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Abstract

The most important applications for simulations of polymers involve com-
posites or blends with extensive, amorphous regions. To simulate such materials
we use a very large unit cell, so that the polymer can have random behavior within
the cell, but periodic boundary conditions to keep the problem tractable. The ma-
jor difficulties in carrying out such calculations are: (a) accurate calculation of the
lattice sums for the nonbond interactions (electrostatic and dispersion), which con-
verge very slowly; (b) computational time for systems large enough to simulate real
materials (1 million atoms); (c) procedures for calculating the properties of inter-
est (energy, force, stress, curvature, phonons, elastic constants, dielectric constants,
and piezoelectric constants).

We describe herein significant progress on each of these three issues. Con-
cerning (a) we developed the Accuracy-Bounded Convergence Acceleration (ABCA)
procedure, which finds the optimal Ewald parameters to achieve a given accuracy in
minimum computation time. Concerning (b) the critical bottleneck in atomic-level
simulations of the structure and dynamics of very large molecules is the calculation
of N2 nonbond interactions. Here a major advance is the development of the Cell
Multipole Method (CMM), which involves no steps scaling a higher order than N.
CMM treats the interactions in terms of a far field (which is evaluated in terms of
multipole expansions) and a near field (which involves only approximately 50 near
neighbors). The far field can be evaluated infrequently so that the full calculation
for a million-atom system involves only the effort of calculation to interactions of
each atom with about 50 near neighbors. This leads to a dramatic increase in effi-
ciency, and systematic calculations have been carried out in realistic polymers with
up to 1 million atoms (on a workstation). The CMM is 1500 times faster than the

exact method for 1 million atoms. For periodic systems the cell multipole method
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is extended, using a reduced set that reproduces low-order multipoles of an original
unit cell (CMMX). For a polymer with 1 million atoms, the CMMX calculation is
1000 times faster than either the Ewald or Minimum Image Methods (the standards
currently in use).

A major issue in carrying out simulations for materials is the force field. We
have developed general procedures for obtaining empirical force fields and have ap-
plied this to systematic development of force-field parameters for polyethylene and
poly (vinylidene fluoride) crystals. van der Waals parameters for carbon and hy-
drogen are empirically determined from experimental lattice constants, elastic con-
stants and lattice frequencies utilizing Ewald/ABCA procedures. Various mechani-
cal properties are calculated and compared with experimental data. For polyethyl-
ene, valence terms are determined by a biased-Hessian method for n-butane, and
yield stress and surface energy are obta.ined.from calculations of stress-strain re-
lations in directions perpendicular to polymer chains. For poly (vinylidene fluo-
ride) crystals, a shell model is introduced to include atomic polarizabilities into the
simulation. Properties of five different forms (including a new form suggested by
Lovinger) are computed using the same parameter sets. We find that using the shell
model leads to significant improvement in the agreement between calculated and
experimental piezoelectric and dielectric constants. In addition we find that the
new form (not yet observed form) is mechanically stable with comparable energy

with other forms.
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Introduction

Computer simulations of molecular systems are becoming important because
of recent developments of computer hardware and software as well as techniques of
simulations!. Computer hardware includes computer-graphics terminals, which are
important for visualizing molecular systems. Simulations provide a direct route
from the microscopic details of a system to macroscopic properties of experimental
interest. This type of information is technologically as well as-academically useful.
The results of computer simplations may be compared with those of real experiments
or may be compared with those of approximate theoretical predictions. In the first
place, this is a test of an underlying model used in a computer simulation. If
the model is a good one, it offers insights to the experimentalist and assists in
the interpretation of new results. Also in the simulation, it is possible to realize
situations where experiments are difficult or impossible (for example, high pressure
or high temperature). For complex materials like polymers, the role of computer
simulations is becoming very important for designing new materialé.

In this thesis, polymer crystals are treated, and the simulation method em-
ployed is a molecular mechanics? or a force-field method. In this method, each atom
is treated as a classical particle and chemical bonds between atoms are represented
by two-body terms like springs. Angle interactions are represented by three-body
interactions, and torsion and inversion interactions are represented by four-body
interactions, and so on. Adding these valence interactions, there are nonbond in-
teractions, which are van der Waals and Coulomb interactions. Thus, total energy
(Etota1) of an N-atom system, whose atomic coordinates are ri,...,rn, is a sum of

valence energy (Eya1) and nonbond energy (E,p) as follows:

Etot,ﬂ(rl, .‘ .. ,rN) = Eval(rlg - ,rN) -+ Enb(rl, - ,rN), (1)
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where the valence energy is a sum of bond, angle, torsion, and inversion-energy

terms,

Eva.l = Ebond + Eangle + Etorsion + Einversion; (2)

and the nonbond energy is a sum of van der Waals and Coulomb energy terms,
Epp = Evaw + ECoulomb- (3)

Within the Born-Oppenheimer approximation, the Hamiltonian of a system
can be expressed as a function of nuclear variables only. The motion of electrons
has been averaged out in this approximation.

This approximate treatment has both advantages and disadvantages. The
main advantage of molecular mechanics is the size of the system that can be
treated in energy minimizations, molecular dynamics, vibrational analysis, and
thermodynamic-property calculations. Systems with a thousand atoms are treated
routinely, which is quite important since many interesting systems require a large
number of atoms to simulate. This number can be increased up to one million if
we use the Cell Multipole Method described in Chapter III. Also, molecular me-
chanics can handle systems with periodic boundary conditions so that it can easily
calculate bulk properties of the system. If we treat a wave function explicitly as in
the Hartree-Fock methods, it is quite expensive to calculate properties of systems
of more than about 100 atoms.

On the other hand, there are several problems in this approach. The first
problem is the question of how to determine parameters (equilibrium bond lengths,
force constants, etc.). Conventionally, these are empirically determined. Since va-
lidity of a simulation depends strongly on these parameters, it is quite important
to obtain good parameters for the system of interest. There are several force-field
parameter sets widely used, for example, DREIDING®, MM3%, AMBERS?, all of

which assume transferability of parameters. In Chapters IV and V, problems of
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parameter determination are discussed for polyethylene and poly (vinylidene flu-
oride) crystals. Also in Appendix I, the parameter determination for graphite is
discussed. In Chapter IV, for the simulation of polyethylene crystal, the valence
parameters are developed by using a biased Hessian method®, which utilizes the
Hartree-Fock calculations of n-butane. Because of the difficulty of obtaining van
der Waals parameters by the ab initio method, van der Waals parameters for all
cases are empirically determined. The second problem is the difficulty of includ-
ing the effect of polarizability in molecular-mechanics simulations. Conventionally,
rigid ion models are used. In Chapter V, calculations of a poly (vinylidene fluoride)
crystal using the force-field parameters that include explicitly atomic polarizabili-
ties are shown. The third problem is the inconvenience of treating systems where
electronic structure can change dramatically during the simulation. For example,
bond breakings and bond formings during simulations are not easily handled in
molecular mechanics. The fourth problem is the inaccuracies that are due to the
neglect of the quantum mechanical nature of the system. For example, specific heat
calculated by molecular dynamics would be a classical value but in the real system,
the value can be quite different even at room temperature, since vibrational motions
are quantized”.

In this thesis, the third and fourth problems listed above are not treated. For
the third problem, it may be necessary to modify force-field parameters during the
dynamics and the Car-Parrinello method® may be more suitable in this situation.
For the fourth problem, quantum correction can be calculated in the simulation
if the quantum effect is small'. For a quantum solid or liquid (like helium), the
classical method cannot be used.

In Part I of this thesis, periodic systems are discussed mainly and the cal-
culation of nonbond interactions are treated in detail. In Chapter I and part of

Chapter II, Ewald-type, nonbond calculations are discussed and various equations
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are derived. It is well known that the electrostatic potential inside a crystal is
conditionally convergent. Let us consider a repeating unit of point charges, build
a crystal using the repeating units and calculate the potential at a point far from
the surface. If the repeating unit has a net charge, the potential simply does not
converge as we add new repeating units on the surface. If the repeating unit has
a net dipole, a surface-charge layer is created and a macroscopic field is observed
inside the crystal so that the potential is not a periodic function and depends on
the shape of the sample. If the repeating unit has a quadruple moment, a dipole
layer is created on the surface, and the potential still depends on the shape of the
sample. If the repeating unit has no dipoles or quadruples, the potential does not
depend on the sample shape since interactions fall off faster than or equal to 1/R*
(R is the distance between the point and the repeating unit). Even in this case, if
the repeating unit has a nonzero trace of second moments, it still creates the dipole
layer on the surface, and a constant potential difference is created between the sam-
ples built by different repeating units with different traces of second moments®. It is
possible to create a repeating unit with zero-dipole, zero-quadruple and zero-second
moment by utilizing the periodicity of the lattice and fractional charges; therefore,
1t is most natural to choose the repeating unit that has these properties. The Ewald
potential corresponds to the limiting value of the potential, using the repeating unit
with this property!®. Following the derivation of Tosi!!, the Ewald potential can
be derived from the combination of periodic point charges and uniform cancelling-
charge distributions. We introduce the Gaussian-charge distribution with a width
parameter 7 and think that the potential at r is due to (1) periodic Gaussian-charge

distributions plus uniform background charges

1 1 (r—m)® -1
PO(E) = e S |- | 0, 4)

1
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and (2) original charges plus the negative of the Gaussian-charge distributions

p0(e) = 3 {ote ) - e enp [FEZAE N (5

1
Here €2 is the volume of a unit cell and r; is a cell translation vector. The first

term can be Fourier-transformed and summed in the reciprocal space, and the use

of Poisson’s equation yields the potential,

() = T 3 b exp(—n"h?/4 +ih - ), (6)
h

where h is a reciprocal vector. The prime on the summation sign indicates that
h =0 is excluded in the sum. The potential from the second term is given by using
the Gauss’ theorem and integration by parts:

¢(2)(r) — Z erfc(li.r::l‘?f/ﬂ) _ Wg . (7)

1
The second term is added to make the average potential inside the cell vanish. The

potential from the periodic unit charge plus the uniform background charge is then
é(r) = $(r) + ¢@(r)

1
= % Zh—z exp(—n?h?/4 +ih -r)
h

S erfc(jr —n|/n)  7p? (8)

1 II‘ — r1| Q '
For the crystals with N charges inside the cell, q1, qs,. . ., qn, We separately consider
each charge as a periodic point charge plus a uniform backgroud charge and add

these together using the same 7. The total potential is given by taking into account

the neutrality of charges,

bior(r) = Z 9p(r — rp)

!
= % Z S(h)h~? exp(—7n?h?/4 +ih - r)
h

S S .

r—r — Ipl



where

S(h) = Z qp exp(—ih - rp). (10)

The above equations show that the Ewald potential has a period of a lattice,

Biot(r + 1r1) = Piot(r), since exp(ih - r;) = 1. Also it is shown that an average
potential inside the unit cell is zero,

1

al. ¢(r)d’r = 0, (11)

since [ exp(ih - r)d®r = O(h # 0) and Zp gp = 0. These two properties are
characteristics of the potential calculated by the Ewald method.

For dispersion interactions Zi>j Aj; /riﬁj, the sum is absolutely convergent,
and a similar method is used only for the purpose of accelerating the convergence.
By using the Ewald-type summation, convergences are speeded up substantially. We
developed the Accuracy-Bounded Convergence Acceleration (ABCA) procedures to
determine the optimal 7 to minimize a calculation time while retaining a specified
accuracy. This procedure is used in all the calculations involving the Ewald sums
in this thesis.

Once the total potential energy expression is determined, force at an atom
is obtained by calculating a first derivative of the total energy with respect to the
atomic coordinate and the Hessian is obtained by calculating second derivatives,
and so on. Structure optimizations and molecular dynamics are performed by using
force, while vibrational frequencies are calculated by the Hessian at the optimized
structure. For periodic systems, stress components are obtained by calculating
strain derivatives of the total energy. Phonon frequencies, elastic constants, dielec-
tric constants, and piezoelectric constants are calculated at the optimized structure
from various second-derivative components. Born and Huang!? derived these prop-

erties by using the method of long waves. Our equations based on strain derivatives



7
are compared with theirs and and equivalence at zero force and zero stress is shown
in Chapter II. Also in this chapter, various equations involving dispersion sums are
shown.

In Chapter III, a new method of nonbond energy calculation, the Cell Multi-
pole Method (CMM) is shown. In this method, a calculation time scales as N (N is
the number of atoms in the simulation) as opposed to N2 in the exact calculation.
Since the nonbond calculations are the most time-consuming part of simulations, it
enables the use of very large number of atoms, e.g., 1 million atoms in simulations.
The basic idea of this method is to divide the system into cells and use the mul-
tipole expansions for interactions from far cells. This method has been developed
for the gravitational problems but has not been applied for molecular simulations.
For both finite and periodic systems, this method is more accurate and faster than
conventional approximation methods. For a periodic system (CMMX), a reduced
set that reproduces up to hexadecapoles of the original unit cell is created and the
Ewald method is used to evaluate the potential inside the unit cell that is due to
the charges of all cells except for the 26 nearest neighbor cells. The potential from
these 26 nearest neighbor cells is evaluated by using the Cell Multipole Method. In
this way, the Ewald potential of a very large unit cell is calculated efficiently.

In Part II, polymer crystals studied by using methods developed in Part I
are shown. To study the properties of polymer crystals, accurate van der Waals
parameters are required. To obtain these parameters, a graphite crystal is treated
in Appendix I. Here, experimental cell parameters and elastic constants are used
to obtain the van der Waals parameters for carbon. Recently, graphite force-field
parameters are used to calculate properties of Cgq crystals®.

