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Abstract

The most important applications for simulations of polymers involve com-
posites or blends with extensive, amorphous regions. To simulate such materials
we use a very large unit cell, so that the polymer can have random behavior within
the cell, but periodic boundary conditions to keep the problem tractable. The ma-
jor difficulties in carrying out such calculations are: (a) accurate calculation of the
lattice sums for the nonbond interactions (electrostatic and dispersion), which con-
verge very slowly; (b) computational time for systems large enough to simulate real
materials (1 million atoms); (c) procedures for calculating the properties of inter-
est (energy, force, stress, curvature, phonons, elastic constants, dielectric constants,
and piezoelectric constants).

We describe herein significant progress on each of these three issues. Con-
cerning (a) we developed the Accuracy-Bounded Convergence Acceleration (ABCA)
procedure, which finds the optimal Ewald parameters to achieve a given accuracy in
minimum computation time. Concerning (b) the critical bottleneck in atomic-level
simulations of the structure and dynamics of very large molecules is the calculation
of N2 nonbond interactions. Here a major advance is the development of the Cell
Multipole Method (CMM), which involves no steps scaling a higher order than N.
CMM treats the interactions in terms of a far field (which is evaluated in terms of
multipole expansions) and a near field (which involves only approximately 50 near
neighbors). The far field can be evaluated infrequently so that the full calculation
for a million-atom system involves only the effort of calculation to interactions of
each atom with about 50 near neighbors. This leads to a dramatic increase in effi-
ciency, and systematic calculations have been carried out in realistic polymers with
up to 1 million atoms (on a workstation). The CMM is 1500 times faster than the

exact method for 1 million atoms. For periodic systems the cell multipole method
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is extended, using a reduced set that reproduces low-order multipoles of an original
unit cell (CMMX). For a polymer with 1 million atoms, the CMMX calculation is
1000 times faster than either the Ewald or Minimum Image Methods (the standards
currently in use).

A major issue in carrying out simulations for materials is the force field. We
have developed general procedures for obtaining empirical force fields and have ap-
plied this to systematic development of force-field parameters for polyethylene and
poly (vinylidene fluoride) crystals. van der Waals parameters for carbon and hy-
drogen are empirically determined from experimental lattice constants, elastic con-
stants and lattice frequencies utilizing Ewald/ABCA procedures. Various mechani-
cal properties are calculated and compared with experimental data. For polyethyl-
ene, valence terms are determined by a biased-Hessian method for n-butane, and
yield stress and surface energy are obta.ined.from calculations of stress-strain re-
lations in directions perpendicular to polymer chains. For poly (vinylidene fluo-
ride) crystals, a shell model is introduced to include atomic polarizabilities into the
simulation. Properties of five different forms (including a new form suggested by
Lovinger) are computed using the same parameter sets. We find that using the shell
model leads to significant improvement in the agreement between calculated and
experimental piezoelectric and dielectric constants. In addition we find that the
new form (not yet observed form) is mechanically stable with comparable energy

with other forms.
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Introduction

Computer simulations of molecular systems are becoming important because
of recent developments of computer hardware and software as well as techniques of
simulations!. Computer hardware includes computer-graphics terminals, which are
important for visualizing molecular systems. Simulations provide a direct route
from the microscopic details of a system to macroscopic properties of experimental
interest. This type of information is technologically as well as-academically useful.
The results of computer simplations may be compared with those of real experiments
or may be compared with those of approximate theoretical predictions. In the first
place, this is a test of an underlying model used in a computer simulation. If
the model is a good one, it offers insights to the experimentalist and assists in
the interpretation of new results. Also in the simulation, it is possible to realize
situations where experiments are difficult or impossible (for example, high pressure
or high temperature). For complex materials like polymers, the role of computer
simulations is becoming very important for designing new materialé.

In this thesis, polymer crystals are treated, and the simulation method em-
ployed is a molecular mechanics? or a force-field method. In this method, each atom
is treated as a classical particle and chemical bonds between atoms are represented
by two-body terms like springs. Angle interactions are represented by three-body
interactions, and torsion and inversion interactions are represented by four-body
interactions, and so on. Adding these valence interactions, there are nonbond in-
teractions, which are van der Waals and Coulomb interactions. Thus, total energy
(Etota1) of an N-atom system, whose atomic coordinates are ri,...,rn, is a sum of

valence energy (Eya1) and nonbond energy (E,p) as follows:

Etot,ﬂ(rl, .‘ .. ,rN) = Eval(rlg - ,rN) -+ Enb(rl, - ,rN), (1)



2
where the valence energy is a sum of bond, angle, torsion, and inversion-energy

terms,

Eva.l = Ebond + Eangle + Etorsion + Einversion; (2)

and the nonbond energy is a sum of van der Waals and Coulomb energy terms,
Epp = Evaw + ECoulomb- (3)

Within the Born-Oppenheimer approximation, the Hamiltonian of a system
can be expressed as a function of nuclear variables only. The motion of electrons
has been averaged out in this approximation.

This approximate treatment has both advantages and disadvantages. The
main advantage of molecular mechanics is the size of the system that can be
treated in energy minimizations, molecular dynamics, vibrational analysis, and
thermodynamic-property calculations. Systems with a thousand atoms are treated
routinely, which is quite important since many interesting systems require a large
number of atoms to simulate. This number can be increased up to one million if
we use the Cell Multipole Method described in Chapter III. Also, molecular me-
chanics can handle systems with periodic boundary conditions so that it can easily
calculate bulk properties of the system. If we treat a wave function explicitly as in
the Hartree-Fock methods, it is quite expensive to calculate properties of systems
of more than about 100 atoms.

On the other hand, there are several problems in this approach. The first
problem is the question of how to determine parameters (equilibrium bond lengths,
force constants, etc.). Conventionally, these are empirically determined. Since va-
lidity of a simulation depends strongly on these parameters, it is quite important
to obtain good parameters for the system of interest. There are several force-field
parameter sets widely used, for example, DREIDING®, MM3%, AMBERS?, all of

which assume transferability of parameters. In Chapters IV and V, problems of
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parameter determination are discussed for polyethylene and poly (vinylidene flu-
oride) crystals. Also in Appendix I, the parameter determination for graphite is
discussed. In Chapter IV, for the simulation of polyethylene crystal, the valence
parameters are developed by using a biased Hessian method®, which utilizes the
Hartree-Fock calculations of n-butane. Because of the difficulty of obtaining van
der Waals parameters by the ab initio method, van der Waals parameters for all
cases are empirically determined. The second problem is the difficulty of includ-
ing the effect of polarizability in molecular-mechanics simulations. Conventionally,
rigid ion models are used. In Chapter V, calculations of a poly (vinylidene fluoride)
crystal using the force-field parameters that include explicitly atomic polarizabili-
ties are shown. The third problem is the inconvenience of treating systems where
electronic structure can change dramatically during the simulation. For example,
bond breakings and bond formings during simulations are not easily handled in
molecular mechanics. The fourth problem is the inaccuracies that are due to the
neglect of the quantum mechanical nature of the system. For example, specific heat
calculated by molecular dynamics would be a classical value but in the real system,
the value can be quite different even at room temperature, since vibrational motions
are quantized”.

In this thesis, the third and fourth problems listed above are not treated. For
the third problem, it may be necessary to modify force-field parameters during the
dynamics and the Car-Parrinello method® may be more suitable in this situation.
For the fourth problem, quantum correction can be calculated in the simulation
if the quantum effect is small'. For a quantum solid or liquid (like helium), the
classical method cannot be used.

In Part I of this thesis, periodic systems are discussed mainly and the cal-
culation of nonbond interactions are treated in detail. In Chapter I and part of

Chapter II, Ewald-type, nonbond calculations are discussed and various equations
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are derived. It is well known that the electrostatic potential inside a crystal is
conditionally convergent. Let us consider a repeating unit of point charges, build
a crystal using the repeating units and calculate the potential at a point far from
the surface. If the repeating unit has a net charge, the potential simply does not
converge as we add new repeating units on the surface. If the repeating unit has
a net dipole, a surface-charge layer is created and a macroscopic field is observed
inside the crystal so that the potential is not a periodic function and depends on
the shape of the sample. If the repeating unit has a quadruple moment, a dipole
layer is created on the surface, and the potential still depends on the shape of the
sample. If the repeating unit has no dipoles or quadruples, the potential does not
depend on the sample shape since interactions fall off faster than or equal to 1/R*
(R is the distance between the point and the repeating unit). Even in this case, if
the repeating unit has a nonzero trace of second moments, it still creates the dipole
layer on the surface, and a constant potential difference is created between the sam-
ples built by different repeating units with different traces of second moments®. It is
possible to create a repeating unit with zero-dipole, zero-quadruple and zero-second
moment by utilizing the periodicity of the lattice and fractional charges; therefore,
1t is most natural to choose the repeating unit that has these properties. The Ewald
potential corresponds to the limiting value of the potential, using the repeating unit
with this property!®. Following the derivation of Tosi!!, the Ewald potential can
be derived from the combination of periodic point charges and uniform cancelling-
charge distributions. We introduce the Gaussian-charge distribution with a width
parameter 7 and think that the potential at r is due to (1) periodic Gaussian-charge

distributions plus uniform background charges

1 1 (r—m)® -1
PO(E) = e S |- | 0, 4)

1
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and (2) original charges plus the negative of the Gaussian-charge distributions

p0(e) = 3 {ote ) - e enp [FEZAE N (5

1
Here €2 is the volume of a unit cell and r; is a cell translation vector. The first

term can be Fourier-transformed and summed in the reciprocal space, and the use

of Poisson’s equation yields the potential,

() = T 3 b exp(—n"h?/4 +ih - ), (6)
h

where h is a reciprocal vector. The prime on the summation sign indicates that
h =0 is excluded in the sum. The potential from the second term is given by using
the Gauss’ theorem and integration by parts:

¢(2)(r) — Z erfc(li.r::l‘?f/ﬂ) _ Wg . (7)

1
The second term is added to make the average potential inside the cell vanish. The

potential from the periodic unit charge plus the uniform background charge is then
é(r) = $(r) + ¢@(r)

1
= % Zh—z exp(—n?h?/4 +ih -r)
h

S erfc(jr —n|/n)  7p? (8)

1 II‘ — r1| Q '
For the crystals with N charges inside the cell, q1, qs,. . ., qn, We separately consider
each charge as a periodic point charge plus a uniform backgroud charge and add

these together using the same 7. The total potential is given by taking into account

the neutrality of charges,

bior(r) = Z 9p(r — rp)

!
= % Z S(h)h~? exp(—7n?h?/4 +ih - r)
h

S S .

r—r — Ipl



where

S(h) = Z qp exp(—ih - rp). (10)

The above equations show that the Ewald potential has a period of a lattice,

Biot(r + 1r1) = Piot(r), since exp(ih - r;) = 1. Also it is shown that an average
potential inside the unit cell is zero,

1

al. ¢(r)d’r = 0, (11)

since [ exp(ih - r)d®r = O(h # 0) and Zp gp = 0. These two properties are
characteristics of the potential calculated by the Ewald method.

For dispersion interactions Zi>j Aj; /riﬁj, the sum is absolutely convergent,
and a similar method is used only for the purpose of accelerating the convergence.
By using the Ewald-type summation, convergences are speeded up substantially. We
developed the Accuracy-Bounded Convergence Acceleration (ABCA) procedures to
determine the optimal 7 to minimize a calculation time while retaining a specified
accuracy. This procedure is used in all the calculations involving the Ewald sums
in this thesis.

Once the total potential energy expression is determined, force at an atom
is obtained by calculating a first derivative of the total energy with respect to the
atomic coordinate and the Hessian is obtained by calculating second derivatives,
and so on. Structure optimizations and molecular dynamics are performed by using
force, while vibrational frequencies are calculated by the Hessian at the optimized
structure. For periodic systems, stress components are obtained by calculating
strain derivatives of the total energy. Phonon frequencies, elastic constants, dielec-
tric constants, and piezoelectric constants are calculated at the optimized structure
from various second-derivative components. Born and Huang!? derived these prop-

erties by using the method of long waves. Our equations based on strain derivatives



7
are compared with theirs and and equivalence at zero force and zero stress is shown
in Chapter II. Also in this chapter, various equations involving dispersion sums are
shown.

In Chapter III, a new method of nonbond energy calculation, the Cell Multi-
pole Method (CMM) is shown. In this method, a calculation time scales as N (N is
the number of atoms in the simulation) as opposed to N2 in the exact calculation.
Since the nonbond calculations are the most time-consuming part of simulations, it
enables the use of very large number of atoms, e.g., 1 million atoms in simulations.
The basic idea of this method is to divide the system into cells and use the mul-
tipole expansions for interactions from far cells. This method has been developed
for the gravitational problems but has not been applied for molecular simulations.
For both finite and periodic systems, this method is more accurate and faster than
conventional approximation methods. For a periodic system (CMMX), a reduced
set that reproduces up to hexadecapoles of the original unit cell is created and the
Ewald method is used to evaluate the potential inside the unit cell that is due to
the charges of all cells except for the 26 nearest neighbor cells. The potential from
these 26 nearest neighbor cells is evaluated by using the Cell Multipole Method. In
this way, the Ewald potential of a very large unit cell is calculated efficiently.

In Part II, polymer crystals studied by using methods developed in Part I
are shown. To study the properties of polymer crystals, accurate van der Waals
parameters are required. To obtain these parameters, a graphite crystal is treated
in Appendix I. Here, experimental cell parameters and elastic constants are used
to obtain the van der Waals parameters for carbon. Recently, graphite force-field
parameters are used to calculate properties of Cgq crystals®.

In Chapter IV, the force-field parameters of a polyethylene crystal are de-
veloped, and various properties are calculated. One of the focuses in this study is

the van der Waals parameters of hydrogen, since experimental values are enough
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to determine these parameters accurately at low temperature. Valence force-field
parameters are obtained by using n-butane, the repeating unit of polyethylene. By
using the Hessian from the Hartree-Fock calculations as well as an experimental ge-
ometry and vibrational frequencies, force-field parameters of n-butane are obtained
and these are used for larger, normal hydrocarbons and polyethylene. Elastic con-
stants along the chain direction are determined accurately by a calculation. By
using fixed-cell minimization techniques, a surface creation process is simulated,
and surface energy is calculated.

In Appendix II, van der Waals parameters for carbon and hydrogen derived
for graphite and polyethylene are used to calculate structure, cohesive energy, lat-
tice frequencies, and elastic constants of hydrocarbon crystals (n-hexane, n-octane,
benzene, naphthalene, and anthracene), and these are compared with available ex-
perimental data. As expected, newly derived van der Waals parameters give a better
agreement between calculated and experimental properties than that obtained by
using previously published van der Waals parameters.

In Chapter V, properties of poly (vinylidene fluoride) crystals are calcu-
lated. This polymer is technologically and scientifically important because of its
piezoelectric properties. One aim of the simulation is to calculate piezoelectric con-
stants of this polymer crystal. There are four observed forms for this polymer and
a new form has been proposed by Lovinger'#. Force-field parameters describing all
forms are developed and used to calculate relative energy and various properties.
Calculations show that the new form is mechanically stable and that its energy is.
comparable to other forms. To examine the effect of atomic polarizabilities to piezo-
electric properties, force-field parameters, including explicitly atomic polarizabilities
by using a shell model previously used for ionic crystals!®, are developed for this
polymer. To determine parameters including atomic polarizabilities, Hartree-Fock

calculations of 1,1,1,3,3 - pentafluorobutane are used. By using the shell model for
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atomic polarizabilities, the agreement between theoretical and experimental values

for piezoelectric constants and dielectric constants is improved significantly.
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Nonbond Energy Calculations in Molecular Simulations
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Chapter I

Acceleration of Convergence for Lattice Sums



Reprinted from The Journal of Physical Chemistry, 1989, 93, 7320.
Copyright © 1989 by the American Chemical Society and reprinted by permission of the copyright owner.

Acceleration of Convergence for Lattice Sums

Naoki Karasawa and William A. Goddard III*

Arthur Amos Noyes Laboratory of Chemical Physics,' California Institute of Technology,
Pasadena, California 91125 (Received: January 6, 1989, In Final Form: May 10, 1989)

The lattice sums of nonbond interactions (electrostatic and dispersion) for computer simulations of periodic systems typically
coverge very slowly. Here, we examine the accelerated convergence of these sums based on Ewald procedures and derive
equations for the energies, forces, stresses, and curvatures. A method is proposed and tested for selecting the convergence
acceleration parameter n on the basis of minimum calculation time. As an illustration and check, the properties of argon
and NaCl crystals are calculated by using these equations and compared with values obtained analytically.

I. Introduction

To carry out molecular mechanics and molecular dynamics
calculations, it is necessary to sum various nonbonded interactions
over all pairs of atoms. Thus, the electrostatic energy for a
collection of point charges, {g, is

Qy
== 1
2%:Ri; 1)

where Q;; = (Cunit/€)q,q; and g, is the charge of the atom i. Here
the prime indicates that / = j terms are excluded, ¢ is the dielectric
constant (which we take as 1.0), and Cunit = 332.0647 puts the
final energy in kcal/mol if distances are in angstroms (Cunit =
14.400 if the energy is in electronvolts). Similarly, the dispersion
part of the vdw interaction has the form

1 B

= 2
R @
where By, is negative.

These sums are notoriously slow to converge. This is illustrated
in Table I for NaCl and polyethylene (PE) crystals. To obtain
an electrostatic energy good to 0.01 kcal/mol by this procedure
would require calculating all terms larger than 0.001 kcal/mol,
which for unit charges would require a cutoff distance of 332000
A! With a typical density of 102 atoms/cm? this would require

10'5 atoms! Clearly such large cutoffs are untenable.

The convergence is speeded by grouping together all atoms of
a cell and summing complete unit cells as illustrated in Table II.
However, the convergence is still far too slow.

The general solution to this problem originated with Ewald in
1921 using convergence functions for 1/R interactions.! Nijboer
and de Wette? generalized this approach to include all cases where
the interactions are proportional to negative powers of distance
for a single atom in a cell. Williams® extended the formulas to
allow multiple atoms in a cell.

Consider a general lattice sum of the type

Ay

1
Sp=iy 2
"2 Ly - = Ry

3)
where r; and r; are the basis vectors of atoms i and j in the cell
and R, is the iattice translation vector. The sums over i and j
each go over all atoms inside the cell except that i = j when L
= 0. The total electrostatic energy is given by .S;, while the
dispersion term is given by S¢. Multiplying every term in (3) by
the convergence function ¢,, and then by (1 - ¢,,), we obtain

S, =

1 5 Ajdm(ir; -1, = Ry)) l 5 Ayl = émIri — 1, - R.D]
2L In-r-Rm 2 Liy - = Ry™

(4)

If ¢,,(r) is a rapidly decreasing function, then the first term of

* Contribution No. 7902.

(4) converges much faster than (3). The second term converges
slowly, but by taking the Fourier transform, the resulting sum
(over the reciprocal lattice vectors) converges much faster.
Following Nijboer and de Wette? and Williams,’ we choose ¢,,
as

= ____l__ T mjr-l
mlr) = Tom/2) o /2-let dt (5)

II. Coulomb Sums

For the Coulomb case (5) becomes

¢,(r) =erfc (r/n) =1 -erf (r/7) (6)

where erf is the error function. In this case, the Coulomb in-
teraction with infinite range is replaced by an interaction of range
n'and summed in the real space, while the long range corrections
are summed in the reciprocal space. The parameter 5 determines
how much of the real space sum is converted to the reciprocal space
sum (large 7 leads to a larger real space sum).

A. Total Energy. The energy sum is

5= Lyg @ (") + —ZS(I:)S( -h)h et - —(ZQ,,
@)

2Ly Y w2

where it is assumed that each cell is neutral

Z‘Ii =0 (8)

and the prime indicates that the term at the origin is excluded.
Here h is the reciprocal lattice vector, Q is the volume of the unit
cell,a = |r;—r;— Ryl/n, b ="/,hn, and h = |h|. The first term
in (7) is just the first term of (4). The last term in (7) arises from
the exclusion of i = j terms when L = 0, since in the reciprocal
space sum, these terms are included.

The second term of (7) arises from the expansion of the second
term of (4) in terms of Fourier transforms of the point charge
6 function distribution

SO -1+ 1+ R) = SESWS(-h)e™ (%)
iyl Q Y

where

it \1/2
S(h) = (C“e“") Tget (9b)

is referred to as the structure factor. The quantity S(h)S(-h) in
(7) has the form

S(h)S(-h) = ZQ,, cos [b(r; - r)] (10)
iy

which Cowley et al.# have shown can be rewritten as

SHh)S(-h) = C“““uzq, cos (br)] + [Zg;sin (b)) (1)

(1) Tosi, M. P. Solid State Phys. 1964, 16, 107.

(2) Nijboer, B. R. A.; de Wette, F. W. Physica 1957, 23, 309.

(3) (a) Williams, D. E Acta Crystallogr., Sect. A 1971, 27, 452. (b)
Williams, D. E. In Crystal Cohesion and Conformational Energies; Metzger,
R. M., Ed.; Springer-Verlag: Berlin~Heidelberg-New York, 1981; pp 3-40.

0022-3654/89/2093-7320801.50/0 © 1989 American Chemical Society
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TABLE I: Convergence of Nonbond Interactions Using Atom-Based Cutoffs®

NaCl¢ polyethylene
Rouert A Rinner? A terms Eq Egisp terms Eq Eqisp
10 8 608 -981.65 -20.330 3072 -51.870 -797.687
10 9 608 -1556.20 -20.413 3072 -2.343 -797.798
10 10 608 -1492.67 -20.445 3072 -111.998 -797.863
15 14 2152 1446.83 -20.726 10394 ~40.272 -798.184
15 1S 2152 1281.61 -20.735 10394 -52.972 ~798.198
20 19 5296 -1743.32 -20.794 24615 -79.905 -798.275
20 20 5296 1207.33 -20.800 24615 -63.080 -798.280
25 24 10320 1210.98 -20.821 48015 -107.974 -798.306
25 25 10320 109.11 -20.822 48015 -54.830 —-798.308
Ewald® -824.59 -20.846 ~65.685 -798.338

° Energies are in kcal/mol. ”Each term of (1) or (2) is multiplied by the cubic cutoff function S(R;), where S(R) = 1.0 if R < Riper. S(R) = 0.0
if R > Ryyero and S(R) = [RPyier = R R%yer + 2R? = 3R pner]/ [R¥uier = R¥inne:]’. Otherwise. <n = 2.5 for NaCl and n = 2.0 for polyethylene.
4 Parameters used are By,n, = —24.180, Bnyor = —161.20, By = ~1669.58 keal A® mol™. gy, = e, go = -, 4 = 5.63 A.

TABLE II: Convergence of Nonbond Interactions Using Cell-Based Cutoffs®

NaCl* polyethylene

Feur A terms® Eq Egip terms® Eq Egisp
6 3500 (222) -824.5563 -20.7615 6930 (1 32) -65.6032 -798.0302
8 3500(222) -824.5563 -20.7615 14850 (2 4 2) —65.6402 -798.1933
10 3500 (222) -824.5563 -20.7615 20790 (2 4 3) -65.6521 -798.2312
15 9604 (3 3 3) -824.5768 -20.8161 54054 (36 4) -65.6655 -798.3005
20 20412 (44 4) -824.5836 -20.8323 86394 (38 5) ~65.6669 -798.3176
25 37268 (55 95) -824.5852 -20.8387 162162 (4 10 6) —65.6725 -798.3274

Ewald® 512 + 22404 -824.5861 1748 + 15844 -65.6836

N 296 + 22404 -20.8463 1044 + 62047 -798.3383

9Energies are in kcal/mol. ®The numbers in parentheses show the (a b ¢) index for the last shell considered. <n = 2.5 for NaCl and n = 2.0 for
polyethylene. 8q = 0.001 kcal/mol. b4y = 10™ kcal/mol. 4The number of terms in real space and reciprocal space sums, respectively (eq 10 is

used). ¢Parameters are given in Table I.

Since the summation in (11) runs only over single atoms rather
than pairs, the computations for the reciprocal space sum are
significantly reduced.

B. Force and Stress. The force at atom p is given by

reciprocal lattice and real lattice vectors, and H is the transpose
of H. The stress Il is given by the relation’

9E _ "
3H,, = %H,,;QHW 17)

as
fi, = _ZaTl where E is_ the total (potential) energy of the system. For the
4 electrostatic stress, we have
1 erfc (a,)  9p-1/2¢7a3 £ ~1/2p-a2
= SZZQur, -1~ Ry =L erfe (@) | 2rfte L _

PwTo pilp L a,? ay? QM = 2 E./Qij g + = (ri =1, = Rp(r;
drg : )2 : -+ (1 + B
g THEGusin By T (12 ), 4 28 ZS(MS(—h)eh—z[aaﬁ—z 2 m | a3

b

where a, = |r, — 1, - R;|/n. By use of (11), the second term can
be rewritten as

Cunit 4 -
Zunit _5"' quhgsm (h.rp)[;q,. cos (ber;)] - cos (br,) X

(Zg;sin (ber)]}a2e? (13)
To calculate the stress, consider the matrix H that contains the

real space unit cell vectors in Cartesian coordinates, i.e., H =
[a,b,c], where a,b,c are the unit cell vectors.®* Then we have

The stresses can also be obtained by differentiating the energy
with respect to strains. The strain tensor is defined by®

€= %(ilo-‘imyo-' -1) (19)

where H contains the original cell vectors and H contains the
deformed cell vectors. ¢ is symmetric so we define six independent
strain components e; such that e, = ¢, ; = €, €3 = €33, ¢, =
2¢,3, €5 = 2¢3, and eg = 2¢;;. Then we have

F
Q = det(H) (14) QI = -(ge;) (k=1,..,6) (20)
k ] =0
ri-R,=H(s;-s,-L 15
s~ Re=H s - L) U here T, = 1), T, = My, T, = Ty, T, = Ty, Ty = Ty, and
and Iy = II;,. To derive this equation, we use the relations
= 2rfH! 0H,
h=2rH'Nn (16) 66“7 - g”ka-]HOinwk

where s; is the fractional coordinate vector of the atom i, and n
and L are vectors whose elements are the integers specifying the

(4) Cowley, E. R.; Jacucci, G; Klein, M. L.; McDonald, I. R. Phys. Rev.
B }97[3 14, 1758. In this paper, A,(n) in eq 3 must be multiplied by a factor
(1/=L).

(5) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055.

=6,H, (6=0) (21a)

(6) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182.

(7) Kittel, C. Introduction to Solid State Physics, Sth ed.; John Wiley &
Sons: New York, 1976.

(8) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices, Oxford
University Press: London, 1954.
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oH,,

a€ Zlea (HOWHO/I( + HO/YHOIk)

= a,aH,, +o.H, (e,=0) (21b)

derived from (19).
C. Curvatures. The second derivatives with respect to XX and
YY strains have the form

(i)
a%S, 1
de e, N —2_773 EJQU[F

Raﬁ] + % ZS(h)S(-h)[%nzh,‘H% 4Hh? + G] (22a)
b

“R)* + 2F(r -1 -

(i)

as,
69]682 = -; ZQu[ F’ —(f, r= RL)lz(ri -n- RL)22] +

3” };S(h)S(—h)[Enzh,zth’-t- H(b,? + b2 + G] (22b)

where
= [erfc (a) + 277'/2%ae™") /2
G = n2e? /4b?
H=—*(1 + bY)e? /8b*
III. Dispersion Sums
For the dispersion sum with m = 6 in (3), the form for ¢ is

b6 = [1 + (/0 + %(r/n)‘]e"'/"” (23)
A Energy This leads to an energy of
Sg= — ZB,(a‘6 +at+ la‘z) e 4
217 2
1

i (- VR3] 172 - _
249 ?%B,j cos [he(r; - r;)]h [w erfc (b) + (st

L g
= je” +— B; (24
b)e ] proe Z i~ 127 62 i (24)

where b = !/,hn,a = |r, - =Ryl/n and h = |b|. The first term
in (24) arises from the ﬁrst term in (4) and can be written as

- Z TBate|at+al+ L -l-a,_"e"'L at+a?+
6 Tl 2 2
%)Z_B.-.] (25)

where a; = |R;|/n. The second term arises from the second term
in (4) using (9) and (10). The third term is from h = 0 in the
second term, while the fourth term is from exclusion of i = j terms
when L = 0.

Often the dispersion terms are assumed to satisfy the geometric
combination rules

Bu = (BiiBjj)l/Z (26)
and expressions similar to (24) are based on this form.?> However,

in the above derivation, no such assumptions are made. When
(26) is satisfied, we can use

ZBjcos [b(r;-1)] =
iy

=[Z(1B4l)'/2 cos (ber))? - [Z(1Bi)!/2 sin (her)]? (26)
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in the reciprocal space sum of (24) to reduce the computing time.
B. Force and Stress. The force on atom p is

3,

foo ar,

= % TE8(r, -1~ Ry X
L

) o 2
(6a,® + 6a,% + 3a, + a, e 4 4 30 gh[;Bp X
sin [he(r, - l',.)]]h3[1r'/2 erfc (b) + (ﬁ - i—)e”’z] 27)
The stress term is

QI'I,,B =

;,- }L:Zz;,j(sa-8 + 647 + 3a™ + a e (1, - 1;- R, X

(r,-1,-Rpg + — ZZB,,— cos [h(r; - 1,)] X

1
[h’{ 112 erfe (b) + (—b; - Z)e-b’}aaﬁ +

e ~b? 32
3h{ 7'/? erfc (b) - —l',—' h.hg | + —39280503 (28)
i

Here we have used
6a 1 1

aHaﬂ = . m—' - Rpa(si—s;- L)z (29)
where r; - r; - R is given in (15) and
b 1, "
H, =-3m ha‘?Hh h, (30)

C. Curvatures. The second derivatives with respect to XX and
YY strains have the form

(i)
#Se _ v8,| F - R.),* + 2F(
681381 - 211 Lij y 07]2( imh L)l LY
1]+ 22 558, cos [b
r_ , o(r; - r,)] X
RL)I 249 3 5 ij cos [ (l’, rj)]

LomsH + aHm2 + G +”—in3 31

271 1 1 670 T ij( a)
(ii)
828,

1
dede, ‘517" E/BU[ F'—(r; - 1;=R) (1, - 1, - RL)22] +

Iy
Pl " o(r: - r.)] X
YT %%BU cos [b(r; = r))]
1 71.3/2
27hhH + H(b? + b)) + G|+ == TB; (1b)
iy

where
= (6a8 + 62 + 3a™* + a e

F
_ 8y 1 1) .
= 7{71/2 erfc (b) + (55 - [;)e }

e
H= @(ﬂl/z erfc (b) - "—)
n b
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TABLE III: Predicted Values of n., (Using (34))

crystal ‘RL,minIv A ‘hmin|v A Topts A
NaCl (8 atoms/cell) 5.63 1.116 3.18
NaCl (2 atoms/cell) 398 1.933 2.03
Ar (4 atoms/cell) 5.31 1.183 3.00
Ar (1 atom/cell) 3.755 2.050 1.91
polyethylene (12 atoms/cell) 2.54 0.8656 2.42
orthorhombic poly(oxymethylene) 3.56 0.8212 2.94

(16 atoms/cell)

IV. Selection of 7

A. Choice of n from Cell Parameters. The parameter n should
be chosen to optimize the convergence of both the real lattice and
reciprocal lattice sums. If 7 is too small, the reciprocal lattice
sum does not converge quickly since b = !/,An remains small when
h becomes large. Similarly, if # is too large, the real space sum
does not converge quickly since a = |r; - r; - R/|/n remains small
for large |R,].

Since both sums are multiplied by terms like e or erfc (x)
(where x = a for real space and x = b for reciprocal space), a
simple estimate of the optimum parameter 7 for rapid convergence
of both sums can be obtained as follows. These terms decrease
rapidly for large x, so that both sums converge similarly when
a = b. This leads to

,_ni-n- RL|~ IR} (32)
Topt 1/2 P ‘/z h
which determines 7 in terms of L and h. The simplest choice of
7 is to use the minimum length of R; and of A so that we have
the same orders of magnitude of a and b when these have the
minimum values (of course, [R;| = 0 and 4 = 0). Then

IR ol 33)
1’ =
o Vthin
Assuming a < b,c and k. < hg,h, (33) leads to
192 __ @
xb sin v (34

Topt™ = wla X bl B

This determines n,y in terms of the crystal structure. The gy,
thus obtained may not be the optimum 7 for minimizing com-
putation time, since we assumed that the computation time per
each term is the same for both real and reciprocal space sums.
Table III shows the calculated 5, for various systems.

B. Accuracy Specified Cutoffs. With 7 specified there is still
an infinite number of terms in the sums over the real space and
reciprocal space lattices, and we use an accuracy criteria to specify
limits on these sums. To this end we specify a tolerance ¢ and
carry out the sums until the neglected terms have a total con-
tribution smaller than this tolerance.

1. Electrostatic Sums. (a) Real Space Sum. Using a cutoff
distance R, introduces an error in the total energy for the real
space sum of

1 erfc (Ry /n)

Eqreal = 3 LiJQijTe(RijL = Raw) (35)

where O(x) is the step function [8(x) = 1 when x > 0 and 6(x)
= 0 when x < 0]. To estimate this error, we replace discrete sum
(35) by a continuous integral. Defining the average interaction
as (g*) = ¥; g*/N, we obtain
N erfc (R
v = % (4 ) Cunit ® 4R (R/n) iR
€ 9 Rean R

Since

R 1 T 1 ]
erfc (—) =5 f 'EE'I dr < - —etdt =
n !/ Ryt ! / xl/ RYn? R

n
r!2R

R

E6,recip =
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we obtain

N(gq?) Cumt

€

f 4r1/ieRI7 4R =
N¥(g?) R
T Cunit 72 erfc (36)
139} n

(b) Reciprocal Space Sum. The error in the reciprocal space
sum due to a cutoff at H,,, is given by

1
EQ real = 5

2r o -b?
Equn = g TSMISCH <0k~ o) (37)

Replacing the sum by an integral and replacing S(h)S(-h) by
Cunit N*(g?) /e, we obtain

2r M(q )
Equep = 5 unit == f 4xh
NZ(qz)

erl/2

e—(hv/l)

chl
) (38)

Using (36) and (38), we can evaluate the cutoff distances Ry,
and H, to obtain a given accuracy dq (for given n). Because of
the neutrality of the cell, there will be a great deal of cancellation
in (35) and (37) that is ignored in (36) and (38). Consequently,
eq (36) and (38) generally overestimate the error by a factor of
10 or so.

2. Dispersion Sums. (a) Real Space Sum. The total error
in the real space dispersion sum is given by

Cunit 1 erfc (rp
7

E6.rca) =

1 1
ZIB i Py
v RuL6 RI]L 77 2Ri]Lz"l4

Approximating this by an integral, we have

1 1 N 1
Egreas =~ EM(B)E f (}; + Fnz +

—L_V4rRrre®i? gg =
ZRZ 4

N?
27 {8)

e~ Ru/mg( Ry, - Ry

(39)

+ _1_ e~ (R/M* 4R
27¢

where N*(B) = 3, |B;] is the sum of coefficients of dispersion
terms. We approximate the above equation as

NUB -
Fo 220 2 —‘—4+—‘2—2+-‘—4)f o o =
Ry Reyn 27 Rea
LA\ I N WS SN U (R )(40)
_— — eric
Q " Rc\u4 R(:mz'"2 27t n

(b) Reciprocal Space Sum. The total error in the reciprocal
space sum is given by

2
YT ?ZIB,YI cos [he(r; - rj)]h3[1r‘/2 erfc (b) +
ij

(2—23 - %)e—“]ew - Ha) (1)

Approximating this sum as an integral leads to

N*(B )—f h’[ /2 erfe (b) +

(Z—Ib—J - -Il;)e"”]‘hrhz dh

E 6,recip =~
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By using 7'/2 erfc (b) < (1/b)e?, we have

2 Q e, 1

T A s 1wy =

Esreen < 335V(B) £ fﬁwmh e dh
2N*(B) @

L b2 db =

3rl/2 pb J(Ham/2

N*(B H
= ,: %[Hmne-wmnm’ + 7/ erfc (—2—”)] (42)
n

Using (40) and (42), we can calculate the cutoff distances Ry,
and H, that lead to a total error dy for given .

3. Repulsive Terms. The repulsive terms in simulations
generally have the form

-
Ey,= 3 AR (43)
i
or
En= % T Ao R (44)
i

We can estimate the R, for these cases in a similar way. The

results are

27N A)
99 RCIJ'.9

27N (A) e~ MR ) 2Ry 2
= — + — —_
Eex.ml Q (N) cut (N + ()‘)2 (46)

where N*(A4) = T, ;4; and ()) is determined by the relation
N A)yeMFRau = 3 4, 0" MR
ij

Eippea = (45)

4. Implementations of the Limits. The limit on the real space
sum, L, is chosen so that all cells containing any atoms within
R, of any atom in the unit cell are included.’ This leads to

R be sin a
Lu=__°."_'g—

and similarly for Ly, L. The sum over the reciprocal lattice has
limits of H, = (a/27)H, and similarly for H, and H.. Within
this set of cells, we eliminate any terms for which R > R,,. This
leads to a considerable reduction in effort, as indicated in Table
Iv.

C. Time Minimized n. Since the choice of n affects the R,
and H, and thereby the number of terms in real and reciprocal
space sums, we can choose 7 so as to minimize calculation time
while retaining prespecified computational accuracy. This is
illustrated in Table V for the case of poly(oxymethylene). In this
table the electrostatic energy using (11) (a2) as well as those using
(10) (al) are shown. On the basis of several test calculations,
we estimate that fiey/ecip ~ 4 in (al) and (b) and tye)/ lrecip =
10 in (a2), where f,, is the time per term for the real space
calculation, while #,, is the time per term for the reciprocal space
calculation. Of course, these values will depend on the actual
program and computer used. The reason that the evaluation of
the reciprocal space term is much faster than the real space term
is that the reciprocal space lattice sum involves a factor that only
depends on A, which is calculated only once, while in the real space
sum, all factors depend on atomic distances and must be calculated
for each pair.

Excluding the interactions between the same atoms in different
cells (since there are easy to evaluate) and using (10), the number
of terms in the real space and reciprocal space sums can be
estimated as follows (assuming constant atomic density)

4r NN-1)

Niew = ?Rcul 2Q

(47)

(9) Calculations optimizing the cell parameters and internal coordinates
of crystals were carried out using the PolyGraf polymer simulation program
from Molecular Simulations, Inc. (BioDesign Division), Pasadena, CA 91101.
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4r Q N(N-1)
N_ . =§ —H 33— _ 4
recip ( 3 cut (2‘”)3 » 1 ) P ( 8)

where N is the number of atoms in the unit cell. When (11) is
used, V(N - 1)/2 in (48) should be replaced by 2N. Since there
is a cancellation of terms in the electrostatic sum due to the charge
neutrality in the unit cell, we use g = 104y, to obtain similar
accuracy in both sums. By using the estimated number of terms
and the values of #,¢5/trecip, WE select 7 50 that Nyey + Nyee/m is
minimized where m is the ratio frey/?recip-

In Table V we show the results for poly(oxymethylene). In this
system, there are 24 centers of which 16 are charged. In (al)
and (b), the 7 leading to the fastest calculation is 5 2.5 A, while
in (a2), the n leading to the fastest calculation is n ~ 2.0 A. The
7 predicted using (33) is 2.94 A, in reasonable agreement with
(al) and (b). In (a2), it is shown that the computing times are
shorter than those in (al) for any n due to the smaller number
of terms in the reciprocal space sum. Also, the computing time
for each term in the reciprocal space sum is shorter in (a2) than
in (al). Therefore, the time-minimized 7 in this case is smaller
than for other cases. The accuracy here is 1073 kcal/mol for
electrostatic and 107 kcal/mol for dispersion. Note that the error
in the energy is independent of 7 in these calculations, showing
the effectiveness of accuracy-specified cutoffs.

V. Application to Ar Crystal

As a test case for the Ewald dispersion sum formlas, we will
calculate the structure and properties of argon face-centered cubic
(fcc) crystal analytically and compare with those obtained by using
the lattice sums.

A. Model. We will describe the Ar—Ar interactions with the
Lennard-Jones 12-6 form

Ry \? Ry )¢
U(R) = Dy R -2 R (49)

where R, = 3.8666 A, and D, = 0.2351 kcal/mol are adjusted
to reproduce the experimental lattice spacing and heat of va-
parization. For an fcc crystal structure, the total energy E,y is’

1 RO 12 RO 6
E(R) = 'Z‘NDo P\ & = 2ps r (50)

where, R is the nearest-neighbor distance, N = 4 is the number
of atoms in the conventional fcc cell, p;; = 12.131 88, and pg =
14.45392.

B. Equilibrium Lattice Constants. Requiring 8E,,/0R =0
leads to the equilibrium nearest-neighbor distance

Ps
The lattice constant at equilibrium becomes
A, = 22R, = 1.37353R, = 5.3109 A (51b)

1/6
R, = (Q) Ry = 0.97123R, (51a)

the experimental value'® at 0 K.
C. Cohesive Energy. Substituting (51) into (50) leads to

Ua(R) = ~NDLE (52)

tot\ e 2 Oplz

so that the cohesive energy (per atom) is
Ueop = 8.6102D, (583)

This leads to Uy, = 2.0244 kcal/mol (of atoms), the experimental
heat of vaporization at 0 K (after correcting for zero point en-

ergy).!!

