ROBUST ADAPTIVE CONTROL OF MANIPULATORS
WITH APPLICATION TO JOINT FLEXIBILITY

Thesis by
Ho-Hoon Lee

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California 91125

1992

(Submitted September 19, 1991)



il

© 1992
Ho-Hoon Lee
All Rights Reserved



iii

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my advisor, Professor Fred E. C.
Culick for his most valuable guidance, encouragement, and patience during my
stay at Caltech. I would also like to thank Professors Joel Burdick, Thomas
Caughey, and Athanasios Sideris, and Dr. Homayoun Seraji for their review and
constructive criticisms of this research. I am thankful to Professor James Knowles
for his excellent class and helpful discussions.

I am grateful to my colleagues Albert Moser, Eliot Fried, Mark Lusk, Carl
Ruoff, Beth McKenney, Wen-Jean Hsueh, Ralph Aldredge, and I-Ming Chen for
their friendship and helpful discussions. In addition, I am indebted to Min-Kun
Chung at JPL for his help on innumerable occasions with computers. My thanks
also go to Dorothy Eckerman for her support and help.

The research described in this thesis has been funded by JPL/Caltech Direc-
tor’s Discretionary Funds. This support is gratefully acknowledged. I would also
like to thank Caltech for the teaching assistantships and POSCO for its financial
support, which have facilitated my stay.

Finally, I thank all my family members for steadfast loving support and
encouragement for higher education in the face of repeated family tragedies. I
dedicate this thesis to the memories of my mother, Jai-Ok Park, and my brother,
Kwan-Hoon Lee. Their invaluable love and sacrifice have made completion of this

research possible.



iv

ABSTRACT

This thesis discusses the model-based adaptive trajectory control of com-
mercial manipulators whose dynamics are well known with uncertainties confined
to parameters.

This thesis emphasizes the importance of the transient behavior as well as ro-
bust stability of a system and takes it into account in the design of adaptive control
laws. The basic idea is to search for compensators in the direction of minimizing
a quadratic performance index, and then analyze the stability and robustness of
the selected compensators in the presence of bounded disturbances, sensor noises,
and unmodelled dynamics. With this idea, centralized and decentralized adap-
tive control schemes are proposed for rigid-joint manipulators. Stability bounds
for disturbances, control and adaptation gains, and desired trajectories and their
time-derivatives are derived for the proposed schemes. These bounds are suffi-
cient conditions for robust stability of the proposed schemes in the presence of
unmodelled dynamics such as feedback delays in the digital control systems and
the coupled dynamics in the decentralized scheme.

A flexibility compensator is designed to treat the problem of joint flexibility.
With the flexibility compensator, a manipulator having flexible joints is trans-
formed to that having rigid joints with high-frequency dynamics of joint couplings
representing unmodelled dynamics. In this way, control of flexible-joint manipu-
lators is converted to that of the corresponding rigid-joint manipulators. Accord-
ingly, the robust adaptive control schemes proposed for rigid-joint manipulators
are applied. Then, through stability analysis, stability bounds for disturbances,
control and adaptation gains, and desired trajectories and their time-derivatives
are derived for the scheme with the flexibility compensator, in the presence of

the unmodelled dynamics. Under the constraint of these bounds, the proposed
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adaptive scheme is not only almost independent of the gear-reduction ratios, flex-
ibilities of joint couplings, and characteristics of actuators, but also free from the

requirements of measuring angular accelerations and jerks of links.
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Chapter 1

INTRODUCTION

1.1 Overview

Through science-fiction and cartoon films, robots have been recognized as
fancy mechanical super-humans in our deep dream and imagination. Our ability
and desire to do research have been continuously stimulated by this dream and the
grand expectation of constructing mechanical counterparts of ourselves. However,
our dream is far beyond reality. Our technology is still in its infancy. Today’s
robots are only numerically controlled mechanical manipulators with simple hands
or end-effectors for grasping objects.

The first commercial robots were produced by Unimation Inc. in 1959. Since
then, various commercial robots have been manufactured. Research and develop-
ments in robotics have been led mainly by social and industrial needs. Demand
for high wages and necessity for cost reduction have motivated application of
robots. Needs for improvement in quality and productivity have led to investment
in robots. Indeed, robots are closely related to industry. In most applications,
they are installed firmly to one place and commanded by computers to do some
useful work. This may range from simple pick and place operations to motions
such as welding along predetermined paths. Hence, robots can be defined as re-
programmable multifunctional manipulators, designed to perform some physical
tasks on the environment through some preprogrammed motions.

Today’s robots are far from the wonderful machines of science-fiction. How-
ever, our dream will eventually come into reality while we try to improve each
function of robots little by little. Since our ultimate goal is to fabricate mechan-

ical super humans, robotics has diverse related fields: kinematics, dynamics, de-
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sign, path planning, trajectory control, force control, control language, redundant
robots, mobile robots, computer vision, neural network, etc.

Among these fields, this thesis addresses trajectory control. The objective
of this is to make a robot to follow as closely as possible any desired trajectory
through space in spite of uncertain payloads and highly nonlinear and coupled
dynamics. This objective is always limited by various factors: inertia of links, mass
of payloads, torque and power capacity of actuators, amplifier capacity, sensor
accuracy, characteristics of the control law, sampling time, computation speed,
and so on. The characteristics of the control law may in particular be dominant
factors for control performance. The desired trajectories are always planned within
the capacities of actuators and amplifiers. Nowadays, reasonably good position,
velocity, and torque sensors are also available. Recently, computers have become
enormously more powerful, and progress continues. New DSP chips have already
provided 20 MFLOPS (Million Floating Point Operations Per Second). Hence it
is quite feasible to use a full dynamic model in the controller.

This thesis focuses on the model-based trajectory control of commercial ma-
nipulators whose dynamics are well known with uncertainties confined to param-
eters. This thesis deals mainly with these classes of practical problems: (1), the
design of high performance control laws for rigid-joint manipulators; (2), tra-
jectory control of manipulators having flexible joint couplings and possibly high
gear-reduction ratios between the links and the actuators; and (3), the robust-
ness of proposed adaptive schemes in the presence of bounded disturbances and
unmodelled dynamics such as high-frequency dynamics of flexible joints, feedback
delays in the digital control systems, and the coupled dynamics for the decoupled
joint control laws. In our discussion we will use the terms “joint flexibility” and

“flexible joint” for the flexibility which exists in power transmission mechanism.

1.2 Background and Motivation of This Thesis
1.2.1 Control of Rigid-Joint Manipulators

The productivity of a robot may be measured in connection with the envi-
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ronment on which it works. A robot very often operates in a dynamic environment
such as assembly lines. Sometimes several robots join to accomplish a complex
task. In these circumstances, coordinated motion is critical. As a result, the pro-
ductivity of a robot may be evaluated by how fast it can move and how accurately
it can follow a given trajectory. Industrial robots run with very simple controllers
such as PD or PID feedback compensators. The performance of these systems
are not always satisfactory for applications which require precise tracking of fast
trajectories. As the motion of a robot becomes faster, the performance gets worse.
A major reason is that the simple feedback compensators cannot take care of all
the high nonlinearities and coupling effects contained in robot dynamics. Con-
sequently, these expensive machines have probably not been utilized to their full
potential in terms of speed and accuracy of tracking.

To improve performance, the computed torque method[1.1-1.4] was pro-
posed. This is based on a well-established dynamic model for rigid-link rigid-joint
manipulators. Theoretically, this method allows us to compensate for complicated
coupling effects and nonlinearities such as centrifugal forces, Coriolis forces, grav-
ity, and friction damping. However, this method was found to be sensitive to the
uncertainties in the parameters associated with the dynamics. In other words, this
method is not robust.

As a way of improving robustness, adaptive control has been practiced in
various fields. In general, there are two basic approaches in adaptive control[1.5]:
STR (Self-Tuning Regulator[1.6-1.8]) and MRAC (Model Reference Adaptive
Control[1.9-1.14]). The design procedure of the STR consists of (i) system lin-
earization, (ii) parameter estimation for the linearized system, (iii) and design of a
control law based on the estimated parameters. The MRAC is based principally on
Lyapunov’s second method[1.10-1.12] or Popov’s hyperstability theory[1.12-1.14].
The objective is to force outputs of a plant to follow asymptotically those of a ref-
erence model using any of these stability theories. We will review both approaches
in detail in Chapter 2.

Dubowsky and DesForges[1.15,1.16] were apparently the first to introduce
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this technique to the control of robots. They used the steepest descent method|[1.9]
to derive their MRAC adaptation rule. This method requires separate stability
analysis. Since they use a linear decoupled model, their scheme is valid under
the assumption that nonlinearities and coupling effects in the robot dynamics are
quasi-time-invariant. Therefore, stability and desired performance are guaranteed
only when a robot moves slowly. Consequently, one of the primary objectives in
this field is to remove this assumption from adaptive control laws.

The design procedure of the STR is more explicit and straightforward than
that of the MRAC. Basically, this method is restricted to linear time-invariant
systems. Therefore, all the STR schemes in trajectory control of robots are stan-
dardized. Koivo et al.[1.17-1.20] employed linear time-invariant decoupled models.
They applied recursive least-square parameter estimators, and devised one-step-
ahead optimal control laws. Walters[1.21], Leininger[1.22-1.24], Backes[1.25,1.26],
and their colleagues applied the least-square estimators and pole-placement to lin-
ear decoupled time-invariant models. After estimating the parameters using the
least square method, Sundareshen and Koenig[1.27] designed a control law with
a constraint that velocity and position tracking errors must decay to zero as time
goes to infinity. Since the STR is developed based on linear time-invariant decou-
pled models and linear control theory, all the STR schemes require the assumption
of quasi-time-invariance, and they are not so satisfactory for robot control.

The design of the MRAC is more indirect and specialized than that of the
STR. This usually requires experience and intuition. The MRAC is not limited to
linear systems. It can be applied to nonlinear coupled systems and hence has great
potential. Therefore, the control community in robotics seems to favor the MRAC
techniques. Takegaki and Arimoto[1.28] applied Lyapunov’s second method to
their linear model to derive their adaptation rule. Seraji[1.29,1.30] proposed some
adaptive schemes and demonstrated some potential in adaptive control of robots
through experimentations. Oh[1.31], Gavel[1.32,1.33], and their colleagues devel-
oped decoupled feedback adaptive control laws. All these schemes use no dynamic

model of a robot in their control laws. Hence, to prove stability, they all rely on the
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assumption of quasi-time-invariance or on very high control gains. In general, high
control gains cause excitation of high-frequency unmodelled dynamics. Instead
of this assumption, Lim[1.34-1.36], Nicosia[1.37], Balestrino[1.38], Ozguner[1.39],
Pandian[1.40], and their colleagues used large chattering control signals which
switch at infinite frequency to guarantee asymptotic stability of their systems.
However, infinite-frequency signals can not be physically implemented.

Horowitz and Tomizuka[l.41] included a part of the robot dynamics in
their control law. A variant of this scheme was implemented by Anex and
Hubbard[1.42]. They still need the assumption of quasi-time-invariance. Craig et
al.[1.43,1.44] used a full dynamic model in their control law so that they removed
the assumption. However, their adaptation rule contains angular acceleration
which is difficult to access. Kabtab[1.45] made the problem even more difficult.
He modified Craig’s by adding the inverse of some non-square function matrix.
Slotine and Li[1.46-1.48] combined ideas of Craig and Arimoto[1.49] and their
colleagues so that they improved Craig’s scheme by deleting the requirement of
measuring the angular acceleration.

Lee([1.51-1.54], Choi[1.55,1.56], deSilva[1.57], and their colleagues tried a lit-
tle different approach. They compute a nominal torque along a desired trajec-
tory using Newton-Euler formulation with nominal values of parameters of the
links. They used the STR or the MRAC techniques only to compensate perturbed
torques. In this case, the assumption of quasi-time-invariance is also indispensable
to their derivations of adaptation rules.

Slotine’s scheme may be the best of the control schemes described above.
However, convergence of parameters to the true values can be guaranteed only
if a trajectory that a manipulator must follow is persistently excited. Practical
trajectories usually do not satisfy the condition of persistent excitation. Moreover,
whenever a manipulator picks up different payloads, the parameters associated
with the dynamics change. As a consequence, it is almost impossible to obtain
the true values of the parameters, causing deterioration of transient behavior, a

factor that can not be emphasized too strongly in tracking control. In fact, there
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is no analytical way of estimating the transient response in adaptive control. We
can use higher gains for this scheme to enhance the transient behavior. However,
in general, as the gain of any feedback compensator increases, the tracking error
decreases, but stability also decreases due to unmodelled dynamics.

Hence, in this thesis, we will focus on improving the transient response
without reducing the asymptotic stability of the combined system (robot dynamics

plus control compensator).
1.2.2 Control of Flexible-Joint Manipulators

In the previous section, we have discussed control of an ideal robot having
rigid links and rigid joints. In reality, there always exist a certain degree of
flexibility in the robot structure. Depending on the degree of flexibility, the
discussion in the previous section can be invalid, or a different control strategy
may be required. The links of most commercial robots are well approximated
by rigid bodies. According to Rivin[1.60], 80 to 95% of the flexibility in several
robot manipulators was due to joint flexibility. We may easily stiffen the links
with added structural mass. Here we restrict our discussion to the joint flexibility.
We can minimize the flexibility in the joints by mounting high torque actuators
directly in the joints (direct-drive mechanism). In this case, the mass of bulky
actuators and their housing are very often a significant fraction of the total mass
of the structure. The mass and its position in a robot is one of the crucial factors
for commercial robots, as well as space robots, since the required actuator power
is approximately proportional to the speed and the mass moment of inertia of the
structure. Accordingly, increased mass due to the direct-drive mechanism may
offset the benefits of the mechanism. There should be a trade-off between stiffness
and weights.

We can reduce the weights of actuators with appropriate gearing. This
allows use of smaller actuators. There are two kinds of gearing mechanisms:
harmonic drive, and ordinary pinion and gear. The latter is much stiffer but carries

considerable backlash. The former exhibits negligible backlash and their compact
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size makes it easier to integrate them into practical designs. As an alternative,
we can mount the actuators on or close to the stationary base of the structure
so that we can substantially reduce the mass moment of inertia in the overall
configuration. Sometimes it is possible to install all the actuators far from the
links. Belts, cables, drive shafts, or combinations of these are then used for power
transmission.

One unavoidable characteristic of these mechanisms is that they are flexible:
belts and cables stretch, drive shafts and harmonic drives twist, and gear teeth
bend. Their compliance may be advantageous for force control or for the protection
of the mechanical components of manipulators from the impacts of collisions.
However, joint flexibility causes difficulties in control. Link and actuator angles
may be different. Hence, the equations of motion of a flexible-joint robot are
much more complicated than those of the rigid-joint counterpart. In commercial
robots, actuator angles are controlled. Hence, flexibility causes positional errors
and undesirable vibrations. Consequently, joint flexibility is one of the sources of
reduced productivity in commercial robots[1.61]. One might try to control link
angles instead of actuator angles. Then, the problem becomes even worse. The
gains of compensators must be kept small[1.62] to avoid instabilities of the flexible
dynamics which are inside the feedback loop. There have been many efforts to
find an alternate solution to this problem.

De Lucal[l1.63,1.64], Spong[1.65], and their colleagues treated this problem
with the concept of feedback linearization and inverse dynamics. Then, the prob-
lem comes down to solving a set of fourth-order decoupled differential equations.
As a result, these schemes require measurements of angular accelerations and jerks
of the links. Moreover, the complexity of the dynamic equations goes beyond our
imagination. In other words, it is nearly impossible to implement the schemes in
real time.

Chen and Fu[1.66] proposed an adaptive scheme for the structure of Spong’s
scheme[1.65], based on the assumptions that the inertia and friction coefficients

of actuators are precisely known and that the angular accelerations of links are



8

measurable. This assumption is too ideal. The computational burden of Chen and
Fu’s method is much heavier than that of Spong’s.

Khorasani[1.67] and Spong[1.68] applied the concept of integral manifolds.
In this approach, the dynamics of a manipulator with flexible joints is restricted to
an integral manifold. Then, a reduced model is derived which has the same order
as the model of the corresponding rigid-joint manipulator. This model is used for
feedback linearization. Lack of robustness to parametric uncertainties, however,
makes these methods impractical.

To treat the problem of parameter uncertainties in schemes|1.67,1.68], Kho-
rasani[1.69] proposed an adaptive regulation scheme. Derivation of this scheme
is based on an unrealistic assumption that the flexible-joint system restricted to
an integral manifold is linear in the uncertain parameters. Furthermore, its in-
tegration adaptation rule may cause parameter drift in the presence of bounded
disturbances and unmodelled dynamics.

Ghorbel et al.[1.70] attacked this problem using singular perturbation theory.
This approach may avoid the aforementioned problems for some applications.
It appears that this method may work if the stiffness of the joint couplings
is sufficiently high. Stability of this scheme is not proved. Instead, a simple
experimental demonstration is provided.

Hollars et al.[1.71-1.73] linearized the dynamics around an operating point,
and then estimated the states of the system using an extended Kalman filter. Then
they designed a full state feedback control law using LQR (Linear Quadratic Reg-
ulator). They scheduled the gains of their control law for several different payload
conditions. Since the extended Kalman filter requires complete knowledge of the
system, this scheme is sensitive to parameter variations. Uhlik[1.74] extended Hol-
lars’ scheme by scheduling the gains for some additional configurations. He also
added feedforward compensators based on perfect knowledge of the parameters
contained in dynamics. Effects of payloads are compensated using his estimation
scheme based on the assumption that values of the parameters of the link dynamics

are accurately known.
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In this work, we will focus on the design of a control law for flexible-joint
robots whose performance is independent of the stiffness of the joint, the inertia
and damping of the actuators, and the gear-reduction ratios. We also avoid the

requirement of measuring angular accelerations and jerks.
1.2.3 The Issue of Robustness in Adaptive Control of Robots

In the 1960s and 1970s, the adaptive control community focused on obtain-
ing asymptotic stability of systems having parameter uncertainties under the ideal
assumption that there exists no disturbance, sensor noise, and unmodelled dynam-
ics. In the early 1980s, research in adaptive control had to treat a new problem:
lack of robustness in adaptive schemes. Several researchers showed instabil-
ity of asymptotically stable adaptive schemes for linear time-invariant systems
when the assumption is not satisfied[1.75], and proposed some modified adapta-
tion laws[1.76-1.83]. Instability is caused by drift of parameters (or control gains)
to large (possibly unbounded) values due to integrators in the adaptation loop
in the presence of bounded disturbances, sensor noises, or unmodelled dynamics.
Accordingly, the basic idea of all the modifications in adaptation laws is to prevent
the parameter drift by eliminating integration in the adaptation loop. Examples
of these are “use of dead zone,” “use of bounds on parameters,” “o-modification,”
and “ej-modification,” described below. Robustness in adaptive control does not
mean the robustness with respect to parameter uncertainties but rather means
the robustness with respect to parameter drift in the presence of bounded distur-
bances, sensor noises, and unmodelled dynamics.

The “dead-zone”[1.76,1.77] overcomes the parameter drift by stopping adap-
tation when the magnitudes of tracking errors become smaller than prescribed val-
ues. Bounds of parameters can be positively used in adaptation laws[1.78-1.80].
When estimated parameters are smaller than preset values (usually larger than
the nominal values), the regular integration adaptation law is used. When the
estimated parameters grow larger than the preset values, some nonlinear memory

components are used instead of the integrators. The “o-modification”[1.81,1.82]
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replaces the integrators in adaptation laws with first-order filters whose break fre-
quencies are constant. The drawback of this modification is that the tracking
errors do not converge to zero even when the bounded disturbances are removed.
The “ej-modification”[1.83] is the same as the “o-modification” except that the
break frequencies of the first-order filters are proportional to the magnitudes of the
tracking errors. Accordingly, this modification causes zero tracking errors when
no disturbances exist.

Robustness of adaptive control of robots was discussed in [1.84] with some
artificial unmodelled dynamics. With sensor noises in simulations, instability due
to parameter drift was observed in some adaptive control laws for robots which
are asymptotically stable under a certain ideal condition[1.85].

In this thesis, we use the o-modification to prevent parameter drift. In addi-
tion, we propose some robust adaptation laws based on the bounds of the parame-
ters. We investigate the robustness of adaptive control schemes in the presence of
bounded disturbances and unmodelled dynamics such as high-frequency dynamics
of flexible joints, feedback delays in the digital control systems, and coupled dy-
namics in the decentralized scheme. We derive a sufficient condition on the bounds
of disturbances, control and adaptation gains, and desired trajectories and their
time-derivatives, which guarantees robust stability of the proposed schemes in the

presence of unmodelled dynamics.

1.3 Comntribution of This Thesis

This thesis deals with the design of high performance adaptive trajectory
control laws for manipulators which guarantee not only robust stability of the

system but also a reasonable transient response.

The main contributions of this work are as follows.

(i) The importance of the transient behavior as well as robust stability of
a system is emphasized and taken into account in the design of adaptive control
laws, whereas in previous work only the stability of the system has been treated.

As a result, with the present schemes, tracking errors are considerably reduced.
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(ii) A new 2-norm approach to the design of adaptive control laws has been -
developed. This method provides sufficient conditions for (asymptotic) stability of
a given (nonlinear coupled time-varying) system. This method involves search for
compensators in the direction of minimizing a quadratic performance index. In
other words, it contains a feature of optimal control. This method also takes the
loop shaping method of linear control theory into adaptive control. As a result,
advantages from the optimal control and loop shaping method are maximized in
adaptive control.

(iii) A robust decentralized adaptive control scheme is proposed for manipu-
lators. The scheme adopts feedforward adaptive compensators, feedback adaptive
compensators, and an improved PD feedback law. Stability of the proposed scheme
is proved under the reasonable assumption that the structure of the coupled dy-
namics is known. Under some moderate constraints, the proposed scheme is stable
and robust in the presence of bounded disturbances and unmodelled dynamics due
to feedback delays in the digital control systems. In previous work, the stability
proof required an additional assumption that the coupled dynamics is bounded
and quasi-time-invariant, if the feedforward adaptive compensator is included in
the decoupled adaptive schemes.

(iv) A robust control scheme for trajectory control of manipulators having
flexible joints is developed. The control law is unique in that this scheme is
not only almost independent of the gear-reduction ratios, flexibilities of the joint
couplings, and characteristics of the actuators, but also free from the requirements
of measuring accelerations and jerks of link angles.

(v) Stability bounds for disturbances, control and adaptation gains, and de-
sired trajectories and their time-derivatives are obtained for the proposed adaptive
schemes. These bounds are sufficient conditions for robust stability of the proposed
schemes in the presence of bounded disturbances and unmodelled dynamics such
as high-frequency dynamics of flexible joints, feedback delays in the digital control

systems, or the coupled dynamics in the decoupled control scheme.
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1.4 Preview of This Thesis

The remaining chapters of this thesis are briefly outlined here.

In Chapter 2, we briefly review the essence of various methods in the design of
adaptive control laws. With a prototype example, we discuss the design procedure
in the self-tuning method. We summarize Lyapunov’s and Popov’s stability
theories, and explain with examples how they can be applied to the design of
adaptive control laws.

In Chapter 3, we first model a system to control as a linear decoupled system
with bounded disturbances under some reasonable assumptions. Then we apply
the loop shaping method to design non-adaptive feedback compensators. Secondly,
we develop a 2-norm approach to the design of adaptive control laws. The new
method can handle both linear decoupled and nonlinear coupled systems. Finally,
based on the original nonlinear dynamics, we add adaptive compensators via
the 2-norm approach to the non-adaptive counterparts so that we can achieve
asymptotic stability of the system. Two kinds of adaptive compensators are
adopted: model-based parameter-adaptive compensators and decoupled robust
feedback compensators. The importance of the transient behavior of the control
law is addressed and taken into account in the design procedures.

In Chapter 4, we investigate the robustness of the scheme developed in Chap-
ter 3 in the presence of bounded disturbances. We show that the integration adap-
tation law in the previous chapter may cause parameter drift even in adaptive
control of robots. We add to the model of the system bounded disturbances, sen-
sor noises, and unmodelled dynamics due to feedback delays in the digital control
systems in order to investigate the effects of these on the stability and robustness
of adaptive control systems. To design a control law, we first define an appropriate
quadratic performance index. Secondly, we search for compensators toward min-
imizing the quadratic performance index so as to improve tracking performance.
In this search, we select the compensators used in Chapter 3, and redesign their

adaptation laws to prevent parameter drift. Finally, we analyze the stability of the
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proposed adaptive scheme in the presence of bounded disturbances and unmod-
elled dynamics due to feedback delays. As a result, we find some stability bounds
for disturbances, control and adaptation gains, and desired trajectories and their
time-derivatives, in the presence of feedback delays.

In Chapter 5, we deal with the design of a robust decoupled adaptive scheme.
The coupled dynamics of manipulators in this case become additional unmodelled
dynamics. The design procedure in this chapter is basically the same as that in
the previous chapter except that only the decoupled compensators are selected
in the search. We show that there exists a region of attraction of the proposed
decentralized scheme for the nonlinear coupled dynamics of robots, under some
moderate constraints on desired trajectories, bounded disturbances, and control
and adaptation gains, if the sampling period is sufficiently small.

In Chapter 6, we examine joint flexibility. We view the actuator dynamics
and joint couplings as prefilters to the link dynamics. We investigate how to opti-
mize the characteristics of the prefilters by adding some flexibility compensators.
With the compensators we transform a manipulator having flexible joints into that
having almost rigid joints. This means that we make the flexible joint couplings
artificially rigid by adding the flexibility compensators. In this way, we convert
the control of flexible-joint manipulators to that of the corresponding rigid-joint
manipulators, which has been already treated in the previous chapters. However,
the transformed system (almost rigid-joint robot) still contains some degree of
high-frequency unmodelled dynamics. Through additional stability analysis, we
impose some constraints on the proposed scheme so that the scheme stabilizes the
original flexible-joint system. Finally, we focus on attenuation of high-frequency
sensor noises for the flexibility compensation loop.

In Chapter 7, we summarize this thesis and point out possible areas of
extension.

In this thesis, the proposed adaptive schemes do not have any reference
model. This implies that trackable desired trajectories are provided by trajectory

generators. This approach in robot control is superior to the usual model-following
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adaptive control since the latter drives the output of the system not to the desired
trajectory but to the output of a reference model. When we do not have a
trajectory generator, we filter a given trajectory through a stable second-order
differential equation, so that the filtered trajectory becomes the desired trajectory
to the system. In this case, the stable second-order filter can be considered as a
reference model in the regular model reference adaptive schemes.

Throughout this thesis, the theories are illustrated by realistic computer
simulations.

Finally, we note that symbols are defined independently in each chapter.

Also, each chapter contains its own lists of references and appendices.
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Chapter 2

REVIEW OF ADAPTIVE CONTROL

2.1 Introduction

As a way of compensating parameter uncertainties in a system to control,
adaptive control strategies have been applied in various fields. Adaptive control
can be classified as a special branch of nonlinear feedback control. There are two
fundamental approaches: self-tuning and model reference methods. Sometimes
gain scheduling is also classified as a form of adaptive control[2.1]. Schematic
diagrams of these methods are given in Figure 2.1. There is nothing new in
this chapter; this material is included to provide background and for convenient
reference in the remainder of this thesis.

Gain scheduling has been used mainly in flight control systems. The basic
idea of this method is to preset the controller gains for all possible situations
in the whole operating range of a plant. Thus, the method is based on precise
knowledge of the physics of the plant or on the results of extensive experiments
with the plant. This is a kind of table-look-up method. During operation, the
state of the plant is measured and the results are used to determine the values
of gains chosen according to the predetermined schedule. One drawback of this
method is that it is based on open-loop compensation. There is no feedback which
compensates for an incorrect scheduling of the gains. Thus, this method can be
viewed as a feedback control system in which the feedback gains are adjusted by
feedforward compensation. Another drawback of this method is that its design
is a time consuming process. This method has been highly successful for control
of aircrafts. This method has been also tested for trajectory control of a flexible-

joint robot[2.2-2.5]. However, gain scheduling is not practical for robot control
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since the dynamics of a robot is affected by too many factors: trajectories and
their time-derivatives, weight and shape of payloads, weight and size of the robot
itself, etc.

The self-tuning method was originally proposed by Kalman|2.6]. The the-
ory of this method[2.7,2.8] is based on linearization of the plant behavior around
operating points; parameter estimation; and linear control theory. The dynamics
of the discretized plant at the sampling points is parameterized as a linear combi-
nation of the discretized sequences of the applied inputs and measured outputs of
the plant with time-varying parameters (the coeflicients of the sequence). The pa-
rameters are estimated recursively. For recursive estimation of parameters, many
different schemes have been developed: least squares, extended and generalized
least squares, stochastic approximation, extended Kalman filtering, and the maxi-
mum likelihood method. Linear control theory is then applied with the estimated
parameters characterizing the plant. Examples of the controller design strategy
include pole-placement and optimal control theory. This method has also been
applied to problems of robot control[2.9-2.19]. One drawback of this method is
that there are always parameter estimation errors since the convergence of the
estimation is generally not fast enough, especially for time-varying systems. Fur-
thermore, convergence of the estimation to the true values of the parameters is
guaranteed only if the input of the system is persistently excited. Thus, the self-
tuning control schemes are designed with errors in the estimation of the plant. As
a consequence, this method has not been so successful for robot control.

In the model reference method[2.20-2.53], the objective is to drive the output
of a system asymptotically to that of a reference model; the difference between
the output of the model and that of the system is called “model-following error.”
To achieve the objective, the steepest descent method[2.25-2.27], Lyapunov’s di-
rect method[2.20-2.22], and Popov’s hyperstability theory[2.22-2.24] have been
employed. The steepest descent method minimizes the model-following error by
reducing an objective function in the steepest descent direction of the function.

One of the drawbacks of this method is that separate stability analysis has to be
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worked out. Design of control laws[2.28-2.53] using Lyapunov’s or Popov’s theories
offers alternative possibilities. Thus, extensive research has been carried out for
applications of those stability theories.

In this chapter we will briefly review “self-tuning” and “model reference”
methods along with design examples of some adaptive control laws for a spring-
mass-damper system to illustrate applications of the theories. We assume that
there exist no disturbance, sensor noise, and unmodelled dynamics, so that we do

not consider the problem of parameter drift in adaptation.