In Chapter IV, the force-field parameters of a polyethylene crystal are de-
veloped, and various properties are calculated. One of the focuses in this study is

the van der Waals parameters of hydrogen, since experimental values are enough
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to determine these parameters accurately at low temperature. Valence force-field
parameters are obtained by using n-butane, the repeating unit of polyethylene. By
using the Hessian from the Hartree-Fock calculations as well as an experimental ge-
ometry and vibrational frequencies, force-field parameters of n-butane are obtained
and these are used for larger, normal hydrocarbons and polyethylene. Elastic con-
stants along the chain direction are determined accurately by a calculation. By
using fixed-cell minimization techniques, a surface creation process is simulated,
and surface energy is calculated.

In Appendix II, van der Waals parameters for carbon and hydrogen derived
for graphite and polyethylene are used to calculate structure, cohesive energy, lat-
tice frequencies, and elastic constants of hydrocarbon crystals (n-hexane, n-octane,
benzene, naphthalene, and anthracene), and these are compared with available ex-
perimental data. As expected, newly derived van der Waals parameters give a better
agreement between calculated and experimental properties than that obtained by
using previously published van der Waals parameters.

In Chapter V, properties of poly (vinylidene fluoride) crystals are calcu-
lated. This polymer is technologically and scientifically important because of its
piezoelectric properties. One aim of the simulation is to calculate piezoelectric con-
stants of this polymer crystal. There are four observed forms for this polymer and
a new form has been proposed by Lovinger'#. Force-field parameters describing all
forms are developed and used to calculate relative energy and various properties.
Calculations show that the new form is mechanically stable and that its energy is.
comparable to other forms. To examine the effect of atomic polarizabilities to piezo-
electric properties, force-field parameters, including explicitly atomic polarizabilities
by using a shell model previously used for ionic crystals!®, are developed for this
polymer. To determine parameters including atomic polarizabilities, Hartree-Fock

calculations of 1,1,1,3,3 - pentafluorobutane are used. By using the shell model for
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atomic polarizabilities, the agreement between theoretical and experimental values

for piezoelectric constants and dielectric constants is improved significantly.
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Nonbond Energy Calculations in Molecular Simulations
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Chapter I

Acceleration of Convergence for Lattice Sums
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Acceleration of Convergence for Lattice Sums

Naoki Karasawa and William A. Goddard III*

Arthur Amos Noyes Laboratory of Chemical Physics,' California Institute of Technology,
Pasadena, California 91125 (Received: January 6, 1989, In Final Form: May 10, 1989)

The lattice sums of nonbond interactions (electrostatic and dispersion) for computer simulations of periodic systems typically
coverge very slowly. Here, we examine the accelerated convergence of these sums based on Ewald procedures and derive
equations for the energies, forces, stresses, and curvatures. A method is proposed and tested for selecting the convergence
acceleration parameter n on the basis of minimum calculation time. As an illustration and check, the properties of argon
and NaCl crystals are calculated by using these equations and compared with values obtained analytically.

I. Introduction

To carry out molecular mechanics and molecular dynamics
calculations, it is necessary to sum various nonbonded interactions
over all pairs of atoms. Thus, the electrostatic energy for a
collection of point charges, {g, is

Qy
== 1
2%:Ri; 1)

where Q;; = (Cunit/€)q,q; and g, is the charge of the atom i. Here
the prime indicates that / = j terms are excluded, ¢ is the dielectric
constant (which we take as 1.0), and Cunit = 332.0647 puts the
final energy in kcal/mol if distances are in angstroms (Cunit =
14.400 if the energy is in electronvolts). Similarly, the dispersion
part of the vdw interaction has the form

1 B

= 2
R @
where By, is negative.

These sums are notoriously slow to converge. This is illustrated
in Table I for NaCl and polyethylene (PE) crystals. To obtain
an electrostatic energy good to 0.01 kcal/mol by this procedure
would require calculating all terms larger than 0.001 kcal/mol,
which for unit charges would require a cutoff distance of 332000
A! With a typical density of 102 atoms/cm? this would require

10'5 atoms! Clearly such large cutoffs are untenable.

The convergence is speeded by grouping together all atoms of
a cell and summing complete unit cells as illustrated in Table II.
However, the convergence is still far too slow.

The general solution to this problem originated with Ewald in
1921 using convergence functions for 1/R interactions.! Nijboer
and de Wette? generalized this approach to include all cases where
the interactions are proportional to negative powers of distance
for a single atom in a cell. Williams® extended the formulas to
allow multiple atoms in a cell.

Consider a general lattice sum of the type

Ay

1
Sp=iy 2
"2 Ly - = Ry

3)
where r; and r; are the basis vectors of atoms i and j in the cell
and R, is the iattice translation vector. The sums over i and j
each go over all atoms inside the cell except that i = j when L
= 0. The total electrostatic energy is given by .S;, while the
dispersion term is given by S¢. Multiplying every term in (3) by
the convergence function ¢,, and then by (1 - ¢,,), we obtain

S, =

1 5 Ajdm(ir; -1, = Ry)) l 5 Ayl = émIri — 1, - R.D]
2L In-r-Rm 2 Liy - = Ry™

(4)

If ¢,,(r) is a rapidly decreasing function, then the first term of

* Contribution No. 7902.

(4) converges much faster than (3). The second term converges
slowly, but by taking the Fourier transform, the resulting sum
(over the reciprocal lattice vectors) converges much faster.
Following Nijboer and de Wette? and Williams,’ we choose ¢,,
as

= ____l__ T mjr-l
mlr) = Tom/2) o /2-let dt (5)

II. Coulomb Sums

For the Coulomb case (5) becomes

¢,(r) =erfc (r/n) =1 -erf (r/7) (6)

where erf is the error function. In this case, the Coulomb in-
teraction with infinite range is replaced by an interaction of range
n'and summed in the real space, while the long range corrections
are summed in the reciprocal space. The parameter 5 determines
how much of the real space sum is converted to the reciprocal space
sum (large 7 leads to a larger real space sum).

A. Total Energy. The energy sum is

5= Lyg @ (") + —ZS(I:)S( -h)h et - —(ZQ,,
@)

2Ly Y w2

where it is assumed that each cell is neutral

Z‘Ii =0 (8)

and the prime indicates that the term at the origin is excluded.
Here h is the reciprocal lattice vector, Q is the volume of the unit
cell,a = |r;—r;— Ryl/n, b ="/,hn, and h = |h|. The first term
in (7) is just the first term of (4). The last term in (7) arises from
the exclusion of i = j terms when L = 0, since in the reciprocal
space sum, these terms are included.

The second term of (7) arises from the expansion of the second
term of (4) in terms of Fourier transforms of the point charge
6 function distribution

SO -1+ 1+ R) = SESWS(-h)e™ (%)
iyl Q Y

where

it \1/2
S(h) = (C“e“") Tget (9b)

is referred to as the structure factor. The quantity S(h)S(-h) in
(7) has the form

S(h)S(-h) = ZQ,, cos [b(r; - r)] (10)
iy

which Cowley et al.# have shown can be rewritten as

SHh)S(-h) = C“““uzq, cos (br)] + [Zg;sin (b)) (1)

(1) Tosi, M. P. Solid State Phys. 1964, 16, 107.

(2) Nijboer, B. R. A.; de Wette, F. W. Physica 1957, 23, 309.

(3) (a) Williams, D. E Acta Crystallogr., Sect. A 1971, 27, 452. (b)
Williams, D. E. In Crystal Cohesion and Conformational Energies; Metzger,
R. M., Ed.; Springer-Verlag: Berlin~Heidelberg-New York, 1981; pp 3-40.

0022-3654/89/2093-7320801.50/0 © 1989 American Chemical Society
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TABLE I: Convergence of Nonbond Interactions Using Atom-Based Cutoffs®

NaCl¢ polyethylene
Rouert A Rinner? A terms Eq Egisp terms Eq Eqisp
10 8 608 -981.65 -20.330 3072 -51.870 -797.687
10 9 608 -1556.20 -20.413 3072 -2.343 -797.798
10 10 608 -1492.67 -20.445 3072 -111.998 -797.863
15 14 2152 1446.83 -20.726 10394 ~40.272 -798.184
15 1S 2152 1281.61 -20.735 10394 -52.972 ~798.198
20 19 5296 -1743.32 -20.794 24615 -79.905 -798.275
20 20 5296 1207.33 -20.800 24615 -63.080 -798.280
25 24 10320 1210.98 -20.821 48015 -107.974 -798.306
25 25 10320 109.11 -20.822 48015 -54.830 —-798.308
Ewald® -824.59 -20.846 ~65.685 -798.338

° Energies are in kcal/mol. ”Each term of (1) or (2) is multiplied by the cubic cutoff function S(R;), where S(R) = 1.0 if R < Riper. S(R) = 0.0
if R > Ryyero and S(R) = [RPyier = R R%yer + 2R? = 3R pner]/ [R¥uier = R¥inne:]’. Otherwise. <n = 2.5 for NaCl and n = 2.0 for polyethylene.
4 Parameters used are By,n, = —24.180, Bnyor = —161.20, By = ~1669.58 keal A® mol™. gy, = e, go = -, 4 = 5.63 A.

TABLE II: Convergence of Nonbond Interactions Using Cell-Based Cutoffs®

NaCl* polyethylene

Feur A terms® Eq Egip terms® Eq Egisp
6 3500 (222) -824.5563 -20.7615 6930 (1 32) -65.6032 -798.0302
8 3500(222) -824.5563 -20.7615 14850 (2 4 2) —65.6402 -798.1933
10 3500 (222) -824.5563 -20.7615 20790 (2 4 3) -65.6521 -798.2312
15 9604 (3 3 3) -824.5768 -20.8161 54054 (36 4) -65.6655 -798.3005
20 20412 (44 4) -824.5836 -20.8323 86394 (38 5) ~65.6669 -798.3176
25 37268 (55 95) -824.5852 -20.8387 162162 (4 10 6) —65.6725 -798.3274

Ewald® 512 + 22404 -824.5861 1748 + 15844 -65.6836

N 296 + 22404 -20.8463 1044 + 62047 -798.3383

9Energies are in kcal/mol. ®The numbers in parentheses show the (a b ¢) index for the last shell considered. <n = 2.5 for NaCl and n = 2.0 for
polyethylene. 8q = 0.001 kcal/mol. b4y = 10™ kcal/mol. 4The number of terms in real space and reciprocal space sums, respectively (eq 10 is

used). ¢Parameters are given in Table I.

Since the summation in (11) runs only over single atoms rather
than pairs, the computations for the reciprocal space sum are
significantly reduced.

B. Force and Stress. The force at atom p is given by

reciprocal lattice and real lattice vectors, and H is the transpose
of H. The stress Il is given by the relation’

9E _ "
3H,, = %H,,;QHW 17)

as
fi, = _ZaTl where E is_ the total (potential) energy of the system. For the
4 electrostatic stress, we have
1 erfc (a,)  9p-1/2¢7a3 £ ~1/2p-a2
= SZZQur, -1~ Ry =L erfe (@) | 2rfte L _

PwTo pilp L a,? ay? QM = 2 E./Qij g + = (ri =1, = Rp(r;
drg : )2 : -+ (1 + B
g THEGusin By T (12 ), 4 28 ZS(MS(—h)eh—z[aaﬁ—z 2 m | a3

b

where a, = |r, — 1, - R;|/n. By use of (11), the second term can
be rewritten as

Cunit 4 -
Zunit _5"' quhgsm (h.rp)[;q,. cos (ber;)] - cos (br,) X

(Zg;sin (ber)]}a2e? (13)
To calculate the stress, consider the matrix H that contains the

real space unit cell vectors in Cartesian coordinates, i.e., H =
[a,b,c], where a,b,c are the unit cell vectors.®* Then we have

The stresses can also be obtained by differentiating the energy
with respect to strains. The strain tensor is defined by®

€= %(ilo-‘imyo-' -1) (19)

where H contains the original cell vectors and H contains the
deformed cell vectors. ¢ is symmetric so we define six independent
strain components e; such that e, = ¢, ; = €, €3 = €33, ¢, =
2¢,3, €5 = 2¢3, and eg = 2¢;;. Then we have

F
Q = det(H) (14) QI = -(ge;) (k=1,..,6) (20)
k ] =0
ri-R,=H(s;-s,-L 15
s~ Re=H s - L) U here T, = 1), T, = My, T, = Ty, T, = Ty, Ty = Ty, and
and Iy = II;,. To derive this equation, we use the relations
= 2rfH! 0H,
h=2rH'Nn (16) 66“7 - g”ka-]HOinwk

where s; is the fractional coordinate vector of the atom i, and n
and L are vectors whose elements are the integers specifying the

(4) Cowley, E. R.; Jacucci, G; Klein, M. L.; McDonald, I. R. Phys. Rev.
B }97[3 14, 1758. In this paper, A,(n) in eq 3 must be multiplied by a factor
(1/=L).

(5) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055.

=6,H, (6=0) (21a)

(6) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182.

(7) Kittel, C. Introduction to Solid State Physics, Sth ed.; John Wiley &
Sons: New York, 1976.