(10) Donohue, J. Structures of the Elements; R. E. Krieger Publishing Co.
Malabar, FL, 1982. For argon, A = 5.3109 A at 0 K.

(11) Hultgren. R.; et al. Selected Values of the Thermodynamic Properties
of the Elements; American Society for Metals: Metals Park, OH, 1973. For
argon, AH, = 1.848 kcal/mol at 0 K. Estimating the zero point energy as
0.1764 kcal/mol (from our calculations) leads to Uy, = 2.0244 kecal/mol
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TABLE IV: Number of Terms in the Sum for Given Ewald (1) and Accuracy (6) Parameters

(a) Electrostatic Sum

NaCl polyethylene

n A bq keal/mol Ry, A Hyy A7 real terms  recip terms® Ry, A H, A7 real terms  recip terms?

1.5 102 4.645 4.568 72 7168 4.226 4.090 212 7128

1.5 1073 5.152 4.983 104 10192 4.773 4.549 344 9372

1.5 10 5.617 5.366 104 12880 5.269 4.964 468 11088

2.5 1072 8.127 2.683 296 1568 7.460 2.394 1264 924

2.5 1073 8.938 2.934 512 2240 8.332 2.670 1748 1584

2.5 107 9.686 3.173 608 2576 9.126 2922 2342 2904

35 1072 11.721 1.891 1088 504 10.814 1.678 3820 528

35 1073 12.828 2.073 1328 728 11.999 1.879 5322 660

35 10 13.852 2.243 1616 896 13.084 2.061 6824 660

(b) Dispersion Sum
NaCl polyethylene

7 A Bgyp keal/(mol A) Ry, A H,, A~ real terms recip terms® R, A Hg,, A7 real terms recip terms®
1.5 1073 4.819 5.089 72 10864 4.867 5.001 372 11880
1.5 107 5.304 5.485 104 13552 5.348 5410 480 16104
1.5 1073 5.752 5.856 104 17304 5.793 5.787 628 20328
2.5 107 7.453 2.695 296 1568 7.539 2.639 1302 1584
2.5 10 8.310 2.966 296 2240 8.387 2915 1816 2376
2.5 107 9.096 3.217 512 2576 9.168 3.167 2390 3432
35 1073 9.872 1.740 608 504 9.997 1.690 3066 528
35 10 11.122 1.954 896 728 11.235 1910 4326 660
35 1078 12.262 2.143 1232 728 12.366 2.105 5854 660

“The number of atom pairs in the sum.

D. Bulk Modulus. The bulk modulus, a measure of the
stiffness of the crystal, is defined by

dP d2U,,,
B= —VH/ = VW (54)
Writing the volume of the crystal as ¥ = NR3/2!/2, we have
U(V) = IB - ﬁ (55)
o2

where by, = (1/8)p;,N°DoRy'? and bg = (1/2)pgN*DoR,t. The
equilibrium volume is ¥, = (1/2Y/2)NRy*(p,2/pe)'/?, leading to

s/2 5/2
B = 2061, _ 6bs = 21/2b°_ = 4(2'7?) L | I
12 P’ JA\ RS

Dy
106.328 P (56)

E. Elastic Constants. The elastic constants have the form?

2 d2U
Ch=— 4 57
1= s = o
and
2 diu
Cyy = — —_— 2y 2 57b
2=y %[d(Rz)z ]LxL 843 (57b)

(For a two-body potential such as (49), the shear constant C,,
is equal to C;,.) This leads to

Do N\ ps P _ [ Ps
= e [ty | Kl LN
), = 962V )(Rs)(Pu) [56(;7.2)51-8 4;,‘5] (58a)

0

o ) o e o5
= ynf 2 B 28 e -
Ci, = 96(2 )( Ro’) s 56 s 528 — 4525 (58b)

where lattice sum constants s, ,, and s, ,, are given by

14
Sym = L —m——— 59
o e e 49
1,21,2
Som = 2 ———————— (60)

T2+ L+ L)

Here the sum is over all integer values of /,, /5, [y where [, + /,
+ [; must be even. The constants 5,53 = 0.03184001, 5,5 =
0.01567332, 5,5 = 0.320449, and 5,5 = 0.140 899 were obtained
by numerical computations. The result is

Dy
C, = 148.762) —

Cra= Cou = 85123 22
12 44 = . R°3

The Poisson ratio o for this cubic system

C
0=-—=———— =0.3640 (61)

is independent of R, and D,

If D, is expressed in kcal/mol and R, is expressed in A, then
a conversion factor of 6.947 80 is needed to obtain pressures in
GPa. Thus the above expressions lead to

C\, = 4.2031 GPa
C,; = 2.4051 GPa

and

B= ::-(C“ + 2Cy;) = 3.0044 GPa

These can be compared to the experimental values at 0 K of!2

C, =40GPa
C,, = 2.0 GPa
Ci = 2.0 GPa

F. Results. In Table VI we compare the results of optimizing
the unit cell parameters of Ar with various ways of carrying out
the lattice sums (all of which used periodic boundary conditions).
In these calculations we used conjugate gradient minimization
to optimize both cell parameters and atomic coordinates inside

(12) Meixner, H.; Leideren, P.; Berberich, P.; Lischer, E. Phys. Letr. A
1972, 40, 257.
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TABLE V: Dependence of Timing on Choice of n for Orthorhombic
Poly(oxymethylene)?

(al) Electrostatic Sum. &g = 0.001 kcal/mol. Equation 10 is used.
Use of 6q = 107 kcal/mol leads to £ = -51.19144 kcal/mol.

n A E, kcal/mol Neeal Nrec lrul/’recxp Test Iealer S
1.0 -51.1916 116 92160 8.3 23156  7.38
1.5 -51.1914 443 27360 6.9 7283 2.25
2.0 -51.1916 1154 10320 4.4 3734 1.08
225 -51.1915 1656 6720 5.9 3336 1.11
2.5 ~-51.1915 2306 4800 S.1 3506 1.13
3.0 -51.1914 4232 2880 4.6 4952 1.47
35 -51.1915 6928 1440 43 7288 2.02
4.0 -51.1914 10830 960 39 11070 2.67
4.5 ~-51.1914 15795 480 4.4 15915 4.35
5.0 -51.1914 22136 480 4.0 22256  5.55
(a2) Electrostatic Sum. &g = 0.001 kcal/mol. Equation 11 is used.
n A E kcal/mol Ny Nyee treat/ Lrecip tey Legtes S
0.75 -51.1919 36 61312 353 6168 3.10
1.0 -51.1916 116 24576 13.6 2573 1.32
1.25 -51.1915 234 12608 127 1494 0.74
1.5 -51.1914 443 7296 12.1 1172 0.57
1.75 -51.1914 741 4160 8.5 1157 0.49
2.0 -51.1916 1154 2752 7.3 1429 0.50
2.25 -51.1915 1656 1792 9.4 1835 0.75
2.5 ~-51.1915 2306 1280 78 2434 0.86
3.0 -51.1914 4232 768 7.8 4308 1.32

(b) Dispersion Sum. &g, = 107 kcal/mol. Use of dgip = 107
kcal/mol leads to £ = -8085.194 05 kcal/mol.

n A E, kcal/mol Ny Nee  lreat/Irecip tey Taaer S
1.0 -8085.1939 440 416760 6.6 104630 33.93
1.5 -8085.1939 1479 104880 4.0 27699 8.39
2.0  -8085.1940 3209 35880 2.6 12179 3.17
2.25 -8085.1940 4261 23736 38 10195 1.78
2.5 -8085.1939 5656 15456 32 9520 2.29
3.0 ~-8085.1940 9136 8832 3.1 11344 241
35 ~-8085.1940 13741 4416 2.8 14845 2.83
4.0 ~-8085.1940 19501 2208 2.5 20053 3.15
45 -8085.1940 26581 1104 2.5 26857 4.04
5.0 -8085.1940 34738 552 2.7 34876 6.03

9E is the energy, Ny, and N, are the numbers of terms in the real
space and reciprocal Space SUMS, e/ frecip is the actual ratio of calcu-
lation time per term for real and reciprocal space, 1, is the estimated
relative time, and rg, is the actual calculation time. The estimated
relative time is calculated from Ny + Ni,/m, where m = 4 in (al)
and (b) and m = 10 in (a2).

the cell.’ In each case the final root mean square (RMS) force
per atomic degree of freedom is less than 0.001 kcal/mol, and
the RMS stress for the six cell parameters is less than 0.0001
kcal/mol.

Using traditional distance cutoffs with R, = 9 A leads to an
error in the lattice constant of 0.006 A or 0.1%, an error in the
cohesive energy of 0.68 kcal/mol (of cells) or 8.4%, and an error
in the bulk modulus of 0.09 GPa or 3.0%.

In the Ewald calculations, we evaluated the repulsive terms by
using direct sums and used the error bounding procedures of
section IV.B with several energy criteria, where dq = 104,. We
also carried out calculations as a function of strain by introducing
a finite strain to the system, optimizing the atomic coordinates,
and calculating the stresses.’ The highly repulsive nature of the
atomic interactions for short R (due to the Pauli principle that
requires orthogonalization of the overlapping atomic orbitals) leads
to a quite nonlinear stress—strain relation. Using the stress versus
strain results for small strains (£0.005, £0.01), we obtained
numerical estimates of C,; and C), to compare with the analytic
values. The results agreed to two decimal places in each case.

VI. Application to NaCl Crystal

As a test case for the Ewald Coulomb sum formula, we will
calculate the structure and properties of NaCl crystal analytically
and compare with those obtained by using the lattice sums.

A. Model. For the atom-atom interactions, we use the form

Karasawa and Goddard

5

Uy = reRlp % (nearest neighbors) (62)
2
—_— (otherwise)
if
The total energy E,,, (relative to free ions) is given by’
ag?
E(R) = N{ zhe™RlP - —R- (63)

Here R is the nearest neighbor distance, IV = 4 is the number of
pairs of NaCl atoms in the unit cell, and z = 6 is the number of
nearest neighbors. The Madelung constant is « = 1.747 565, while
unit charges on each ion lead to ¢? = 332.0647 A kcal/mol
(allowing R to be in A and E in kcal/mol).

B. Parameters. We will choose the parameters A and p in (62)
to obtain the experimental lattice constant!?

A=5518 A
and cohesive energy'?
E(R,) = -740.0 kcal /mol
at 0 K.

The equilibrium nearest neighbor distance R, = (1/2)A4, is
obtained by requiring that dE,,/dR = 0, leading to

2
RieRdo = 224 (64)
¢ zZA
Substituting R, into (63) leads to
Nag? p
E(R) = - R, (l - E (65)

Using these results leads to
p=0309223 A

N = 3.84485¢R/» = 31 765.8 kcal /mol

C. Bulk Modulus and Elastic Constants. The volume of the
crystal V is given by V = 2NR3; hence

173 1/3
Em(V) = N(Z)\ exp[—(%v) /p] - (ZLVV) aqz) (66)

Using eq 54, we have

B = VdZEtol
az J,

where the equilibrium volume V, is 2NR,? and the conversion
factor 1 kcal/(mol A%) = 6.94780 GPa was used. This can be
compared with the experimental value of'> 26.60 GPa.

Since each atom in the NaCl crystal is at a point of inversion
symmetry, no internal strain is induced when external stress is
applied. Hence, the two independent elastic constants are given

by

ag® f1 2
= ——f - - — } = 259858 GPa 67
18R,3(p Re) ©n

o i B P 68
ne ZRA\ o V, de,de, (68)
-1 69

2= V. de,de, 69)

where e, and e, are strains (XX and YY components) and the
first term in C,, arises from the repulsive part of the potential.
The lattice sums for the second partial derivatives of the elec-

(13) (a) Sangster, M. J. L.; Schrdder, U.; Atwood, R. M. J. Phys. C 1978,
11,1523, (b) Sangster, M. J. L.; Atwood, R. M. J. Phys. C 1978, /], 1541.
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TABLE VI: Equilibrium Properties of Argon Crystal (Using Four Atoms per Cell)
Ewald direct summation
exper? exact 0.00001° 0.001* 0.01° 9 Ac 15 A 30 Ac
A A 5.3109 5.3109 5.3109 5.3108 5.3090 53172 5.3176 53111
U, keal/mol -8.0975 -8.0976 -8.0970 -8.0981 -8.1171 -7.4202 -7.9756 ~8.0830
B, GPa 2.67 3.0044 3.0044 3.0054 3.0164 3.0940 2.9482 3.0050
C,,, GPa 4.0 4.2031 4.2031 4.2048 4.2216 44123 4.1309 4.2052
Cy,, GPa 2.0 2.4051 2.4051 2.4057 2.4138 2.4348 2.3569 2.4049
Cy GPa 2.0 2.4051 2.4051 2.4057 2.4138 2.4348 2.3569 2.4049
a 0.32 0.364 0.3640 0.3639 0.3638 0.3556 0.3633 0.3638
time,? s 0.171 0.143 0.084 0.045 0.124 0.866
pairs R space? 120 72 24 120 480 4320
pairs K space? 480 336 156

aSee ref 10 (A), 11 (U), and 12 (C), C}3, and Cy). ®Accuracy parameters in kcal/mol. <Cutoff distances (R.,). Using a cubic spline function
to decrease the potential from full value at R, —1 A to zero at Ry, —0.5 A. ?Only attractive terms are considered.

trostatic energy with respect to the strain components converge TABLE VII: Equilibrium Properties of NaCl Crystal (Using Four
very slowly, requiring Ewald sums. By using (22), we have Molecules per Cell)
8%S, Ewald
= b b b
de, 6e| exper®  exact 0.1 0.01 0.001
, A4, A 5578 55780 5.5776 5.5776 5.5780
3 erfc (a) 6171/2@  4q71/2a U, keal/mol =740.0 -740.00 -739.9938 -740.0184 -739.9985
2 P + P + ’ B, GPa 2660 25.9858 25.97 25963 259854
n" Li a C.GPa  57.33 51.46 51.433 51.4366
1/2a C GPa  11.23 13.23 13.228 13.2598
(-1, - R, - | efe@) | e | CuGPa 1331 1323 13228 132598
[ d @ a2 P 0.164 0.205 0.205 0.2050

¢See ref 13. ® Accuracy parameters in kcal/mol.
r-r1;, - Rp),? +-— S(h)S(-h) X
®-x 20 Z ®)S(-h) VII. Summary and Discussion
_ 45 44 Using Ewald-inspired approximations for accelerated conver-
e (I + bz)“l 4hle { 2 kot h_"_ gence of lattice sums, we developed and tested equations for the
ht \ 2 16 energies, forces, stresses, and second derivatives for both elec-
(70) trostatic (1/R) and dispersion (1/R®) lattice sums. In addition,
we developed an approach for estimating the convergence pa-
&S, rameter 7 in order to minimize the computation time while re-
= taining a fixed level of accuracy.
de1e; With these accuracy specification procedures, the costs of
1 [ 3 erfc (a) + 6n1/2gma + 4,,-1/2e-°’] x carrying out accurate lattice sums is less than that for normal
ij

I e

direct sums (at the same level of accuracy) despite the more
complicated formulas for accelerated convergence.
( We suggest that these procedures may also prove equally
l -

2_,,5 & a at a2
valuable for biological systems. A molecule such as hemoglobin
with ~6000 atoms would lead to 18 000000 pairwise interactions,
( Kot o ‘) which are truncated to ~ 500000 by using energy cutoffs of 9

2, 2T ¢ et
(r - r= RL)I (r; Lyh RL)2 + E ?S(h)s(-h) ;2_
4h,%h,2e

1+
( )(h12+ h22)) T

A. We suspect that such cutoffs lead to errors in the Coulomb
interactions similar to those shown for NaCl. By considering the
hemoglobin to be in a unit cell sufficiently large that interactions
an between cells is small, one could use the Ewald procedures to
generate a given level of accuracy. This approach would be

especially valuable for including explicit solvent (water) in the

.——+.—.—-

2 16

In this model, C4 = Cj;. The calculations of these sums give

Cy; = 51.4366 GPa calculation. Water has large charges (0.4 e on each H and -0.8
_ _ e on O) so that use of a finite solvent shell leads to very large
Ciz = Gy = 13.2598 GPa surface effects. With a periodic cell containing Hb and H,0, one

1 could eliminate surface effects while obtaining accurate energies.
B = =(C}; + 2Cy;) = 25.9854 GPa

3 Acknowledgment. This work was partially supported by a grant
from Imperial Chemical Industries, Cleveland, England, and by

while the Poisson ratio (61) is - e
a grant from the Air Force Office of Scientific Research (No.

o = 0.2050 AFOSR-88-0051). We thank Molecular Simulation, Inc.
D. Result. In Table VII, we show the results of optimizing (Biodesign, Inc.), Pasadena, CA for use of the PolyGraf polymer
the unit cell parameters of NaCl with three different accuracy simulation program.

parameters. Registry No. NaCl, 7647-14-5.
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Chapter II

Calculations of Crystal Properties in Molecular Mechanics
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Abstract

Various equations used in the calculations of crystal properties are derived
and summarized. Equations to calculate elastic constants and related properties
in molecular mechanics are derived in (a). Equations for piezoelectric constants
and dielectric constants are derived in (b). Equations for phonon frequencies and
thermodynamic properties are summarized in (c). In (d), complete equations of the
Ewald second derivatives including a dynamical matrix are shown. In this section,
equations for elastic constants, piezoelectric constants, and dielectric constants de-
rived in previous sections are compared with those obtained by the methods of long
waves by Born and Huang, and equivalences are shown when force and stress are

ZEero.
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(a) Elastic Constants

Consider a crystal under external strain at zero macroscopi¢ field. After
atomic positions are equilibrated, all force components become zero, and the energy
of the crystal per unit cell (E;) can be expanded in terms of strain and stress up to

the second order as

g1 Q €1
E; =Eo+Q(e;1...e6) | : +§(e1...e6)c S, (a—-1)

Og €6

where () is volume of the cell, ¢; is a strain component, o; is a stress component
and c is an elastic stiffness matrix (6 x 6). Eq is a constant.

The energy is determined by 3N — 3 components of atomic coordinates rj,
(N is a number of atoms) and 6 strain components ;. This is because we can
always fix one atom at an origin and eliminate three degrees of freedom by using
translational symmetry (i = 2...N). By expanding the energy again about the
equilibrium structure (zero force), using the derivatives of energy with respect to

coordinates and strain, we have up to the second order,

H1 1 €1 51‘21
Ei:=Eo+(e1...e) | : +§(e1...e6)Wee D] +(e1...e6) Wer
g eq 0rNs
1 0ra1
+§(5r21...5rN3)Wrr . / (a—2)
orns
Here,
OF; '
II; = Be, (a—3)
’E
[Wee]j,j = 9 L (a' - 4)
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6%E,

[Wer]i,ja = m (a - 5)
6%E,

[Wrria,is = Bradry (a—6)

In molecular-mechanics calculations, the energy expression is given in terms
of coordinates of atoms, and the total energy is usually the sum of 2-body, 3-body
and 4-body terms. Given the energy expression, it is straightforward to evaluate
these derivatives. The derivative of energy with respect to the strain component

can be converted to those of coordinates by using the following relation?,
Orka 1 1

B — 3liaTki t 5 iaTi, (a—Ta)
ij

where e;; is a strain component expressed in terms of two indices and the corre-
spondenceis 1 — 11,2 — 22,3 — 33,4 — 23,5 — 31, and 6 — 12. By using this

relation, we have, for example,

1
aeu Z Orre < Jarkl + 25iarkj) . (a' - 7b)

Although straightforward, the second derivatives of energy with respect to
strain for 3-body and 4-body terms are quite lengthy. In an actual programming,
symbolic derivative programs for these terms were written and FORTRAN source
codes were generated directly to avoid typing errors.

In (a-2), 61iq is a small deviation from an equilibrium geometry of coordinate
of atom i in the a direction. Since force is zero, we take a partial derivative of the

energy with respect to coordinates and equate this to be zero. Thus, we have

Wer o dra;
OE
= (e1...e6) + (Wrtia,21 . . . Wrrig,Ns) =0. (a-—8a)
- Werg iq bTNs
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This equation shows the balance of two forces; one arising from the strain, and the

other arising from the displacement of atoms. By solving this equation, we have

6r = —Wrr~'Wer'e, (a — 8b)
where
€1
e=1| : |, (a — 8c)
€g
0ra;
ér = . (a —8d)
Orns

By inserting (a-8) in (a-2), we have

1 1
E; =Eo +elIl + 5efwee e + el Werér + §5rfwmsr
1
=Eo +elIT + Ee* (Wee — WerWrr ' Wer') e. (a—9)
Comparing this equation with (a-1), we obtain stress and an elastic stiffness constant

as,

II; (a—10)

ol

gy =
1 iyt
c=9 (Wee — WerWrr™!Wer') . (a—11)

It 1s straightforward to show that this is equivalent to the result by Born and
Huang? by using the method of long waves (see (d) in this chapter).

An elastic compliance matrix s is given by

s=c 1 (a—12)



26

The volume compressibility B can be obtained® by considering the hydro-

static pressure p. The stress is given by

oKl = —pbu. (a—13)

Here, § is the Kronecker’s delta function. The strain is given by

€j = —P Z Si;,k10k1 = —p Z Sij,kk - (a—14)
k,1 k

Dilation A is given by

A= Z €i = —p Z Sii,kk - (a - 15)
i i,k

From these equations, we have

A
B=—-——= Zsii,kk- (a—— 16)
p ik

Bulk modulus « is given by

(a—17)

1
K= —.
B
The elastic wave velocities are calculated® by solving an equation of motion

for small displacement u;

d2ui Baij azum
RS- DL St -19)

5lm

where p is density of the crystal. By assuming a solution of the form

u = uioei(k'r~wt), (a — 19)

it can be shown that the frequency w is given by solving the following equation,
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Z Cij,lmkjkl — pwztsim = 0. (a - 20)
il
Here k is the wave vector. By writing w = vk, v is the speed of sound, the above

equation becomes

Z Cij,lmf(jf{l - PV25im = 0, (a - 21)
3l

where k; is a component of a unit vector in the direction of the wave vector. The
solution of this equation gives three sound velocities for a given wave-vector direction

k.
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(b) Piezoelectric Constants and Dielectric Constants
We write small changes of stress (0j;) and polarization (P;) as functions of

strain (e ) and macroscopic electric field (Ey,) as follows;

_ 30’ij 50‘1j
dalJ - Z (aekl)Em dekl + ; (6Em)ekl dEm, (b - 1)

k1
oP; OP;
dp; = ; (56_15)% dey + Zm: (B_E;)m dE,,. (b—2)

The change of internal energy per unit volume is given by

1
= 17 A€f; -_ . b—
dU Eu o—Jde,+47r §k EydDy + TdS (b—3)
Here, Dy is the electric displacement, T is the temperature and S is the entropy.
By defining the Helmholtz free energy F
1
=U—-—) EDy-T b—-4
F=U ym Ek kDx — TS, ( )

we have

dF =) " oyjde;; — % > DidEy - SdT. (b—5)
i,j k

At constant temperature,

OF OF
dF = Z <a) degj + Z <8_Ek>e dEy. (b - 6)

ij Ex k

By comparing this equation with the above, we have

OF
o5 = <a_eij—>Ek , (b-17)

~1p,= (B—FL . (b-8)
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From these equations, we have

OFF  _(boy\ _ 1 (D) _ (0P (b—9)
Oe;;0Ex  \ OEx eij_ 4r \ Oe;; Ek_— Oei5 ) g, B

For small strain and field, we integrate (b-1) and (b-2):

o =ce—g'E, (b —10)
P =ge + aE, (b—11)

where c is an elastic stiffness matrix, g is a piezoelectric constant and a is a dielectric

susceptibility constant. From (b-1),(b-2), and (b-9) we have

doyy
Cin = (L) , (b—12)
Eyx

Oew
OPx 80’53'
g= (B () b—1
B (aeij)Ek (aEk> o ( )
OP;
i= (=) . —14
a‘lj <8Ej)ekl (b 1 )

Piezoelectric constants g can be obtained by considering the change of po-
larizability when the system is strained. Since displacement of atoms that is due to

the strain is given by (a-8), we have the polarization as follows,

_ 1 1 ~1Wer
Pg = ) Zi:q;&iﬁ =-g Zl: Qi ;[Wrr Wer'lig av€ay- (b —15)
Therefore,
1 _
86,ay = ) z di Z[Wﬂ lwerf]iﬂ,a'v' (b —16)

a,y
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Dielectric susceptibility constants are obtained by considering a change of the
polarization when a macroscopic field is applied. After applying the macroscopic

field, the force at each atom becomes zero, giving

bty = Y _[Wrr '] jqE. (b —17)

J

Polarization is given by

1 1 .
P= 5 zl: q;5r; = 5 ; qiqj[Wrr ]i,jE. (b - 18)

- Therefore the dielectric susceptibility matrix (3 x 3) is

1 -
a=g Z qigj[Wrr™1; 5. (b—19)
i,

Dielectric constants at constant strain e, are given by

€. = 1+ 4ra. (b —20)

Instead of (b-1) and (b-2), we can choose the stress and the macroscopic field

as independent variables as follows:

v (e O
dej =) ( 30k1>Em dow + ; ( 3Em>,kl dE,,, (b —21)

k,l

aPi aPi
dP; = ) (5(I—M>Em dow + zj: (ﬁ;) dE.,. (b — 22)

k,1 Okl

In this case, by defining the Gibbs free energy G,

1
G:U—ZUijeij —EZEka—Ts, (b—23)
i, k

we can show
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8°G [ Be; 1 (8D, 8Py,
B030Bx (a_E;) S <?%_J>E o <5?Z>E (b=29

For small stress and field, we can write

e =so +d'E, (b —25)
P =do + bE, (b — 26)
where )
Oej; )
i = , b — 27
TR _ (b 27)
_ OPx _ Beij
dk,l.] - (Baij )Ek - (BEk>%_ ’ (b — 28)
OP;
by=<—4) : b—29
) BEJ ou ( )

Here, s is an elastic compliance constant, d is the piezoelectric modulus, and b is
a dielectric susceptibility constant at constant stress. By comparing the definitions

of g and d, we can éasily show that

d = gs. (b —30)

Also, from (b-25), (b-26), (b-30), and (b-11), we have

b=a+gsg’ =a+dgh (b-31)

and in this case, dielectric constants are given by

€c = 1+ 4nb. (b —32)
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(c) Phonons and Thermodynamic Properties
According to Born and Huang?, the phonon frequencies are given by diago-

nalizing a dynamical matrix C,

ly (ryr —ri)

Cap () = (177 2 D ®ap (i) ¥, (c—1)

where my is a mass and ry is a position of an atom k in a unit cell, y is a wave
vector, R; is a lattice translation vector with an index 1, and
5%

Bop () = ——— —2
8 kk) arOkaarlk’ﬂ (C )

is a second derivative of the total potential energy ® with respect to coordinates of
atoms. In the above equation, rjx = rx + R;.

In molecular-mechanics calculations, we have energy expression in terms of
coordinates of atoms, and the total energy is usually the sum of 2-body, 3-body,
and 4-body terms. It is straightforward to evaluate second derivatives of these
terms. To obtain the dynamical matrix from these second derivatives, we multiply
an appropriate phase factor and sum all terms. For an n-body term, we need to
sum n? terms with different phase factors.

After obtaining the dynamical matrix C, all frequencies ws(y) (s = 1,..., 3N,

N is a total number of atoms) are given by solving the following equation,

|Cap (fir) — [ws(¥)]? i 6| = 0. (c —3)

The thermodynamic properties are given by using the harmonic approxima-

tion,

F=— Z Zhw,(y) + Zm ( -h“’s(y)ﬂ) , (c —4)
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__ks —hw,(y)B hws(y)
s"—ﬁzln(l'e ) TMZehws(y)ﬁ s (¢—5)
s
EWS(Y)
M Z Fhws(y) + M Z ehws(¥)B _ (c - 6)
2 hws(y)ﬂ
C, = 2 3~ (Ben(y)B) e ; (c—7)
M o (ehws(}’)ﬂ - 1)

Here, F is the free energy, S is the entropy, U is the internal energy, and
Cy is the specific heat per cell. 8 = 1/kgT and kg is the Boltzmann constant.
The sum is over all points in the Brillouin zone (M is the number of points in the
Brillouin zone used in the calculation) and is over all modes(3N modes for each
point in the Brillouin zone). In practice, we use a finite number of points in the
Brillouin zone. Because of the inversion symmetry of the dispersion relation, we
need to sample only half of the Brillouin zone in the general system. For a crystal
with high space-group symmetry, the region in the Brillouin zone which we need
to sample can be reduced further. For example, in the calculations of graphite (see

Appendix I), only 1/24 of the Brillouin zone is used.
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(d) Ewald Second Derivatives
In this section, equations for second derivatives of the Ewald lattice sums
are shown in Section 1. Equations for phonon calculations are shown in Section 2.
Finally in Section 3, it is shown that derived equations are equivalent to those given
by Born and Huang!, using the method of long waves for various properties.
1. Strain derivatives of Ewald Lattice Sums

The Coulomb lattice sum is given by?

ZQueerf.?L) 27fzs(h)s( h)h %™ - ,rl/z (ZQH), (d - 1a)

L,I,J

where Q;; = (Cuait/€)qiq;j,  is volume of the unit cell and

S(h)S(~h) = ) " Q;jcos(h - (r; — rj)). (d — 1b)

1,j
Cunit=332.0647, if the unit of charge q; is one electron and that of length is A. By

taking a derivative with respect to strain e, we have

;i; = o 1§ Qi F1 (a4 )xijLaxXijLe
S SS(h) [Hy (bhebs + Ga()eng] (A 20
h
where
Fi(a) = (erfc(a) + 27 /2ae™>") /a3, (d — 2b)
Gy (b?) = "Zeb;bz, (d — 2¢)
Hy (b?) = — 10 “;:f iy (d - 2d)

x;jL =TI — rj — RL, (d — 26)
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ajjL = IxijL[/n, (d - 2f)
b= %h”' (d - 2g)

Here Ry, is a cell-translation vector (with an index L) in real space and h is a
cell-translation vector in reciplocal space.
There are 21 second derivatives of energy with respect to strain components,

but in the following, terms obtained by a simple permutation of indices are not

shown;

azs] 1 U 1 4 2
6e1 661 = —2173 Z Ql.] Fl aoijL?]-z- xile + 2F1xijL1
L,,j
2m : 1 21,417/ 2
+ n) Z S(h)S(-h) 57 hiH; +4H;hi + G, |, (d — 3a)
h
3281 1 , 1 ) R
Oe10e;  2n® LZU Q;j [ VasLn? xilexijLz}

2T 1
+ ?2’5 3" S(h)S(~h) [Enzhfth'l + Hy(h? + h2) + Gl] , (d—3b)
h

6281 _ 1 ZQ F! _]-__XZ e
Oe10es 2773Lij R L1 %iL2XijL3
2m : ‘ 1 212 !
+ ‘6 Z S(h)S(—h) 57] h1h2h3H1 + Hihohs|, (d _ 30)
h -
6281 1 1 .
Be1Bes 273 ;:J Qij [F'laijL—anilexijL3 + FixjjL1XijLs

!
+ 29—“ > S(h)S(~h) anhghsﬂ’l + 2H1h1h3} , (d — 3d)
h
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85, F,
OesBes - 277 LZIJ Qjj [Fll 1 13L2X1JL3 _2"(Xi2jL2 +xi2jL3):l
+ 4 Z S(h)S(~h) | sw*h3h3H} + 2 Hy (b3 + b?) (d — 3e)
0 o7 f2figty T S H1{hy 3)|,
h
8281 1
664365 - 277 IZ” Q’J [FI lelelJszuLs + leuLlXuLzJ
+ gzZS(h)S(—h) “n*hihohZH) + SH;h;h (d - 3f)
9] - 277 12nNgk04 5 1hiho .

In these equations,

dF; 3erfc(a) Gr—1/2e—a"  gp—1/2¢—a’
Fllzqa—:_( at + ad + a ) (d—3g)
dH _
B = G = g2+ 20 450 (@ -3

The second derivative of S; with respect to strain and coordinate is given by

0S
~ (Beo;-,) - ke Z QPJ I:F, (a'PJL) xp_]LaprLﬂXpJL—y

+F1(aPJL )(prLﬁ5a'r + ijLa5ﬁ'v)]

303 Quihysin(h - (xp — 1)
h

X [thahﬁ + G1 6Qﬂ] . (d — 4)
The second derivative of S; with respect to coordinates is given by

828,

OrpaOrgp - { Z Qp; [F (aPJL) XPJLaprLﬁ + Fi(apjL )bap
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ﬁﬂ- Z Qp;Gihahg cos(h - (rp — rj))}
j

.J= :wl,_.

h
Z [F' (apqL) L7’ 2 XpaLaXpgLg + Fi1(apqL )5aﬁJ

L

1
Z QpqGihahg cos(h - (rp — 1ry)). (d - 5)
h

The dispersion lattice sum is given by’

—4 | 1,-2 —a?
86 2 Py ZBU (a‘le + alJL +3 2 1JL )e L

L,i,j
w32 1 1\ e
+ 510 Z Z Bj; cos [ —1;)]h? [ 12erfe(b) + <2b3 — E) e~ P }
3/2 '
6 P 1277 ZBu. (d - 6)

By taking the derivative with respect to strain e,g, we have

oS
Be:g = 2.,78 Z BIJFG(a'lJL)XlJLO:leLﬂ
711-]
-3 49 Z Z Bjj cos(h - (r; — rj)) [He(b?)hahg + Ge(b?)8ag]
’J
x3/2
- &0 Z Bij6ap- (d — 7a)
Here,
Fe(a) = (6a~® +6a% + 32 +a 2)e ", (d — 7b)
—b?
Ge(bz) =h3 { erfc(b) + (ﬁ - —)e } , (d - 7C)

—b2
He(b?) = 3h (wl/zerfc(b) - - ) : (d —17d)
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Similarly to the Coulomb case, we have

8286 [
= B1 F, i + 2F Xl :'
Oe10e; 2173 LZI,J J L JL1 8XijL1

3/2
249 Z Z Bij cos(h - (r; — rj)) [ 2h;‘Hg + 4Hgh? + Gg

n3/2

6730 Z Bij, (d —8a)

3285 1 [ 1 ;
= —— Bi' ! —_x?. x.z.
3e1 362 2178 LZ:J J 6 a‘ijan ijL1 1JL2J
32 < 1
20 Z D Bijcos(h- (ri — 7)) | 5n*hihiH, + He(h] + h3) + Ce
i)j S

3/2

6730 Z By, (d — 8b)

6286 — __L Z B:: FI ___]_'____xz XL 2XiiL3
Oe; Oey 278 & u|-e aji 72 ijL1XijL2Xij
a3/2
+ 910) Zh: izj:Bij cos(h - (r; —rj))
1 .
X li'z“l’]zhfhzha ’e + Hehzh;;] R (d _ 80)
9°S¢ 1 L1
Oe; Oes = _'2_,'7?L - ij [ s‘a'i'jLn'z'XijMXijLs + Fexi5L1Xi5L3

249 Z Z Bjj cos(h - (r; — 13))

X [‘2‘7]21’1?}131{’6 + 2H6h1h3j] ,A (d - Sd)
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0°Ss 1 1 Fe
BesBes  27P Z B [Fg aijL 72 xiszzxisz?’ + ?(xizjm + xfiLs)

73/2

+ 520 Z‘ ZB,J cos(h - (r; — ry))

x [Enzhihiﬂé + §H6(h§ + hg)} , (d — 8e)
0°S 1
6e4625 = 27]8 ZBIJ [F' leleUszuLS + 2F6X13L1X1JL2
L,i,j

3
+ 51 ZB,J cos(h - (r; — rj))

X [%ﬂzhlhzthé + EHﬁhlhz] y (d - Sf)
where
I _ dF _ -9 -7 -5 -3 —1y_—a? _
Fg = Tk —2(24a7" 42427 +12a7° + 42 +a"l)e™?, (d — 8g)
dHe 3ml/2
1
T by erfc(b) (d — 8h)

The second derivative of Sg with respect to strain and coordinate is given by

0 0S¢
Or o (Be ﬂ) = 8 ZBPJ [FIG(a‘PJL) 5 XpiLaXpiLAXpiLy
P [

+F6(aPJL )(XPJLﬂ bay + ijLa5ﬁ7)]
r3/2

120 ZZBth sin(h - (rp — rj))

[Hshahg + G65aﬁ] . (d — 9)
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The second derivative of S¢ with respect to coordinates is given by

6286 1 1
Br6r = ~pa) 75 O Bei |Fe(anit) 5 %pitapiLe + Fo(ap)éa
arpaarqﬂ Pq {,’78 Z PJ ': 6(a~p_]L)a’ij"?72 XpjLaXpjLg + 6(a,p) ﬁ]

L,

x3/2
50 ZZBMGGh hg cos(h - (r, — rJ))}
1
Zqu [FI (apqL) oL 2 XpqLaXpqLg + Fﬁ(apqL)5aﬁ}
+ 7;2—9 Z BpqGehohgcos(h - (rp — rg)). (d —10)
h

2. Phonon Calculations of the Ewald Lattice Sums
To evaluate the dynamical matrix, we need to evaluate the sum of the type,
iy-x(}
1 k
where x (L) = rx + Ry, y is a wave vector, and x is an arbitrary position vector.
Born and Huang? derived the formula for the Coulomb lattice sums (m =1). Here,

we show the general formula.

By using the integral representation,

rm F(m/2)

~le=r"r"qp, (d - 12)
p

we have
Z,X(I” = [" twer=ap, (@-13

where

f(x) = Y prtemx(i) -l iy (x() ) (d - 14)
1

2
I'(m/2)
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Since f(x) is a periodic function of x, we can Fourier-transform it in the reciprocal

space as follows,

f(x) = g(h)e™™, (d — 15a)
h

g(h) = = / f(x)e " * ddx
0 unit cell

2r3/2 —4 —-s|h+y|*—ih. T
L %7 d — 15b
= Tmoa’ © _ (d —15b)

By dividing the integral into two parts by introducing a parameter 7, we
have

xy x( ) 1/q . o0 .
h)elP* | ey *q f(x)e'Y *d
e ==/ (Zg () ) p+/1/n() ’

2m®/? Z VT s —gxlhtyl s ik ih
= pm— e 4p2 dpel( +y)'x_l Tk
T(m/2)Q /
h

2 * 1N nio? 1 ivex(!
+ / pTeIx() =xle* g peiv x(i)
r (m/ 2) Z 1/n

I‘( /2 0 Z (lh : y|> I(—m + 1,b')e!(h+¥)x—ih-r
m

— 2 a")ely (k) d —16a
+1“(m/2)zl:|x({()—xlm1(m 2,a') : (d - 16a)
where
2= 20 x| (d — 16b)
n
b = Lh;—y’ (d — 16¢)
and

I(n,c) =/ {2/2etdy, (d-17)
c?
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which has the recursion relation

I(n+1,c)=c*le + = ll(n —1,c). (d —18)

The following terms are required for n = 1 and n = 6;

I(—1,c) = 7'/ %erfc(c), (d —19a)
1(0,c) =™, (d — 19b)
2
I(4,¢) = (c* +2c® + 2)e™, (d — 19c)
I(-5,¢c) = g (wl/zerfc(c) + (2—% - %) e'cz) . (d —19d)

The dynamical matrix is given by

e—xy ri

n (y iy(r '+R') _
Caﬁ (kk’) (mkmk')1/2 Z (I) (kk’) . ! (d 20)

where my is a mass of an atom k and

n & :
af (kk') - Akk {axaaxﬂ len }X=rk_rk’+R‘/

b2 1
+ 51’06kk’ Akk” { } . (d — 21)
1”2’1{:” Bxa6Xg len x=rx—rn+Rn

Here Ay is either Quu(n = 1) or Byw(n = 6). The dynamical matrix can be
obtained by taking the second derivatives of (d-16). We show the formula explicitly

forn =1 and n = 6 as follows;

Cap () = —bo — Z Quexr { > '7;‘

k'’ v
1

mxk'k“(—l’)axk’k"(—1')[3 + Fl(ak'k"(-lf))5aﬂ)

X (F;(ak/k/l(_ll))
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47 < .
+ > Gl(bz)hahae‘h‘(’k"k”)}
h
Qux 1 1
Z;{; Fi (3krie(—11)) =5 X/k(~1)aXk/k(-1)8

(myemye)1/2 | 4 ak/k(-1)7

+F1 (ak'k(—l’) )5aﬁ) eiy-Xklk(— 1)

4m o .
+_$2_ Z Gl(nzlh + y,2/4)(h + y)a(h + y)ﬂelh.(rk_rk,)
h

47
+ G Ayara (d-22)

Cap Gr) = _5kk’ — Z Bk {Z -1?
T

kll

1
2 Xk/ku(_ll)axk/ku(_y)ﬂ + Fe(ak;k//(_lf))éaﬁ)

X (Flﬁ(aklkll(_ll))m

a3/2
ih-(rx—ry )
2 ]
Bk 1 1
* {Z n® (Fé(ak'k("')) — Xkrk(-1')aXk/k(~1')

(mkmk')l/z 1’ aklk(_ll)n

+F6(aklk( -1) )6aﬂ) eiy.xk,k(_l,)
3/2 !

