FEM, respectively. Both
figures show that the plane-strain conditions can not be satisfied anywhere along

the x; direction.

However, Figure 5.16 shows that o33 approaches zero very quickly. o33 ap-
proaches zero at about half the plate thickness away from the surface of the hole,
and it remains zero afterwards. Figure 5.17 and 5.18 show that the stress compo-

nents oy; and o9, are independent of x3 when the distance to the surface of the
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hole is larger than about 3/4 of the plate thickness. Therefore, the plane-stress
conditions are better satisfied, and the three-dimensional solution is expected to be
closer to the plane-stress solution. These stress variations along the z; direction

are obtained from the FEM.

2.0 T ) Y 1 T
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FIGURE 5.16 Normalized Stress o33 vs. Normalized Distance z1; Results Obtained
From FEM.

Figures 5.11 through 5.21 show that, as the cross section on which the displace-
ment is computed moves towards the midplane of the plate, the displacement u;
along the x; direction obtained from both the BEM and the FEM approaches to
the plane-stress solution. At the tips of the ellipse, by close observation, the results

have a tendency to approach the plane-strain solution.

In the z» direction however, when the displacement u, is computed at the

Group C points, the BE and FE results of the displacement variations of uy with
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FIGURE 5.19 Normalized Displacement u; vs. Normalized Distance z3; Results
Obtained In Element Nodal Plane Of First Layer.
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FIGURE 5.20 Normalized Displacement us vs. Normalized Distance z,; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.
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FIGURE 5.21 Normalized Displacement u; vs. Normalized Distance z2; Results
Obtained In Median Plane Of Plate.

respect to xy gets closer to the plane-strain solution as the arrays approach the

midplane of the plate. This effect is shown in Figures 5.19, 5.20 and 5.21.

Away from the elliptical hole, the three-dimensional solutions of the displace-
ments 1y and us are expected to converge to the plane-stress solution. It shows in
Figures 5.11 through 5.21 that the displacement components u; and u, obtained
from both the proposed BEM and the FEM approach the plane-stress solution. It
also shows clearly that the BEM results of the displacements u; and uy have better
agreement to the plane-stress solution away from the elliptical hole than the FEM
results. The figures also show that the plane-strain solution gets closer and closer
to the plane-stress solution as the distance from the surface of the elliptical hole

increases. However, the two solutions can never be the same.
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5.4.2 Results Of Out-Of-Plane Displacement For Problem One

Figures 5.22 through 5.25 show the variations of the normalized displacement
uz with respect to the normalized distance z; and x4, respectively. The agreement
between the proposed BEM and the FEM is excellent. It can be seen from the
Figures 5.22, 5.23 that the deviation of the three-dimensional numerical results
from the two-dimensional plane-stress predictions is dramatic. This deviation is
noticeable up to a distance of 0.5k from the tip of the ellipse at the nodal surface, and
0.4h from the tip of the ellipse at the plane 3/4 thicknesses from the lower surface
of the plate. This observation is consistent with the analytical, numerical and
experimental investigations of the three-dimensional effects near a crack obtained
by Yang & Freund [44], Rosakis & Ravichandar [45]. As expected, u3 is identically

zero at the midplane.

-30 L L] T L]

———————  2-D PLANE-STRESS SOLUTION
——————— 2-D PLANE-STRAIN SOLUTION

————————— 280 ELMTS, 40 ELMTS/LAYER, 7 LAYERS, 10
----- ~——- 336 ELMTS, 48 ELMTS/LAYER, 7 LAYERS, 10

AS 1045 ELMTS, 1440 NODES, 4320 DOFS, FEA ]

U3/ (PH/E)
8

U3(min) = -=0.81

_'30 1 Fl 1 L
.0 .5 1.0 1.5 2.0 2.5

Xi/H

FIGURE 5.22 Normalized Displacement uz vs. Normalized Distance z; Results
Obtained In Element Nodal Plane Of First Layer.
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FIGURE 5.23 Normalized Displacement us vs. Normalized Distance z1; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.