(8) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices, Oxford
University Press: London, 1954.
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oH,,

a€ Zlea (HOWHO/I( + HO/YHOIk)

= a,aH,, +o.H, (e,=0) (21b)

derived from (19).
C. Curvatures. The second derivatives with respect to XX and
YY strains have the form

(i)
a%S, 1
de e, N —2_773 EJQU[F

Raﬁ] + % ZS(h)S(-h)[%nzh,‘H% 4Hh? + G] (22a)
b

“R)* + 2F(r -1 -

(i)

as,
69]682 = -; ZQu[ F’ —(f, r= RL)lz(ri -n- RL)22] +

3” };S(h)S(—h)[Enzh,zth’-t- H(b,? + b2 + G] (22b)

where
= [erfc (a) + 277'/2%ae™") /2
G = n2e? /4b?
H=—*(1 + bY)e? /8b*
III. Dispersion Sums
For the dispersion sum with m = 6 in (3), the form for ¢ is

b6 = [1 + (/0 + %(r/n)‘]e"'/"” (23)
A Energy This leads to an energy of
Sg= — ZB,(a‘6 +at+ la‘z) e 4
217 2
1

i (- VR3] 172 - _
249 ?%B,j cos [he(r; - r;)]h [w erfc (b) + (st

L g
= je” +— B; (24
b)e ] proe Z i~ 127 62 i (24)

where b = !/,hn,a = |r, - =Ryl/n and h = |b|. The first term
in (24) arises from the ﬁrst term in (4) and can be written as

- Z TBate|at+al+ L -l-a,_"e"'L at+a?+
6 Tl 2 2
%)Z_B.-.] (25)

where a; = |R;|/n. The second term arises from the second term
in (4) using (9) and (10). The third term is from h = 0 in the
second term, while the fourth term is from exclusion of i = j terms
when L = 0.

Often the dispersion terms are assumed to satisfy the geometric
combination rules

Bu = (BiiBjj)l/Z (26)
and expressions similar to (24) are based on this form.?> However,

in the above derivation, no such assumptions are made. When
(26) is satisfied, we can use

ZBjcos [b(r;-1)] =
iy

=[Z(1B4l)'/2 cos (ber))? - [Z(1Bi)!/2 sin (her)]? (26)
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in the reciprocal space sum of (24) to reduce the computing time.
B. Force and Stress. The force on atom p is

3,

foo ar,

= % TE8(r, -1~ Ry X
L

) o 2
(6a,® + 6a,% + 3a, + a, e 4 4 30 gh[;Bp X
sin [he(r, - l',.)]]h3[1r'/2 erfc (b) + (ﬁ - i—)e”’z] 27)
The stress term is

QI'I,,B =

;,- }L:Zz;,j(sa-8 + 647 + 3a™ + a e (1, - 1;- R, X

(r,-1,-Rpg + — ZZB,,— cos [h(r; - 1,)] X

1
[h’{ 112 erfe (b) + (—b; - Z)e-b’}aaﬁ +

e ~b? 32
3h{ 7'/? erfc (b) - —l',—' h.hg | + —39280503 (28)
i

Here we have used
6a 1 1

aHaﬂ = . m—' - Rpa(si—s;- L)z (29)
where r; - r; - R is given in (15) and
b 1, "
H, =-3m ha‘?Hh h, (30)

C. Curvatures. The second derivatives with respect to XX and
YY strains have the form

(i)
#Se _ v8,| F - R.),* + 2F(
681381 - 211 Lij y 07]2( imh L)l LY
1]+ 22 558, cos [b
r_ , o(r; - r,)] X
RL)I 249 3 5 ij cos [ (l’, rj)]

LomsH + aHm2 + G +”—in3 31

271 1 1 670 T ij( a)
(ii)
828,

1
dede, ‘517" E/BU[ F'—(r; - 1;=R) (1, - 1, - RL)22] +

Iy
Pl " o(r: - r.)] X
YT %%BU cos [b(r; = r))]
1 71.3/2
27hhH + H(b? + b)) + G|+ == TB; (1b)
iy

where
= (6a8 + 62 + 3a™* + a e

F
_ 8y 1 1) .
= 7{71/2 erfc (b) + (55 - [;)e }

e
H= @(ﬂl/z erfc (b) - "—)
n b
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TABLE III: Predicted Values of n., (Using (34))

crystal ‘RL,minIv A ‘hmin|v A Topts A
NaCl (8 atoms/cell) 5.63 1.116 3.18
NaCl (2 atoms/cell) 398 1.933 2.03
Ar (4 atoms/cell) 5.31 1.183 3.00
Ar (1 atom/cell) 3.755 2.050 1.91
polyethylene (12 atoms/cell) 2.54 0.8656 2.42
orthorhombic poly(oxymethylene) 3.56 0.8212 2.94

(16 atoms/cell)

IV. Selection of 7

A. Choice of n from Cell Parameters. The parameter n should
be chosen to optimize the convergence of both the real lattice and
reciprocal lattice sums. If 7 is too small, the reciprocal lattice
sum does not converge quickly since b = !/,An remains small when
h becomes large. Similarly, if # is too large, the real space sum
does not converge quickly since a = |r; - r; - R/|/n remains small
for large |R,].

Since both sums are multiplied by terms like e or erfc (x)
(where x = a for real space and x = b for reciprocal space), a
simple estimate of the optimum parameter 7 for rapid convergence
of both sums can be obtained as follows. These terms decrease
rapidly for large x, so that both sums converge similarly when
a = b. This leads to

,_ni-n- RL|~ IR} (32)
Topt 1/2 P ‘/z h
which determines 7 in terms of L and h. The simplest choice of
7 is to use the minimum length of R; and of A so that we have
the same orders of magnitude of a and b when these have the
minimum values (of course, [R;| = 0 and 4 = 0). Then

IR ol 33)
1’ =
o Vthin
Assuming a < b,c and k. < hg,h, (33) leads to
192 __ @
xb sin v (34

Topt™ = wla X bl B

This determines n,y in terms of the crystal structure. The gy,
thus obtained may not be the optimum 7 for minimizing com-
putation time, since we assumed that the computation time per
each term is the same for both real and reciprocal space sums.
Table III shows the calculated 5, for various systems.

B. Accuracy Specified Cutoffs. With 7 specified there is still
an infinite number of terms in the sums over the real space and
reciprocal space lattices, and we use an accuracy criteria to specify
limits on these sums. To this end we specify a tolerance ¢ and
carry out the sums until the neglected terms have a total con-
tribution smaller than this tolerance.

1. Electrostatic Sums. (a) Real Space Sum. Using a cutoff
distance R, introduces an error in the total energy for the real
space sum of

1 erfc (Ry /n)

Eqreal = 3 LiJQijTe(RijL = Raw) (35)

where O(x) is the step function [8(x) = 1 when x > 0 and 6(x)
= 0 when x < 0]. To estimate this error, we replace discrete sum
(35) by a continuous integral. Defining the average interaction
as (g*) = ¥; g*/N, we obtain
N erfc (R
v = % (4 ) Cunit ® 4R (R/n) iR
€ 9 Rean R

Since

R 1 T 1 ]
erfc (—) =5 f 'EE'I dr < - —etdt =
n !/ Ryt ! / xl/ RYn? R

n
r!2R

R

E6,recip =
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we obtain

N(gq?) Cumt

€

f 4r1/ieRI7 4R =
N¥(g?) R
T Cunit 72 erfc (36)
139} n

(b) Reciprocal Space Sum. The error in the reciprocal space
sum due to a cutoff at H,,, is given by

1
EQ real = 5

2r o -b?
Equn = g TSMISCH <0k~ o) (37)

Replacing the sum by an integral and replacing S(h)S(-h) by
Cunit N*(g?) /e, we obtain

2r M(q )
Equep = 5 unit == f 4xh
NZ(qz)

erl/2

e—(hv/l)

chl
) (38)

Using (36) and (38), we can evaluate the cutoff distances Ry,
and H, to obtain a given accuracy dq (for given n). Because of
the neutrality of the cell, there will be a great deal of cancellation
in (35) and (37) that is ignored in (36) and (38). Consequently,
eq (36) and (38) generally overestimate the error by a factor of
10 or so.

2. Dispersion Sums. (a) Real Space Sum. The total error
in the real space dispersion sum is given by

Cunit 1 erfc (rp
7

E6.rca) =

1 1
ZIB i Py
v RuL6 RI]L 77 2Ri]Lz"l4

Approximating this by an integral, we have

1 1 N 1
Egreas =~ EM(B)E f (}; + Fnz +

—L_V4rRrre®i? gg =
ZRZ 4

N?
27 {8)

e~ Ru/mg( Ry, - Ry

(39)

+ _1_ e~ (R/M* 4R
27¢

where N*(B) = 3, |B;] is the sum of coefficients of dispersion
terms. We approximate the above equation as

NUB -
Fo 220 2 —‘—4+—‘2—2+-‘—4)f o o =
Ry Reyn 27 Rea
LA\ I N WS SN U (R )(40)
_— — eric
Q " Rc\u4 R(:mz'"2 27t n

(b) Reciprocal Space Sum. The total error in the reciprocal
space sum is given by

2
YT ?ZIB,YI cos [he(r; - rj)]h3[1r‘/2 erfc (b) +
ij

(2—23 - %)e—“]ew - Ha) (1)

Approximating this sum as an integral leads to

N*(B )—f h’[ /2 erfe (b) +

(Z—Ib—J - -Il;)e"”]‘hrhz dh

E 6,recip =~
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By using 7'/2 erfc (b) < (1/b)e?, we have

2 Q e, 1

T A s 1wy =

Esreen < 335V(B) £ fﬁwmh e dh
2N*(B) @

L b2 db =

3rl/2 pb J(Ham/2

N*(B H
= ,: %[Hmne-wmnm’ + 7/ erfc (—2—”)] (42)
n

Using (40) and (42), we can calculate the cutoff distances Ry,
and H, that lead to a total error dy for given .

3. Repulsive Terms. The repulsive terms in simulations
generally have the form

-
Ey,= 3 AR (43)
i
or
En= % T Ao R (44)
i

We can estimate the R, for these cases in a similar way. The

results are

27N A)
99 RCIJ'.9

27N (A) e~ MR ) 2Ry 2
= — + — —_
Eex.ml Q (N) cut (N + ()‘)2 (46)

where N*(A4) = T, ;4; and ()) is determined by the relation
N A)yeMFRau = 3 4, 0" MR
ij

Eippea = (45)

4. Implementations of the Limits. The limit on the real space
sum, L, is chosen so that all cells containing any atoms within
R, of any atom in the unit cell are included.’ This leads to

R be sin a
Lu=__°."_'g—

and similarly for Ly, L. The sum over the reciprocal lattice has
limits of H, = (a/27)H, and similarly for H, and H.. Within
this set of cells, we eliminate any terms for which R > R,,. This
leads to a considerable reduction in effort, as indicated in Table
Iv.

C. Time Minimized n. Since the choice of n affects the R,
and H, and thereby the number of terms in real and reciprocal
space sums, we can choose 7 so as to minimize calculation time
while retaining prespecified computational accuracy. This is
illustrated in Table V for the case of poly(oxymethylene). In this
table the electrostatic energy using (11) (a2) as well as those using
(10) (al) are shown. On the basis of several test calculations,
we estimate that fiey/ecip ~ 4 in (al) and (b) and tye)/ lrecip =
10 in (a2), where f,, is the time per term for the real space
calculation, while #,, is the time per term for the reciprocal space
calculation. Of course, these values will depend on the actual
program and computer used. The reason that the evaluation of
the reciprocal space term is much faster than the real space term
is that the reciprocal space lattice sum involves a factor that only
depends on A, which is calculated only once, while in the real space
sum, all factors depend on atomic distances and must be calculated
for each pair.

Excluding the interactions between the same atoms in different
cells (since there are easy to evaluate) and using (10), the number
of terms in the real space and reciprocal space sums can be
estimated as follows (assuming constant atomic density)

4r NN-1)

Niew = ?Rcul 2Q

(47)

(9) Calculations optimizing the cell parameters and internal coordinates
of crystals were carried out using the PolyGraf polymer simulation program
from Molecular Simulations, Inc. (BioDesign Division), Pasadena, CA 91101.
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4r Q N(N-1)
N_ . =§ —H 33— _ 4
recip ( 3 cut (2‘”)3 » 1 ) P ( 8)

where N is the number of atoms in the unit cell. When (11) is
used, V(N - 1)/2 in (48) should be replaced by 2N. Since there
is a cancellation of terms in the electrostatic sum due to the charge
neutrality in the unit cell, we use g = 104y, to obtain similar
accuracy in both sums. By using the estimated number of terms
and the values of #,¢5/trecip, WE select 7 50 that Nyey + Nyee/m is
minimized where m is the ratio frey/?recip-

In Table V we show the results for poly(oxymethylene). In this
system, there are 24 centers of which 16 are charged. In (al)
and (b), the 7 leading to the fastest calculation is 5 2.5 A, while
in (a2), the n leading to the fastest calculation is n ~ 2.0 A. The
7 predicted using (33) is 2.94 A, in reasonable agreement with
(al) and (b). In (a2), it is shown that the computing times are
shorter than those in (al) for any n due to the smaller number
of terms in the reciprocal space sum. Also, the computing time
for each term in the reciprocal space sum is shorter in (a2) than
in (al). Therefore, the time-minimized 7 in this case is smaller
than for other cases. The accuracy here is 1073 kcal/mol for
electrostatic and 107 kcal/mol for dispersion. Note that the error
in the energy is independent of 7 in these calculations, showing
the effectiveness of accuracy-specified cutoffs.

V. Application to Ar Crystal

As a test case for the Ewald dispersion sum formlas, we will
calculate the structure and properties of argon face-centered cubic
(fcc) crystal analytically and compare with those obtained by using
the lattice sums.

A. Model. We will describe the Ar—Ar interactions with the
Lennard-Jones 12-6 form

Ry \? Ry )¢
U(R) = Dy R -2 R (49)

where R, = 3.8666 A, and D, = 0.2351 kcal/mol are adjusted
to reproduce the experimental lattice spacing and heat of va-
parization. For an fcc crystal structure, the total energy E,y is’

1 RO 12 RO 6
E(R) = 'Z‘NDo P\ & = 2ps r (50)

where, R is the nearest-neighbor distance, N = 4 is the number
of atoms in the conventional fcc cell, p;; = 12.131 88, and pg =
14.45392.