2.2  Self-tuning Method

In this section, we briefly discuss the essential parts of a design procedure for
the self-tuning method with a simple spring-mass-damper system. However, the
technique here can be readily extended to more complicated systems. For more
information about the self-tuning method, see references [2.7] and [2.8].

Let us model a spring-mass-damper system as
mi + dy + ky = u, (2.2.1)

where v and y are the input (force) and the output (position) of the system
respectively; m, d, and k are the mass, damping coefficient, and spring constant

of the system.
2.2.1 System Representation (Linearization)

The self-tuning method has been developed in the discrete time domain
so that we need to represent the plant (2.2.1) using the sequences of applied
inputs and measured outputs. Conversion of a continuous time system to the
discrete time counterpart is not unique. Here we apply the zero-hold-equivalence
approximation[2.54] to the system (2.2.1) under the assumption of time-invariant

coefficients. Then, we have the following form of the discrete system:

Yi = 00¥Yi—1 + 02yi—2 + 03ui—1 + Qqu;_o, (2.2.2)
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where a; for j=1,2, 3, 4 is the parameter of the discretized dynamics; y; and u; are
the output and the input at time ¢ respectively. We can also express the system

(2.2.2) in the following vector form:
yi = $i_16, (2.2.3)
where

bi—1 = [Yi-1, Yiz2, i1, ui—2)7,

0 = e, a9, a3, 04" (2.2.4)

This model is called the ARMA (Auto-Regressive Moving-Average) model[2.7].
2.2.2 Parameter Estimation.

Numerical values of the parameter 6 for a given system are estimated in such
a way that these minimize the difference between the actual output of the plant and
the value predicted by the model (2.2.3) with estimated values of the parameter
§. Hence, estimation of parameters involves minimization of some quadratic cost
function (usually subject to some constraints). Since the choice of the cost function
is not unique, there are many estimation schemes. Examples of these are the
“projection scheme,” “least square method,” and their variants. Here we consider
the least square method[2.7].

We define the following quadratic cost function:
1 1 o _ n
Ji(0) = 5y, - ®;10)"(y, — ®i_16) + 50— 00)T @5 1(8 — by), (2.2.5)

where

¥, = 1,92, il "

@i—l = [¢0, ¢11 s ¢i—1]T; (226)

Y
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Wq is the 4Xx4 positive-definite matrix; and éo is the initial value of the estimated
parameter vector. The first term of the cost function (2.2.5) represents the sum of
squares of the difference between the actual output and the value predicted by the
model with the parameter vector §. The second term is included to account for
the initial condition. Hence, minimizing this cost function leads to a least square

estimator.

To minimize the cost function, we differentiate it with respect to 6 and set

the result to zero, then we have
(®F 1 ®i1 + ‘1’51)0 = ‘I’Eléo + <I>;TF_1}_'2.. (2.2.7)

Let us denote the value of 8 satisfying this equation as b;. Then,

~

0; = U;_1(¥5 60 + ,y,), (2.2.8)

where
U =0l 1@, + T (2.2.9)

Then, using (2.2.6), we have
U =07+ piagl . (2.2.10)
From (2.2.8)
b; = ;1 (W50 + & oy, + bic1yi)
=0, (U501 + ¢i_1y;)  using (2.2.8)
= U (U7 — pic19f_1)0i—1 + Ui_1¢im1y;  using (2.2.10)
= 0i1+ Ui1io1(yi — o7 10i-1). (2.2.11)

By applying the “matrix inversion lemma” to (2.2.10), we have the following

recursive equation:
3 Ui_opi—197 1 ¥is
14+ ¢ [T a¢ig

U, 1=V, o (2.2.12)
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This can be proved by direct verification. In this equation we set ¥_, the initial

value of ¥;, to be ¥y. By using (2.2.12), we write (2.2.11) in the form

5 A Wi_a¢i—1 T A .
0; =0;,_1+ — di_16;1 1> 1. 2.2.13
T 1+ ¢ Wi a¢ia Wi = iabi) ( )
With (2.2.12) and (2.2.13), we can recursively estimate the parameter §; at
time i. Note that (§; — §;_1), the increment of the estimated parameter at time
i, is proportional to (y; — ¢:f’1_167,-_1), the difference between the actual output at
time 7 and the value predicted by the model (2.2.3) with estimated parameters at
time ¢ — 1.
2.2.3 Design of A Control law

In the self-tuning method, control laws are designed based on the estimated
values of parameters. The underlying assumption is that the parameter estima-
tors are perfect, i.e., the estimated parameters are assumed to be true values.
Accordingly, hereafter we assume we have a discrete linear time-invariant system
without uncertainty. To design a control law, we can minimize some quadratic
cost function (possibly with some constraints). We can also apply “closed-loop
pole assignment.” In the following, we design a simple control law, and examine
the characteristics of this law.

For simplicity, we rewrite the discrete system (2.2.2) in the following form:

a(q " yi = ¢7'b(g ™ us, (2.2.14)
with
a(g™) =1—ag™" — g%,
b(g™!) = a3 + oug™, (2.2.15)
where ¢! is a delay operator such that

¢ lyi = yica. (2.2.16)
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The constants a3, ag, a3, and a4 are given by the on-line parameter estimator

(2.2.12) and (2.2.13).

Alternatively, we express the system in a 1-step-ahead predictor form:
Yi+1 = a,(q" V)i + b(g Hu;, (2.2.17)

where
a,(¢7Y) = g + azg”L. (2.2.18)

Now we define a quadratic cost function as
1 2 2
Jiy1= 3 [(Tz‘+1 —¥i+1)* + Au,-]
1 —_— —
= 5[[ri+1 —2,(¢7 "y — blg il + Au?], - (2.2.19)

where A is a positive constant. The cost function consists of the predicted squared
error at the future time 7 + 1 and squared input at the current time i. Hence,
minimizing the cost function leads to minimizing the error at the future time 7 + 1
with a minimum control input.

To minimize J;y;, we differentiate with respect to u; and set the result to

zero:
asfa.(q7)yi + (g ui — riga] + Auf = 0. (2:2.20)

From this, we have the following control law:

o3[rit1 — 2,(¢7 V)i — cu(qVui_1]
. 2.2.21
o2+ A ( )

Uu; =

Now, let us examine the closed loop system associated with the control law

(2.2.21). With (2.2.17), (2.2.20) can be rewritten as
a3[yi+1 — ig1] + Au; = 0. (2.2.22)
Multiply this by b(¢g™!) . Then,

a3[b(g™Y)yir1 — b(g7Hrita] + Ab(g ™ )ui = 0. (2.2.23)
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With (2.2.14), (2.2.23) becomes
1y, A1 -1
[b(¢™) + a;@(q Nyi+1 = b(g™)rit1. (2.2.24)

Therefore, the characteristics of the control law depend on the zeros of [b(¢g™!) +
aig@(q“l)], the poles of the closed loop system. The positions of the zeros dominate
stability and performance such as the transient response and steady state error.
We can stabilize the system when the zeros of b(¢™!) lie within unit circle around
the origin. This means that sometimes we cannot obtain stability partly because
we have only one free parameter \. We may have some additional free parameters
by replacing the input »; with a filtered input in the cost function (2.2.19). Even
in this case, to guarantee stability there should be no common unstable zeros
between a(g™!) and b(g™!). When we apply the closed loop pole assignment, we
can also lift the limitation in the number of free parameters. However, a(¢™!) and
b(g™!) should satisfy a certain condition to place poles in desired locations. For

more information, read reference[2.7].
2.2.4 Concluding Remarks

We have derived an on-line parameter estimator. The underlying assumption
for derivation of the estimator is that the true values of parameters are constant.
This assumption is also required to derive other parameter estimators. More-
over, the sequences of applied inputs must be persistently excited to guarantee
convergence of estimated parameters to the true values. In robot dynamics, the
parameters are time-varying since the nonlinear dynamics is linearized around op-
erating points. Hence, to apply a parameter estimator to robot control, we need
to assume that the parameters are quasi-time-invariant. This implies “very slow
motion.” Hence, in reality, a parameter estimator can not keep up with rapid
changes in time-varying parameter values. Faster motion causes larger parameter
estimation errors. Furthermore, “slow motion” of a robot would be contradictory
to the condition of persistent excitation. Therefore, estimated values of parame-

ters always carry estimation errors. Since we design a control law based on these
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estimated values of parameters, the performance obtained with the “Self-Tuning”

method in robot control could be unsatisfactory.

2.3 Model Reference Method

The steepest descent method is rarely applied to adaptive control because
a separate stability analysis is required. Hence in this section, we focus on
Lyapunov’s second method and Popov’s hyperstability theory. Application of
these stability theories is not limited to linear time-invariant systems: they can
be applied to nonlinear coupled time-varying systems. These theories provide
some sufficient conditions for stability of a given system. The main idea is to use
the sufficient condition to stabilize the error dynamics associated with the system.
Then as a by-product of stabilization, a control law is produced. Since the sufficient
condition is not unique, there may exist many stabilizing control laws for a given
system, the performances of which vary widely. Since these stability theories deal
with only stability, there is no standard way of judging the performance such as
the transient behavior of a control law.

Here we briefly review these stability theories, and their use in the design
of new control laws for a spring-mass-damper system having a single degree of

freedom.
2.3.1 Stability Theories
2.3.1.1 Lyapunov’s Second Method[2.55]

Consider a nonlinear time-varying differential equation representing the be-

havior of a system having 77 degrees of freedom,
= f(t,z(t)), Vt>0, (2.3.1)

where z is the mx1 vector, assuming that the origin is an equilibrium point at
time g, 1.e., f(t, 0)=0, Vit>t.
Definition: The equilibrium point 0 at time ¢y of (2.3.1) is said to be stable
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at time tg if, for each finite € > 0, there exists a §(¢p, €) > 0 such that
lz(to)|| < 6(to,e) = |lz(t)|| <e, Vt>to,

where ||z|| = VzTz.
Definition: The equilibrium point 0 at time g is asymptotically stable at
time ¢ if (i) it is stable at time tp, and (ii) there exists a positive number & (t;)

such that

la(toll < 61to) = lim [lz()] = 0.

That is, the system eventually reaches its equilibrium condition.

Theorem: The equilibrium point 0 at time #y of (2.3.1) is stable if there
exists a continuous differentiable function v for (2.3.1) such that

(i) v(z) > 0,

(ii) 9(z) <0, Vit>tp.

Theorem: The equilibrium point 0 at time ¢ of (2.3.1) is asymptotically
stable over the interval [tp, c0) if there exists a continuous differentiable function
v for (2.3.1) such that

(i) v(z) >0, Vz#0and v(0) =0,

(ii) v(z) <0, Vz#0.

The function v(z) satisfying the requirements in these two theorems is called
a Lyapunov function. The Lyapunov function is not unique for a given system.
Lyapunov’s direct method gives only a sufficient condition for the stability of a
given system. That is, one’s inability to find a satisfactory Lyapunov function
does not mean that the system is unstable.

Theorem: Consider a linear system
z=Az, z(0) =z,

where A is a X7 system matrix. The necessary and sufficient conditions that
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the linear system is asymptotically stable are that there exist P = PT > 0 and
Q = QT > 0 such that

ATP+PA=-Q. (2.3.2)
For proofs of these theorems, see references [2.55] and [2.56].

2.3.1.2 Popov’s Hyperstability Theory[2.22]

Consider a nonlinear time-varying feedback system which consists of (i) a

linear part described by the following state equations:

z = Az + Bu = Az — Bw,

z = Cz, (2.3.3)
and (ii) a nonlinear time-varying part described by
U= —w, (2.3.4)

w=g(z(1),t), 0<7<t, (2.3.5)

where z is the Mmx1 state vector; u=—w and z are the 7 x1 input and output
vectors respectively; g(z(7),t) is the 7ax1 nonlinear time-varying vector function
which is bounded for bounded z and t; A, B, and C are the mxsm system
matrix, the /X7 input matrix, and the 7 x7h output matrix respectively; (A,B)
is completely controllable; and (C,A) is completely observable. Note that the
nonlinear time-varying part is confined in w. The schematic diagram for this
system is shown in Figure 2.2.

Definition: The feedback system represented by (2.3.3), (2.3.4) and (2.3.5)
is hyperstable if there exist finite constants § > 0 and v > 0 such that

le@ll < éllz(O)l +7,  Y¢>0, §>0, y>0.

That is, z(t) is bounded for all ¢ > 0.
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Definition: The feedback system (2.3.3), (2.3.4) and (2.3.5) is asymptoti-
cally hyperstable if it is hyperstable and in addition

Jim la(®)] = 0.

That is, the state z(t) not only is bounded but also converges asymptotically to

Zzero.

Theorem: The feedback system (2.3.3), (2.3.4) and (2.3.5) is asymptotically
hyperstable if

(i) the system (2.3.3) is strictly positive real; the necessary and sufficient
condition for this is given by the Kalman-Yakubovitch-Popov lemma.

(ii) the feedback block satisfies the following inequality
t
7(0,1) =/ wlzdr > =42, Vt>0, and oco>y>0. (2.3.6)
0

Kalman-Yakubovitch-Popov lemma: The system (2.3.3) is strictly pos-
itive real if and only if there exist Q and P such that

ATP+PA=-Q, P=PT>0, Q=0T >0, (2.3.7)

and
BTP=c. (2.3.8)

For a proof, see reference[2.22].

2.3.2 Application of Stability Theories to Design of Adaptive Control

Laws

The stability theories due to Lyapunov and Popov can be used to deter-
mine whether a given system is (asymptotically) stable or not. Conversely, with
these stability theories a given system can be stabilized by selecting appropriate
compensators which can be freely set to meet the stability criteria.

Here we will discuss a prototype problem as an example of the procedure.

With the stability theories we will design new model-based parameter-adaptive
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control laws which guarantee that the output of the spring-mass-damper system
follows that of a reference model. In other words, we will stabilize the “model-

following error.”
2.3.2.1 Design of Control Laws Using Lyapunov’s Second Method

Design Procedure:

(i) Define an appropriate lower-bounded Lyapunov function v for a given
system which contains some free parameters.

(i) Take the time-derivative of the Lyapunov function v along the trajectories
of the system.

(1ii) Enforce v < 0 using the free parameters.

Consider the same system we have worked with in the previous section:

mi + ¢y + ky = u, (2.3.9)

where y is the output and « is the input.
Define a reference model which has desirable characteristics such as guar-
anteed stability and moderate transient behavior. The dynamic equation for this

model is

Ym + K1¥m + K2Ym = T, (2.3.10)

where r and yy, are the reference input and output of the reference model respec-
tively; x1 and k3 are the positive constants whose values are chosen to give the
desired characteristics.

The objective in this section is to select a control input u such that y, the
actual output of the plant, is driven asymptotically to ¥,,, the output of the
reference model.

Let us select a control law for the system (2.3.9) as

u = koijm + kvé + kpe + @, (2.3.11)
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where the model-following error e is defined as
e =Ym —Y; (2.3.12)

@ is a dynamics compensator to be chosen later; ko(m > k, > 0), k, > 0, and
kp > 0 are the acceleration, velocity, and position gains respectively.

Note that the reference input r is not fed into the plant. That is, the reference
model is serially connected to the plant, while usually in the literature of adaptive
control, the model is collaterally connected. However, the objective is the same:
to drive the model following error asymptotically to zero. In our case, we do not
need to use a reference model at all if a tractable trajectory (reference input) is
provided, as in robot control. The block diagram for the control system is given
in Figure 2.3.

From (2.3.9), and (2.3.11) we have

ko€ + kpé + kpe = (m — kq)§ + dy + ky — 4. (2.3.13)
We rewrite this in the following state space form:
= Ax+ b, ((m = ka)j + dj + ky - @), (2.3.14)

where x is the state vector of the following form:

xT = (e, é); (2.3.15)
0 1
(L0 ), 2510
and
| T = (0, 1/ky,). (2.3.17)
Now define a Lyapunov function which is lower bounded as

1/ 7 1 9 1 9 1 9 1 9
vV=c|X Px+ —(m—kg)(*+ —(m — kg —me)+ —(d — do)* + —(k — ke)* ),
3 (7 Pxt g-(m — k) C? + o P (@ = de) o o (h ~ ke)?)

(2.3.18)
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where 8; (i = 1,2,3,4) is the positive constant; (m — k;) > 0; me, d., and
ke tespectively denote the estimated values of m, d, and k¥ computed with an
adaptation rule to be selected later; ¢ is an auxiliary signal to be used if necessary;

according to the theorem (2.3.2), P is to be chosen such that
ATP+PA=-Q, P=PT>0, Q=0T >0. (2.3.19)

In equation (2.3.19) we need to choose @ and solve for P.

Note that me, de, k. and ( are the free parameters in the Lyapunov function
v, which will be used to enforce ¥ < 0. We include the estimated parameters Me,
de, and ke in v so as to derive an adaptation rule for these parameters, which will
be used for dynamics compensation.

To stabilize the system (2.3.14), we will make ¥, the time-derivative of the
Lyapunov function, non-positive by using the free parameters in the Lyapunov
function. Differentiate (2.3.18) with respect to time to find the time-derivative of

v along the trajectories of (2.3.14):

o= —xTQx+2((m — ko) + dj + by — @) + —(m — k)¢
P1

1 1 ;1 ;
— = (m — kg — M) e — —(d — do)de — = (k — ko) ke, 3.

where

z = (pae + p3é)/kq = p1(é + pae) (2.3.21)

P:(pl p2)>0.
P2 D3

Hence p1 = p3/k, and p2 = pa/p3. Here we have assumed that m, d, and k, the

with

parameters of the dynamics, are constant. Now try two strategies.
(i) Design of a control law without the auxiliary signal ¢ (i.e., 31; = 0)

The first term of (2.3.20) is negative definite and the rest of them are sign-

indefinite. Hence one of the ways of guaranteeing © < 0 is to cancel out all
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the sign-indefinite terms. Since we have free parameter @, we can create some
common factors to cancel out the sign-indefinite §; terms. Therefore, we choose

the dynamics compensator % as
U= melf + dey) + key. (2.3.22)
Then,
. T . .
VD =—X Qi_c+z((m—ka—me)y+(d~de)y+(k— ke)y>
(2~ kg — MYt — —(d = do)ds — - (k — o)k
— M — Rg — Me)Me — —(a — e~ (kK — e
B2 B3 ) P4 ‘
T P
==z Qz + (2§ — —1he)(m — kg — me)

B2

Ldnd=d)+ (o - ﬂ%ke)(k — k). (2.3.23)

+(Zy'—)63

The first term of (2.3.23) is negative, because Q is positive definite. Then, to

guarantee v < 0, we choose

me = ,822:1'/',
d'e - ,8329,
ke = Pazy. (2.3.24)

From (2.3.11), (2.3.22), and (2.3.24), we have the following adaptive control
law:

U = kofim + kué + kpe + melj + deyf + key; (2.3.25)

with the adaptation rule:
¢
Me = ﬂ2/ z§dr + m¢(0),
0

t
d, = fs / 2gdr + dy(0),
0
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t

ko = By / 2ydr + ko(0). (2.3.26)
0

Choice of (2.3.24) ensures ¥ < 0. Hence Lyapunov’s second method guarantees
that the system (2.3.14) is stable. Since ¥ = 0 = é = e = 0, the system is
asymptotically stable.

Note that this control law requires measurement of 4. This causes no serious
problem in this case since we can use linear accelerometers. However, sometimes in
practice we need to avoid measuring acceleration signal. For example, measuring
angular acceleration causes difficulties. We can avoid this problem using the

auxiliary signal (.
(ii) Design of a control law using the auxiliary signal ¢

Note that §j and ¢ in (2.3.20) have the common coefficient (m—k,), and that
from (2.3.21)
z/p1 = ijm — § + poé. (2.3.27)

Hence, to remove § in (2.3.20), we set ¢ = z and f; = p;. Then, (2.3.20) becomes

v =— xTQ:_c+z((m — ka)(fm + p2é) + dy + ky — u)

- Bl-z-(m — kg — myg)ine — ﬂ%(d —do)d, — i(k — ke)ke.  (2.3.28)
Similar to (2.3.22), let us choose the dynamics compensator as
U = Me(Ym + p2€) + dey + key. (2.3.29)
Then,
b ==X Qx+2((m = ka = )i + p28) + (d — do)i + (5 ~ k)

1 .1 1 '
- _2(771 — kg — me)me - 13_3(d - de)de - E(k - ke)ke

=—-x"Qx+ (z(z‘im + paé) — ﬂ%m) (m — ka —me)
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B3

Therefore, to enforce the requirement 4 < 0, we choose

(29 — —do)(d = do) + (2y ~ éke)(k — ko). (2.3.30)

Me = ﬂZZ(?jm + P2é)a
de = 183'2:’]’

ke = Bazy. (2.3.31)
From (2.3.11), (2.3.29), and (2.3.31), we have the following adaptive control law:
U = Ka§m + kvé + kpe + me(fm + p2€) + dey + key, (2.3.32)

with the adaptation rule:
¢
me=fo [ #liim + pré)dr +me(0),
0
¢
de = By / 2gdr + dy(0),
0

t
ke = By /O zydr + k,(0). (2.3.33)

Choice of (2.3.31) ensures o < 0. Hence Lyapunov’s second method guarantees
that the system (2.3.14) is stable. Since ¥ = 0 = é = e = 0, the system
is asymptotically stable. Note that the adaptation law is a by-product of the
procedure followed to guarantee stability.

The Lyapunov function is not unique for a given system. Hence the choices
of control laws to guarantee v < 0 are not unique. The forms of the control and
adaptation laws depend on what Lyapunov function v is used and on how the
time-derivative of the Lyapunov function ¢ is constructed to guarantee v < 0.
Therefore, there could be many stabilizing control laws for a given system.

The schematic diagram for the proposed control and adaptation laws is given

in Figure 2.3.
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2.3.2.2 Design of Control Laws using Hyperstability Theory

Design Procedure:

(i) Separate the system to be controlled so that the nonlinear time-varying
part becomes an input to the linear part. See equations (2.3.3), (2.3.4), and (2.3.5).

(it) Define a new output z such that the linear part of the system becomes
strictly positive real. Use the Kalman-Yakubovitch-Popov lemma in (2.8.8).

(#i) Close the loop of the system by assuming u = 9(z).

(iv) Choose plausible control and adaptation laws, and check whether these
satisfy the inequality condition (2.3.6).

Therefore, this method involves “search” for appropriate control and adap-
tation laws. Here, however, we need not go through the search since we have
already designed two control and adaptation laws. We have only to show the
adaptive control laws designed with Lyapunov’s second method satisfy the hyper-
stability theory.

Here we consider the same system to control (spring-mass-damper system).

First, we separate the system. This has been done already in (2.3.14):
x = Ax + by, (2.3.34)
where b7 = (0, 1/k,), and
u=—w=(m—ko)j +dy + ky — 4. (2.3.35)

Secondly, let us define z, a new output of (2.3.34), such that the linear
part becomes strictly positive real. We can guarantee this by using the Kalman-
Yakubovitch-Popov lemma in (2.3.8). That is, we choose

cF'x = pre+ p3é = p1(é+ pze), (2.3.36)

z

where ¢” = o] P with ATP+ PA=-Q, P=PT >0, Q=QT > 0; p; = p3/ka
and py = pa/ps3.
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Thirdly, we close the loop:
u=—w=—f(z). (2.3.37)

This means that  in (2.3.35) must be functions of z.
Finally, we need to select control and adaptation laws, and test whether the
selected control law with the corresponding adaptation law satisfies the inequality

condition (2.3.6). For this system (2.3.6) becomes

n(0,41) = /O ! #(5 =~ (m — ka)j — dj — ky)dt. (2.3.38)

(i) We will show that the first adaptive control law designed with Lyapunov’s
method satisfies the inequality (2.3.6). The control and adaptation laws (2.3.22)

and (2.3.26) are rewritten as
U =mef + dey + key, (2.3.39)
where
t
Me = ﬂz/ zgdT + me(0),
0
¢
de = 133/ zydT + de(o),
0
¢
ke = ,64/ zydr + k.(0). (2.3.40)
0

With (2.3.38), (2.3.39), and (2.3.40), we check the inequality condition
(2.3.6):

7(0,1) =/(:l z(ﬂz(/ot 2GdT + me(0) —m + ka)J

14

t
+ (,33/0 2ydt + d.(0) — d)y + (,34/0 2ydt + k(0) — k)y) dt.

(2.3.41)
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For simplicity, we define

me = (me(o) —m+ ka)/ﬂ%
do = (de(0) — d)/Ps,

ko = (ke(0) ~ k)/Bs. (2.3.42)

Then,

t t t
7(0,%1) =/0 (ﬂgz(/o 2HdT — my)y +ﬁ3z(/0 2ydt — dy)y
t
+ ,34z(/0 zydT — ko)y) dt
1 L b
:5(/32(/0 Zydt - mO)Z + 133(/0 zydt - d0)2

31

4B 2t = ko)? — o — fod? - i)

1
2 — 5(Bamg + Bad; + Bak?), (2.3.43)

where we have used the following identity:

131 1 151
/ f/ &drdt = %( ¢dt)?, Vi1 >0 & integrable €. (2.3.44)
0 0 0

Since % given by (2.3.39) and (2.3.40) satisfies the inequality condition, these
constitute an adaptive control law which guarantees the asymptotic stability of the
model-following error e.

(ii) To show that the second control law satisfies the inequality condition,

we modify the equation (2.3.38) using the fact:

z[p1 = (E+ p2¢) = (fim — § + p2é). (2.3.45)
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Then, (2.3.38) becomes

7(0,%1) = /Otl z(ﬂ = (m — ko) (§m + p2é — 2/p1) — dy — ky)dt

t m—k
= i — (m — kg)(ij ) — dj — ky )dt + a2
/O Z(U (m = ka)(iim + p2€) — dy y) o 2 o
(2.3.46)
Now, consider the second control law (2.3.29):
U = Me(Gm + p2€) + deyy + key (2.3.47)
with the following adaptation law (2.3.33):
t
Me = ﬁ2/ 2(fim + p2é)dT + m(0),
0
¢
de = /33/ zydr + de(O),
0
¢
ke = By / 2ydr + ko 0). (2.3.48)
0

Then, with (2.3.46), (2.3.47), and (2.3.48), we check the inequality condition
(2.3.6):

0. = [ =(pa / s+ 28 1 0) = 1t Ko + p2)

t t
1 Ba( /O 2idr + do(0) — d)g + fa /0 ydr + .(0) - Byt

m — kg ot
B — . 2.3.49
2p1 g 0 ( )
Using the definition (2.3.42), we have
t t
n0.0)= [ (sax( / i + p26)dr = m0) (G + p28)
m — kg 2
sz | zydT — do)y + ﬁ42( ZydT - o)y) dt + ———
2p1 0
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_1 N Nt — )2 2
_2(ﬂ2(/0 2(jim + p2é€)dt — m,) +ﬂ3(/0 zgdt — d,)

t e
+ Bl / 2ydt — ko)? — Pam? — B3d2 — ﬂ4k;,"~) 2 Ja 2t
2m 0

m — kaz

> - —(ﬂzm + B3dZ + Buk?l) + ——2 o

0

> — —(,Bzm + B3d2 + B4k2) — m — ka 22(0), (2.3.50)

2P1

where we have used that fact that (m — kg) > 0. If the initial model-following
errors ¢ and e are bounded, 2(0) is bounded. Therefore, (2.3.50) shows that the
second adaptive control law satisfies the inequality (2.3.6) and asymptotic stability
as well.

As we pointed out at the beginning, the hyperstability theory provides only
sufficient conditions. Hence a stabilizing control law for a given system is not

unique.
2.3.3 Concluding Remarks

We have described how Lyapunov’s and Popov’s stability theories can be
used to design two new adaptive control laws. For simplicity, we have considered
a linear SISO (single-input single-output) system. Extension to nonlinear MIMO
(multi-input multi-output) systems can be readily achieved as long as the mass
(matrix) m is positive definite.

It must be emphasized that convergence of the estimated parameters to the
true values is not required to guarantee asymptotic stability in the model reference
method. This result is in contrast to that obtained with the “self-tuning” method.
Of course, the convergence is guaranteed if the input is persistently exited. Fur-
thermore, the self-tuning method uses a linearized system around its operating
points. Therefore, the parameters of the system in the self-tuning method must
be time-varying if the plant is nonlinear. However, in the (parameter-adaptive)
model reference method the parameters are time-invariant if the corresponding

nonlinear plant is linear in the time-invariant parameters. This is because this
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method can be directly applied to a nonlinear plant without linearization.
Lyapunov’s and Popov’s stability theories provide only sufficient conditions
for stability. Therefore, there may exist many different model reference adaptive
control schemes for a given system. The design procedure of a self-tuning scheme
consists of system discretization, parameter estimation, and application of linear
control theory. None of these are unique. Hence, there may also exist many
different self-tuning adaptive control schemes for a given system. However, the

underlying principle and the design procedure remain the same.
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Chapter 3

A 2-NORM APPROACH
TO ADAPTIVE CONTROL OF ROBOTS

3.1 Introduction

In the previous chapter, we have reviewed the essence of adaptive control
with prototype applications to a spring-mass-damper system having one degree of
freedom. Now, we are ready to extend our discussion to a more practical problem
of parameter-adaptive control of manipulators. The dynamics of a manipulator is
nonlinear, coupled, and trajectory dependent. Hence, control of manipulators is
one of the most challenging control problems, and has attracted a great deal of
attention from the adaptive control community.

In 1979, adaptive control was first applied to trajectory control of manipu-
lators by Dubowsky and DesForges[3.1]. Since then, extensive research has been
performed. Earlier applications[3.1-3.11] were simply to apply adaptive schemes
developed for linear time-invariant systems to robot control with the assump-
tion that the nonlinear part of the robot dynamics is quasi-time-invariant. Some
schemes[3.12-3.15] could obtain stability without this assumption by using chat-
tering signals. However, these signals may excite high-frequency unmodelled dy-
namics. Adaptive control of robots has gradually progressed up to compensation
for the full nonlinear dynamics of robots, so that some recent schemes(3.16-3.18]
can guarantee asymptotic stability under some ideal conditions.

In this chapter, the objective is not only to obtain the asymptotic stability
but also to improve the transient behavior. To achieve the objective, we combine
the loop shaping method, the adaptive control strategy, and the concept of optimal

control in harmony to extract the best result; in contrast, each method has been
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independently applied to the design of control laws in the existing literature.