The plane-stress predictions of uz are false near the surface of the hole in the
sense that it over-predicts the out-of-plane displacement uz. This over-prediction of
us is caused by the plane-stress assumption o33 = 0. The FEM results in Figure 5.16
show that o33 does not vanish near the surface of the hole, and 1t presents the feature
of stress concentration near the hole. o33 is relatively large (o33/(Ph/E) = 1.5)
near the midplane of the plate as compared to o33 near the surface of the plate
(033/(Ph/E) = 0.8). o33 rapidly decreases to almost zero at a distance of half
the plate thickness. The physical meaning of the three-dimensional results can be
explained as follows. The applied pressure has the tendency to deform the ellipse
towards a circle. The tips of the ellipse are stretched by this effect, and thus, the
thickness of the plate at the tips of the ellipse decreases. In the plane-stress solution,
the stress o33 is zero, therefore, the two-dimensional plane-stress solution will be

significantly more out-of-plane displacement in uz than that of the three-dimensional
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result. In addition, near the tips of the ellipse, o33 has a fairly large positive value,
which reduces the displacement uz more significantly near the surface of the hole
than elsewhere. This is the reason that a magnitude decrease in the displacement
u3 is presented near the surface of the elliptical hole. This feature does not appear
in the pressurized circular hole problem because of the two-dimensional nature of

the problem, in which the actual stress o33 1s identically zero.
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FIGURE 5.24 Normalized Displacement uz vs. Normalized Distance zg; Results
Obtained In Element Nodal Plane Of First Layer.

Figure 5.24 displays the normalized u3 versus normalized x5, and some discrep-
ancy between the proposed BEM and the FEM is noticeable. This discrepancy is
due to the use of large elements on the flatter sides of the ellipse. After local mesh
refinement, Figure 5.2, the result with 336 elements in Figure 5.24 shows much
improvement. It will be shown in the later discussion that, in the z4 direction, the

thickness variation of uz improves very significantly after local mesh refinement as
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FIGURE 5.25 Normalized Displacement u3 vs. Normalized Distance zz; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.

well. It is expected that the BEM results will converge to the FEM results after

further refinement on the meshes for both methods.

The three-dimensional effect in the 25 direction near the surface of the elliptical
hole 1s confined to within a distance of 0.3h at the nodal plane, and to within a
distance of 0.25h at the plane 3/4 thicknesses from the lower surface of the plate.

uz is identically zero at the midplane of the plate.
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5.4.3 Results Of Displacement Variations Through Thickness

For Problem One

The thickness variations of the displacement u; along the z; direction are shown
in Figures 5.26 through 5.28. Again, the numerical solutions are situated in between
the plane-stress and the plane-strain solutions. The two features worth mentioning
are: a) the thickness variation of the numerical results are not horizontal straight
lines anymore. This feature indicates the three-dimensionality of the problem; b) it
can be seen from Figures 5.26 through 5.28 that the numerical solutions approach
the plane-stress solutions as the distance to the surface of the hole increases. It
can also be seen from these figures that the BEM results converge to the plane-
stress solutions faster than the FEM results as the distance to the surface of the
hole increases. In Figure 5.28, the scale for the vertical axis is changed in order
to explore the detailed features of the thickness variation of u; relatively far away

from the elliptical hole surface.

Some interesting features are presented in the thickness variations of the dis-
placement u» in the direction 5. It can be seen from Figure 5.29 that the displace-
ment u, obtained by the proposed BEM using 280 elements deviates from the FEM
result. The deviation is most noticeable when the displacement us 1s computed near
both surface of the hole and the surface of the plate. After mesh local refinement,
the result improves very significantly as compared with the FEM results. The two
features discussed in the thickness variations of u; are also applicable here. The
apparent slope discontinuity in the BEM solution are due to the use of relatively

large elements along the flatter sides of the ellipse.

Figures 5.29 through 5.31 also show that the points near the two surfaces of

the plate displace more in the 29 direction than the ones near the midplane of the
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FIGURE 5.26 Normalized Displacement u; vs. Normalized Distance z3; Results
Obtained Along Line Positioned At z; = 0.51h, o = 0.00.
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Obtained Along Line Positioned At zy = 0.73h, z, = 0.00.
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FIGURE 5.29 Normalized Displacement w, vs. Normalized Distance z3; Results

Obtained Along Line Positioned At z; = 0.00, z = 0.15h.