120 E Ge(n’[h+ y[*/4)(h + ¥)a(h + y)ge™ ("‘"“’)} . (d-23)

3. Correspondence to the Derivation by Born and Huang

Born and Huang? treat the dynamical matrix arising from the Coulomb
interactions separately from other terms because it contains the term that is not
defined at y = 0. They define a new dynamical matrix C by subtracting this term

from the original matrix as follows:

Cus () = 2 (i) + Ol o) - T (202 ) =2 (@29

where C™ is the non-Coulomb term and C?! is the Coulomb term. The lattice-wave

equation becomes
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C Cunit gk
ot (7) wa (k) =D Cap Gu)we (W) - =22 LB, (d-25)
k'p my
where the displacement u in terms of an eigenvector w (kl;') (j is a mode index,

j=1,...,3N) is given by

up () = mg Pwg (K ) & e R, (4 26)
and the macroscopic field is given by

4T yo - ‘
Ea = -gfy—;iy‘—’qu'mkﬁ“wﬁ (x)- (d-27)

By replacing y with 8§y and expanding C in terms of §, we get the following

equation,
Cas (1) = CEUK') +i6 Z C)_(kK')y /2n
- 552 3 nggw\(kk’ )yya/(4n?) + .., (d - 28)
YA
where?

COK) = ———— Y an, ()

(mkmk,)l/z
Qux ( ) 1
“‘5kk’ F % Xkk!' (~1)aXkk'(— +Fi6,
{Ek” akk”( o7 kk' (—1)aXkk" (-1)8 1008

Z Z QkkuGlh hﬁ Cos(h (rk — rku))}

kIl

, 1 1
+ Qkk {____ Z <Fll ——_Z—ka/(_l)axkkl(_l)ﬂ + Fl 5aﬂ)

(myemye)1/2 | 7® 4 Ak (~1)7]

4
+E;G1hahg cos(h - (ry ——rk,))} , (d —29)
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27
1
Can0) = (s 22 %5 () mo oy
27 Qu! 1/, 1
i L N
(mymy)1/2 1 3 < 1 Bk ()T Xik! (=1)aXkk’(-1)8 XKk’ (-1)7
+F 1%k (—1)y0ap)
812 Quk .
+ W Z sin(h - (ryx — ry))
h
X [Hihohghy + Gi(habpy + hgbay)], (d —30)
—47?
@) A(kk') = " (172 2 D@55 (i) e (—1)7 Kk (—1)
A7 n? Qi
- W(%ﬁm + barbpy)
_ 47°Que

P , N
3(mkmk')1/2 ( Ak ()72 T 2 YK (=DaXkk(~1)FXkk (~1)yXkk' (~1)X

+F1xkk'(—1)1xkk’(—l)Aaaﬂ)

!

+ _16m°Quar Zcos(h (e — ) {
h

Q(mkmk/)l/z
1
(5a75ﬁ>\ + 5‘,)5@7)(;1 + Enzhahﬁh.yh)‘Hll
+H1(hah35-yA + hah.yﬁgA + hah)ﬁﬁ-y

+hghyban + hgh;ém)} . (d - 31)

The following terms are defined:

1 ~
[@8,72] = g5 Y (mimie) /2055, (kK'), (d - 32)
k,k!

1 ~
(07,62) = =55 D D T (kK) Y O, (kk")my/” Yy~ CLJ (WK™ )my
k’kl o, v kII klll
(d —33)
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1 ~ _
B0 = 5= 3 my/2CU) (k') Y Dup (KK )arermis 2, (d - 34)
kX', p k!

where T' is the inverse of C(®). Because of the translational symmetry, we fix the
first atom to invert the matrix and the degree of freedom becomes 3N — 3. So in the
summation involving I', the sum must start from the second atom. By using these,
it is shown? that at zero force and at zero stress, elastic constants(c), piezoelectric

constants(g) and dielectric susceptibility constants(a) are given by

Cay,pr = [@B,7A] + [B7, @] — [BA, o] + (7, BA), (d - 35)
g8,av = [)Ba a7]) (d - 36)
5= Z Qe (kk'). (d - 37)

- f K,k (e )1/2 Fos

In the following, we show how each term corresponds to the equations ob-
tained in the previous sections.
(a) Dielectric Susceptibility Constants

We write the total energy per cell(E;) as a sum of non-Coulomb part (Ep.)
and Coulomb part(Si, (d-1)). Then E;. = (1/M)®"¢, where M is the total number

of cells in the calculation. Then

6 Et 3281
ark Brers = Zl: @ kk' arkaark’ﬁ . (d — 38)
By comparing (d-5) and (d-29), we have
2
OB, = (mkmkz)l/zcgg(kk'). (d — 39)

arkaarklﬂ



a7

Therefore,

(mymyr) 7 /*Tag(kk') = [Wrr ™ Jka g, (d — 40)

and from (b-19) and (d-37), it is clear that both equations are equivalent.
(b) Piezoelectric Constants
Second derivatives of the total energy with respect to the strain and the

coordinate are given by

0 OE 1 1 nc
( : ) =3 D@5 (o) g + 5 Z &%, (i) Tia

Oriy \ Oeap Lk Lk’
195, 188, 5
2 Orye By 2 Orp o«

o (331), (d— 4

Orxy \ Oeop

where conditions of zero total force are used. By using the relation arising from the
invariance of force with respect to rigid rotations of a crystal? and the conditions

of zero total force

051 05, nc (1 ne (1
O 2 Bn 0 T ; 5% (o) s — ; 835 (o) ey, (d—42)

we have

8 (OB = men 5. 8 (85
ark7 (330‘5) - Z@a‘)’ (k’k) Tik'g — Oria 6ﬂ‘¥ + ark‘y <aeaﬂ>

1,k/
S o [ 8S

_ ne 1 . 1 Y 1 _
—1§k;‘1’m (k) 7 ¢5>rk,3‘5°”+ark7 (aeaﬁ>' (d - 43)

By comparing the above equation with (d-30) and (d-4), we have
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s} OE; _mll(/2 1/25(1) '
OTi (6ea5> C2m Z O, p (k)

kl
1/2
_my 1/26(1)
= =5 > m/*CT) L (kK'). (d — 44)
kl

The piezoelectric constant is given previously as

Bayx = — E Qe [Wrr ™ i 0,18 [Wer] 42 k8

Q =,
1 m,”? /2600
— - -1 k 1/2 /(1 )
=-q Qe [Wrr™ Jiera,ip = > m/*Chy (kK')
"k,B k/
= = 3 w260 (K1) Y Tpa(kk)qempl?,  (d— 45)
T 270 s k' 8,2 . Bo Qe Myerr~

where antisymmetric property of C(1) is used. By comparing this equation and

(d-34), we have

Bax = [, 7). (d — 46)

(c) Elastic Stiffness Constants

At zero stress, we have

62Et 1
=5 ! ! o @ , ’
3em<9ea.y 2 ; ﬂ'y k k) Tik'ATok 12/ k k) T1k/ATok~y
2
- 15 95, _1_5a>‘ 95, + 9“5, (d _a7)

2 A 8eag B 2 6e73 Bemaea.,’
where (a-7) and (d-42) were used.

We separate [a3, ] into non-Coulomb terms and Coulomb terms as follows:

[aB,77] = [@B, v \lac + [aB, 7211, (d - 48)
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where subscript nc specifies the term from the non-Coulomb part and 1 specifies the

term from the Coulomb part. From (d-31) and (d-32), we have the non-Coulomb

term as

| —

1
[a,B,'y)\ 2 Z k’k Tk/~Tokx + = ) Z @I;cﬂ (ic’k) Tk’ ATok~- (d — 49)
Lkk }

1k, k!
From this equation, we have

92 Z <I’ﬁcx (k’k) Tik/ AToky + 2 Z ‘I’ﬁv (k'k) Tik' AToka
Lk,k’ Lk’

+ Q([aﬂ77A]1 + [ﬂ’Y:aA]l - [ﬁ’\aa7]1)
0S; 1 0S, 1 0S;
+oma 5 o 25aﬁa—e;— R (d - 50)

where we combined terms using (d-42). By comparing (d-47) and (d-50) we have

&E,

m = Q([aB,YA] + [B7,aA] — [BA, av])

— 2 ([aB,7AlL + [By, A1 — [BA, a7]1)

85, 8, 1. 85,
“eage Tt 5""3 L T 2% 5.

l 881 15 681 62 S‘l
72 3eaﬁ 2 A 5e.yﬁ aemaea., '

From (d-31) and (d-32), we have

(d - 51)

1
QaB, A = —’2‘7)—3 Z Qjj [Fﬁ mxijLaXijLﬁXijL—yXijLA + FixijL4Xi510 008
. 1j

1
+ 5 D S()S(~h) [(5a75ﬁ>\ +8ax8p+)G1 + 50 habghyhyH)
+H; (hahﬁ&yA -+ hah.yéﬁk -+ hah)ﬁﬁ.y

+hgh, 6. + hghrbes)]. (d - 52)
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Therefore, we have

—Q([aB, 71 + [By,aA]1 — [BX, av]1)
8S; 1_ 8S; 1_ 68,
Bewy | 27 Fer, T 207 Bers
1. 6S, 1_ 85,

T2 e 2% 86,

1 1 1
= ] Z Qjj [F'l WxijLaXijLﬂxijL—yxijLA + §F1XijL-yXijLA5aﬂ
1 1

+§F1XijLaxijLA5'yﬁ + §F1XijLaxijLﬂ5—yA + §F1XijLﬂxijL'y‘5a>‘

1

iy 1

- 2. Sm)S(-h) [6a‘y5ﬂAG1 + 37 hahghyhyHy

h

1
+H,; (hah-,ﬁﬂ)‘ + h,gh)‘é‘a.y + Ehahﬂb‘-y)‘

1 1 1
+§hﬂh—y5a)‘ + §h)‘h.y5aﬂ + Eh)‘ha&yﬂ):l . (d - 53)

By comparing the above equation with (d-3), we find that the above equation is

exactly minus of ——a—gler— Therefore, we have

32Et
BeprBens Q([aB,7A] + [B7, 2] — [BA, an]). (d — 54)

From (d-40) and (d-44), it can be shown that

1 1/2 (1) 1/2
o7, B3) = ~ Q DY Tuw(kk) > CE (kk")myl? Y CY) L (k'K )m

vp, A k"'
kk' pv k' k'
= =3 > (W i,k [Wer] oy iu [Wer] g xr
kk/ p,v

—[WerWrr~*Wer'],, ga. (d — 55)

Therefore, we have
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1
Cav,fA = a [Wee — WerWrr"IWerT]a%ﬂA

= [aB,7A] + [B7, @A] — [BA, 7] + (a7, BA). (d — 56)
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Chapter III

Cell Multipole Methods and Nonbond Cutoffs

[This chapter is based on papers co-authored with Hong-Qiang Ding and William
A. Goddard, and were submitted to J. Chem. Phys.(a) and Phys. Rev. Lett.(b) |
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(a) Atomic-Level Simulations on a Million Particles: The Cell Multipole

Method for Coulomb and London Interactions

Abstract

The N? computations implicit in the Coulomb and other long-range interac-
tions remain the critical bottleneck in atomic-level simulations of the structure and
dynamics of very large molecules and clusters. We report here the Cell Multipole
Method (CMM), which involves no steps scaling a higher order than N, minimizes
the effort of the remaining terms, and requires only modest memory. To demon-
strate the feasibility of this approach, we report systematic calculations (using a
laboratory workstation) on realistic polymers (polyvinylidene fluoride) with up to
1 million atoms and demonstrate that this method scales as N for a million atoms
(where it is 1500 times faster than the exact method). CMM treats the reciprocal
power-law class of interactions having the form g¢;g; /rfj, which includes Coulomb
(p = 1), London dispersion (p = 6), and shielded Coulomb (p = 2) interactions.

This method is well suited for highly parallel and vector computers.
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Introduction. In recent years, there has been a great deal of progress in simulat-
ing the atomic-level structure and dynamics of large molecules, with calculations
reported on systems with thousands of atoms!?2. However, current methods are
inadequate to simulate the million particles required to describe the interesting
properties for many irhportant systems. For example, amorphous polymers may
have segments each with 100,000 atoms that associate to form partially crystalline
lamellae, random coil regions, and interfaces between these regions, each of which
may contribute special mechanical and chemical properties to the system. In order

to carry out simulations for such systems, it is essential:
i. to eliminate computational steps or storage that depend quadratically (N?)

on system size, or worse;
2. to minimize any calculation or storage procedures that are linear with N;
u1. to construct algorithms for the steps linear in N that allow the problem to
be solved efficiently under parallel computer architectures.

In this paper we focus on the biggest bottleneck obstructing atomic-level simula-
tions on superlarge systems, the long-range, nonbond interactions: the Coulomb
interaction g¢;q;/7;;, and the London dispersion ;) /rfj. [In addition, we consider
the shielded Coulomb interaction g¢;g; /rfj which is used to replace the Coulomb
interactions in an approximate treatment of solvent effects in calculations of large
biological molecules.] The Cell Multipole Method (CMM) treats all these as special

cases for the reciprocal power-law class of interactions
E =Y aq;/Ifi -7, (a—1)
>3
where the parameter p is an input to the algorithm, so that the identical program

works for any interaction in this case. The CMM efficiently and rapidly calculates
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the nonbond interactions for large (million-atom) systems, which we illustrate with

calculations on polymers with up to a million atoms.

The Cell Multipole Method. The development of CMM builds upon ideas
proposed by Appel®, Barnes and Hut*, and Greengard and Rokhlin®. The key
steps are as follows:

a. Diwvide space into uniform cells. The box containing all the atoms is divided into
M equal-sized cubic cells (Fig. a.1b). A single pass through all atoms generates a
doublylinked list that stores grouping information (e.g., which atoms belong to a
particular cell).

b. Compute multipole moments for each cell. The interactions of each cell with any

other atom outside the cell are represented by the multipole series expansion:®

olef—n QaﬂR Rﬁ Oaﬂ’YRaRﬁR"Y
Vz (T)—R Rp+2 E Rt Eﬁ R 6 +- (a—2)
, )7

where R, are the components of the vector R=#_7 'a, T4 is the center of the
cell A, and 7 is any observer position outside the cell. This series is essentially an

expansion in terms of d/R, where d is the cell size. The lower-order moments are

the charge
Z = Z qi, (a-3)
dipoles
Ko = Z 4iPTic; (a —4)
quadrupoles
Qas = > aip [(p+ Driarip — bapr?] /2 (a —5)
octopoles

Oapy=Y_aip(p+2) [(p+ 4)riaTipTin — (Fiabgy + Tigbva + Tiybap)r?] /6 (a — 6)



57

etc.®, where 7,4 is the a component of the position vector for atom i measured with

respect to the center of the cell A.

c. Partition the intémctions for all atoms in terms of near fields and far fields.
Consider all atoms 7 in cell Cy. The interaction with any atoms that are in either
cell Cy or one of the 3° —1 = 26 neighbor cells (C, in Fig. a.1b) is calculated exactly.
We refer to these 27 cells as the near cells for atom i and refer to all other cells as
far cells. The potential is accordingly decomposed as V() = Viar(7i) + Vnear(7:),

or more explicitly,

V(FE)= Y VERFE -7+ Y IT%_*I?’ (a—T)
A€ far jEnear cells Ti =T

The computational effort for the explicit evaluation of interactions with near cells

is a fixed constant (~ 4 x 27/2 = 54 terms").

d. Convert multipole fields to Taylor coefficients. To calculate Vi, (7;) efficiently,
we avoid repeating the sum over all far cells for each atom i in cell Cy by doing a

local Taylor series expansion about the center of Cy,

Z V}{oze(f’—-— Ta) = V(O)-{-Z Va(l)ra—i-z Vi;)rarﬂ-i— Z Vo(,z?yrarﬁ""v - Vg;('r_")
A a N} a,B,y

(a—8)

Here, both the atom position 7 and the the cell position 74 are with respect to the

center of cell Cy. The Taylor coeflicients are computed by expanding each multipole

term in 7. Thus, the charge term is expanded as

Z 0 1 3
CEEAT Ve + 3 Vidra + Y Vigrarg + 3 Vs rargry + -+ (a - 9a)
o a,ﬂ a,ﬂ"y
where
A
0

VZ( ) = ﬁ-, (a - gb)

A

pZTAa

VZ(L) = 7~p_|.2 ) (CL - 96)
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2
VZ(a)ﬂ = 513 {(p+2)raarag — bapri}, (a — 9d)
A .
3 p(p+2)Z
VZ(a)ﬁ'y = 6r p+6 {(P +4)r 40”4874y — (T40bgy + T 430N + rA-y5a,3)rf4} )
(a —9e)

The dipole term is expanded as

—

F—7
';:_.,_( o Ipfz) V(°)+Z V(i)ra-i-z V‘Ea)ﬂrarﬁ-f— Z V‘Ea%,yrarﬂr,,-k- -+ (a —10a)

B,y
where
v =24 (@ — 108)
L
p (P+2)(E-Ta)ra
Ve = iz~ P = (a —10c)
Ta Ta

+2) [ . +4)
v _ (pr )[(p-rA){éaﬁ— (PT )TAaTAﬂ}+(#a7’Aﬁ+l‘ﬂrAa) ,

paf 2 p+4 2
A A
(a — 10d)
, ,
Vb = i (04 A F) o+ ) aemasma
+("'Aa6ﬁ'y + TAﬂ&ya + TA‘Y‘Saﬂ)Ti}
+(p +4)(HaTapT Ay + BETAYT Ax + BT AT 4B)TY
~(Habay + abya + pybap)ra] - (a — 10¢)
The quadrupole term is expanded as
Z Qap(T = 7 )a(F — 7a)p
|7 — 7y |pte
— V(O) V(l) V(z) V(3) . _
Q T Z vt Z ATy A T D Vasaaramare + oo (e~ 1la)
VA7
where
v - [QRR] (a — 110)

p+4
Ta
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1 @RR
chl-,) = 274 [—22 Qqprag + (p+ 4)[ 3 ]TA-)} ) (a —11¢)
Ta ) A
+4
VC(Q'zy)A 21); - (;) p+5) [5—7A[QRR] +2 Z @raTAaT Ay + ZZ Q—ya"'Acﬂ'AA]
T4 a [
+4)(p+6)QRR
L )(;ﬁs)[ca Ly e o110
+4)(p+6)|QRR
ng)kn e )g;pﬂo)[Q ] [(P + 8)rayTarTan — (Tavbrn + TaN8ny + 7'An5'y>\)7'?4]
+4)(p+6
- (p 3r l(_fs ) ZTAC! (Q'ya"'AXrA'q + QAaTAnTA'y + QnarA‘yTA}\)
+
+ (g p+6) (Tay@rn +7axQny + 747Qy2)
+4
(;) p+6) Z TAa (Q‘ya‘sAn + QAagny + Q-qa 7A) ((L - 118)
[QRR] = Z QapTAaT 48 (a —11f)
a,B

The octopole term is expanded as

Z Oaﬁ'v(F— "—"A)a(F“ FA)ﬂ(F— FA)‘Y

|7 — 74 |P 6
B,y
S 4 5l + e+ S Wi+ (e 120
Ayﬂ A:ﬂ:
where
RR
v - [ORRE] (a — 125)
A
1
vy = —5 | —(p + 6)[ORRR]rax + 3r% Z OxapTaaTap | (a —12¢)
Ta af
p+6)ORRR
v, = - ONORRE] () | ) ran — 73800
2r,
3(p+6
+ (pp+8 ) Z T4aT 4B (OnapTar + OragTan)
2r% op
32, f:g“”a , (a — 12d)

Ta
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+6)(p + 8)[ORRR
V(gak)nu = (b )(zrp+1)2[ ] [—(p + 10)r AT anTap
A
+(7'AA51W + 7'A175v)\ + rAvékn)ri]
+6)(p+8
+ (p )(I;O ) TaaTAB (OrapTanTav + OnapT avTax + OyapTarran)
21";'+
a,f
+6
- (2prT8—) Z TAaT AR (O}‘aﬂﬁnu + Onaﬂ&/)‘ + Ovaﬁélﬂ)
A a,B
+6
- (I;p_{_g ) Z TAa (Olnoﬂ'Au + OnuarAA + Ou)\arAn)
A a
OA v
+ rﬁ:(s ’ (a —12€)
[ORRR] = Z OaByT AcT ABT A~ - (a —12f)

B,y :

V() is then the sum of all constant terms, V() is the sum of the linear
coeficients of 7, V(2) is the sum of the quadratic coefficients of 7, and V(®) is the

sum of the cubic coefficients of 7, as follows:

VO = v+ v 4 v 1 v, (a —13a)
Vv = v v 4+ v + v, (a — 13)
V. =V + v, + v+ vED, (a—13¢)
v =V + Vv + VS v, (a — 13d)

This is repeated for all far cells. Vg; (7) thus contains interactions that are due to
all atoms except those in the 27 near cells, which are evaluated as in (a-7). The
derivatives of the Taylor series give the force, the Hessian, etc.

A particular advantage of this simple algorithm is that the far-field portion
(represented by the Taylor series) changes very little during dynamics or mini-
mization. Thus, one can use the same Taylor coefficients (without updating) for a

number of dynamical time steps (say 100), reducing the computation essentially to
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those of nearby atoms. We have tested this approach for calculations on polymers
and find that updating at periods of 100 time steps, the force errors are no larger
than 5% (compared to the force that would occur if the Taylor coefficients were
computed anew each time step). To avoid ambiguities, the timings reported herein
include all far-field interactions computed at each step and hence do not incorporate

this advantage.

e. Group cells into progressively larger cells. For situations where the Taylor co-
efficients need to be computed anew at each time step, the calculation of Vg; (77),
by summation over M-27 far cells (step d) is slow since it is an order-N opera-
tion. Such straightforward summation is very inefficient because the intefactions
from a very distant cell (with small d/R) are computed much more accurately than
the interaction from a cell just two units away (with large d/R). An optimum ar-

rangement is to use larger cell sizes for more distant regions such that d/R remains

approximately constant.

To utilize larger cells automatically for more distant regions requires a sim-
ple scheme for grouping cells into progressively larger cells. This is achieved by
introducing a family of cells**, as shown in Fig. a.lc. Step a is modified slightly.
The entire (cubic) space is considered a cell at level 0. This cell is divided into 8
children cells (level 1) each of which is further divided into 8 grandchildren cells
(level 2), etc; Finally, at the deepest level L we have M = 8 cells; each contains
only a few (say 4) atoms. Thus, a million atoms require L =~ logs(10°/4) ~ 6 levels.
Fig. a.lc shows a four-level system. The level 2 cells are denoted as A, the level 3
cells are denoted as B, and level 4 cells as C. For Cy, the original 16 — 32=4069 far
cells are reduced to 415 cells (374, 189B, 189C;). [For the million-particle system,
each level-6 cell interacts with 189 cells at levels 3 through 6 and 37 at level 2 for
a total of 1171 cells instead of the original 262117 cells.]
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Once multipoles of level [ cells (Z, 70, QM 0O, ...) are calculated, mul-
tipoles of level { — 1 cells are obtained by translating and adding those of children
cells, which are level [ cells, as follows. Let &, be a vector from the center of the
level I — 1 cell to the center of one of its children cells at level I. Also let #}; be a
position vector of the ith atom in the lth child cell measured from the center of that

cell. That atom has charge q;;. Then, from the definitions of multipoles, we have

multipoles of level [ — 1 cells as follows:

z4-1 = Z qi = Z AU (a — 14a)
1 ]

pY = PZ @i(Ttic + Ria)

_ Z #(z) +pY ZOR,, (a — 14b)
l .

Q(’ - pZ qus {(p + 2)(rtia + Ria)(riip + Rig) — (71 + Rl)25aﬂ} /2
_ Z Q(l)
+ Z {(P +2)(pP Rig + #g)Rza) — 23V - R’)5“ﬁ} /2

+ pZ ZW{(p+2)RiaRig — R36ap} /2, (a — 14c)
l

ng_.:) =p(p+2) Z i [(p + 4)(rtia + Ria)(riig + Rig)(r1iy + Riy)
1i

—{(rtia + Ria)bpy + (T1ig + Rig)bya + (T1in + Riy)bap} (71 + ﬁz)z] /6

+(p+2) Z [(+ (O RipRiy + 4 Riy i + P RiaRig)
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~2(7Y - R1)(Riabpy + Rigbya + Riybap)
R} (u8gy + 15670 + p6s ﬂ)] /6
+ p(P + 2) Z Z(l) [(p + 4)RlaRlﬂRl‘y

1

—(Riabpy + Ripbya + Rirbap)R]] /6. (a — 14d)

In the last equation,

[QRIY), = (p+2)QYR1 — 2Q) Ryy — 2QV) Ry, (a — 14e)
+4
[QR]g‘gz = p_g‘—(QggRlz + Q:((IQRl:: + QgQRzy), (a — 14g)

and other components are obtained by permuting indices.

In these equations, the sum is over eight children cells. By using these
equations from cells of the deepest level L successively, we can obtain multipoles of
all cells in all levels. Thus, multipoles for B-level cells are obtained by translating
and adding those of C-level cells, and those of A-level cells are obtained from B-level
cells.

The sum over the 415 cells to obtain (a-8) is calculated using an .a,pproach
analogous to the method of Greengard and Rokhlin®. (One can also directly com-
pute (a-8) without shifting origin, similar to the method of Barnes and Hut*.)

Consider a particular level 4 cell, Cy, and denote its parent and grandparent
as By and Ay, respectively. First we focus on Ao (level 2). All cells labeled A
in Fig. a.lc are far cells of 4y, and their contribution to the Taylor series of A
can be directly summed over the 4° — 3% = 37 cells, by using (a-8): V[ (7) =
S 4 VEO'(7 — 7a). Next we focus on the Taylor series of the level-3 cell B. It is

computed as

Ve, (7) = VAL (7 +70) + Y VE"*(7 - 7p), (a — 15)
B
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where V4 (r) is the far field for Ay, shifted by ro to the center of By. The sum
of Taylor coefficients is over 8 x 27 — 27 = 189 B cells, whose parents are nearest-
neighbors of Ay but themselves are not nearest-neighbors to By. Vgo represents the
fields that are due to all atoms in cells labeled A or B in Fig. 1c. This procedure
is then repeated at level 4 for Cy to obtain the Taylor series for Cy. Excepting the
level 2 cells A, all far cells to C are computed in the series of sums (a-15), each
over a 189-cell domain with cell-size (d), which reduces gradually as the distance
to Co (R) becomes closer. During this process, d/R is approximately a constant
~ 0.5, an optimum condition when the multipole series (a-2) is used to sum over

many groups of charges. This completes the algorithm.

The timing of the algorithm is estimated as follows®. For the assignment of
atoms to the deepest-level cells and calculations of the multipole moments of these
cells, a single loop over all atoms is used; hence the calculation time is proportional
to N. The calculations of the multipoles of lower-level cells involve the manipulation
of poles of 8 children cells. At level [, calculation time is proportional to 8 x 8! = 8!+1,
since there are 8' cells at this level. Total time of this operation is proportional to
Z{Z__O 81 =8(8L —1)/7 =8(N/a —1)/17. Here, L is the maximum level and a ~ 4
is the average number of atoms in the deepest level cell. Therefore, this operation
is proportional to N. The calculations of Taylor expansion coefficients of each
cell involve a maximum of 189 cells. The time is proportional to EIL=2 189n8' =
189nr x 8(8% — 8)/7 = 189n7 x 8(N/a — 8)/7. Here, ny is the number of Taylor
coeflicients used. Therefore, this is again proportional to N. We have to shift the
Taylor coefficients 8 times for each parent cell; this shifting time is proportional to

IL=_21 8n78' = nr8(8L — 8)/7 = nr8(N/a — 8)/7, and thus is proportional to N.
Once the Taylor coeflicients of the deepest level cells are obtained, the potential
at the atomic position is evaluated by a single loop over all atoms, whose time is

proportional to n7N. Finally, for each atom we have to evaluate the exact potential
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from atoms in 27 neighbor cells at the deepest level. An estimated number of
interactions for each atom is 27a/2; therefore, the total time for this operation is
proportional to 27aN /2. Since the calculation time of all operations is proportional

to N, the total calculation time is proportional to N.

Discussion. Grouping objects into larger rectangular boxes as the distance in-
creases was first implemented by Appel® as an important application of tree struc-
tures to the gravitation problem. It reduces the computations to order Nlog(N).
Barnes and Hut* devised an efficient algorithm of using cubic boxes and recursively
opening up smaller boxes based on a geometric criterion that keeps the expansion
pafa.meter d/R at a fixed number close to 1. To further reduce the computation to
order N, Greengard and Rokhlin® ,Greengard® introduced a local Taylor expansion
and demonstrated it for a two-dimensional problem (using complex variables so that
the expansion series is particularly simple).

These adoptive tree-structured methods have been applied mostly in grav-
itational problems, which typically lack intrinsic scales and often exhibit diverse
structures and large density fluctuations. In contrast, molecular systems and crys-
tals typically have clear length scales, and their structures are more stable and the
density fairly uniform. These characteristics suggest that uniform cells should be
adequate. We use the multipole expansions as in electrostatics®, where the charge,
dipole, and quadrupoles, etc., have clear physical content and are easy to manip-
ulate. The CMM algorithm is a further development over the two-dimensional
method of Greengard and Rokhlin, but with a simpler structure and capable of
treating all interactions with a single program. The resulting algorithm is very
efficient in execution and scales linearly with N with a very small proportional con-
stant; thus, even for the 1792-atom case, CMM is already six times faster than the

exact method. We find that terminating the expansions at quadrupole moments is
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quite adequate. Independent developments for the three-dimensional problem have
been reported® 1%, but the use of spherical harmonics® or partial derivatives!? makes
these algorithms rather complex.

Although the relation between a cell and the eight subcells leads to a tree
structure, we find it more useful and efficient to use a Cartesian integer system to
index cells at each level. This index system alleviates the use of recursive subroutine
calls in the computer program (which is written in FORTRAN), and the calculation
easily proceeds cell after cell at each level, and then, level after level. The Cartesian
indexing also greatly facilitates algorithm improvements and verification.

This structure of the CMM algorithm allows most parts to be easily vec-
torized. In addition, CMM is particularly simple to adapt to parallel computers,
when the processors are connected as a 4x4x4 (8x8x8 or 16x16x16, etc.) grid.
In this case, the three-dimensional space is naturally mapped into the processors
and the deeper levels work independently. Because the computations are domi-
nated by the deeper-level cells and by pairwise interactions that are well localized

in near-neighbor processors, we expect high efficiency.

Application to a Million-Atom Polymer. The speed and accuracy for CMM
were assessed by calculations of a realistic polymer system, poly(vinylidene fluoride),
denoted PVDF. PVDF has chains of (~CH,; — CF, —C Hy — C F,—) packed together
and exhibits at least four stable crystalline forms of which three are piezoelectric.
We started with form I (which has a net dipole per unit cell) and constructed
clusters as multiples of the crystallographic unit cell [2.56 x 8.58 x 4.91 A with
12 atoms (2 chains)]. Thus, combining 9x4x4 = 144 cells leads to 1728 atoms in
32 chains. We add an H or F' at the end of the chain to make (—C Hj or —CF3),
leading to a total of 1792 atoms and a size of 24.2 by 34.2 by 21.4 A. We constructed

progressively larger systems with 15360 atoms, 122880 atoms, and 1013760 atoms.
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The last system with one million atoms has 66x32x40 cells and a size of 168 x 272
x 196 A.

The total computation time divided by N is shown in Fig. a.2. The CPU
time of the CMM algorithm is linear with N, whereas the exact algorithm computes
N(N —1)/2 pairs”. For the 1013760-atom case, CMM is a factor of 1500 faster than
the exact method (even for the 1792 atom, CMM is already six times faster). All
tests were carried out using a single scalar processor on the Silicon Graphics 4D /380
workstation, where the million-atom system required 51 minutes for CMM versus
1280 hours for the exact calculation (estimated from the 1792 atom case).

A typical dynamical simulation involves calculations of the force on each
atom (and the total energy). The accuracy is controlled by the orders in the multi-
poles (a-2) and the Taylor series (a-8), which we implemented through third order
(the octopole level). Our estimates and explicit tests indicate that it is best that
these two orders be equal. At the second order (third order) for the Coulomb in-
teraction, the error in total energy is 0.014% (0.006%) while the rms error in force
is 0.36% (0.17%). For the London dispersion, errors in both energy and force are
extremely small (2 x 107% and 6 x 10~7) at second order and a factor of two
smaller at third order. This decrease in errors by a factor of two is expected since
the multipole series is essentially an expansion in term of d/R ~ 0.5. The accuracy
at the second order is already a factor of 5 to 10 times more accurate than stan-
dard approximations (spline cutoffs, vide infra). Thus, we consider the quadrupole
order to be adequate and report all results in this paper at this level (unless stated
otherwise).

The memory usage of the CMM is 140M+8N bytes, for storing multipoles,
Taylor coefficients, and cell indices, where M is the total number of cells. Including
28N for coordinates, charges and force, and assuming M ~ N/4 (optimum choice),

the total memory is ~ 43N bytes [keeping all quantities in fast memory, our program
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requires 45 MBytes for N = 1 million].

The Cutoff Method. The most common approach for treating the Coulomb
interactions of large molecules is the cutoff method!'*'2, which evaluates exactly
all contributions that are due to the nearby atoms (up to 7;,), while those atoms
beyond 7,4+ are ignored completely. Between r;, and 7oy, typically!112 7, —7ip ~

1A, a cubic spline function S (r?) is used to take the potential smoothly to zero,

where
S(r*) =1, r < rin (a — 16a)
2 .2\2(.2 22 _ 3p2
S(Tz) — (rout r(z‘z(roit:; : Tin , Tin <1< Pout (a _ 16b)
out in

S(rz) = 0: r 2 Tout- (a — 166)

This method requires an order N2 search to establish a near-neighbor list. Although
the time for setting up this list could be ignored (the list is refreshed infrequently),
the list requires a substantial memory to store (several gigabytes for one million
atoms). Given 7,4¢, the average number of atoms with which each atom interacts
is roughly independent of the total number N. Thus, the computation time and
storage are linear in N. However, as 7,,; increases, the proportional constants of

these linear relations increase very quickly (as r3,,), whereas, the errors decrease!*

—1/2
out

as r In Figure a.3, calculation time and memory for 1792-atom PVDF are

shown as a function of 7,4¢, with those of CMM. If the size of the system is much
larger than 7,4¢, time and memory would be proportional to 73 ,, but in this case,
the size of the system is not very large (~ 30 A) so that the relations are almost
linear in the range of 7,,; shown in the figure. The time of CMM is 1.4 times faster
than that of the cutoff method even at a small cutoff distance 7,,; = 10.5 A (2.7

seconds vs. 3.8 seconds). Also CMM requires only 10 % of memory compared with

the cutoff method at r,,; = 10.5 A (0.146 MB vs. 1.43 MB).
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The cutoff method leads to large errors. Using the common choice!! in
the spline cutoff method [(rin, 7out)= (9.54, 10.54)] for the 1792-atom PVDF, the
rms force error is 43.8 [units are (kcal/mol)/A for force and kcal/mol for energy],
while the corresponding error in CMM is 0.411 (0.218 at third order), two orders of
magnitude lower. The error in total energy is also large —4666.31 for cutoff versus
—18.6 for CMM (—4.7 at third order). Although use of larger cutoffs can decrease
the error, we find that the errors remain at least five times larger than the CMM.
Thus the cutoff method is incapable of providing the accurate results of CMM. (In
addition, more accurate cutoff requires ~ 15 times more storage and 10 times the
computer time than CMM.) In Figure a.4, rms force errors as a function of r,,; are
shown. Here, given r,,:, the rms force errors are calculated for three different values
of A = 7oyt — Pin. For a given 7,4:, the rms force error decreases as A increases.
Also for a given A, the rms error decreases!* according to ro_ult/ 2. CMM gives a 5.7
times smaller error compared with the best case in the figure (rout = 25 AA=5
A).

Perhaps more significant than the errors in force, the long-range tails in the
interactions ignored in the cutoff methods can have profound effects on thermody-
namical properties!? and can lead to large errors in structures. Thus, in F 1g. a.b,
we compare the minimized structures for the 1792-atom cluster of PVDF. We see
here that CMM produces a structure almost identical to the exact calculation (rms
deviation 0.061 A) For the spline cutoff method, two different calculations using
different spline functions (A = 2 A and 5 A) are shown. Both spline functions
give visibly distorted structures, although a structure obtained by larger A is less
distorted (rms deviation 0.812 A for A=1 A and 0.639 A for A = 5 A). [In all cases

the minimization started with the exact structure.]

Summary. The Cell Multipole Method is an efficient and practical approach to
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handle long-range interactions, as demonstrated with calculations (on a laboratory
workstation) of systems having up to a million atoms. This method should be ap-
plicable for a wide range of materials simulations. The computer used here (Silicon
Graphics 4D /380, one processor, 5 Mflops!®) is well short of the state of the art
(Cray YMP,one processor, 160 Mflops'?). The vectorization and pa.raileliza,tion ca-
pability intrinsic to CMM should allow further gains of 10-20 in speed to be achieved
on existing super computers (Cray YMP, 8 processor, 2Gflops!? or Intel Delta 512
nodes, 3Gflops). Thus, we believe that CMM will allow atomic-level simulations on

million-atom systems to become quite practical.
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Figure Captions

Fig. a.1. Cell hierarchy for CMM. All cells are 3D cubes.

Fig.

Fig.

Fig.

Fig.

a.2.

a.3.

a.4.

a.5.

Computational costs for calculation of the Coulomb nonbond interactions
for a series of poly(vinylidene fluoride) polymers (N = 1792, 15360, 122880,
and 1013760 atoms).

Computational time and memory usage of cutoff method as functions of 74y

compared with CMM.

RMS force error of cutoff method as functions of 7,,; with different A =

Tout — Tin compared with CMM.

Optimized structures for the 1792-atom PVDF polymer with exact (a), CMM
(b) and spline (rout,min) cutoff methods (c and d). This shows 8 layers
of chains, most of which are in the shadow of the top layer (for accurate
calculations). Optimizations for CMM and spline cutoff methods started

with the exact structure.
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(b) The Cell Multipole Method for Coulomb Interactions in Periodic

Systems with Million-Atom Unit Cells

Abstract

Standard methods for calculating Coulomb interactions of periodic systems
use Ewald-type formulations or Minimum Image approximations, neither of which
is practical for megacrystals (million atoms per unit cell). Here we describe the Cell
Multipole Method for Periodic Systems, which for a polymer with one million atoms
per cell is more than 700 times faster than either the Ewald or Minimum Image
methods, making megacrystal calculations practical. The method is well suited for

massively parallel and vector computers.



79

Introduction. Atomic-level simulations of periodic materials are typically lim-
ited to hundreds or thousands of atoms, whereas studies of such problems as par-
tially amorphous polymers might require 10° or 10® atoms per unit cell. The
most difficult problem with infinite crystals is computing the Coulomb interac-
tions V; = Z; q;/Rij, which are conditionally convergent. The most general ap-
proach is the Ewald method?, which separates the Coulomb sum into two parts,
one of which converges rapidly in the real space, and the other which converges
rapidly in the reciprocal space (Fourier transforms). The potential calculated by
the Ewald method corresponds to the limiting value inside the crystal made of a
charge-repeating unit whose charge, dipoles, quadrupoles, and second moments all
vanish”; therefore, the potential is shape and surface character-independent. More-
over, the potential is periodic and its average inside the unit cell is zero!. The
Ewald potential is called the intrinsic potential®. However, the calculation time for
Ewald is T = CreqiR2,;N + Crecik3,,N?, where N is the number of atoms in the
unit cell, Rcy¢ and kcy: are cutoffs for the sums in the real and the reciprocal space,
and Ceq; and Cr..; are constants (see Appendix A.). The presence of the quadratic
terms renders the Ewald impractical for megacrystals (million atoms per unit cell).

Because the Ewald calculation is so time-consuming, many simulations use
the Minimum Image Approximation®*. In Minimum Image, any given atom A
interacts with only N — 1 atoms, each of which is either the atom in the central
cell or one of its 26 images in neighboring cells, depending on which is closest to A.
This method gives approximate potential of the crystal whose shape (of the infinite
crystal) is cubic. Since dipoles and quadrupoles are not zero in general in the unit
cell, it gives a different potential and force from those of the Ewald method (see
Table I). It requires N(N —1)/2 pairwise calculations, so that it is also impractical
for megacrystals.

In this paper, we propose a new and efficient approach, the Cell Multipole
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Method for Crystals (CMMX), to compute the Coulomb and van der Waals interac-
tions (in fact, it handles all interactions of the type E = Zij giq;/|ri — r;j|?, where,
p > 1). The main elements of CMMX are that it:
1. use the Reduced Set of P = 35 atoms to replace all distant unit cells;
ii. represent the interactions from all distant cells by a Taylor series;
1i. compute the interactions from neighboring cells through the Cell Multipole
Method recently developed for finite systems®.

The standard Ewald procedure is applied only to the Reduced Set so that the
calculation time becomes a fixed constant independent of the system (2 seconds on

a SGI 380 workstation for 1 million atoms).

Reduced Set. The central unit cell plus its 26 neighbor cells are referred to as
neighbor cells (see Fig. b.1). The remaining co — 27 cells are referred to as distant
cells. In each distant cell, we replace the original N atoms with a Reduced Set of
P virtual charges, which have the same dipoles, quadrupoles,- - -, up to Kth-order
multipoles (with K > 2) as the original cell.