B. Equilibrium Lattice Constants. Requiring 8E,,/0R =0
leads to the equilibrium nearest-neighbor distance

Ps
The lattice constant at equilibrium becomes
A, = 22R, = 1.37353R, = 5.3109 A (51b)

1/6
R, = (Q) Ry = 0.97123R, (51a)

the experimental value'® at 0 K.
C. Cohesive Energy. Substituting (51) into (50) leads to

Ua(R) = ~NDLE (52)

tot\ e 2 Oplz

so that the cohesive energy (per atom) is
Ueop = 8.6102D, (583)

This leads to Uy, = 2.0244 kcal/mol (of atoms), the experimental
heat of vaporization at 0 K (after correcting for zero point en-

ergy).!!

(10) Donohue, J. Structures of the Elements; R. E. Krieger Publishing Co.
Malabar, FL, 1982. For argon, A = 5.3109 A at 0 K.

(11) Hultgren. R.; et al. Selected Values of the Thermodynamic Properties
of the Elements; American Society for Metals: Metals Park, OH, 1973. For
argon, AH, = 1.848 kcal/mol at 0 K. Estimating the zero point energy as
0.1764 kcal/mol (from our calculations) leads to Uy, = 2.0244 kecal/mol
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TABLE IV: Number of Terms in the Sum for Given Ewald (1) and Accuracy (6) Parameters

(a) Electrostatic Sum

NaCl polyethylene

n A bq keal/mol Ry, A Hyy A7 real terms  recip terms® Ry, A H, A7 real terms  recip terms?

1.5 102 4.645 4.568 72 7168 4.226 4.090 212 7128

1.5 1073 5.152 4.983 104 10192 4.773 4.549 344 9372

1.5 10 5.617 5.366 104 12880 5.269 4.964 468 11088

2.5 1072 8.127 2.683 296 1568 7.460 2.394 1264 924

2.5 1073 8.938 2.934 512 2240 8.332 2.670 1748 1584

2.5 107 9.686 3.173 608 2576 9.126 2922 2342 2904

35 1072 11.721 1.891 1088 504 10.814 1.678 3820 528

35 1073 12.828 2.073 1328 728 11.999 1.879 5322 660

35 10 13.852 2.243 1616 896 13.084 2.061 6824 660

(b) Dispersion Sum
NaCl polyethylene

7 A Bgyp keal/(mol A) Ry, A H,, A~ real terms recip terms® R, A Hg,, A7 real terms recip terms®
1.5 1073 4.819 5.089 72 10864 4.867 5.001 372 11880
1.5 107 5.304 5.485 104 13552 5.348 5410 480 16104
1.5 1073 5.752 5.856 104 17304 5.793 5.787 628 20328
2.5 107 7.453 2.695 296 1568 7.539 2.639 1302 1584
2.5 10 8.310 2.966 296 2240 8.387 2915 1816 2376
2.5 107 9.096 3.217 512 2576 9.168 3.167 2390 3432
35 1073 9.872 1.740 608 504 9.997 1.690 3066 528
35 10 11.122 1.954 896 728 11.235 1910 4326 660
35 1078 12.262 2.143 1232 728 12.366 2.105 5854 660

“The number of atom pairs in the sum.

D. Bulk Modulus. The bulk modulus, a measure of the
stiffness of the crystal, is defined by

dP d2U,,,
B= —VH/ = VW (54)
Writing the volume of the crystal as ¥ = NR3/2!/2, we have
U(V) = IB - ﬁ (55)
o2

where by, = (1/8)p;,N°DoRy'? and bg = (1/2)pgN*DoR,t. The
equilibrium volume is ¥, = (1/2Y/2)NRy*(p,2/pe)'/?, leading to

s/2 5/2
B = 2061, _ 6bs = 21/2b°_ = 4(2'7?) L | I
12 P’ JA\ RS

Dy
106.328 P (56)

E. Elastic Constants. The elastic constants have the form?

2 d2U
Ch=— 4 57
1= s = o
and
2 diu
Cyy = — —_— 2y 2 57b
2=y %[d(Rz)z ]LxL 843 (57b)

(For a two-body potential such as (49), the shear constant C,,
is equal to C;,.) This leads to

Do N\ ps P _ [ Ps
= e [ty | Kl LN
), = 962V )(Rs)(Pu) [56(;7.2)51-8 4;,‘5] (58a)

0

o ) o e o5
= ynf 2 B 28 e -
Ci, = 96(2 )( Ro’) s 56 s 528 — 4525 (58b)

where lattice sum constants s, ,, and s, ,, are given by

14
Sym = L —m——— 59
o e e 49
1,21,2
Som = 2 ———————— (60)

T2+ L+ L)

Here the sum is over all integer values of /,, /5, [y where [, + /,
+ [; must be even. The constants 5,53 = 0.03184001, 5,5 =
0.01567332, 5,5 = 0.320449, and 5,5 = 0.140 899 were obtained
by numerical computations. The result is

Dy
C, = 148.762) —

Cra= Cou = 85123 22
12 44 = . R°3

The Poisson ratio o for this cubic system

C
0=-—=———— =0.3640 (61)

is independent of R, and D,

If D, is expressed in kcal/mol and R, is expressed in A, then
a conversion factor of 6.947 80 is needed to obtain pressures in
GPa. Thus the above expressions lead to

C\, = 4.2031 GPa
C,; = 2.4051 GPa

and

B= ::-(C“ + 2Cy;) = 3.0044 GPa

These can be compared to the experimental values at 0 K of!2

C, =40GPa
C,, = 2.0 GPa
Ci = 2.0 GPa

F. Results. In Table VI we compare the results of optimizing
the unit cell parameters of Ar with various ways of carrying out
the lattice sums (all of which used periodic boundary conditions).
In these calculations we used conjugate gradient minimization
to optimize both cell parameters and atomic coordinates inside

(12) Meixner, H.; Leideren, P.; Berberich, P.; Lischer, E. Phys. Letr. A
1972, 40, 257.



19

7326 The Journal of Physical Chemistry, Vol. 93, No. 21, 1989

TABLE V: Dependence of Timing on Choice of n for Orthorhombic
Poly(oxymethylene)?

(al) Electrostatic Sum. &g = 0.001 kcal/mol. Equation 10 is used.
Use of 6q = 107 kcal/mol leads to £ = -51.19144 kcal/mol.

n A E, kcal/mol Neeal Nrec lrul/’recxp Test Iealer S
1.0 -51.1916 116 92160 8.3 23156  7.38
1.5 -51.1914 443 27360 6.9 7283 2.25
2.0 -51.1916 1154 10320 4.4 3734 1.08
225 -51.1915 1656 6720 5.9 3336 1.11
2.5 ~-51.1915 2306 4800 S.1 3506 1.13
3.0 -51.1914 4232 2880 4.6 4952 1.47
35 -51.1915 6928 1440 43 7288 2.02
4.0 -51.1914 10830 960 39 11070 2.67
4.5 ~-51.1914 15795 480 4.4 15915 4.35
5.0 -51.1914 22136 480 4.0 22256  5.55
(a2) Electrostatic Sum. &g = 0.001 kcal/mol. Equation 11 is used.
n A E kcal/mol Ny Nyee treat/ Lrecip tey Legtes S
0.75 -51.1919 36 61312 353 6168 3.10
1.0 -51.1916 116 24576 13.6 2573 1.32
1.25 -51.1915 234 12608 127 1494 0.74
1.5 -51.1914 443 7296 12.1 1172 0.57
1.75 -51.1914 741 4160 8.5 1157 0.49
2.0 -51.1916 1154 2752 7.3 1429 0.50
2.25 -51.1915 1656 1792 9.4 1835 0.75
2.5 ~-51.1915 2306 1280 78 2434 0.86
3.0 -51.1914 4232 768 7.8 4308 1.32

(b) Dispersion Sum. &g, = 107 kcal/mol. Use of dgip = 107
kcal/mol leads to £ = -8085.194 05 kcal/mol.

n A E, kcal/mol Ny Nee  lreat/Irecip tey Taaer S
1.0 -8085.1939 440 416760 6.6 104630 33.93
1.5 -8085.1939 1479 104880 4.0 27699 8.39
2.0  -8085.1940 3209 35880 2.6 12179 3.17
2.25 -8085.1940 4261 23736 38 10195 1.78
2.5 -8085.1939 5656 15456 32 9520 2.29
3.0 ~-8085.1940 9136 8832 3.1 11344 241
35 ~-8085.1940 13741 4416 2.8 14845 2.83
4.0 ~-8085.1940 19501 2208 2.5 20053 3.15
45 -8085.1940 26581 1104 2.5 26857 4.04
5.0 -8085.1940 34738 552 2.7 34876 6.03

9E is the energy, Ny, and N, are the numbers of terms in the real
space and reciprocal Space SUMS, e/ frecip is the actual ratio of calcu-
lation time per term for real and reciprocal space, 1, is the estimated
relative time, and rg, is the actual calculation time. The estimated
relative time is calculated from Ny + Ni,/m, where m = 4 in (al)
and (b) and m = 10 in (a2).

the cell.’ In each case the final root mean square (RMS) force
per atomic degree of freedom is less than 0.001 kcal/mol, and
the RMS stress for the six cell parameters is less than 0.0001
kcal/mol.

Using traditional distance cutoffs with R, = 9 A leads to an
error in the lattice constant of 0.006 A or 0.1%, an error in the
cohesive energy of 0.68 kcal/mol (of cells) or 8.4%, and an error
in the bulk modulus of 0.09 GPa or 3.0%.

In the Ewald calculations, we evaluated the repulsive terms by
using direct sums and used the error bounding procedures of
section IV.B with several energy criteria, where dq = 104,. We
also carried out calculations as a function of strain by introducing
a finite strain to the system, optimizing the atomic coordinates,
and calculating the stresses.’ The highly repulsive nature of the
atomic interactions for short R (due to the Pauli principle that
requires orthogonalization of the overlapping atomic orbitals) leads
to a quite nonlinear stress—strain relation. Using the stress versus
strain results for small strains (£0.005, £0.01), we obtained
numerical estimates of C,; and C), to compare with the analytic
values. The results agreed to two decimal places in each case.

VI. Application to NaCl Crystal

As a test case for the Ewald Coulomb sum formula, we will
calculate the structure and properties of NaCl crystal analytically
and compare with those obtained by using the lattice sums.

A. Model. For the atom-atom interactions, we use the form

Karasawa and Goddard

5

Uy = reRlp % (nearest neighbors) (62)
2
—_— (otherwise)
if
The total energy E,,, (relative to free ions) is given by’
ag?
E(R) = N{ zhe™RlP - —R- (63)

Here R is the nearest neighbor distance, IV = 4 is the number of
pairs of NaCl atoms in the unit cell, and z = 6 is the number of
nearest neighbors. The Madelung constant is « = 1.747 565, while
unit charges on each ion lead to ¢? = 332.0647 A kcal/mol
(allowing R to be in A and E in kcal/mol).

B. Parameters. We will choose the parameters A and p in (62)
to obtain the experimental lattice constant!?

A=5518 A
and cohesive energy'?
E(R,) = -740.0 kcal /mol
at 0 K.

The equilibrium nearest neighbor distance R, = (1/2)A4, is
obtained by requiring that dE,,/dR = 0, leading to

2
RieRdo = 224 (64)
¢ zZA
Substituting R, into (63) leads to
Nag? p
E(R) = - R, (l - E (65)

Using these results leads to
p=0309223 A

N = 3.84485¢R/» = 31 765.8 kcal /mol

C. Bulk Modulus and Elastic Constants. The volume of the
crystal V is given by V = 2NR3; hence

173 1/3
Em(V) = N(Z)\ exp[—(%v) /p] - (ZLVV) aqz) (66)

Using eq 54, we have

B = VdZEtol
az J,

where the equilibrium volume V, is 2NR,? and the conversion
factor 1 kcal/(mol A%) = 6.94780 GPa was used. This can be
compared with the experimental value of'> 26.60 GPa.

Since each atom in the NaCl crystal is at a point of inversion
symmetry, no internal strain is induced when external stress is
applied. Hence, the two independent elastic constants are given

by

ag® f1 2
= ——f - - — } = 259858 GPa 67
18R,3(p Re) ©n

o i B P 68
ne ZRA\ o V, de,de, (68)
-1 69

2= V. de,de, 69)

where e, and e, are strains (XX and YY components) and the
first term in C,, arises from the repulsive part of the potential.
The lattice sums for the second partial derivatives of the elec-

(13) (a) Sangster, M. J. L.; Schrdder, U.; Atwood, R. M. J. Phys. C 1978,
11,1523, (b) Sangster, M. J. L.; Atwood, R. M. J. Phys. C 1978, /], 1541.
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TABLE VI: Equilibrium Properties of Argon Crystal (Using Four Atoms per Cell)
Ewald direct summation
exper? exact 0.00001° 0.001* 0.01° 9 Ac 15 A 30 Ac
A A 5.3109 5.3109 5.3109 5.3108 5.3090 53172 5.3176 53111
U, keal/mol -8.0975 -8.0976 -8.0970 -8.0981 -8.1171 -7.4202 -7.9756 ~8.0830
B, GPa 2.67 3.0044 3.0044 3.0054 3.0164 3.0940 2.9482 3.0050
C,,, GPa 4.0 4.2031 4.2031 4.2048 4.2216 44123 4.1309 4.2052
Cy,, GPa 2.0 2.4051 2.4051 2.4057 2.4138 2.4348 2.3569 2.4049
Cy GPa 2.0 2.4051 2.4051 2.4057 2.4138 2.4348 2.3569 2.4049
a 0.32 0.364 0.3640 0.3639 0.3638 0.3556 0.3633 0.3638
time,? s 0.171 0.143 0.084 0.045 0.124 0.866
pairs R space? 120 72 24 120 480 4320
pairs K space? 480 336 156

aSee ref 10 (A), 11 (U), and 12 (C), C}3, and Cy). ®Accuracy parameters in kcal/mol. <Cutoff distances (R.,). Using a cubic spline function
to decrease the potential from full value at R, —1 A to zero at Ry, —0.5 A. ?Only attractive terms are considered.