U2/ (PH/E)

-152-

2-D PLANE-STRESS SOLUTION
——————— 2-D PLANE-STRAIN SOLUTION
————————— 280 ELMTS, 40 ELMTS/LAYER, 7 LAYERS, 10
----------- 336 ELMTS, 48 ELMTS/LAYER, 7 LAYERS, 10
—————————— 1045 ELMTS, 1440 NODES, 4320 DOFS, FEA

X3/H

FIGURE 5.30 Normalized Displacement us vs. Normalized Distance z3;

u2/(PH/E)

FIGURE 5.31 Normalized Displacement u, vs.

.5

Obtained Along Line Positioned At x; = 0.00, x5 = 0.45h.

1.0

Results

T L] T T

2-D PLANE-STRESS SOLUTION

——————— 280 ELEMENTS ( 40 ELEMENTS PER LAYER, 10 )
_________ 336 ELEMENTS ( 48 ELEMENTS PER LAYER, 10 )
——————————— 1045 ELEMENTS, 1440 NODES, 4320 DOFS, FEA
SRS 1045 ELMTS, 1440 NODES, 4320 DOFS, FEA

X3/H

Obtained Along Line Positioned At z; = 0.00, z, = 1.60h.

1.0

Normalized Distance z3; Results



-153-
plate. This phenomenon is due to the constraint difference for points in the plate.
There is less constraint to the points near the free surface of the plate than to those
near the midplane of the plate. It is easier for a point near the surfaces of the
plate to deform in the z3 direction than the one near the midplane. Because of the
Poisson’s effect, the points near the surfaces of the plate can displace more in the
xo direction than those near the midplane of the plate. The above argument can
be applied to explain why, at the tips of the ellipse, the displacement u; deforms

less near the free surface than near the midplane.

The most interesting features lies in the thickness variations of uz. As rshown
in the out-of-plane displacement, the three-dimensional effects are expected to be
strongly demonstrated. The thickness variations of ug at different distances from
the tip of the ellipse along the z; direction are shown in Figures 5.32 through 5.34.
The thickness variations of wuz along the zo direction are shown in Figures 5.35
through 5.37. The numerical results of the thickness variations from the proposed

BEM agree very well with those from the FEM.

Figure 5.32 shows that, at points close to the tip (0.01h), usz varies rather uni-
formly through the thickness and deviates from zero only when the points are close
to the plate surfaces. wj varies anti-symmetrically with respect to the midplane.
The BEM results and the FEM results are in very good agreement. Figures 5.33
and 5.34 show that the three-dimensional results of the thickness variations of uj
approach the plane-stress solution, which is linear in z3 as the distance to the sur-
face of the elliptical hole increases. It can also be seen that the three-dimensional
results fall on top of the plane-stress solution at a distance of about half the plate
thickness away from the elliptical hole surface. Further away from the elliptical hole,

uy varies very little throughout the thickness, and the value of u3 of all the solutions
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FIGURE 5.34 Normalized Displacement usz vs. Normalized Distance z3; Results

Obtained Along Line Positioned At x; = 1.00Ah, z, = 0.00.

generally reduces to zero as the distance to the surface of the hole increases.

Because of the use of the large elements on the flatter sides of the ellipse in the
mesh with 280 elements, u3 in Figure 5.35 obtained by the proposed BEM shows
some deviation from the FEM result when wuz is computed near the surfaces of
the plate. By local mesh refinement and the use of 336 elements in the mesh, u3
improves very much, and it is almost the same as the FEM result. There is very
little three-dimensional effect in the z, direction. The numerical results quickly

converge to the plane-stress solution in this case.
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FIGURE 5.36 Normalized Displacement u3 vs. Normalized Distance x3; Results
Obtained Along Line Positioned At z; = 0.00, x5 = 0.45h.
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FIGURE 5.37 Normalized Displacement u3 vs. Normalized Distance x3; Results
Obtained Along Line Positioned At x; = 0.00, z2 = 1.60h.