In Section 2, we model the system to control from the standard result of the
manipulator dynamics. In Section 3, via the loop shaping method, we improve
the decoupled PD or PID feedback laws which are the bases for existing adaptive
control laws and for controllers for industrial robots, including direct drive arms.

In Section 4, we derive a new stability criterion to integrate the methods
of loop shaping, optimal control, and adaptive control into controller design. To
improve the transient response we search for compensators in the direction of
minimizing a certain quadratic performance index. Then, to guarantee asymp-
totic stability of the system, we show that the compensators selected through
the loop shaping method and the performance index satisfy the new stability cri-
terion. The adaptive compensator consists of two parts: adaptive feedforward
compensators (parameter-adaptive compensators) and decoupled feedback adap-

tive compensators.

3.2 Modelling of A Manipulator to Control

Consider a general robot manipulator having n joints. The dynamic equa-
tions including the actuator dynamics are well known in the literature of robot

dynamics (e.g., reference[3.19]) and can be written in the following vector form:
M(q)§ + C(g,4)d + Dg + Dcsgn(q) + g(q) = u, (3.2.1)

where the following definitions apply:

u : nX1 input vector;

4,4,§G : nx1 joint displacement, velocity, and acceleration vector respectively;
M : nxn effective coupling inertia matrix including payload;

Cq : nx1 centrifugal and Coriolis force vector;

g : nx1 gravitational loading vector;

D : nxn diagonal matrix for viscous damping coefficient;

D. : nxn diagonal matrix for friction damping coefficient.



57

Hereafter, the arguments of the variables will be omitted whenever these are

clearly understood.

3.3 Application of Loop Shaping Design

Existing (adaptive) control laws have simply adopted the PD or PID feed-
back laws as a part of their compensators. The control objective in this section is
to reduce tracking errors as much as possible by improving the PD or PID feed-
back laws via the loop shaping method. Since this method has been established
for linear systems in the frequency domain, we need to model the plant as a linear

decoupled system; we modify the system (3.2.1) to

M4+ D4+ ds = u, (3.3.1)
with
My = diag(my, ma,---,m,),
ds = (M — Ma)§ + Cq + Dcsgn(q) + g, (3.3.2)

where m; is the constant diagonal component of the inertia matrix for the it
joint. Note that the constant decoupled inertia and viscous damping terms of the
link and actuator dynamics are modelled as the system to control. Nonlinear or
off-diagonal dynamics of the links are considered as disturbances to the system,
which are deterministic if all the parameters of the dynamics are known.

We perform the Laplace transformation on the linear decoupled system
(3.3.1). Here we define Gi(s), the nominal transfer function of the plant, for

each joint as

Gi(s) = g((j)) - m,'521+ = (3.3.3)

where m; is the ith diagonal component of My, d; is the 7" diagonal component of
D, and Q;(s) and U;(s) are the Laplace transformations of g; and u; respectively.
Equation (3.3.1) is a linear decoupled system with the bounded disturbance

ds. Therefore, we can construct a feedback system for each joint as shown in Figure
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3.1, where D;(s) is the Laplace transformation of dsi, the 3" component of dg;
Ni(s) represents the Laplace transformation of the sensor noise; E;i(s) = Ri(s) -
Qi(s) — Ni(s); and K;(s) is the transfer function of the feedback compensator to

be determined later.
3.3.1 Applying Performance Criteria

The purpose of the loop shaping method[3.20] is to optimize the open loop
transfer function L;(s) based on robust stability, disturbance rejection, and sensor

noise attenuation, where

Li(s) = K;(s)Gi(s). (3.3.4)

Then, the feedback compensator K;(s) is readily obtained using equation (3.3.4)
since G;(s) is given. The standard results from the loop shaping method can be
summarized as follows:

(a) To reject low-frequency disturbances, increase the low-frequency gain of
L;(s) as much as possible. To attenuate high-frequency sensor noise and to obtain
robust stability, reduce the high-frequency gain of L;(s) as much as possible.

(b) To stabilize the system, increase the phase margin of L;(s) as much as
possible, based on the Nyquist stability criterion. Since a greater slope of |Li(s)]
near the crossover frequency provides a smaller phase margin of L;(s), the slope
of |L;(s)| around the crossover frequency should not be less than that of (we/8)?,
which has zero phase margin, where w, is the crossover frequency. Thus, a rule
of thumb is that L;(s) is selected to be approximately we/s near the crossover
frequency.

In a sampled data system, computations for the control can not be achieved
instantaneously. Therefore, information acquired at one sampling time is used
to compute the input to the system at the next sampling time. This causes one
sampling delay, which can be converted to an additional phase lag. Therefore,
we include this additional lag in the phase margin above. From the geometry
of a sinusoidal wave and the sampling action sketched in Figure 3.2, arg L, the

maximum additional phase lag due to the sampling, is wt, radians, where t; is the
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sampling time in seconds. In other words,
0 <argL, < wt, (rad), w < % = 7/[ts. (3.3.5)

Hence, the crossover frequency must be limited by the sampling frequency.
Based on the arguments above, a general procedure for optimizing L;(s) can

be visualized in Figure 3.3.
3.3.2 Design of The Feedback Controller

With an optimally designed L;(s), K;(s), the controller, can be obtained by
Ki(s) = Gi(s)_lLi(s), (3.3.6)

where the plant G;(s) is stable and minimum phase.
When we carry out the procedures and considerations above, we have the

following form for the feedback compensators:

(o) — s (8T Bi)(s + ki)
K;(s) = a;6; GT)GT6) (3.3.7)

where constants are chosen so that a; >0and 6; > 6; > k; > > 0.

Note that K;(s) includes an integrator when +; is chosen to be zero. It is
expected that the performance of the feedback law (3.3.7) designed here is better
than those of PD, PI, or PID control laws.

3.4 New Approach to the Design of Adaptive Control Laws

In this section, we derive a stability criterion with which we can absorb
the improved feedback law in the previous section into adaptive control. This
stability criterion is applicable not only to linear systems but also to nonlinear
coupled systems. Via the stability criterion, we add dynamics compensators to
the improved feedback law in order to compensate for both the link and actuator
dynamics so that the total control system achieves asymptotic stability of tracking

error. The design procedure with the new stability criterion includes search for
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compensators in the direction of minimizing a quadratic performance index to
improve the transient behavior.

Since we want to compensate for the system dynamics, in this section, we will
use the original nonlinear coupled system (3.2.1) throughout our discussion. For
the stability analysis, we assume that (1) uncertainties in (3.2.1) are confined in the
parameters of the dynamics; and (2) there exist no sensor noise, disturbances, and
unmodelled dynamics. In the next chapter, we will remove the second assumption,

and treat some problems arising as a result.

3.4.1 Control Objectives

Our control objective in this section is

(1) to find a control input which guarantees
tllglo é(t) = tllglo e(t) =0, (3.4.1)

where
e=r—gq, (3.4.2)

7 is the nx1 desired trajectory vector; and

(2) to reduce the transient tracking error as much as possible with bounded
control inputs.
3.4.2 Some Useful Stability Lemmas

To derive a stability criterion, we use the known fact: If the 2-norm of any
differentiable signal is bounded, the signal approaches zero as time goes to infinity.

Mathematically this can be formulated as

Lemma 1:
t
lim y(t) =0, if / y(1)Ty(r)dr < co, Vi3> 0, (3.4.3)

where y(t) is any finite-dimensional differentiable vector. This lemma has been
proved by several researchers, but the original work was attributed to Barbalat by

Popov][3.21].
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We extend the Lemma 1 to apply to later derivation of a stability criterion.

Lemma 2:
t
tlim y(t)=0, if / y(1)T8(1)y(r)dr < 00, V>0, (3.4.4)

where y(t) is any 71 X 1 differentiable vector; S(t) is any 72 x7 bounded differentiable
positive-definite symmetric matrix. A proof of Lemma 2 is given in Appendix 3.A.
Lemma 2 can be interpreted as: any differentiable signal approaches zero as time
goes to infinity, if a 2-norm of the signal weighted with a bounded differentiable

positive-definite symmetric matrix is bounded.
3.4.3 Developing A New Stability Criterion

With the Lemma 2, we develop a stability criterion, a sufficient condition on
the control input u, for the objective (3.4.1) of achieving zero tracking error. The
underlying principle for the derivation of the new stability criterion is as follows:

( 1) To achieve e(t) — 0 and é(t) — 0 as t — oo simultaneously, we

enforce y(t) — 0 as t — oo, where the filtered tracking error y(t) is defined as
= é + Ke, (3.4.5)

and K = diag(k1,%2,+-+,kn) > 0; K; is already defined in Section 3, equation
(3.3.7).
( 2) To impose y(t) — 0 as t — oo, we obtain a weighted 2-norm of y
from the system dynamics, and make it bounded, in order to apply the Lemma 2.
Then, as a part of the procedure, we deduce a sufficient condition on the control
input u for asymptotic stability of tracking error e.
The first step of deriving a stability criterion is to obtain a weighted 2-norm
of y. To obtain this norm from the system dynamics, we modify the system

equation (3.2.1) to

M(i+ py) + Cd+ D& + Desgn(q) + g — u = pMy + Dy, (3.4.6)
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where p is some non-negative scalar to be selected; and & is defined as
oc=r+Ke. (3.4.7)

Premultiply both sides of (3.4.6) by yT and integrate from 0 to t to find the

norm.:
t t

/ yT (pM +D)ydr = / yT(M(Ej+py)+C’q+Dd+Dcsgn(<})+g—u)dT. (3.4.8)
0 0

Note that it is very difficult to measure angular accelerations. Hence, it is crucially
important to avoid using these signals in a control law. Since differentiation of
(3.4.5) and (3.4.7) with respect to time gives § = & — g, we replace § in (3.2.8)
with [6 — g]. Then, the system equation (3.2.8) becomes

t
y /0 y7(pM + D)ydr

1 t [ ) . . .
—_ 5yTMyIO + / yT(M(a + py) + C& + D& + Desgn(q) + g — u)dr,
0

(3.4.9)
which can be written
L 1 7 17 b or
/ y (pM +D)ydr = §y(0) M(O)y(O)—Ey My-i-/ Y (W:c—u)d’r, (3.4.10)
0 0

where the mx1 true parameter vector z and the nxm function matrix W are

defined such that
Wz = MG+ py) + Cé + D6 + Desgn(q) + g. (3.4.11)
We have used the fact that

¢ t
1 t .
/0 yT Mydr = EyTMy'O - -;—/0 yT Mydr; (3.4.12)
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and that (M —2C) is skew-symmetric (yT (M —2C)y = 0) if the non-unique matrix
C is chosen properly[3.22].
Since we have obtained a weighted 2-norm of y in (3.4.10), we are ready to

apply the Lemma 2 to form:
Lemma 3: When |#(t)| < oo for all ¢ > 0, we can guarantee that e — 0 and

é — 0 as t — oo if we find a control input u such that
t
n(t) = / yT(Wx — u)dr < oo, Vi > 0. (3.4.13)
0
Proof:

(3.4.10) and (3.4.13) = /t yT(pM + D)ydr < 00, V1> 0,
’ (3.4.14)
if the initial error is bounded, that is, if y7(0)y(0) < co.
Since M and D are differentiable, symmetric, and positive-definite, by the
Lemma 2, asymptotic stability is established. Q.E.D.
We have used M and D for the weight of the 2-norm of y in (3.4.10). How-
ever, we can use any combination of any differentiable positive-definite symmetric
matrices with appropriate dimensions (e.g., any of M and D). Then, the definition

of Wz changes accordingly.
3.4.4 Design of Adaptive Control Laws Using A Performance Index

In this section, we design adaptive control laws based on the Lemma 3. The
design procedure involves search: we select a plausible candidate for control (and
adaptation) law, and then check whether or not this candidate satisfies the Lemma
3.

To make the search easy and to improve the transient response, we apply the
basic principle of optimal control: we search for the control input which minimizes
a quadratic performance index. From (3.4.10), we select the following performance

index:

t
1
J= / v (oM + Dyydr + 59" My, (3.4.15)
0
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Minimizing J minimizes the maximum magnitude of y, and consequently improves

the transient response. According to the definition of 5(t) in (3.4.13),
minJ <= ming(?), Vi>o0. (3.4.16)
(4 u

Hence, minimizing the performance index is equivalent to minimizing 7(¢). Mini-
mizing 7(¢) and satisfying the stability criterion (the Lemma 3) impose almost the
same requirements on the control input u. However, the former requires stricter
constraints than the latter since the former requires 7(t) to be minimized and
the latter requires it to be bounded. The former improves the transient response
and the latter guarantees the asymptotic stability (i.e., performance for ¢ — 00).
Since there is no general solution for nonlinear systems, we relax the conditions of
minimizing 7(t) to those of reducing 7(t), from which we deduce the following:
(a). Selecting Dynamics Compensators:

To minimize the non-positive 7(t) defined in (3.4.13), we need to cancel each
components of Wz with a compensator u. We take advantage of the structure of

Wz. That is, we choose
u=Wz, (3.4.17)

where Z is the parameter vector to be estimated. The best possible way is to
update Z such that £ may approach asymptotically to the true parameter z.

With the choice (3.4.17), we have

n(t) = /0 yTW (& — &)dr. (3.4.18)

Note that when no uncertainties exist on the parameters of the system dynamics
(i.e., Z = ), the choice (3.4.17) makes 7(t) = 0.
To reduce 7(t) in (3.4.18), we choose Z such that

t
/ yTWzdr >0, Vit>0. (3.4.19)
0

The condition (3.4.19) can be satisfied only if Z is a function of W and Y.
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(b). Selecting Feedback Compensators:
According to (3.4.13), to reduce 7(t), we need select a compensator u that

satisfies

t
/ yTudr >0, V>0, (3.4.20)
0

which is similar to the condition (3.4.19). To satisfy this condition, we need to
select u as a function of y, the feedback component. Hence the requirement (3.4.20)
leads to feedback compensators.

(c). Selecting A Candidate for The Control and Adaptation Laws:

There may exist many compensators which satisfy (3.4.17) and (3.4.19), or
(3.4.20). Some or all of them are candidates for control and adaptation laws. Note
that a dynamics compensator is indispensable for the asymptotic stability of the
system. In general, higher gain produces smaller tracking errors at the expense of
reduced stability. Hence, we need to find compensators whose characteristics are
much different from one another.

In summary, the design procedure is (i) choose candidates (some compen-
sators) based on (3.4.17), (3.4.19), and (3.4.20), the relaxed requirements for min-
imizing 7; (ii) show that some of the compensators make 7(¢) bounded, i.e., they
satisfy the Lemma 3 for asymptotic stability; and (iii) show that the remaining
compensators reduce 7(t) (the quadratic performance index) even further from
the bound of 7(t) sufficient for asymptotic stability, so that these compensators
improve the transient response.

Note that the proposed approach can be applied to the controller design
of any system whose dynamics is linear in the parameters of the system, with
appropriate modifications in the definition of y, if necessary, depending on the

order of the system.

Based on the Lemma 3 (for asymptotic stability) and the constraints (3.4.17),
(3.4.19), and (3.4.20), we have found the following control and adaptation laws:

Theorem 1: A control law which guarantees that e — 0 and é — 0 as
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t — o0 is given by

o0
u=Wz+O0®t)y+ > (FY)F(YFy) (3.4.21)

=1

with an adaptation law

t oo

z=P / WTlydr + Z]-"j(WTy) + Z(0). (3.4.22)
0 .
i=1

The memory component Z is the mx1 estimated parameter vector such that
Wz = M(é+ py) + Cé + D + Dcsgn(q) + 3, (3.4.23)

where M, C, D, D., and § correspond to the unbarred variables computed with
the estimated parameters; the infinite sign oo in the summations indicates that
we can use as many filters and hence free parameters as we wish. The various

symbols appearing in (3.4.21) and (3.4.22) are defined as follows:

P = diag(Pl,P%"' ,pm) >0,

Y = dia‘g(yb Y2, ayn)' (3424)

For simplicity, O is defined in the frequency domain as

O(s) = diag(01(s), 0a(s), O3(s),- -+, Ox(3)), (3.4.25)
with
(o) = _i%is £ 6i)
Ol = o Sy 5T (3.4.26)

where a; > 0, §; > B; > v > 0, but ~; # §;. For the definition of the operator O
in the time domain, see Appendix 3.B.

The operators F;, .73}, and .73'] are defined in the frequency domain as

-7:]' = diag(Flj)ij,' *e a]:mj)>
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ﬁ:f = dla'g(ﬁlj,ﬁz_]) )ﬁnj)’

Fi = diag(Frj, Fajo- -, Fug), (3.4.27)
with
]—'(3) :(G'Lb”_ a;; >0, bi:>0
ij s+ bij ’ iy ’ iy ’
- dijéij . .
Fij(s) =( =), ai;j 20, b >0,
s + bij
a &iji),'j . -
Fij(s) =(—==), a5 >0, by >0 (3.4.28)
s+ bij

For the definitions of these operators in the time domain, see Appendix 3.B. For
simplicity, we have defined .7:"](3) as a first-order filter. However, .7:'](5) can be any
kind of stable filters. This is shown in Appendix 3.C.

The proof of the Theorem 1 is given in Appendix 3.C. The block diagram of

this control law is shown in Figure 3.4.

Theorem 2: 22, ((]:"JE)]:'](Y]:'Je) + (]:"]E).i’:“](Yf'Je)) can replace or be
added to E;’;I(EY)f'](Yf"]y) in the Theorem 1. where

E= diag(el) €2, ?en)’

E = diag(é1, éa,-- -, én). (3.4.29)

Theorem 2 is based on the condition (3.4.20) and can be proved with the

following inequalities:
t -~ -~ ~
[ A EREE Fedr >0, ¥i=1,2, 00, V20,
0
t v - A~ e
/ y(FHE)F(YFié)dr 20, Vj=1,2,--- 00, ¥£>0. (3.4.30)
0

Note that the control laws in the Theorem 2 require more computation time

than that in the Theorem 1.
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3.5 Remarks

1. From (3.3.7), (3.4.5), (3.4.25), and (3.4.26), we have O(s)Y(s) =
K(s)E(s) where

K(s) = diag (Kl(s), Ka(s), - ,Kn(s));
B(s) = diag(Ex(s), Ea(s), -+, Ea(s) );

Y(s) = diag (Yl(s),Yg(s), s ,Yn(s)). (3.5.1)

Yi(s) and E;(s) are the Laplace transforms of y;(t) and e;(t) respectively. Hence,
the parameters in O;(s) have been already chosen in (3.3.7) based on the loop
shaping method.

2. The additional computations due to the py term in Wz, equation (3.4.11)
and in WZ, equation (3.4.23), are only n (=number of joints) multiplications and
n additions per one sampling period, the computation of which is almost negligible
compared with the total computation time. The py term represents a feedback
compensator whose gain is M. The characteristics of this compensator are quite
different from those of the other feedback compensators represented by the Oy
and JE'] terms.

3. According to the theorems, the filtered error y defined by (3.4.5), con-
verges to zero. Hence, the adaptation rule (3.4.22) guarantees that Z, the param-
eter vector, converges to some constant values, but not necessarily to the true
values. It may be shown that the updated parameters approach to the true pa-
rameters if trajectories are persistently excited. However, in practice, it is very
difficult to meet the condition of persistent excitation. Hence, it may be almost
meaningless to try to get the true parameters.

4. We have paid no attention to the sensor noise, disturbances, and unmod-
elled dynamics in the stability analysis. See the system equation (3.2.1). However,
in reality, we can neglect none of these. Consequently, we may have some problems

in physical implementations. In the next chapter, we will analyze the effects of
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these on the stability of the system.

3.6 Computer Simulation

As an example, one of the schemes developed here has been applied to
a two-link direct-drive arm shown in Figure 3.5. The masses of the actuators
are included (modelled) in those of the link dynamics since the manipulator is a
direct-drive arm. We used a 4**-order Runge-Kutta method with adaptive step
size[3.23] to guarantee accuracy in the solution of the manipulator dynamics. In
this simulation, Coulomb friction is not used because this causes a problem with
accuracy in the solution of the manipulator dynamic equation.

The dynamic equation of motion of the mdnipulator is that
Mi+Ci+Dg+ g=u, (3.6.1)

where

Mo Tt 2z9cos(q2) + z3 1 + T2 cos(gs)
z1 + x3 cos(qz) z1 ’

—zgsin(ge)de  —x2sin(ge)g1 — z2 sin(qa)de
+x2sin(g2)¢1 0 ’

T4 0

0 x5/’

z6 cos(q1 + g2) + z7 cos(q1) )
_ , 3.6.2
9 ( z6 cos(q1 + q2) ( )

D

with

2
Ir1 = 12m2,
za = l1lama,
— l2
z3 = l{(my1 + ma),
g = malag,

7 = (m1 + mg)llg. (3.6.3)
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Matrix D(z4 and z5) represents the damping coefficient of the links.

The numerical values used in this simulation are as follows; m; = 15.91 kg,
mg = 11.36 kg, and I; = Iy = 0.432 m. These values represent links 2 and 3 of the
Unimation Puma 560 arm. We set z4 = 10.8 Nm/sec and z5 = 3.2 Nm/sec. As a
disturbance, the mass 2 (mz) was doubled after 2 seconds.

We have designed some adaptive control laws in the previous section. Among

them, we use the following adaptive control law:

o0
u=Wz+O0®)y+ > (FY)F;(YFy), (3.6.4)
i=1
Wz =M@+ py)+Co+ Dé + 3, (3.6.5)

with an adaptation law

=P / t wlydr + ifj(WTy) + Z(0), (3.6.6)
0 j=1
where
O(s) = diag(O1(s), Oa(s)), (3.6.7)

with the following definitions from (3.B.1) and (3.4.28):

Oj(s) = aiéi(%: — b ﬂf — 1

7i = 6 ~—5) Gia) (3.6.8)

1
)'(S_*_%)'l‘ai&i(

. a15b15 | , az;jby; Amjbm;
7= ding (250, (2E), (25,
- . d1bj |, G2;be;
Fj = dlag((s _i Iv)lj)’(s _i B;)):
j j
A G1jb1; |, Gajboj
ﬂ:dlag(( Ly (220 )). (3.6.9)

S+blj s+b2]‘

W and z are defined as follows:

z = (x1 T3 T3 T4 T5 T6 T7)
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W= |®%1 w2z wiz wiy 0 wi wiy , (3.6.10)
war wee 0 0wy weg O

with

w11 =w1 = (61 + py1) + (52 + pya),

wiz = cos(2) (231 + pun) + (52 + o)
— sin(g2)(§201 + G162 + ¢202),

w13 =01 + py1,

w14 =01,

w16 =wae = 10 cos(q1 + ¢2),

w17 =20 cos(q),

wag = cos(g2)(G1 + py1) + sin(ga) 1671,

w5 :(5'2. (3.6.11)

The update of the parameters is performed by (3.6.6) at predetermined sampling
points. The true values of the parameters zg and z7 are very large compared with
the others. Therefore, when all the adaptation gains for the parameters are set
to be the same, the adaptation rates of zg and z7 are relatively small compared
with those of the others. This means that convergence of these parameters is very
slow. To fix this problem, we multiplied wg and wi7 by the factors 10 and 20
respectively; see equation (3.6.11).

The adaptive control law above is developed in the domain of continuous
time (or s-domain). Therefore, when we implement the control law through the
sampled data system, we need to discretize the control law; that is, we need to
convert the domain of continuous time (or s-transformation) to that of discrete
time (z-transformation). In our simulations, the integrations and the filterings

associated with y in the control law have been performed using the following
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trapezoid rule (Tustin’s rule)[3.24]:

(3.6.12)

To make our simulation realistic, we included a delay of one sampling time
in our control inputs for computations, measurements, and conversion of signals.
To relieve the computational burden, we use a dual-timing update rule: 2 msec
for the feedback compensators, and 10 msec for the feedforward compensators.
Hence, there are two different delays (2,10 msec) in our control inputs.

To see the importance of the transient behavior, we compare the proposed
scheme with Slotine’s scheme which focuses on asymptotic stability.

The desired trajectories are chosen as

71 = cos 5t,

r9 = cos 3t, (3.6.13)

which are shown in Figure 3.6.

Figures 3.7 and 3.8 show the tracking errors 1 and 2 with the single-timing
update rule (t; = 2 msec), in which the dashed and the solid lines indicate the
errors of Slotine’s and present schemes respectively. The initial values for the
parameter estimation are equal to 0 in Figure 3.7 and to the true values in Figure
3.8. The non-zero control and adaptation gains of both schemes for this simulation
are as follows:

(1) Common numerical values for all simulations:

K1 = Ko = 20,
Vi =0 <o00,8;=00,1=1,2
a1 = 360, as = 105.

(2) Slotine’s scheme (dashed lines):

P = 201,,,xm ; where I,xm is m X m identity matrix.

(3) Present scheme (solid lines):
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P =20Ixm, p = 80,

@i =10x109/3, & =b;1 =20, by =3, i=1,2

Note that in this simulation, we use only the first terms (7=1) of the adaptation
law for the present scheme.

Figures 3.9 and 3.10 show the tracking errors 1 and 2 with the dual-timing
update rule (t; = 2 msec for the feedback laws and ¢, = 10 msec for the dynamics
compensator) in which the dashed and the solid lines indicate the errors of Slotine’s
and present schemes respectively. The initial values for the parameter estimation
are set to be 0 and the true values in Figures 3.9 and 3.10 respectively. The
non-zero control and adaptation gains of both schemes for this simulation are

(1) Slotine’s scheme (dashed lines):

P =401, xm-
(2) Present scheme (solid lines):
P = 40I,,xm, p = 40,
a1 =25x10%/3, a1 =0b;1=20, by=3, i=12
Note that we have not used any low-pass filter for Oy, because there is no sensor
noise in this simulation.

In both sampling strategies, the present scheme reduces the tracking errors of
Slotine’s scheme by up to 2/3 in terms of the maximum magnitude. However, the
increase in the computation time is less than 1/10 - 1/5 of the total computations.
The gains for Slotine’s scheme are thought to be optimum because the tracking
errors can not be reduced further by increasing the gains of Slotine’s scheme. The
additional reduction of the tracking errors by the present scheme is much larger
with the dual-timing sampling technique. This is because the delay of one sampling
period of dynamics compensation becomes larger with the dual-timing sampling
technique, and this is effectively compensated by additional computationally fast
compensators in the present scheme.

We can also see the advantages of the present scheme from another point
of view. Comparing Figures 3.7 with 3.9 and 3.8 with 3.10, we can see that the

performances of the present scheme with dual-timing update are better than those
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of the single-timing Slotine’s scheme. This means that with the present scheme
we can reduce the computation time of Slotine’s scheme by up to 3/5 without
sacrificing the performances.

In Figure 3.8, the tracking errors between 0 and 2 seconds are almost zero.
This means that both schemes work perfectly when we have precise knowledge of
the parameters. After 2 seconds when the mass 2 is doubled, the tracking errors
become larger. A major reason is that the true values of the parameters are shifted
due to mass change. The tracking errors do not subside within a couple of seconds.
This means that a substantial amount of time is required for the parameters to
converge. This result supports that the asymptotic stability guarantees nothing
about the transient response other than stability, and that the transient response
as well as the asymptotic stability need be considered in the design of adaptive

control laws.

Through extensive simulations, we have found that larger adaptation gains
of the dynamics compensator result in faster parameter convergence. We have also
found that there exist upper bounds of these gains for stability in the simulated
digital control systems. As the gains increase, the tracking errors decrease. When
the gains reach certain values (i.e., optimum values), the decrease in tracking errors
is saturated. As the gains increase above those optimum values, the response of
the system gets noisier and noisier to instability. Noisier response (i.e., very high-
frequency response) may hurt the mechanical parts of manipulators and excite
unmodelled dynamics that cannot be avoided in the real world.

To make the comparisons fair, all the gains associated with the adaptation
of Slotine’s scheme are increased until the output becomes noisy, and then the
other compensators (pMy and ﬁj terms) are added.

The parameters are found never to converge to the true values, but remain in
the bounded region around true values. This is because the parameter convergence
is guaranteed only with zero tracking errors and persistently excited trajectories.
Note that in the sampled data system we cannot achieve zero tracking errors for

time-varying reference inputs due to the delay of one sampling period caused by
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the computation time. When we use a trajectory whose final velocity is zero,
the tracking errors approach approximately zero. As a result, the parameters
converge to some constant values since the adaptation in (3.6.6) is proportional to
the tracking errors. However, these values in general are not the true ones, because
the condition of persistent excitation of the trajectory is not satisfied around the
end point of the trajectory (when velocity is zero).

Similar results with the other trajectories and sampling periods have been
obtained, but are not included here. Note that the integral controller is used
mainly for suppression of the tracking errors due to static (or low-frequency)
reference inputs (or disturbances). Since we used sinusoidal waves as the reference
inputs, the integral controller helps little. Hence, in this simulation, we did not

use the I-controller.

3.7 Conclusion

In this chapter, we have focused on improving the transient response of the
system as well as obtaining the asymptotic stability of the system. We guarantee
the asymptotic stability of the system by satisfying the new stability criterion, and
improve the transient response by searching for compensators in the direction of
minimizing a certain quadratic performance index.

A non-adaptive feedback compensator is designed independently by the loop
shaping method. Then adaptive dynamics compensators and adaptive feedback
compensators are added via our new stability criterion, combined with the princi-
ples of optimal control. Thus, our technique takes the maximum advantage of the
loop shaping, optimal control, and adaptive methods; whereas each method has
been independently applied to the design of control laws in the existing literature.

The computer simulations confirm that the proposed schemes emphasizing
both the transient response and the asymptotic stability considerably outperform
Slotine’s scheme which focuses only on the latter, in terms of computation time
and magnitudes of tracking errors. As a consequence, we conclude that it is

important to take the transient response in addition to the asymptotic stability
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into consideration in the design of adaptive control laws.

The proposed control laws are derived under the ideal condition of no sensor
noise, disturbances, and unmodelled dynamics. Hence there may arise some
problems when the ideal conditions are not met. In the next chapter, we will
analyze the stability of the proposed control law in the presence of sensor noise,

bounded disturbances, and unmodelled dynamics.
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Appendix 3.A: Proof of Lemma 2

Since S(t) is an X7 symmetric matrix, bounded, differentiable, and positive
definite, there always exist a bounded, differentiable, orthogonal matrix ©(t) and

a bounded, differentiable, positive-definite diagonal matrix 15(t) such that
S(t) = ©T(t)P(t)O(t), Vt>0. (3.4.1)
Then,

t i
| v s@uemin = [ ©@ur) P <o, Vi,

= / O y(T)T(O(r)y(r))dr < 00, V1i3>0,
0

since P(t), Vt > 0 is a bounded, differentiable, positive-definite diagonal matrix.