The principle behind this Reduced Set approach is that the difference be-
tween the Reduced Set system and the original system involves only high-order mul-
tipole and is both small and absolutely convergent. All subtleties associated with
the conditional convergence of Coulomb sums are taken care of by the P charges
in the reduced set, which is evaluated with the standard Ewald method. The re-
maining interactions fall off very quickly (1/7%%!) and can be well approximated

by including only the interactions from neighbor cells. Therefore, we have
Vew () % Vibe(7:) + Vi (ra), (b —1a)

where

Vdﬁt("i) = VEPW(Ti) - Vn{;r(ri)' (b - 1b)
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Here, V¥ is the potential that is due to original N atoms, V¥ is due to the reduced
set of P charges. The subscript “EW” denotes that the potential is calculated
through the Ewald procedure and “nbr” indicates the 27 neighbor cells. For details,
see Appendix B. The subtraction of V. (r;) in (b-1b) is conveniently included in the
real space sum inside the Ewald calculation of Vi&y (7;). We are left with calculations
of a finite system composed of the 27 neighbor cells. This formula provides a
practical way to calculate accurately the enérgy and the force for megacrystals.

The construction of the Reduced Set of atoms proceeds by generating a set
of P = (K +1)(K +2)(K +3)/6 random points in the unit cell. Assuming that each
point has a charge g;, we calculate up to Kth Cartesian moments of this Rgduced
Set and set them equal to those of the original set (this guarantees that the multipole
moments are the same since the multipole moments are linear combinations of the
Cartesian moments). We then solve the resulting P linear equations to obtain
g; (j =1,---,P). For up to 1 million atoms per cell, we find that K = 4 (P = 35)
is sufficient (the neglected 5th and higher-order terms fall off as 1/79).

The accuracy of the Reduced Set method can be assessed from calculations of
amorphous polyethylene periodic systems listed in Table I. We calculated the total
energy FE,,; and the force gn each atom F;. The error in total energy was about
0.02kcal/mol, or 0.001%. The rms error in force was about 0.003kcal/mol/A, or
0.02%. As expected, these calculations showed no increase in error as the system size
increased. Thus, the Reduced Set of 35 atoms was sufficient for most applications.

In CMMX we express V{ (r) as a polynomial (Taylor) series about the

center,

Vi) = VO 4+ 3V ra 4 3 ViGrars + -, (b-2)
@ B

where the coefficients are either derivatives of V¥ (r) or interpolation coefficients

from a set of V£ (r%). These coeficients need only be updated infrequently during
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dynamics or minimization.

Cell Multipole Method. By using only P = 35 atoms to represent the co — 27
distant cells of megacrystals , we effectively eliminate the CPU time spent on the
Ewald calculation (a fixed 2 seconds on SGI). However, the interaction of the cen-
ter cell with its 27 neighbor cells would still require 27N?2/2 pairwise calculations,
prohibitively slow for a megacrystal. To reduce these N2 calculations to N calcu-
lations, we extend the Cell Multipole Method (CMM)?®, previously developed for a
finite system, to the crystal case.

The Cell Multipole Method is a natural approach for calculating long-range
interactions of the type giq;/|7; — 7|7, p > 1. We divide the crystal unit cell into
eight equal-sized cubic boxes (level 1 boxes; the original unit cells are level 0 boxes),
each of which is further divided into eight level-2 boxes, and so on, until at level
L (L = 6 for million atoms), each micro box contains ~ 4 atoms (Fig. b.1). The
multipole moments are computed for each box. For each box at any level, the 26
neighbor boxes plus itself are called nearby boxes, while the remaining are called
faraway boxes. The potential >energy of an atom 7 is computed as

VE) = 3 e VieelR) + VEA(R). (b-3)

j€Enearby ’ 7

Thus the interactions of nearby atoms are calculated exactly, whereas those from
faraway boxes is computed from Vy,.(r) using a Taylor series similar to (b-2). The
calculation is illustrated for a level-2 box in Fig. b.1. The essential idea is to use

larger boxes as the distance increases, so that use of the multipole expansion is

optimal®:®.

Application to million-atom systems. The CMMX was used to compute the
energy and force on periodic systems with a unit cell containing up to 1 million

atoms. For periodic systems with up to 5000 atoms in the unit cells, a model
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for amorphous polyethylene was constructed by a Monte Carlo procedure, which
considers the torsional potential plus Coulomb and van der Waals interactions of
the growing polymer with itself and with its image in all other unit cells. The
resulting polymer strand traverses a number of unit cells. The results are listed in
Table I. For larger crystals we started with the 2003-atom amorphous polyethylene
strand (667 monomers) and formed a new unit cell consisting of D* such 2003-atom
strands. Using D = 2,3,---,8, leads to crystals with 16024, 54081, ---, 1025536
atoms in the crystal unit cell.

The total computational time per atom, T/N, is plotted in Fig. b.2. The
total time of CMMX is linear in N (T =~ 3.3Nmsec on a single processor SGI 380
workstation) and the overhead is rather small. For 400 atoms in the unit cell, the
CMMX is already 4 times faster than the standard Ewald method (see Table I). The
gradual decrease from T/N = 8 for 398 atomé to T/N = 3.3 for 3184 atoms reflects
the constant overhead of 2 sec for the Ewald calculation on the 35-atom Reduced
Set. With the Ewald method, the real-space cutoff Rc,: and the reciprocal-space
cutoff kcy; can be optimized for any specified accuracy (see Appendix A.). Using
an accuracy of § Ey,¢/N = 0.001kcal/mol, we find that T' ~ 53.3(NV/1000)*-5*sec, as
shown in Fig.2. For the Minimum Image, we find that T = 10.9(N/1000)?sec. For
the 1025536 atom/unit cell polymer, CMMX uses a total of 0.90 hours, whereas
Ewald would require 642 hours and Minimum Image would require 3368 hours.

The memory requirements for CMMX are modest. Storing multipoles, Taylor
coefficients, and cell indices requires 140M +8N bytes, where M is the total number
of boxes in a unit cell. Including 28N for coordinates, charges, and force, and
assuming M ~ N/4 (optimum choice), the total memory is ~ 43N bytes. Keeping
all quantities in memory, our program requires 45 MBytes for N = 1 million.

The accuracy of CMMX is specified by the number of terms retained in the

multipole series and in the Taylor series Vfqr(r) (b-2,b-3). At second order (up
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to the quadrupole in multipole series and up to second-order terms in the Taylor
series), the total energy error is about 0.07%, and the rms force error is about
0.2kcal/mol/A, or 1%. At third order (up to the octopole in multipole series and
up to third-order terms in the Taylor series), the error in total energy is further
reduced to about 0.02%, and the rms force error is further reduced to about 0.4%.
Since the accuracy at second order is already adequate for most applications, all

results reported in this paper are obtained at this order, CMMX/2.

Discussion. In order to assess the significance of the errors in CMMX and Mini-
mum Image, we have used these methods for predicting the minimum-energy struc-
ture. Using the Ewald structure as reference, we find that the 602-atom polyethylene
crystal has an rms coordinate deviation of 0.022A for CMMX /2, which is quite ad-
equate. Minimum Image gives a structure with an rms deviation of 0.26A, which
is too large for some applications.

In addition to energy and force, simulations of crystals generally require
calculations of the internal stress. To calculate the six independent stress compo-
nents with CMMX, we first use the Ewald method? to compute the stress from the
oo — 27 distant cells (Reduced Set). Within the 27 neighbor cells, the contribution
from the atoms in nearby boxes is computed as atom-atom (charge-charge) inter-
actions, while those from the faraway boxes is computed as box-box interactions
(which includes charge-charge, charge-dipole, dipole-dipole, etc.). For details, see
Appendix C. For the 398-atom/cell polyethylene, CMMX gives an rms stress error
of 0.0008kcal /mol/A® = 0.0056 GPa. This leads to an error in the cell parameter of
0.0034A out of 18A (estimated by assuming that the bulk modulus of polyethylene
is 10 GPa).

CMMX can handle any cell shape. Expressing the coordinates of the atoms

in terms of the (nonorthogonal) unit-cell vectors a, b, ¢, the algorithm remains un-
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changed. By defining a 3 by 3 matrix H = [a, b, c], we calculate a scaled coordinate
of atom 7 as s; = H'r;. Then each component of a scaled coordinate is in a range
[0,1). By treating this unit cube as a level 0 cell, exactly the same algorithm used
in the cubic cell can be used. During the calculation, the real coordinates can be
recovered by calculating r; = Hs;. For example, shearing a polyethylene crystal
(398 atoms per cell) from a cell angle ¥ = 90° to v = 80° leads to an rms force error
0.18kcal/mol/A compared with the Ewald method.

An additional advantage of CMMX is that the Taylor series (cf. Eqs. b-2,b-
3) used to represent the interactions from distant cells and the faraway boxes change
only very slightly from step to step during dynamics and minimizations, and need
not -be recomputed at every step. Typically updating them every 100 steps leads to
negligible errors in the force and stress. Since over half the computational time is
spent in calculating this series, the total computation is reduced substantially.

The CMMX is well suited to parallel and vector computers. The V., ,(r)
that is due to the co — 27 cells of the reduced set is an insignificant computation
(2 seconds on a workstation) and can be computed on a single processor of the
parallel computer or on the scalar mode of a vector computer. The remaining
27 cells containing the original set of atoms is computed using the CMM?®. The
CMM is dominated by the deeper-level calculations and is highly localized and is
therefore well suited to parallel computers. The loop structure using the Cartesian
coordinates in the CMM makes it easily vectorized on a vector computer.

In conclusion, the CMMX method for calculating the long-range interac-
tions in the periodic systems is accurate, substantially faster than the standard
methods, and allows practical simulations of megacrystals with current computers.
Moreover, the method is ideal for massive parallelism suitable for future computer

architectures.
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Appendix A. Calculation Time of the Ewald Method
In the Ewald method, we use the accuracy specified cutoffs for both real and
reciprocal space sums?. In this approach, the error in the total energy is specified,
and cutoff distances for the real space (Rcy:) and the reciprocal space (keyt) are

calculated. The total calculation time is given by

time = CreatNR2,, + Creci N2E2,,, (6—4)

where C,eq; and C,.c; are constants and N is the number of atoms in the unit cell.
In the Ewald procedure, there is one parameter 77, which determines how much of
the real-space sum is converted to the reciprocal space sum. For a given energy
error per atom (€reqr and €rec;), Reyt and key: are functions of 7 as follows (Cr and

Ci are constants):

€real = Canerfc(Rcut/n): (b - 5(1)

€reci = Ck—]\—rerfc('lrnkcut). (b — 5b)
n

7 is chosen such that the total estimated time is minimized?. Since k. is a function
of N, 7 and Rcy: depend on N also. Because of the dependence, time increases more
slowly than N2, as expected from the above equation. The actual increase of time
with respect to N is about N*-*%(see Fig. b.1). We calculated the estimated time by
using the same procedures for N up to 10® atom systems and found that this relation
still held. Of course, we could choose 7, Ry and keys such that the calculation time
increases as N (set R.y; and 7 constants and change kc,; proportional to N~/ %).
But in this case, the error per atom increases with N in the reciprocal space sums
as N becomes large. Perram et al.!® showed that if the maximum term neglected

is fixed and the boxing algorithm is implemented in the real space sum, the total



87

time scales as N3/2 if the number of boxes is optimized.

Appendix B. Reduced Set Approach

For any atom ¢ in the central cell, the potential is written as
Viaw(r:) = Vo T (ri) + Viaw (re) = V=P (r) + Vil (r2), (b -6)

where V¥ is the potential that is due to original N atoms, V' is due to the reduced
set of P charges, and V¥ ~F is due to the combined N + P charge system where
the P charges of the Reduced Set have their signs reversed. The subscript “EW?”
denotes that the potential is calculated through the Ewald procedure. VN-P is
absolutely convergent because its charge, dipoles, quadrupoles, - - -, up to Kth-order
multipoles, are zero by construction. Also the second moments of the combined
atom system are zero (since the Cartesian moments are fitted), ensuring that the
potential calculated using the combined charge set converges to the Ewald potential.
The remaining interactions fall off very quickly (1/r%+? ). Thus, we need not use the
Ewald procedure in computing V¥ =" and indeed, V¥ " can be well approximated

by including only the interactions from neighbor cells. Therefore, we have

VEA\’?V(ri) ~ Vn]l\),r—P(r‘i) + VEPW(r‘i) = an]gr(r‘i) + Vd}i:t(r‘i)7 (b - 7“)
where
Vd}ijst (’I"i) = VE};’V (T’L) - Vn}l))r(ri)> (b - 7b)

and “nbr” indicates the 27 neighbor cells. The subtraction of V,}_(r;) in (b-7b) is

conveniently included in the real space sum inside the Ewald calculation of Vi&y (7).

Appendix C. Stress Calculations in CMMX
Six independent stress components (strain derivatives of the total energy

divided by cell volume) are calculated in CMMX without any major modifications.
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For the contributions of co — 27 (distant) cells, the Ewald method is used for the
reduced charge set to calculate stress components?. The stress components arising
from 27 neighbor cells are subtracted inside the real-space sums in these calculations.
27 neighbor cells are handled by CMM, in which the exact calculations are used
for stress components for near-cell calculations in the deepest level. Here, stress

components Il arising from the charge-charge interaction, &%, is given by
q:9;
QHaﬂ = —r—sj’ra’l‘ﬁ, (b - 8)

where () is a volume of the unit cell and r = |7; — 7;|. In tI;e downward process
of CMM, local expansions around box i arising from the multipoles of box j are
calculated. The interaction energy between various multipoles of boxes i and j can
be calculated at the same time, and these are used to calculate stress components.
Up to the dipole-dipole interactions, the interaction energy is given by

'] 1'(-‘.1" _’) j(-’i' _‘) (_’i' —‘j) ? 3(~i' —')(_‘J" _‘)
ZZ; | Zill; oK) Zy(E: K) | (B E)R® -3 R)@E; - R) g
R R R? RS (6-9)

E =

.
Here, R is a position vector of a center of box i measured from a center of box j.

From this energy, stress components are calculated by

Ol = _:ZLZJ'R_}}!&
_ 3z, z;z’%)sRaRﬁ Lz p,-aRﬂ};ymRa
+3Z; (& - }gf"‘R" 2 #iaRﬁ};“iﬁRa
— 3(i: - ﬁj)R;fﬂ 4 Biaksp ;; piphja )

= _ = R.R
+ 15(i; - B)(j; - R)Tﬁ

- = 'aR + u; Ra o = /J“iaR + Wi Ra
~ 8- R)Ret R g, RFetE BT (1)

It is straightforward to derive terms arising from higher-order interactions.
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TABLE I. Accuracy and timing for CMMX (2nd and 3rd order) com-
pared with the Ewald and Minimum Image methods®.

Method Energy Force Time
kcal /mol kcal /mol A sec
N = 398
Ewald (—2395.58) (16.25) 12.4
Reduced Set —0.013 0.003 -
CMMX/3 0.427 0.094 4.2
CMMX/2 —2.53 0.190 3.2
Minimum Image 3.22 0.76 1.7
N = 602
Ewald (—3600.40) (16.29) 24.6
Reduced Set 0.022 0.008 -
CMMX/3 0.578 0.107 4.9
CMMX/2 -1.70 0.203 4.0
Minimum Image —8.77 0.74 3.9
N =1001
Ewald (—5954.68) (16.32) 53.3
Reduced Set —0.035 0.003. -
CMMX/3 -1.71 0.070 6.3
CMMX/2 -1.80 0.138 5.1
Minimum Image —2.67 0.60 12.8
N = 2003
Ewald (—11878.13) (16.30) 150.5
Reduced Set —0.012 0.004 -
CMMX/3 1.89 0.132 13.4
CMMX/2 —6.17 0.232 7.8
Minimum Image —8.05 0.47 43.6
N = 3184
Ewald (—19164.64) (16.25) 311.0
CMMX/3 1.58 0.095 17.3
CMMX /2 —91.41 0.192 10.5
Minimum Image —221.58 0.86 109.8
N = 4816
Ewald (—28803.19) (16.29) 600.2
CMMX/3 1.85 0.106 23.6
CMMX/2 —11.00 0.208 16.3
Minimum Image —274.63 0.72 254.1

® The total energy and rms force values are given for Ewald in parentheses. Only the
errors are given for other methods. In CMMX /2, up to the quadrupole in multipole
series and up to second-order term - in the Taylor series are retained. In CMMX/3,
up to the octopole in multipole series and up to third-order terms in the Taylor
series are retained.
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Figure Captions

Fig. b.1.

Fig. b.2.

The central unit cell and its 26 neighbor cells (only 8 are shown). Also shown
are level-1 boxes (A) and level-2 boxes (B) used in the CMMX algorithm.
Interactions from the infinite distant cells (shaded) are expressed in a Taylor
series VL (r) about the center of the central cell. Consider a box B, and its
parent Ao. Interactions from all A’s are expressed in a Taylor series V] (r)
about the center of Ay. Similarly for By, the interactions from all By’s are
contained in VBTZ, (7). Vfar(r) for By is obtained by shifting the centers of
expansion for V;,,(r) and V] (r) and adding to VZ (r). Atoms in the 26
nearby boxes, By, are computed exactly (this occurs at the 6th level for the

million-atom calculation).

Computation time per atom of CMMX compared with the Ewald and the
Minimum Image methods (on a single processor SGI 4D /380 workstation).
The increase in CMMX for small N is due to the fixed time for the Ewald

calculation on the Reduced Set.
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Part II

Force-Field Parameters and Properties of Polymer Crystals
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Chapter IV

Mechanical Properties and Force-Field Parameters for

Polyethylene Crystals
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Mechanical Properties and Force Fleid Parameters for Polyethylene Crystal

Naoki Karasawa, Siddbarth Dasgupta, and William A. Goddard ITI*

Materials and Molecular Simulation Center, Beckman Institute (139. 74).* California Institute of Technology.
Pasadena, California 91125 (Received: December 7, 1989; In Final Form: September 7, 1990)

Crystal structures, phonon dispersion relations, and elastic constants of polyethylene crystal are calculated by using a new
force field where the van der Waals parameters are seiected on the basis of comparing these properties with experiment.
The cell parameters and atomic coordinates are optimized simultaneously, and elastic constants and phonon bands are calculated
byusin;unlyﬁcseuorlddeﬂvativsnmeopdmimdstnmm Yield stresses and surface energies are obtained from calculations
of the stress—strain relations in directions perpendicular to polymer chains.

I. Imtroduction

Given a force field (the analytical description of forces on all
atoms in terms of the distances and angles in a structure), one
can calculate a number of important properties of crystalline

* Contribution No. 7903.

polymers—structure, elastic constants, yield stresses, vibrational
(phonon) states, specific heat, free energy, etc. However, suitable
force fields do not exist for most polymers of interest. Herein,
we report a new force field suitable for polyethylene (PE) and
other hydrocarbons using a systematic approach to developing
force fields that should be applicable to other polymers of interest.

0022-3654/91/2095-2260$02.50/0 © 1991 American Chemical Society
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Properties of Polyethylene Crystal

With the new force field we calculate the structure by optimizing
the six unit-cell parameters simultaneously with the atomic co-
ordinates for all atoms within the unit cell. Allowing all atomic
coordinates 10 readjust. the elastic constants and phonon dispersion
relations (lattice modes and :ntramolecular modes) are obtained
at the optimized structure m analytical second derivatives).
The phonon states are tr.. . used to obtain thermodynamic
properties. These calculated properties of polyethviene are com-
pared with experimental values.

For the directions perpendicular to the polyethylene chains. we
calculate the stress—strain relations for finite strains until the
crystal fractures. This is used to obtain the yield stresses and
ultimate stresses for PE crystals and to obtain the surface energies.

II. The Force Field

The energy expression involves valence ( £,,) and nonbond (£ )
interactions

E=E,+Ey (W)

where E.,, includes the terms arising from covalent bond formation
and £, includes the long-range noncovalent interactions. Here
we take the covalent terms

Evll = Eb + Ea + El + El (2)

to include bond stretch (£,), angle bend (£,). dihedral angle
torsion (E,), and cross (£,) terms, while the nonbond terms

Ep = E,,dw + EQ 3

consist of van der Waals (E,4w) and electrostatic (Eq) terms.
Consistent with common practice, we exclude 1-2 (bond) and 1-3
(angle) nonbond interactions.

A. Valence Interactions. The valence interactions (2) are
described by using the following expressions:

(i) Morse terms

Ey = Dyest R - 12 )

where R is the length of bond /J. R, and D, are the position and
depth of the well, and k, = 2Dya,? is the force constant.
(ii) Cosine angle-bond terms

E, = %Clcos 8 - cos 8,2 ()]

where 6 is the angle between bonds /J and JK, 6, is the equilibrium
angle. and k, = C sin? 6, is the diagonal force constant.
(iii) Threefold torsion terms

E, = V(1 + cos 3¢) (6)

where ¢ is the torsional angle for bonds /J, JK, and KL (¢ =0
corresponds to cis) and ¥, is the barrier.
(iv) Bond-angle and bond-bond cross terms of the form

E,, = D(cos 6 - cos 8,)(R, - Ry) +
Dj(cas 8 = cos 0,)(R; = Ryg) + k(R - Ry )Ry - Ryp) (7)

associated with each angle term (5), where R, and R, are the

lengths of the /J and JK bonds, k4 = -D sin 6, is the angle-stretch

force constant, and k., is the stretch-stretch force constant.
(v) One-center angle~angle cross terms of the form

E\py = G(cos 6y = co8 8,,x)(cos 8;;, - cos 8,,)  (8)

where kg = G sin 0,k sin 8, is the force constant for two angle
terms (/JK and IJL) sharing a common central bond (/) and
a common central atom (/).

(vi) Two-center angle-angle terms

Epn = F cos ¢(cos 6z = €08 B,/,x)(c08s 8,5, = 08 8x,)  (9)
where kyp = F cos ¢ sin 0, sin 8, x, is the force constant for
angle terms (/JK and JKL) in which the central atoms (/ and

K) are bonded to each other.
These cross terms are considered collectively as

E,=E,+E,+E) (10)
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B. Nonbond Interactions. The electrostatic part (£q) of the
nonbond interaction (3) is described by using the Coulomb ex-
pression

€eR, tn

where Q, is the charge on center | (electron units), e = |, and the
constant | /¢ = 332.0637 gives £ in kcal/mol when R, is the
distance in A.

Experimental and theoretical studies on alkanes suggest that
all hydrogens have about the same charge. Thus. Hartree-Fock
(HF) calculations' [all with the same valence double zeta basis
with polarization functions on C and H] lead to Mulliken popu-
lations of Qy = 0.118 for CH,, @y = 0.111 for C,H¢, Oy = 0.109
and 0.108 for the terminal and central groups of propane. and
Qy = 0.108 and 0.106 for the terminal and central groups of
n-butane. In comparison, fitting point charges to match elec-
trostatic potentials from HF calculations (with similar basis sets)
for CH, leads to Qy of 0.1242° and 0.139,2 while the calculated
octupole moment of methane using a high-quality CI wave
function® yields Qy = 0.150. On the basis of these results, we
used

Oy = 0.144)¢|

in all calculations for polyethylene and n-butane. (The charges
of carbon atoms are taken as —0.144je| times the number of bonded
hydrogen atoms.)

The vdW part of the nonbond interaction (3) for atoms / and
J is described by using the exponential-6 potential

v

Evdw,, = 4e B8Ry - .S = [624'(1-:) - ;p'é] (12)

Ry (£-6)
where p = R;;/R,. These parameters are obtained empirically
as described below.

C. The Hessian-Biased Force Field. The valence force field
parameters for polyethylene (PE) are obtained by using the
Hessian-biased method* for the valence force field of n-butane

H.

’C\CH{CH’\ CHy (13)
where the parameters associated with the central CH; units apply
to PE. In the Hessian-biased approach. we input two quantities:
(a) the experimental frequencies »,*° of the 3V - 6 normal modes
of n-butane,’ and (b) the analytical second derivative matrix or
Hessian,

REHF
HF = — = 14
Batd 90X,y 80Xy, (4
(wherea,8=x.p,zand [,J = 1, 2, ..., N, for an V-atom system),
from the HF wave function of n-butane.

Defining the mass-weighted Hessian from the HF wave

functions

BYE, = BYfy,/ MM )2 (1%

the vibrational eigenfunctions are obtained from the eigenvaiue
equation

BHFUHF = UNFARF = | 3N (16)
The eigenvalues AHF are related to the vibrational frequencies v
A = «(viF)? (17)

(where « = 8.48027 X 1073 if masses are in atomic mass units,

energies are in kcal/mol, distances are in A, and », are incm™')
exp

However, the »HF differ by up to 20% from experiment, |

(1) Dasgupta, S.; Goddard [1l. W. A. “Hessian-Biased Force Fields for
Alkanes”. To be submitted for publication.

(2) (a) Cox, S. R.; Williams. D. E. J. Comput. Chem. 1981, 2, 304. (b)
Chirlian, L. E.; Francl, M. M. J. Comput. Chem. 1987, 8, 894.

(3) Amas, R. D. Mol. Phys. 1979, 38, 33. The charge was caiculated by
using a C-H bond length of 1.09354 A.

(4) Dasgupta. S.; Goddard III, W. A. J. Chem. Phys. 1989, 90. 7207

(5) Cangeloni, M. L. Schettino, V. Mol. Cryst. Lig. Cryst. 1978, 31, 219
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The B"'F are used to specify the vibrational eigenfunctions and
the vf*® are used to determine the vibrational eigencalues. Com-
bining these leads to a new Hessian determined partly from ex-
periment and partly from theory.

The Hessian-biased B8 is defined as

B8y, = (M,M)]' B, (18)
where
B!H = UHerxpD’HF (}9)

A*? is the diagonal matrix with elements A = x(+s**?)2, and U
is the transpose of U. Thus, by construction B®H leads to the
experimental vibrational frequencies and the theoretical vibrational
eigenfunctions. We then determine the force field parameters
for the terms (4)=(9) so that the force-field Hessian matches the
biased Hessian
HEFF o
o~ B (20)

[In these calculations (11) and (12) are included but the param-
eters Q,, {. D,, and R, are kept fixed.] We also require that this
force field lead to zero forces at the experimental geometry

JEFF
aX,,

The result for n-butane is a total of

(AN-6)3N-5)/2+ (3AN-6) =33N-6)(N-1)/2 =
702 (22)

conditions, sufficient to determine the 76 parameters of even the
most elaborate (MCXX) force field. To extract the force field
parameters, we use a least-squares procedure in which the errors
in satisfying (20) and (21) are simultaneously minimized.'¢

The HF calculations (including analytic second derivatives) were
carried out with the GaussiaN-86 program.® The 6-31G** basis
was used, which is valence double zeta on both C and H with d
polarization functions on the C and p polarization functions on
the H. These calcuiations were carried out at the experimental
structure.’

D. Procedures for the Valence Force Field. We optimized the
valence force field of n-butane using three levels of force field [all
with electrostatic (11) and vdW (12) interactions}: (a) MC, Morse
(4), cosine angle bend (5). torsion (6), electrostatic (11), vdW
(12) but not cross terms; (b) MCX, MC plus bond-angle and
bond-bond cross terms (7); (c) MCXX, MCX plus angle-angle
cross terms (8), (9). These valence force fields (along with the
force fields of methane, ethane, and propane) are discussed in more
detail elsewhere.! The bond energy parameter (D,) for the Morse
potentials was fixed at a typical experimental value for the bond
of interest and not optimized [the normal modes are not sensitive
to Dy).

- The notation on cross terms is illustrated as follows.

The angle cross terms (7) for the H-C—C angle involve two
ks terms denoted as kyy and k¢, and one stretch—stretch term
denoted kyc.

For the tetrahedral center

(1] 0"1
o’ \

=0 @2n

(23)

(6) Frisch, M. J.. Binkley, J. S.; Schiegel, H. B.. Ruhavnchnri. K.. Melius,
C. F.; Martn, R. L.; Stewart, J. J. P.; Bobrowicz, F. W ; Rohlfing, C. M
Kahn, L. R.; Defrea.DJ Seeger, R.; aneade R A FOLD J. Fleuder,
E. M.; Pople, J. A. Carnegie-Meilon Qu ry Publishing Unit,
Pittsburg, PA, 1984.

(7) No reliable u-wave experimental structure is available for a-butane.
The available electron diffraction studies [Bonham, R. A.; Bartell, L. S. /.
Am. Chem. Soc. 19%9. 81, 3491. Kuchitsu, K. Bull. Chem. Soc. Jpn. 1959,
32, 748) report average length and angle values for a 60:40 mixture of trans
and gauche conformers. Consequently, for our ab initio calculations, we based
the structure for n-butane on the microwave structure of propane (Lide, Jr.
D. J. Chem. Phys. 1960, 33, 1514).
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TABLE [: Valence Force Field Parameters Used in the Calculations
for Polyethylene®

n-butane
MCXX MCX MC
Bond Stretch (Eq 4)
c-C R, 1.4841 1.4720 1.5221
ky 884.9940 960.7682 570.0549
Dy (85.80) (85.80) 185.80)
C-H Ry 1.0765 1.0702 10908
ky 741.3720 774.0032 672.4147
Dy, (95.10) (95.10) (95.10)
Angle Bend (Eq $)
H-C-H ko 55.6076 46.0545 298261
8, 119.3933 124.5427 134.0770
C-C-H kg 65.7301 72.5454 67.8248
4, 117.7291 119.7212 122.6576
c-C-C ko 84.1810 76.0945 89.4018
8, 121.2400 124.6770 123.5544
Torsion (Eq 6)
H-C-C-H v, 5.1686 3.5854 4.6266
C-C-C-H v, 6.1626 6.4680 6.8816
CcC-C-C v, 5.7070 6.3298 11.5449
Angle Cross Terms (Eq 7)
H-C-H Dyy  -22.6583 -26.8877
kyy 31321 3.2767
C-C-H Decy -34.3195 -36.9016
Dy -259234  -28.3688
kuc  1.3684 1.4648
c-C-C Dcy -54.0185 -55.0881
kec 26.2187 26.1288
One-Center Angle-Angle Cross Terms (Eqs 8 and 24)
Geeme -7.6083
Gecun -5.3356
Genee -5.0824
Geuen -5.3356
Two-Center Angle-Angle Cross Terms (Egs 9 and 26)
Frcen -17.7274
Fecom -16.4004
Fccc{ -21.5910

4 Units are kcal/mol for energies, A for length, and degrees for an-
gles. Values in parentheses were not optimized.

there are 12 one-center angle—angle terms of the form (8), each
of which involves four atoms

I
“g’}" (24)
K L
We denote the angle—angle force constant for (24) as k;;.x, (where
kisxr = kiyix)- Thus, for PE there are four cases:

kCC:CH' kCC.HH- kCH:CCv kCH:CH

For a pair of adjacent centers, say, two carbons,

H
H C
\c—c/ (29)
/7 f"
c
there is a total of 32 = 9 two-center angle-angle terms, each of

which involves four atoms
IR N
\’ J\ {K‘/ (26)

Here we denote the force constant as k., (Where k;x; = kg ,)
Thus, for PE there are three cases: kcccc: Kcccn and kycc m

The valence FF parameters were optimized for n-butane (with
the vdW parameter fixed) and then used (without readjustment)
for polyethylene, whereas the vdW parameters were opumized
for PE with fixed valence parameters (vide infra). As a resuit.
we carried out a cycle of such optimizations. The final valence
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TABLE II: van der Waals Parameters for C and H°
Lil2-¢ exponential-6 exptl Williams?
vdW parameters (eq 12) OopPT' OoPT"
¢ 1o 1.0 12.0 120 12.0 130 13.0 13.0 14.0340
Ryc. A 380S0 3.9425 3.9425 38837 3.8837 3.8837 38410 38410 3.8410 38983
Dyc. keal/mol 0.06921 0.09115 0.09115 008444 0.08444 008444 0.07918 0.07918 0.07918 0.0951
$h 120 13.0 11.0 11.8 12.0 11.0 1.2 120 12,3822
Ryw. A 29267 33400 3.2212 32705 3.1975 31840 31810 3.1665 3.1132 3.3107
Dy y. keal/mol 0.0335 0.00830 0.01144 00145 0.0160 0.01613 00199 0.0200 0.0210 00128
cohesive energy.’ kcal/ mol 1.838 1.849 1.860 1.849 1.857 1.852 1.863 1.851 1.829 1.838 £ 0.032% 1686
zero-point energy cor/ 0.291 0.161 0.191 0.171 0.189  0.191 0.189  0.192 0.205 0270
kcal/mol
stress, GPa
. 0.0033 -0.0940 -0.0670 -0.0853 -0.0655 -0.0619 -0.0689 -0.0649 -0.0501 0 -0.1473
a,, -0.0029 0.0950 0.0679 0.0835 0.0672 0.0630 00646 00638 00512 0O —0.0587
setting angle. deg 417 424 423 424 423 424 424 424 423 41 £ 1¢ 434
lattice modes. cm™'
A, 67 43 49 45 48 49 47 48 S1 44
By, 87 67 74 73 74 75 78 78 78 (1089 104
" 94 79 84 83 84 85 86 36 86 80¢ 97
Eu 142 12 122 114 19 120 17 118 122 109¢ 125
198 126 147 129 141 144 137 140 150 1374 144
av error,® cm™! 36.0 5.0 9.0 5.3 6.0 7.7 47 6.0 10.7 133
rms error,” cm™! 40.8 6.6 9.7 5.7 6.6 8.1 5.8 6.5 11.2 14.1

2The calculations were carried out for the experimental structure at 4 K.#2 The optimum values are for {; = 11.8 with {c = 12.0and {y = 11.2
with {¢ = 13.0. *Reference 14. “Reference 15. ¢Reference 16. See discussion in section VI.A about the By, mode. ¢Using B,,. By,. and A; modes.
TE ;= DJ(R./R)'? - 2(R,/R)®]. #Reference 13. *Reference 10. ‘ These are the two sets of optimum parameters. We have selected {c = 13.0 for
the other studies in this paper. / The calculated cohesive energy was corrected by subtracting the calculated zero-point-energy correction from using

1, 1, and 2 points in k,, ky, and k. directions in the Brillouin zone.

FF parameters reported in Table | were optimized by using the
$y = 11.2 and {¢ = 13.0 vdW parameters of Table II.

The final parameters are listed in Table I. The presence of
cross terms leads to changes in the diagonal parameters as cross
terms are added.

E. Procedure for the Nonbond Interactions. In a study of the
elastic properties of graphite,? a force field for carbon was de-
veloped by requiring that the experimental parameters, elastic
constants, and vibrational frequencies be reproduced. For the
nonbond interactions, the available experimental data (¢ lattice
parameter and C;; elastic constant) allowed two vdW parameters
(R.c and D,¢) to be specified for an exponential-6 potential (12)
but not the third ({c). As a result, a family of parameters were
reported where £ = 11, 12, and 13 (see Table IT). In the current
paper we use the exponential-6 form (12) and optimize the vdW
parameters for hydrogen (£, R,u4. D,y) for each choice of £, as
described below. For hydrogen—carbon interactions we assume
the combination rules,

Anc = (AunAcc)'?
Byuc = 2(Buu + Bec)
Chc = (CuuCec)'?

These rules allow the accuracy-bounded convergence acceleration
(ABCA) calculations to be optimized® and have been found ad
equate in previous studies.'® )

The most complete previous studies of vdW parameters for H
and C is due to Williams and co-workers.!® Considering the X-ray
crystal structures of a number of hydrocarbons, Williams'? es-
timated the charges, fixed the internal structure of each molecule
(based on the X-ray studies), and optimized the C and H expo-
nential-6 parameters to obtain the most accurate unit cell pa-
rameters and sublimation energies. For two molecules (n-hexane
and benzene). there are accurate sublimation energies for 0 K and
hence these molecules were emphasized. Since these data fixed
only two parameters, Williams selected {c = 14.034 based on
theoretical estimates.

(8) Goddard IIl, W. A.; Karasawa, N. “Elastic Constants and Phonon
States for Graphite: van der Waals Parameters for Carbon™. J. Phys. Chem..
submitted for publication.

(9) Karasawa, N.; Goddard 111, W. A. J. Phys. Chem. 1989, 93, 7320.

(10) Williams, D. E.; Cox, S. R. Acta Crysialiogr. 1984, 90, 404.

Using our new vdW parameters for C, we initially optimized
the H vdW parameters by fitting to n-hexane and benzene.
However, a better procedure is to fit to the properties of PE. A
major reason for this is that the crystal structure data for n-
hexane'! are available only at 160 K and for benzene'? only at
77 K, whereas for optimization we need to compare with the
crystal parameters near 0 K. On the other hand, there are
structural parameters for PE down to 4 K.'* In PE there are
accurate experimental data'® for the sublimation energies near
0 K. Data for the lattice-mode (vibrational) spectra in the crystal
are available for all three systems, but for PE'31¢ these modes
are accurately known near 0 K, whereas for n-hexane'’ and
benzene!'® the experimental values are at higher temperatures (20
and 77 K, respectively).

At this point we would like to make a plea for accurate ex-
perimental studiesof cell parameters, thermodynamics, elastic
constants, and phonon dispersions of crystals at the lowest possible
temperatures, (say 4 K). Such data are essential for determining
the accurate vdW parameters needed for quantitative simulations
of the properties of polymers, ceramics, and biological systems.
With better data we could develop representations of the vdW
potentials more accurately than exponential-6 and we could
consider inclusion of the three-body terms that could be important
at short range. Our perspective is that the technology has been
available for such studies for over 20 years but that in the United
States and many other countries, funding for such fundamental
studies has lagged.

To determine the vdW parameters for H, we considered the
polyethylene crystal and varied the vdW parameters (12) to obtain
accurate cell parameters, lattice frequencies, and sublimation
energies. These are the only experimental quantities sensitive to
vdW interactions that are known near 0 K. Of the internal
coordinates, the most relevant quantity is the setting angle, 8, which

(11) Norman, N.; Mathisen, H. Acta Chem. Scand. 1961, 15, 1755.

(12) Bacon. G. E.; Curry, N. A,; Wilson, S. A. Proc. R. Soc. London, Ser.
A 1964, 279, 98.

(13) Avitabile, G.; Napolitano, R.; Pirozzi, B.. Rouse, K. D.; Thomas, H.
W.; Wills, B. T. M. J. Polym. Sci., Polym. Lett. £d. 1978, 13, 351.

(14) Billmeyer, Jr., F. W. J. Appl. Phys. 1957, 28, 1114.

(15) Dean, G. D.; Martin, D. H. Chem. Phys. Lent. 1967, /. 415.

(16) Harley. R. T.. Hayes, W_; Twisleton, J. F. J. Phys. C1973.6. L167

(17) Brunel, L-C; Dows, D. A. Spectrochim. Acta, Part A 1974, 30, 929.

(18) (a) Sataty, Y. A.; Ron, A.; Brith, M. Chem. Phys. Lett. 1973, 23, 500.
(b) Sataty, Y. A.; Ron, A. J. Chem. Phys. 1976, 65, 1578.
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TABLE III: Comparison of Electrostatic Energy (Eq) and van der Waals energy (E,) of Polyethylene from (a) Accuracy-Bounded Convergence

Acceleration (ABCA) Procedures and (b) Direct Summations®

(a) ABCA
tg. EQ. €yy ve
kcal/mol  kcal/mol  Rq. A  Ho A" g A keal/mol  keal/mol Ry A  Hu A" g A RA Ng Ny
0.05 0.1351 4.1 43 1.7 0.01 -5.5729 S 42 1.8 5.6 560 189
0.005 0.1299 47 47 1.6 0.001 -5.5749 5.7 46 1.8 6.4 832 231
0.0005 0.1313 5.4 S.0 1.6 0.0001 -5.5747 6.1 5.1 1.7 2.2 1244 585
(b) Direct Sum
Rat A Eq. keai/mol E,. kcal/mol Nieat
9 -69.4635 -4.6865 2388
15 26.7702 -5.4015 11308
25 -31.8484 -5.5386 52743
35 12.8783 -5.5618 144895

9 Here ¢ is the specified accuracy parameter. Cutoff distances in real space (R) and reciprocal space (H), convergence parameters (n). number of
cells in reciprocal space (/N,e), and number of atom pairs used in real space (V) are shown for each ¢. Subscripts are Q for electrostatic. d for
dispersion, r for repulsive, and v for van der Waals (sum of dispersion and repuision terms). ®Using a cubic spline function to decrease the potential

from full value at R, - | A to zero at Ry,

is the angle between the ac lattice plane and the CC plane of either
chain. As indicated in Table Il. the setting angle is independent
of the vdW parameters, and we did not use the setting angle in
fitting parameters. In these studies, we considered a range of
values for { and used the experimental cell parameter and co-
hesive energies to determine the optimum R, and D,y for each
$u- [We required that the residual stress in the a and b directions
add to zero for the experimental cell parameters.]

We optimized all 3N = 36 internal coordinates simultaneously
with the six cell coordinates. This leads to the results in Table
II where we see that better fits of cell parameters are obtained
for larger {;. On the other hand, lattice frequencies are too large
for large {y. To obtain an exact fit we need a form of the vdW
potential with a less repulsive inner wall than exponential-6.
However, we do not believe there is enough data to test a more
flexible function. We chose two sets, {¢c = 13.0, { = 11.2 and
$c = 12, {y = 11.8, as the best compromises. These values lead
to a good description of the lattice frequencies and less than 1.5%
error in the a and b lattice parameters. As shown in the table,
these two sets give very similar results. In this paper, we use {¢
= 13 and {14, = 11.2 for all the calculations (including optimization
of valence parameters) for polyethylene. In addition to the
properties of PE reported here, these vdW parameters were used
to calculate various properties for a number of hydrocarbon
crystals, leading to excellent results.!”