5.4.4 Results Of In-Plane Displacements For Problem Two

The accuracy and the physical meaning of the solution for problem one has been
established in the last section. The proposed BEM gives good results compared to
those given by the FEM. The goal of this section is to examine how the different

aspect ratios affect the displacement fields.

In problem two, only the displacements at the points in the Group A and B are
investigated since large stress concentration is expected near the tips of the ellipse.
As established in problem one, the three-dimensional effects present strongly near

the tips of the elliptical hole.

Figures 5.38, 5.39, and 5.40 show that the results of the displacement compo-
nent u; along the 21 direction. The variation of u; in problem two is quantitatively

similar to that of problem one. However, in problem two, the discrepancy between
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FIGURE 5.39 Normalized Displacement u; vs. Normalized Distance zy; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.
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FIGURE 5.40 Normalized Displacement u; vs. Normalized Distance zj; Results
Obtained In Median Plane Of Plate.

the BEM results and the FEM results is much smaller than that shown in Figures
5.11, 5.12, 5.13 of problem one. The convergence of the BEM and FEM results
is caused by the use of small elements near the tips of the elliptical hole for both
methods. Since the stress concentration of the in-plane stress components is high
near the tips of the ellipse, and the elements used in the proposed BEM are constant
elements, the use of small elements near the tips of the ellipse seems to cut down

the discretization error considerably.

Figures 5.38, 5.39, 5.40 also show that both numerical results are closer to the
plane-stress solution. The agreement is very good between the proposed BEM solu-
tions and the FEM solutions. Although the three-dimensional effect in the in-plane
displacement wu; is very weak compared with that in the out-of-plane displacement
us, Figures 5.38, 5.39, 5.40 still show that the three-dimensional effects are mainly

presented within a distance about half the plate thickness from the surface of the
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5.4.5 Results Of Out-Of-Plane Displacement For Problem Two

.3

FIGURE 5

—————— 2-D PLANE-STRESS SOLUTION
——————— 2-D PLANE-STRAIN SOLUTION

R — 280 ELMTS, 40 ELMTS/LAYER, 7 LAYERS, 10 7
----------- 1200 ELMTS, 1638 NODES, 4914 DOFS, FEA

.0

Xi/H

.41 Normalized Displacement uz vs. Normalized Distance z;; Results

Obtained In Element Nodal Plane Of First Layer.

Excellent agreement has been obtained between the proposed BEM solutions

and the FEM solutions in the out-of-plane displacement us along the z; direction.

Figures 5.41 and 5.42 show the similar strong three-dimensional effect in the

out-of-plane displacement uz along xry direction. Compared with the thickness vari-

ations of uz shown in Figures 5.22 and 5.23, u3 in this case presents more reduction

in the displacement near the surface of the hole, and the region of the displacement

reduction is relatively larger than that shown in the ellipse with the aspect ratio of

4. This feature is caused by the higher stress concentration in o33.
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FIGURE 5.42 Normalized Displacement uz vs. Normalized Distance z;; Results
Obtained At Depth Three Quarters From Lower Surface Of Plate.

It is very interesting to notice that the displacement us from the plane-stress
solutions to both problems are almost the same. The numerical solutions of u3
to both problems are very close except the difference near the surface of the hole.
The size of the three-dimensional zone stays almost unchanged. At the nodal plane
(0.95h), the size of the three-dimensional zone is about 0.5k; the size of the three-
dimensional zone at the plane 0.75h from the lower surface is about 0.4h. At the

midplane of the plate, us is identically zero as assumed.
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5.4.6 Results Of Displacement Variations Through Thickness

For Problem Two

The thickness variations of the displacement u; at different distances are shown
in Figures 5.43 through 5.45. The curved lines demonstrate the three-dimensional
effect of the problem. The numerical solutions of both the BEM and the FEM
are bounded by the plane-strain and the plane-stress solutions. w; presents less
displacement near the free surfaces of the plate than near the midplane. As the
points are placed far away from the surface, the difference between the solutions
of u; from both the proposed BEM and the FEM becomes very small, and the

numerical solutions agree with the plane-stress solution well.