trostatic energy with respect to the strain components converge TABLE VII: Equilibrium Properties of NaCl Crystal (Using Four
very slowly, requiring Ewald sums. By using (22), we have Molecules per Cell)
8%S, Ewald
= b b b
de, 6e| exper®  exact 0.1 0.01 0.001
, A4, A 5578 55780 5.5776 5.5776 5.5780
3 erfc (a) 6171/2@  4q71/2a U, keal/mol =740.0 -740.00 -739.9938 -740.0184 -739.9985
2 P + P + ’ B, GPa 2660 25.9858 25.97 25963 259854
n" Li a C.GPa  57.33 51.46 51.433 51.4366
1/2a C GPa  11.23 13.23 13.228 13.2598
(-1, - R, - | efe@) | e | CuGPa 1331 1323 13228 132598
[ d @ a2 P 0.164 0.205 0.205 0.2050

¢See ref 13. ® Accuracy parameters in kcal/mol.
r-r1;, - Rp),? +-— S(h)S(-h) X
®-x 20 Z ®)S(-h) VII. Summary and Discussion
_ 45 44 Using Ewald-inspired approximations for accelerated conver-
e (I + bz)“l 4hle { 2 kot h_"_ gence of lattice sums, we developed and tested equations for the
ht \ 2 16 energies, forces, stresses, and second derivatives for both elec-
(70) trostatic (1/R) and dispersion (1/R®) lattice sums. In addition,
we developed an approach for estimating the convergence pa-
&S, rameter 7 in order to minimize the computation time while re-
= taining a fixed level of accuracy.
de1e; With these accuracy specification procedures, the costs of
1 [ 3 erfc (a) + 6n1/2gma + 4,,-1/2e-°’] x carrying out accurate lattice sums is less than that for normal
ij

I e

direct sums (at the same level of accuracy) despite the more
complicated formulas for accelerated convergence.
( We suggest that these procedures may also prove equally
l -

2_,,5 & a at a2
valuable for biological systems. A molecule such as hemoglobin
with ~6000 atoms would lead to 18 000000 pairwise interactions,
( Kot o ‘) which are truncated to ~ 500000 by using energy cutoffs of 9

2, 2T ¢ et
(r - r= RL)I (r; Lyh RL)2 + E ?S(h)s(-h) ;2_
4h,%h,2e

1+
( )(h12+ h22)) T

A. We suspect that such cutoffs lead to errors in the Coulomb
interactions similar to those shown for NaCl. By considering the
hemoglobin to be in a unit cell sufficiently large that interactions
an between cells is small, one could use the Ewald procedures to
generate a given level of accuracy. This approach would be

especially valuable for including explicit solvent (water) in the

.——+.—.—-

2 16

In this model, C4 = Cj;. The calculations of these sums give

Cy; = 51.4366 GPa calculation. Water has large charges (0.4 e on each H and -0.8
_ _ e on O) so that use of a finite solvent shell leads to very large
Ciz = Gy = 13.2598 GPa surface effects. With a periodic cell containing Hb and H,0, one

1 could eliminate surface effects while obtaining accurate energies.
B = =(C}; + 2Cy;) = 25.9854 GPa

3 Acknowledgment. This work was partially supported by a grant
from Imperial Chemical Industries, Cleveland, England, and by

while the Poisson ratio (61) is - e
a grant from the Air Force Office of Scientific Research (No.

o = 0.2050 AFOSR-88-0051). We thank Molecular Simulation, Inc.
D. Result. In Table VII, we show the results of optimizing (Biodesign, Inc.), Pasadena, CA for use of the PolyGraf polymer
the unit cell parameters of NaCl with three different accuracy simulation program.

parameters. Registry No. NaCl, 7647-14-5.
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Chapter II

Calculations of Crystal Properties in Molecular Mechanics
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Abstract

Various equations used in the calculations of crystal properties are derived
and summarized. Equations to calculate elastic constants and related properties
in molecular mechanics are derived in (a). Equations for piezoelectric constants
and dielectric constants are derived in (b). Equations for phonon frequencies and
thermodynamic properties are summarized in (c). In (d), complete equations of the
Ewald second derivatives including a dynamical matrix are shown. In this section,
equations for elastic constants, piezoelectric constants, and dielectric constants de-
rived in previous sections are compared with those obtained by the methods of long
waves by Born and Huang, and equivalences are shown when force and stress are

ZEero.
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(a) Elastic Constants

Consider a crystal under external strain at zero macroscopi¢ field. After
atomic positions are equilibrated, all force components become zero, and the energy
of the crystal per unit cell (E;) can be expanded in terms of strain and stress up to

the second order as

g1 Q €1
E; =Eo+Q(e;1...e6) | : +§(e1...e6)c S, (a—-1)

Og €6

where () is volume of the cell, ¢; is a strain component, o; is a stress component
and c is an elastic stiffness matrix (6 x 6). Eq is a constant.

The energy is determined by 3N — 3 components of atomic coordinates rj,
(N is a number of atoms) and 6 strain components ;. This is because we can
always fix one atom at an origin and eliminate three degrees of freedom by using
translational symmetry (i = 2...N). By expanding the energy again about the
equilibrium structure (zero force), using the derivatives of energy with respect to

coordinates and strain, we have up to the second order,

H1 1 €1 51‘21
Ei:=Eo+(e1...e) | : +§(e1...e6)Wee D] +(e1...e6) Wer
g eq 0rNs
1 0ra1
+§(5r21...5rN3)Wrr . / (a—2)
orns
Here,
OF; '
II; = Be, (a—3)
’E
[Wee]j,j = 9 L (a' - 4)
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6%E,

[Wer]i,ja = m (a - 5)
6%E,

[Wrria,is = Bradry (a—6)

In molecular-mechanics calculations, the energy expression is given in terms
of coordinates of atoms, and the total energy is usually the sum of 2-body, 3-body
and 4-body terms. Given the energy expression, it is straightforward to evaluate
these derivatives. The derivative of energy with respect to the strain component

can be converted to those of coordinates by using the following relation?,
Orka 1 1

B — 3liaTki t 5 iaTi, (a—Ta)
ij

where e;; is a strain component expressed in terms of two indices and the corre-
spondenceis 1 — 11,2 — 22,3 — 33,4 — 23,5 — 31, and 6 — 12. By using this

relation, we have, for example,

1
aeu Z Orre < Jarkl + 25iarkj) . (a' - 7b)

Although straightforward, the second derivatives of energy with respect to
strain for 3-body and 4-body terms are quite lengthy. In an actual programming,
symbolic derivative programs for these terms were written and FORTRAN source
codes were generated directly to avoid typing errors.

In (a-2), 61iq is a small deviation from an equilibrium geometry of coordinate
of atom i in the a direction. Since force is zero, we take a partial derivative of the

energy with respect to coordinates and equate this to be zero. Thus, we have

Wer o dra;
OE
= (e1...e6) + (Wrtia,21 . . . Wrrig,Ns) =0. (a-—8a)
- Werg iq bTNs
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This equation shows the balance of two forces; one arising from the strain, and the

other arising from the displacement of atoms. By solving this equation, we have

6r = —Wrr~'Wer'e, (a — 8b)
where
€1
e=1| : |, (a — 8c)
€g
0ra;
ér = . (a —8d)
Orns

By inserting (a-8) in (a-2), we have

1 1
E; =Eo +elIl + 5efwee e + el Werér + §5rfwmsr
1
=Eo +elIT + Ee* (Wee — WerWrr ' Wer') e. (a—9)
Comparing this equation with (a-1), we obtain stress and an elastic stiffness constant

as,

II; (a—10)

ol

gy =
1 iyt
c=9 (Wee — WerWrr™!Wer') . (a—11)

It 1s straightforward to show that this is equivalent to the result by Born and
Huang? by using the method of long waves (see (d) in this chapter).

An elastic compliance matrix s is given by

s=c 1 (a—12)
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The volume compressibility B can be obtained® by considering the hydro-

static pressure p. The stress is given by

oKl = —pbu. (a—13)

Here, § is the Kronecker’s delta function. The strain is given by

€j = —P Z Si;,k10k1 = —p Z Sij,kk - (a—14)
k,1 k

Dilation A is given by

A= Z €i = —p Z Sii,kk - (a - 15)
i i,k

From these equations, we have

A
B=—-——= Zsii,kk- (a—— 16)
p ik

Bulk modulus « is given by

(a—17)

1
K= —.
B
The elastic wave velocities are calculated® by solving an equation of motion

for small displacement u;

d2ui Baij azum
RS- DL St -19)

5lm

where p is density of the crystal. By assuming a solution of the form

u = uioei(k'r~wt), (a — 19)

it can be shown that the frequency w is given by solving the following equation,
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Z Cij,lmkjkl — pwztsim = 0. (a - 20)
il
Here k is the wave vector. By writing w = vk, v is the speed of sound, the above

equation becomes

Z Cij,lmf(jf{l - PV25im = 0, (a - 21)
3l

where k; is a component of a unit vector in the direction of the wave vector. The
solution of this equation gives three sound velocities for a given wave-vector direction

k.



28

(b) Piezoelectric Constants and Dielectric Constants
We write small changes of stress (0j;) and polarization (P;) as functions of

strain (e ) and macroscopic electric field (Ey,) as follows;

_ 30’ij 50‘1j
dalJ - Z (aekl)Em dekl + ; (6Em)ekl dEm, (b - 1)

k1
oP; OP;
dp; = ; (56_15)% dey + Zm: (B_E;)m dE,,. (b—2)

The change of internal energy per unit volume is given by

1
= 17 A€f; -_ . b—
dU Eu o—Jde,+47r §k EydDy + TdS (b—3)
Here, Dy is the electric displacement, T is the temperature and S is the entropy.
By defining the Helmholtz free energy F
1
=U—-—) EDy-T b—-4
F=U ym Ek kDx — TS, ( )

we have

dF =) " oyjde;; — % > DidEy - SdT. (b—5)
i,j k

At constant temperature,

OF OF
dF = Z <a) degj + Z <8_Ek>e dEy. (b - 6)

ij Ex k

By comparing this equation with the above, we have

OF
o5 = <a_eij—>Ek , (b-17)

~1p,= (B—FL . (b-8)
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From these equations, we have

OFF  _(boy\ _ 1 (D) _ (0P (b—9)
Oe;;0Ex  \ OEx eij_ 4r \ Oe;; Ek_— Oei5 ) g, B

For small strain and field, we integrate (b-1) and (b-2):

o =ce—g'E, (b —10)
P =ge + aE, (b—11)

where c is an elastic stiffness matrix, g is a piezoelectric constant and a is a dielectric

susceptibility constant. From (b-1),(b-2), and (b-9) we have

doyy
Cin = (L) , (b—12)
Eyx

Oew
OPx 80’53'
g= (B () b—1
B (aeij)Ek (aEk> o ( )
OP;
i= (=) . —14
a‘lj <8Ej)ekl (b 1 )

Piezoelectric constants g can be obtained by considering the change of po-
larizability when the system is strained. Since displacement of atoms that is due to

the strain is given by (a-8), we have the polarization as follows,

_ 1 1 ~1Wer
Pg = ) Zi:q;&iﬁ =-g Zl: Qi ;[Wrr Wer'lig av€ay- (b —15)
Therefore,
1 _
86,ay = ) z di Z[Wﬂ lwerf]iﬂ,a'v' (b —16)

a,y
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Dielectric susceptibility constants are obtained by considering a change of the
polarization when a macroscopic field is applied. After applying the macroscopic

field, the force at each atom becomes zero, giving

bty = Y _[Wrr '] jqE. (b —17)

J

Polarization is given by

1 1 .
P= 5 zl: q;5r; = 5 ; qiqj[Wrr ]i,jE. (b - 18)

- Therefore the dielectric susceptibility matrix (3 x 3) is

1 -
a=g Z qigj[Wrr™1; 5. (b—19)
i,

Dielectric constants at constant strain e, are given by

€. = 1+ 4ra. (b —20)

Instead of (b-1) and (b-2), we can choose the stress and the macroscopic field

as independent variables as follows:

v (e O
dej =) ( 30k1>Em dow + ; ( 3Em>,kl dE,,, (b —21)

k,l

aPi aPi
dP; = ) (5(I—M>Em dow + zj: (ﬁ;) dE.,. (b — 22)

k,1 Okl

In this case, by defining the Gibbs free energy G,

1
G:U—ZUijeij —EZEka—Ts, (b—23)
i, k

we can show
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8°G [ Be; 1 (8D, 8Py,
B030Bx (a_E;) S <?%_J>E o <5?Z>E (b=29

For small stress and field, we can write

e =so +d'E, (b —25)
P =do + bE, (b — 26)
where )
Oej; )
i = , b — 27
TR _ (b 27)
_ OPx _ Beij
dk,l.] - (Baij )Ek - (BEk>%_ ’ (b — 28)
OP;
by=<—4) : b—29
) BEJ ou ( )

Here, s is an elastic compliance constant, d is the piezoelectric modulus, and b is
a dielectric susceptibility constant at constant stress. By comparing the definitions

of g and d, we can éasily show that

d = gs. (b —30)

Also, from (b-25), (b-26), (b-30), and (b-11), we have

b=a+gsg’ =a+dgh (b-31)

and in this case, dielectric constants are given by

€c = 1+ 4nb. (b —32)
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(c) Phonons and Thermodynamic Properties
According to Born and Huang?, the phonon frequencies are given by diago-

nalizing a dynamical matrix C,

ly (ryr —ri)

Cap () = (177 2 D ®ap (i) ¥, (c—1)

where my is a mass and ry is a position of an atom k in a unit cell, y is a wave
vector, R; is a lattice translation vector with an index 1, and
5%

Bop () = ——— —2
8 kk) arOkaarlk’ﬂ (C )

is a second derivative of the total potential energy ® with respect to coordinates of
atoms. In the above equation, rjx = rx + R;.