In Table II we have also included the results using the van der
Waals parameters of Williams.'® These calculations use {¢ =
14.0340, va = 3.8983, and Dvc = 0.0951; ;H = 12.3822, RVH
= 3.3107, and Dyy = 0.0128. In the Williams approach the
nonbond interactions are calculated with each CH bond shortened
by 0.07 A from the experimental value (from 1.096 to 1.026 A
for PEC). In PE the charges are 0.102 on each H and -0.204 on
each C.

We see that the cohesive energy is about 8% smaller than
experiment. Also ¢,, and o,, are both negative, indicating that
the optimum cell parameters would be too large for these pa-
rameters. This would be expected because Williams’ parameters
are fitted to room temperature lattice parameters. The average
error for the lattice frequencies is 13.3 cm™, which is about twice
as large as the errors for the parameters developed here.

III. Calculationsl Details

A. Nonbond Summations. For all calculations on crystals,
we use the ABCA procedure’ to optimize convergence of the
Coulomb (1/R) and dispersion (1/R®) energies. In ABCA the input
data are the required accuracy in the energy : = generally use
¢q = 0.005 keal/mol for electrostatic sums and ¢, « 0.001 kcal/mol
for vdW sums) rather than cutoff distances. The program then

(19) Karasawa, N.; Goddard, W. A. “Lattice Properties and van der Waals
Parameters for Hydrocarbons®. To be submitted for publication.

chooses Ewald parameters’ nq and n, for the electrostatic and
dispersion sums and chooses cutoff distances R, and H, for the
real space sums and reciprocal space sums so that the terms beyond
the cutoffs sum to less than e. This estimate of the error is obtained
by converting the sum of terms past the cutoff (R, or H,,) to
an integral, leading to an analytic approximation to the tota! error.’
For a wide range of Ewald parameters n one can find values of
R, and H, that yield the desired accuracy ¢ however, the
number of terms required in the real space sum relative to the
number for the reciprocal space sum increases with . Since the
computational costs for real space terms are a factor of S or 10
larger than for the reciprocal space sums, ABCA selects 7 so as
to minimize computation cost while ensuring a given accuracy
¢. Similarly for the repulsive (exponential) part of the vdW
interactions, ABCA estimates the R, to achieve the specified
accuracy ¢,. For the calculations of energies, forces. stresses, and
second derivatives in this paper, we use ¢q = 0.005 kcal/mol and
¢, = 0.001 kcal/mol. For purposes of predicting structure and
unit cell parameters accuracies of 0.1 kcal/mol would be satis-
factory.

The ABCA procedure is illustrated in Table I1I for PE. Here
we see that changing the accuracy parameter for Coulomb sums
from ¢q = 0.05 to 0.005 to 0.0005 kcal/mol leads to £q = 0.1351,
0.1299, 0.1313 kcal /mol, consistent with the specified accuracies.
This requires real space sums out to 4.1, 4.7, and 5.4 A, respec-
tively, and 560, 832, and 1244 pairwise interactions. [Actually
fewer terms are required; the N, in Table I1I is determined by
the largest R, (which is R, in each case) and the program
evaluates Eq using the smaller set satisfying Rq.] In contrast.
the direct sum approach using cutoffs of 9, 15, 25, and 35 A leads
to energies of —69.46, 26.77, -31.85, and +12.88 kcal/mol. re-
spectively, with 2388, 11308, 52743, and 144 895 pairwise in-
teractions. Thus it would be far more accurate to ignore charges
than to evaluate Eq with the direct summation approach! For
the dispersion energy the errors in the direct approach are smaller
but still too large (16% error for 9 A cutoff, 3% error for 15 A
cutoff) for accurate properties.

B. Optimization. All calculations were carried out using
POLYGRAF,? an interactive molecular simulations package for
molecular mechanics and molecular dynamics of polymer crystals.
During the calculations, the 3N = 36 atomic coordinates and the
six cell coordinates were simultaneously optimized and displayed
on an Evans & Sutherland PS330 graphics system at each op-
timization cycle. The atomic coordinates were optimized by using
conjugate gradient techniques until the rms force per degree of
freedom became less than 0.02 (kcal/mol)/A. All six cell pa-
rameters were also optimized by using conjugate gradient tech-
niques (where the internal coordinates were optimized for cach

(20) POLYGRAF is an interactive molecular simulation/three-dimensionai
graphics program from Molecular Simulations Incorporated, Pasadena. CA
91101.



101

Properties of Polyethylene Crystal

TABLE IV: Optimized Cell Parameters and Setting Angle (6) of
Polyethylene Crystal Using n-Butane Parameter Sets
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TABLE V: Geometries and Properties of Isolated Chain and Chain of
Optimum Crystal

a b ¢ a 3 Y

n-butane MC 7202 4795 2.542 90.0 900 90.0 4
n-butane MCX  7.203 4797 2.545 90.0 90.0 900 4
n-butane-MCXX 7202 4795 2546 90.0 90.0 900 4
expt at 4 K® 7121 485! 2.548 900 90.0 90.0 4

?g. b.and c are in A, and a. 3. v. and 6 are in degrees (using {¢c =
130 and ¢y = 11.2). The setting angie is the angle between the ac
plane and the plane containing the C-C bonds of a chain. ®Reference
13.

choice of cell parameters) until the rms strain derivatives became
less than 0.002 kcal/mol. At the optimized structure, all stress
components are less than 0.0005 GPa.

C. Phonon States, Moduli, and Thermodynamics. Using the
predicted equilibrium structure, we caiculated the elastic constants
and phonon frequencies from analytic first and second derivatives
of the energy. These elastic constants were used to calculate the
Young's moduli (£,) and compressibility (8).

Phonon frequencies for all 36 vibrational bands were calculated
as a function of wavevector. We report the phonon dispersion
inthe (00 1], [1 00}, and (I | O] directions for PE crystal. In
order to compare with neutron scattering data,?' we also report
the lattice modes in the {1 0 0] and [1 1 O] directions for deu-
teriopolyethylene crystal.

To obtain thermodynamic properties we calculated all 36
phonon states for the 1000 equally spaced points in the Brillouin
zone obtained by using 10 points along each reciprocal lattice
vector. The quantum partition function of the crystal was then
described in terms of the sum (properly weighted) of 36 000
Einstein oscillators (using the harmonic oscillator quantum
partition function).

D. Finite Strains. The above properties relate to the equi-
librium configuration of the PE crystal. In addition, we examined
the response of this crystal to large strain (tension and com-
pression) in the directions perpendicular to the chain axis.
Sufficiently large strain in these directions fractures the crystal
and creates a new surface. To simulate this behavior, we con-
sidered the calculational unit cell to contain four crystallographic
unit cells in either the a or b directions and deformed the cell in
the a or b directions, respectively. The procedure was first to strain
the cell coordinates without changing the internal atomic coor-
dinates (within each cell) and then reoptimize the internal co-
ordinates while keeping the strain fixed. These studies used ABCA
accuracy parameters of ¢, = 0.005 kcal/mol and ¢, = 0.001
kcal/mol. Optimization of atomic coordinates continued until
rms forces were less than 0.05 (kcal/mol)/A.

These calculations were carried out with two boundary con-
ditions for the cell coordinates perpendicular to the strain direction:

(a) zero stress—the cell coordinates perpendicular to the strain
are optimized along with the atomic coordinates to obtain zero
stress:

(b) fixed strain—the cell coordinates perpendicular to the strain
are kept fixed at the unstrained values. Case a simulates the
conditions of a real experiment where the crystal would relax to
obtain zero stress perpendicular to the applied stress.

IV. Structure and Cobesive Energy

A. Crystal Structures. The optimized structures of PE are
shown in Table IV along with the experimental values.'* With
full optimization of cell parameters and atomic coordinates, the
cell angles are all 90 £ 0.1°. For the chain direction (¢) the
calculated cell parameter (n-butane MCXX) is 0.08% smaller than
experiment (at 4 K). The differences in ¢ for various force fields
seem to arise from very small shifts in the equilibrium C-C bond
distance. For the directions (a, b) perpendicular to the chains
the errors are 1.1% for @ and -1.1% for b (n-butane MCXX).
These parameters depend mainly on the vdW parameters, which

(21) Twisleton, J. F.; White, J. W.; Reynolds, P. A. Polymer 1982, 23, 578.

isolated chain of
chain optimum crystal
lattice parameters, A
c 2.5459 2.5457
bond distances. A
c-C 1.533 1.532
C-H 1.096 1.095
bond angles, deg
c-C-C 112.30 112,42
H-C-H 108.81 108.64
C-C-H 108.92 108.93
velocity of sound
te. km/s 17.8 17.9
Young's modulus
E. GPa 3357 3371

TABLE VI: Theoretical and Experimental Lattice Energy of
Polyethyleme Crystal®

total energy zero-point energy

lattice energy”

isolated chain 3.9035 17.4199

crystal 1.8549 17.5984

difference 2.0486 -0.1785 1.8701
experiment 1.838 £ 0.032°

@ All energies in kcal/mol per CH,. ®Reference 14. “Total energy
corrected for zero-point energy.

are unchanged. Perhaps the changes in b are due to small changes
in the equilibrium C-C-C angle. The calculated setting angie
is 8 = 41.9°, which agrees quite well with the experimental value
of 4] £ 1° at 4 K.

B. Lattice Energy. Using all available thermodynamic data
(heats of fusion, heats of vaporization, and heat capacities) on
n-alkanes, Billmeyer'¢ estimated the cohesive energy of crystalline
PEat 0K as

AHDY = 1.838 % 0.032 keal /mol

per CH, group. This is the energy to separate the PE crystal into
isolated all-trans PE chains.

To calculate the energy and zero-point energy of the isolated
chain, we used a single chain in the three-dimensional tetragonal
cell with @ = b = 100 A and optimized the atomic coordinates
and cell parameters. a and b do not change during the optimi-

" zation, indicating that the chains can be regarded as isolated. In

Table V we see that there are small changes in the structural
parameters when the lateral forces of the crystal are absent. Thus
the C-C—C bond angle increases by 0.12°, while the H-C-H angle
decreases by 0.17°. Also the CH and CC bond distances decrease
by 0.001 A.

At the optimized structure, the zero-point energy is calculated
by using 1000 points in Brillouin zone. As indicated in Table VI,
the lattice energy per CH, group is calculated as 2.0486 kcal/mol
(n-butane force field). After the zero-point energy is corrected,
this value becomes 1.8701 kcal/mol, which can be compared with
the experimental value'* of 1.838 % 0.032 kcal/mol at 0 K.

V. Moduli and Elastic Coastants

A. Young's Modulus. Although it is not yet possible to obtain
single crystals of PE, it is possible (by successive drawing along
the chain axis) to obtain fibers in which the crystalline regions
are highly oriented, with the chain axis along the fiber axis. Thus
there are a number of experimental measurements for the Young's
modulus along the chain direction, E.. Unfortunately, careful
experimental results span the range from 210 to 340 GPa!

1. Review of Experiments on Young's Modulus. Using X-ray
diffraction to observe directly the changes in cell coordinates for
various crystallites as stress is applied leads to a Young's modulus
(at room temperature) of 235 GPa?? or 213-229 GPa.?® Since

(22) Sakurada, I.: Nukushina, Y ; Ito, T. J. Polym. Sci. 1962, 57, 651
Q) M M.; S i, C. Macr lecules 1986, 19, 2036.
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TABLE VII: (a) Comparison between Elastic Constants Using
Various Force Fields at Optimized Cell Parameters. (b) Elastic
Constants from Various Experimental Cell Parameters Using
n-Butane MCXX Force Field Parameters®

(a)
n-butane
MCXX MCX MC
C 14.0 14.0 13.9
Cyy 13.5 13.6 135
Cyy 3389 287.1 2379
Ci 79 79 79
Cs 2.1 28 23
Cy 438 5.4 438
Cu 5.3 5.4 54
Cis 3.0 3.0 30
Ces 5.9 6.0 59
E, 94 9.4 9.3
E, 9.0 9.1 9.0
E. 3371 284.9 236.1
8. GPa~! 0.0937 0.0936 0.0943
E_ (isolated chain) 335.7 283.2 234.4
(b)
4 Kt 77KS 213Ke 303K 411 K€
Ch 14.9 133 10.6 8.3 39
-+ Cyy 129 1.2 9.6 8.2 5.4
Cy 338.2 333.2 325.7 318.4 306.5
Ch 7.8 6.9 5.4 43 3.7
Ch 2.2 1.8 1.2 0.7 0.09
Cy 42 35 3.0 25 1.9
Ca 48 4.0 35 3.0 2.5
[ 29 2.5 2.1 1.7 1.4
Ces 6.7 6.1 4.7 36 2.3
E, 10.2 91 7.5 6.1 1.3
E, 8.8 7.6 6.8 6.0 1.8
E, 336.8 3321 3247 317.6 304.6
B.GPa"'  0.0945 0.107 0.130 0.161 0.258
a, A 7121 7.155 7.287 7.413 7.706
b A 4.851 4.899 4918 4.942 4,936
. A 2.548 2.5473 25473 25473 25473

6, deg 42.4 425 423 422 40.4

¢ All quantities in GPa unless otherwise indicated. ®Cell parameters
(a. b, and ¢) from ref 13. <Cell parameters (a, b, and ¢) from ref 31.

the crystallites are separated by amorphous regions, Matsuo and
Sawatari® used samples with various draw ratios to determine
the effects of amorphous regions in the crystal upon the measured
Young's moduli and found no significant changes in £, indicating
that £, = 225 GPa is the intrinsic value (at 300 K) for ihe
embedded crystallites.

An alternative strategy to oriented crystals is to grow PE fibers
at 120 °C from solutions of high molecular weight PE in xylene.%
With such fibers, Barham and Keller? used a dynamic tester to
measure the tensile modulus and loss factor (tan 6) as a function
of temperature. The direct measurement leads to a maximum
modulus of £, = 262 GPa (at 77 K), which they consider a lower
bound. Correcting for finite strain rate and other factors, they
estimate a true modulus at 77 K of £, = 288 £ 10 GPa, and they
suggest that the modulus should increase to £, = 324 GPa at 0
K

This value of 288 GPa is the largest directly measured modulus
for PE. Other estimates of the modulus come from spectroscopic
studies or theory. Thus, using inelastic neutron scattering to
measure the dispersion in the longitudinal acoustical phonon band
of PE leads to £, = 329 GPa¥ (from the slope of the dispersion
curve) at 300 K.

An alternative estimate can be made by extrapolating the
vibrational frequencies of accordion-like motions (from Raman

(24) Zwitnewberg, A.. Pennings, A. J. Colloid Polym. 1976, 252, 868.
(25) Barham, P. J.; Keller, A. J. Polym. Sci., Polym. Lett. Ed. 1979, 17,

591.
(26) Holliday, L.; White, J. W. Pure Applied Chem. 1971, 26, 545, and
references therein.
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TABLE VIil: Young’s Moduli (in GPa) of Polyethylene®

0K 7K 300 K
(a) £, (chain axis)
theory (MCXX, n-butane) 337 332 318
experimental
direct
X-ray 2358
X-ray 213-229¢
dynamic tester (324 £ 30)f 288 = |0/
spectroscopic
neutron scattering 329¢
Raman 358 = 25
Raman 290 £ 5¢
(b) E, (L chain. long axis)
theory (MCXX. n-butane) 9.4 9.1 6.1
experiment
X-ray 32
X-ray 2.5
X-ray 5.0
(c) Ey (L chain, short axis)
theory (MCXX, n-butane) 9.0 7.6 6.0
experiment
X-ray 39
X-ray 1.9

¢The theoretical values are calculated from £, = (S§,)". E, =
(Say)™', E. = (Sy;)”", where S = C' is the compliance matrix.
®Reference 22. Reference 23. ¢Reference 28. Extrapolation from
isolated n-alkane chains corrected for interlamellar interactions.
*Reference 26. /Reference 25. #Estimated in ref 25. *Reference 27,
extrapolation from isolated n-alkane chains. ‘Reference 29.

spectroscopy) for the series of linear hydrocarbon molecules (C4
to Cyy) to the value for an infinite chain.” One such extrapolation
leads to a Young's modulus of 358 £ 25 GPa at 300 K for the
infinite chain.?’ Another extrapolation includes corrections for
the effect of interlamellar forces in the crystal and leads to an
estimate fo 290 £ S GPa at 300 K for the infinite chain.®

2. Calculations. The theoretical value of E, depends strongly
on the valence parameters of PE, most notably the angle—angie
cross terms. Thus, with better fits to the force field of n-butane.
we find more accurate values of £, with £, = 236 GPa for MC,
285 GPa for MCX, and 337 GPa for MCXX (see Tabie VII).
Thus we take £, = 337 GPa as the theoretical value, which is in
agreement with the estimated value (£, = 324 GPa at 0 K) from
studies of high modulus PE on a dynamic tester. Various ex-
perimental results are tabulated in Table VIII.

Using the experimental cell parameters for 300 K, we calculate
E. = 318 GPa, which is in good agreement with the neutron
scattering results of £, = 329 GPa.

For the isolated chain (with the density at 300 K, 0.998 g/cm’),
we calculate £, = 316 GPa, which is close to the average for the
two extrapolations of Raman data (358 % 25 GPa?’ and 290 +
S GPa®). Thus the interaction between chains leads toa 1.4 GPa
increase (0.5%) in £ (the correction is sensitive to the quality
of the force field: see Table Vlia).

We carried out caiculations of the vibrational frequencies for
normal alkanes up to C,¢H;, using the MCXX force fields. The
accordion modes from these calculations are compared with ex-
periment in Table XIII where we see excellent agreement (about
0.7% lower than the least-squares fit?’ to data with higher .\)
In this table, we show the experimental frequencies observed in
the liquid and solid phases*? together with a least-squares fit to
these frequencies.?’ This agreement suggests that our calculated
elastic constants (318 GPa at 300 K and 337 GPa at 0 K) are
about 1.4% lower than the true experimental values (suggested
as 322 and 341 GPa, respectively).

Summarizing, the extrapolated modulus for the dynamic tester
and the results from neutron scattering and Raman spectroscopy
are all consistent with the theoretical values of Young's modulus.
E.=337GPaat 0K and E. = 318 GPa at 303 K. On the basis

(27) Shaufele. R. F.; Shimanouchi, T. J. Chem. Phys. 1967, 47, 360°
(28) Strobl, G. R.; Eckel, R. J. Polym. Sci.. Polym. Phys. Ed. 1976. : 4
913.
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TABLE IX: Comparison of Theoretical and Experimental Elastic
Constants at 213 and 77 K¢

T=213K T=77K
theory exptl® theory exptic
C 10.6 84 13.3 1.5
Cy 9.6 1.2
C, 3257 102 3332
C.y 54 42 6.9
Cyy 1.2 5.5 1.8
Ci 30 35
Cea 3.5 1.81 4.0
Css 21 2.5
Coo 47 2.02 6.1
a 7.287 7.155
b 4918 4.899
¢ 2.5473 2.5473

°Cell parameters from ref 31 are used in the calculation.
®Reference 30. The values for HDPE (draw ratio = 27) at =60 °C.
“Reference 21.

of comparison to Raman data for linear alkanes, we estimate the
exact results to be

E. =341 £9GPa
E. =322 £9GPa

at0K
at 300 K

In contrast, the Young's moduli in the a and b directions (per-
pendicular to the chain) depend most sensitively upon the vdW
parameters and the temperature. We find £, = 9.4 GPa and Ey
= 9.0 GPa for the theoretical cell parameters and

E,=102GPa at4K
E,=88GPa a4k

for the experimental cell parameters at 4 K. This indicates that
the interactions between the chains at the corner and center of
the unit cell are stronger than those along the short (b) axis.

Experimental results for the moduli perpendicular to the chains
(E, and Ey) are expected to be far less reliable than for E, because
crystalline imperfections should greatly decrease the net bonding.
In addition, thermal expansion leads to large decreases in those
moduli as temperature is increased from 0 K to room temperature.
Thus, using the experimental cell parameters at room temperature,
we find

at 300 K
at 300 K

E, =6.1GPa
E, = 6.0 GPa

(decreases of 4.1 and 2.8 GPa, respectively). Three sets of ex-
perimental moduli perpendicular to the chain direction of PE have
been reported:? (1) E, = 3.2 GPa, E, = 3.9 GPa, (2) E, =25
GPa, £, = 1.9 GPa, and (3) E, = 4.0 GPa. All are much smaller
than the calculated moduli.

B. Elastic Constants. The calculated elastic constant values
for various force fields are listed in Table VII. Only the chain-
chain constant Cj, changes appreciably, suggesting that for PE
crystal the elastic constants involving distortions parallel to the
chain are largely determined by the valence force field, while the
perpendicular and shear elastic coastants are largely determined
by the nonbond force field.

Choy and Leung® measured the elastic constants of PE at 213
K using high-density polyethylene with a draw ratio of 27. This
should orient the chains toward the axis, but incompletely. The
result is a value of Cy; = 102 GPa, which is less than one-third
of the limiting value (326 GPa at 213 K). In Table IX we compare
the experimental results with calculated values using the exper-
imental unit cell at 213 K. The other experimental values are
smaller than values obtained here except for C 13 (see Table IX).

(29) Odajima, A.: Maeda, T. J. Polym. Sci. C. 1966, 5. S5.
2 (3(7);9Choy. C. L.: Leung, W. P. J. Polym. Sci., Polym. Phys. Ed. 1988,
L R
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TABLE X: Comparisons of Theoretical (MCXX) and Experimeatal
Vibrational Frequencies (cm™) of Polyethylene Crystal at the I' Point
(Zone Center)

calculations
optimum expt?
mode?® symmetry cell (300 K) (300 K)
lattice A, 50 39
B;, 82 65 (108)¢
B, 84 66 80°
By 115 88 109¢
A, 132 105 1374
CH, rock By, 784 783 720
B, 798 791 73]
Ag 1164 1163 1168
B,, 1165 1164 1168
CH, twist A, 1031 1032
By, 1033 1033 1050
By 1306 1305 1295
By 1311 1308 1295
skeletal Byg 1046 1042 1061
By - 1052 1046 1061
Byy 1101 1097 1131
Ag 1101 1097 1131
CH, wag A, 1220 1219
By, 1216 1216 1175
By, 1438 1435 . 1415
Byg 1441 1437 1415
CH, sciss Ay 1461 1462 1440
Bjg 1490 1485 1464
By 1484 1482 1463
B, 1485 1481 1473
CH, sym str B,, 2873 2865 2851
B 2873 2868 2851
Byg 2890 2880 2848
Ag 2892 2882 2848
CH; asym str Ay 2924 2913 2883
Byg 2934 2922 2883
By, 2937 2929 2919
By 2937 2929 2919
[V 24 24

?Reference 32 unless indicated otherwise. T = 300 K. ® The modes
are grouped by type and the label placed with the first mode of a type.
“Reference 15. T =2 K. YReference 16. T =4 K. ¢ Excluding lattice
modes.

There is also an experimental value of C,, = 11.5 GPa (at 77
K) from Twisleton et al.*' which can be compared with the
calculated elastic constant of C,, = 13.3 GPa using cell parameters
for 77 K3' (see Table 1X).

VI. Phonoas and Thermodynamics

A. Vibrational Frequencies. The MCXX force field from
n-butane leads to the vibrational levels of polyethylenes as reported
in Table X (all at the T point or zone center). In these calcu-
lations, we did ot change any parameters for n-butane; we used
the predicted cell parameters and the experimental cell parameters
at 300 K. The experimental vibrational frequencies of PE from
infrared and Raman spectra are also listed in Table X (the lattice
modes are for 2 and 4 K, but the higher modes are at 300 K).
The average error for PE at room temperature is 24 cm™'. In
comparison, this force field leads to an average error of 7.9 cm™!
for the free molecule n-butane. Although we could have readjusted
the valence force field to obtain a better fit to the vibrations, we
have not done so here. The reason is that we consider this pro-
cedure of calculating the phonons and other properties of crystals
using the valence force field for a finite molecule to be a prototype
for similar calculations for many other polymers where experi-
mental data are not available.

Overall agreement between calculated and experimental in-
tramolecular frequencies is good. The exception occurs for the
CH, rocking modes observed in PE at 720 and 731 cm™' but

(31) Swan, P. R. J. Polym. Sci. 1962, 56, 403.
(32) Tasumi, M.; Shimanouchi, T. J. Chem. Phys. 1968, 43, 1245
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Figure 1. Phonon dispersion curves of polyethylene crystal (MCXX
n-butane force field) (a, top) in the chain direction (¢ axis) and (b,
bottom) in the [1 0 0] and [1 1 0] directions. In (a), frequencies of the
isolated infinite chain at k = 0 and those of n-butane are also shown.

caiculated at 789 and 798 cm™!, respectively. The analogous mode
for n-butane is well described (0.5 cm™ error, observed at 733
cm™') where it involves a mixture of CH, rock and CH,—-CH,
torsion modes. In contrast for PE, this mode corresponds to nearly
pure CH, rock motion. Probably fitting to the modes of n-pentane
or n-hexane (which have purer rock character) would have im-
proved the comparison for PE. The temperature dependence of
the splitting in the 720 and 731 cm™ modes indicates that in-
termolecular interactions may also play some role in these modes.

In the case of B, modes, we find that the frequency of the
internal mode depends on the direction of the wave vector near
the T point. In such modes, nonzero polarization is produced in
the unit cell and a depolarization field is created. This field
depends on the direction of the wave vector and affects the lattice
distortion differently;’* hence, the frequency depends on the di-
rection of the wave vector. For example, the calculated frequency
for the B,, rocking mode is 784, 784, and 797 cm™' for wave
vectors in the z, x, and y directions, respectively. However, in
this case, the allowed transition occurs only for the z and x di-
rections, so that 784 cm™' is quoted. Similarly for all other B,

(33) Briesch, P. Phonons: Theory and Experiments I, Springer-Verlag:
Berlin, 1982.
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Figure 2. Schematic diagram for lattice modes of PE: (a) wave vector
along chain axis; (b) wave vector perpendicular to chain axis.

modes, the allowed directions for the wave vector lead to equivalent
results and only such values are quoted in Table X.

The various Raman and infrared (IR) experiments provide data
for four of the five possible lattice modes. Three modes (B,,, B,,,
and A,) are strong and well resolved experimentally:'*!6 however,
one mode, B, is rather weak and observed at a value nearly
concident with the B,, mode.' Consequently, we used the three
former states to select the optimum scale parameter {y.

B. Phonon Bands. The phonon frequencies of the lattice bands
calculated along the {00 1], [1 0 0], and [1 1 O] directions are
shown in Figure 1.

Also indicated at the left in Figure 1 are the modes for the
isolated chain (for the I’ point). Thus, the packing of PE fibers
leads to only small changes in the positions of these levels. Also
indicated at the left in Figure 1 are the positions of the vibrations
in n-butane associated with the central CH, groups. From these
comparisons we see that the modes associated with CH, motion
in n-butane correspond closely to the modes in PE. In addition,
the C—C stretch modes of n-butane correspond to the skeletal
modes of PE. However, the C—C-C angle-bend and torsion modes
of n-butane become lattice modes in PE.

The lattice modes can be understood by considering the crystal
of PE fiber to be a collection of round rods packed together. This
is indicated in Figure 2 for vibrations parallel and perpendicular
to the chain direction. The energies of these lattice modes are
sensitively dependent upon the vdW interactions. Indeed, we used
the comparison with experiment to help determine the { vdW
parameter. For the [0 0 !/,] point we see that the eight lattice
modes have coalesced into four, at 268, 272, 442, and 451 cm™".
These values correspond roughly to the g and u modes for C-C-C
bend in n-butane (425 and 267 cm™, respectively). The torsion
mode for the central bond in n-butane is at 155 cm™.

For wave vectors perpendicular to the chain (Figure 1b), the
highest energy lattice mode is at 130 cm™. Thus, for temperatures
above ~200 K, all such lattice modes are activated, allowing the
spacing and orientations of the rods freedom to change rapidly.
It is interesting that the glass transition temperature of PE is ~213
K, which corresponds reasonably well to the highest lattice mode
perpendicular to the chain. This is reasonable since multiple
energy loss processes for macroscopic deformation of the polymer
become possible when all lattice modes are active. It will be
interesting to see if the lattice modes of other polymers correiate
with the glass temperature.

Inelastic neutron scattering experiments have been reported
for deuteriopolyethylene in the direction [1 0 0] and [1 1 0},%!
and hence we calculated (Figure 3) the phonon bands of deu-
teriopolyethylene (using the experimental cell parameters at 77
K). For the ['/, !/, 0] direction there is excellent agreement in
the dispersion for the lowest three observed transitions. The
highest observed case lies in between the two calculated curves
(LA,4, and TO,). Similarly for ['/, 0 0], the lower energy
transition corresponds well to LA,, but the highest observed
transition is between LA, and TA),.

Low-frequency Raman-active vibrations of n-paraffins have
been studied by Wu and Nicol,*' OIf and Fanconi,” and Vergoten
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TABLE XI: Calculated Thermodynamic Properties of Polyethylene Crystal

2269

C, Co S, v. F,
T.K cal/(mol K) cal/(mol K) cal/(mol K) kcal/mol kcal/mol 10%a, K-! v, A3 8. GPa™!
20 0.1769 0.1756 0.0689 0.0010 -0.0004 0.433 22.006 0.0946
40 0.6583 0.6473 0.3286 0.0091 -0.0041 0.907 22.036 0.0956
60 1.1836 1.1495 0.6869 0.0270 -0.0142 1.32 22.086 0.0975
80 1.6701 1.5990 1.0809 0.0546 -0.0318 1.67 22.151 0.1000
100 2.0944 1.9764 1.4795 0.0905 -0.0574 1.95 22.230 0.1031
120 2.4629 2.2931 1.8686 0.1333 -0.0909 2.17 22.324 0.1069
140 2.7875 2.5692 2.2432 0.1820 -0.1321 2.32 22426 0.1114
160 3.0838 2.8240 2.6030 0.2360 —0.1805 241 22.530 0.1160
180 3.3583 3.0727 2.9500 0.2949 -0.2361 243 22.643 0.1213
200 3.6158 3.3258 3.2868 0.3589 -0.2985 2.37 22.749 0.1267
220 3.9075 3.5898 3.6160 0.4280 -0.3675 2.41 22.859 0.1325
240 4.2043 3.8677 3.9402 0.5025 -0.4431 243 22.970 0.1387
260 4.5141 4.1597 4.2612 0.5828 -0.5251 244 23.082 0.1450
280 4.8410 4.4646 4.5806 0.6691 -0.6135 2.48 23.195 0.1524
300 5.1937 4.7798 4.8993 0.7615 -0.7083 2.57 23.312 0.1601
320 5.5796 5.1022 5.2180 0.8603 -0.8095 2.73 23.436 0.1686
340 6.0067 5.4287 5.5372 0.9656 -09171 3.00 23.570 0.1790
360 6.4897 5.7565 5.8567 1.0774 -1.0310 3.38 23.720 0.1916
380 7.0399 6.0829 6.1767 1.1958 -1.1513 391 23.893 0.2086
400 7.6699 6.4059 6.4970 1.3207 -1.2780 4.59 24.096 0.2316

“The vibrational specific heat (Cp, C,), entropy (S), energy (U), and free energy (F) are each per CH, of polyethylene crystal (using n-butane
MCXX force parameters). Thermal expansion coefficient (a), volume (V), and compressibility (3), used to convert C, to C,, are also shown.
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Figure 3. Phonon dispersion curves of deuteriopolyethylene crystal
(MCXX n-butane force field) in the [1 0 0] and [1 1 0] directions.
Experimental points are from ref 21.

et al.% OIf and Fanconi® and Vergoten et al.* find that low-
frequency modes of orthorhombic n-paraffins correspond to the
transverse acoustical branches of polyethylene (TA, and TA, in
Figure 1a). In Figure 8 we show these phonon bands calculated
using the experimental cell parameters at 77 and 168 K (atomic
coordinates and setting angles were optimized). As indicated in
Figure 8, the modes assigned by Vergoten et al.? agree quite well
with our calculations. However, the assignments by OIf and
Fanconi do not agree with our calculations or with the resuits by
Vergoten. Since our calculated bands perpendicular to the chain
direction also agree well with the neutron-scattering experiments
(which provide a more direct test), we suggest that the assignments
for the experiments by OIf and Fanconi be reconsidered.

C. Thermodynamic Properties. Thermodynamic properties
were calculated by using the phonon states at 0 K (see section
H1.C for details) and are reported in Table XI as a function of
temperature.

The calculated values of specific heat at constant volume C,
were converted to constant pressure, C,, using the thermodynamic
relation C, = C, + Va?T/B, where V is the volume, a is the
thermal expansion coefficient, and 8 is the compressibility (8 =
Z,’,.,(C"'),,}. Temperature variations of cell parameters were
measured by Swan®' between 203 and 403 K. Experimental results
are also available at 4 and 90 K.'* Using spline fits to these data
yields the (T and a(T) in Table XI. With these cell parameters
we calculated 8(7) as in Table XI. This leads to the C,(T) given

’a ‘0 T T T T T T T
I
o | PE 7
x 2
° 30 Z
E
2 L
oa
"'_) 20+
<
w -
I
O 10
w
[&] L
w
n. 0 L A 1 1 1 L 1
« 0 100 200 300 400

TEMPERATURE (K)

Figure 4. Calculated C, and experimental® C, versus temperature.

in Table XI, and these are compared with experimental® C,(T)
in Figure 4.

These calculations of the thermodynamic properties assume each
normal mode (phonon) is harmonic, an approximation that be-
comes poorer at higher temperatures. This should underestimate
C, at high temperature. We see that the theoretical and exper-
imental C, are in excellent agreement below 300 K but diverge
increasingly as the melting temperature (414.6 £ 0.5 K*) is
approached.

VII. Finite Stress-Strain Relations

A. Stress and Ultimate Yield Stress. In Figure 5a, stresses
are plotted as functions of deformation of the cell in the a and
b directions. Here the cell parameters perpendicular to the de-
formation direction and the atomic coordinates are optimized
starting from the structures optimized at fixed cell parameters.
In both directions, there is a near singularity at a value (o)
beyond which two new surfaces are created. Below this distance,
the polymer rods are uniformly spaced. As the crystal is stretched,
the rods separate further until a distance is reached at which it
is better to create a surface and let all other chains relax to their
normal distance. For the a direction, the yield point is o, = 0.097
GPa at 1.0% strain and the ultimate stress is o,, = 0.20 GPa at
3.5% strain. For the b direction we find ¢, = 0.23 GPa at 3.1%
strain and o, = 0.44 GPa at 8.3% strain.

In Figure 5 we see that the stress—strain relation is approxi-
mately linear (elastic) up to the yield point (s,), and it bends over

(34) Gaur, U.; Wunderlich, B. J. Phys. Chem. Ref. Data 1981, 10, 119
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Figure 8. Stress versus strain for finite deformation in the a and b
directions of polyethylene crystal (MCXX n-butane force field). Cell
parameters perpendicular to the deformation direction are optimized in
(a, top) and fixed in (b, bottom).

as the system enters a nonlinear regime. This is reminiscent of
the properties of any ductile material, where Young's modulus
is constant up to the yield stress g,. At this point, plastic de-
formation begins and the modulus decreases with further strain
until the ultimate stress (o) is reached where the sample frac-
tures.

Because we fix the cell dimension along the strain direction,
there are small negative stresses at large distances. Optimization
of all cell parameters at such distances gives zero stresses without
changing the energy significantly.

In Figure 6, strains in the direction perpendicular to the de-
formation are shown at each finite strain in the a (a) and & (b)
directions. In Figure 6a, when the cell is compressed along a
direction (negative strain), the cell is stretched in the & direction
(positive strain). Conversely, when the cell is stretched in the a
direction, the cell is compressed in the b direction. After the
surface is created, the strain in the b direction approaches zero
as strain in the a direction is increased. Similar behavior is
observed in Figure 6b except that a and b are interchanged. In
both cases, we find that the strain in the c direction is very small
(less than 0.05%).

We also carried out calculations in which the cell parameters
perpendicular to the deformation direction are fixed. The result
is shown in Figure Sb. The stress at each point changes signif-
icantly and the position of the peak is also changed. The ultimate
stresses are not calculated as 0.48 GPa at 6.2% strain in the a
direction and 0.66 GPa at 10.4% strain in the b direction. The
yield stresses are U.10 and 0.23 GPa.

Karasawa et al.
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Figure 6. Strain in the perpendicular direction versus strain in the de-
formation direction. Here cell parameters perpendicular to the defor-
mation direction are optimized. (a, top) Deformation along a direction;
(b, bottom) deformation along b direction.

A particularly interesting behavior is found in the deformation
along the a direction at a distance of 1.8-2.0 A. At these distances,
stresses become small, but a surface is not created, indicating that
the energy is near a stationary point. Starting with the structure
at 7.3% strain and using conjugate gradients to optimize all cell

" parameters and atomic coordinates, we obtain a new extended

structure at which forces and stresses vanish! It has an ortho-
rhombic unit cell with a = 7.727 A, b = 4.483 A, and ¢ = 2.547
A. The energy is 0.0931 kcal/mol higher than the optimized
structure in Table IV per unit cell (four CH, groups). The elastic
constant matrix calculated at this structure is

81 130 40 O 0 O
130 80 44 0 0 0
40 44 3382 0 0 O

= 7

€=lo 0 o 61 o o |GF @D
0 0o o 0 56 0
0 ) 0 0 63

The matrix is not positive-definite [(C},)* ~ 2C;,C,, leads to a
negative eigenvalue], showing that the structure is mechanically
unstable.

B. Surface Energy. In Figure 7, the energies are plotted as
functions of distance with (a) and without (b) relaxing cell pa-
rameters perpendicular to the deformation direction. In Figure
7, the energy varies quadratically near zero and rises monotonically
to a constant value for large distances. Since the slabs do not
interact for large deformations, the surface energy E, was cal-
culated by

Eas- Eo

s (28)

E =
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Figure 7. Energy versus strain for finite deformation in the a and b
directions of polyethylene crystal (MCXX n-butane force field). Cell
parameters perpendicular to the deformation direction are optimized in
(a, top) and fixed in (b, bottom).
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rameters at 77 K and 168 K. The circles indicate experimental data of
OIf and Fanconi (ref 39) at 77 K, and triangles indicate experimental
data of Vergoten et al. (ref 40) at 168 K.

where Eg is the energy of the fully deformed cell and £, is that
of the equilibrium cell. Here S is the original area of the unit
cell perpendicular to the strain direction, and we take into account
that two surface are created.

This leads to a surface energy of 106.8 dyn /cm for the a
direction [creating the (100) surface] and 109.2 dyn/cm for the
b direction [creating the (010) surface]. When the (100) surface
is created (deformation along the a axis), there are two CH, groups
per unit cell in the new surface cell. Thus the surface energy per
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TABLE XII: Cell Parameters and Elastic Constants (in GPa) of
Polyethylene from Various Calculations

exp?  current other calculations
parameter (4 K) calens® SLB° WB* OM< TKT?

a 7021 7202 705 7.156
b 4851 4795 494 4894

¢ 2546 2548  2.544

0.deg 4l 1 419 431 4368

C 140 143 138 927 799
Cy 135 122 125 1093 992
Cy 3389 341 325 2574 316
C, 7.9 72 734 368 328
Cy 2.1 192 246 336 1.3
Cy 48 330 396 667 214
Cia 5.3 364 319 346 319
Cys 3.0 227 198 127 162
Ces 5.9 73 624 499 362

?Reference 36. ®Reference 3. <Reference 29. ¢Reference 38.
*MCXX from n-butane. /Reference 13.

TABLE XIII: Comparison of Theoretical and Experimental
Frequencies (cm™) for the Accordion (Raman) Mode for n-Alkanes
(C,Hynz)

theory experiment

n (MCXX)  least squares® liquid® solid®
4 424 473 429 (5) 425 (4)
5 402 411 400 (7) 406 (3)
6 372 358 370 (4) 373 (3)
7 305 313 310 (6) 311(5)
8 278 278 279 (5) 283 (3)
9 243 249 248 (3) 249 (2)
10 225 225 230 (3) 231 (3)
11 198 206

12 189 189 195 (1) 194 (2)
13 177 175

14 163 163

15 153 153

16 143 144 140 (3)

?Based on the analytic least-squares fit to the observed frequencies
(m = 1) as reported in ref 27. ¢Reference 42.

CH, is '/, of the total energy increase or 0.938 kcal/mol. On
the other hand, when the (010) surface is created (deformation
along the b axis), there are four CH, groups per new surface cell.
Thus the surface energy per CH, is ' /4 of the energy change or
0.720 kcal/mol.

If the interactions were nearest-neighbor fiber—fiber only, one
would expect the surface energy to be !/, the bulk cohesive energy
(or 0.683 kcal/mol) for both (100) and (010). This is reasonably
close to the calculated values, indicating that such simple models
may give useful first estimates.

The calculated surface energies neglect zero-point-energy ef-
fects, but this correction should be much smaller than that of
lattice energy calculation. Since the calculated cohesive energy
for bulk PE is within 2% of the experimental value, we expect
our calculated surface energy to have similar accuracy.