Compare the results of u; thickness variations of problem two, shown in Figures
5.43. 5.44 and 5.45, with those of problem one, displayed in Figures 5.26, 5.27 and
5.28. it can be seen that the BEM results are closer to the FEM results in problem
two than in problem one. The results from both methods converge better in problem
two than in problem one because of the local mesh refinement used in problem two.
The relatively large curvatures presented in the BEM and the results in Figure
5.43 compared with those in Figure 5.26 suggest that the three-dimensional effect
is stronger in problem two near the surface of the hole and the surfaces of the plate
than in problem one. In the same two figures, the plane-stress solutions and the

plane-strain solutions do not change much for both problems.

Consider the thickness variations of the out-of-plane displacement uz in the z;
direction. Similar to problem one, the solutions in uz of the proposed BEM displays
excellent agreement with those of FEM. The strongest three-dimensional effect in
this problem is still presented in the out-of-plane displacement uz. The displace-

ment u3 has the same patterns of variations through the thickness of the plate. It
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Obtained Along Line Positioned At @1 = 0.51A, zo = 0.00.
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Obtained Along Line Positioned At 27 = 0.73h, zo = 0.00.
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FIGURE 5.45 Normalized Displacement u; vs. Normalized Distance z3; Results
Obtained Along Line Positioned At zy = 1.60h, x5 = 0.00.

is interesting to notice in Figures 5.32 and 5.46 that, although the plane-stress solu-
tions of ug in problem one and two differ noticeably, the three-dimensional solutions
for both problems have little difference. As the internal points through thickness are
placed farther away from the surface of the hole, the numerical solutions approach

the plane-stress solutions and become linear in x3.

5.5 Conclusions

Two pressurized elliptical hole problems have been studied in this chapter. The
results obtained from both the BEM and the FEM are in very good agreement. All
the displacement components obtained from both the BEM and FEM converge to
the plane-stress solutions when they are computed several plate thicknesses away

from the elliptical hole surface. One very interesting aspect is that the BEM results,
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FIGURE 5.48 Normalized Displacement w3 vs. Normalized Distance z3; Results
Obtained Along Line Positioned At 21 = 1.00h, z, = 0.00.

particularly w; and wq, are closer to the plane-stress solutions than their FEM
counterparts when they are obtained several plate thicknesses away from the surface

of the hole.

It is very important to notice that the local mesh refinement improves the
results considerably. This aspect is shown thoroughly in problem one. The local
mesh refinement on the flatter sides of the ellipse does not affect the results near
the tips much. This observation makes it possible to use relatively large elements
on the flatter sides of the ellipse, and refine the elements near the tips without
changing the total number of elements. The results of problem two agree with the
FEM results better than those of problem one. This is attributed to the local mesh

refinement on both methods.

The study of these problems show that w; and uy do not differ from the plane-
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stress and plane-strain solutions as much as uz does. The variations of u; with
respect to @; agree better with the plane-stress solution than the plane-strain so-
lution. In the region near the surface of the hole (0.5h < z; < h), the results for
uy differ from both the plane-stress and plane-strain solutions due to the three-
dimensional effects. However, on the flatter sides of the ellipse, the variations of
uy with respect to xo agree better with the plane-stress solution when they are
evaluated near the surfaces of the plate. On the other hand, us thickness variations
approach the plane-strain solution when they are computed closer to the midplane
of the plate. As smaller elements are used in the meshes for both the BEM and
the FEM in problem two, the agreement between the BEM and the FEM results
in the u; versus z; variations improve very much as compared to those shown in
problem one. When the displacements u; and w, are computed far away from the
surface of the elliptical hole, in both problems, the BEM results demonstrate better

agreement with the plane-stress solution than the FEM results.

The numerical results obtained by the BEM and the FEM show that the uj
versus a; variations for both problems are almost the same except in the region
within about 0.2k from the surface of the hole. In this region, the results of prob-
lem two show more displacement reduction in vz than in problem one, which sug-
gests the presence of higher stress concentration in problem two. The sizes of the
three-dimensional zones have almost no difference for the two problems. In the z-
direction, the three-dimensional zone at the depth of 0.95% is about 0.5k, and the
three-dimensional zone size is about 0.4 at the depth 0.75h. On the other hand,
in the a,-direction, the sizes of the three-dimensional zones are about 0.34 at the

depth of 0.95h and about 0.25h at the depth of 0.75%, respectively.