In molecular-mechanics calculations, we have energy expression in terms of
coordinates of atoms, and the total energy is usually the sum of 2-body, 3-body,
and 4-body terms. It is straightforward to evaluate second derivatives of these
terms. To obtain the dynamical matrix from these second derivatives, we multiply
an appropriate phase factor and sum all terms. For an n-body term, we need to
sum n? terms with different phase factors.

After obtaining the dynamical matrix C, all frequencies ws(y) (s = 1,..., 3N,

N is a total number of atoms) are given by solving the following equation,

|Cap (fir) — [ws(¥)]? i 6| = 0. (c —3)

The thermodynamic properties are given by using the harmonic approxima-

tion,

F=— Z Zhw,(y) + Zm ( -h“’s(y)ﬂ) , (c —4)
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__ks —hw,(y)B hws(y)
s"—ﬁzln(l'e ) TMZehws(y)ﬁ s (¢—5)
s
EWS(Y)
M Z Fhws(y) + M Z ehws(¥)B _ (c - 6)
2 hws(y)ﬂ
C, = 2 3~ (Ben(y)B) e ; (c—7)
M o (ehws(}’)ﬂ - 1)

Here, F is the free energy, S is the entropy, U is the internal energy, and
Cy is the specific heat per cell. 8 = 1/kgT and kg is the Boltzmann constant.
The sum is over all points in the Brillouin zone (M is the number of points in the
Brillouin zone used in the calculation) and is over all modes(3N modes for each
point in the Brillouin zone). In practice, we use a finite number of points in the
Brillouin zone. Because of the inversion symmetry of the dispersion relation, we
need to sample only half of the Brillouin zone in the general system. For a crystal
with high space-group symmetry, the region in the Brillouin zone which we need
to sample can be reduced further. For example, in the calculations of graphite (see

Appendix I), only 1/24 of the Brillouin zone is used.
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(d) Ewald Second Derivatives
In this section, equations for second derivatives of the Ewald lattice sums
are shown in Section 1. Equations for phonon calculations are shown in Section 2.
Finally in Section 3, it is shown that derived equations are equivalent to those given
by Born and Huang!, using the method of long waves for various properties.
1. Strain derivatives of Ewald Lattice Sums

The Coulomb lattice sum is given by?

ZQueerf.?L) 27fzs(h)s( h)h %™ - ,rl/z (ZQH), (d - 1a)

L,I,J

where Q;; = (Cuait/€)qiq;j,  is volume of the unit cell and

S(h)S(~h) = ) " Q;jcos(h - (r; — rj)). (d — 1b)

1,j
Cunit=332.0647, if the unit of charge q; is one electron and that of length is A. By

taking a derivative with respect to strain e, we have

;i; = o 1§ Qi F1 (a4 )xijLaxXijLe
S SS(h) [Hy (bhebs + Ga()eng] (A 20
h
where
Fi(a) = (erfc(a) + 27 /2ae™>") /a3, (d — 2b)
Gy (b?) = "Zeb;bz, (d — 2¢)
Hy (b?) = — 10 “;:f iy (d - 2d)

x;jL =TI — rj — RL, (d — 26)
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ajjL = IxijL[/n, (d - 2f)
b= %h”' (d - 2g)

Here Ry, is a cell-translation vector (with an index L) in real space and h is a
cell-translation vector in reciplocal space.
There are 21 second derivatives of energy with respect to strain components,

but in the following, terms obtained by a simple permutation of indices are not

shown;

azs] 1 U 1 4 2
6e1 661 = —2173 Z Ql.] Fl aoijL?]-z- xile + 2F1xijL1
L,,j
2m : 1 21,417/ 2
+ n) Z S(h)S(-h) 57 hiH; +4H;hi + G, |, (d — 3a)
h
3281 1 , 1 ) R
Oe10e;  2n® LZU Q;j [ VasLn? xilexijLz}

2T 1
+ ?2’5 3" S(h)S(~h) [Enzhfth'l + Hy(h? + h2) + Gl] , (d—3b)
h

6281 _ 1 ZQ F! _]-__XZ e
Oe10es 2773Lij R L1 %iL2XijL3
2m : ‘ 1 212 !
+ ‘6 Z S(h)S(—h) 57] h1h2h3H1 + Hihohs|, (d _ 30)
h -
6281 1 1 .
Be1Bes 273 ;:J Qij [F'laijL—anilexijL3 + FixjjL1XijLs

!
+ 29—“ > S(h)S(~h) anhghsﬂ’l + 2H1h1h3} , (d — 3d)
h
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85, F,
OesBes - 277 LZIJ Qjj [Fll 1 13L2X1JL3 _2"(Xi2jL2 +xi2jL3):l
+ 4 Z S(h)S(~h) | sw*h3h3H} + 2 Hy (b3 + b?) (d — 3e)
0 o7 f2figty T S H1{hy 3)|,
h
8281 1
664365 - 277 IZ” Q’J [FI lelelJszuLs + leuLlXuLzJ
+ gzZS(h)S(—h) “n*hihohZH) + SH;h;h (d - 3f)
9] - 277 12nNgk04 5 1hiho .

In these equations,

dF; 3erfc(a) Gr—1/2e—a"  gp—1/2¢—a’
Fllzqa—:_( at + ad + a ) (d—3g)
dH _
B = G = g2+ 20 450 (@ -3

The second derivative of S; with respect to strain and coordinate is given by

0S
~ (Beo;-,) - ke Z QPJ I:F, (a'PJL) xp_]LaprLﬂXpJL—y

+F1(aPJL )(prLﬁ5a'r + ijLa5ﬁ'v)]

303 Quihysin(h - (xp — 1)
h

X [thahﬁ + G1 6Qﬂ] . (d — 4)
The second derivative of S; with respect to coordinates is given by

828,

OrpaOrgp - { Z Qp; [F (aPJL) XPJLaprLﬁ + Fi(apjL )bap
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ﬁﬂ- Z Qp;Gihahg cos(h - (rp — rj))}
j

.J= :wl,_.

h
Z [F' (apqL) L7’ 2 XpaLaXpgLg + Fi1(apqL )5aﬁJ

L

1
Z QpqGihahg cos(h - (rp — 1ry)). (d - 5)
h

The dispersion lattice sum is given by’

—4 | 1,-2 —a?
86 2 Py ZBU (a‘le + alJL +3 2 1JL )e L

L,i,j
w32 1 1\ e
+ 510 Z Z Bj; cos [ —1;)]h? [ 12erfe(b) + <2b3 — E) e~ P }
3/2 '
6 P 1277 ZBu. (d - 6)

By taking the derivative with respect to strain e,g, we have

oS
Be:g = 2.,78 Z BIJFG(a'lJL)XlJLO:leLﬂ
711-]
-3 49 Z Z Bjj cos(h - (r; — rj)) [He(b?)hahg + Ge(b?)8ag]
’J
x3/2
- &0 Z Bij6ap- (d — 7a)
Here,
Fe(a) = (6a~® +6a% + 32 +a 2)e ", (d — 7b)
—b?
Ge(bz) =h3 { erfc(b) + (ﬁ - —)e } , (d - 7C)

—b2
He(b?) = 3h (wl/zerfc(b) - - ) : (d —17d)
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Similarly to the Coulomb case, we have

8286 [
= B1 F, i + 2F Xl :'
Oe10e; 2173 LZI,J J L JL1 8XijL1

3/2
249 Z Z Bij cos(h - (r; — rj)) [ 2h;‘Hg + 4Hgh? + Gg

n3/2

6730 Z Bij, (d —8a)

3285 1 [ 1 ;
= —— Bi' ! —_x?. x.z.
3e1 362 2178 LZ:J J 6 a‘ijan ijL1 1JL2J
32 < 1
20 Z D Bijcos(h- (ri — 7)) | 5n*hihiH, + He(h] + h3) + Ce
i)j S

3/2

6730 Z By, (d — 8b)

6286 — __L Z B:: FI ___]_'____xz XL 2XiiL3
Oe; Oey 278 & u|-e aji 72 ijL1XijL2Xij
a3/2
+ 910) Zh: izj:Bij cos(h - (r; —rj))
1 .
X li'z“l’]zhfhzha ’e + Hehzh;;] R (d _ 80)
9°S¢ 1 L1
Oe; Oes = _'2_,'7?L - ij [ s‘a'i'jLn'z'XijMXijLs + Fexi5L1Xi5L3

249 Z Z Bjj cos(h - (r; — 13))

X [‘2‘7]21’1?}131{’6 + 2H6h1h3j] ,A (d - Sd)
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0°Ss 1 1 Fe
BesBes  27P Z B [Fg aijL 72 xiszzxisz?’ + ?(xizjm + xfiLs)

73/2

+ 520 Z‘ ZB,J cos(h - (r; — ry))

x [Enzhihiﬂé + §H6(h§ + hg)} , (d — 8e)
0°S 1
6e4625 = 27]8 ZBIJ [F' leleUszuLS + 2F6X13L1X1JL2
L,i,j

3
+ 51 ZB,J cos(h - (r; — rj))

X [%ﬂzhlhzthé + EHﬁhlhz] y (d - Sf)
where
I _ dF _ -9 -7 -5 -3 —1y_—a? _
Fg = Tk —2(24a7" 42427 +12a7° + 42 +a"l)e™?, (d — 8g)
dHe 3ml/2
1
T by erfc(b) (d — 8h)

The second derivative of Sg with respect to strain and coordinate is given by

0 0S¢
Or o (Be ﬂ) = 8 ZBPJ [FIG(a‘PJL) 5 XpiLaXpiLAXpiLy
P [

+F6(aPJL )(XPJLﬂ bay + ijLa5ﬁ7)]
r3/2

120 ZZBth sin(h - (rp — rj))

[Hshahg + G65aﬁ] . (d — 9)
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The second derivative of S¢ with respect to coordinates is given by

6286 1 1
Br6r = ~pa) 75 O Bei |Fe(anit) 5 %pitapiLe + Fo(ap)éa
arpaarqﬂ Pq {,’78 Z PJ ': 6(a~p_]L)a’ij"?72 XpjLaXpjLg + 6(a,p) ﬁ]

L,

x3/2
50 ZZBMGGh hg cos(h - (r, — rJ))}
1
Zqu [FI (apqL) oL 2 XpqLaXpqLg + Fﬁ(apqL)5aﬁ}
+ 7;2—9 Z BpqGehohgcos(h - (rp — rg)). (d —10)
h

2. Phonon Calculations of the Ewald Lattice Sums
To evaluate the dynamical matrix, we need to evaluate the sum of the type,
iy-x(}
1 k
where x (L) = rx + Ry, y is a wave vector, and x is an arbitrary position vector.
Born and Huang? derived the formula for the Coulomb lattice sums (m =1). Here,

we show the general formula.

By using the integral representation,

rm F(m/2)

~le=r"r"qp, (d - 12)
p

we have
Z,X(I” = [" twer=ap, (@-13

where

f(x) = Y prtemx(i) -l iy (x() ) (d - 14)
1

2
I'(m/2)
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Since f(x) is a periodic function of x, we can Fourier-transform it in the reciprocal

space as follows,

f(x) = g(h)e™™, (d — 15a)
h

g(h) = = / f(x)e " * ddx
0 unit cell

2r3/2 —4 —-s|h+y|*—ih. T
L %7 d — 15b
= Tmoa’ © _ (d —15b)

By dividing the integral into two parts by introducing a parameter 7, we
have

xy x( ) 1/q . o0 .
h)elP* | ey *q f(x)e'Y *d
e ==/ (Zg () ) p+/1/n() ’

2m®/? Z VT s —gxlhtyl s ik ih
= pm— e 4p2 dpel( +y)'x_l Tk
T(m/2)Q /
h

2 * 1N nio? 1 ivex(!
+ / pTeIx() =xle* g peiv x(i)
r (m/ 2) Z 1/n

I‘( /2 0 Z (lh : y|> I(—m + 1,b')e!(h+¥)x—ih-r
m

— 2 a")ely (k) d —16a
+1“(m/2)zl:|x({()—xlm1(m 2,a') : (d - 16a)
where
2= 20 x| (d — 16b)
n
b = Lh;—y’ (d — 16¢)
and

I(n,c) =/ {2/2etdy, (d-17)
c?
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which has the recursion relation

I(n+1,c)=c*le + = ll(n —1,c). (d —18)

The following terms are required for n = 1 and n = 6;

I(—1,c) = 7'/ %erfc(c), (d —19a)
1(0,c) =™, (d — 19b)
2
I(4,¢) = (c* +2c® + 2)e™, (d — 19c)
I(-5,¢c) = g (wl/zerfc(c) + (2—% - %) e'cz) . (d —19d)

The dynamical matrix is given by

e—xy ri

n (y iy(r '+R') _
Caﬁ (kk’) (mkmk')1/2 Z (I) (kk’) . ! (d 20)

where my is a mass of an atom k and

n & :
af (kk') - Akk {axaaxﬂ len }X=rk_rk’+R‘/

b2 1
+ 51’06kk’ Akk” { } . (d — 21)
1”2’1{:” Bxa6Xg len x=rx—rn+Rn

Here Ay is either Quu(n = 1) or Byw(n = 6). The dynamical matrix can be
obtained by taking the second derivatives of (d-16). We show the formula explicitly

forn =1 and n = 6 as follows;

Cap () = —bo — Z Quexr { > '7;‘

k'’ v
1

mxk'k“(—l’)axk’k"(—1')[3 + Fl(ak'k"(-lf))5aﬂ)

X (F;(ak/k/l(_ll))
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47 < .
+ > Gl(bz)hahae‘h‘(’k"k”)}
h
Qux 1 1
Z;{; Fi (3krie(—11)) =5 X/k(~1)aXk/k(-1)8

(myemye)1/2 | 4 ak/k(-1)7

+F1 (ak'k(—l’) )5aﬁ) eiy-Xklk(— 1)

4m o .
+_$2_ Z Gl(nzlh + y,2/4)(h + y)a(h + y)ﬂelh.(rk_rk,)
h

47
+ G Ayara (d-22)

Cap Gr) = _5kk’ — Z Bk {Z -1?
T

kll

1
2 Xk/ku(_ll)axk/ku(_y)ﬂ + Fe(ak;k//(_lf))éaﬁ)

X (Flﬁ(aklkll(_ll))m

a3/2
ih-(rx—ry )
2 ]
Bk 1 1
* {Z n® (Fé(ak'k("')) — Xkrk(-1')aXk/k(~1')

(mkmk')l/z 1’ aklk(_ll)n

+F6(aklk( -1) )6aﬂ) eiy.xk,k(_l,)
3/2 !