An experimental surface energy for low-density PE has been
obtained by using the contact angle measurements.’> The ex-
perimental value of 33.1 dyn/cm is about one-third of our cal-
culated values. This suggests that the surface of low-density PE
is quite disordered.

VIII. Comparison with Other Calculations

The cell parameters and elastic constants are compared with
other calculated values in Table XII.

Recently, Sorensen et al.¥ (SLB) have obtained the optimized
structures and properties of polymer crystals utilizing simultaneous
inter- and intramolecular energy minimization. They have used
parameters optimized for the polyethylene and poly(oxymethylene)

(35) Owens, D. K.; Wendt, R. C. J. Appl. Polym. Sci. 1969, 13, 1741
(36) Sorensen, R. A.; Liau, W. B.; Boyd, R. H. Macromolecules 1988, 2/
194-199, 200-208. .
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and calculated properties at the optimized structure of these
crystals.

As can be seen from Table XII, there is good agreement be-
tween our elastic constants and those of SLB.

The elastic constants of PE have also been obtained theoretically
by Odajima and Maeda (OM),” Wobser and Blasenbrey (WB),”’
and Tashiro et al. (TKT).3 as listed in Table XII. The values
from WB are in reasonable agreement with our values and those
of SLB. However, the elastic constants obtained by OM and by
TKT do not agree well with other calculated elastic constants,
especially for components pcrpcndicular to the chain directions
(C)), Cya €13, Ces). This is probably because they used an un-
reasonably small cutoff distance (4 A) for the intermolecular
interactions.

The vdW parameters of SLB are slightly modified from those
of Williams, while the vdW parameters of WB were adjusted to

(37) Wobser, G.; Bluenbrey. S Kollocd Z. Z. Polym. 1970 241, 985.
9 (38) Tashiro, K.; Kobcyuhl . H. Macr 1978, 11,

4.

(39) OIf, H. G.; Fanconi, B. J. Chem. Phys. 1973, 59, 534.

(40) Vergoten, G.; Fleury, G.; Tasumi, M.; Shimanouchi, T. Chem. Phys.
Lett. 1973, 19, 191.

(41) Wy, C-K.; Nicol, M. J. Chem. Phys. 1973, 58, 5150.

(42) Mizushima, S.; Shimanouchi, T. J. Am. Chem. Soc. 1948, 71, 1320.

fit the energy and cell parameters of PE. The setting angles of
these calculations are 1.2° and 1.8° larger than ours, which is
in turn 0.9° larger than experiment.

IX. Summary

Force field parameters adequate for molecular mechanics
calculations for PE crystal are developed and tested. Valence force
field parameters are obtained by using a theoretical Hessian as
well as experimental data for n-butane. Nonbond parameters are
determined empirically from graphite and PE crystals. The cell
and atomic coordinate optimizations were carried out on PE
crystal, and elastic constants and phonon bands were calculated
by using analyticai second derivatives. To examine the behavior
of the crystal under large strain in the directions perpendicular
to the chain, stress and energy are plotted as functions of de-
formation distances. Yield stresses and surface energies are
calculated from these relations.
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Chapter V

Molecular Simulations of Structure and Properties of

Poly (vinylidene fluoride) Crystals
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Abstract

Structure and properties of four different experimentally observed forms of
poly (vinylidene fluoride) crystals are studied by using the molecular-mechanics
method. Force-field parameters are obtained by experimental frequencies of form
I crystal as well as the Hartree-Fock calculations of 1,1,1,3,3-pentafluorobutane.
To take into account atomic polarizabilities, a shell model is used and their ef-
fects on the properties are examined. By using the force field thus developed, cell
parameters, elastic constants, dielectric constants, and piezoelectric constants are
calculated. Various properties of the fifth crystal form suggested by Lovinger are
calculated and are found to be mechanically- stable with comparable energy with
other forms. Also two different packings of chains (up-up and up-down) in the unit

cell are examined for all forms except form I.
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I. Introduction

Poly (vinylidene fluoride) (PVDF) is a technologically important polymer
because of its piezoelectric properties. Four crystal forms (I, II, III and IV) are
known for this polymer, of which piezoelectric properties are observed in two forms
(I and IV).

Form I (8 form) has a planar-zigzag type of conformation, and cell parame-
ters are determined® as a=8.58 A, b=4.91 &, and ¢ (chain axis)=2.56 A, and the
space group is Cm2m (C3¢). There are two chains in the unit cell, and the polarities
of these chains are aligned in the direction parallel to b axis.

Form II (a form) has a molecular conformation of TGTG and a space group
reported? is P2;/c (C5,). There are two chains in the unit cell, and these are
aligned in the nonpolar fashion in a direction perpendicular to the chains. There
are four molecules in the unit cell, and orientations of these molecules are determined
statistically in the experiment?. The cell parameters are a=4.96 A, b=9.64 A, c
" (chain axis) = 4.62 A, and 8 = 90.0°.

Form IIT (y form) has a molecular conformation of T3GT3G, and the unit
cell is monoclinic with a=4.96A, b=9.67A, ¢ (chain axis)=9.20A, and 8 = 93.0°3.
The space group reported* is Cc (C?). Two chains are packed in the unit cell such
that the polarities of these chains in the direction perpendicular to the chains are
aligned in the same direction. The existence of an antipolar analogue of this form
is suggested by Lovinger3.

Form IV (6 or IIp form) has the same molecular conformation as form II but
two chains in the cell are aligned in a polar fashion in a direction perpendicular to the
chains. The unit cell® is orthorhombic with lattice constants a=4.96A, b=9.644A and
c (chain axis)=4.62A. The chains are packed with a statistical up-down packing®,
and the space group is P2;cn (C3,).

Theoretically, elastic and piezoelectric constants of form I crystal were cal-
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culated previously by Tashiro et al.® by considering the short-range Coulomb inter-
actions and without considering the atomic-polarization effects.

In this study, force-field parameters are determined by experimental vibra-
tional frequencies of form I crystal as well as the Hartree-Fock calculations of
‘1,1,1,3,3-pentafluorobutane (C4HsFs) and we apply this force field for all crystal
forms to examine the relative stability of these forms.

Also, we developed a shell model to examine the effects of atomic polar-
izabilities to the properties of the system. The atomic charges are determined
consistently with the shell model using the charges obtained from the Hartree-Fock
wave function of the C4H5F5 molecule”.

For treating the long-range, nonbonding interactions (Coulomb and van der
Waals) accurately and efficiently, the ABCA method® (based on the Ewald method)
is used. Elastic, dielectric and piezoelectric properties are calculated from analytic
second derivatives of energy at optimized structure®.

Derived force-field parameters are used to study the stabilities of all forms
and also new forms. Particularly, it is used to study the antipolar form III suggested

by Lovinger®.

II. The Force Field

We have developed two independent sets of force-field parameters for this
polymer. The first set (set I) does not have parameters for a shell model. It has
Coulomb and van der Waals terms for nonbonding interactions. Valence interactions
include bond, angle, torsion, and cross (angle-stretch, stretch-stretch, 1-center and
2-center angle-angle) terms. The second set (set II) includes parameters for a shell
model in addition to parameters of the first set, but actual values of these parameters
are different. Here we first show the method of developing the force field for set I

and then explain the shell model used for representing the polarizabilities of atoms.
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Finally, we show the method of obtaining parameters for the shell model.

A. Parameters without the shell model (set I)

In the previous study!®, we have de;»reloped force-field parameters of
polyethylene crystal by using a biased Hessian approach. In that study, experi-
mental data as well as Hartree-Fock calculations of n-butane are used to develop
the force-field parameters, since experimental geometry and frequencies of n-butane
are known.

In the case of PVDF, not enough experimental data for oligomers suitable
for fitting parameters are known except for 2,2-difluoropropane. On the other hand,
experimental frequencies of form I crystal are reported!!. Therefore, we usé these
frequencies to obtain valence force-field parameters.

For the geometry, we optimized the structure of C4HsFs by using the
Hartree-Fock calculations with a 6-31G** basis set'? and determined the atomic
positions inside the crystal by using the force-field parameters to reproduce the
geometry of this molecule.

The vé,n der Waals parameters are previously determined for carbon!® and
hydrogen'?. For the fluorine parameters, we use the parameters derived previously
for CF4 and polytetrafluoroethylene crystals'*, because of the lack of experimental
crystal structure of fluorinated hydrocarbons. These fluorine vdW parameters are
used in this study since cell parameters of all crystal forms are reproduced reason-
ably well.

Atomic charges used are based on the electrostatic-potential derived charges”
of the Hartree-Fock wave function of C4HsFs molecule. In this method, several
thousand points around the molecule are chosen and the electrostatic potential is
calculated from the Hartree-Fock wave function, and atomic charges are assigned at

each atomic position to fit the potential around the molecule. We calculated charges
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at both trans and gauche conformations, but calculated charges are quite similar
(RMS difference of 0.015¢). Given these results, 0.18e and -0.26e are assigned for the
charges of hydrogen and fluorine and -0.54e and 0.70e are assigned for the charges

of carbons in CH, and CF, groups, respectively.

The experimental frequencies of form I crystal'! are used to determine the
valence parameters. Valence terms used are the Morse bond, cosine angle, torsion
and cross (angle-stretch, stretch-stretch, 1-center angle-angle, and 2-center angle-
angle) terms. In the parameter optimization'®, van der Waals parameters and
charges are fixed. During the optimization, force and stress in the chain direction

are also minimized.

Since we are interested in crystal forms with gauche conformation, it is neces-
sary to reproduce the torsional potential of the chain, including both the trans and
the gauche conformations. To describe this potential adequately, we used the tor-
sional potential curve of the CH3-CF,-CH,-CF3 molecule obtained by the Hartree-
Fock calculations with a 6-31G** basis set'2. In these calculations, the central C-C
bond is rigidly rotated from the optimized structure at the trans and the energy is
calculated at each point. In the molecular-mechanics calculations, six terms with
different periods are used in the C-C-C-C torsion, and these terms are fitted to the

values of the Hartree-Fock calculations, using the Fourier transformation.

In Table I, the force-field parameters are shown. In Table II, the experimen-
tal and calculated vibrational frequencies of the form I crystal are shown. The line
group of the all-trans chain is Cy,. In the crystal, the Raman and infrared frequen-
cies are split (correlation splitting) because of the nonbond interactions between the
chains. The RMS difference between calculated and experimental frequencies is 5.4
cm™!. In Figure 1, the torsional potential curves of C4HsF5 molecule calculated by

molecular mechanics and the Hartree-Fock method are shown.
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B. The Shell Model

In the usual molecular-mechanics calculations, fixed atomic charges are used
to represent the electrostatic properties of the molecule. But it is clear that the
polarizability of a molecule is not adequately represented by this model, since most
of the polarizability effects come from the displacement of electronic clouds and a
fixed charge model cannot describe these. It is well known that the polarizability
has significant effects on vibrational frequencies, but its effects on piezoelectric and

elastic properties are not well known.

Here we use the shell model originally used to model ionic crystals® to

incorporate the atomic polarizability in the molecular-mechanics calculations.

Previously, polarizable points are introduced in the molecular-mechanics cal-
culations to take into account the atomic polarizability. Applequist developed an
atom dipole interaction model'” to calculate the optical properties of the molecules
and Boyd and Kesner introduced a polarization-mutual induction model'® to rep-

resent inductive effects of the molecules.

In the shell model, atomic polarizabilities are represented by using two
charged points (shell and core) for each atom, and these points are connected by
the harmonic spring of a force constant k. Then the atomic polarizability (A3) 1s

determined by

2
Qshell
—sael 1
k b ( )

Qatom = Cunit

where qshen is the shell charge (in €) and Cunit=332.0637, if a unit of energy is
kcal/mol and that of a distance is A. The net atomic charge is the sum of shell and
core charges. Molecular polarizability is determined by including all dipole-dipole

interactions of atomic polarizability centers and is given by
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Omolecule a,b = Cunit § qiquia.,jb, (2)
i,
where Dj, jb is the inverse of the second-derivative matrix (Hessian), and a sum is

over all charged centers (shells and cores) as follows:
0*V

—1 iaih = —mm .

i Qla,.]b 5 ia.a b (3)

Here, V is the total potential energy of the system and r;, is the a direction (a =

Diajb = @4, 515
X,y,or z) of a position vector of the center i. For the derivation of these equations,
see Appendix I. This model gives the same molecular polarizability as the atom
dipole interaction model by Applequist!?, if no net atomic charges exist. The shell
model can be incorporated in molecular-mechanics calculation more naturally than
models with polarizability centers, since shells are treated as extrarigid ions so that
no special treatment for shells is necessary during energy-minimization procedures
or calculations of mechanical properties. In vibrational-frequency calculations, we
assign small masses (0.001u) to shells to obtain vibrational modes of cores as first
3N-6 (or 3N-3 for a crystal) modes where N is a number of atoms.

According to the usual convention, the charge-charge interactions between
bonded atoms or atoms involved in angle-bending terms are excluded. In addition,
the charge-dipole interactions of these terms are excluded, but all dipole-dipole
interactions are included.

The atomic polarizabilities for hydrogen, carbon, and fluorine are determined
by the Hartree-Fock calculations'? of 2,2-difluoropropane by using the basis set
based on DZ95**, but adding extra polarization functions (2d for carbon and fluorine
and 1p for hydrogen). The exponents of extrapolarization functions are the same
as those of p orbitals for carbon and fluorine and an s orbital for hydrogen. For
fluoromethane, various basis sets are tested, and this basis set gives reasonably good

polarizabilities. The results are shown in Table III. It is shown that the values of
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polarizability depend strongly on the basis set but not strongly on the effects of the

electron correlation.

In the case of 2,2-diflucropropane, we obtained a;; = 4.63A3, ay;, = 5.0143,
ass = 4.71A% from the Hartree-Fock calculations!? with a DZ95** basis set
([4s2p1d/2slp]), and a;; = 5.30A%, az; = 5.98A% ass = 5.45A3 with the ex-
tended basis set ([4s2p3d/2s2p]). Here all carbon atoms are in the yz plane and the
z axis is the C; axis, and calculations are done at the experimental geometry!®. We
assign -1e as shell charges, since only atomic polarizabilities (the ratio of the atomic
charge squared and the shell-core force constant) are important in determining the
molecular piolarizability. In the parameter fitting, shell charges are fixed, and only
sheil-core force constants are optimized. From this, we obtain atomic polarizabil-
ities as ac = 0.632A%, ap = 0.409A3, ag = 0.1634%. The calculated molecular
polarizability of 2,2-difluoropropane is a;; = 5.33A3,a22 = 5.64A3, azs = 5.39A3.
Without a shell model, all polarizability components become about 10 % of these
values.

C. Parameters with the Shell Model (set II)

Except for charges, the parameter optimization procedure is quite similar in
this case. In set I, atomic charges are determined by using the Hartree-Fock cal-
culation of C4H5F5. In this procedure, atomic charges are fitted to reproduce the
electrostatic potential around the molecule. In the shell model, net atomic charges
displace shells and create an atomic dipole at each atomic position. Therefore, if
the same net atomic charges as in the set I are used in the calculations, the electro-
static potential around the molecule will be quite different from those obtained by
the Hartree-Fock calculations. To describe the electrostatic potential adequately,
net atomic charges are determined iteratively to fit the electrostatic potential by

the Hartree-Fock calculation. Initially, net atomic charges of set I are used, and
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the shell positions are optimized with fixed core positions. Then the electrostatic
potential arising from the induced dipoles is subtracted from the Hartree-Fock po-
tential at all points used in the fitting. New atomic charges are obtained by fitting
the electrostatic potential that is due to charges with the resultant Hartree-Fock po-
tential, and these charges are used to obtain the new shell positions. This iteration
is stopped when the change of charges becomes small. In the case of C4HsF5, three
iterations are sufficient to determine charges with accuracies better than 0.0le. In
Figure 2, the net atomic charges of C4H5F;5 before and after the fitting are shown.
On the basis of this, 0.16e and -0.32e are assigned for the net atomic charges of
hydrogen and fluorine and -0.45e and 0.77e are assigned for the net atomic charges
of carbon in CH, and CF; groups, respectively, in the calculations of PVDF for
this parameter set.

The same van der Waals parameters as in set I are used in this set. Valence
parameters (except for the C-C-C-C torsion parameters) are determined for the form
I structure as in set I; in this case, experimental vibrational frequencies of form I
crystal are fitted with the vibrational frequencies of the cores in the calculation.
Torsion parameters are similarly determined by using the Hartree-Fock calculations
of C4H;5F5, but in the calculations of the energy, shell positions are optimized at
each conformation.

The final force-field parameters are shown in Table I. The vibrational fre-
quencies for form I are shown in Table II. In this case, the RMS difference between
calculated and experimental values is 5.0 cm™!, which is about 10 % better than
that of set I. The torsional potential curve of this set and the Hartree-Fock potential

curve are shown in Figure 1.

ITI. Calculational Procedures

After obtaining the force-field parameters, atomic coordinates are
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optimized?® with the fixed experimental cell parameters for all forms I-IV. After
the optimization, energy, elastic constants, dielectric constants and piezoelectric
constants are calculated from the analytic second derivatives?. Also, the optimiza-
tions that allow cell deformations are performed. In all the calculations (including
parameter fitting), nonbond interactions are calculated using the ABCA method?,

with an accuracy of 0.1kcal/mol for both Coulomb and van der Waals terms.

IV. Energy and Cell Parameters

The energy and optimized cell parameters for all four forms are shown in
Tables IV and V. A single polymer chain in the forms II,III and IV has a net dipole
in the chain direction as well as in the direction perpendicular to the chain. In these
forms, dipoles along the chain direction are assumed to be orienting statistically?*?®
in the experiment. For the calculation, perfectly aligned chains allowed by the space
group symmetry are used. For the forms II and IV, two chains are aligned in the
opposite direction (up-down). For form III, two chains are aligned in the same
direction (up-up). Calculations assuming different chain alignment in the unit cell
are performed, and results are shown in Section VII.

It is noted that differences of total energy of these four forms are quite
small (within 1 kcal/mol for a monomer unit) with or without shell parameters. In
particular, electrostatic energy in forms II and IV are almost the same, although
the alignment of chains is different. Optimized cell parameters are shown in Table
V. The RMS difference between the calculations and the experiment is 0.14A for
cell lengths for set I and 0.17A for set II. The cell angles are all 90 degrees except for
B in forms II and III. The differences between the calculations and the experiment
of this angle are about 2 degrees for form II and about 4 degrees for form III. One

reason for differences is that the calculations correspond to the values at 0 K, but

the experiment is performed usually at room temperature.
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V. New Crystal Form

Lovinger suggested® that there are possibilities for the occurrence of the
antipolar analogue of the form III crystal. We have examined this possibilities by
optimizing the structure starting from form III, but one chain is rotated by 180
degrees so that these chains are aligned in the antipolar fashion. The energy of this
form is comparable to other forms (see Table IV).

The elastic-stiffness tensor is calculated and found to be a stable form. These
calculations support the possibility of the new form suggested by Lovinger. The
optimized cell parameters and atomic coordinates of new forms using set II param-
eters are listed in Table VI. The cell is orthorhombic and the space group is Pca2;

(C3,)- In Figure 3, the end view and the side view of the structure are shown.

VI. Elastic, Dielectric and Piezoelectric. Properties

In Table VII, calculated elastic stiffness constants, Young’s modulus in the
chain direction and bulk modulus of five forms are shown. Young’s modulus in the
chain direction shows that the strength of the crystal is in the order I > IV > II >
I > v.

The effects of including the shell parameters in the model are that the elastic
constants are decreased by about 10%. These changes come mainly from the change
of valence parameters, which are modified by the inclusion of the shells.

The experimental Young’s modulus of form I crystal in the chain direction
quoted in Ref. 6 is 177 GPa. This value is much smaller than the calculated value.
We believe that the discrepancy is caused mainly by the difficulty in measuring the
properties of a crystal by using the sample, which is a mixture of the crystal and
amorphous regions. We are now investigating methods to calculate the properties
of such a sample by actually including both crystal and amorphous regions in the

calculational cell.
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In Table VIII, dielectric constants at constant strain as well as constant
stress are shown for all the forms with and without shell parameters. The difference
between a dielectric constant at constant stress and that at constant strain is given
by 4wdg?, where d is the piezoelectric modulus and g is the piezoelectric constant®.
For form I, the axes are transformed such that the orientation is the same one
used in the experiments (1 axis is parallel to chain direction ¢, 2 axis is parallel
to a, and 3 axis is parallel to b and the polarization direction). Here, the effect of
the shell model is clear, as expected. The experiment of the crystal form is quite
difficult since the dielectric constant of the amorphous region is quite large and also
depends strongly on temperature and frequency. Measurements using the oriented
films of form I crystal?® gave €3 = 3.6 (-106° C, 0.065MHz), 3.7 (-100° C,0.049MHz),
and 3.1 (-102° C, 0.059MHz). The calculated values with the shell model are 1.95
at constant strain and 2.44 at constant stress. Constant stress value should be
compared with experimental values, bﬁt it is still smaller than experimental values
presumably because of the existence of amorphous regions in the sample used in
the experiment.

In Table IX, piezoelectric moduli and piezoelectric constants calculated at
experimental cell parameters for all forms are shown. In form I, the axes are trans-
formed as in the dielectric constants for comparison with the experiment. In form
IV, a and c axes are interchanged such that these values are compared directly with
form I (1 axis is parallel to the chain direction c, 2 axis is parallel to a, and 3 axis is
parallel to b and the polarization direction). In form II, calculated values of these
constants are zero as expected by space group symmetry and are not shown in the
table. The comparison of calculated values with and without the shell model shows
that values generally increase by including the shells, but the effect is not as large
as in the case of the dielectric constants.

The experimental value of d33 of form I crystal is quoted in Ref. 6 and
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is -20pC/N, which is quite close to the calculated value with the shell model of
-18.8pC/N. Also, the experimental value of d3; is reported to be much smaller than
dss, and it is consistent with the calculated values.

Although the new form has no net polarization in the direction perpendicular
to the chain, piezoelectric constants are nonzero, and these are shown in Table IX
(space-group symmetry allows this to be nonzero). The calculated values are similar
to those of form IIT except that there is no large value for the shear piezoelectric

modulus in this case.

VII. Calculations with Different Chain Alignment

| For forms II, III, IV and V, dipoles along two chains in the unit cell can be
aligned in the same direction (up-up) or in the opposite direction (up-down). Opti-
mizations of structure with a different chain alignment for each form are performed
by using the parameter set I; results are shown in Table X. After optimizations,
elastic constants are calculated for each structure and it is found that the structure
1s mechanically stable.

For a form II crystal, the optimized cell of up-up structure is orthorhombic,
and the energy is almost the same as the up-down structure. The difference be-
tween optimized cell parameters of up-down structure and up-up structure is small
except for an angle 8. This supports the interpretation of x-ray results, that in
the form II crystal, up chains and down chains are packed statistically?. Also, it
suggests that the form II crystal with up-up packing can be observable. In fact,
Newman and Scheinbeim?® suggested this structure from the sample obtained by
poling the unoriented form II films. Since there is a net dipole moment in the chain
direction in the up-up structure, piezoelectric constants are nonzero in this crystal.
These constants are calculated at the experimental cell parameters by using the

shell model. Calculated nonzero elements of piezoelectric modulus (in pC/N) are
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dis=1.15, dpa=3.85, d3;=3.28, dss=-2.54, and d33=0.71.

For a form III crystal, the energy of the up-down structure is 1.6 kcal/mol
higher than that of the up-up structure, and the agreement between experimental
and calculated cell parameters of the orthorhombic up-down structure is worse than
that of the monoclinic up-up structure.

For a form IV crystal, the energy of the up-up structure is about the same as
that of the up-down structure, but the optimized unit cell of the up-up structure is
monoclinic and a cell angle 8, which corresponds to a shift of one chain in the chain
direction with respect to another, is 104 degrees. Considering the small energy
difference between these two structures, it seems to be reasonable to assume the
statistical packing of up and down chains in the unit cell in this form as suggested
by Bachmann et al.’

For a form V crystal, the optimized up-down unit cell is monoclinic with
B = 120 degrees, and the energy is about 0.7 kcal/mol higher than that of the up-
up structure. Since the up-down crystal has inver'sion symmetry, all piezoelectric
constants vanish for this structure.

VIII. Comparison with Other Calculations

Tashiro et al.® have calculated the elastic and the piezoelectric constants of
a form I crystal by using the point-charge model. In their calculations, valence
parameters and nonbonding parameters are used in the calculations, and these are
determined to fit the experimental vibrational frequencies. The main differences
between this study and theirs are the following: (1) In their calculations, long-
range Coulomb interactions are ignored, but here, these are included by using the
Ewald method; (2) in their calculations, atomic polarizabilities are not considered,
but here, these are included by using the shell model, and (3) in our calculation, all
crystal forms are considered (including a new form).

In Table XI, calculated values of the elastic constants and the piezoelectric
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constants of a form I crystal are compared. The elastic-stiffness constants of both
calculations are quite similar except that Cy; is about 10% smaller in their calcula-
tion. For the piezoelectric modulus, discrepancy is more noticeable; especially the
sign of dg; is different, and da4 of our calculated value is much greater than theirs
(-4.28 pC/N). The recent measurement of the shear piezoelectric constants?! gives

d24 of -38.3 pC/N, which is much greater than our calculated value of -16.8 pC/N.

IX. Summary

Force-field parameters including shell parameters are developed for all forms
of poly (vinylidene fluoride) polymer crystals. Structure, elastic, dielectric, and
piezoelectric properties are calculated for all the crystal forms. Also, structure and
energy of a new form (antipolar form III) are calculated, and the results show that

it is mechanically stable with comparable energy with other forms.
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Appendix I. Derivation of Polarizabilities
Atomic polarizability is calculated by applying the constant external-electric

field E to an atom. After a shell is displaced by the field, the force at the shell

becomes 0 as follows:

F = CunitgshenE — kér = 0. (4)

Since the dipole moment y is given by

M= qshe115r = aatomE7 (5)

where aatom is the atomic polarizability, we have, by eliminating dr,
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a =C,. qsz.hell (6)
atom — ‘“Yunit k . -

For the molecule, we replace the force constant k by the Hessian at the
equilibrium geometry. After applying the constant field E to the system of N
particles, the force in a direction at charge center i given below (including both

shells and cores) becomes 0,

Fio = CunitGiEa — (®ia,11Pia,12 - - - Bians) Or. (7)

Here,

6*v
Qia ib =
b Briaarjb

(8)

is the element of the Hessian matrix (V is the total potential energy of the system),

q; is the charge of a center i, and §r is a displacement vector,

5!‘1
ér
51‘ = . 2 . . (9)
5rN
The above equation leads to
®ér = CunitqE, (10)

where qE is a 3N x 1 vector and is given by

aE

q:E
E=| (11)
gnE

By solving (10), we have
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N
or; = Cuni’c Z Di,jqu7 (12)
J

where D = ®~! (In the calculation of this inverse, we need to eliminate translational

and rotational degrees of freedom.)

The induced dipole moment of the molecule is given by

N
Pmol = Zqi&‘i = amE. (13)

By eliminating ér; from the last equation, we have

N
0mol = Cuynit Z qi(]jDi,j- (14)

ij
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Table I. Force-field parameters used in the calculations for PVDF. Units are
kcal/mol for energies, A for length, and degrees for angles. Va,ﬁ der Waals pa-

rameters and values in parentheses were not optimized.

Set I(no shell) Set II(with shell)

van der WaalsP
C

R, 3.8837 3.8837
€ 0.0844 0.0844
v 12.0 12.0
H g..v 3.1975 3.1975
€ 0.016 0.016
v 11.8 11.8
F ﬂv 3.5380 3.5380
€y 0.0211 0.0211
Vv 16.0 16.0
Bond Stretch®
C-C Ry 1.5242 1.5269
ky 682.1823 665.4933
Dy, (101.2) (101.2)
C-H Ry 1.0789 1.0820
ky 729.3088 715.6092
Dy (106.7) (106.7)
C-F Ry 1.3457 1.3394
ky 832.0755 876.8641
Dy (108.0) (108.0)
Shell C ky - 525.8132
Shell H ky - 2033.3751
Shell F ky - 811.5098
Anéle Bend? :
H-C-H kg 52.7607 55.8315
6, 116.4161 115.5015
C-C-H ko 64.7621 62.7458
6, 116.0913 116.5150
Cp-C-Cp? kg 178.4806 137.3946
6, 116.3318 119.6434
C-Cp-C? ko 155.5421 138.6187
0, 119.3277 119.7954
F-C-C ko 139.2072 136.0475
6., 114.8591 116.6151
F-C-F ke 184.7170 178.9011
6, 109.5665 111.3060
Torsion®
C-C-C-H Vs 4.4115 4.4057
C-C-C-C V; —8.2966 21.7670
C-C-C-C Vs —17.8439 4.4309
C-C-C-C Vs 13.7195 18.6795
C-C-C-C V, —0.6973 1.2270
C-C-C-C Vs —2.2890 1.3265
C-C-C-C Ve —2.9580 —0.0531
F-C-C-H Vs 1.0690 1.0936
F-C-C-C Vs —5.3835 —5.2046
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Table I. (Continued.)

Set I(no shell) Set II(with shell)

Angle Cross Terms!

H-C-H Due —20.5879 —17.2328
r 5.3363 2.3686
C-C-H Dce —26.0949 —27.8737
Dus —22.0763 —15.3201
o 0.9924 0.9978
Cp-C-Cp® Dcs —20.1366 —16.3585
rr 18.6314 17.9468
C-Cp-C® Dce —27.1200 —17.3844
Ky 12.0600 11.8674
F-C-C Dre —62.9535 —69.8823
Dos —48.9831 —42.5101
o 111.1305 109.2529
F-C-F Dro —75.9852 —74.3431
i 145.3960 127.2188
One-Center Angle-Angle Cross Terms8
Gee:ne 2.4693 2.2899
Gco:mn —1.6436 ~1.5733
Gcr:cc 20.7375 18.6381
Gem:cu 0.8571 . 0.8027
Gce:re 2.4667 2.4677
Gcerr 27.3593 25.4020
Gcr:cc 2.5382 2.6365
GcF:cF —5.8372 —5.7643
Two-Center Angle-Angle Cross Terms®
Fc.com 28.5400 18.2612
Fc.cc.o —10.6192 —9.6901
Fr.com 0.2414 0.2430
Fr.cc:c 29.2978 25.0190

* Cr is used to specify the carbon in the CF, group to distinguish two
kinds of C-C-C terms. ? E,qwiy = :yf‘_hg(Ge'Y"(l“R/R") - w(Ry/R)%). © Ep =
Dp(e~®R-Ro) _1)2 |, = 2Dyal. 4 E, = (1/2)C(cos 8 — cos 6,)?,ks = Csin?6,.
© Ey = (1/2)3,Va(l + cosng). ! E,, = Dig(cos@ — cosb,)(R1 — Ru1) +
D2g(cos § — cos 8, )(R2 — Ruz) + ker(R1 — Rp1)(Rz — Rb2),kr¢ = —Dsinb,. 8 Ey,, =
Gra:kw (cos Ok — cos O3k )(cos O, — cosGarsr). ' Ezaa = Fryk.1 cos ¢(cos Ok —
cos Ba13k )(cos O3k1, — cos B,k ).
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Table II. Vibrational frequencies of Form I Crystal.

Calc. Calc.
Mode Symmetry w.o. shell with shell Exp.?
Lattice B; 40 41
B, 35 28
A, 35 36
B, 87 87 70 Ir
B, 101 96 77 Raman
CF, twist A, 267 267 268 Raman
A, 267 268 268 Raman
CF3 rock B, 436 440 445 Raman
B, 447 448 442 Ir
CF, wag B, 478 470 475 Raman
B; 480 472 468 Ir
CF; bend A, 511 508 508 Ir
A, 512 509 514 Raman
CH; rock B, 840 843 840 Ir
B, 839 842 845 Raman
CF; s-str A, 887 882 884 Ir
A, 888 883 886 Raman
CH, twist A, 980 980 980 Raman
A, 981 980 980 Raman
CC a-str B, 1073 1075 1071 Ir
B, 1073 1075 1078 Raman
CF; a-str B, 1165 1164 1176 Ir
B, 1190 1187 1175 Raman
CF, s-str A, 1276 1272 1273 Ir
A, 1279 1275 1283 Raman
CH, wag B, 1397 1399 1400 Raman
B, 1397 1399 1398 Ir
CH, bend Aq 1429 1426 1428 Ir
A, 1431 1427 1436 Raman
CH; s-str A, 2982 2975 2980 Ir
A, 2085 2978 2984 Raman
CH, a-str B, 3016 3020 3022 Ir
B, 3023 3025 3020 Raman
RMS errorP 5.4 5.0

® Ref. 11, ® without lattice modes.
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Table ITI. Molecular polarizabilities (A%) of fluoromethane calculated by ab initio
methods®. Experimental geometry® is used. Ny, is the number of the basis function.

Basis set Ny, method oa; =a;, as
DZ95** 47 HF 1.8612  1.8405
[4s2p1d/2slp]
DZ95+3d,2p 80 HF 2.3055 24151
[4s2p3d/2s2p]
ELP¢ 108 HF 2.3378  2.4666
[6s5p3d/4s2p]
DZ95+3d,2p 80 MP2 2.4115  2.5606
Exp.4 2.34 3.18

* Ref. 12, ® Ref. 24, © Ref. 22, ¢ Ref. 23.
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Table V. Optimized cell parameters (A, degree) of all forms of PVDF crystals. In
all forms, the c axis corresponds to the chain direction.

(a) set I

Form I II I1I Iv \%
calc exp calc exp «calc exp «calc exp calc exp

a 8.61 858 5.07 4.96 5.02 496 508 4.96 9.68 -
b 4.72 491 947 9.64 9.53 967 932 9.64 4.98 -
c 256 256 4.59 4.62 9.14 920 458 462 9.13 -
a 90.0 90.0 90.1 90.0 90.0 90.0 90.1 90.0 90.0 -
B8 90.0 90.0 92.0 90.0 97.7 93.0 90.0 90.0 90.0 -
07 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 -

(b) set II

Form I II III v \'

calc exp calc exp calc exp calc exp calc exp

855 858 5.05 496 498 496 5.05 4.96 9.65 -
471 491 937 9.64 945 9.67 9.23 964 493 -
256 256 4.58 4.62 9.13 9.20 4.58 4.62 9.12 -
90.0 90.0 90.1 90.0 90.0 90.0 89.8 90.0 90.0 -
90.0 90.0 922 90.0 96.8 93.0 899 90.0 90.0 -
90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 -

LR oT e
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Table VI. Fractional coordinates of the antipolar form III obtained by optimiza-
tion, using the parameter set I. The cell is orthorhombic with a= 9.68 A, b= 4.98A,

and ¢=9.13 A. The space group is Pca2,(C3,).

Atom X Y Z
C, 0.248 0.730 0.917
C, 0.370 0.818 0.825
Cs 0.368 0.718 0.667
Ca 0.242 0.802 0.579
F, 0.491 0.732 0.886
Fy 0.382 0.090 0.827
Fs 0.128 0.681 0.637
Fy 0.218 0.069 0.596
H; 0.155 0.824 0.877
H, 0.236 0.515 0.908
Hs 0.461 0.796 0.616
H, 0.375 0.502 0.666
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Table VII (b). Young’s modulus in the chain direction (E) and bulk modulus
(B) for all forms of PVDF in GPa. Calculations are done at experimental cell
parameters (exp) and at optimized cell parameters (opt).

(i) Set I
Form I II IT1 IV A%
exp opt exp opt exp opt exp opt exp opt
E 282.5 292.7 151.2 1529 107.7 113.4 156.0 162.8 - 101.7
B 9.5 148 11.7 124 11.7 13.3 9.8 12.1 - 12.5
(i) Set I
Form I II III IV A%
exp opt exp opt exp opt exp opt exp opt
E 265.2 277.2 136.8 1409 97.2 107.2 139.3 150.2 - 92.3

B 8.8 152 105 13.6 10.8 14.7 8.6 13.6 - 13.5




Table VIII

(a) . Dielectric Constants of PVDF at constant strain calculated
(except for form V,

at experimental structure
structure is used).

Form I

1.1210
0.0000
0.0000

Form II

1.2242
0.0000
-0.0706

Form III

1.2521
0.0000
-0.0692

Form IV

1.2159
0.0000
0.0000

Form V
.1802

.0000
.0000

OO

Set I

oo O R o O o OO

(ol Nl

.0000
. 4480
.0000

.0000
.1943
.0000

.0000
.1481
.0000

.0000
.1733
.0000

.0000
.2918
.0000

R OO

R oo

H OO

.0000
.0000
.0687

.0706
.0000
L1377

.0692
.0000
.1455

.0000
.0000
L1372

.0000
.0000
.1466

138

QOoOoON [N o} N} ooN O OoON

[@NeR N

.1475
.0000
.0000

.2338
.0000
.1434

.2892
.0000
.1364

.1302
.0000
.0000

Set II

oNnvOo oON O oNn o oNO

o N O

.0000
.7324
.0000

.0000
.1385
.0000

.0000
.0994
.0000

.0000
.1282
.0000

.0000
.2968
.0000

P oo

|
No o No o

Noo

where the optimized

.0000
.0000
.9549

.1434
.0000
.1603

.1364
.0000
.1653

.0000
.0000
.1518

.0000
.0000
.1833



(b) . Dielectric Constants of PVDF at constant stress calculated

139

at experimental structure (except for form V, where the optimized
structure is used).

Form I

1.8012
0.0000
0.0000

Form II

1.2242
0.0000
-0.0706

Form III

1.3343
0.0000
-0.1284

Form IV

1.2597
0.0000
0.0000

Form V
1.1802

0.0000
0.0000

Set I

or o or o or o orHOo

(ol N e)

.0000
.4638
.0000

.0000
.1943
.0000

.0000
.1839
.0000

.0000
.2105
.0000

.0000
.2948
.0000

R OO

|
[l eNe)

P OO

P OO

.0000
.0000
.2848

.0706
.0000
L1377

.1284
.0000
.4326

.0000
.0000
.2127

.0000
.0000
.2115

OON

OON

OON

O ON

.8716
.0000
.0000

.2338
.0000
.1434

.4571
.0000
.1860

.3340
.0000
.0000

.1545
.0000
.0000

Set II

oMo o N O oN o oMo

o NO

.0000
.8599
.0000

.0000
.1385
.0000

.0000
.1608
.0000

.0000
.1501
.0000

.0000
.3010
.0000

[}
NoOo o Mvo o

Moo

.0000
.0000
.4405

.1434
.0000
.1603

.0000
.0000
.2228

.0000
.0000
.2507
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calculated at experimental structures

(pC/N)

Set I

Piezoelectric moduli
(except for form V, where the optimized structure is used).

Table IX
Form I

(a) .

OO o
OSSO O
900

100
O o
oOWwo
OO
O O

SO ™M
SO

005
000

SO o
SO O

300

100

090

050

OO~
OO N

001
001

(eNe N

OO o

Form III

~oOoON
NO N

206
401

403
403

S HO
o e
O W o

301
109

070
030

001
202

SO
O M

@ O N
SO m

Form IV

000
OOO
OO
NO O
OO
O W o

009
002
OO«
OON
008

001

SO O
DR
OO O
O O
NO O
SMO

o~ o

SO
e e

e N e N

o own
oo m
SO

o e

OSSO

Form V

000
000
—O O
NO O
SO O
o e
oMo

OO N
OON

OO

OO N

003
003

OOO
004

Set II

calculated at experimental

(C/m**2)
, where the optimized structure is used).

(except for form V
Set I

Piezoelectric constants

structures
Form I

(b) .

000
000

100
000

0.0
-0.067
0.0

0.0
0.0

0.0 0.0
0.0 0.0
0.087 -0.073 -0.22

0.0 -0.006 0.0
0.0 0.034
0.074 0.0

0.031
0.0

0.0

0.12 0.062 -0.26
0.0

0.0
0.032 0.0036 0.19

0.0 -0.004 0.0
0.0 0.007 0.0 0.048
0.0 0.071.0.0

0.057 0.059 -0.19
0.0

0.0
0.017 -0.017 0.18

Form III
Form IV

OO O
OO o
oo

O O

0.0
0.032
0.0

0
.0
89

0.
0
-0.27 0.028 0.0

0.0
0.0

0.0
0.0

0.0
0.0
.023

0.0 0.0
0.0 0.0
-0.21 0.030 0

Form V

0.0 -0
0.0096
0.0

000

000

000

000
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Table XI. Comparison of elastic constants(C, in GPa) and piezoelectric modulus(d,
in pC/N) of PVDF form I between the present calculations with set II and those
by Tashiro et al.®.

calc.  Tashiro et al.?

Ci1 237 23.60
Cay 11.8 10.64
Css 266.8 238.24
Ciz 24 1.92
Cis 4.7 3.98
Cas 31 ‘ 2.19
Casa 3.7 4.40
Css 5.2 6.43
Cee 4.0 2.15
d;s -41.9 -30.70
d2s -16.8 -4.28
ds;  0.57 -0.25
dsz -1.3 -4.05
dsz -18.8 -25.19

& Ref. 6.
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Figure 1. Torsional potential curves of CH3 CF,-CH,CF; obtained by the Hartree-
Fock calculations with the 631G** basis set and the molecular mechanics calcula-

tions (set I and set II). 0 degree corresponds to cis conformation.