The thickness variations of u; in the x; direction show that a stronger three-
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dimensional effect is presented in problem two near the tips of the ellipse than in
problem one. However, in both problems, the thickness variations of uz in the
@y direction obtained by the BEM and the FEM are almost the same despite the

difference in the plane-stress solutions.

All these test problems may not be the best examples to show the time ad-
vantage of the modified BEM, since in these cases the FEM takes advantage of the
symmetry while the modified BEM does not. As a matter of fact, in some case, the
modified BEM is much slower (about 120 times slower) than the FEM in dealing
with these test problems. The major strength of the modified BEM lies in ana-
lyzing problems with no symmetry in both loading and geometry, furthermore, the
problems may involve complicated geometry. In these problems, it is a painstaking
process for using the FEM. One of the reasouns is that it is difficult for FEM to model
the problems and to remodel them if the changes do occur. The major obstacle in
using the FEM to study this type of problems is that, in stead of modeling only
one eighth of a problem, the FEM has to model the entire problem. Thus, the total
number of unknowns will increase eight times; the bandwidth of the final stiffness
matrix may increase at least eight times. Since the computational time for the FEM
is approximately proportional to nm?, where n is the number of unknowns and m
is the bandwidth. Hence, for problems with no symmetry, the total computational
time consumed by the FEM would increase at least 512 times. This makes the FEM

inferior compared to the modified BEM in dealing with this type of problems.
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5.6 Future Work

Although much has been accomplished in this primary study, much future
development is still needed. In addition, future development will concentrate on
stress calculations. The major goal of these calculations is to compute the first order
derivatives of the stress and displacement components of the fundamental solution
of the infinite plate problem and to implement these results in the boundary element

code. A lot of work in this area has already been done by the author.

Another part that needs development is the implementation of the modified
boundary element method using a parallel computer. In any boundary element
method. a boundary integral equation is obtained by applying a concentrated load
at a node, and then computing the components of the 3 x 3 submatrices [G;]
and [If ;] for each element. These submatrices can be computed independently for
different loading points. The use of a parallel computer can take great advantage
of this characteristic of the boundary element method. As a result, the computing

speed for a problem can be improved tremendously.

Finally, future work can be directed towards the development and the use of
higher order elements, such as bi-linear elements. In this area, several questions
have to be addressed. The most obvious one is related to the close-form evaluation
of integrals. similar to the ones presented in Chapter Three, involving both Kelvin’s
solution and the bi-linear function. When such bi-linear elements are used, the nodes
are sometimes placed on the two planar surfaces of the plate. In such cases, when
the nodes on the plate surfaces are encountered, the three-dimensional half-space
solution may have to be used to replace Kelvin’s solution in the proposed procedure.
This is a major difference between the use of constant elements and the use of the

bi-linear elements. It should be noted that, in the case of constant elements, the
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nodes are never placed on the two planar surfaces. In addition, the corner problems
will be introduced because of the use of bi-linear elements. It is indeed a challenging
task to deal with three-dimensional corner and edge problems. Chaudonneret [46]
and later Mustoe [47] proposed methods for analyzing such corner problems in two-
dimensions. Banerjee and Butterfield [1] extended Chaudonneret’s procedure to

deal with three-dimensional corner and edge problems.

Although this study has been focused on the development of the modified
boundary method, it should be pointed out that many engineering problems can
be explored by this method. One class of such problems is the multiple domain
problems. These are problems involving plates of different materials and thicknesses.
The most attractive aspect of this method is that it can be efficiently applied to
the analysis of interaction problems in plates containing holes, voids and cracks.
However. this method is not restricted to problems involving plate structures. It
can deal with any problem with two or more planar surfaces. A connecting rod
problem is one of many engineering examples. Indeed, the potential uses of this

method include a multitude of engineering applications.
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CHAPTER 6

APPENDIX

In this appendix, the formulas of the analytical integration of the integrals of

the following form
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