Then, by the Lemma 1 and the characteristics of ©(t),

lim ©(t)y(t) =0, hence, tlim y(t) = 0. QED.
—Q

t—o0

Appendix 3.B: Computation of fot yT (Oy)dr
Note that O;(s) can be interpreted as

S+,3i)‘( 1

s+ s+ 06
1 ).(8+,3i

s+ 6; s+
1 s+ B;

= a;b; :

“ (8+%‘) ($+5i

)

O;(s) = a;6(

)

)



_ e85 FBiy 1

= aidi( +&)(s+%)

_ e Yi=Biy 1 e Bi—biy 1

_aléz(% —51') (s+%)+a151(%_6i) (5+6i). (3.B.1)

Note that (L=5¢) > 0 and (£=5i) > 0.

Also note that O;(s) may include an integrator when +; is chosen to be
zero, and that the component (s + 8;)/(s + 7:) can be interpreted as a lag-lead
compensator, i.e., a gain amplifier, in the low-frequency region.

Different interpretations of O;(s) above lead to different realizations in the
time domain. However, they are all equivalent. We can show the equivalences in

the time domain. Here, we use the last realization in (3.B.1),
Oifs) = Fyy(s) + Fe (o), (3.B.2)
where the operators Fs, and F,, are defined as

Fouls) = aasi(L=By (2,

Yi—6i" s+
Bi — 6; 1
(8) = ;6; . , .B.

such that in the time domain

. _ 3. t
Fry(t) = ai5i(u£)e_7it/ yeiTdr,
Y — 6 0

)

_ g, rt
Fsy(t) = aiéi%%——%%e—‘s"t/ yediTdr. (3.B.4)
I ) 0

When +; is chosen to be zero, F,; includes an integrator. Hence, O; can be an
integrator, a low pass filter, or both, depending on +;, 8;, and §6;. |

The operators F;, .7:'j, and .7:"]' can be defined in the time domain similar to
(3.B.4).

i __Gi=w) (1., .
/O () (Fa 2Ot = e (SFelen) P+ & /O (Fez(t))%d)
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>0, Vo #0, 6 > B;, 6; > %Y, 2, and t; > 0. (3.B.5)

The computation of fot ' 2(t)Fy,z(t)dt is similarly achieved.
Then,

/ IOy =3 (e s G Fan) + 5, [ (Frantoan

(i—éi) 1 2 /tl 2
t = (G(Futi®))’ + 7 | (Fruwi(t))?dt
i s GO+ [t Pan)
>0, Va, #0, & > i, 6; >, vy, and ¢. (3.B.6)

We can readily show that fot yTOydr > 0 for the other realizations in (3.B.1).
Appendix 3.C: Proof of Theorem 1

Let us insert the chosen adaptation and control laws into n(t) in (3.4.13):

n(t) = /0 YWz~ 2) - Oy - S (EV)E(Y Fy)dr

i=1
= /0 yT (W (:1: - P/O Wlyds ~ ;E(WT?J) - 5(0))
~ Oy = S (EYVE(Y Fiy)lar
7=1

= [ Ti —Z; _
< Z(—Z—’% [ wyr - ‘%pi—“’—”f + 50 (01 = (0)?)
< -;-fm_: @i (3.C.1)

This shows that the control law (3.4.21) and the adaptation law (3.4.22) satisfy
Lemma 3. Hence, this proves Theorem 1. Q.E.D.
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In (3.C.1), it is assumed that z is the mx1 unknown but constant vector.
The integral term of Z is sufficient to make 7(t) bounded; see the first inequality
in (3.C.1). Contributions from the O, Fj, and Y terms reduce 7(t) (the quadratic

performance index) even further, since

14
/ yTOydr >0, Yit>0,
0

t
/(yTW)]:J(WTy)dTZO: Vj=1725"°7007 VtZOa
0
t v ~ d
/ yI(EYF(Y Fy)dr >0, Vji=1,2,---,00,Vt>0. (3.C2)
0

These relations follow from (3.B.5) in Appendix 3.B. Hence, these three terms
reduce the magnitude of the filtered tracking error y. Note that ]:"j can be any
kind of stable filters since the Y term in (3.C.2) is always non-negative regardless

of the type of .7:']
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Chapter 4

ROBUST REDESIGN
OF ADAPTIVE CONTROL OF ROBOTS

4,1 Introduction

In the previous chapter, we have addressed the importance of the transient
response as well as asymptotic stability of the system. To improve the transient
behavior, we use compensators whose characteristics are much different from one
another. Those compensators are found by search toward minimizing a certain
quadratic performance index.

According to the analytical results in the previous chapter, larger control and
adaptation gains result in smaller tracking errors since larger gains cause smaller
values of the performance index. Computer simulations support this. However,
the computer simulations also show instability when the gains become larger than
some critical values. A major reason is that in the modelling and hence stability
analysis of the system, we neglected the effects of feedback delays, signal holds,
and quantization errors associated with the digital control systems, which can be
interpreted as unmodelled dynamics. In fact, we have derived the adaptive schemes
in the previous chapter under the assumption of no sensor noises, disturbances,
and unmodelled dynamics. This assumption is far from reality. Hence, there arises
a natural question of how these schemes will perform when the assumption is not
met.

In the early 1980s, the adaptive control community began to deal with the
robustness problem in adaptive control schemes for linear time-invariant systems.
Several researchers observed instability[4.1] in some asymptotically stable adap-

tive schemes when the above assumption is not satisfied. As mentioned in Section



91

1.2.3 of Chapter 1, instability is caused by drift of parameters (or control gains) to
large (possibly unbounded) values due to integrators in the adaptation loop in the
presence of bounded disturbances, sensor noises, or unmodelled dynamics. Accord-
ingly, those integrators were removed in several modified adaptation laws[4.2-4.9]
to prevent parameter drift. Robustness in adaptive control does not mean the ro-
bustness with respect to parameter uncertainties but rather means the robustness
with respect to parameter drift in the presence of bounded disturbances, sensor
noises, and unmodelled dynamics.

Since Dubowsky and DesForges[4.10] first introduced an adaptive control
strategy to the control of manipulators, extensive research has been performed
toward obtaining asymptotic stability[4.10-4.35]. As a consequence, several recent
schemes(4.36-4.40] and those proposed in the previous chapter come to guarantee
the asymptotic stability under the assumption of no disturbances, sensor noises,
and unmodelled dynamics. Robustness of adaptive control of robots was discussed
in [4.41] with some artificial unmodelled dynamics and disturbance. With sensor
noises in simulations, instability due to parameter drift was observed in some
adaptive control laws for robots which are asymptotically stable under a certain
ideal condition[4.42].

In this chapter, we show that the integration adaptation law used in the
previous chapter may cause instability due to parameter drift in the presence of
sensor noises or bounded disturbances. We redesign the adaptive scheme proposed
in Chapter 3 by replacing its integration law with the o-modification[4.7,4.8] to
prevent parameter drift. We also propose new adaptation laws using the bounds
of parameters. Then, we investigate the effects of bounded disturbances and
feedback delays in the digital control systems on the stability of the adaptive
scheme redesigned with the new adaptation laws. As a result, for the redesigned
scheme, we derive stability bounds for disturbances, control and adaptation gains,
and desired trajectories and their time-derivatives, in the presence of feedback
delays. This result explains instability observed in the previous chapter when the

control and adaptation gains are larger than certain critical values. In contrast, no
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stability bounds have been provided in the literature of adaptive control of robots.

In Section 2, we examine the instability mechanism in relation to the integra-
tion adaptation law used in the previous chapter. In Section 3, we model feedback
delays, signal holds, and quantization errors in signal conversions. In Section 4,
we define an appropriate quadratic performance index. Then, we search for com-
pensators which reduce the performance index as much as possible to improve the
tracking performance. In the search, we select compensators from the Theorem
1 of Chapter 3, and modify them with the new adaptation laws. Then, in the
Appendix, we analyze the stability of the selected adaptive scheme in the presence
of bounded disturbances and unmodelled dynamics, and derive some stabilizing

constraints.

4.2 Instability Mechanism

In this section, we examine why the integration adaptation law used in the
Theorem 1 of Chapter 3 may cause parameter drift in the presence of bounded

disturbances or sensor noises.

Consider a simple horizontal one degree of freedom robot under an ideal
condition:

mldl = Ui, (4.2.1)

where mq is the mass moment of inertia of the link; u; is the control input; and

q1 is the angle of the link.

A basic adaptive control law for this robot is given by the Theorem 1 of

Chapter 3:
U = M1 (7"1 + k161 + p(é1 + /-;161)) + ko(é1 + K1e1) (4.2.2)

with .
My = / (7'«’1 + K1é1 + p(é1 + /c161))(é1 + K1e1)dr, (4.2.3)
0
where p > 0; k1 > 0, ko > 0; and e; = 71 — q1, 71(t) is the desired angle of the
link.
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Note that the adaptation law (4.2.3) also updates the constant inertia terms
of a robot which has more than one degree of freedom.

Under the ideal condition, it is guaranteed that e; — 0 and é; — 0 as
t — oo, and that m; — my as t — oco. In the presence of bounded disturbances,
nothing is guaranteed unless the disturbances are completely compensated. Then,
a question naturally arises as to whether it is still possible to guarantee |e1(¢)| < oo

and |é;(t)] < oo for all t > 0. To answer this, we rewrite the adaptation law m; as

$ t 14
. + ml/ é2dr + p/ (é1+ kyer)?dr. (4.2.4)
0 0

t
w g K
m1 =/ 7“1(61 + K,lel)dT-l— —21-6%
0

The third and fourth terms will grow unbounded since the tracking errors do
not converge to zero as time goes to infinity due to lack of compensation for
disturbances or sensor noises. Therefore m; grows unbounded unless the first
term exactly cancels the third and fourth terms, which is in general impossible.
Hence, m; grows unbounded and instability results. This supports the simulation

result in the reference[4.42].

4.3 Modelling A System to Control

The dynamics of a rigid-joint robot is given[4.43] by
Mi+Ci+Dj+g+d=uy, (4.3.1)

where

4,4,4 : nx1 joint displacement, velocity, and acceleration vector for the links
respectively;

M(q) : nxn effective coupling inertia matrix for the links including payloads;
C(4,9)g : nx1 centrifugal and Coriolis force vector;

D : nxn matrix for viscous damping coefficients of the links;

9(q) : nx1 gravitational loading vector;

d : nx1 bounded disturbance vector;

ug: nX1 actuator input vector;
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d: nx1 vector representing bounded disturbances;
n : number of joints.

In the digital control systems, feedback delays, signal holds, and quantization
errors are inevitable. Here, we investigate the effects of these on the stability of
adaptive control systems. We assume that the sampling time (¢;) and sensor
resolution are sufficiently small. Then, the control input in the digital control

systems can be represented by

Ug =(1 + 61)u(t — ts) + Uq

=(1+ 61)u(t) + ug — tsu(t) + O(t2), (4.3.2)

where u denotes the control input in the analogue systems; t; < 1; 81(¢) is some
small scalar (|61 < 1), and ug(t) is the nx1 small vector (ulu, < 1), denoting
the effects of the signal holds and quantization errors on the control input. O(:)

denotes the order of the argument.

From (4.3.1) and (4.3.2), we represent the dynamics of a robot in the digital

control systems as
Mi+Ci+Dg+g+d=u+ u, (4.3.3)

where

d=d—u;—Otd);

Ue = 01U — L4, (4.3.4)

4.4 Design of A Robust Adaptive Control Law

We cannot obtain asymptotic stability unless we completely compensate for
disturbances and unmodelled dynamics. Accordingly, our control objective is to
find a stable and robust adaptive control law which

(1) guarantees for some finite non-negative scalars 8; and 8, that

[6(t)] <61 and |e(t)] <8, V>0, (4.4.1)
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where
e=r-—gq, (4.4.2)

r is the nx1 desired trajectory vector; and

(2) reduces the maximum tracking error (e) as much as possible with
bounded control inputs.

To achieve this objective, we first define an appropriate quadratic perfor-
mance index for the system to control. Secondly, we search for compensators in
the direction of minimizing the performance index to reduce the maximum tracking
errors. Finally, through stability analysis, we derive some sufficient conditions on
desired trajectories, disturbances, and control and adaptation gains, under which

the proposed adaptive scheme stabilizes the system.
4.4.1 Defining A Quadratic Performance Index

To minimize both tracking error (e) and the derivative of the tracking error
(é), we minimize the following quadratic performance index in relation to the

system dynamics:

¢
J E/ yT(pM + D)ydr, (4.4.3)
0

where we define the filtered tracking error y as
y=é+ Ke; (4.4.4)

K = diag(k1, K2, -, kn) > 0; p is some non-negative scalar to be selected.
To connect J to the system to control, we modify the system equation (4.3.3)

and integrate from 0 to ¢:

t t
l/yT@MHJ»wh:i/yTPﬂ§+m0+C@+D6+g+d—u—u4®y (4.4.5)
0 0
where ¢ is defined as

& =7+ +Ke. (4.4.6)

Note that o is a desired trajectory corrected with tracking error.
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We replace § in (4.4.5) with (6 — g) to circumvent the requirement of

measuring angular accelerations. Then, we can rewrite equation (4.4.5) as
¢
7= [ 4T (oM + Dyyar
0

]. T t ¢ T . . .
==3Y My|0+ Y (M(6+py)+00+DU+9+d““‘“e)d7’
0

(4.4.7)
where we have used the fact that
b 1Lp it 1 [t g
/ yT Mydr = =y Myl — - / T Mydr; (4.4.8)
0 2 0 2 0

and that (M —2C) is skew-symmetric (37 (M —2C)y = 0) if the non-unique matrix
C is chosen properly[4.43].

We can rewrite (4.4.7) as

1 1 t
J = 5y(o)TM(o)y(o) ~ §;yTMy + / yT (Wa: +d—u-— u) dr, (4.4.9)
0
where the mXx1 true parameter vector z and the nxm function matrix W are

defined such that
W= M6+ py)+Co+ D6 +g. (4.4.10)

We have used M and D for the weight of the performance index. However, we
can use any combination of any differentiable positive-definite symmetric matrices
with appropriate dimensions (e.g., any of M and D). Then, the definition of Wz

changes accordingly.

4.4.2 Design of A Robust Adaptive Control Law Using A Performance

Index

The objective in this section is to find a control law which stabilizes the
system and minimizes the performance index J. Minimizing J minimizes the

maximum magnitude of y, and consequently improves the transient response.
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Since there is no general solution for nonlinear systems, we relax the conditions of
minimizing J to those of reducing J.

A control law reduces J if the control law (u) satisfies the following con-
straint: .

/ yTudr >0, Vi>0. (4.4.11)
See (4.4.9). This constraint reoquires that any compensator (u) be a function of y.
The constraint also requires the compensator u to contain W to compensate for
the dynamics. We search for compensators which satisfy the counstraint (4.4.11).
However, we need to analyze the stability of the chosen control law (the chosen
compensators) for the given system since we relax the conditions of minimizing J
to those of reducing J.

Larger magnitude of gains of a stable control law results in smaller perfor-
mance index J and hence smaller maximum tracking errors. However, as in linear
control theory, increasing the magnitude of gains above certain values may ex-
cite high-frequency unmodelled dynamics. Accordingly, we reduce J as much as
possible, not by increasing the magnitudes of the gains but by employing various
compensators whose characteristics are much different from one another.

Based on the constraint (4.4.11), we find the following robust control law:

Theorem : Consider the following control law

kl k2
u=Y Wz;+Kiy+Kof +>_ K;Yshj, (4.4.12)

with an adaptation law
&+ Pyzj = PyWTy,  210) =2, &(0)=0, j=23,-;
f+Psf =Ky,  f(0)=0;

ilj + Py;h; = K;Yyy, h;j(0) =0, j =3,4,---, (4.4.13)

where
Yf + Pfo = PfY,
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Y = diag(y1,92,"*, Yn)- (4.4.14)

Then, these control and adaptation laws guarantee that

léi(t)] < oo, |ei(t)] < oo, and |Z;| < oo,

Vt>0, Vi=12--,n, Vj=12---,m, (44.15)

if desired trajectories, disturbances, and control and adaptation gains satisfy the

following constraints:

(1) O(r) <O(n), O(F) LO(p), OF) <O, o) <o,
(i7) O(d) < p,
(i55) O(p) < p, O(Pp) < p?, n<O(K) < p?, O(K;) < i,
O(K;) S p (i 23), OPy)<p’, pt <O(Pn) < O(Py;) < i,

pt< O(Po) S O(P3) < 4, p 1 < O(Py) < O(Py) < 42, (4.4.16)

where p = t, 1 with t; < 1 and 0 denotes unity consistent with the other orders
of u.

Note that the bounds (4.4.16) are derived for revolute-joint robots. The
structure of the dynamics of robots is the same regardless of the type of joint.
Hence, the corresponding bounds for prismatic-joint or prismatic-revolute-joint
robots are similar to those in (4.4.16) and they can be readily derived.

The various symbols appearing in the Theorem are given as follows:

K, is the nxn positive-definite diagonal matrix; Ko and K; (j = 3,4,--)
are the nxn positive-semi-definite diagonal matrices; Py; and Ps; are the mxm
positive-definite diagonal matrices; Pi; and Py; (j = 2,3,---) are the mXxm
positive-semi-definite and positive-definite diagonal matrices respectively; P; and
Py; (j = 3,4,---) are the nXn positive-semi-definite and positive-definite diagonal

matrices respectively; Py is the nxn positive-definite diagonal matrix; k; and ko
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are some positive integers such that k; > 1 and k2 > 3; O() denotes the order of

the argument.

The memory component Z is the mXx1 estimated parameter vector such that
Wz = MG+ py)+Co+ D+ 3, (4.4.17)

where M, C, D, and g correspond to the unbarred variables computed with the
estimated parameters.

Proof of this Theorem is in Appendix 4.A.

The block diagram of the Theorem is shown in Figure 4.1.

Note that in this Theorem, we adopt compensators from the Theorem 1 of
Chapter 3, and modify them with a new adaptation law (the o-modification law).

In addition, we specify the stability bounds (4.4.16).
4.4.3 Improved Adaptation Laws

As memory components in the adaptation law (4.4.13), we used first-order
filters instead of integrators to prevent instability due to parameter drift [4.11].
Consequently, the parameter £ estimated by this adaptation law becomes small
when ||[W7y|| is small for more than some finite duration. See (4.4.13). | - ||
denotes the Euclidean norm of the argument vector. Near an end point of a
trajectory, ||[WTy|| becomes very small since the desired angular accelerations ()
and velocities () are almost zero and the actual velocities (¢) and the tracking
errors (y) are also small for stable control laws. Hence, Z becomes very small near
end points of trajectories. As a result, Z must be refreshed to the nominal values
of the parameters for smooth transient response whenever a manipulator moves
from the end points.

To fix this problem, we propose new adaptation laws. We use integrators for
the adaptation law when the magnitude of Z is smaller than the preset value (or
the nominal value), and otherwise, we use first-order filters with variable break

frequencies, as follows:
#y + Py = PyWly, (4.4.18)
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with

0 for |Z4;| < x¥, 1=1,
P2ji={ or 2] <2} i1 (4.4.19)

P11l — ), for |21l > o},
where ps; and z! are selected such that ps; > 0 and z} > |z;|; the subscript ¢
denotes the i** component of the corresponding vectors (z, Z; and z*) or the it
diagonal component of the corresponding matrices (Py; and Ps).

Without loss of generality, we can define z; as a positive number. Then, we
also have the following improved adaptation law:

__J0, for0 <z, <z}, i=1,2---,m;
P2t = {p5i, otherwise. (4.4.20)

Then, in equation (4.A.11) in Appendix 4.A,
(z - :f?l)TPﬁlpgl(x — El) + ((ZTPl_llpzlil — .’BTPﬁ1P21:I}) >0, Vz (4.4.21)

As a result, V(t) and hence J exclude the z term so that the error bounds become
smaller in (4.A.26). See the definition of a3 in (4.A.20). In this case, we have the
constraint of u~! < O(Ps) < u when we go through the stability analysis.

4.5 Remarks

1. The design procedure presented in this chapter is the inverse of that
of Lyapunov’s second method in Section 2.3.2.1 of Chapter 2. The Lyapunov’s
method searches for an appropriate lower-bounded function V'(¢) for a given
system and enforces V(t) < 0 in order to stabilize the system. Then, as a by-
product of stabilization, desired compensators are produced. In contrast, the
present method searches for compensators for a given system toward minimizing
a certain performance index, and then shows that these compensators lead to a
lower-bounded function V (¢) whose time-derivative (V () along the trajectory of
the given system is non-positive outside a certain ball.

2. Constraints (4.4.16) requires that the spectral ranges of the reference

inputs and disturbances be limited not to excite high-frequency unmodelled dy-
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namics, and that the magnitudes of control and adaptation gains be also limited
to avoid excitation of high-frequency unmodelled dynamics.

3. Constraint (4.A.14) with (4.A.17) means that Sz, the region of attraction,
is finite (local) for nonzero t,, and that all the initial conditions (tracking errors
and parameter errors) must belong to Sy for stability.

4. When the adaptation law (4.4.13) is used, larger P2 causes larger tracking
errors. See the z term in (4.A.20) with (4.A.26). However, smaller Py causes
less robustness (higher possibility of parameter drift). The new adaptation laws
(4.4.19) and (4.4.20) solve these contradictory problems. Furthermore, the new
adaptation laws provide asymptotic stability when no unmodelled dynamics and
disturbances exist.

5. When we set P35 = 0, K2 f becomes a PI feedback compensator. Kyy is a
PD feedback compensator. Therefore, we may select the gains K; and K> using a

linearized model of robot dynamics.

4.6 Computer Simulation

As an example, the present scheme has been applied to a two-link direct-drive
manipulator shown in Figure 4.2. We simulate the scheme on a Sun Microsystems
Sparkstation 1. We used a 4%*-order Runge-Kutta method[4.44] with adaptive
step size to guarantee accuracy in the solution of the manipulator dynamics. The
dynamics of the manipulator and the numerical values of its parameters are given
in (3.6.1) - (3.6.3) in Chapter 3.

As a bounded disturbance, the mass 2 is doubled between 2 and 4 seconds.
In addition, we simulate sensor noises using “drand48(),” the random number
generator in the Sparkstation 1. We added the sensor noises to both angular
velocities and positions of links. The maximum magnitude of the noises is 5x 1074,

In this simulation, we use only the first terms of the summations in the

control and adaptation laws:

e = Wz + K1y + Ko f + K3th, (4.6.1)
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where

Yf + PsY; = PfY; (4.6.2)
Y = diag(y1, 99, -, Yn)- (4.6.3)

One of the adaptation laws is given by

T+ Pz = PLWTy,
f+Pf = Kyy;

h + Pyh = K3ny. (464)
W and z are defined as follows:

T =(z1 23 ---319)7,

=W w2 w3 wg ws wg 0 0 0 0
W‘[o 0 0 0 0 0 w ws w me’ (4.6.5)

with

w1 =wy = (61 + py1) + (52 + pya),

we =[2(61 + py1) + (52 + Py2)] cos(gz)
— (4261 + G162 + 4262) sin(gy),

w3 =061 + py1,

wy =4,

w5 =w10 = 10 cos(q1 + ¢2),

we =20 cos(qy),

wg =(61 + py1) cos(g2) + 167 sin(ga),

Wwo =o. (4.6.6)
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When P, is set to be zero, the adaptive control law (4.6.1) - (4.6.6) is the
same as the scheme proposed in Theorem 1 of Chapter 3 which will be called the
previous scheme hereafter.

As in Chapter 3, we have computed the filterings associated with y in the

control law by using the following trapezoid rule (Tustin’s rule)[4.45]:

s~ — . (4.6.7)

To relieve the computational burden we use a dual-time update rule: 2 msec
for the feedback compensators (Kiy+ Kaof + K3Y5h) and 10 msec for the feedfor-
ward compensator (Wz). To make our simulations realistic, we include delays of
one sampling period in our control inputs for measurements, computations, and
DA and AD conversions. Since we use a dual-time update technique, there are
two different delays in our control inputs.

The desired trajectories for the simulation are chosen as

71 = —cost,

T9 = — cos 2t, (4.6.8)

which are shown in Figure 4.3,

To examine the robustness of adaptive control, we compare the present
scheme with the previous counterpart. The numerical values of the control and
adaptation gains for both schemes are as follows,

(1) Previous scheme:

K = 20I; K1=diag(400,150); K; = 0;

Py =20I; Py =100I; P, = 0; P; = 0; Py =0.5I; K3 =400I; p = 15.

(2) Present scheme:

K = 201; K1=diag(400,150); K, = 0;

Py =20I; P, = 800I; P, = 005I; P3 = 0; Py = 0.5I; K3 = 4007; p = 15.

‘I’ denotes the identity matrix with appropriate dimension.
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The initial values of the parameters of the dynamics for both schemes are the same
(around 1/4 - 1/2 of the true values). The manipulator is assumed to be initially
motionless.

Figures 4.4 and 4.5 show the tracking errors of joints 1 and 2 respectively for
the previous scheme. Figure 4.6 explains the parameter estimation of the previous
scheme for parameters x9, z4, xg, 3, and x19. One of the parameters (z4) drifts.
When this parameter reaches a certain value, instability occurs and then all the
parameters grow rapidly. Since instability is caused by the parameter drift, larger
gains cause earlier instability. We have found that faster sinusoids (satisfying the
condition of persistent excitation) suppress the parameter drift, and that slower
sinusoids help the parameter drift.

Figures 4.7 and 4.8 show the tracking errors of the present scheme for joints 1
and 2 respectively. The parameter estimation is shown in Figure 4.9. Modification
of the adaptation law prevents the parameter drift. The scheme maintains stability
in the presence of disturbances, sensor noises, and unmodelled dynamics due to
the feedback delays. The adaptation law (4.6.4), a simpler form of (4.4.13), by
nature, causes nonzero tracking errors. See (4.A.20) and (4.A.26). We may have
better results if we use the new adaptation laws (4.4.19) and (4.4.20). However,
the tracking errors are within practical tolerances.

Through extensive simulations, we have found that instability occurs when
any of initial errors, disturbances, sensor noises, sampling periods, desired trajec-
tories and their time-derivatives, and control and adaptation gains is larger than
its certain upper bound. This supports the stability analysis.

In spite of nonlinearities such as a step change of mass 2 which is not included
in the derivation of the control law, the performance of the control law such
as guarantee of stability and fast transient response is shown to be essentially
unchanged. This is another favorable feature of the control law. This is because

the sufficient condition for stability of the proposed scheme is too strong.
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4.7 Conclusion

In this chapter, we have shown that the previous scheme may become un-
stable due to parameter drift. We have proposed some modified adaptation laws
for the scheme proposed in Chapter 3 to prevent the parameter drift. Moreover,
for the scheme redesigned with the modified adaptation laws, we have obtained
stability bounds for disturbances, control and adaptation gains, and desired tra-
jectories and their time-derivatives, in the presence of unmodelled dynamics due
to feedback delays in the digital control systems. In contrast, no stability bounds
have been provided in the literature of adaptive control of robots.

The results of the realistic simulations support the stability analysis and
lead to the conclusion that the present scheme is robust (i.e., causes no parameter
drift), in the presence of sensor noises, disturbances, and unmodelled dynamics
due to feedback delays.

The dynamics of industrial manipulators having usually 6 degrees of freedom
are complicated. Hence, implementation of the proposed scheme to these manip-
ulators may not be so simple. Most of these manipulators use a gear-reduction
mechanism in power transmission for larger torque with smaller actuators. As a
consequence, the coupled dynamics are much suppressed. In this case, we may try
a decentralized (jointwise) control scheme. In the next chapter, we will examine

this in detail.
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Appendix 4.A: Proof of Theorem

To prove the Theorem, we first insert the designed control and adaptation
laws into J. Secondly, we derive a lower-bounded function V(t) and its time-
derivative (V(t)) along the trajectory of the given system. Finally, we limit the
bounds of disturbances, control and adaptation gains, and desired trajectories and

their time-derivatives in order to guarantee V(t) < 0.

(I) For simplicity, we define first-order operators Fi;, 2, and F3; in relation

to the adaptation law (4.4.13) such that
5.o— [P W Ty
zj = Fi;[PW7yl;
f = Fa[Kayl;

Then, we have some elementary relationships, which will be shown using the

following scalar differential equation and corresponding operator F:
v+ bv = az, b>0, a>0, (4.A4.2)

¢
= v=Flaz] = ae_h(t)(/ ze"Mdr 4 YQ)_), (4.A.3)
0 a

where .

h(t) = / b(r)dr. (4.4.4)
0
Then, we have the following relationship:

11 1 1
/ 2(t)dt == { Flaz(t)] + / bFfaz(t)]dt - (0) },

0 a 0

Va>0, bt) >0, |b(t)] < oo, 2(t), at [0,1];  (4.A.5)
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and

/tl z(t) Flaz(t)]dt (2 [F[az(tl ] /Otl b[]:[az(t)]] 2dt - 1)2;0)),

Ya>0,bt) >0, |bt) < oo, 2(t), at [0,t]. (4.A.6)

(II) We insert the chosen control and adaptation laws (4.4.12) and (4.4.13)
into equation (4.4.9):

1
/ yT (oM + D)ydr + %(yTM y ~y(0)TM (O)y(O))
0

RN RS
j=1

i=3

¢
=$TPﬁ1 (511 + / Po1Z1dT — :1:0)
0

t k1 k2
- /0 W335 — (d-ue — Kuy) + Kof + Y K;¥yhy|dr, (4.4.7)
Jj=1 j=3
where we have applied (4.A.5) with (4.A.1).
Using (4.A.6) and (4.A.1), we have
‘T e T
[ 97 (oM + Dyyir + 5 (s My ~ () M(0)y(0))
t
._—::BTPﬁI (5731 +/ Poyzydr — :1:0>
0
Vi rp-1, " Tpoip - T p—1
-3 (ac1 Pz + 2/ Z1 Py PnZydt — x, Py m,,)
0
1 ky 1 T
-3 (a7 Pi7a; +2 / z] P Pyzjdr) + / y" (d - ue — Kiy)dr
=2 0 0

1.7 Cor Il g tor
_(é_f f+/(; f P3fd'r) 22[2th +/ th4jhjd7']
J=

-1 Ll p_ 5 1 _
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1
+ / (=7 P5 Pumy ~ o] Pi Py ) dr
0

1 ky T 1 t T . T r
- 5; (:L'j Py z; +2/0 T3 Py ngicjd’r) +/0 Yy ((;l — Ug — Kly)dq-
1 t T ko 1 :
= (3771 [ fRgar) =3 [3ihi+ [ K Pysar]
0 7=3 0

(2~ 20)TP7! (@ - 70) — (2 ~ 71) P} (z — 7))

DN =~

1t o ) o .
- 5/0 ((m — 21)T P Pya(z — 31) + (2T P Py — mTPulel:B)) dr

1L T L r T op
- = :z-P'.l.fz-+2/ T P Py dr +/ yl(d — ue — Kyy )dr
QJ_Z:;(JU] o T JJ) ) ( e )
ky

(e /Ot fTRsfdr) =3 [5hhs+ /0 t W Pihidr],  (4.A48)

J=3

where it is assumed that z is the mx1 unknown but constant vector.