Figure 2. Net atomic charges (in a unit of electron charge) obtained by fitting
the electrostatic potential from the Hartree-Fock calculations of C4HsF5 with and

without shell parameters.

Figure 3. The end view (a) and the side view (b) of antipolar form III crystal of
PVDF. '
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Figure 2.
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(a) Top view

(b) Side view

Figure 3.
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Appendix I

Elastic Constants and Phonon States for Graphite;

van der Waals Parameters for Carbon

[This appendix is based on a paper co-authored with William A. Goddard III, and
was submitted to J. Phys. Chem.]
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Abstract
Using available experimental data for the properties of graphite at 0 K, we

derive a force field (including the van der Waals parameters) useful for predict-
ing the mechanical properties of graphite (elastic constants, Poisson ratios, lattice
modes). This is used to predict the phonon dispersion curves, specific heat, and

other properties of graphite.
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I. Introduction

As a first step in atomic-level simulations for the surface and bulk properties
of graphite and of interfaces between graphite and polymers, we report here a force
field for describing interatomic interactions in gfa.phite and use it to examine the
elastic properties and related properties.

All calculations are for the low-temperature structure, and in Section II we
outline the selection of experimental values and corrections to 0 K. Section III
describes the process used in obtaining the force field for graphite. In Section IV we
discuss the predictions of the less well-characterized properties (e.g., Caq, Ci3). In
Section V we report a more detailed analysis of properties for graphite on the basis
of the predicted force field. This includes phonon dispersion curves and prediction
of thermodynamic properties. In Section VI we consider the discrepancy between
experimental values of C44 (which differ by a factor of 15) and we compare it [i.e.,

the discrepancy] with theory.

II. Experimental Data for Graphite
A. Crystal Structure

The space group of graphite was taken as P63/mmc (D}f), which assumes
flat layers.! The lattice parameters at 25°C are! a = 2.4612 &, c= 6.7090 A. To
convert the lattice parameters at low temperature, we used the thermal expansion

data from Bailey and Yates? (20-270 K), extrapolated and interpolated to obtain
fa = —0.0072 A

§c = +0.0369 A

for 0 K to 298 K. This leads to

a(0 K) = 2.4684 A
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c(0 K) = 6.6721 A.

B. Elastic Constants

A complete study of the elastic constants of compression-annealed pyrolytic
graphite (at room temperature) was carried out by Blakslee et al.®, who find elastic
constants (stiffness), Young’s moduli, and Poisson ratios as listed in Table I. The
elastic constants C;; and Cj; relate to in-plane deformations, Cs3 is a direct measure
of the force constant for the C--C van der Waals interactions, and C,4 relates to
shear of one plane with respect to the next. The quantities C;;, C12, Cs3, and Caq
are derived from direct experiments; however, C13 (which involves coupling of stress
in the plane to the spacing between the planes) is indirect and rather uncertain (33%
quoted uncertainty).

The biggest variations in the literature on graphite occur for C44, where val-
ues from 0.18 to 0.35 GPa* are obtained® from mechanical studies on compression-
annealed samples (the values were independent of external compression), while neu-
tron scattering studies®® lead to values of > Cyy = 4.2 + 0.2 and® 4.6 + 0.2, or
15 times larger! The neutron-irradiated samples are referred to as “dislocation-free
graphite,” since it is believed that neutron damage (or impregnation with boron)
impedes dislocation motion.>"® Qur calculations agree with the low values from
the mechanical studies and suggest that the neutron damage leads to larger shear
values than the intrinsic material (see discussion in Sections IV.B and VI).

The temperature dependence of the elastic constants was measured by
Ganster and Fritz® on compression-annealed graphite from 4 to 300 K, yielding
changes as listed in Table I. The values for §C;;, §C12, §Css, and §Cy4q are obtained
from independent experiments; however, §C;3 is obtained from a complex mode
after subtracting the contributions from the other quantities (see Section IV.C).

As a result, §C;3 has an uncertainty comparable to its magnitude. Combining the
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above results leads to the total values in Table I.

C. Lattice Vibrations

With four atoms per unit cell, graphite has 12 vibrational bands. For the T
point of the Brillouin zone (k = 0), this leads to the following 12 modes!?:

Eiu, Agy: transverse (TA) and longitudinal (LA) acoustic (at 0 cm™?)

Egg, Bag: transverse (TO) and longitudinal (LO) modes for sheet-sheet in-
teractions (at ~10 cm™! and ~ 140 cm™?!)

A3y, Bag: out-of-plane crinkling of graphite (at ~868 cm™?)

E1u, Egg: in-plane ring modes (at ~1588 cm™1).

The 868 cm™' mode (A3,) was used to determine the torsional parameters
for our fofce field. The 1588 cm™! mode (E;,) was used to help determine the
in-plane force constants.

The sheet-sheet modes (Ezg, B2z or TO, LO) have been obtained from
neutron-scattering studies on “dislocation-free” graphite at room temperature,
yielding® 45 cm™! and 126 cm™! for the TO (Ez,) and LO (By,) transition at the T
point. These neutron-scattering studies lead to elastic constants of C3s = 37.1+0.5
GPa, Cyy = 4.6 + 0.2 GPa, and C;; = 1440 + 200 GPa. The value for Css is
consistent with the mechanical studies (36.5), but the other values are significantly
higher than mechanical results (C4s = 0.27 and C;; = 1060). We believe that this
may be due to the neutron damage, and we have not used the neutron-scattering

values for the TO and LO modes in our fits.

ITI. Calculations
A. The Force Field

van der Waals Terms. The van der Waals interactions were described
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with an exponential-six potential,

D
E=Ae"“® _B/R® = —_ {6el(1=P) _(p~S 1
where D, is the well depth,
R
- — 2
P=R (2)

is the scaled distance, R, is the well radius (distance between the carbons at the
well minimum), and ( is a dimensionless parameter. Equation (1) leads to a force

constant at the minimum of the form

@B\ _ sc¢-TD,
k”"(6R2 )Rv" (c —O)RZ -6

so that ( is directly related to the dimensionless force constant,

& =k,R?/D, = %—7—) (4)

We also considered the Lennard-Jones potential
E=Dy [p7* - 2p7°] (5)

for describing the van der Waals interactions, where p is given by (2). This leads
to K = T2.

All calculations used the Accuracy-Bounded Convergence Acceleration
(ABCA) method,!! with an accuracy parameter of 0.001 kcal/mol. For {( = 12,
this leads to an Ewald parameter of n = 1.59 A and to cutoffs of Rey; = 5.2 A and
Hey = 5.2 A1

Valence Terms. The valence interactions were described using:

(1) A Morse bond stretch

2
Ey, =Dy [e_ab(R_Rb) — 1] (6)
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for the C-C interaction, where R}, and D}, are the position and depth of the
well and ky, = 2Dy is the force constant.

(ii) A cosine angle bend with angle-stretch (k.¢) and stretch-stretch (k) cou-
pling

E, = 5 Clcos — cos 0,]% + kr(R1 — Rp)(R2 — Ry)

N=

+D(cos § — cos6,)[(R1 — Rp) + (R2 — Rp)] (7)

for the C-C-C interaction, where 6, is the equilibrium angle, kgg = Csin? 6,
is the diagonal angle-force constant, and k;g = —Dsin 6, is the angle-stretch
force constant.

(iii) A two-fold torsion

E. = §Vi(1 - cos2¢), (8)

where ¢ is the torsional angle, V; is the barrier, and the minimum is for ¢

= 0 or 180 degrees (planar).

B. Fitting Parameters
The sequence in fitting parameters was

(a) choose Ry so that there is zero stress along the z axis for the experimental ¢
lattice parameter;

(b) choose Dy so that the C33 elastic constant is matched to experiment;

(c) adjust V, to describe the 868 cm™! lattice mode;

(d) adjust Ry, kb, kes, krs, and k;; to obtain zero stress in the plane for the
experimental a lattice parameter, while obtaining the experimental C;; and
Ci2 elastic constants, and the 1588 cm ™! lattice mode.

(e) The Cis elastic constant and the sheet-sheet lattice modes (~10 cm~! and
~140 cm™!) are insensitive to all of these parameters and were not used in

any fits.
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(f) The scale parameter { for the van der Waals interaction was considered as an
independent variable. The total interaction energy between the planes (Econ)
1s a sensitive function of { and the quantities in (e) all change smoothly with
¢.

In these fits we required that the lattice constants be accurate to 0.0001 A,
that the elastic constants be within 0.04 GPa for C33, within 1 GPa for C;;, and
within 6 GPa for C;5, and that the lattice modes be within 1.5 cm™? for the 868
cm™! mode and 2 cm™! for the 1588 cm™! mode. These uncertainties are well
within experimental error bounds. The number of parameters in the force field
exceeds the experimental data, and further optimization could have reproduced the
experimental quantities exactly. Because of this redundancy, we did not optimize
0., Dy, or k...

The final parameters are listed in Table II, and the calculated properties are

in Table III.

C. Comparison with Other van der Waals Parameters

It is possible that the optimum van der Waals parameters for an atom would
depend upon its hydridization; however, current experimental data have not been
sufficient for such subtleties. As a result, most force fields have one set of parameters
for C. In Table IV we include the predicted properties for graphite from other sets
of van der Waals parameters'>~!7 (none of which was derived for graphite). The
van der Waals interactions within a sheet lead to a tension that is balanced by the
bond-stretch force. Consequently, for each case we used the valence parameters
for the Lennard-Jones force field in Table II and readjusted the bond radius Ry to
obtain zero stress for the experimental a lattice parameter. Then we optimized the

unit cell (and internal atoms) and calculated the properties.

The most important quantity to compare is the c lattice constant. The errors
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are: MM2 (—0.08 A), Dreiding (+0.11 A), Williams (+0.13 A), CHARMM/EF3
(—0.15 A), AMBER (—0.15 A), CHARMM/EF?2 (—0.36 A), and Jorgensen (+0.70
A). The errors for the first five are not large and could be considered adequate. The
Jorgensen potential'® leads to large errors, partially because it was optimized for
the case where an implicit hydrogen was used (we used the Jorgensen value for the
sp? carbon of phenylalanine bonded to three carbons, but the parameters are the
same as for the carbons having hydrogen).

The next most relevant comparison is the Cz3 elastic constant, where the er-
rors (out of 40.7) are: CHARMM/EF3 (+15%), Williams (+38%), MM2 (—41%),
Dreiding (+48%), AMBER (+53%), Jorgensen (+83%), and CHARMM/EF2
(+168%). The first case is reasonably good, and the next four are marginally
acceptable.

More relevant to test the parameters would be the cohesive energy, but it is
not well known. Assuming that the value of Econ &~ 1.3 kcal/mol (see Section IV.A),
the errors are: MM2 (—21%), Williams (+27%), Dreiding (+27%), CHARMM/EF3
(+33%), AMBER (+77%), Jorgensen (+80%), and CHARMM/EF2 (+156%).

Combiﬁjng all three criteria, the most accurate, previous van der Waals
parameters for carbon are CHARMM/EF3, Dreiding, Williams, and MM2. We
consider none of these to be adequate for accurate calculations on graphite and
find that the new van der Waals parameters in Table II are useful in examining
polymers?! or proteins [of course, because of the coupling of experimentally derived
van der Waals parameters, the van der Waals parameters for other atoms (H, N, O,

etc.) have to be rederived].

IV. Comparison with Experiment
A. Cohesive Energy

The cohesive energy is a dramatic function of {, changing from 1.2 to 2.0
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kcal/mol as { goes from 15 to 11. Unfortunately there are no reliable experimental
data on this quantity for graphite. However, there are recent experimental heats of
sublimation ?* for polycrystalline mixtures of Cgo and Cro. We used LJ parameters
and calculated heats of sublimations of these crystals and found excellent agreements
between calculated and experimental values?* (AH7o7x = 40.9 kcal/mol for Ceo
and AH73gx = 46.4 kcal/mol for Cr¢ from calculations versus AHyg7x = 40.1 + 1.3
kcal/mol for Cgp and AHrsox = 43.0 £ 2.2 kcal/mol for Cro from experiments).
This suggests that the cohesive energy calculated by LJ parameters (1.3 kcal/mol)
1s a good estimate for a graphite crystal. In comparison, the experimental cohesive
energy (at 0 K) of polyethylene'® is 1.838 + 0.032 kcal/mol (per carbon), and the
experimental heat of sublimation (per carbon) for benzene is 2.1 kcal/mol'® and
for n-hexane is 2.1 kcal/mol.!® Correcting these values for zero-point energy leads
to 2.01, 2.3, and 2.3 kcal/mol, respectively. In Table II, we show exponential-six
parameters, which yield the same cohesive energy as LJ parameters ({ = 14.255).

In Table III, various properties calculated using these parameter sets are shown.

Given the cohesive energy of 1.3 kcal/mol C, the smallest energy to create a
new surface would be 0.65/(+/3 a%/4) = 0.25 (kcal/mol)/A2 = 1.0 (kJ /mol)/A? =
0.17 J/m? = 170 erg/cm?. This should be a lower bound on the surface energy.

B. C44 Shear Stiffness

In mechanical studies of graphite,® the observed, shear elastic constant Cy4
ranged from 0.18 to 0.33 GPa, whereas the neutron-irradiated samples® led to 4.2
to 4.6 GPa. It is widely believed that neutron irradiation pins dislocations, leading
to parameters appropriate for the intrinsic system; hence the name “dislocation-free
graphite” for these materials.”® Boron implantation also leads to the larger values
of Cyq.™8

There is evidence against this belief. Thus, in studying Cs4s down to 2 K,
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Ganster and Fritz® observed a nearly constant low value, whereas if the low value
were due to dislocations, one would have expected an increase for temperatures too
low to activate the dislocations. Similarly, Ayasse et al.® measured Cs4 down to

0.1 K and found no evidence of the hardening expected if the low Cy4 were due to

dislocations.

Our calculations lead to small values of Cy44 (0.23 to 0.33) for a wide range of
such parameters ({ = 11 to { = 15). Thus, these calculations provide evidence that
the low Ca4 value (~0.27 GPa) from neutron-free samples is intrinsic, suggesting
that the neutron irradiation (and boron implantation) cause a dramatic increase in
shear resistance. Our specﬁlation is that neutron-induced defects might disrupt the
resonance system in graphite, leading to lower symmetry regions that might cé,use
the planes to be “stickier.” This is illustrated in Figure 1 for saturated carbon
atoms at sheet edges. The result is a “pinned” resonance structure, where bond
charges in adjacent planes might couple the sheets, leading to larger Cy44 (and Ci3).
In addition, such structures could have single-bond torsions smaller than in normal
resonant graphite, allowing crinkling that would couple the layers. Alternatively,
the increased values of Cy4 for neutron-irradiated graphite could be due to increased
charge carriers and electronic coupling between the planes. However, experiments
on neutron-irradiated samples at high magnetic fields® found no change in Cyq,

suggesting that such electronic effects are not responsible for the large Cyq.

Assuming that impurities and imperfections increase what would be a small
value of Cy4, we believe that the intrinsic value for graphite should be in the lower

half of the observed values (0.19 to 0.29 GPa).

As the temperature is increased, the instantaneous structure should have
increasing crinkling of the planes. This could increase C44 markedly while affect-

ing C33 only a small amount. However, the observed small change in C44 with
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temperature® indicates that this is not an important effect. These issues about Cyy

are discussed in more detail in Section VI.

C. Cy3 Stiffness

The calculated values for C;5 are small and track the values for Css (in
all cases Ci3 is within 2% of C44). Experimental values are much larger, but the
measurements are indirect. Thus, in the mechanical studies of Blakslee et al.3 it
was not possible to measure C;3 directly, nor was it possible to measure the related
compliance S;3 in ultrasonic experiments. Instead, S;3 was obtained by measuring

the Poisson ratio in static experiments, and C;5 was calculated using
Cis = —S13/[Ss3(S11 + S12) — 25%], 9)

leading to C13 = 15 + 5 GPa at room temperature.
In the temperature-dependence studies of Ganster and Fritz,® C;3 could be
obtained only from crosscut samples (45° from the c axis), leading to a velocity of

sound v given by

pv? =1 {011 + Css +2Cas — /(C11 — C33)? + 4(C1s + 044)2} (10)

(where p is the density). Since Cy; is much larger than Cy3, this leads to considerable
uncertainty in C;3 (the uncertainty is comparable to the magnitude). Interestingly,
the values for C;3 deduced from these experiments are independent of temperature
from 0 to 250 K and then change rapidly for higher temperatures.

Our calculated (small) values of C;3 are consistent with flat, graphite planes.
For higher temperatures the mean fluctuations in crinkling of the sheets should
increase, leading to an increased c lattice constant (as observed). Applying tension
parallel to the sheets might decrease these fluctuations, thereby decreasing the c
axis. Thus, it is plausible that C;3 might be small and constant for low temperatures

and large for high temperatures (as observed®).
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Consistent with the small, calculated value of C;3, we obtain small values for
the Poisson ratios that couple strain in the a and ¢ directions. Thué, for strain in
the x direction we find py, = 0.175 (observed values at room temperature = 0.16 +
0.06), but p; = 0.005 £ 0.001 (observed values at room temperature = 0.34 & 0.08).
For stress in the z direction, we find almost no effect in the x and y directions, pu
= 0.0002 (the estimate from observations at room temperature is = 0.012 + 0.003).
Experiments at low temperature on these Poisson ratios would be most valuable in

resolving these issues.

D. Lattice Modes

The mean value of the out-of-plane crinkling modes (868 cm ™) was adjusted
to fit the experiment. This leads to a rotational barrier of 21 kcal, about 1/3 the
value for ethylene (65 kcal), as might be expécted (since the resonance structures
have one 7 bond for each three CC bonds). There are two modes at 868 cm™!
(one infrared-allowed), and we calculate the splitting to be 0.6 to 1.4 cm™? for X6
potentials (( = 11 to 15) and 1.8 cm™? for LJ. Similarly, the splitting of the in-plane
modes (1588 cm™1) is predicted to be 0.1 to 0.2 cm™?. Since the splitting of the 868
cm™! mode is sensitive to the form of the nonbond potential, a direct spectroscopic
observation of this splitting might help determine the scale for the van der Waals
parameters.

The LO mode (Byg) is predicted to be at 139 to 142 cm™?! and is observed
(room temperature) by neutron scattering at 126 cm™!. Expansion of the c lattice
parameter from the value at 0 K to the value at 300 K (see Section V.A) leads to a
prediction value of v = 132 cm™? at 300K, explaining most of the discrepancy. The

frequency of this mode is directly related to Csz, which we calculate to be 0.2%.

The TO mode (Ez;) is directly related to the Cas elastic constant. Thus,

neutron-irradiated samples that yield C44 = 4.4 lead to a much higher frequency (45
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cm™?) than the calculations (which yield ~11 cm™ and Cyq ~ 0.28). As discussed
above, we believe that the discrepancy is due to neutron damage. Experimental
studies of the TO mode for low temperature and low irradiation would be most

valuable to help resolve these uncertainties.

V. Properties of Graphite
We have used graphite parameters thus derived to calculate phonon-
dispersion curves and thermodynamic properties of a graphite crystal (we used

exponential-6 potential with {( = 12, since vibrational properties are not sensitive
to ().

A. Phonon Dispersion Curves
In Figure 2 we show the calculated phonon dispersion curves for the lattice
modes of graphite at 0 K. The vibrational frequencies are plotted in THz and cm™?!
(to convert THz to cm™!, multiply by 33.35641). The left half is for waves along
the c axis, while the right half is for waves along the a axis. The acoustical modes
are denoted TA and LA (transverse and longitudinal), while the sheet-sheet optical
modes are denoted TO and LO.
The velocity of sound from these calculations is
vr = 1/Caa/p = 0.34 km/sec
vy = \/m = 4.24 km/sec
for modes along the ¢ axis and
v, = \/m = 0.34 km/sec
vr, = \/Ces/p = v/(C11 — C12)/2p = 14.33 km/sec
v = \/m = 22.29 km/sec

for modes along the a axis.

In Figure 3 we show all phonon modes. For vibrations within the sheets,

there is little dispersion for waves in the ¢ direction.
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The full set of elastic constants (stiffness Cj; and compliance S;;) are given
in Table V.

There are direct experimental data on the lattice modes from neutron
scattering;®® however, these data are for room temperature. To better compare
our results with these data, we recalculated the lattice modes using the lattice pa-
rameters for room temperature. To do this we modified the valence and van der
Waals parameters to fit the room-temperature lattice constants (a and c), elastic
constants (Cy1, Ci2, Css), and sheet vibrational modes (868 and 1588 cm™!) as in
Section III.B for 0 K. The modified force field is in the last column of Table II, and
the various properties are summarized in Table VI. The room-temperature lattice
modes are plotted in Figure 4 along with the experimental data. For waves in the a
direction, there is good agreement with the TO; and TA | modes (with amplitudes
perpendicular to the sheets). The data for longitudinal modes lie slightly higher
than the calculated LO and LA modes. This is expected since the experimental
dispersion curve leads to an elastic constant of C;; = 1440 GPa, whereas the cal-
culated dispersion leads to C;; = 1061 GPa, in agreement with the experimental
value from mechanical studies (C;; = 1060 &+ 20 GPa). The TA) and TOj modes
are apparently not observed in the neutron-scattering experiments.

For waves along the c direction, the predicted LA and LO modes are in good
agreement with the experiment. As discussed earlier, the TA modes for neutron-
irradiated samples lead to a Ca4 that is 15 times larger than the Cy4 from mechanical
experiments on irradiated samples. Our calculations support the low values for Caq

and lead to TA and TO modes much lower in energy than for neutron experiments.

B. Thermodynamic Properties

In Figure 5 we show the specific heat calculated using the phonon states of

Figure 3 and compare with experimental results.!® To convert the calculated values



162

of Cy to Cp, we used the thermal expansion data of Bailey and Yates.? The entropy
(S), energy (V), and free energy (F) are plotted in Figure 6 and tabulated in Table
VII

In addition to the calculations for the optimum parameters (leading to Cyq
= 0.25 GPa), we developed a second set of parameters to yield Cy44 = 4.0 GPa (the
value observed with neutron scattering). The modified parameters include three-
body angle interactions of the form 1k(8 — 8;)2, where k = 3.1650 kcal/mol rad?
and 6y = 90°. Here the angle is between C-C bond in one sheet and the line parallel
to the c axis, connecting two carbon atoms in adjacent sheets.. The introduction of
this term changes C,4 without changing other properties.

We see that all three experiments and both theoretical cases agree above 20K.
However, below 10K the experimental results for pile graphite and Canadian natural
graphite lead to specific heats significantly below that of graphitized lampblack.
Also, it is clear that the calculated optimum parameters for graphite (Cqy = 0.25
GPa) lead to a Cy, in excellent agreement with experiment for graphitized lampblack
down to 1K. On thé other hand, calculations using the modified parameters (Caa
= 4.0 GPa) lead to a C,, in good agreement with experiment for pile graphite and

Canadian natural graphite.

a. Calculations, Uniform Grid

Our standard approach for calculating the thermodynamic properties is to
use a uniform grid (Ng = 20 and 100) along all three directions in reciprocal space
(a total of N} points). The vibrational states for each such point were considered
as independent harmonic oscillators in calculating the quantum-partition function
and thermodynamic properties. In these calculations we used 1/24 of the Brillouin
zone with proper weights to obtain the sum over the full Brillouin zone. The three

zero-frequency modes for the central cell are ignored in all calculations.
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From Figure 6 we see that the results from the 20x20x20 grid (dotted lines)
differ from the 100x100x100 grid (solid lines above T = 10K, dashed lines below)
for T < 40K. This sensitivity to grid size is primarily due to the low-frequency modes
in the z direction (see Figures 2 and 3). In particular, neglecting the contribution
of the three acoustical modes for the central point leads to a low Cp. However, the
calculated Cp, for N; = 20 is too high for T < 10K. This occurs because only modes
with ky = ky = 0 contribute to Cp, and the weights of these modes are too large
because of the small number of points in the k.-k, plane.

At T = 10K we tested these Ng = 100 results by using Ng = 120 (1728000
total points). Here we find that C, increases by 3 x 10~ cal/mol K or 0.08%. On
the basis of comparisons to the calculations described below, it appears that the Cp

from Ng = 100 is accurate down to about 2K.

b. Calculations, Thin Plate Approximation

To test the accuracy of the calculated thermodynamic properties at lower
temperature (T < 10K), we used the frequency-distribution functions derived by
Komatsu.?? These functions were derived from the equations for vibrations of thin
plates with coupling terms between the plates. This approximation describes only
the acoustic modes and is accurate for frequencies below about 130 cm™!. Thus,
for low temperatures (where contributions from high frequencies are small), it is
adequate to use these functions for thermodynamic properties. The frequency-

distribution functions are??

flv) = d (—17 + vi2> vsin™? <1> , for v <y, =/(/mc (11a)

and
4V /1 1 T
fv) == <‘" " —) vy frvzm (11b)



164

for waves with the polarization vectors in the plate and

foru§u4=y-
s

'k

Vv /sin_l(l/\/1+(x°/x)2) d(p
X )
V1 —x2(1 + (x0/%)%)sin2ep
2]-1/2 ,m/2
L] .
ek x 0 /1 —x"2(1+(x,/x)%)"!sin2p

f() =

forv>u,

(11c)
for waves with the polarization vector out of the plate, where x = v/v! and x, =
¢/4mkv,. Our force field leads to the following parameters in these calculations:

¢ = ¢/2 =3.33605 x 1078 cm
V = volume per mole = 5.3004 cm?®/mol
v1 = longitudinal wave velocity in the plate

= /C11/p = 2.229 x 10® cm/s

vy = transverse wave velocity in the plate

= /Ces/p = 1.433 x 10° cm/s
k = bending modulus of the plate = 5.616 x 10~% cm?/s
p = (1/c')\/Css/p = 1.2704 x 103 s~1
¢ = Cas/p = 1.1562 x 10° cm?/s2.
Here, the bending modulus x was obtained by fitting the equation v = nki /27 to
the frequencies calculated for the out-of-the-plane modes at ky = 0.1 k,. In this
calculation, we used a single, isolated, infinite layer of graphite.
These thin plate results for T < 10K are shown in Figure 6 by the solid lines
(for both C44 = 0.25 GPa and 4.0 GPa). For T < 2K we see that the thin-plate

approximation is clearly superior to using the N; = 100 uniform grid.

C. Rhombohedral Graphite
The planes in graphite stack in the sequence ABABAB..., leading to
hexagonal symmetry. A second structure has been observed with the stacking

ABCABC. .., leading to rhombohedral symmetry.! From experiment, the hexag-
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onal form is clearly the more stable, but an estimate of the difference in energy
is not available. Using the force fields, we calculated these forms to have energies
within 0.0001 kcal/mol. [These calculations use an accuracy parameter of 0.0001
kcal/mol in the convergence acceleration,!? leading to 7 = 1.55 A, Reyy = 5.55 A,
and Heyy = 5.72 A-1 for the hexagonal form with ( = 12.] The phonon modes
for rhombohedral graphite are shown in Figure 8. The thermodynamic properties
of thombohedral graphite are calculated and compared with hexagonal graphite
in Figures 5 and 6, but the differences are too small to see. Since high-quality
graphite is hexagonal with but few stacking faults, we believe that the calculated

energy difference is too small.

VI. Discussion

The experiments and calculations on graphite leave some important discrep-
ancies unresolved. The major issue is the value of C44. Ultrasonic measurements on
compression-annealed graphite lead to C44 = 0.28 & .08. Our theoretical force field
yields C44 = 0.23 to 0.30, in excellent agreement with the above results. This force
field predicts a specific heat, Cp, in agreement with experiments on graphitized
lampblack.

On the other hand, neutron scattering leads to C4s ~ 4.0 GPa and using
force-field parameters adjusted for C44 = 4.0 GPa leads to a Cp in agreement with
high-quality graphite down to 1K.

A second troubling result from the theory is that the energy of Rhombohedral
graphite is less than 0.0001 kcal /mol above hexagonal graphite. The observed strong
preference for hexagonal graphite suggests a larger energy separation.

We should emphasize here that the assumption (1) that the graphite sheets
are flat and (2) that the van der Waals interactions are described in terms of X6

or LJ-type, two-body functions combined with (3) the requirement of fitting the
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experimental values of ¢ = 6.6721 A and Css = 40.7 GPa, leads directly to values
of C44 = 0.2 to 0.3 and necessarily leads to (a) C13 &~ Caq, (b) the high values of Cp
near 1K and (c) a small energy separation between hexagonal and rhombohedral
graphite.

[Al-Jishi and Dresselhaus®® have reported a set of parameters that lead to
C44 = 4.2 and C33 = 36.9; however, the model used considers only interactions of
atoms on the same or adjacent layers (and only up to 4th neighbors) and involves
individually adjusted radial and tangential pairwise force constants. These pairwise
force constants are not derivable from a smooth, two-body potential.]

If the high value of C44 from neutron experiments is the correct value for
perfect graphite, then we believe that either (or both) of the above assumptions
(flat sheets or two-body, long-range attractions) must be false. That is, either
the graphite planes are ruffled (as suggested by Pauling’ but not confirmed by
any experiments), or the van der Waals interactions are not described in terms of
smooth, pairwise, additive terms.

The latter hypothesis is possible. Graphite is a semimetal; that is the valence-
band maximum (highest-occupied, molecular orbital) is degenerate with the conduc-
tion band minimum (lowest-unoccupied, molecular orbital). In this circumstance
there should be extralarge contributions to the dispersion interactions that are due
to the states near the band edges (small energy denominators). This might well
have a major effect on Cs4 (and C;3). We are not in a position to test this hy-
pothesis (it would require many-body, electron-correlation calculations on crystals
of graphite). However, even if true, we believe that the van der Waals parameters

derived here for carbon are the appropriate parameters for other systems.

VII. Summary

We report van der Waals properties for C, given the fitting experimental data
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for graphite, and we use these parameters to examine other mechanical properties
of graphite. These studies support the low value for the shear elastic constant
from mechanical experiments (Cgq ~ 0.27 rather than Cyq ~ 4.2) and suggest that
neutron irradiation may increase the shear resistance. In addition, the simulations
lead to a much smaller coupling of in-plane stress to layer spacing (e.g., C13) than
is observed indirectly from experiment.

The specific heat and other thermodynamic properties are in good agreement
with experiment for T > 20K. At temperatures lower than 10K, the low value of
Css = 0.3 GPa consistent with ultrasonic measurements gi;fes a specific heat in
agreement with graphitized lampblack but larger than that of natural graphite. The
larger value of Cy4 ~ 4.0 GPa from neutron-irradiated samples leads to a specific
heat in agreement with natural graphite. This larger C44 is inconsistent with a
standard, two-body description of the long-range van der Waals interaction of planar
graphite sheets. This could indicate the need for more complicated potentials.

We believe that these carbon potentials will be useful for examining surface
properties and adsorbates on graphite. In addition, they should be useful in consid-
ering the intercalation of various molecules in graphite and in examining adhesion

to polymers and other molecules.
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TABLE I. Experimental Parameters for Graphite.

300K* 300K — OKP 0K

Lattice Parameters (A)°

a 2.4612 0.0072 2.4684

c 6.7090 —0.0369 6.6721
Elastic Constants (GPa)

Cu1 1060 + 20 66 £ 8 1126 + 22

Ciz 180 + 20 20 £ 2.5 200 £ 20

Css 36.5 + 1.0 4.2+ 0.5 407 £ 1.1

Cua 0.28 + 0.08 0.0088 + 0.001 0.289 £ 0.08

Cis 15+5 23.8 + 40 39.5 + 40.
Young’s Moduli (GPa)

E, 1020 £+ 30

E; 36.5 + 1.0
Poisson Ratios

121 0.16 + 0.06

pisa 0.34 + 0.08

pi1s 0.012 + 0.003

& References 1 and 3.

b References 2 and 9.

¢ 298 K was used in place of 300 K.
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TABLE III. Predicted Properties for Graphite®.

Experiment® Fitted Exponential 6 (X6)
(0 K) (=11 (=12 (=13 (=14 (=14.255 (¢ =15 LJ12-6

Lattice Parmeters

a 2.4684 £ 0.001  yes 2.4684  2.4684  2.4684  2.4684  2.4684 2.4684  2.4684

c 6.6721 £ 0.001  yes 6.6721 6.6721 6.6721 6.6721 6.6721 6.6721 6.6721
Elastic constant

Cin 1126 = 22 yes 1126.0 1126.3 1126.0 1126.0 1126.0 1126.0 1127.0

Cia 200 + 20 _ yes 199.1 195.8 194.7 200.0 200.0 200.0 194.2

Cas 40.7 £ 1.1 yes 40.70 40.70 40.66 40.70 40.70 4070 40.74

Caa 0.289 + 0.08 no 0.229 0.262 0.289 0.310 0.315 0.330 0.304

Cia 39.5 + 40 no 0.227 0.260 0.288 0.308 0.315 0.330 0.310
Young’s Moduli

E, (1020 £ 30) no 1090.8  1092.2 10923  1090.5  1090.5 1090.5  1093.6

Es (36.5 £ 1.0) no 40.70 40.70 40.66 40.70 40.70 40.70 40.74
Poisson Ratios

31 (0.16 + 0.06) no 0.177 0.174 0.173 0.178 0.178 0.178 0.172

131 (0.34 £ 0.08) no 0.0046  0.0053  0.0059  0.0063  0.0064 0.0067  0.0063

B13 (0.012 + 0.003) no 0.0002  0.0002 0.0002 0.0002 0.0002 0.0002  0.0002
Compressibility

B 0.026 no 0.02606 0.02608 0.02609 0.02606 0.02606 0.02605 0.02604
Lattice Modes

Eazq (45)* no 10.1 11.1 11.4 11.8 11.9 12.1 11.7

By (134)* no 142.3 140.7 139.6 138.9 138.8 138.4 139.0

Agy 868 yes 867.4 868.1 868.2 867.4 867.7 867.7 867.8

Bz, 868 no 868.0 868.9 869.2 868.6 869.1 869.1 869.6

Eq 1588 no 1588.1 1589.7  1588.1 1588.0  1588.7 1588.7  1586.0

Eiu 1588 yes 1588.2  1589.8  1588.2  1588.1  1588.8 1588.8 1586.2
Cohesive energy

Econ 2.048 1.723 1.500 1.338 1.303 1.211 1.303

Ernom-Enes 0.000 0.000 0.000 0.000 0.000 0.000 0.000

@ Parentheses indicate values at room temperature.
b See discussion in Section II.C. 8 cm™~! were added to correct from 300K to 0K (see Section II.d).
¢ Units are A for lattice parameters, GPa for elastic constants and Young’s moduli, 1/GPa for compressibility, 1 ¢m 7

lattice modes, and kcal/mol per carbon for cohesive energy.
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TABLE IV. Comparison with Published van der Waals Parameters for Carbon.

Parameters MM2®  Williams® Amber ¢ CHARMM? Jorgensen®* DREIDING’/ Exact?
EF2 EF3
Force-Field Parameters
van der Waals
R, (A) 3.8005 3.8983 3.70 3.60 3.7008 4.209 3.88 —
D, (kcal/mol) 0.0515 0.09512 0.12 0.1972 0.090 0.110 0.095 —
¢ 12.5 14.034 —_ — — — —
Bond
Ry (A) 14219 1.40952  1.40998  1.40975 1.41380 1.31663 1.39925 —
Properties
Cell Parameters (A)
c ' 6.5923 6.8014 6.5256 6.3102 6.5264 7.3678 6.7773 6.6721
Elastic Constants (GPa)
Caa 24.12 56.09 62.31 109.14 46.84 74.39 60.13 40.7 = 1.0
Cyse 0.168 0.385 0.500 0.936 0.376 0.400 0.422 0.29 = 0.08
Cia 0.167 0.387 0.499 0.936 0.376 0.402 0.423 0.29 = 0.08
Cohesive Energy
Econ (kcal/mol C) 1.021  1.656 2.300 3332 1725 2344 1.731 (1.3)
Compressibility (GPa~1)
I} 0.04308 0.01938 0.01747 0.01051 0.02282 0.01459 0.01810 0.0261
Lattice Modes (cm™1)
Ezq 8.8 13.1 15.4 13.5 13.3 12.8 13.7 (10.5 = 1)
Bag 109.3 161.0 176.9 141.9 153.2 178.2 167.2 (141 = 1)

¢ Reference 12.
® Reference 13.
. ¢ Reference 15.
4 Reference 14.
¢ Reference 16.

!/ Reference 17.

¢ Values in parentheses estimated from calculations; see Table III.
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TABLE V. Properties at 0K for Graphite Using the ( = 12 Exponential-6

Potential.

C;; Elastic Constant Matrix (Stiffness) (GPa).

1126.4 195.8 0.260 0 0 0

1126.4 0.260 0 0 0

40.70 0 0 0

0.262 0 0

0.262 0

465.45
Si; Compliance Matrix (GPa™1).

9.1545E —4 -1.5913E —4 —4.8315E —6 0 0 0
9.1545E -4 —4.8315E -6 0 0 0
2.4570E — 2 0 0 0
3.8168 0 0
3.8168 0

2.1485E — 3
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TABLE VI. Predicted Properties for Graphite at Room Temperature.

Experiment Exponential 6 (X6)P
¢ =12

Lattice Parameters (4)

a 2.4612 + 0.001 (2.4612)

¢ 6.7090 + 0.001 (6.7090)
Elastic Constant (GPa)

Cuy 1060 + 20 (1061.3)

C1z 180 + 20 (181.0)

Cas 36.5 + 1.0 (36.50)

Cua 0.28 + 0.08 0.224

Cis 15+5 : 0.224
Young’s Moduli (GPa)

E; 1020 £+ 30 1030.6

E; 36.5 £ 1.0 36.50
Poisson Ratios

K21 0.16 £+ 0.06 0.171

131 0.34 £+ 0.08 0.0051

M3 0.012 + 0.003 0.0002
Compressibility (GPa™!)

B 0.0268 + 0.0013¢ 0.02899

0.0286¢

Lattice Modes (cm™?)

Eog 45 10.0

Bag 126° 132.0

Az 868 (867.7)

Bag | 868 868.4

Fog 1588 1587.0

Eiy 1588 (1587.1)
Cohesive Energy (kcal/mol C)

Econ 1.540

® See discussion in Section II.C.
> Quantities in parentheses used in the fit.

¢ Reference 3.
4 Kabalkina, S. S.; Vereshchagin, L. F. Sov. Phys. Dokl. 1960, 5, 373.



TABLE VII. Calculated Thermodynamic Properties (per Carbon Atom).
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Temp Cy S A% F

(cal/mol K) (cal/mol K) (kcal/mol) (kcal /mol)
1 3.209%10~% 1.311x1075 9.226x10~°  -3.885x10~°
2 1.389x10~* 6.267x10~° 8.682x10~%  -3.851x1078
3 3.349x10~* 1.530x10~* 3.162x10"7  -1.428x1077
4 6.215x10~* 2.864x10* 7.868x10°7  -3.589x10~7
6 1.465x10~3 6.859x10~* 2.814x107%  -1.302x107°
8 2.667x10~3 1.263x1073 6.886x107%  -3.221x107°
10 3.871x10°3 1.850x10~3 1.128x10~%  -6.696 x10~®
15 9.014x103 4.414x10°3 4.405x107%  -2.216x1075
20 0.01665 7.989x103 1.071x10~*  -5.269x1073
40 0.07516 0.03505 9.543x107%*  -4.479x10~*
60 0.1656 0.08186 3.324x10~%  -1.588x1073
80 0.2749 0.1441 7.701x10~%  -3.824x10°3
100 0.3992 0.2185 0.01442 -7.432x1073
200 1.168 0.7204 0.09122 -0.05285
300 2.000 1.352 0.2497 -0.1558
400 2.768 2.035 0.4890 -0.3249
500 3.411 2.724 0.7991 -0.5629
600 3.918 3.393 1.167 -0.8690
700 4.309 4.027 1.579 -1.240
800 4.608 4.623 2.025 -1.673
900 4.839 5.180 2.498 -2.164
1000 5.019 5.699 2.992 -2.708
1500 5.503 7.843 5.643 -6.121
2000 5.695 9.456 8.449 -10.463
2500 5.788 10.738 11.322 -15.523
3000 5.840 11.798 14.231 -21.165
4000 5.893 13.487 20.101 -33.847
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Figure Captions

Figure 1. Illustration of pinning of resonance structures by saturation of bonds at ‘
edges of graphite.

Figure 2. Phonon-dispersion curves for low-frequency modes of (hexagonal)
graphite at 0K (using the X6 potential with ¢ = 12).

Figure 3. Phonon-dispersion curves for all vibrational modes of (hexagonal)
graphite at 0 K.

Figure 4. Phonon-dispersion curves for low-frequency modes of (hexagonal)
graphite at 300K.

Figure 5. Specific heat of graphite. Experimental results indicated with circles.
Figure 6. Thermodynamic properties of graphite. Theoretical values for hexagonal
and rhombohedral structures are plotted, but the lines are essentially superimposed.
(a) Vibrational entropy (S) of graphite. (b) Vibrational energy (V) and free energy
(F) of graphite.