120 E Ge(n’[h+ y[*/4)(h + ¥)a(h + y)ge™ ("‘"“’)} . (d-23)

3. Correspondence to the Derivation by Born and Huang

Born and Huang? treat the dynamical matrix arising from the Coulomb
interactions separately from other terms because it contains the term that is not
defined at y = 0. They define a new dynamical matrix C by subtracting this term

from the original matrix as follows:

Cus () = 2 (i) + Ol o) - T (202 ) =2 (@29

where C™ is the non-Coulomb term and C?! is the Coulomb term. The lattice-wave

equation becomes



44

C Cunit gk
ot (7) wa (k) =D Cap Gu)we (W) - =22 LB, (d-25)
k'p my
where the displacement u in terms of an eigenvector w (kl;') (j is a mode index,

j=1,...,3N) is given by

up () = mg Pwg (K ) & e R, (4 26)
and the macroscopic field is given by

4T yo - ‘
Ea = -gfy—;iy‘—’qu'mkﬁ“wﬁ (x)- (d-27)

By replacing y with 8§y and expanding C in terms of §, we get the following

equation,
Cas (1) = CEUK') +i6 Z C)_(kK')y /2n
- 552 3 nggw\(kk’ )yya/(4n?) + .., (d - 28)
YA
where?

COK) = ———— Y an, ()

(mkmk,)l/z
Qux ( ) 1
“‘5kk’ F % Xkk!' (~1)aXkk'(— +Fi6,
{Ek” akk”( o7 kk' (—1)aXkk" (-1)8 1008

Z Z QkkuGlh hﬁ Cos(h (rk — rku))}

kIl

, 1 1
+ Qkk {____ Z <Fll ——_Z—ka/(_l)axkkl(_l)ﬂ + Fl 5aﬂ)

(myemye)1/2 | 7® 4 Ak (~1)7]

4
+E;G1hahg cos(h - (ry ——rk,))} , (d —29)
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27
1
Can0) = (s 22 %5 () mo oy
27 Qu! 1/, 1
i L N
(mymy)1/2 1 3 < 1 Bk ()T Xik! (=1)aXkk’(-1)8 XKk’ (-1)7
+F 1%k (—1)y0ap)
812 Quk .
+ W Z sin(h - (ryx — ry))
h
X [Hihohghy + Gi(habpy + hgbay)], (d —30)
—47?
@) A(kk') = " (172 2 D@55 (i) e (—1)7 Kk (—1)
A7 n? Qi
- W(%ﬁm + barbpy)
_ 47°Que

P , N
3(mkmk')1/2 ( Ak ()72 T 2 YK (=DaXkk(~1)FXkk (~1)yXkk' (~1)X

+F1xkk'(—1)1xkk’(—l)Aaaﬂ)

!

+ _16m°Quar Zcos(h (e — ) {
h

Q(mkmk/)l/z
1
(5a75ﬁ>\ + 5‘,)5@7)(;1 + Enzhahﬁh.yh)‘Hll
+H1(hah35-yA + hah.yﬁgA + hah)ﬁﬁ-y

+hghyban + hgh;ém)} . (d - 31)

The following terms are defined:

1 ~
[@8,72] = g5 Y (mimie) /2055, (kK'), (d - 32)
k,k!

1 ~
(07,62) = =55 D D T (kK) Y O, (kk")my/” Yy~ CLJ (WK™ )my
k’kl o, v kII klll
(d —33)
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1 ~ _
B0 = 5= 3 my/2CU) (k') Y Dup (KK )arermis 2, (d - 34)
kX', p k!

where T' is the inverse of C(®). Because of the translational symmetry, we fix the
first atom to invert the matrix and the degree of freedom becomes 3N — 3. So in the
summation involving I', the sum must start from the second atom. By using these,
it is shown? that at zero force and at zero stress, elastic constants(c), piezoelectric

constants(g) and dielectric susceptibility constants(a) are given by

Cay,pr = [@B,7A] + [B7, @] — [BA, o] + (7, BA), (d - 35)
g8,av = [)Ba a7]) (d - 36)
5= Z Qe (kk'). (d - 37)

- f K,k (e )1/2 Fos

In the following, we show how each term corresponds to the equations ob-
tained in the previous sections.
(a) Dielectric Susceptibility Constants

We write the total energy per cell(E;) as a sum of non-Coulomb part (Ep.)
and Coulomb part(Si, (d-1)). Then E;. = (1/M)®"¢, where M is the total number

of cells in the calculation. Then

6 Et 3281
ark Brers = Zl: @ kk' arkaark’ﬁ . (d — 38)
By comparing (d-5) and (d-29), we have
2
OB, = (mkmkz)l/zcgg(kk'). (d — 39)

arkaarklﬂ
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Therefore,

(mymyr) 7 /*Tag(kk') = [Wrr ™ Jka g, (d — 40)

and from (b-19) and (d-37), it is clear that both equations are equivalent.
(b) Piezoelectric Constants
Second derivatives of the total energy with respect to the strain and the

coordinate are given by

0 OE 1 1 nc
( : ) =3 D@5 (o) g + 5 Z &%, (i) Tia

Oriy \ Oeap Lk Lk’
195, 188, 5
2 Orye By 2 Orp o«

o (331), (d— 4

Orxy \ Oeop

where conditions of zero total force are used. By using the relation arising from the
invariance of force with respect to rigid rotations of a crystal? and the conditions

of zero total force

051 05, nc (1 ne (1
O 2 Bn 0 T ; 5% (o) s — ; 835 (o) ey, (d—42)

we have

8 (OB = men 5. 8 (85
ark7 (330‘5) - Z@a‘)’ (k’k) Tik'g — Oria 6ﬂ‘¥ + ark‘y <aeaﬂ>

1,k/
S o [ 8S

_ ne 1 . 1 Y 1 _
—1§k;‘1’m (k) 7 ¢5>rk,3‘5°”+ark7 (aeaﬁ>' (d - 43)

By comparing the above equation with (d-30) and (d-4), we have
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s} OE; _mll(/2 1/25(1) '
OTi (6ea5> C2m Z O, p (k)

kl
1/2
_my 1/26(1)
= =5 > m/*CT) L (kK'). (d — 44)
kl

The piezoelectric constant is given previously as

Bayx = — E Qe [Wrr ™ i 0,18 [Wer] 42 k8

Q =,
1 m,”? /2600
— - -1 k 1/2 /(1 )
=-q Qe [Wrr™ Jiera,ip = > m/*Chy (kK')
"k,B k/
= = 3 w260 (K1) Y Tpa(kk)qempl?,  (d— 45)
T 270 s k' 8,2 . Bo Qe Myerr~

where antisymmetric property of C(1) is used. By comparing this equation and

(d-34), we have

Bax = [, 7). (d — 46)

(c) Elastic Stiffness Constants

At zero stress, we have

62Et 1
=5 ! ! o @ , ’
3em<9ea.y 2 ; ﬂ'y k k) Tik'ATok 12/ k k) T1k/ATok~y
2
- 15 95, _1_5a>‘ 95, + 9“5, (d _a7)

2 A 8eag B 2 6e73 Bemaea.,’
where (a-7) and (d-42) were used.

We separate [a3, ] into non-Coulomb terms and Coulomb terms as follows:

[aB,77] = [@B, v \lac + [aB, 7211, (d - 48)
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where subscript nc specifies the term from the non-Coulomb part and 1 specifies the

term from the Coulomb part. From (d-31) and (d-32), we have the non-Coulomb

term as

| —

1
[a,B,'y)\ 2 Z k’k Tk/~Tokx + = ) Z @I;cﬂ (ic’k) Tk’ ATok~- (d — 49)
Lkk }

1k, k!
From this equation, we have

92 Z <I’ﬁcx (k’k) Tik/ AToky + 2 Z ‘I’ﬁv (k'k) Tik' AToka
Lk,k’ Lk’

+ Q([aﬂ77A]1 + [ﬂ’Y:aA]l - [ﬁ’\aa7]1)
0S; 1 0S, 1 0S;
+oma 5 o 25aﬁa—e;— R (d - 50)

where we combined terms using (d-42). By comparing (d-47) and (d-50) we have

&E,

m = Q([aB,YA] + [B7,aA] — [BA, av])

— 2 ([aB,7AlL + [By, A1 — [BA, a7]1)

85, 8, 1. 85,
“eage Tt 5""3 L T 2% 5.

l 881 15 681 62 S‘l
72 3eaﬁ 2 A 5e.yﬁ aemaea., '

From (d-31) and (d-32), we have

(d - 51)

1
QaB, A = —’2‘7)—3 Z Qjj [Fﬁ mxijLaXijLﬁXijL—yXijLA + FixijL4Xi510 008
. 1j

1
+ 5 D S()S(~h) [(5a75ﬁ>\ +8ax8p+)G1 + 50 habghyhyH)
+H; (hahﬁ&yA -+ hah.yéﬁk -+ hah)ﬁﬁ.y

+hgh, 6. + hghrbes)]. (d - 52)
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Therefore, we have

—Q([aB, 71 + [By,aA]1 — [BX, av]1)
8S; 1_ 8S; 1_ 68,
Bewy | 27 Fer, T 207 Bers
1. 6S, 1_ 85,

T2 e 2% 86,

1 1 1
= ] Z Qjj [F'l WxijLaXijLﬂxijL—yxijLA + §F1XijL-yXijLA5aﬂ
1 1

+§F1XijLaxijLA5'yﬁ + §F1XijLaxijLﬂ5—yA + §F1XijLﬂxijL'y‘5a>‘

1

iy 1

- 2. Sm)S(-h) [6a‘y5ﬂAG1 + 37 hahghyhyHy

h

1
+H,; (hah-,ﬁﬂ)‘ + h,gh)‘é‘a.y + Ehahﬂb‘-y)‘

1 1 1
+§hﬂh—y5a)‘ + §h)‘h.y5aﬂ + Eh)‘ha&yﬂ):l . (d - 53)

By comparing the above equation with (d-3), we find that the above equation is

exactly minus of ——a—gler— Therefore, we have

32Et
BeprBens Q([aB,7A] + [B7, 2] — [BA, an]). (d — 54)

From (d-40) and (d-44), it can be shown that

1 1/2 (1) 1/2
o7, B3) = ~ Q DY Tuw(kk) > CE (kk")myl? Y CY) L (k'K )m

vp, A k"'
kk' pv k' k'
= =3 > (W i,k [Wer] oy iu [Wer] g xr
kk/ p,v

—[WerWrr~*Wer'],, ga. (d — 55)

Therefore, we have
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1
Cav,fA = a [Wee — WerWrr"IWerT]a%ﬂA

= [aB,7A] + [B7, @A] — [BA, 7] + (a7, BA). (d — 56)



52

References

(1) Karasawa, N.; Goddard III, W. A. J. Phys. Chem.,1989, 99, 7320. In this

paper, stress is defined as o; = —%3%

(2) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices (Oxford Univ.
Press, Oxford, 1954). In the Equation (31.23) in this book, y.(h)ya(h)éas
must be deleted (see (d-31)).

(3) Nye, J. F. Physical Properties of Crystals (Oxford Univ. Press, Oxford,
1957).

(4) Landau, L. D.; Lifshitz, E. M. Theory of Elasticity (Pergamon Press, London,
1959).



53

Chapter III

Cell Multipole Methods and Nonbond Cutoffs

[This chapter is based on papers co-authored with Hong-Qiang Ding and William
A. Goddard, and were submitted to J. Chem. Phys.(a) and Phys. Rev. Lett.(b) |
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(a) Atomic-Level Simulations on a Million Particles: The Cell Multipole

Method for Coulomb and London Interactions

Abstract

The N? computations implicit in the Coulomb and other long-range interac-
tions remain the critical bottleneck in atomic-level simulations of the structure and
dynamics of very large molecules and clusters. We report here the Cell Multipole
Method (CMM), which involves no steps scaling a higher order than N, minimizes
the effort of the remaining terms, and requires only modest memory. To demon-
strate the feasibility of this approach, we report systematic calculations (using a
laboratory workstation) on realistic polymers (polyvinylidene fluoride) with up to
1 million atoms and demonstrate that this method scales as N for a million atoms
(where it is 1500 times faster than the exact method). CMM treats the reciprocal
power-law class of interactions having the form g¢;g; /rfj, which includes Coulomb
(p = 1), London dispersion (p = 6), and shielded Coulomb (p = 2) interactions.

This method is well suited for highly parallel and vector computers.
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Introduction. In recent years, there has been a great deal of progress in simulat-
ing the atomic-level structure and dynamics of large molecules, with calculations
reported on systems with thousands of atoms!?2. However, current methods are
inadequate to simulate the million particles required to describe the interesting
properties for many irhportant systems. For example, amorphous polymers may
have segments each with 100,000 atoms that associate to form partially crystalline
lamellae, random coil regions, and interfaces between these regions, each of which
may contribute special mechanical and chemical properties to the system. In order

to carry out simulations for such systems, it is essential:
i. to eliminate computational steps or storage that depend quadratically (N?)

on system size, or worse;
2. to minimize any calculation or storage procedures that are linear with N;
u1. to construct algorithms for the steps linear in N that allow the problem to
be solved efficiently under parallel computer architectures.