We rewrite equation (4.A.8) as

t
J= / yT(pM + D)ydr
0

_L
~2

1t - _ T p-lp - _
- —/0 ((:B —_ El)TPanzl(:B - :Bl) -+ (milppnlpzl.’lll - :BTP111P21:E))dT

(4@ M(0)y(0) + (2 - 20" PF Par(e — 20)) = V (2)

2

ky ot T
— Z/ a_rfplglpgj:ﬁde + / yT ((j — Ue — Kly) dr
= Jo 0

¢ ky ot
- /0 fPsfdr =" /0 WY Py;hjdr, (4.A.9)
i=3
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where the non-negative function V(t) is defined as

kq k3
[yTMy + (o~ 21) P e — 21) + Y ET PG T + fTF+ Y h}"h,-] > 0.
71=2 7=3

V() =

(4.A.10)
Then, it is obvious that the Z; (j = 2,3,--+), f, and h; (§ = 3,4, -) terms reduce
the performance index J. Hence, these terms reduce the maximum magnitude
of y, the filtered tracking error. Accordingly, these terms improve the transient
behavior of the system.

We can also rewrite equation (4.A.8) as

V() =3 (50T MO)(0) + (= — )7 P Pra(z ~ 2,))

1
_ / (yT(pM + D+ K1)y —yTd+ yT(61u - tszl))d'r
0

1 [ ~ _ ~ 4 _
— —2—/ ((m — a:l)TPungl(a: —Z1) + (a:fPunglxl — xTPanzlm))d'r
0

k1 ¢ ¢ ky .t
-y / z] P Py&jdr — / ffPsfdr =" / hTPyjhjdr.  (4.A.11)

From this, we obtain the time-derivative of V'(¢) along the trajectory of the given
system:
V() =~ (yT(pM +D+ K1)y -y d+y" (5ru— tsit))

1 - _ T e _ -
- 5 ((m - f:l)TPHlel(:I: - :1:1) + (mflz'Puleg;l - :BTPuan:E))

ky ky
- Z :EJTPI;IPQJ'ZI_IJ‘ - fTP3f — Z hfP4jhj. (4.A.12)
The true parameter z is bounded and the disturbance vector d is assumed to
be bounded. Therefore, when 6;=t,=0, any initial V'(¢) converges into a bounded

set S1 = {(y,Z;, f, hj)} which is a function of z, d, control and adaptation gains,
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etc. This means that V(t) is bounded for all time ¢ > 0. Then, from the definition
of V(t) in (4.A.10), y, Z;, f, and h; are all bounded for all time ¢ > 0.

However, when 6; # 0 or ¢, # 0, @ may grow unbounded coupled with the
control and adaptation laws.

(III) To stabilize the system (i.e., to enforce V(t) < 0 outside B,), we make
the sign-indefinite 4 term in (4.A.12) much smaller than the other terms. Since

ts < 1, the following constraints stabilize the system:
O(61v) < O(K1y);

O(téa) < O(Kuy). (4.4.13)

To find the orders of u, %, K3, and y, we restrict our analysis inside a set S,

(D S1):

S2={(y,2;, f,hj) | V < u?}, (4.4.14)
with
a
p== (4.4.15)

for some finite positive scalar a to be determined later. Note that the size of the
set has not been determined yet.

Without loss of generality, we assume that the upper bounds of & and ks
are limited so that they do not affect our order analysis. Then, inside the set
S2, O(y) < p, OY) < p, O(f) < p, and O(hj) < p. For simplicity, we limit
the orders of P;1 and Py to 10, where p0 denotes unity consistent with the other
orders of 4. Then O(z — Z1) < p and O(Z;) < p. We can readily include the
orders of P;; and Py j in this analysis when we set them far from O( ,uo).

Equations (4.4.4) and (4.4.14) are stable first-order differential equations.
Hence, inside the set Sy, O(é) < u, O(e) < g, and O(Yf) < p under the constraints
of O(é(0)) < 1, O(e(0)) < p, O(Y§(0)) < p, and O(K) = pu°. We assume for all
time ¢ > 0 that the desired trajectory satisfies O(r) < p and O(7) < p. Then the
orders of ¢ and ¢ can be obtained as O(§) < p and O(g) < pu. We also assume
that O(z) = 0, which results in O(z1) < p.
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Then, under the constraint of (4.4.16), we can obtain the following bounds:

u < O(p)uy;

@ < O(u°)u,, (4.A.16)

for some nx1 vectors u;(t) and uy(t) of order u°. See Appendix 4.B for detailed
derivations.

The bounds (4.A.16) are derived for revolute-joint robots. The corresponding
bounds for prismatic-joint or prismatic-revolute-joint robots are similar to those
in (4.A.16) and they can be readily derived. In this case, the stability analysis
(proof) is basically the same as that described below.

(IV) The first constraint in (4.A.13) is already satisfied. See (4.A.16) and
(4.B.5). To stabilize the system, we satisfy the second constraint in (4.A.13) by
limiting the upper bound of a in (4.A.15):

IN
o
LX)

1
(4.A.13) = ud - t2 < pd = a?

3 1
= a < tf = p<ts k. (4.A.17)
Then, from (4.A.16), there exist nx1 vectors u,(¢) and u,(t) such that u, < O(u?),
u, < O(4°),
1
tay" i < tallallllyll < 31l lllyl,

s1y"u < Sllullllyll < Sullu vl (4.4.18)
Then, (4.A.12) becomes

V(t) < = (47 (oM + D+ K}y ~ lglllall = sullu. sl = ¢ )
— %((:E - ftl)TP1_11P21($ - %) — xTP1_11P21a:)

ky ko
~ >z P Pz — fTPsf = Y hIPyjh;
j=2 Jj=3
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1
< —y"(pM + D + SK1)y — eallyll® + azlly]| + s
1 —_ —_
- ‘2'(37 - -'ﬁl)TPann(:B — :Cl)
kl k2
= TP Pz — [TPsf — ) ] Pajhj, (4.4.19)
j=2 j=3

where
1
aq =)\min(§Kl)

1
az =max(||d]| + 61wl + 23 ||uoll)

1
o3 =§xTPﬁ1P21:1:. (4.4.20)

When sensor resolutions are sufficiently small, we can safely assume that 6; <
1

tZ. See (4.3.2). Conmsequently, from (4.4.16), (4.A.17), and (4.A.18), we obtain
O(a1) < p?, O(ag) < p, and O(ag) = O(Pa1) < p.

We complete the square to remove the ap term:

: 1 1 _ i
V()< -y (pM + D+ S K1)y — 5(@— 1) P! Pz — &)
ky ko
= > aT P Pz — fTPsf — ) h] Pajhj+ a3+ s, (4.4.21)
J=2 j=3
where
_ % [<(’) if O(ay) > ] (4.4.22
a4—4a1 < (/1,) 1 Q1) 2 Hy. LA, )
We can rewrite (4.A.21) using V(¢) in (4.A.10):
V(t)+ V(1) < a5 + o — 05(t) (4.A4.23)

with

as(t) = [yT(pM + D+ %Kl)y - gyTMy]
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+ %[(m — 21)" P Po(z — %1) — Bz — 21)" P (= - @1)]

+ 3 [P P - Satpge) + [ 17 - £47]
j=
k2 3

+3 [P Paghi - Shi hj] >0, (4.4.24)
7=3

where the positive constant 3 is chosen to be the maximum value which makes the
expressions in all the brackets (|- - -]) non-negative. Then, O(8) < u?. See (4.4.16)
and (4.A.24).

The solution of (4.A.23) is given by

t
V() < exp[-p1) (V(0) + /0 {as + a4 — as(r)} explfrldr ). (4.4.25)

Consequently, we conclude that any initial V'(t) belonging to the set Sz converges

into the following residual set:

$o= {035, £15) | V0) < expl=p1) [ {oa + 04— as(r)} exlprlar
< %(ag, o)) (4.4.26)

at a rate of at least exp[-Bt]. Since O(B) < p?, O(as) = O(Pa1) < p?, and
O(ay4) < p, the size of Sz is given by p® < O({as + au}/B) < p? under the

constraints that

p<OKL) < p?, pl < O(Py) < O(Py) < 4,
Tl < O(Pa1) < O(Ps) < p?, w1 < O(Py) < O(Py) < p?. (4.4.27)
In this case, O(8) = min[O(K1),O(P21)]. The constraints in (4.A.27) satisfy

the condition O(y) > p in (4.A.22). See (4.A.20), (4.A.22), and (4.A.24) with
(4.4.16).
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Note that as(t) accelerates the convergence rate and reduces the size of the
set S3 even further. Note also that S3 C Sz. Hence, from the definition of V'(¢) in
(4.A.10), boundedness of y, Z;, f, and h; follows for all time ¢ > 0. As mentioned
in Section 4.5, the region of attraction is finite (inside Sz) for nonzero t,;. Hence,
all the initial conditions (tracking errors and parameter errors) must belong to Sy

for stability.
Appendix 4.B: Estimation of 4 and %

For simplicity of our analysis, we set k3 = 1 and k2 = 3 so that we omit
the subscript j in our analysis. The rest of the terms of the summations can be
readily included. Inside the set S, we derive the orders of variables related to
. We keep only important high-order terms of p since p is assumed to be much
larger than unity. We assume that the sampling period (%) is sufficiently small so

that the order of the true parameter x is much smaller than that of % That is,
1 :
O(z:) € O(=),  Vi=1,2,m. (4.B.1)
S

According to the control and adaptation laws (4.4.12) and (4.4.13), u, 4,
and hence u.(= §1u —ts%) are functions of the desired trajectories (r, 7, and I,
disturbances (d), and control and adaptation gains (p, Kj, P1j, Paj, P3, and Py; for
j=1,2,3,---). Since u. contains very small constants §; and t,, we can make the
sign-indefinite u, term in (4.A.12) much smaller than the other terms by limiting
the upper bound of a in p (=#).

If the order of any one of the desired trajectories, disturbances, or control and
adaptation gains is significantly larger than the others, it will dominate the orders
of v and 1, and hence the size of the stabilizing S». Accordingly, we set the upper
bounds of the desired trajectories, disturbances, and control and adaptation gains
in such a way that we equalize their influences on the other variables including u,
u, and q.

For convenience, the dynamics of revolute-joint manipulators will be used

in this order analysis. In this case, the inertia matrix is bounded. The order
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analysis for prismatic-joint or prismatic-revolute-joint robots can be as readily
performed as that for revolute-joint robots described below since the structure of
the dynamics is the same regardless of the type of joint.

In this analysis, we begin with variables of known order. Then, we obtain the
orders of their time-derivatives using the dynamics (4.3.3), control law (4.4.12),
adaptation law (4.4.13), and time-derivatives of these.

From the definition of W(p,#,7,7,¢,q) in (4.4.10) or (4.4.17), we have
W = [0(42) + O(F) + O(pu)| Wy (4.B.2)

for some nxm matrix W, (¢) such that O(W;) = % (=1). We choose the upper
bounds of # and p such that they do not increase the order of W more than O(u2),

the contribution from the other variables of the dynamics. That is, we set
O(F) < p? and O(p) < p. (4.B.3)
From the control law (4.4.12), we can derive
u=[O4®) + O(Kp) + O(Kap) + O(Kap?) |y (4.B.4)

for some nx1 vector uy(t) such that O(uy) = u0. We select Ky, Ko, and K3 such
that they do not cause the order of u to be higher than O(u3), the contribution
from Wz:

O(K1) < u?, O(K3) < p?, and O(Kj3) < p. (4.B.5)

From the adaptation law (4.4.13), we can obtain

i = [0(Pa) + 00| 3

i = |0(Pyw) + 0 |8

|f
by, (4.B.6)

h=|O(Pss) + O(?)

J
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for some mx 1 vector x;(t) and nx1 vectors f; (t) and hy(¢) such that O(x,) = uP,
O(f;) = p°, and O(hy) = u®. We select Py, Ps, and P; by limiting the upper
bounds of &, f, and k to O(x?). That is,

O(Py) < i, O(P) < p?, and O(Py) < . (4.B.7)
From (4.4.14), we have
Y= O(Pru)Yp (4.B.8)

for some nxn matrix Ys;(t) such that O(Yy;) = pu0.
From the dynamics (4.3.3),

=M u+86u—t—Cq—Dg—g—d]. (4.B.9)
Then, using the structure of the dynamics (M(q), C(4, q), and g(q)), we can derive
§ = —MYO(d) + O(u) + O(81u) + O(tsi)]a, (4.B.10)
for some nx1 vector g, (t) such that O(q,) = u°. We set
O(d) < O(u) < pb. (4.B.11)
Since 6§; < 1, O(61u) < O(u). Hence
i =-M"O(1%) + O(tsi)]g,- (4.B.12)

By differentiating W in (4.4.10) or (4.4.17) with respect to time, we can

obtain W(TIII, #,7,7,§,4,q). Using the structure of W, we can derive

.

W = [0() + n0() +nOG) + O] W, (4.B.13)
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for some nxm matrix W,(t) such that O(W,) = u0. From (4.B.12), O(§) can be

greater than //,3. Hence we set
oy < pt. (4.B.14)
Taking time-derivative of u yields
4 =W+ Wz + K1j + Kof + KsYsh + K3Yh. (4.B.15)
From (4.B.6) and (4.B.7), we can get
i = [0(#) + O(W3) + O(K1i) + O(Pri®) s (4.B.16)
for some nx1 vector usy(t) such that O(uy) = pu®. We set
O(Py) < p2. (4.B.17)

From (4.B.5), (4.B.13), and (4.B.14), O(Wz) = p?0(§) + p20(%) + O(p°) and
O(K19) = p20(y). O(y) = max[0O(§), O(F)] since § = # — § + Ké. Note that
O(#) < p?. Hence

i = [O(4) + #20(@)|uz (4.B.18)
Then, from (4.B.12),
§=-MO(u?) + O(1t,)]a, + O(tsu?)i. (4.B.19)
Under the constraint of
15 <y (4.B.20)

with t, < 1, O(§) < O(¢®). Then

i < [O(uf’)] us. (4.B.21)
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Chapter 5

A ROBUST DECOUPLED ADAPTIVE CONTROL OF ROBOTS

5.1 Imtroduction

In the previous chapter, we have discussed the stability and robustness of the
proposed adaptive scheme in the presence of bounded disturbances, sensor noises,
and unmodelled dynamics due to feedback delays in the digital control systems.
We have also derived a sufficient condition for the proposed scheme under which
the scheme stabilizes the system.

As mentioned in the previous chapter, application of the proposed scheme to
industrial manipulators may not be trivial since their dynamics are usually com-
plicated. Most of them are classified as a gear-reduction arm. Then, the coupled
dynamics are considerably suppressed. Accordingly, a decentralized (decoupled)
control scheme may be sufficient to control these manipulators for most practi-
cal applications. The decentralized control is very attractive since this approach
allows fast parallel implementations. In this chapter, we design a robust decen-
tralized adaptive control scheme for manipulators, and examine its performance.
The robustness in adaptive control is a measure of insensitiveness of an adap-
tive scheme not to parameter uncertainty but to parameter drift in the parameter
adaptation.

- Several decoupled adaptive schemes([5.1,5.2] have been derived under the as-
sumption that the coupled dynamics is bounded and slowly time-varying. This
assumption may not be valid for fast trajectories. A model-following adaptive
scheme[5.3,5.4] removes the assumption. The output of this scheme is driven to
track not the desired trajectories but the state of a reference model — another

source of tracking errors. This scheme contains no feedforward compensation,
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which may be effective for gear-reduction manipulators. Some variable structure
schemes[5.5,5.6] adopt a signum function for compensators. As a result, these
schemes generate chattering control inputs which may excite high-frequency un-
modelled dynamics.

Self-tuning schemes[5.7-5.10] are also in the category of the decentralized
adaptive control. In these schemes, the nonlinear coupled dynamics are linearized
around operating points. Consequently, the parameters of the linearized system
are time-varying. Then, the estimators for constant parameters may not catch up
with the fast time-varying parameters. Furthermore, desired trajectories need to
satisfy the condition of persistent excitation.

In this chapter, we propose a robust decentralized adaptive scheme, which
is a subset of the scheme proposed in the previous chapter: the scheme in this
chapter contains only the decoupled compensators of that in the previous chapter
with appropriate changes in the adaptation laws. The scheme in this chapter
consists of feedforward adaptive compensators, feedback adaptive compensators,
and an improved PD feedback law. To show the stability of the proposed scheme,
we follow the same procedures as those in the previous chapter.

The decentralized scheme in this chapter is different from those reviewed
above in the following respects. The stability proof of the scheme here does not
require the assumption of boundedness and quasi-time-invariance of the coupled
dynamics. Nevertheless, the scheme contains feedforward adaptive compensators.
Furthermore, the proposed scheme provides stability bounds for disturbances,
control and adaptation gains, and desired trajectories and their time-derivatives,
in the presence of unmodelled dynamics due to feedback delays in the digital
control systems. To prevent the parameter drift[5.11], we use new adaptation laws
proposed in the previous chapter.

In Section 2, we model feedback delays and quantization errors in signal
conversions from the result of Section 3 of Chapter 4. In Section 3, we define an
appropriate quadratic performance index, which is the same as that in Section

4 of Chapter 4. Then, we search for decoupled compensators which reduce the
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performance index as much as possible to improve the tracking performance. In the
search, we select only the decoupled compensators from the Theorem in Chapter
4, Then, in the Appendix, we analyze the stability of the selected decoupled
adaptive scheme for the coupled system of a manipulator. As a result, we find a
sufficient condition under which the proposed decoupled adaptive scheme stabilizes
the nonlinear coupled system of a manipulator. The region of attraction of the
proposed scheme is local due to unmodelled dynamics, but it is large enough for

most of applications.

5.2 Modelling A System to Control

From the result of Section 3 of Chapter 4, we represent the dynamics of a

robot in the digital control systems as follows:
Mi+Cqg+Dj+g+d=u+ e, (5.2.1)
where

d=d-u;—O);

Ue = O1u — e, (5.2.2)

The definitions of the variables and the parameters of the dynamics are the same

as those in Section 3 of Chapter 4.

5.3 Design of A Robust Decentralized Adaptive Control Law

As mentioned at the beginning, the robustness in adaptive control is a
measure of insensitiveness of an adaptive scheme not to the parameter uncertainty
but to the parameter drift in parameter adaptation.

We cannot obtain asymptotic stability with any decoupled control scheme
since the decoupled scheme cannot completely compensate for the coupled dynam-
ics, disturbances, and unmodelled dynamics. Accordingly, our control objective is

to find a stable and robust adaptive control law which
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(1) guarantees for some finite non-negative constants &, and 8, that
lé(t)] < 81 and |e(t)] < b2, Vi>0, (5.3.1)

where
e=r—gq, (5.3.2)

7 18 the nx1 desired trajectory vector; and
(2) reduces the maximum tracking error (e) as much as possible with
bounded control inputs.

5.3.1 Defining A Quadratic Performance Index

To minimize both tracking error (e) and the derivative of the tracking error
(é), we minimize the following quadratic performance index in relation to the

system dynamics:
t
J = / yT(pM + D)ydr, (5.3.3)
0

where we define the filtered tracking error y as
y = é+ Ke; (5.3.4)

K = diag(k1, K2, -+, kn) > 0; p is some non-negative scalar to be selected.
To connect J to the system to control, we modify the system equation (5.2.1)

and integrate from 0 to ¢:
¢ ¢
/ yT (oM + D)ydr = / yT [M(q +py)+Ci+Dé+g+d—u—- ue] dr, (5.3.5)
0 0

where o is defined as
F=7+Ke. (5.3.6)

Note that o is a desired trajectory corrected with tracking error.
We replace § in (5.3.5) with (6 — §) to circumvent the requirement of

measuring angular accelerations. Then, we can rewrite equation (5.3.5) as

t
J = / y" (pM + D)ydr
0
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1. P YA . .
=_§y Myl0+ y (M(a+py)+C’a+D0+g+d—U—Ue)dTa
0

(5.3.7)
where we have used the fact that
¢ t t .
/ yI Mydr = —yTMyl — —/ yT Mydr; (5.3.8)
0

and that (M —2C) is skew-symmetric (yT (M —2C)y = 0) if the non-unique matrix
C is chosen properly[5.12].

We can rewrite (5.3.7) as
1o b op ) .
J = —Ey M'g.o + |y (Md(a +py)+ Dsds+dy+d—u— ue)dT, (5.3.9)
0

where

os = Ko,
D, =DK%,
dy = (M — My)(6 + py) + Cé + g; (5.3.10)

M, is the nxn positive-definite diagonal matrix containing only the constant
diagonal components of M; K, is the nxn positive-definite diagonal matrix. Note
that d, can be considered as unmodelled dynamics due to omission of the nonlinear
coupled dynamics for the decentralized scheme.

For simplicity, we define the mx1 true parameter vector z and the nxm

function matrix W as
Wz = My(6 + py) + Dsds. (5.3.11)

Note that Wz is decoupled.
Then, (5.3.9) becomes

1 1 ¢
J= Ey(O)TM(O)y(O) - —2-yTMy + / yT (W:c +d,+d—u— ue) dr. (5.3.12)
0
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5.3.2 Design of A Robust Decentralized Adaptive Control Law

As in Section 4.4 of Chapter 4, we design a control law using the performance
index J in (5.3.12). The design procedure involves search for compensators
in the direction of minimizing J. In this chapter we extract the decoupled
compensators from the Theorem of Chapter 4. Then, we show that the decoupled
scheme (the decoupled compensators) stabilizes the coupled system, and derive the
corresponding stabilizing constraints for the decoupled scheme. We have already
proven that the coupled adaptive control law in the Theorem of Chapter 4 stabilizes
the system under some moderate constraints.

With the decoupled compensators from the Theorem of Chapter 4, we form

the following Theorem:

Theorem : Consider the following control law

k'] k2
u=Y» Wij+Ky+Kf+Y K;Yihj, (5.3.13)
j=1 j=3

with an adaptation law

zj+ Pz = PyyWTy,  #1(0) =0, (0)=0, j=2,3,---;
f+Psf =Koy,  f(0)=0;
hi + Pyjhj = K;Ypy,  hij(0)=0, j =3,4,--; (5.3.14)
where
Y; + P;Ys = PY,
Y = diag(y1, 2, Yn)- (5.3.15)

Then, these control and adaptation laws guarantee that

léi(t)l < 00, Iel(t)l < 09, and I:E]l < 00,

Vt>0, Vi=12---,n, Vji=1,2---,m, (5.3.16)
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if desired trajectories, disturbances, and control and adaptation gains satisfy the

following constraints:

(1) O(r) <O(u), O@F) <O(n), OF) <O, OF) <o),
(i) O(d) < 4,
(ii5) O(p) < p, p*<O(K1) <p®, O(Kq)<pb, O(K)<p,
O(Kj) < p* (1 23), p<O(Py) <u?, 10 <O(Py) <,

tu’o <O(Ps) < ”37 :U'O < O(P4]) < :u'ga O(Pf) < //’3, (5.3.17)

where p = t, 1 with ¢, < 1 and 0 denotes unity consistent with the other orders
of p.

Note that the bounds (5.3.17) are derived for revolute-joint robots. The
structure of the dynamics of robots is the same regardless of the type of joint.
Hence, the corresponding bounds for prismatic-joint or prismatic-revolute-joint
robots are similar to those in (5.3.17) and they can be readily derived.

The various symbols appearing in the Theorem are given as follows:

K is the nxn positive-definite diagonal matrix; K9 and K; (j = 3,4,---)
are the nxn positive-semi-definite diagonal matrices; P;; and P»; are the mxm
positive-definite diagonal matrices; Pi; and Py (j = 2,3,---) are the mxm
positive-semi-definite and positive-definite diagonal matrices respectively; P3 and
Py; (j = 3,4,---) are the nxn positive-semi-definite and positive-definite diagonal
matrices respectively; Py is the nxn positive-definite diagonal matrix; k1 and kg
are some positive integers such that k; > 1 and ks > 3; O(-) denotes the order of

the argument.

The memory component Z is the m X1 estimated parameter vector such that
Wz = My(é + py) + Dsos, (5.3.18)

where My and D, correspond to the unbarred variables computed with the esti-

mated parameters.
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Proof of this Theorem is given in Appendix 5.A.
The block diagram of this Theorem is shown in Figure 5.1.

5.3.3 Improved Adaptation Laws

To improve the control performance, we proposed two new adaptation laws
(4.4.19) and (4.4.20) in Chapter 4, based on the bounds of the parameters of the
dynamics. Those adaptation laws can be also used for the decoupled adaptive
scheme in this chapter with the same constraints and the same improvements in
control performance. In this case, we have the constraint of 4% < O(Ps) < p when

we go through the stability analysis.

5.4 Remarks

In the Remarks of Chapter 4, we have commented on the stability proof,
stabilizing constraints, adaptation laws, and an improved PD feedback law. Those
comments are equally valid in this chapter. In addition, we have the following new
results.

1. When'W:Ej, the dynamics compensator, is removed from the control and
adaptation laws (5.3.13) and (5.3.14), a new d,, which includes Wz in (5.3.11) can
be defined. In this case, the Z; terms are excluded from V(t), V(t), Sy, and Ss.
Inside the set Sy, O(Wz) < u%(= O(dy)), whereas O(K1y) = O(Wz) < p*. See
(5.B.6) and (5.B.7). Hence, ag in (5.A.14) is still in the order y2. Then, inside the
set Sz, any initial V' (¢) converges exponentially into the residual set S3 in (5.A.20).
Hence, from the definition of V(t) in (5.A.4), boundedness of y, f, and h; follows
for all time ¢ > 0.

2. When the f and h; terms are removed in addition to WZ; from the control
and adaptation laws (5.3.13) and (5.3.14), the Z;, f, and h; terms are excluded
from V(t), V(t), So, and S3. In this case, we can readily show that any initial
V (t) inside the set Sy converges exponentially into the residual set S3. Hence, K1y
(= K1(é + Ke)), a PD feedback law, is sufficient to guarantee the stability of the
system. Consequently, we have proven the stability of PD or PID (when P3 = 0
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and Ky # 0) feedback laws for trajectory control of robots. When we use WZz;,
K> f, and K;Ysh; in addition to K1y, the performance index J becomes smaller,

and hence the maximum magnitude of the tracking error becomes smaller.

5.5 Computer Simulation

As an example, one of the schemes developed here has been applied to a
two-link direct-drive manipulator shown in Figure 5.2. Simulation of the scheme
is performed on a Sun Microsystems Sparkstation 1. We used a 4*h_order Runge-
Kutta method[5.13] with adaptive step size to guarantee accuracy in the solution
of the manipulator dynamics. The dynamics of the manipulator and the numerical
values of its parameters are given in (3.6.1) - (3.6.3) in Section 3.6 of Chapter 3.
As a bounded disturbance, the mass 2 is doubled between 2 and 4 seconds.

In this simulation, we use only the first terms of the summations in the

control and adaptation laws:

u=Kiy+ Kof + K3Y¢h, (5.5.1)

where
Yf + PfYy = PfY; (5.5.2)
Y= dia'g(yla Y2, ayn) (55'3)

One of the adaptation laws is given by

&+ Pz = PLWTy;

f+ Psf = Kay;

h+ Psh = K3Yyy. (5.5.4)
In this simulation, we do not use Wz, the feedforward compensator, since

it is not effective for trajectory control of a direct-drive manipulator, considering

required computation time. See the Remarks for stability proof in this case. The
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decoupled feedforward compensator WZ may be very effective for gear-reduction
manipulators whose coupled dynamics are much suppressed.
As in the previous chapters, we have computed the filterings associated with

y in the control law by using the following trapezoid rule (Tustin’s rule)[5.14):

(5.5.5)

where t; denotes sampling period.

To make our simulations realistic, we include a delay of one sampling period
(2 msec) in our control inputs for measurements, computations, and DA and AD
conversions.

The desired trajectories for the simulation are chosen as

r1 = cos 2t,

ro = — cos 5¢, (5.5.6)

which are shown in Figure 5.3.

We compare the performance of the present scheme with that of the PD
feedback law. For fair comparison, we use the maximum stabilizing gains for the
PD feedback law. Since the desired trajectories are sinusoidal, the I (integral)
feedback compensator is not effective for reducing the tracking errors. Hence, in
both schemes, we do not use the I feedback law (K2 = 0 for the present scheme).
In the figures, the dotted and solid lines will denote the PD feedback law and the
present scheme respectively.

The numerical values of the control gains for the PD feedback law and the
present scheme are as follows.

(1) PD feedback law:
K=diag(20,20); K1=diag(600,225).
(2) Present scheme:

K=diag(20,20); K1=diag(400,150); K» = 0,
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Py=diag(20,20); P1=0; P; = 0; P3 = 0; P4=diag(0.5,0.5); K3=diag(400,400).

The manipulator is assumed to be initially motionless.

Figures 5.4 and 5.5 show the tracking errors of both schemes for joints 1
and 2 respectively. Improvement by the present scheme is substantial. Notice the
responses to the step changes of the mass 2 at time 2 and 4 seconds. Both schemes
guarantee stability. The present scheme maintains almost the same magnitudes of
the tracking errors even when the mass 2 is doubled (from 11.36 kg to 22.72 kg).