Figure 7. Phonoh—dispersion curves for low-frequency modes of rhombohedral

graphite at 0 K (using the X6 potential with { = 12).
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Figure 1
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Appendix II

Properties for Hydrocarbon Crystals Using New, Nonbond,

Force-Field Parameters
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Abstract

Nonbond, force-field parameters, derived for molecular-mechanics calcula-
tions of polyethylene crystal, are used to calculate properties of various hydrocarbon
crystals. Cell parameters, cohesive energy, lattice frequencies and elastic constants
are calculated for n-hexane, n-octane, benzene, naphthalene, and anthracene. Lat-
tice frequencies of polyethylene crystal were fitted when van der Waals parameters
were determined, leading to a good agreement of calculated, vibrational frequencies

and elastic constants with éxperimenta.l values for these hydrocarbon crystals.
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I. Introduction

We developed force-field parameters for molecular-mechanics calculations of
polyethylene crystall. In this study, carbon van der Waals (vdW) parameters are
derived from graphite and hydrogen vdW parameters are derived to fit cohesive
energy, cell parameters and lattice frequencies of polyethylene crystal. Here we
use parameters thus derived to calculate properties of hydrocarbon molecular crys-
tals. Since a scaling parameter ({) of hydrogen vdW parameters was adjusted to
reproduce lattice frequencies of polyethylene crystal, it is of particular interest to
calculate lattice frequencies of these crystals and to compare them with observed
values.

Hydrocarbon, nonbond, force-field parameters have been derived by Williams
and Starr? In their study, the exp-6-1 form was used and parameters were deter-
mined by using 18 hydrocarbon molecular crystals. Recently, these parameters have
been slightly modified by using azahydrocarbon crystals®. In their studies, cohesive
energy and structure were used to determine vdW parameters and charges. It was
shown that electrostatic terms were important, and the charge of hydrogen atom
was set to be 0.153e. Also it was shown that geometric mean law could be used
for vdW parameters between carbon and hydrogen. Shortenings of 0.07A for C-H
covalent bonds were used in these calculations. Lattice frequencies of molecular
crystals were used to optimize the vdW parameters but no significant changes were
obtained®.

One restriction in the parameter-optimization procedure in these studies is
that C (a factor in e=F) in the exp-6-1 potential is not optimized but is obtained
from the structure of the elements or theoretically fixed in the parameter optimiza-
tion. We found that this factor has significant effects on lattice frequencies, and
we used polyethylene lattice frequencies to optimize it. Also, we do not use the

shortening of C-H covalent bonds in the calculation.
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Here we calculate structure, cohesive energy, lattice frequencies and elastic
constants for n-hexane, n-octane, benzene, naphthalene, and anthracene by using
vdW parameters obtained for polyethylene crystal, and no adjustment of the vdW
parameters was made for each crystal. The main purpose of this study is to see
if these parameters give properties that agree with experimental values. Also, it
should be a good test of transferability of vdW parameters. These crystals are cho-
sen because many of the calculated properties can be compared with experimental

values.

II. Method

The nonbond potential energy is given by the sum of van der Waals terms
and electrostatic terms. The electrostatic term between atoms i and j is given by
Cunit9iqj/€R, where g; and g; are charges of atoms, R is a distance between atoms,
€ is a dielectric constant which we take as one, and Cy,;; = 332.0647 converts the
energy in kcal/mol, if charges are in electrons and R is in A. Similarly, the van der

Waals term between atoms i and j is given by

8
E(R) — Be—C’R . AR-—G — CD06 [66C(1—R/R0) _ C (%) ] , (1)

where Dy is a well depth, Ry is a well distance and ( is a scaling factor. In terms

of these, A, B and C are given by

A= DOC—EERS, (2a)
B:DOCEGe(, (26)
C = Rio' (2¢)

From Eq.(1), we have
E(R,) = — Dy, (3a)
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dFE
(%) o (3)
_(£E\ _ Dy6L(¢—T)
= (), e (%

From these equations, it is seen that the scaling factor ( is directly related to a
force constant (k); thus, lattice frequencies and elastic constants depend on this
value. We have three parameters for carbon and hydrogen, respectively. For the
parameters between carbon and hydrogen, geometric, mean-combination laws are

used; that is

Ach = (AccArn)?, (4a)
Bow = (BooBuu)''?, - (4d)
Ccu =(Ccc + Cum)/2, (4¢)

where for the parameter Coy, the arithmetic mean is used, since the function is
exponential.

Carbon parameters are determined from graphite crystal®, where R is de-
termined from an interlayer distance, and Dy is determined from an elastic constant
Cas. The scaling factor was not determined directly, and parameters were obtained
for three different values of {, 11,12, and 13. By using these carbon parameters, hy-
drogen parameters are determined from cohesive energy, cell parameters, and lattice
frequencies of polyethylene crystal'. In these calculations, the charge of hydrogen is
set to be 0.144e, based on various calculations of small hydrocarbon molecules!. Pa-
rameters thus obtained (which we call the PE set) are listed in Table I. In this table,
Williams’ parameters are also shown. A different set with (¢ = 12 and ¢y = 11.8
was tested! but gave quite similar results. Here, results of calculations with (¢ = 13
and {(z = 11.2 are shown except for n-hexane and benzene crystals. When these
parameters are determined, only polyethylene crystal is used in the fitting because

accurate experimental data at low temperature are available only for this crystal.
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In this study, we used valence force-field parameters to reproduce geometries
of molecules. For n-hexane and n-octane, we used valence force-field parameters ob-
tained for n-butane!, which include all cross terms to reproduce correctly vibrational
frequencies as well as a geometry of n-butane. For benzene, naphthalene, and an-
thracene, force-field parameters based on DREIDINGS® but slightly modified for each
crystal, were used. In these calculations, values of force constants are unchanged,
but values for equilibrium constants are adjusted to reproduce the average bond
distances and angles of the experimental geometries for benzene’, naphthalene®,
and anthracene®, respectively. These force-field parameters reproduce experimental
geometries after atomic positions are optimized at experimental cell parameters.
After optimizing atomic positions, geometries of molecules are experimental ones
within experimental errors. C-H bond lengths of these aromatic systems are set to
be 1.09A in calculations using the PE set. We also obtain valence force-field pa-
rameters by using the Williams’ vdW parameters®, which reproduce experimental
molecular geometries of these crystals. When the Williams’ vdW parameters are

used, C-H bond lengths are set to be 1.027 A for aromatic crystals.

In calculations of energy, force, stress and curvature for electrostatic and
dispersion terms, Accuracy- Bounded Convergence Acceleration (ABCA) with ac-
curacy parameters of 0.005 kcal/mol for electrostatic energy and 0.001 kcal /mol for
dispersion energy is used'®. Optimization of atomic coordinates at experimental cell
parameters is performed and energy, stress, lattice frequencies and elastic constants
are calculated. Also, simultaneous optimizations of atomic coordinates and cell pa-
rameters are performed and above properties are calculated. The optimization is
stopped when the R.M.S. atomic force becomes less than 0.02 kcal/mol A , and
the R.M.S. first derivative of energy with respect to strain becomes less than 0.002
kcal/mol. The cohesive energy is calculated from the difference of energy between

an isolated molecule and that of a crystal. Zero-point energy of an isolated molecule
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and a crystal is calculated (for crystals, only frequencies at the I' point are used)
and corrections are made. All calculations are performed by using a POLYGRAF!!

software package.

ITI. Results and Discussion

A. Cohesive Energy and Crystal Structure

Cohesive energy of these crystals is compared with experiménta.l sublimation
energy in Table II. The differences between calculated and experimental cohesive
energy using the PE parameters are within 0.5 kcal/mol in all the cases studied
here, which we believe are within experimental errors. Williams’ parameters are
fitted to reproduce cohesive energy of n-hexane and benzene since these are known
accurately, but for zero-point energy correctipns, estimated values are used!2(0.50
kcal/mol for n-hexane and 0.66 kcal /mol for benzene), which are about 0.5 kcal /mol
smaller than our calculated values. Cohesive energy obtained by Williams’ pa-
rameters is similar for n-hexane, n-octane and benzene. But for naphthalene and
anthracene, cohesive energy seems to be higher than the experimental value. Ac-
curate experimental data of these systems may determine whether these are real
differences.

Optimized crystal structure and densities are shown in Table III. In this ta-
ble, experimental and calculated cell parameters are also shown. The agreement of
calculated and observed values is satisfactory, although Williams’ parameters seem
to give a slightly better agreement. This is because we fitted cell parameters of
polyethylene at low temperature (4K). On the other hand, Williams’ parameters
are fitted with structure at room temperature, since for most of the systems, struc-
ture is not measured at low temperature. In the table, we also show densities of
calculated and experimental crystals. Calculated densities using the PE parameters

are systematically higher than experimental densities in all the cases shown here
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because crystals are expanded at the temperature where experiments are done.

B. Lattice frequencies

Lattice frequencies are shown in Table IV. These are calculated at observed
cell parameters, since these values depend on cell dimensions, hence strongly on
temperature. For n-hexane and n-octane, lattice frequencies are measured!” at
various temperatures and three frequencies are found at low temperature. But only
two frequencies are observed at the temperature at which structure is determined.
Here we show calculated frequencies at the optimized structure. The frequencies at
the optimized structure correspond to those at 0 K, and these are compared with

experimental values at 20 K.

In all the cases shown here, the PE parameters give a better fit than Williams’
parameters. Williams’ parameters usually overestimate vibrational frequencies. In
Table I, it is shown that a force constant of carbon vdW parameters of the Williams’
set is larger than that of the PE set. On the other hand, a force constant of hydrogen
parameters of the Williams’ set is smaller than that of the PE set. This suggests
that the force constant of carbon has a larger effect than that of hydrogen on lattice

vibrational frequencies for these crystals.

For n-hexane and benzene, we show results calculated by using two different
PE parameters. Vibrational frequencies calculated by PE parameters with {¢c = 12
and (g = 11.8 are slightly smaller than those calculated by using parameters with
(c =13 and (g = 11.2 for most cases but differences are quite small, and both sets
give similar R.M.S. errors. It is because the force constants (k) of these parameters
do not differ much (see Table I). Force constants of parameters with (¢ = 12 and
(g = 11.8 are about 10% smaller than parameters with (¢ = 13 and (g = 11.2,
and this makes vibrational frequencies of the former set smaller than that of the

latter set.
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C. Elastic Constants

Elastic constants are shown in Table V. These values depend on cell param-
eters strongly similar to lattice frequencies. We show these values at experimental
cell parameters. Experimental elastic constants are shown for benzene, naphthalene
and anthracene (experimental elastic constants of n-hexane and n-octane have not
been reported). For benzene, a,b, and c axes correspond to z;, 23, and z3 axes,
respectively. For naphthalene and anthracene, the b axis is a unique axis and it is
parallel to the z; axis. z; axis in these cases is taken to be parallel to the a axis to
compare with experimental values. For n-hexane and n-octane, experimental values
are not reported. In these cases, the convention here is that the 3 axis is parallel
to fhe c axis and the z, axis is in a plane formed by b and c axes.

For benzene, the PE parameters give an R.M.S. error of 0.79 GPa compared
with experimental values obtained by Brillouin scattering??. Independent experi-
mental values obtained by sound-velocity measurements are reported?3, and these
two experimental values agree within experimental errors except for C;;, Ca2 and
Css. The extrapolated values at 270K by sound-velocity measurements reported in
Ref. 22 are C;;=5.63 GPa, C3,=5.77 GPa and C33 = 5.31 GPa. If we compare
these values with calculated values by the PE parameters, the agreement becomes
even better. Elastic constants calculated by using different PE parameters are again
similar. Elastic constants of parameters with (¢ = 12 and (g = 11.8 are slightly
smaller than those with (¢ = 13 and (g = 11.2 except for Cgg. It is because force
constants of the former set are slightly smaller than those of the latter set.

For naphthalene, experimental values obtained by sound-velocity measure-
ments are reported??. In this case again, an R.M.S. error is less than 1 GPa when
the PE parameters are used. The experimental errors of this crystal are large, espe-
cially for off-diagonal constants?*( less than 5 % for diagonal terms and Ci3, 15 %

for Cy2 and Cas, and 50 % for other terms). Hamamsy et al.?® refined these values
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by using experimental compressibilities, but their values are not listed in a table,
since each term is not uniquely determined by their method.

For anthracene, experimental values obtained by sound-velocity
measurements?®:2"?8 as well as values by Brillouin scattering?® are available. In
a table here, values obtained by Brillouin scattering are shown, since an overall
error seems to be the lowest in this method. In this case also, the PE parame-
ters give a better agreement with experimental values than Williams’ parameters,
but an R.M.S. error in this case is much larger than in previous cases. If we use
experimental values by Afanaseva et al.2é, which presumably have similar accu-
racy as in a naphthalene case, we get an R.M.S. error of 1.51 GPa, which is still
larger than in previous cases. The largest discrepancy occurs for Ca5, where the
experimental value is negative, but calculated values are positive. Calculation by
Pawley®? also gives a positive value for Cos. Also, calculated values for Cs5 are al-
ways lower than experimental values. This suggests that calculations using pairwise
atom-atom interactions have difficulty in reproducing these experimental values. It
may be possible to use these differences to improve the form of nonbond, potential

functions.

IV. Summary

van der Waals parameters, obtained by fitting low-temperature structure,
cohesive energy and lattice frequencies of polyethylene crystal, are used to calculate
various properties of hydrocarbon crystals. The calculated vibrational frequencies
and elastic constants agree well with experimental values. For anthracene, calcu-
lated elastic constants show systematic deviations, which may be used to improve

the functional form of nonbonding interactions.
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Table I. van der Waals parameters of carbon and hydrogen. Units are kcal /mol

for energy and A for distance. k is the second derivative at an equilibrium distance

(Eq.(3)).

(a) polyethylene (PE) van der Waals parameters. Two different sets are shown.

Ry Do ¢ k
3.8410 0.0792 13.0 0.3589

3.1665 0.0200 11.2 0.1083
3.8837 0.0844 12.0 0.3359

3.1975 0.0160 11.8 0.0917

B QlE Aa

(b) Williams’ van der waals parameters®.

Re Do ¢ k
C  3.8983 00951  14.0340  0.4614

H 3.3107 0.0128 12.3822 0.0732

¢ Ref. 3.
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Table II. Sublimation energy E,.,; of hydrocarbon crystals. Egq is a lattice energy at
the optimized cell parameters, and A E,, is a difference of zero-point energy between an isolated

molecule and a crystal. Energy is in kcal/mol.

exp. PE Williams®
E:ub EOd A Ezp Eaub EOd A Ezp Ecub
n-hexane 12.14% 13.374 -1.25¢ 12.12¢ 12.95 -1.17 11.78

13.33¢  -1.41°  11.92¢
n-octane 15.88° 17.46 -1.48 15.98 16.99 -1.44 15.55
benzene 11.84%  12.37¢  .1.02¢ 11.35¢  12.53 -1.02 11.52
13.23¢  -1.05¢°  12.18°
naphthalene  17.30° 18.79 -1.15 17.64 19.44  -1.16 18.28
anthracene 24.40° 25.58 -1.37 24.21 26.64  -1.40 25.25

¢ Ref. 3, % Ref. 13, ¢ Ref. 14, % (¢ = 13, ¢ (¢ = 12.
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Table III. Calculated and experimental cell parameters and densities (p) of hydrocarbon crystals.

In calculations, van der Waals parameters derived for polyethylene (PE) and those by Williams® are

used. a, b and c are in A, @, 3, and 7 are in degrees, p is in g/cm3.

a b c o B Y I4
n-hexane PE({c = 13) 419 448 860 972 887  103.3 0.9162
PE(¢c = 12) 420 448 860  97.2  88.8 103.3 0.9155
Williams 417 451 8.70  96.3  87.8 103.9 0.8965
exp.(T=160K)*  4.17 470 857  96.6  87.2 105.0  0.8881
n-octane PE 420 448 11.03 954  85.0 103.4  0.9465
Williams 421 451 11.15 947  84.2 104.0  0.9289
exp.(T=190K)°  4.22 479  11.02 94.7  84.3 105.8  0.8909
benzene PE((c =13)  7.44 923 680  89.9  90.0 90.1 1.1118
PE((c = 12) 7.43  9.18  6.76  90.0  90.0 90.2 1.1240
Williams 741 935  6.96  90.0  90.0 89.9 1.0774
exp.(T=77K)¢ 7.37  9.35 6.77 90.0 90.0 90.0 1.1122
naphthalene PE 8.02 589 863  90.0 1234 90.0 1.2500
Williams 8.16 593 865  90.1  122.9 89.9 1.2110
exp.(T=300K)® 824 6.00 866  90.0 122.9 90.0 1.1848
anthracene PE 8.39 5.95 11.19 90.1 125.4 90.0 1.2993
Williams 8.52  6.01 11.22  90.3  125.1 89.8 1.2594
exp.(T=290K)  8.56 6.04 11.18  90.0  124.7 90.0 1.2453

®Ref. 3, Ref. 15, °Ref. 16, Ref. 17, *Ref. 18 /Ref 9.
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Table IV. Calculated and experimental lattice frequencies (cm~!) of hydrocarbon
crystals. In calculations, van der Waals parameters derived for polyethylene (PE)

and those by Williams® are used.

(a) n-hexane, calculated at optimized cell parameters.

mode exp. (T=20K)? PE ({¢c = 13) PE ({¢c = 12) Williams

A 53 71 70 71
74 78 78 73

87 91 92 91

R.M.S. error 10.9 10.5 11.0

(b) n-octane, calculated at optimized cell parameters.

mode exp. (T=20K)® PE Williams

A 47.5 58 63
65 64 70
72 76 83

R.M.S. error - 6.5 19.7
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(c) benzene, calculated at experimental cell parameters.

mode exp. (T=77 K)° PE ((c =13) PE (¢c=12) Williams

A, 97.5 94 93 103
83.0 82 81 01

61.0 47 45 50

By, 132.0 146 145 162
87.0 111 109 122

67.0 54 51 62

By, — 117 115 127
94.0 95 93 106

83.0 87 86 95

Bs, 132.0 145 143 161
105.0 90 89 08

65.0 63 63 65

A, — 108 105 123
— 67 66 76

— 61 60 70

Bi. 102.0 92 90 106
71.0 76 75 89

B, 105.0 112 109 130
59.0 58 57 67

Bs. 91.5 107 103 123
76.0 57 55 67

R.M.S. error 11.7 11.7 18.2
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(d) naphthalene, calculated at experimental cell parameters.

mode exp. (T=300 K)¢ PE Williams

A 109 119 134
74 83 91
51 49 54
B, 125 121 138
71 72 78
46 39 47
A, 98 91 109
39 40 45
B. 73 61 68
R.M.S. error 7.0 12.1

(e) anthracene, calculated at experimental cell parameters.

mode exp. (T=293 K)© PE Williams

A, 121 133 149
70 7 87
39 37 40
B, 125 129 148
65 63 71
45 42 48
A, — 94 112
— 34 38
B. — 58 66
R.M.S. error 7.9 16.6

“Ref. 3, *Ref. 17, “Ref. 18,19, “Ref. 20,21, ¢Ref. 21.
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Table V. Elastic stiffness constants (GPa) of hydrocarbon crystals at experimental
cell parameters. In calculations, van der Waals parameters derived for polyethylene

(PE) and those by Williams® are used.

(a) n-hexane, calculated at cell parameters at T=160 K.

Exp. PE ({c = 13) PE ((¢c =12) Williams

Ci1 — 11.9 12.1 13.2
Cis — 2.8 2.9 3.8
Cis — 3.8 3.7 6.3
Cia — 0.053 -0.079 0.91
Cis — 0.18 0.17 -0.055
Cis — -2.3 -2.4 -2.0
Ca2 — 7.3 7.3 7.9
Cas — 3.4 3.4 5.8
Cas — -0.69 -0.74 -0.44
Cas —_ -0.52 -0.56 0.15
Cae — 1.4 1.5 1.3
Css — 16.4 16.4 20.9
Csa — 3.0 2.9 4.9
Css — 0.67 0.47 3.6
Cae — 0.47 0.41 14
Caa — 3.1 3.0 3.8
Cas — 0.26 0.18 0.78
Cas — -0.084 -0.11 -0.17
Css —_ 2.8 2.8 4.3
Cse — 0.33 0.29 0.92
Coes — 2.1 2.2 2.6
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(b) n-octane, calculated at cell parameters at T=190K.

Exp. PE Williams
Cu1 — 10.0 11.2
Ci2 — 2.3 3.0
Cis — 3.5 5.6
Cis — -0.091 0.65
Cis — 0.19 -0.074
Cis — -2.2 -2.1
Ca2 — 5.6 5.9
Cas — 2.4 4.6
Cas —_ -0.59 -0.44
Cas — -0.37 0.20
Cae — 1.4 1.3
Css — 17.3 25.3
Csa — 3.1 4.8
Css — 1.1 4.4
Cse — 0.37 1.3
Cas — 2.2 24
Cas — -0.040 0.43
Cae — -0.14 -0.22
Css — 2.4 3.3
Cse — 0.13 0.56
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(c) benzene, calculated at cell parameters at T=270K".

Exp.© PE ({¢c = 13) PE ((¢c =12) Williams

Cn 6.4 5.2 4.8 6.8
Ci2 3.3 3.5 3.4 4.9
Cis 4.1 4.3 4.0 5.9
Cz2 6.81 5.9 5.5 8.2
Cas 3.4 3.4 3.3 4.8
Css 6.08 4.9 4.5 6.9
Caa 1.83 1.7 1.7 2.1
Css 3.9 5.2 4.9 6.6
Cee 1.43 0.46 0.49 0.74

R.M.S. error 0.79 0.98 1.43

(d) naphthalene, calculated at cell parameters at T=300K.

Exp.? PE Williams
Cu 8.19 6.7 9.6
Ci2 5.56 5.3 7.9
Cis 3.22 4.1 6.1
Cis 0.2 0.55 0.85
Cos 10.02 8.3 124
Cas 3.48 4.0 5.3
Cas 1.9 1.2 1.9
Css 12.43 14.2 18.6
Css -2.9 -3.2 -4.0
Cas 3.44 3.3 4.2
Cae 0.7 1.0 1.2
Css 2.34 1.8 2.7
Ces 4.43 3.6 4.7

R.M.S. error 0.93 2.24
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(e) anthracene, calculated at cell parameters at T=293K.

Exp.© PE Williams

Cu1 9.17 7.2 10.5
Ci2 4.10 6.4 9.4
Cis 5.68 5.6 8.2
Cis -0.73 0.33 0.49
Ca2 9.79 9.6 14.0
Cas 4.12 5.4 74
Cas -3.35 1.3 2.0
Cass 17.88 14.4 19.4
Css -0.51 -3.8 -4.9
Cas 2.18 2.3 2.8
Cas 1.06 1.5 2.0
Css 1.95 3.0 4.3
Ces 3.98 2.8 3.7

R.M.S. error 2.14 3.08

“Ref. 3, ®Cell parameters at 270 K are extrapolated values from Ref. 7, ‘Ref. 22,
YRef. 24, ¢Ref. 29.
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Appendix III

Phase Transitions in Polymethylene Single Chains from

Monte Carlo Simulated Annealing
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Phase Transitions in Polymethylene Single Chains from Monte Carlo Simulated

Annealing

Naoki Karasawa and William A. Goddard I1[*
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Folding of single isolated polymethylene chains was examined with Monte Carlo simulated annealing. All carbon and hydrogen
atoms were considered explicitly by using van der Waals plus torsional potential functions. The calculations allowed continuous
variation in each torsional degree of freedom. In addition, we examined the consequences of simplifying the calculations
by restricting the carbons to be on a diamond lattice. Ensembles of conformations for larger chains (CyH,y4q, with V' =
16. 32, 64) all show a transition from a random coil at high temperature to a globular form at low temperature. For longer
chains (V 2 64), this globularization transition is well described by the mean-field theory of Sanchez. )

Introduction

The self-condensation transition behavior (collapse transition)
of a chain molecule in dilute solution has been studied extensively
by theory' and computer simulations.*” Most studies have
examined the asymptotic properties of very long chains (N — =,
where NV is the number of segments), finding in this limit that the
properties of the chain do not depend on the local stiffness of the
chain. Recent Monte Carlo simulations by Kolinski et al.5 show,
however, that the transition behavior of the chain is highly de-
pendent on the local stiffness of the chain as well as on the size
of the chain. If the chain is too short or the temperature too low,
the properties of the chain should become more dependent on the
particular parameters of the chain. To examine the effect of the
local properties of the chain on the transition behavior and
structure, we used polymethylene as a specific model and carried
out simulated annealing studies from 2100 to 100 K. We find
a distinct globularization transition for larger chains (N 2 16),
which for N 2 32 is well described by the one-parameter mean-
field theory of Sanchez.!

Most previous simulations have used lattice models (simple
cubic,® face-centered cubic,’ diamond®”), but in this study we
allowed continuous variation in each torsional degree of freedom
and calculated all nonbonding and torsional interactions. Com-
parisons with equivalent lattice calculations indicate systematic
errors from use of such lattices.

Since solvent effects are not included, these simulations of
isolated chains apply only to cases in which the solvent interactions
are weak and the chain is immiscible.

Model and Sampling Procedure

We generated the polymethylene conformations using fixed
bond distances and bond angles but allowing continuous variation
of torsion angles. The potential function was chosen to reproduce
the torsional potential function of n-butane (Abe et al.¥) with Rc_c
=153A, Rey = 110 A, fcce = 112°, Bycc = 109.5°, and
Bhc-u = 109.5°. The total energy of the system is given by the
sum of the torsional energy and nonbonding interactions:

N-1
E= Z}(Vo/2)(l-cos ¢+ U (1)

allpair

where ¥, = 2.8 kcal/mol and ¢, is the torsional angle of the ith
bond. The van der Waals or nonbonded energy between atoms
i and j is given by

U; = Be Ry~ 4/R,$ (2)

where Rj; is the distance between atoms i and j. The sum is taken
for all pairs of atoms except those involved directly in a bond
stretching or bending interaction. van der Waals parameters are
given in Table I.

* Contribution No. 7723.

0022-3654/88/2092-5828%01.50/0

TABLE I: Nonbonding Energy Parameters®-

A, B, C, €0
AS kcal/mol kcal/mol A™' kcal/mal Ry A v
H-H 452 9950 4.54 0.072 2.6 11.8
H-C 127 86100 4.57 0.083 3.1 14.3
Cc-C 363 908600 4.59 0.106 36 16.5

?Reference 8. ®¢ is the well depth, R, is the distance corresponding
to the energy minimum, and v is the normalized scale factor. The
energy U is given by U = Be™ R ~ 4/R® = [¢y/(y - 6)][6€7') - yp¥].
where » = R/R,.

A simplification that reduces computer time is to precalculate
all nonbonding energies as a function of R? with step size 0.005
A2 In the simulations, the value in the list corresponding to the
nearest value of the desired R is used. This decreases the time
by a factor of 3 but leads to the same energy within 0.1 kcal,/mol
when R 2 0.65R,. When R < 0.65R,, each nonbonding potential
energy is more then 10 kcal/mol, so that the error in this region
should not have a large effect on the results.

Various methods have been suggested for trial movement in
the Monte Carlo simulation of a polymer chain.* The reptation
method® is used in this study because of its high efficiency and
small calculational time. In this approach (see Figure 1). a
terminal C-H bond to atom N is replaced with a new C~C bond
to the (N + 1) CHj group, while the first CH, group is contracted
to an H (keeping a total of N carbons). When a C-C bond is
replaced, the torsional angle (¢) of the new bond is chosen ran-
domly. The trial movement is accepted with the probability

Pr. = min (1,e"3Er/keT) (3)
where AEr. = Er - E,, E is the energy of the trial conformation
and £ is the energy of the current conformation.

During the simulation, the following values are sampled and
averaged at each temperature. Internal energy:

(E) (4)
Specific heat:
(C) = ((EY) = (E)) / kg T? (%)
End-to-end length squared:
(RY) = (R, - RW)Y) (6)

(1) Sanchez. I. C. Macromolecules 1979, 12, 980.

(2) Post, C. B.: Zimm, B. H. Biopolymers 1979, /8. 1487.

(3) Muthukumar, M. J. Chem. Phys. 1984, 8/. 6272.

(4) Baumgirtner, A. In Application of the Monte Cario Method in Sta-
tistical Physics: Binder. K., Ed.; Springer-Verlag: Berlin, 1984: pp 145-130

(5) McCrackin, F. L.; Mazur, J.; Guttman, C. M. Macromolecules 1973,
6, 859.

(6) Kolinski, A.. Skolnick, J.; Yaris, R. J. Chem. Phys. 1986, 85. 3381

(7) Kremer, K.; Baumgartner, A.; Binder, K. J. PAys. 4: Gen. Math. 1981,
15, 2879.

(8) Abe, A.; Jernigan, R. L.; Flory, P. J. J. Am. Chem. Soc. 1966, 88. 631

(9) Wall, F. T.; Mandel, F. J. Chem. Phys. 1975, 63, 4592.

€ 1988 American Chemical Societv



Phase Transitions in Polymethylene Single Chains
Radius of gyration:

N-1 N
(SH =(1/NMT T ((R-R)H =

=l jmie]
(l/N)é((E, - Rew)® (7)
where Rcy is the center-of-mass coordinate:
Rew = (VM%R.'

The internal energy is the total potential energy, (1), while the
specific heat is the fluctuation of the internal energy. Before
beginning a simulated annealing sequence, we did a “melting run”
of about 80000 steps. During this stage, the temperature was
set very high (kg7 = 10° kcal/mol) to allow the chain to sample
all parts of configuration space. In doing this, we allowed the
segments to pass each other by setting U;(R;; = 0) = L, where
L is a large but finite number (generally L = 10¢ kcal/mol).

The temperaure was decreased according to a predefined an-
nealing schedule. At each temperature, the system was equili-
brated (using multiple reptation steps) until the energy became
nearly constant. The criteria for equilibration was

E,-2C<E,<E,+2C

where E,, is the average energy of the previous m steps, and C
is the energy fluctuation (standard deviation) of the last n steps.
For N = 32, n was chosen as 3000 and m was chosen as 900 000.
For N = 16 and N = 64, n was chosen as 2000 and m was chosen
as 400000. For N = 8, nand m were chosen as 1000 and 100000,
The annealing schedule involved a temperature decrease of 100
K per step for higher temperatures, which was decreased to 50
K per step when the energy fluctuations (specific heat) became
large (near the globularization transition temperature, 7).

Results and Discussion

A. Radius of Gyration versus Temperature. The temperature
dependence of the radius of gyration (S?) is shown in Figure 2
for differing numbers of carbon atoms (V). In the case of N =
8 (Figure 2a), the radius of gyration becomes larger as the tem-
perature is decreased, leading to. an all-trans structure at low
temperature. In the case of N = 16 (Figure 2b), (S?) becomes
larger as the temperature is decreased to about 400 K and suddenly
drops for temperaures below 300 K. In the case of N = 32 (Figure
2c), (S8?) starts dropping below 1050 K, becoming a constant at
about 300 K. In the case of N = 64 (Figure 2d), (S?) starts
dropping below 1500 K, becoming a constant at about 400 K.
End-to-end length versus temperature exhibits very similar
tendencies.

To analyze the results, we used rotational isomeric state (RIS)
theory!© to calculate the radius of gyration as a function of tem-
perature, as shown in Figure 2 (dotted line). In RIS theory, only
nearest-neighbor interactions between atoms are considered, and
no long-range interactions are taken into account. Also, the
torsional angles of each bond are assumed to take only three
discrete values: (1) trans (t, torsional angle ¢ = 0°); (2) gauche
plus (g*, ¢ = 112.5°); (3) gauche minus (87,9 =-112.5°). The
energy difference between trans and gauche is set to be E;-E,
= 0.5 kcal/mol, and the energy difference between g*g* and g*g*
is set to be E(g*g*) ~ £(g*g") = 2.7 kcal/mol. Also, the C-C
bond lengths are set to be 1.53 A, and the C-C-C angles are set
to be 112°. With the above two assumptions, RIS theory leads
to analytic results for all V.

In the case of N = 8, the result of the simulation is described
well by RIS theory except at high temperature. In the high-
temperature region, the dimension of the chain is larger in the
simulation than in RIS theory. This is due to the volume exclusion
effect, which is neglected in RIS. When N = 16 and larger, the
chains collapse in the low-temperature region. This is not ex-
plained by RIS theory due to the lack of long-range attractive

(10) Flory, P. J. Statistical Mechanics of Chain Molecules; Interscience:
New York, 1969.
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Figure 1. Trial movements used in this study. Here CsHig (M =8)1s
shown.

interactions. In addition, the volume exclusion discrepancy at high
temperature increases as the chain becomes larger.

In analyzing the results of the simulations, we find it useful
to define an expansion factor 42

ol = (82) /(S (8)
as the ratio of the radius of gyration for the real chain (S?) to
that of the free chain, (S?), (as given by RIS theory).

B. Comparisons of Lattice and Nonlattice Models. In polymer
simulations it is common to use a lattice model in which all carbon
atoms must be at sites on a diamond lattice. This considerably
simplifies the programming and reduces the calculation time. In
this model, all angles are tetrahedral, and the C—C and C-H bond
lengths are set to be 1.53 and 1.10 A, respectively (our calculation
treated hydrogen atoms explicitly). We used the same potential
energy parameters as for the continuously variable chain (non-
lattice), but extra energy was added to each gauche conformation
relative-to a trans conformation to reproduce the same gauche-
trans energy difference. To make a direct comparison with the
lattice model, we did nonlattice calculations for a model with free
torsional angles (as in section A) but with only three allowed
torsional angles (¢ = 0°, £112.5°) as in the diamond lattice (and
RIS theory).

The temperature dependence of the radius of gyration for a
lattice model and nonlattice models for the case N = 64 is shown
in Figure 3. The temperature dependence of (S2) with a lattice
model shows a globular transition as for the nonlattice models.
but (S?) in the lattice model is smaller than in the nonlattice
models, especially in the high-temperature region. On the other
hand, the temperature dependence of (S?) in both nonlattice
models is very similar. This suggests that the discrepancy in the
lattice model is not due to the discreteness of the torsional angles
allowed but rather to the effect of discretcness on the entropies
of extended versus globular configurations.

C. Specific Heat versus Temperature. The temperature de-
pendence of specific heat is shown in Figure 4 for differing values
of N. In the case of N = 32 (Figure 4c) and N = 64 (Figure 4d),
sharp peaks in the specific heat (at T = 400 and 600 K, re-
spectively) mark the transition from random coil to globule. In
the case of N = 16 (Figure 4b), a sharp peak is observed at T
= 150 K, indicating the globular transition. The transition tem-
perature increases as NV becomes larger, as expected from the
increased favorability of intermolecular interactions. However.
for N = 8 (Figure 4a) no globular transition is observed, and the
specific heat increases monotonically as the temperature is de-
creased to 100 K.

D. Estimation of the Flory © Temperature. The mean-field
theory predicts the following scaling behavior for a flexible chain
molecule as N — =:!

T>0, (RY) = (8% « N» wherev =75, (R}/N) « NO?
T=6, (RY) « (5%) « N wherev =Y, (R}/N) « \N?
T<O, (R« (S} « N wherev =1,

(RZ/N) < ‘\-—033
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where the Flory temperature © is a measure of interatomic in-
teractions versus rigidity.

To determine the value of 8 from our simulations, we plot
(R?)/N and (S?)/N versus N in Figure 5. The expected slope
at high temperature is indicated by the N°2 line. For 1600 K we
see that N = 32 and 64 lead to results close to this slope. The
expected slope at low temperature is indicated by the N3 line.
Here we see that NV = 32 and 64 give the correct trend but greater
deviation. At the © temperature, both plots should have zero slope
as N — =». From Figure 5 we see the © ~ 1100 K. In these
simulations, interactions with solvent are ignored, so that our model
assumes a very poor solvent in which polymethylene is immiscible.
This leads to a high © and a high globularization temperature.
When the chain is in a good solvent, the attractive energy between
different polymer units will stabilize more extended structures
and decrease the © temperature.

Including the excluded volume effect and attractive interactions
of nearest-neighbor lattice sites on the diamond lattice model,
Kremer et al.” obtained kgB/¢, = 2.25 £ 0.10, where ¢, is the
attractive nearest-neighbor energy. In our model, the attractive
interaction is not between nearest neighbors as in these lattice
simulations; rather we include a larger range corresponding to
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the tail of the van der Waals interaction. Consequently the
effective ¢, is not just the depth of C—C van der Waals interaction
(0.1 kcal/mol) but rather is ¢, =~ 0.5 kcal/mol. This ¢, is obtained
by calculating the total nonbonded attractive interaction between
carbons and dividing by 2. Using ¢, = 0.5 for Kremer's lattice
simulation would lead to ® = 570 K, much smaller than our
estimated value of 1100 K. The same lattice model was used by
Kolinski et al.® but included the gauche—trans energy difference
¢;. For N = 200 they estimated O for differeing values of the chain
f{cxibility parameter |¢;/¢,|. They obtained kO/¢, = 2.22 when
leg/ €l = 1 and kgB/¢, = 2.50 when |e;/¢,| = 4. Using 6 from
their simulation with |¢;/¢,| = 4 and assuming ¢, = 0.5 kcal/mol
lead to © = 630 K. This value is also smaller than our value (our
calculations use |¢;/¢,] ~ 5). Both of these lattice estimations
of © ignored H-H and C-H attractive interactions, whereas they
are included in our studies. Also, the number of pairs of units
attracting each other in lattice models is smaller than that in our
model. These effects would both tend to make the estimated 6
temperature smaller than ours.

Experimentally, the © temperature of polymethylene in diphenyl
ether solvent is © = 434 K,'! and this is considerably smaller than
our estimated value. The main reason for this discrepancy is the
stabilization of extended structures because of attractive energy
between polymethylene and solvent.

E. Comparison with Mean-Field Theory. Using mean-field
theory, Sanchez! has shown that in the limit of large , the
expansion factor o? of (8) is given by

(Too/3N(1 = a?) = /4(8/ D¢’ + In (1 = ¢o) + ¢ (9)
where
®a = b/’
60 = (19/27)/2N1/2

In the derivation of this equation, the chain is assumed to be
completely flexible, and long-range interactions between atoms
(volume exclusion and van der Waals attraction) are taken into

(11) Seymour, R. B. Introduction to Polymer Chemistry; Robert E
Krieger: New York, 1978; p 41.
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0 300 8600 900 T2 1500 1800 27100

14
(a)R? 0al (D)8
12 F] T-1600K~, " T=1600K~
‘= N T-1100K-
a
z
£, g 02L
‘E ~
< o @ oL
8 g
purt ! .
0 § -0.20 R
0.4
-04+-
0.2 | i :
; 080 100 720 140 - 180
Log N Log N

Figure 5. Dependence of radius of gyration, (S?), and end-to-end distance, (R?), upon chain length for various temperatures. The © temperature
is determined by requiring zero slope for large N.

RN — 15
“ I ! -
o (@) C32Hes | (b) CeaHyag o
A e T i
S 2L T | 120 :
Y i < i !
~ 0s '%- Simulation - i o8 Slmulation\

I ~ / .
% | -~ d— " {
= - / mean field theory H y
Q o6 !. - / 8 = 1100 K ; Nz 06| l’/"\mean tield theory
“5‘ | K : B §=1100K

i , -,
2 i ek
b4 L 03[ vl i
s = T pets
>
w H i

0 ; . : 0l . . :
0 300 600 900 1200 1500 1800 2100 0 300 600 900 1200 1500 1800 2100
Temperature (K) Temperature (K)
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account by using average values (average density of atoms and not at low temperature. For smaller chains (N = 8, 16), the fit
average energy between atoms). Therefore, no correlation effects is poor (as expected, since /N is not large).

are considered. It is valid in the limit of large NV and, as indicated F. Most Siable Structure of the Chain. During the simulation.
in Figure 6, provides a good fit to the results of the simulations the actual conformation of the chain is sampled periodically and

for N = 64. For N = 32, the fit is good at high temperature but displayed by using the BIOGRAF molecular modeling package'?
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Figure 7. Stereoplots of the equilibrated conformations of polymethylene at various temperatures (selected randomly from the equilibrated set of

configurations): (a) Cj;Hes: (b) CosH 0.

on an Evans and Sutherland PS 330 graphics system. This is a
useful aid to understanding the conformation changes in the
systems under study. Snapshots of conformations at various
temperature are shown in Figure 7 for N = 32 and N = 64.
Simulations are carried out at each temperature until thermal
equilibrium is reached; the temperature is then lowered, and the
system reequilibrated (this process can be thought of as simulated
annealing'’). We find that this procedure leads at low tem-
perature to the most stable structure. As shown in Figure 7, the
stable structure is folded or pseudoglobular. To make a globular
structure, the chain must have multiple gauche interactions causing
unfavorable local interactions. For sufficiently long chains, this
unfavorable conformation is compensated by the favorable van
der Waals interactions between chains, leading to globular for-
mation.

(12) BIOGRAF is an interactive molecular simulation three-dimensional
graphics program from BioDesign Inc., Pasadena, CA.

(13) Kirkpatrick, S.; Gelatt, Jr., C. D.; Vecchi, M. P. Science (Washington,
D.C.) 1983, 220. 671.

Summary

Computer simulations of realistic isolated polymethylene chains
have been used to characterize the transitions between random
coil at high temperature and globular conformations at low tem-
perature. For longer chains, the random coil-globularization
transition is well characterized in terms of a single-parameter
mean-field theory. We find that lattice models lead to significant
errors in characterizing this system.
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