Figures 5.6 and 5.7 show the control inputs of both schemes for joints 1 and
2 respectively. The required inputs are almost identical except the transient peri-
ods. Nevertheless, the tracking performance of the two schemes are considerably
different.

The second simulation is performed with sensor noises added to angular
velocities and positions of the links. The desired trajectories and the numerical
values of the control gains are the same. To simulate sensor noises, we use
“drand48(),” the random number generator in the Sparkstation 1. The maximum
magnitude of the noises is 5 x 1074,

Figures 5.8 and 5.9 show the tracking errors of both schemes for joints 1
and 2 respectively in the presence of sensor noises. The tracking errors contain
sensor noises. The tracking performances of both schemes remain almost the same.
Figures 5.10 and 5.11 show the control inputs of both schemes for joints 1 and 2
respectively. The required control input for the PD control law contains periodic
spikes. This means that the gains for the PD law are too large to tolerate the
sensor noises. When the gains of the PD law are reduced, the spikes disappear,
but the tracking errors increase. The present scheme generates almost the same
control inputs as those without sensor noises. Note that the feedback adaptive
compensator (the h term) filters out high-frequency sensor noises. The present
scheme guarantees stability in the presence of the sensor noises.

With extensive simulations, we have found that instability occurs when any
of initial errors, disturbances, sensor noises, desired trajectories and their time-

derivatives, or control and adaptation gains is larger than its certain upper bound.
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This supports our stability analysis.

In spite of disturbances such as a step change of mass 2 which is not included
in the derivation of the control law, the performance of the control law such
as guarantee of stability and fast transient response is shown to be essentially

unchanged. This is because the sufficient condition for the stability of our scheme

is too strong.

5.6 Conclusion

In this chapter, we have shown that the proposed decentralized adaptive
scheme, a subset of the scheme proposed in Chapter 4, stabilizes the nonlinear
coupled system of manipulators. In addition, we have proven the stability of PD
and PID feedback laws, and have derived the stability bounds for their gains.

In contrast to existing literature of decentralized adaptive control of ma-
nipulators, the scheme proposed in this chapter has the following features. The
stability proof of the proposed scheme does not require the assumption of bound-
edness and quasi-time-invariance of the coupled dynamics. The proposed scheme
includes feedforward compensators in addition to feedback adaptive compensators
and an improved PD feedback law. Moreover, the scheme provides stability bounds
for disturbances, control and adaptation gains, and desired trajectories and their
time-derivatives, in the presence of unmodelled dynamics due to feedback delays
in the digital control systems.

The results of the realistic simulations support our stability analysis and
lead to the conclusion that the control law developed here outperforms the PD
(or PID) feedback laws. The present scheme guarantees stability in the presence
of disturbances, sensor noises, and unmodelled dynamics due to feedback delays
in the digital control systems. Since the present scheme allows fast parallel
implementations, the scheme is one of the practical solutions for precise control of

robots.
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Figure 5.2 Modelling of links



140

lllllllll'lllllllllllllllllllllllllllll'llllllll

(pex) sotaojdafexy peatsop

3 4 5 6 7 8 9 10
time (sec)

2

1

0.

Figure 5.3 Desired trajectories: solid line for joint 1 and dotted line for joint 2



141

3 4 5 6 7 8 9 10
time (sec)

2

1

o
-
Q
@
<
g
&
W-. - m .W ..... o m
3 o it
¢ "~ k vultlcl
1' Qo aeae- - L
W -] 1% .::::: ml
- 2 . :
= @ y l||
O
C St -
C o) -
2 A -
C m. r
Fe 5 -
T = 2
o ~ — S
0 o) -
- .m O L
3 =) =
-« D 3 -
..... - < o C
DI 3 o8 3
@ = 8 :
C =) -
L ‘S @ o
o =B -
o =) % o
- g & 3
» oA F
- 59 C
-ﬂ-—-w—w-—_-.-.-—--—-j 0. glm
=
rHd N M ow .
© o o o o % 1m,m o %
S N g L
2
(pex) szoxxze HBurpyowry <« (pex) sxoxxe BHUupyORI)
A3
)
=
=}
1)
o=
(€3]

Figure 5.5 Tracking errors of joint 2: dotted line for PD feedback law and solid
line for the present scheme



142

500
400
300
200
100

F -

‘0.
-100
-200
-300
-400

required iputs (N.m)

I_Llllllllllu_lllu]lll_ll lllll!
o

-500 lﬁlllll11llTllTl'ﬁfﬁlll'lllTllﬁl'_fllllllllrfl

1 2 3 4 5 6 7 8 9 10
time (sec)

o

Figure 5.6 Control inputs of joint 1: dotted line for PD feedback law and solid
line for the present scheme

500
400
g8 3900
Z
200
i 100
e [
B, AWV
B 7 v YV
¥ -100
;'. 3
-« ~200 -§
§' -300 -3
H 3
-400 -3
_500 -lll1|Illl!lll'[lTll]1lI_l"1_'_ll"|_llll‘ITll‘lllllllTl
0. 1 2 3 4 5 6 7 8 9 10
time (sec)

Figure 5.7 Control inputs of joint 2: dotted line for PD feedback law and solid
line for the present scheme



143

|||||||

llll'llll'llllllIT_'T'TIII|lllPT'Tl1r'rlll‘llrlll

M N o ' = N M
o 0 © o0 o

o O O O | I R |

0.05
04
0
0

{pex) szoxxe bBupydoexy

-——-u-q—--—--—--‘—--

<@
o

"y]
Qo

3 4 5 6 7 8 9 10
time (sec)

2

1

0.

Figure 5.8 Tracking errors of joint 1 in the presence of sensor noises: dotted line
for PD feedback law and solid line for the present scheme

sxoxzye Buypyovex]

time (sec)

Figure 5.9 Tracking errors of joint 2 in the presence of sensor noises: dotted line
for PD feedback law and solid line for the present scheme



144

500
400

:""llll.l'ﬂ
SSSrRsERSERY

: 300 :
=2 200 =~ N R "
o s '
£ 100 i o,
[ W
§ 0 ; V
-100 H el
ko] 3 g
3 -200
2,
-300
g
v -400

_500 l‘ll'!l‘llIITI'—|II'Il"llrl"’lf‘l"llll'l ﬁ'qm
0. 1 2 3 4 5 6 7 8 9 10

time (sec)

Figure 5.10 Control inputs of joint 1 in the presence of sensor noises: dotted line
for PD feedback law and solid line for the present scheme

500
400
300
200

Yeasssssvancnseans
oS LTSS LSS TR PIONS

X R LT AN

g
g
|
5 100 -3
£ o. FRA— ? :
E ‘ z : = é
s R AR
- . - ‘
-200 - : . 1
A I P
B _300 = : :
v 3 : :
~-400 -5 i
_500 -ll'llllll"[l‘_ll‘l'rll'l']l[l!TIIImTTlI’TIlI"ITTI

0. 1 2 3 4 5 6 7 8 9 10
time (sec)

Figure 5.11 Control inputs of joint 2 in the presence of sensor noises: dotted line
for PD feedback law and solid line for the present scheme



145

References

[5.1]

[5.2]

[5.3]

[5.4]

[5.5]

[5.6]

[5.7]

[5.8]

[5.9]

[5.10]

Seraji, H., Decentralized Adaptive Control of Manipulators: Theory, Simula-
tion, and Ezxperimentation, IEEE Trans. on Robotics and Automation, Vol.
5, No. 2, pp. 183-201, April 1989.

Oh, B. J., Jamshidi, M. and Seraji, H., Decentralized Adaptive Control, Proc.
of IEEE Int. Conf. on Robotics and Automation, pp. 1016-1021, 1988.
Gavel, D. T. and Hsia, T. C., Decentralized Adaptive Control of Robotic
Manipulators, Proc. of IEEE Int. Conf. on Robotics and Automation, pp.
1230-1235, April 1987.

Gavel, D. T. and Hsia, T. C., Decentralized Adaptive Control Experiments
with the PUMA Robot Arm, Proc. of IEEE Int. Conf. on Robotics and
Automation, pp. 1022-1027, 1988.

Ozguner, U., Yurkovich, S. and Al-Abbass, F, Decentralized Variable Struc-
ture Control of Two-Arm Robotic System, Proc. of IEEE Int. Conf. on
Robotics and Automation, pp. 1248-1254, 1987.

Pandian, S. R., Hanmandlu, M. and Gopal, M., A Decentralized Variable
Structure Model Following Controller for Robot Manipulators, Proc. of IEEE
Int. Conf. on Robotics and Automation, pp. 1324-1328, 1988.

Koivo, A. J. and Guo, T. M., Adaptive Linear Controller for Robotic Ma-
nipulators, IEEE Trans. on Aut. Contr., Vol. AC-28, No. 2, pp. 162-172,
1983.

Walters, R. G. and Bayoumi, M. M., Application of a Self-Tuning Pole
Placement Regulator to an Industrial Manipulator, IEEE, Conference on
Decision and Control, pp. 323-329, 1982.

Leininger, G. G., Adaptive Control of Manipulators Using Self-Tuning Meth-
ods, Robotics Research, Chap.9 edited by M. Brady and R. Pall, 1984.
Sundareshan, M. K. and Koenig, M. A., Decentralized Model Reference
Adaptive Control of Robotic Manipulators, Proceedings, Automatic Control
Conference, pp. 44-49, 1985.



146

[5.11] Ioannou, P. A. and Kokotovic, P. V., Robust Redesign of Adaptive Control,
IEEE Trans. on Auto. Contr., Vol. AC-29, No. 3, pp. 202-211, March 1984.
[5.12] Arimoto, A. and Miyazaki, F., Stability and Robustness of PID Feedback
Controller for Robot Manipulators of Sensory Capability, Robotics Research:
The First International Symposium edited by Brady, M. and Paul, R., pp.

783-799, 1984.
[6.13] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterting, W. T,

Numerical Recipes: The Art of Scientific Computing, Cambridge, 1986.
[5.14] Franklin, G. F. and Powell, J. D., Digital Control of Dynamic Systems,
Addison-Wesley, Reading, 1980.

Appendix 5.A: Proof of Theorem

The stability proof of the decoupled scheme in this chapter is basically the
same as that of the coupled scheme in Chapter 4. Hence we follow the same steps

in this proof.
(I) We insert the chosen control and adaptation laws (5.3.13) and (5.3.14)

into equation (5.3.12):
‘T s T
| 7o+ Dyar + 5 (47 20y - y0) 1100 0)

t
::I}TPl_il (.’i‘l +/ Po1z1dr —:130)
0

ks

¢ k1
- /0 yT [W S g - (du +d—u - K1y> +Kaf + KjYyhydr,
=1 J=3

(5.A.1)

where we have applied (4.A.5) with (4.A.1) in Chapter 4. Note that we obtained
a similar relationship in the stability proof in Chapter 4.

Using (4.A.6) and (4.A.1) in Chapter 4, we have

/ t yT(pM + D)ydr + %(yTM y—y(0)"M (O)y(O))
0
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[(@ = 2)TPF (= = ) = (2 — 21) P} (& — 3)]

N | =

1/t _ ) e )

ky $ T
1
-3 E (;Y:;‘FPI—J-I:E]- + 2/ f::fPl_J'-lejaT:jd’r) +/0 yT (du +d—-u.— Kly)dT
j=2 0

- G—fo + /0 t fTPsde) — fj [%h;-”h,- + /0 t hfp4,-hjd¢], (5.4.2)

=3

where it is assumed that z is the mx 1 unknown but constant vector. See Appendix
4.A of Chapter 4 for details.
We rewrite equation (5.A.2) as

t
7= [ o"(eM + Dyydr
0

=5 (4O MO)(0) + (= ~ 2) Py (o~ 7)) — V(0)

1/ _ _ 1. _
— 5/ (((IJ — .’_1‘:1)TP111P21(CL' — .’Bl) + (:L‘{Plllpglall — :ETPHlel:L')) dr
0

ki ot T
- Z/O Z] Py Pyzjdr +/0 yT (du +d—u,— K1y>dT
t ks ¢
— / fIPsfdr =" /0 hT Py;hjdr, (5.4.3)
0 ;
J=3

where the non-negative function V(t) is defined as

k1 ks
V() =3[y My + @ - 2)T PRl - 21) + YT Pte + TS+ Y Wi hy| 2 0.
—9 =3

(5.A.4)
Then, it is obvious that the Z; (j = 2,3,---), f, and h; (j = 3,4, - ) terms reduce

DOt =

the performance index J. Hence, these terms reduce the maximum magnitude

of y, the filtered tracking error. Accordingly, these terms improve the transient
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behavior of the system.

We can also rewrite equation (5.A.2) as

V() =3 (0 M©O(0) + (@ ~ 2)" PPz — )

14
- / (yT(pM + D+ K1)y — yTdu — yTd + yT (51u — ts’ll))dT
0

1 [t _ ) o )
- .2—/(; ((:II - El)TPanZl(x - 1131) + (${P111P21:E1 — JJTP111P21:1;)) dr

ki ot t k2 ot
-y / z] P Py;zjdr — / fPsfdr -y / hT Pyihjdr.  (5.A.5)
j=270 0 j=370

From this, we obtain the time-derivative of V(¢) along the trajectory of the given

system:
V() =- (yT(pM + D+ K1)y — yTdy — yTd +yT (61u — tsfa))

1 _ - _ . _ -
- 5 ((II: - ml)TPanzl(.’L' - 11:1) + (w{Plllpglml - :BTP111P21:IJ))

k k
— Zl z] P Pyz; — [T Psf — ZZ: hT Pyjh;. (5.4.6)
=2 i=3
The true parameter z is bounded and the disturbance vector d is assumed to
be bounded. Therefore, when 8;=t,=0, any initial V'(¢) converges into a bounded
set St = {(y,Z;, f,h;)} which is a function of z, d, dy, control and adaptation
gains, etc. This means that V(¢) is bounded for all time ¢ > 0. Then, from the
definition of V'(t) in (5.A.4), y, Z;, f, and h; are all bounded for all time ¢ > 0.
However, when 61 # 0 or t; # 0, dy, and @ may grow unbounded coupled
with the control and adaptation laws.
(IT) To stabilize the system (i.e., to enforce V'(t) < 0 outside S;), we make

the sign-indefinite d,, and @ terms in (5.A.6) much smaller than the other terms.

Since t; < 1, the following constraints stabilize the system:

O(61u) < O(K1y);
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O(du) < O(K1y);

O(éa) < O(Kyy). (5.A.7)

To find the orders of u, %, K1, and y, we restrict our analysis inside a certain
set S (D S1):
Sy ={(u, %, f,k;) | V < p’}, (5.4.8)
with
(5.4.9)

a
H !
for some finite positive scalar a to be determined later. Note that the size of the
set has not been determined yet.

Without loss of generality, we assume that the upper bounds of k; and k2
are limited so that they do not affect our order analysis. Then, inside the set Ss,
O(y) < p, OY) < p, O(f) < p, and O(hj) < p. In this analysis, we limit the
orders of Pi; and Pjj such that p < O(Prp) < p? and p < O(Py;) < u2. Then
O(z — 1) < p? and O(g;) < p?.

Equations (5.3.4) and (5.3.15) are stable first-order differential equations.
Hence, inside the set Sz, O(é) < p, O(e) < p, and O(Y}) < p under the constraints
of O(&(0)) < p, O(e(0)) < p, OY5(0)) < p, and O(K) = p0, where u0 denotes
unity consistent with the other orders of u. We assume for all time ¢ > 0 that
the desired trajectory satisfies O(r) < p and O(7) < p. Then, the orders of ¢ and
q can be obtained as O(4) < g and O(g) < p. We also assume that O(z) = P,
which results in O(z1) < p2.

Then, under the constraints of (5.3.17) and (5.B.22), we can obtain the

following bounds:
u < O(u*)uy;

4 < O(u")uy;

du < O(p?)us, (5.A4.10)
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for some nx1 vectors uy(t), us(t), and us(t) of order u®. See Appendix 5.B for

detailed derivations.

The bounds (5.A.10) are derived for revolute-joint robots. The corresponding
bounds for prismatic-joint or prismatic-revolute-joint robots are similar to those
in (5.A.10) and they can be readily derived. In this case, the stability analysis
(proof) is basically the same as that described below.

(IITI) The first two constraints of (5.A.7) are already satisfied. See (5.A.10)
and (5.B.7). To stabilize the system, we satisfy the last constraint in (5.A.7) by
limiting the upper bound of a in (5.A.9):

12
(5.A.7) = plti<pt = St

4 ~1
= a <t3 = p<ts>. (5.4.11)

Note that this satisfies the constraint (5.B.22). When sensor resolutions are
sufficiently small, we can safely assume that 6§ < t;?:. See (4.3.2) and (5.2.2).
Then, from (5.A.10), there exist nx 1 vectors u,(t) and u,(t) such that u, < O(u?),
u, < O(p?),

oyt < tallalllgll < uollyll
517w < 61llulllyl < ity (5.4.12)

Then, (5.A.6) becomes

: 1
V(t) < —yT(pM + D + sK)y - ar|lyl® + aallyl| + s

1 _ _
— 5(33 — El)TPungl(.’I: — .'171)

kl k2
— > & PGPy — fTPsf = > h] Pujhy, (5.A.13)

where

1
ai =>‘min(§K1) < O
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ag =max(||du]| + ldll + lu.ll + Jlu,fl) < O(s?)

1 p. _
a3 =§xT P Puz = O(P Px) < O(4?). (5.A.14)

See (5.3.17), (5.A.11), (5.A.12), and (5.B.3).

We complete the square to remove the as term:

: 1 1 - _
V() <~y (pM + D+ 5 K1)y - (e - 21)7 Py P (e — 31)

k1 k2
- Z j?P1;1P2jjj — fTPsf - E h’fP4jhj + a3+ ayq, (5.A.15)
= e
where
a3 2 2 3
U= [ <O if p* < Oar) < p ] (5.A.16)
4041
We can rewrite (5.A.15) using V' (¢) in (5.A.4):
V(t)+BV(t) < as + ag — as(t) (5.4.17)

with

as(t) =[yT(pM + D+ %Kl)y ~ gyTMy]

+ %[(C” ~ 21)T P Po(c — 21) - Bz — &1) P! (e - il)]

k
+ Z [ﬁijl—jlpzj:ij ~ gj;fpl—jlij] + [fTPSf _ ngf]
—~
ks ﬂ
+2 [h;"r Pyjhj = ghfhj] 20, (5.4.18)
=3

where the positive constant § is chosen to be the maximum value which makes the
expressions in all the brackets (|- - -]) non-negative. Then, O(8) < p®. See (5.3.17)
and (5.A.18).
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The solution of (5.A.17) is given by

V(t) < exp[—pt] (V(O) + /0 {az + ag — az(7)} exp[ﬂT]d'r). (5.4.19)

Consequently, we conclude that any initial V(¢) belonging to the set Sy converges

into the following residual set:

4
83 = {5, 1,1) | V(1) < expl-51] /0 {as + o4 — a5(r)} explfr]dr

< (a3 + a4)} (5.4.20)

ey

at a rate of at least exp|-gt]. Since O(B) < u, O(es3) < 12, and O(ay) < p?, the
size of the set S3 is given by ™! < O({a3+ a4}/B) < p? under the constraints of
O(B) > u® and p? < O(ay) < p, from which we have

B < O(Ky) < pi?, p® < O(Py) < 42,

10 < O(P3) < p®, u® < O(Py) < 1. (5.4.21)

See (5.A.14), (5.A.16), and (5.A.18) with (5.3.17).

Note that as(¢) accelerates the convergence rate and reduces the size of the
residual set S3 even further. Note also that S3 C S3. Hence, from the definition
of V(t) in (5.A.4), boundedness of y, Z;, f, and h; follows for all time ¢ > 0.
The region of attraction is finite (inside S2) for nonzero t,. Hence all the initial

conditions (tracking errors and parameter errors) must belong to Sz for stability.
Appendix 5.B: Estimation of ¢ and @

For simplicity of our analysis, we set k&1 = 1 and k3 = 3 so that we omit
the subscript j in our analysis. The rest of the terms of the summations can be
readily included. Inside the set S, we derive the orders of variables related to
. We keep only important high-order terms of p since p is assumed to be much

larger than unity. We assume that the sampling period (t,) is sufficiently small so
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that the order of the true parameter x is much smaller than that of t—1; That is,
1 :
O) <O(), Vi=12---,m. (5.B.1)
]

According to the control and adaptation laws (5.3.13) and (5.3.14), u, «,
and hence uc(= §u —t,u) are functions of the desired trajectories (r, 7, and rIf),
disturbances (d), and control and adaptation gains (p, K;, P1j, Paj, P3, and Py; for
j=1,2,3,---). Since u. contains very small constants §; and t,, we can make the
sign-indefinite u term in (5.A.6) much smaller than the other terms by limiting
the upper bound of a in p (=¢).

If the order of any one of the desired trajectories, disturbances, or control and
adaptation gains is significantly larger than the others, it will dominate the orders
of u and %, and hence the size of the stabilizing S2. Accordingly, we set the upper
bounds of the desired trajectories, disturbances, and control and adaptation gains
in such a way that we equalize their influences on the other variables including u,
i, and 4.

~ For convenience, the dynamics of revolute-joint manipulators will be used
in this order analysis. In this case, the inertia matrix is bounded. The order
analysis for prismatic-joint or prismatic-revolute-joint robots can be as readily
performed as that for revolute-joint robots described below since the structure of
the dynamics is the same regardless of the type of joint.

In this analysis, we begin with variables of known order. Then, we obtain the
orders of their time-derivatives using the dynamics (5.2.1), control law (5.3.13),
adaptation law (5.3.14), and time-derivatives of these.

The unmodelled dynamics d, is a function of (6 + py), &, ¢, and g. The
second constraint in (5.A.7) requires the upper bound of the sign-indefinite d,
term to be limited. The upper bound of C¢ in d, is O(y?). Hence, we set the
upper bounds of p and 7 contained in & such that their orders are not larger than

the order of Co:
O(F) < p* and O(p) < p, (5.B.2)
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which leads to
O(dy) < p2. (5.B.3)

From the definition of W (p,#,7,7,q,q) in (5.3.11) or (5.3.18), we have
W = [0(7) + Olon) + O(uK.) | Wy (5.8.4)

for some nxm matrix W, (¢) such that O(W;) = p® (= 1). We choose the upper
bound of K such that they increase the order of W not more than O(u?), the

contribution from & and py:

O(K,) < p. (5.B.5)

From the control law (5.3.13), we can derive
u= [O(*) + O(Kip) + O(Kap) + O(Ksp) oy (5..6)

for some nx1 vector u;(t) such that O(u;) = p0. We select Ki, Ko, and K3 such

that they do not cause the order of u to be higher than O(u*), the contribution
from Wz:

O(Ky) < p®, O(Kp) <p®, and O(K3) < p? (5.B.7)

Note that the upper bound of K satisfies the first two constraint in (5.A.7).

See (5.B.3) and (5.B.6).

From the adaptation law (5.3.14), we can obtain

I = [O(quz) + O(M5)] X1;
f = [0 + 044 6;
= [O(Pu) + 0" by (5.8.)

for some mx1 vector x;(t) and nx1 vectors f;(¢) and hy(¢) such that O(x;) = p°,
O(f;) = 4% and O(h;) = 0. We select P, by limiting the upper bound of Z to
O(u®), and P3 and P, by limiting the upper bounds of f and h to O(u*). That is,

O(P) < pd, O(P)<ud, and O(Py) < pb. (5.B.9)
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From (5.3.15), we have
Y; = O(Psu)Y s (5.B.10)

for some nxn matrix Y, (t) such that O(Yf;) = puO.
From the dynamics (5.2.1),

G=Mu+6u—ta—Cq— Dg—g—d]. (5.B.11)
Then, using the structure of the dynamics (M(q), C(4¢, ), and g(q)), we can derive
§=—-M"O(d) + O(u) + O(b1u) + O(ts0)lq, (5.B.12)
for some nx1 vector g, (¢) such that O(q,) = 10, We set
O(d) < O(u) < p*. (5.B.13)
Since 61 € 1, O(81u) < O(u). Hence

§=—-M"TO(u*) + O(tsi)lq,. (5.B.14)

By differentiating W in (5.3.11) or (5.3.18) with respect to time, we can

obtain W (r'I # 7,7, §,q,q). Using the structure of W, we can derive
W = [0(s%) + pO@@) + nO() + O™ W, (5.B.15)

for some nxm matrix Wy(t) such that O(W,) = . From (5.B.14), O(§) can be

greater than u*. Hence we set
Oy < b, (5.B.16)
Taking time-derivative of u yields

i=Wi+ Wz + K19+ Kaof + KsYih + K3Yph. (5.B.17)
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From (5.B.8) and (5.B.9), we can get
o= [0(s7) +0W3) + O(K1i) + 0Pyt |ue  (5.B.18)
for some nx1 vector uy(t) such that O(uy) = ub. We set
O(Py) < 3. (5.B.19)

From (5.B.7), (5.B.15), and (5.B.16), O(Wz) = u30(§) + p2O(9) + O(u") and
O(K13) = pPO@). OF) = max[O(§), O(F)] since § = 7 — § + Ké. Note that
O(7) < u?. Hence

i= [0() + O] e (5.B.20)
Then, from (5.B.14),
§=—M"O(u*) + O(u"ts)]q, + Otsh®)d. (5.B.21)
Under the constraint of
3
t2 <p3 (5.B.22)

with ¢, < 1, O(§) < O(u?*). Then,

i< [O(M)] . (5.B.23)
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Chapter 6

ADAPTIVE CONTROL OF FLEXIBLE-JOINT ROBOTS

6.1 Introduction

In the previous three chapters, we have discussed the design of robust
adaptive control laws for manipulators in the presence of bounded disturbances,
sensor noises, and unmodelled dynamics. The underlying assumption for this
is that the structures of manipulators are rigid. In reality, there exist no such
manipulators. The links and joint couplings exhibit a certain degree of flexibility.
For most commercial manipulators, the links are well approximated by rigid
bodies[6.1]. Accordingly, in this chapter, we focus on the flexibility of the joint
couplings due to the flexibility of belts, cables, drive shafts, harmonic drives, and
so on, for power transmission from actuators to links.

The compliance of the joint couplings may be positively used for force con-
trol and protection of mechanical components from collisions. There are, however,
some accompanying problems of control. Experimental results[6.2,6.3] have shown
that the flexibility between the links and actuators affects the manipulator dynam-
ics, degrading the performance and possibly causing instabilities.

The idea of feedback linearization[6.4-6.7], the concept of integral manifolds
[6.8-6.10], and gain scheduling[6.11-6.14] have been applied to treat the aforemen-
tioned problems. As we reviewed in Section 1.2.2 of Chapter 1, all these approaches
have problems of signal measurements and /or lack of robustness (i.e., uncertainty
in the parameters dominates stability). A singular perturbation approach[6-15]
seems to avoid the problems for some applications. However, the stability of this
scheme is not proven.

The control law proposed here is intended to avoid those problems. It is rel-
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atively insensitive to parametric uncertainties necessarily accompanied in models
of link and actuator dynamics, stiffnesses of joint couplings, and external dis-
turbances. The computational burden of the present scheme is almost the same
as that of the corresponding scheme for robots having rigid joints. Moreover,
measurement problems are minimized because the proposed scheme requires mea-
surements of only angular positions and velocities. Hence, the present scheme
is one of the applicable practical solutions to the control of manipulators having
flexible joint couplings.

In our approach, we consider the actuators and joint couplings as second-
order low-pass prefilters for the link dynamics, since the torque inputs pass through
the actuator and joint dynamics. We design an appropriate flexibility compensator
for joint flexibility so that we transform the systems of flexible-joint manipulators
to those of the corresponding rigid-joint manipulators with a certain degree of
high-frequency unmodelled dynamics. In other words, we make the flexible joint
couplings artificially rigid using the flexibility compensator. As a consequence,
control of flexible-joint manipulators is converted to that of the corresponding
rigid-joint manipulators, which has been already discussed in the previous chap-
ters. We derive an adaptive control scheme for the transformed rigid-joint ma-
nipulators, which is a simpler form of the scheme developed in Chapter 4. Then,
we derive a sufficient condition for the robust stability of the scheme with the
flexibility compensator, for the system of the original flexible-joint manipulators.

As a mathematical tool, we use standard Lyapunov’s second method.re-
viewed in Chapter 2, even though we can apply the design approach we have
followed in Chapters 4 and 5.

In Section 2, using an appropriate flexibility compensator, we change the
unwanted characteristics of the prefilters by placing the poles of the prefilters
in more desirable locations. Then, we transform the system of a flexible-joint
manipulator to that of the corresponding rigid-joint manipulator with the high-
frequency prefilter dynamics as unmodelled dynamics to the new system.

In Section 3, neglecting the unmodelled dynamics, we design an adaptive
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control scheme, which is called a reduced-order adaptive control law. The resulting
control scheme is a simpler form of the adaptive control law proposed in Chapter 4.
Via additional stability analysis, we derive a sufficient condition for the reduced-
order adaptive control law, which guarantees robust stability in the presence of
the unmodelled dynamics we neglected.

In Section 5, we discuss attenuation of sensor noises associated with the
flexibility compensation since high gain of the flexibility compensation loop may
magnify high-frequency sensor noises. We also explain why our scheme is almost

insensitive to disturbances inside the flexibility loop.

6.2 Transformation to A System of Manipulators Having Rigid Joints
6.2.1 Preliminaries

The dynamics of manipulators with flexible joint couplings can be modelled

as[6.8]:
M(q)d + Cld, @)@ + Dt + glqr) +d = Ko(N g0 — 1), (6.2.1)

Jabia + Bada + N K (N7 g0 — 1) = ta, (6.2.2)

where

q1, 41, i : nx1 joint displacement, velocity, and acceleration vector for the links;
a,Ja, §a : mX1 joint displacement, velocity, and acceleration vector for the actu-
ators;

M(q;) : nxn effective coupling inertia matrix for the links including payloads;
Jq 1 nXn diagonal matrix of the actuator inertia;

C(di,q1)gr : nx1 centrifugal and Coriolis force vector;

D : nxn matrix for viscous damping coefficients of the links;

B, : nxn diagonal matrix for viscous damping coefficients of the actuators;
g(q1) : nx1 gravitational loading vector;

d : nx1 bounded disturbance vector;

N : nxn diagonal matrix for the gear ratio between the links and the actuators;
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K, : nxn diagonal matrix for the stiffness of the joint couplings;
U : nX1 actuator input vector;
n : number of joints.

Note that the two equations are coupled through K.(N~lq, — ¢;), which is
generated by the actuator dynamics (6.2.2) from the input u, and transmitted to
the link dynamics (6.2.1) through reduction gears.

As a background for compensation of joint flexibility, we examine the role of
the joint flexibility. We rewrite the link dynamics (6.2.1) and actuator dynamics
(6.2.2) as

M(q)d + Cld, @r)di + Dgi + 9(q1) = K.v, (6.2.3)

NJ,o 4+ NByo + N 'K = N"YNu, — N2J,G — N2B,4p), (6.2.4)

where v is defined as
v=N"1q, —q. (6.2.5)

Now, for convenience, let us define u; as
u; = Nug — N2JouG; — N2Bag;. (6.2.6)
Then, the actuator dynamics (6.2.4) becomes
NJ, o+ NByo+ N~ K. = N1y, (6.2.7)

According to equations (6.2.3) and (6.2.7), the actuator dynamics acts as a
second-order low-pass prefilter for the link dynamics. In other words, wu; is filtered
through the actuator dynamics, and K v, the output of the actuator, is fed into
the link dynamics (6.2.3), which can be interpreted as a second-order low-pass
filter. Note that the output of the link dynamics for a sinusoidal input is no longer
sinusoidal since the system is nonlinear and coupled. The degree of distortion of
the sinusoidal signal depends on the degree of coupling and nonlinearity.

By definition, any low-pass filter has low gain in the high-frequency region.

Hence, regardless of the control laws used, large magnitudes of control inputs are
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required to control a trajectory whose spectral range covers the high-frequency
low-gain region of the link dynamics and/or the prefilter (6.2.7). Consequently,
regardless of the control laws, the control bandwidth (the spectral content of the
reference inputs) must be limited for a given manipulator since its actuators or
amplifiers with limited capacities can not generate control inputs larger than a
certain bound.

When the bandwidth of the prefilter (6.2.7) is sufficiently larger than the
spectral range of the inputs, we may assume that the behavior of the prefilter
(6.2.7) is approximated by

Ko =1y. (6.2.8)

If the relationship above is to be valid for all signals u;, the prefilter must be an all-
pass filter. Then, the undamped natural frequency of the prefilter, N —1\/:7;_1—15,
must be infinitely large, implying that K. — oo, the limiting case of rigid joints.
In this limit, the link dynamics (6.2.3) and the actuator dynamics (6.2.8) with

(6.2.6) become the following model for a manipulator having rigid joints:
(M(qr) + N2 1)@ + C(d, )it + (D + N?Ba)t + g(q) +d =i, (6.2.9)

where

ut = Nug. (6.2.10)

When the bandwidth of the preﬁlfer is smaller than the control bandwidth,
u; is distorted while passing through the prefilter. The bandwidth of the prefilter
is inversely proportional to N. See the dynamics of the prefilter (6.2.7). Hence,
the bandwidth of the prefilter decreases as N increases, increasing the distortion
of u;. The distortion of u; also depends on the damping ratio of the prefilter. If the
damping of the prefilter is too small, instability may be caused by magnification
of even apparently negligible torque inputs near the resonance frequency. If the
damping is too large, most of the torque inputs may be filtered out. Larger

distortion of the input signals causes larger magnitudes of the tracking errors,
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even though the exact inverse dynamic models of the links and actuators are used

in control laws.

For commercial manipulators, the gear ratio IV is normally large and the
damping ratio of the prefilter is small. As a consequence, the distortion of
the signal wu; is significant. Hence, gear reduction with flexibility increases the
magnitudes of the tracking errors even to the point of instability, depending on
various factors such as the gear ratio, joint stiffness, and inertia and damping of
actuators. In practical applications, the actuator angles, rather than the link
angles, are controlled. This avoids the instability but induces vibration and

additional tracking errors.
6.2.2 Compensation of Joint Flexibility

Based on the discussion and equation (6.2.10) in the preliminaries, we select

the control input (actuator input) for a manipulator with flexible joints as
g = Kne N ugg + ug, (6.2.11)

where K,; is the nxn positive-definite diagonal matrix to be determined later;
utq and u. are the nx1 vectors for the joint torque and for the joint flexibility
compensation respectively which will be determined later.

Then, equation (6.2.2) for the actuator dynamics becomes

NJyb + NBgv + N K v = Ky N~ Y uge — KA N2 oG ~ K N’ Bady) + .
(6.2.12)

Similar to the case for rigid joints, we redefine u; as
_ ~1n2 7 = a2 -
We move the poles of the prefilter (6.2.12) to more desirable locations by choosing

Ue = — Koy — Kepv, (6.2.14)
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where K, and K, are the nXxn positive-definite diagonal matrices to be selected.
Note that v is proportional to the torque transmitted to the link dynamics.
Therefore, this can be readily measured by using simple torque sensors with strain
gauges. The time-derivative of v can be attained by differentiating v after passing
through low-pass filters. Alternatively, this can be obtained by measuring the
rotational velocities of the links and actuators.

Then the prefilter (6.2.12) becomes
NJ,i + (NBy + Kep)9 + (N7 K, + Kep)v = Ky Ny (6.2.15)

Since we have two free parameters K., and K.,, we can increase the bandwidth of
the prefilter as much as we wish, while maintaining the appropriate damping ratio
(approximately 0.707). In reality, the upper bound of the bandwidth of the prefilter
is limited by some constraints such as sensor noises, unmodelled inductance of
actuators, and sampling rates in the digital control systems. Consequently, the
reference inputs (or desired trajectories) contained in input vu; are filtered while
passing through the prefilter. Especially, a signal in the spectral range higher
than the bandwidth of the compensated prefilter is seriously distorted and can
not be tracked with any control law for robots having rigid joints. However, as
discussed in the preliminaries, the control bandwidth must be limited due to the
low-gain characteristics of the uncompensated prefilter (6.2.7) and link dynamics
in the high-frequency region. Therefore, the bandwidth of the prefilter need not
necessarily be infinite.

Static (or low-frequency) gain of the compensated prefilter (6.2.15) becomes
smaller when K,v is added to the prefilter. The torque input is transmitted to
the link dynamics through K.v. Hence, the design problem would be simpler if
we select the static (or low-frequency) gain of the compensated prefilter (6.2.15)
to be equal to that of the uncompensated prefilter (6.2.7), which means that we
modify only the damping ratio and the bandwidth of the prefilter. However, there
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always exist uncertainties with K.. Therefore, we select K,,; as
Kut = (N 'Kpe + Kp) Kl N = P, Ky, (6.2.16)

where

K;=(N"'K.+ K,)K.N; (6.2.17)

K, is the nominal value of K.; P, is the nXxn positive-definite diagonal matrix
reflecting the uncertainties associated with the parameter K., the joint stiffness.
P, is unity if K, = K, (i.e., if there exists no uncertainty in K).

Then, the prefilter becomes

JeU + Cev + Kov = Pyuy, (6.2.18)
where

J. = N*K1J,,

C.= NK;Y(NB, + K.,). (6.2.19)

6.2.3 Deriving A Model of A Rigid-Joint Robot

For an input applied to the prefilter (6.2.18), the corresponding output is
the passing-through signal (the input itself magnified by the static gain of the
prefilter) with a filtered-out signal (representing distortion of the input by the
prefilter) subtracted. That is, we represent the prefilter (6.2.18) as

n+ K.v = Pyuy, (6.2.20)

where 7 is the nx 1 vector representing distortion of high-frequency content of the
input signal.

Then, the distortion 7 can be obtained by inserting (6.2.20) into (6.2.18):

Jeii + Cenp + K= Pu(Jcﬁl + CCﬂl)' (6‘2'21)



165

Then, the link dynamics (6.2.3) and the actuator dynamics (6.2.20) with (6.2.13)

become the following model:

(M(q) + K7IN21) G + Cld, a)dr + (D + K7 N?Bo)gr + g(@) +d + 1 = Putga;

(6.2.22)
E%j + 2ZE0 + 1 = Pu(E%y + 22&4), (6.2.23)

where
E=K1J., and 2Z€=K;!C,; (6.2.24)

£ is the nxn positive-definite diagonal matrix of order ¢ which is assumed to be
much smaller than unity. Z is the nxn positive-definite diagonal matrix repre-
senting the damping ratio of the compensated prefilter. Note that uncertainties
with J, and B, are included in £ and Z.

The structure of equation (6.2.22) is the same as that of the rigid-joint
model (6.2.9). In other words, using the concept of prefilter, we have transformed
a system of a flexible-joint manipulator to that of the corresponding rigid-joint

manipulator (6.2.22) with 7 representing unmodelled dynamics to the new system.

6.3 Design of A Control Law

From (6.2.22), (6.2.23), and (6.2.24), we have the following system to control:
MeGr + C(d1, @)1 + Dedi + 9(ar) + d + 1 = Pyuta; (6.3.1)

E2% 4+ 2ZEn +n = 2P, ZEu + P,E%y, (6.3.2)

where, from (6.2.13) and (6.2.16),
w = uga — Py Bedr — Pyl T | (6.3.3)

M.=(M(q)+J.) and D.=(D+ B.); (6.3.4)

J.=K;N?J, and B,=K;N2B,. (6.3.5)
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Note that we lose some useful characteristics of the link dynamics such as positive
definiteness of the mass matrix if we premultiply equation (6.3.1) by the inverse

of the uncertainty P,, unless all the diagonal components of P, are the same.
6.3.1 Design of A Control Law Based on the Reduced-Order System

The behavior of the system (6.3.1) is very complicated due to 7. In this
section, we temporarily neglect the distortion 7 from the system (6.3.1) to cir-
cumvent the complexity in the design procedure. The system without 7 is called
a reduced-order system. In this case, 7 represents unmodelled dynamics for the
reduced-order system. We design an adaptive control law based on the reduced-
order system, which is called a reduced-order adaptive control law. In the next
section, we will impose some restrictions on the reduced-order adaptive control
law so that this stabilizes the original full-order system (containing 7).

In this chapter we will follow the design procedure reviewed in Section 2.3.2.1
of Chapter 2.

Consider the following lower-bounded Lyapunov function:
Vi = 62—1 [yTMey + (z — Pz)T (PnP) ™Yz — PnZ) + fTP.f + hTPuh], (6.3.6)

where

e=r1—q; (6.3.7)

the positive scalar ¢; is chosen such that O(ciM,) = 1; z and T are the mx1 true
and estimated parameter vectors respectively; m is the number of parameters; f
and h are the nx1 vectors to be determined later; K is the nxn positive-definite
diagonal matrix; Pj is the m Xxm positive-definite diagonal matrix; P,, is the mxm
positive-definite diagonal matrix to be determined later. P,, is used to compensate

the uncertainty P,.
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The time-derivative of the Lyapunov function along the trajectory (6.3.1) is

given by
. R R o N .
Vi=ca [yTMey + §yTMey - :1!;TP1 1(:t: — P,T) + fTPuf + hTPuh]
=c1y” [ Me(5 + py) + C6 + Deé + g +d+1

+ PuK1y + PuKaf + PuKaYsh = Putea]

- clyT(pMe + -De + PuKl)y - CI:LUTpl—l(m - me)

~ c1(yTPuKsf — fTP.f) ~ c1(yT PuK3Ysh — AT Pyh), (6.3.8)
where
o =17+ Ke;
Y; + PsY; = P;Y; (6.3.9)
Y = diag(y1,y2," -+ Yn); (6.3.10)

p 2 0; K is the nxn positive-definite diagonal matrix; Ky and K3 are nxn
positive-semi-definite diagonal matrices; Py is the nxn positive-definite diagonal
matrix representing the break frequencies of the low-pass filter (6.3.9); from
the link dynamics, yT(Me — 2C)y = 0 if the non-unique matrix C is chosen
properly[6.16].
Now, let us define an nxm function matrix W and parameter vector = such
that
Wz =M. (6 + py)+ Co + D6 + g. (6.3.11)

Then,
Vi =cyyT [Wa: +d+n+ PuKyy + PJKof + PuKsYh — Puuta]
- clyT(pMe + D. + P,K1)y — clzﬁTPl_l(:L' — P,%)

~ ci(yT PuKaf — fTP.f) — c1(yT PuK3Ysh — hT P,h).



168

(6.3.12)
Let us choose a control law as
uta = WZ + K1y + Ko f + K3Y5h, (6.3.13)
where
Wz = Mo(5 + py) + C6 + D6 + 3. (6.3.14)

The over-barred variables denote the corresponding unbarred counterparts com-
puted with estimated values.
We define W, z, and Z joint by joint. Then, we have the following relation-

ship between P, and P,:
PWiz =WP,Z. (6.3.15)

The matrix P, is of the following form:

Pr = diag (pui,puzle, -, Puntn ) (6.3.16)

where p,; is the i** diagonal component of P, and I; is the identity matrix whose
dimension is the same as the number of parameters belonging to the joint 1.
Then,
’ T -1z T T ¢ T
Vi =a1[WTy = PY| (0 = Pri) — c1(yT Pk — fTPuS)
T 1 T T T
- cl(y PuK3th —h Puh) -y (pMe + De + PuKl)y + a1y ((_i + 77)
_ T
=c1 [WTy - Pl‘la's — Pl_lea‘c] (x — Py%)
—ci(z — Pm:_c)T(PmPl)_le(m — PpZ) + clmT(PmPl)_1P2(a: — P,7)
—e1fT|PuKoy = Puf - PuPsf| — et fTPuPs f
N [PUK;;ny — P — PuP4h] — b TP, Py

— 19T (pM. + D, + P, K1)y + c1yT (d + 1), (6.3.17)
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where Ps is the mxm positive-definite diagonal matrix; P3 and Py are the nxn
positive-semi-definite and positive-definite diagonal matrices respectively.
To stabilize the system (Vi < 0), we need to remove the sign-indefinite terms

in (6.3.17). Hence, we select the following adaptation law:

I+ Pz =PWTy;

f+ Psf = Kay;
h+ Psh = K3Yy. (6.3.18)
Then,
Vi=— %(z — P)T(PnP1) " Py(z — P3)
- 62—1.17:TP1"1PmP25: + Cz—le (PmP1) ' Pyz — ¢1 fTP,Psf
— cthT PuPyh — e1y” (oM. + D + PuK1)y + c1y” (d + n)
< —alom + 72 +w)yl? — vl FIIP = erysllall®
- 50l = Pad)I” + cillgll (] + Inl) + S all?,  (6.3.19)
where
M = Amin(Me); Y2 = Amin(De);
Y3 = Amin(PuK1); Y4 = Amin(PuP3);
Y5 = Amin(PuPy); 6 = Aumin(Pr P Pa);
V1 = Amax(Pt P{ L P2). (6.3.20)
Hereafter, || - || denotes Euclidean norm of the argument vector, and Apiy(+)

and Apax(-) denote the minimum and maximum eigenvalues respectively.
Suppose 77 = 0. Then, V; in (6.3.19) becomes negative when llyll grows

larger than a certain upper bound since the true parameter vector z is bounded
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and the disturbance d is assumed to be bounded. Hence, we can conclude that the
reduced-order adaptive control law, the chosen control law (6.3.13) and adaptation
law (6.3.18), stabilizes the reduced-order system (with n = 0). However, we can
not conclude anything when we include 7 since 7 may grow unbounded coupled
with the reduced-order adaptive control law. Hence, in the next section, we impose
some constraints on the reduced-order control law so that 7 is bounded.

The block diagram of the proposed control scheme is shown in Figure 6.1.

6.3.2 Stability Analysis in the Presence of Unmodelled Dynamics

In this section, we obtain certain conditions for the chosen control law
(6.3.13) and adaptation law (6.3.18) under which 7 is bounded. To achieve this,

we construct the following additional lower-bounded Lyapunov function:
1
Ve=3 [fTé’f +77 (622 - D)én), (6.3.21)

where
E=2ZEn 4. (6.3.22)

We choose \/gl < Z < I for the reasonable transient response of the system.
Hereafter, I denotes the nxn identity matrix.

The time-derivative of V3 along the trajectory (6.3.2) is given by
. 1 2 . 3 ) 9. 17 T o2
Ve =|- S B¢ — (322~ I)Eij - 520+ 2BPu(22Ei + & u,)] ¢+ 0T (622 - I)Ey
1
=— §§T25 — ;nTzn — 29T 2(32% — NEx) + 2(22&0 + E%i))TZP,¢
1 3 . . .
< = 5lléll® = Swlnll® — pllall” + 22280 + E2u) T ZPug, (6.3.23)
where
7 =Amn(Z)  and 79 = Amin (2(322 -~ 1)52/62). (6.3.24)

Note that V; and Vg, the time-derivatives of Lyapunov functions, are coupled

through ||7]|l|yll in Vi and (22&4u; + £2%i;)T Z¢ in Va. Hence, we define a combined
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Lyapunov function V,, for the system (6.3.1) and (6.3.2) as

Vo=V1+V2

:'6'2'1' [yTMey + (iC - Pma_")T(Pmljl)_l(m - Pm:i) + fTPuf + hTPuh]

+ 5[ ee 407 (622 - Den). (6.3.25)
Then, from (6.3.19) and (6.3.23),
Vo=Vi+V;
< —calom + 72 + W)l — cnll F1I? = caysliBl?
— 2@ — P + sl + ) + S o)
= M1 = Sl = EaollilP + 22280 + %) ZPuE. (6:3.20

To guarantee stability (V, < 0), we make c;||7|||y|| and the sign-indefinite
term (2ZE€4; + E%ii)T Z¢ in (6.3.26) cancelled out, or much smaller than the other
terms in V. Here, we restrict our analysis inside a certain set, as in the previous

two chapters:

S1={(y,%, f,h,m, &) | Vo < p?}, (6.3.27)

where

ol

W (6.3.28)

’

for some finite positive scalar a to be determined later. Note that the size of the
set S; has not been determined yet.

For simplicity, we assume that O(c1) = u® and O(P,) = O(P,,) = u°. Note
that 40 denotes unity consistent with the other orders of g. Then, inside the set S,
O(y) < p, O(Y) < p, O(€) < pe™7, O(n) < pe~t, O() < pe %, O(f) < i, and
O(h) £ p. For simplicity, we limit the order of P; to p0. Then O(z — P,z) < p.
We can readily include the orders of c;, P,, and P in this analysis if they are far

from O(u0).
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Equations (6.3.7) and (6.3.9) are stable first-order differential equations.
Hence, inside the set Sy, O(é) < p, O(e) < p, and O(YF) < p under the constraints
of O(&(0)) < p, O(e(0)) < g, O(Y§(0)) < g, and O(K) = pb. We assume for all
time t > 0 that the desired trajectory satisfies O(r) < p and O(7) < u. Then, the
orders of ¢; and ¢; can be obtained as O(g;) < p and O(g;) < p. We also assume
that O(z) = u0, which results in O(z) < p.
Then, inside the set S, we can obtain the following bounds:
ita = [O() +O(¢E) |y,
. 7 5 1 3 -3
Uite = [O(u )+ O(’e 7)) + O(p’e 2)]1_13,
q' = =MV + Olina),
o’ = M7 [e7% + (O(EVia) + Olina) + O(47) ) gy |, (6.3.29)

for some nx1 vectors u,(t), us(t), and g,(t) of order 40, See Appendix 6.A for

detail. These bounds are derived under the following constraints:

(i) O(r)<O(w), O(F)<O(w), OF)<O(n?),
o) <oh), o) <o),
(@) O <p 0@ <p, Od) <yl
(ii)) O(p) < p, O(K1) < p?, O(K3) < 4,
O(K3) < u, O(P) <4, O(P) < i,
O(P3) < i, O(Py) < p?, O(Py) < i, (6.3.30)
The bounds (6.3.29) and (6.3.30) are derived for revolute-joint robots. The
structure of the dynamics of robots is the same regardless of the type of joint.
Hence, the corresponding bounds for prismatic-joint or prismatic-revolute-joint

robots are similar to those in (6.3.29) and (6.3.30) and can be readily derived. In

this case, the stability analysis is basically the same as that described below.



173

With (6.3.3), (6.3.29), and the constraints of
Fmax(BeMJY) < 4® and  Gmax(JeMY) < 40, (6.3.31)
we have the following relationship:

2(2Z&u; + E%i)T ZP,¢
=2[0(e) + O(u*eh) + (") €] 2¢

+2(26ZB. M1y — E2J . M7 e26)T 2¢ (6.3.32)

for some nx1 vector £,(¢) such that O(¢,) = 0.

Hereafter, Gmin(-) and Omax(-) denote the minimum and maximum singular
values respectively. Note that J. and B, are functions of the free design parameter
Kp. See (6.2.17) and (6.3.5).

To guarantee V2 < 0 inside the set Sj, the sign-indefinite term (2Z&4; +
E2%i)TZP,¢ in (6.3.32) must be much smaller than the other terms in Vs in
(6.3.23). Accordingly, based on the assumption of € < 1, we set

2[O(u5e) +O(u3et) + 0(,ﬂe2)] < 0(¢). (6.3.33)

This leads to

Uit

3
5

0<a<e ( = p<es ). (6.3.34)

Let ¢ be the maximum value of ¢ inside the set S;. Then, from (6.3.33), there
exists an nx1 vector £(t) such that O(€pax) < O(€) and

2[(9(;;’6) +O(ude?) + 0(ﬂ7e2)] £, < e3E. (6.3.35)
Then, (6.3.32) with (6.3.22) becomes

2(22Ei + i) T 2Pt <e3ETZ¢ + 4nTE22B M1 + 877 €228 B, M1y

— 272z M7 E %, (6.3.36)
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Then, (6.3.23) with (6.3.36) yields
. 1 3 . 3 1.
Ve < = 5%lll” = 5nslnll* = rollall® + €587 2¢ + " €22 B M
+ 8772 23B M1y — 26T 22T M7 1E 2%
1 3 : . .
< - -2-’Ys||€“2 - ;rsllnll2 — il + evwollnlllinll + Emlinll?

+712ll€ )% + eyl €l (6.3.37)

where
Y10 = amax(4822BeMe_1/6);
V1 = Fmax (852Z3BeM;1 /62);
N2 = Tmae (2622 T M 1E72);
Y13 = Gmax(Z)- (6.3.38)

If we choose J. and B, such that

1
m<P (= omn(28220M767) < Comn(2) );

m<® ( — 6max(8£ZZ3BeMe‘1)§

<X omin(2(322 - 1)EY) ),

(6.3.39)
then, we can remove the positive terms €2y11||7]|2 and ~12||€||? from Va:
V2 < — el = 2l — 2emollllill + ollil®) - 2
— SOlEl® = eyl Elllel + 166ty lE1%) + 2681412 (6.3.40)

If we set 14 and B such that

2 A2(Z
T4 2 ’% = -/\—Ii%((z)l; (6.3.41)
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710 < V1879 ( N 6max(4gz2BeM;1) < \/Amin(‘Z)Amin(z(?’z2 - 1)82) ),
(6.3.42)
then, 3(---) and (---) in (6.3.40) become positive (squared) so that we can delete

them from Vz
. 78 [} -
Va < —slnll* - Z”EHZ + 265714812 (6.3.43)
We combine (6.3.19) and (6.3.43):
Vo =‘./’1 + ‘/2
C176 _
<~ ei(m + 7+ )8l - el 2 - el - @ - P2
X 1y Y8 8
+ |yl Clld]l + llnll) + —2—||93||2 —sllnll* - I|l€|l2 + 2m14€3 ||€)J
C176 _
< —clpm + 72+ ns)llwll? — vyl 112 — crysl|bl® = — (@~ m)||?

78 8 Cly 3 c1r [
- 1“5”2 — —2“|l77||2 + 7—3||d||2 + —2——||1L‘||2 + 271465 €)%, (6.3.44)

where we have removed 7 terms by completing the square with

ldll = |dllmax and €= [Ellmax, V>0 (6.3.45)
3 c%

=q3— . 6.3.4

M5 =W g (6.3.46)

From (6.3.20), (6.3.24), (6.3.30), (6.3.34), (6.3.41), and (6.3.46), we obtain the

following bounds:

O(13) < 2, O(y) < WP, O(%s) < 4,

O(v6) < u?, O(vr) <, Olys) < 4,

O(14) < 1, O(ms) < p?, O() <€,

O(d) < p. (6.3.47)

Then, we rewrite (6.3.44) using V, in (6.3.25):

V(1) + BV (t) < o1 — 0a(t) (6.3.48)
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with

C - C 6, = .
or =[P + el + 2mact P | < max[O(w), O(m)] i O() 2 ],
az =c1 [(P’h + 72 + 715) Iyl — g—yTMey]

s _B.r 2 _B.r
e [vll 712 = S57Puf] + ex[351BIF — SHT Pu]
+ | Pl - Pua)|? - g(a: = Pu)T (PmP1) ™\ (z = Pi)|

+ [ 20eip - Semee] + Bl - o 622 - nen] 2 0, (6:3.49)

where the positive constant 8 is chosen to be the maximum value which makes
the expressions in all the brackets ([---]) non-negative. Then, O(8) < pu?. See
(6.3.34), (6.3.47), and (6.3.49).

The solution of (6.3.48) is given by

V(t) < exp[—pt] (V(O) + /Ot{al — ag(1)} exp[ﬁ7’]d7'>. (6.3.50)

Consequently, we conclude that any initial V' (¢) belonging to the set S; converges

into the following residual set:

¢ «Q
82 = {(y):fjafa haﬂ)f) I V(t) S exp[—ﬂt]/o {al - QZ(T)} exp[ﬂ’r]d'r S —,6—1}
(6.3.51)

at a rate of at least exp[-ft]. Since O(8) < p? and ey < max[O(p), O(y7)], the
size of S is given by u® < O(a1/B) < u? under the constraints that

2 < O(Kl) < /1'2, /J'_l < O(PZ) < #2,

pI<OP) <OP) <P, pT<O(P) SO(Py) < P, (6.3.52)

which satisfy the condition O(v3) > p in (6.3.49). Note that O(y7) = O(P;) < p?
and O(B) = min[O(K1), O(P2)]. See (6.3.30) and (6.3.49) with the definitions of
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v;’s.

Note that as(t) accelerates the convergence rate and reduces the size of
the set Sz even further. Note also that S C S;. As a consequence, under the
assumption of € < 1, any initial V,(¢) belonging to S; converges exponentially into
the residual set S2. Hence, from the definition of V,(t) in (6.3.25), boundedness of
Y, Z, f, h, n, and & follows for all time ¢ > 0. Note that the region of attraction

is finite (inside Sy) for nonzero €. Hence, all the initial conditions (tracking errors

and parameter errors) must belong to S; for stability.
6.3.3 An Improved Adaptation Law

To improve the control performance, we proposed two new adaptation laws
(4.4.19) and (4.4.20) in Chapter 4, based on the bounds of the parameters of the
dynamics. We apply one of these in this chapter to improve the transient response
of the system.

We use integrators for the adaptation law when the magnitude of Z is smaller
than the preset value (or the nominal value), and otherwise, we use first-order

filters with variable break frequencies, as follows:

i+ Pz =PWTy (6.3.53)
with
. — 07 fOI‘ Imz|<x*’ 7’=1)2"',n;
p2i = {pSi(|:TIil —z}), for |Z;| > m%, i=1,2---,n, (6.3.54)

where ps; and z? are selected such that ps; > 0 and =¥ > |z;|/pmi; the subscript
i denotes the i** component of the corresponding vectors (z, Z and z*) or the ith
diagonal component of the corresponding matrices (Ps, Ps, and Pp,).

Then, in equation (6.3.19)

%:ETPl‘lePzic > Ezle(PmPl)_ngm, Yz (6.3.55)

Hence, V7 and hence V, exclude the ||z|| term so that the error bounds become
smaller. In this case, we have the constraint of p=! < O(P5) < g when we go

through the stability analysis.
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6.4 Remarks

We can summarize our stability analysis with the adaptive control law
(6.2.11), (6.2.14), (6.2.16), (6.3.13), and (6.3.18) as follows.

1. When we allow uncertainties in the torque constants of actuators, the
dynamics of manipulators are also represented by (6.3.1): n = 0 for rigid-joint
robots and 7 # 0 for flexible-joint robots. Consequently, the design method in
Section 6.3.1 also treats those uncertainties.

2. According to (6.3.6), Z converges to P 'z in an ideal situation (7 = 0 and
d = 0 with persistently excited reference inputs). This means that the parameter
Z; belonging to the joint ¢ converges to z;/py;. Consequently, the uncertainty P,
can be considered to be included in those of the parameter . Hence, the proposed
control law (6.3.13) and (6.3.18) is robust to uncertainties in the stiffness of the
joint couplings. Even though the proposed control law is robust to uncertainties
with K., the nominal value of K is to be used in computation of K, in (6.2.16)
for the best transient response of the dynamic system.

3. Constraints in (6.3.30) require that the reference inputs and disturbances
have limited spectral ranges so that they must not excite the high-frequency
prefilter dynamics, and that the magnitudes of control and adaptation gains be
also limited to avoid excitation of the high-frequency prefilter dynamics.

4. Constraints (6.3.31), (6.3.39), and (6.3.42) require that Guyax(JeM; )
and Gpax(BeM 1) be small. This may require that Aga(J.) be smaller than
Amin(M (q7)) since M, = M(q) + J, with J, = K;*N2J,. Smaller dyax(Bc M 1)
requires smaller B, (= K; *N?B,). Accordingly, larger M(q;) and Ky; and smaller
N, J, and B, cause a larger stability margin. If M(g) is too small or N is too
large, we may have instability since K,; can not be increased infinitely due to
other unmodelled dynamics such as inductance of electrical actuators and feedback
delays in the digital control systems.

5. Constraint (6.3.42) requires that the damping ratio (Z) be greater than

1/ /3. This numerical value may be adjusted more or less depending on the choice
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of Lyapunov function V3 in (6.3.21) and its time-derivative V5 in (6.3.23).

6. Constraint (6.3.27) with (6.3.34) means that Sj, the region of attraction,
is finite (local) for nonzero ¢, and that all the initial conditions (tracking errors
and parameter errors) must belong to S for stability.

7. When the adaptation law (6.3.18) is used, larger P» causes larger tracking
errors. See the ||z|| term in (6.3.49) and (6.3.51) with the definition of 7 in (6.3.20).
However, smaller P» causes smaller robustness (higher possibility of parameter
drift). The new adaptation law (6.3.54) solves these contradictory problems.

8. When we set P3 = 0, K2 f becomes a PI feedback compensator. Ky is a
PD feedback compensator. Therefore, we may select the gains K3 and K3 using a

linearized model of robot dynamics.

6.5 Attenuation of Sensor Noise in Flexibility Compensation

We converted control of flexible-joint manipulators to that of the rigid-joint
counterparts by adding an appropriate flexibility compensator. Then, we designed
a robust adaptive control law subject to some moderate constraints. In this
section, we focus on only the flexibility compensation loop since serious problems
may arise from high gains K., and K, for larger bandwidth of the flexibility
compensation loop. Small measurement noises may be so magnified as to degrade
the performance of the proposed scheme. Discretization of analogue signals always
contains a certain degree of high-frequency noises, which depends mainly on sensor
resolution and sampling interval. The objective in this section is to minimize the
effects of high-frequency sensor noises.

To examine the effect of high-frequency sensor noises, we need to separate the
measured signals from the states of the system (the actual signals). In flexibility
compensation, u. is the measured signal. Since the flexibility loop is a linear
decoupled time-invariant system, we take Laplace transformations of (6.2.12) and
(6.2.14):

NJ,Vs® + NB,Vs+ N7 'K,V = K;N~U, + U,, (6.5.1)

Ue = —(Kews + Kep)V, (6.5.2)
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where V', U, and U, are the Laplace transformations of v, u;, and u, respectively.
From (6.2.13),
U; = Uy — K;'N?D,, (6.5.3)

with
Dy = (Jos® + Bas)Qy, (6.5.4)

where @); is the Laplace transform of ¢;.

Since the system is decoupled, hereafter we will consider each joint sepa-
rately. Figure 6.2 shows the block diagram of the original flexibility compensator
for the i** joint, based on (6.5.1), (6.5.2), and (6.5.3), where N; represents the
sensor noises in the Laplace domain; Djy; is the disturbances to the flexibility loop
in the Laplace domain. The transfer functions associated with the closed loop

system are defined as follows:

Vi 1 G

= K,uN
Utaz nh 1 + Lz’
Vi Gi

N:
Dyi ‘14 L;’
Vi G
Dy, 1+4+L;
Vi Li -1 Vi
N; 1+1L; iKoti (Kepi & Keis) Utai
T; = K;V;, (6.5.5)
with
1
G; = g —
NiJys +NZB‘“S+N1 K
L; = (Kcvis + Kepi)Gi, (6.5.6)

where the subscript i indicates the i** joint, i.e., the i** component of the cor-
responding vector and the i*® diagonal component of the corresponding matrix.

Effects of the actuator dynamics (i.e., V; due to D,;) are compensated by the
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adaptive control law Uy,;. See the model of the system (6.3.1) to control. Accord-
ing to V;/Dy; in (6.5.5) with L; in (6.5.6), large gains K,,; and Kp; substantially
suppress the effects of disturbances. Hence, we do not try to suppress the effects
of disturbances inside the flexibility loop.

Since V;/N; in (6.5.5) has a surplus zero (Kepi + Kevis) over V;/Ugi, the
closed loop system is more sensitive to unavoidable high-frequency sensor noises
than to the high-frequency input Ui,;. Therefore we need to reduce the gain of
Vi/N; in the high-frequency region. One of the possible solutions is to add to the
feedback loop (next to Hy;) a low-pass filter Ha; of the following form:

_ B
T s+ Py’

Hy; (6.5.7)

See Figure 6.3. The break frequency Pg;(> 0) must be chosen to be moderately
larger than the crossover frequency of the open loop transfer function L; so as
to minimize the reduction of the phase margin (i.e., stability of the closed loop
" system) caused by addition of the pole. Note that in the continuous time domain
the open loop transfer function L; in (6.5.6) has approximately 90 degrees of phase
margin almost independent of the crossover frequency. However, in the discrete
time domain, the phase margin of L; decreases as the crossover frequency increases
because L; includes an additional phase lag due to the delay of one sampling
interval in the feedback loop for computations, measurements, and conversion
of signals. The additional phase lag at a certain frequency due to the delay is
proportional to the frequency and the sampling interval. See Section 3 in Chapter
3.

The block diagram of the new flexibility compensation is shown in Figure

6.3. The corresponding transfer functions now become

Vi -1 Gi
— NK T
Utai YUt - Ho Ly
Vi G;
LN

Uai T+ Hy L’
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Vi _ G;
Dy 1+ Hy Ly’
‘/i H2iLi P6i ~1 ‘/z
N = - IV ; ; Kep)  ——. .
N; 1+ HyL; Psi + s NiK oy (Kevis + ch) Usai (6.5.8)

Note that Hp; affects the closed loop only in the high-frequency region (where L;
is much smaller than 1). Consequently, (1+ L;) and (1+ Hy;L;), the denominators
of the old and new closed loop transfer functions, are almost the same. Hence,
addition of Hy; hardly changes the closed loop transfer functions V/Uis, V;/Uy;i,
and V;/Uy;. However, Hy; filters out high-frequency sensor noises since Hj; pro-
vides the new V;/N; in (6.5.8) with an additional pole (Ps; + s). In this case, the

flexibility compensator and the actuator input become

Uai = KntN_lUtai + UCi)

Usi = —H2i(Kcvis + Kepi) Vi, (6.5.9)

where Uy;, Uy and Ug; are the Laplace transformations of u, us, and u. for the
it" joint respectively. In fact, we can add any kind and/or number of low-pass

filters so long as addition of these filters does not reduce the phase margin much.

6.6 Computer Simulation

As an example, we apply one of the schemes developed here to a two-
link gear-reduction arm shown in Figure 6.4. We use a 4**-order Runge-Kutta
method[6.26] with adaptive step size to guarantee accuracy in the solution of the
manipulator dynamics. The dynamic equations of motion of the manipulator are
given by
' Ma+Cq+Dg+g= K, (6.6.1)
JaGa + Bada + N7 K v + 50 tanh(50 * §,) = ua, (6.6.2)

where

o — | X1+ 2xzcos(a) +x3 x1+ x2cos(q)
X1+ X2 cos(qi2) X1

?
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C— [—X2 sin(grz)drz —x2sin(qi2)din — X2 sin(q2)drz
+x2sin(qr2)dn 0 ’
x4 0
D= :
[ 0 xs]
x6 cos(qn + qi2) + x7cos(qi1)
= 6.6.3
g ( x6 cos(qn + qr2) ’ (6:6:3)
with
X1 = l%m27
X2 = lilamy,

x3 = B(my + ma),
X6 = malag,

x7 = (m1+m2)hg. (6.6.4)

Matrix D (x4 and x5) represents the damping coefficients of the links.

The numerical values for the parameters of the manipulator are as follows:
my = 15.91 kg, mgo = 11.36 kg, and I} = I3 = 0.432 m. These values represent
links 2 and 3 of the Unimation Puma 560 arm. We set x4 = 10.8 Nm/sec, x5 = 3.2
Nm/sec; N=diag(100,100); J,=diag(0.005, 0.005) N.m/sec?; B,=diag(0.02, 0.02)
N.m/sec.

As a bounded disturbance, the mass 2 undergoes step increase and decrease
of 5 Kg at time 2 and 5 seconds respectively. This violates the assumption in the
derivation of the control and adaptation laws that the parameters of the dynamics
are constant. To simulate the friction damping we used “tanh(504,)” for “sgn(d,)”
in the actuator dynamics. The sgn function causes some problems with accuracy
of the simulations via the Runge-Kutta method with adaptive step size. Notice
that the friction damping coefficient is much larger (2500 times) than the viscous

damping coefficient (B,).
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From (6.5.7) and (6.5.9), the improved flexibility compensator is given by

Uai = KntN_lUtai + Uci,

Uci = —H2i(Kcvi3 + chi)‘/z’a 1= 172a (665)
with
Pg; )
i = N = 1,2. U
H2 s+ Pﬁi 1 (6 6 6)

The required torque u4, is computed by

Uy = WZ + K1y + Kof + K3th, (6.6.7)

where
Yf + PfYy = PfY; (6.6.8)
Y = diag(y1,92)- (6.6.9)

One of the adaptation laws for wuy, is given by

i+ Pz =PWwTy;
f+ P3f = Koy;

h + Pyh = K3Yy. (6.6.10)
W and z are defined as follows:

z=(z1 z3 - z11)7,

W= |W W2 w3 wg W5 We o 0 0 0 0 , (6.6.11)

0 0 0 0 0 0 wy wg W9 W1 Wil

with

w1 = wr = (61 + py1) + (G2 + py2),

wy = [2(61 + py1) + (62 + py2)] cos(gqiz) — [d1261 + 4162 + di202] sin(gza),
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w3 = &1+ py1,
wa =41,
ws = w11 = 10cos(qn + qr2),
we = 20 cos(qgn1),
wg = (61 + py1) cos(qiz) + dn o1 sin(gra),
wy = G2 + pya,
w1 = o (6.6.12)

As in the previous chapters, we have computed the filterings in the control

and adaptation laws using the following trapezoid rule (Tustin’s rule)[6.27]:

2z-1
s~ —

6.6.13
tez+1’ ( )

where ¢, denotes the sampling time.

To reduce the computational burden, we used a triple-time update rule: 1
msec for the flexibility compensator (u.), 2 msec for the feedback compensators
(K1wy + Kaf + K3Ysh ), and 10 msec for the feedforward compensator (WZ).
To make our simulations realistic, we include delays of one sampling period in
our control inputs for measurements, computations, and DA and AD conversions.
Since we used a triple-time update technique, there are three different delays in
our control inputs.

The desired trajebtories for the simulation are chosen as
r1 = — cos 3t,
r9 = — cos 2.5¢, (6.6.14)

which are shown in Figure 6.5.

In the figures, the solid and dotted'lines will denote joints 1 and 2 respec-

tively.
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The numerical values of the control and adaptation gains for the first simu-

lation (K,=100] N.m/rad) are as follows.

K = 20I; K1=diag(720,840); K2 = 0; K3 = 1501,

Py = 20I; P, =500I; P, = 0.0051; P3=0; Py =0.5I; Ps = 3001,

p=15; Ko, = 5. % K¢y Koy = 150. % Ko, Kpp=diag(12. * 103, 6. x 103).

‘I’ denotes the identity matrix with appropriate dimension.

K; and the uncertainty matrix P, for K, are computed with (6.2.16) and (6.2.17):
K;=15. % 1031 and P,=diag(0.8,0.4).

The initial values for the parameters of the dynamics in this simulation are around
1/4 - 1/2 of the true values. The manipulator is assumed to be initially motionless.
The initial angular positions of the actuators are computed using gravitational
force and gear-reduction ratios.

Figure 6.6 shows the tracking errors of joints 1 and 2. Figure 6.7 shows the
actuator inputs. Notice the responses to the step changes of the mass 2 at time 2
and 5 seconds. The maximum tracking error is about 1 degree. The actuator in-
puts have periodic spikes. Their magnitudes for joint 2 are much larger than those
for joint 1. These are caused by the large-magnitude disturbance 50tanh(504,)
in the actuator dynamics. The ratio of the disturbance to the actuator input for
joint 2 is much larger than that for joint 1. When the disturbance is removed, the
actuator inputs become smooth. The initial actuator inputs from the control law
are about 5 times the steady state inputs. However, the actuator inputs are lim-
ited to the range of [-700A,700A] to simulate actuator saturation. The magnitudes
of the transient inputs depend on various factors such as the desired trajectories,
the initial tracking and parameter errors, the sampling rate of the flexibility com-
pensator u., and the damping ratio and the undamped natural frequency of the
prefilter.

The second simulation was performed with more flexible joint couplings.
The stiffness of the joint couplings is given by K.=diag(10,10) Nm/rad. We used
the same desired trajectories, control and adaptation laws, and triple-time update

rule. The following numerical values for the control gains are different from those
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for the first simulation: K., = 30% K, K., = 900% K, Kn=diag(8.+10%,4.%10%).
Accordingly, K; and the uncertainty matrix P, are computed as K;=9. * 10*I
and Pu:diag(—g-, %). Different gains are used for the flexibility compensator to
compensate for the change of the stiffness of the joint couplings.

The joint errors and the actuator inputs are shown in Figures 6.8 and 6.9
respectively. Stability is guaranteed in the presence of the step changes of the
mass 2 at time 2 and 5 seconds. The tracking performance of the control scheme
remains the same even though the stiffnesses of the joints become 10 times as
flexible as those for the first simulation. In the second simulation, the effects of the
disturbance 50tanh(50¢,) are almost negligible since the ratio of the disturbance
to the actuator input is very small. The actuator inputs are also limited to the
range of [-6500A,6500A) in order to simulate the actuator saturation.

Figure 6.10 shows a long time behavior of parameters (%1, T3, Ts, Z7, Tg, and
Z11) estimated by the adaptation law (6.6.10) for the second simulation. Almost
the same results are obtained for the first simulation. No parameter drift is
observed due to the characteristics of the first-order filters in the adaptation law.

The steady state tracking errors do not approach zero. This is because (i)
the prefilter (6.2.18) is not an all-pass filter, (ii) we include delays of one sampling
period (1, 2, 10 msec), (iii) we include the large disturbance (50tanh50g,) in
the actuator dynamics, and (iv) the adaptation law (6.6.10), by nature, causes
nonzero tracking errors. We may have better results if we use the new adaptation
law (6.3.54).

In both simulations, the magnitudes of the tracking errors of joint 2 are
larger than those of joint 1. This is because the uncertainty with K, is larger for
joint 2. See the uncertainty matrix P,. We may reduce the maximum tracking
errors for joint 2 down to the level of those for joint 1 by increasing the control
and adaptation gains for joint 2.

In both simulations, the tracking errors are within practical tolerances, and
stability is guaranteed for control of heavy links 2 and 3 of a PUMA 560 with
extremely flexible joint stiffnesses (10 and 100 N.m/rad) and high gear ratio
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(100). Note that the chosen numerical values of the joint stiffnesses do not make
sense. The joints are too flexible. The purpose of this simulation is to show
that the proposed control law guarantees stability almost independent of the joint
stiffness. The proposed flexibility compensator may work for some other stable
control schemes for rigid-joint manipulators.

Due to small joint stiffnesses and high gear ratios, the resonance frequencies
of the uncompensated prefilter (\/0_2 for K, = 10I and /2 for K. = 1001 ) are
smaller than the frequencies of the desired trajectories (2.5 and 3). Accordingly,
the magnitudes of the control inputs are very large. We might aggravate this by
using unity torque constants for actuators. The control inputs for K. = 10I are
almost 10 times as large as those for K, = 1001. This is in good agreement with
the arguments in the preliminaries: regardless of the control laws, larger control
inputs are required when the spectral range of the desired trajectories covers high-
frequency low-gain region of the link and/or actuator dynamics.

In spite of nonlinearities such as, step changes of mass 2, input saturation,
and friction damping of the actuators, which are not included in the derivation of
the control law, the performance of the control law such as guarantee of stability
and fast transient response is shown to be essentially unchanged. This is because

the sufficient condition for the stability of our scheme is too strong.

6.7 Conclusion

In this work, we have interpreted the dynamics of actuators and flexible
joint couplings as prefilters for the link dynamics. This concept of prefilter leads
to the design of a flexibility compensator. With flexibility compensation, we have
transformed a system of a flexible-joint manipulator to that of the corresponding
rigid-joint manipulator with the high-frequency prefilter dynamics as unmodelled
dynamics. As a consequence, we could design an adaptive control scheme based
on the model of the transformed rigid-joint manipulator so that we could avoid
the complexity of the flexible-joint system in the design procedure.

With additional stability analysis, we have shown that the proposed adap-
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tive scheme for the transformed rigid-joint manipulator stabilizes the system of
the original flexible-joint manipulator under some moderate constraints on dis-
turbances, control and adaptation gains, and desired trajectories and their time-
derivatives. The stability analysis also provides some interesting stability con-
ditions on gear ratios, damping coeflicients of actuators, and mass moment of
inertias of links and actuators. This is the main result of this chapter.

The proposed adaptive scheme is unique in the following respects. The
scheme is almost insensitive to the gear ratios, joint stiffness, and disturbances.
The scheme here is practical since its implementation requires measurements only
of angular positions and velocities of the links and actuators. The proposed scheme
provides stability bounds for disturbances, control and adaptation gains, desired
trajectories and their time-derivatives. The computational burden of the proposed
scheme is almost the same as that of the corresponding scheme for robots having
rigid joints.

The results of realistic simulations support the stability analysis, and also
lead to the conclusion that the control law developed here will work for commercial
manipulators. The approach proposed in this work seems to provide a widely
applicable practical solution to the control of manipulators having flexible joint

couplings.
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Appendix 6.A: Estimation of 74; and i

Inside the set Sy, we express the orders of variables using p(=%2). We keep
only important high-order terms of 4 since y is assumed to be much larger than
unity.

According to the control and adaptation laws (6.3.13) and (6.3.18), u;, 1y,
i, and hence (22&4; + E£2%iy)T ZP,¢ are functions of the desired trajectories (r,
7, ¥, 71 and rIV), disturbances (d, d, and (_1), and control and adaptation gains
(p, Pj, and K; for j = 1,2,3,4 and i = 1,2,3). Since (22&u + E%ii))TZP,¢ is
sign-indefinite, to guarantee V, < 0 inside 51, we set the order of this term smaller
than those of the other terms in Vs in (6.3.23) by limiting the upper bound of a
in p. It is possible since the sign-indefinite term (2Z2&7y + £2iy;)T ZP,¢ contains
small constants £ (of order € < 1) and £2. The size of the stabilizing S is given

by a in y. When € = 0 (representing rigid-joint manipulator), the size of Sy is
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infinitely large.

If the order of any one of the desired trajectories, disturbances, or control
and adaptation gains is significantly larger than the others, it will dominate the
orders of uy, 1, and ;, and hence the size of the stabilizing S;. Accordingly, we
set the upper bounds of the desired trajectories, disturbances, and control and
adaptation gains in such a way that we equalize their influences on the other
variables including vy, Utq, Utq, quH , and q,IV.

For convenience, the dynamics of revolute-joint manipulators will be used
in this order analysis. In this case, the inertia matrix is bounded. The order
analysis for prismatic-joint or prismatic-revolute-joint robots can be as readily
performed as that for revolute-joint robots described below since the structure of
the dynamics is the same regardless of the type of joint.

In this analysis, we begin with variables of known order. Then, we obtain the
orders of their time-derivatives using the dynamics (6.3.1), control law (6.3.13),
adaptation law (6.3.18), and time-derivatives of these.

From the definition of W(p,#, 7,7, ¢, ¢;) in (6.3.14), we can derive
W = [0(n2) + O(F) + O (ou)| W, (6.4.1)

for some nxm matrix Wy(t) such that O(W;) = u (= 1). See the orders of
related variables inside S; in (6.3.27). We choose the upper bounds of # and p
such that they do not increase the order of W more than O(u?), the contribution
from the other variables of the dynamics (6.3.1). That is, we set

O(#) S p? and O(p) < p. (6.A4.2)
From the control law uy, in (6.3.13), we can obtain
o = [O(4*) + O(K14) + O(Kap) + O(Kap®) u; (6.4.3)

for some nx1 vector uy(t) such that O(uy) = pu°. We select K7, K, and K3 such
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that O(ug,) < p:
O(K1) < p?, O(Kz) < p?, and O(K3) < p. (6.4.4)

From the adaptation law (6.3.18), we cém get
& = |O(Pas) + O(w°) s

f = [0(Psm) +04) |t

h = [O(Pas) + O ()] by (6.4.5)

for some m X1 vector x;(¢) and nx1 vectors f;(¢) and h;(¢) such that O(x;) = u9,
O(f;) = 4% and O(h;) = u0. We limit the orders of Z, f, and A to 3. Then, we
have

O(P) < p?, O(P;) <p? and O(Py) < p2 (6.A.6)

From the definition of Y7 in (6.3.9), we can obtain
Yy = O(Pru)Y gy (6.4.7)

for some nxn matrix Y, (t) such that O(Y;) = ub.
From the dynamics (6.3.1), we have

Gi = M7 [ute — Cg1 — Deg — g — d — 1. (6.4.8)

Then, using the structure of the dynamics (Mi(q;), C(qg1, ¢1), and g(¢;)), we can
derive
G = — M [71 + (o) + (’)(uta))(_ll] (6.4.9)
for some nx1 vector g, (¢) such that O(q,) = 10, Hence, we can impose a constraint
on d as
O(d) < pd. (6.A.10)
Note that O(ug,) < p®. We will impose O(7) < O(usq) when we determine the

size of the set S7 ( the magnitude of a contained in p).
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Using the structure of W(T‘III Ty 77,1, 41, q1), the time-derivative of W in

(6.3.14), we can obtain

W = [O(np) + O(ut) + c9(7~m)]v_v2 (6.4.11)
for some nxm matrix Wy (t) such that O(W,) = u0. We set
O(rHhy < ut. (6.4.12)
The time-derivative of u, in (6.3.13) is given by
U = Wi+ Wz + K19+ Ko f + K3Y5h + K3Y5h. (6.4.13)

Since we have obtained the orders of all the variables related to ;,, we readily get

the order of u,:

it = [O(4%) + O(ns®) + O(Pyi®) | g (6.4.14)

for some nx1 vector uy(t) such that O(uy) = u0. Here, we set
O(Py) < u?. (6.A4.15)
Taking time-derivative on the dynamics (6.3.1) yields
g™t = M7 Yisa — (Mo + C + Do)y — Cir — § — d — 7). (6.4.16)

Then, using the structure of the dynamics (M;(qy, q1), C(G, q1, @), and §(dr, q1)),

we have

o = -M7 i+ (O@d) + O(ata))g2] (6.4.17)

for some nx1 vector g,(t) such that O(q,) = #0. This gives the upper bound of d
as

O(d) < P, (6.A.18)
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Using the structure of W('I‘IV,TIII,’i:,f‘, 7, q{”,q,,q,,q,), the second time-

derivative of W in (6.3.14), we can obtain
W = [OGiu) +O(r?) + O(u%) + Olns®) + O(™)| W, (6.4.19)
for some n.xm matrix W3(¢) such that O(W3) = u0. Therefore, we set
OtV < 4. (6.4.20)
The time-derivatives of the adaptation laws in (6.3.18) are given by

&= Pz — P,P(WTy) + AW Ty + PWTy;
f = P}f — PsKyy + Koy
h = P{h — PyK3Ysy + K3Ysy + K3Y9. (6.4.21)

Then, using the orders of the related variables, we have

(0) + O(s?)] s

I

f= 06 + 0t
h= [0(u5) + O(WZ)] hy, (6.4.22)

for some mx1 vector x5(%) and nx1 vectors f,(¢) and hy(t) such that O(x,) = uf,
O(fy) = 1, and O(hy) = 4.
Taking time-derivative on Y7 in (6.3.9) yields

Yy = P}Y; — P}Y + P4V (6.4.23)

Hence,

Yy = [O(/f’) + O(W#Z)]Yfz (6.4.24)

for some nxn matrix Y,(t) such that O(Yy,) = n
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The time-derivative of ¢, in (6.A.13) is given by
ltg = WZ + Wi+ Wz + K13 + Kzf + K3(l}fh + 2Yfil + th) (6.4.25)

We have already obtained the orders of all the related variables. Hence, we can

readily get
i = [O(7) + O(1K2) + O(0*1) + Ons*)] ug (6.4.26)

for some nx1 vector us(t) such that O(us) = u°.

Taking the time-derivative on the dynamics (6.3.1) twice gives

@V =M1 = P.)ia — 22 Py g + E7% — (2M, + C + Dy)gH!

— (M. +2C)g — Cq - § - d]. (6.4.27)

Hence, using the structure of the dynamics (J\Zr,(q,,q,,q,), é’(q{”,(jl,cjl,ql), and

(G, 41, @1)), we can estimate gf¥ as
gV = M1 [5"2,5 + (O(s‘lata) + O(iitq) + O(&))Q3J (6.A4.28)
for some nx1 vector (_13(t) such that (’)((_13) = 0. Accordingly, we have

O(d) < u'. (6.4.29)
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

This thesis has discussed adaptive trajectory control of rigid-joint manipula-
tors and extended to adaptive control of flexible-joint manipulators. Each chapter
can be summarized as follows.

In Chapter 1, this thesis covered the overview of robotics as an introduction,
and then described the background and motivation of the study.

In Chapter 2, the essence of adaptive control was reviewed with applica-
tions to a spring-mass-damper system having one degree of freedom. This thesis
discussed the design procedures of the self-tuning method. With the summary
of Lyapunov’s second method and Popov’s hyperstability theory, this thesis also
explained how these stability theories could be applied to the design of model
reference adaptive control laws.

In Chapter 3, this thesis emphasized the importance of the transient behavior
of adaptive control schemes and took it into account in controller design. The
loop shaping method was combined with adaptive control strategy and concept of
optimal control in harmony to extract the maximum benefits from each method.
Compensators were searched in the direction of minimizing a certain performance
index so as to improve the transient response. Then, to guarantee asymptotic
stability of the system, those compensators were shown to satisfy a new stability
criterion which was derived based on the characteristics of a weighted 2-norm of
a differentiable signal.

In Chapter 4, it was shown that the integration adaptation law in Chapter

3 might cause instability due to parameter drift in the presence of sensor noises



204

or bounded disturbances. The scheme proposed in Chapter 3 was redesigned
by replacing the integration adaptation law with the o-modification to prevent
parameter drift. New adaptation laws were also proposed based on the bounds of
parameters. Moreover, in the presence of feedback delays in the digital control
systems, stability bounds for disturbances, control and adaptation gains, and
trajectories and their time-derivatives were obtained for the scheme redesigned
with the new adaptation laws.

In Chapter 5, a robust decentralized adaptive scheme was proposed, which
is a subset of the scheme proposed in Chapter 4. The scheme in this chapter
contains only the decoupled compensators of that in Chapter 4 with appropriate
changes in the adaptation laws. Under some moderate constraints, the proposed
decentralized adaptive scheme was shown to stabilize the nonlinear coupled sys-
tems of manipulators. The stability proof of the proposed scheme does not require
the assumption of boundedness and quasi-time-invariance of the coupled dynam-
ics. Furthermore, the scheme provides stability bounds for disturbances, control
and adaptation gains, and desired trajectories and their time-derivatives, in the
presence of unmodelled dynamics due to feedback delays in the digital systems.
In addition, the stabilities of PD and PID feedback laws were proven, and their
regions of attraction and stability bounds for their gains were also derived.

In Chapter 6, an appropriate flexibility compensator was designed for joint
flexibility. With this compensator, systems of flexible-joint manipulators were
transformed to those of the corresponding rigid-joint manipulators with a cer-
tain degree of high-frequency unmodelled dynamics. As a consequence, control of
flexible-joint manipulators is converted to that of the corresponding rigid-joint ma-
nipulators, which has been already discussed in the previous chapters. An adaptive
control scheme for the transformed rigid-joint manipulators was proposed, which
is a simpler form of the scheme developed in Chapter 4. Then, a sufficient con-
dition for the robust stability of the scheme with the flexibility compensator was

derived for the system of the original flexible-joint manipulators.
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7.2 Discussion and Future Work

In this thesis, a quadratic performance index is used as a measure of the
transient response of adaptive control systems. Compensators are searched in the
direction of minimizing the performance index. Criteria for compensator searches
are given in (3.4.17), (3.4.19), and (3.4.20). Many different control and adaptation
laws can be found which satisfy the criteria. It would be worthwhile to perform
further research toward finding the most efficient control and adaptation law in
terms of robustness, computation time, and suppression of tracking errors, based
on the criteria. The proposed method may be applied to the controller design
for any system whose dynamics is linear in the parameters of the system, with
appropriate modifications based on the order of the system.

In Chapter 4, this thesis discussed how to find bounds on control gains,
adaptation gains, disturbances, desired trajectories, and the time-derivatives of
the trajectories. These bounds are sufficient conditions for stability in the pres-
ence of unmodelled dynamics due to feedback delays in the digital control systems.
The same concept was applied to the control of flexible-joint robots in Chapter 6
where similar results were obtained. The bounds constitute a sufficient condition
for stability, but they are not unique. In this research, the effects of two different
unmodelled dynamics (feedback delays and joint flexibility) were examined inde-
pendently. It would be interesting to investigate the combined effects of those
unmodelled dynamics on the stability of a given system.

In Chapter 5, it is shown that a PD (or PID) feedback law is sufficient to
control a manipulator. It is also demonstrated that additional adaptive compen-
sators reduce a performance index and hence the maximum tracking error. The
dynamics of commercial robots (usually having 6 degree of freedom) are very com-
plicated. To save computation time, components with smaller contributions to the
total behavior of the system may be safely removed from control and adaptation
laws without significant deterioration in tracking performance as long as a PD

feedback law is included in the control and adaptation laws for stability. Accord-
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ingly, further efforts are required to determine experimentally (or by simulations)
which compensators can be removed from the centralized control and adaptation
laws in Chapter 4.

In Chapters 4 and 5, the effects of feedback delays in the digital control
systems on the stability of a given system were considered. The robot dynamics
are continuous in time even though control inputs are computed discretely using
digital systems. Hence, we treated the problem in the continuous time domain.
It may be worthwhile to treat the problem in a discrete form, and compare the
results.

The approach in Chapters 4 and 5 has features of both the hyperstability
approach and Lyapunov’s method. As a consequence, the difficulty of selecting an
appropriate Lyapunov’s function is relaxed. Compensators are searched toward
minimizing a certain performance index — a feature of the hyperstability ap-
proach. Then, the selected compensators with the system dynamics are shown to
results in a lower-bounded function whose time-derivative is non-positive outside
a certain ball to prove the stability — a characteristic of Lyapunov’s approach.

In Chapter 6, a flexibility compensator was designed to treat the problem
of joint flexibility. The flexibility compensator allows use of a reduced-order
model for controller design. Consequently, the proposed scheme avoids the need
for certain difficult measurements (angular accelerations and jerks) and relieves
computational burden. This flexibility compensator may be applied in conjunction
with any stable control scheme for rigid-joint robots. A simpler form of the
centralized adaptive scheme proposed in Chapter 4 was worked out. It would
be useful to try the simpler centralized scheme after removing the compensators
which make relatively small contributions to the control input, to save additional
computation time. In this case, the stability and robustness may be proven as in
Chapter 6.

In this thesis, the discussion was limited to trajectory control. Extension to

hybrid trajectory/force control may have great potential for practical applications.