In this paper we focus on the biggest bottleneck obstructing atomic-level simula-
tions on superlarge systems, the long-range, nonbond interactions: the Coulomb
interaction g¢;q;/7;;, and the London dispersion ;) /rfj. [In addition, we consider
the shielded Coulomb interaction g¢;g; /rfj which is used to replace the Coulomb
interactions in an approximate treatment of solvent effects in calculations of large
biological molecules.] The Cell Multipole Method (CMM) treats all these as special

cases for the reciprocal power-law class of interactions
E =Y aq;/Ifi -7, (a—1)
>3
where the parameter p is an input to the algorithm, so that the identical program

works for any interaction in this case. The CMM efficiently and rapidly calculates
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the nonbond interactions for large (million-atom) systems, which we illustrate with

calculations on polymers with up to a million atoms.

The Cell Multipole Method. The development of CMM builds upon ideas
proposed by Appel®, Barnes and Hut*, and Greengard and Rokhlin®. The key
steps are as follows:

a. Diwvide space into uniform cells. The box containing all the atoms is divided into
M equal-sized cubic cells (Fig. a.1b). A single pass through all atoms generates a
doublylinked list that stores grouping information (e.g., which atoms belong to a
particular cell).

b. Compute multipole moments for each cell. The interactions of each cell with any

other atom outside the cell are represented by the multipole series expansion:®

olef—n QaﬂR Rﬁ Oaﬂ’YRaRﬁR"Y
Vz (T)—R Rp+2 E Rt Eﬁ R 6 +- (a—2)
, )7

where R, are the components of the vector R=#_7 'a, T4 is the center of the
cell A, and 7 is any observer position outside the cell. This series is essentially an

expansion in terms of d/R, where d is the cell size. The lower-order moments are

the charge
Z = Z qi, (a-3)
dipoles
Ko = Z 4iPTic; (a —4)
quadrupoles
Qas = > aip [(p+ Driarip — bapr?] /2 (a —5)
octopoles

Oapy=Y_aip(p+2) [(p+ 4)riaTipTin — (Fiabgy + Tigbva + Tiybap)r?] /6 (a — 6)
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etc.®, where 7,4 is the a component of the position vector for atom i measured with

respect to the center of the cell A.

c. Partition the intémctions for all atoms in terms of near fields and far fields.
Consider all atoms 7 in cell Cy. The interaction with any atoms that are in either
cell Cy or one of the 3° —1 = 26 neighbor cells (C, in Fig. a.1b) is calculated exactly.
We refer to these 27 cells as the near cells for atom i and refer to all other cells as
far cells. The potential is accordingly decomposed as V() = Viar(7i) + Vnear(7:),

or more explicitly,

V(FE)= Y VERFE -7+ Y IT%_*I?’ (a—T)
A€ far jEnear cells Ti =T

The computational effort for the explicit evaluation of interactions with near cells

is a fixed constant (~ 4 x 27/2 = 54 terms").

d. Convert multipole fields to Taylor coefficients. To calculate Vi, (7;) efficiently,
we avoid repeating the sum over all far cells for each atom i in cell Cy by doing a

local Taylor series expansion about the center of Cy,

Z V}{oze(f’—-— Ta) = V(O)-{-Z Va(l)ra—i-z Vi;)rarﬂ-i— Z Vo(,z?yrarﬁ""v - Vg;('r_")
A a N} a,B,y

(a—8)

Here, both the atom position 7 and the the cell position 74 are with respect to the

center of cell Cy. The Taylor coeflicients are computed by expanding each multipole

term in 7. Thus, the charge term is expanded as

Z 0 1 3
CEEAT Ve + 3 Vidra + Y Vigrarg + 3 Vs rargry + -+ (a - 9a)
o a,ﬂ a,ﬂ"y
where
A
0

VZ( ) = ﬁ-, (a - gb)

A

pZTAa

VZ(L) = 7~p_|.2 ) (CL - 96)
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2
VZ(a)ﬂ = 513 {(p+2)raarag — bapri}, (a — 9d)
A .
3 p(p+2)Z
VZ(a)ﬁ'y = 6r p+6 {(P +4)r 40”4874y — (T40bgy + T 430N + rA-y5a,3)rf4} )
(a —9e)

The dipole term is expanded as

—

F—7
';:_.,_( o Ipfz) V(°)+Z V(i)ra-i-z V‘Ea)ﬂrarﬁ-f— Z V‘Ea%,yrarﬂr,,-k- -+ (a —10a)

B,y
where
v =24 (@ — 108)
L
p (P+2)(E-Ta)ra
Ve = iz~ P = (a —10c)
Ta Ta

+2) [ . +4)
v _ (pr )[(p-rA){éaﬁ— (PT )TAaTAﬂ}+(#a7’Aﬁ+l‘ﬂrAa) ,

paf 2 p+4 2
A A
(a — 10d)
, ,
Vb = i (04 A F) o+ ) aemasma
+("'Aa6ﬁ'y + TAﬂ&ya + TA‘Y‘Saﬂ)Ti}
+(p +4)(HaTapT Ay + BETAYT Ax + BT AT 4B)TY
~(Habay + abya + pybap)ra] - (a — 10¢)
The quadrupole term is expanded as
Z Qap(T = 7 )a(F — 7a)p
|7 — 7y |pte
— V(O) V(l) V(z) V(3) . _
Q T Z vt Z ATy A T D Vasaaramare + oo (e~ 1la)
VA7
where
v - [QRR] (a — 110)

p+4
Ta
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1 @RR
chl-,) = 274 [—22 Qqprag + (p+ 4)[ 3 ]TA-)} ) (a —11¢)
Ta ) A
+4
VC(Q'zy)A 21); - (;) p+5) [5—7A[QRR] +2 Z @raTAaT Ay + ZZ Q—ya"'Acﬂ'AA]
T4 a [
+4)(p+6)QRR
L )(;ﬁs)[ca Ly e o110
+4)(p+6)|QRR
ng)kn e )g;pﬂo)[Q ] [(P + 8)rayTarTan — (Tavbrn + TaN8ny + 7'An5'y>\)7'?4]
+4)(p+6
- (p 3r l(_fs ) ZTAC! (Q'ya"'AXrA'q + QAaTAnTA'y + QnarA‘yTA}\)
+
+ (g p+6) (Tay@rn +7axQny + 747Qy2)
+4
(;) p+6) Z TAa (Q‘ya‘sAn + QAagny + Q-qa 7A) ((L - 118)
[QRR] = Z QapTAaT 48 (a —11f)
a,B

The octopole term is expanded as

Z Oaﬁ'v(F— "—"A)a(F“ FA)ﬂ(F— FA)‘Y

|7 — 74 |P 6
B,y
S 4 5l + e+ S Wi+ (e 120
Ayﬂ A:ﬂ:
where
RR
v - [ORRE] (a — 125)
A
1
vy = —5 | —(p + 6)[ORRR]rax + 3r% Z OxapTaaTap | (a —12¢)
Ta af
p+6)ORRR
v, = - ONORRE] () | ) ran — 73800
2r,
3(p+6
+ (pp+8 ) Z T4aT 4B (OnapTar + OragTan)
2r% op
32, f:g“”a , (a — 12d)

Ta
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+6)(p + 8)[ORRR
V(gak)nu = (b )(zrp+1)2[ ] [—(p + 10)r AT anTap
A
+(7'AA51W + 7'A175v)\ + rAvékn)ri]
+6)(p+8
+ (p )(I;O ) TaaTAB (OrapTanTav + OnapT avTax + OyapTarran)
21";'+
a,f
+6
- (2prT8—) Z TAaT AR (O}‘aﬂﬁnu + Onaﬂ&/)‘ + Ovaﬁélﬂ)
A a,B
+6
- (I;p_{_g ) Z TAa (Olnoﬂ'Au + OnuarAA + Ou)\arAn)
A a
OA v
+ rﬁ:(s ’ (a —12€)
[ORRR] = Z OaByT AcT ABT A~ - (a —12f)

B,y :

V() is then the sum of all constant terms, V() is the sum of the linear
coeficients of 7, V(2) is the sum of the quadratic coefficients of 7, and V(®) is the

sum of the cubic coefficients of 7, as follows:

VO = v+ v 4 v 1 v, (a —13a)
Vv = v v 4+ v + v, (a — 13)
V. =V + v, + v+ vED, (a—13¢)
v =V + Vv + VS v, (a — 13d)

This is repeated for all far cells. Vg; (7) thus contains interactions that are due to
all atoms except those in the 27 near cells, which are evaluated as in (a-7). The
derivatives of the Taylor series give the force, the Hessian, etc.

A particular advantage of this simple algorithm is that the far-field portion
(represented by the Taylor series) changes very little during dynamics or mini-
mization. Thus, one can use the same Taylor coefficients (without updating) for a

number of dynamical time steps (say 100), reducing the computation essentially to
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those of nearby atoms. We have tested this approach for calculations on polymers
and find that updating at periods of 100 time steps, the force errors are no larger
than 5% (compared to the force that would occur if the Taylor coefficients were
computed anew each time step). To avoid ambiguities, the timings reported herein
include all far-field interactions computed at each step and hence do not incorporate

this advantage.

e. Group cells into progressively larger cells. For situations where the Taylor co-
efficients need to be computed anew at each time step, the calculation of Vg; (77),
by summation over M-27 far cells (step d) is slow since it is an order-N opera-
tion. Such straightforward summation is very inefficient because the intefactions
from a very distant cell (with small d/R) are computed much more accurately than
the interaction from a cell just two units away (with large d/R). An optimum ar-

rangement is to use larger cell sizes for more distant regions such that d/R remains

approximately constant.

To utilize larger cells automatically for more distant regions requires a sim-
ple scheme for grouping cells into progressively larger cells. This is achieved by
introducing a family of cells**, as shown in Fig. a.lc. Step a is modified slightly.
The entire (cubic) space is considered a cell at level 0. This cell is divided into 8
children cells (level 1) each of which is further divided into 8 grandchildren cells
(level 2), etc; Finally, at the deepest level L we have M = 8 cells; each contains
only a few (say 4) atoms. Thus, a million atoms require L =~ logs(10°/4) ~ 6 levels.
Fig. a.lc shows a four-level system. The level 2 cells are denoted as A, the level 3
cells are denoted as B, and level 4 cells as C. For Cy, the original 16 — 32=4069 far
cells are reduced to 415 cells (374, 189B, 189C;). [For the million-particle system,
each level-6 cell interacts with 189 cells at levels 3 through 6 and 37 at level 2 for
a total of 1171 cells instead of the original 262117 cells.]
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Once multipoles of level [ cells (Z, 70, QM 0O, ...) are calculated, mul-
tipoles of level { — 1 cells are obtained by translating and adding those of children
cells, which are level [ cells, as follows. Let &, be a vector from the center of the
level I — 1 cell to the center of one of its children cells at level I. Also let #}; be a
position vector of the ith atom in the lth child cell measured from the center of that

cell. That atom has charge q;;. Then, from the definitions of multipoles, we have

multipoles of level [ — 1 cells as follows:

z4-1 = Z qi = Z AU (a — 14a)
1 ]

pY = PZ @i(Ttic + Ria)

_ Z #(z) +pY ZOR,, (a — 14b)
l .

Q(’ - pZ qus {(p + 2)(rtia + Ria)(riip + Rig) — (71 + Rl)25aﬂ} /2
_ Z Q(l)
+ Z {(P +2)(pP Rig + #g)Rza) — 23V - R’)5“ﬁ} /2

+ pZ ZW{(p+2)RiaRig — R36ap} /2, (a — 14c)
l

ng_.:) =p(p+2) Z i [(p + 4)(rtia + Ria)(riig + Rig)(r1iy + Riy)
1i

—{(rtia + Ria)bpy + (T1ig + Rig)bya + (T1in + Riy)bap} (71 + ﬁz)z] /6

+(p+2) Z [(+ (O RipRiy + 4 Riy i + P RiaRig)
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~2(7Y - R1)(Riabpy + Rigbya + Riybap)
R} (u8gy + 15670 + p6s ﬂ)] /6
+ p(P + 2) Z Z(l) [(p + 4)RlaRlﬂRl‘y

1

—(Riabpy + Ripbya + Rirbap)R]] /6. (a — 14d)

In the last equation,

[QRIY), = (p+2)QYR1 — 2Q) Ryy — 2QV) Ry, (a — 14e)
+4
[QR]g‘gz = p_g‘—(QggRlz + Q:((IQRl:: + QgQRzy), (a — 14g)

and other components are obtained by permuting indices.

In these equations, the sum is over eight children cells. By using these
equations from cells of the deepest level L successively, we can obtain multipoles of
all cells in all levels. Thus, multipoles for B-level cells are obtained by translating
and adding those of C-level cells, and those of A-level cells are obtained from B-level
cells.

The sum over the 415 cells to obtain (a-8) is calculated using an .a,pproach
analogous to the method of Greengard and Rokhlin®. (One can also directly com-
pute (a-8) without shifting origin, similar to the method of Barnes and Hut*.)

Consider a particular level 4 cell, Cy, and denote its parent and grandparent
as By and Ay, respectively. First we focus on Ao (level 2). All cells labeled A
in Fig. a.lc are far cells of 4y, and their contribution to the Taylor series of A
can be directly summed over the 4° — 3% = 37 cells, by using (a-8): V[ (7) =
S 4 VEO'(7 — 7a). Next we focus on the Taylor series of the level-3 cell B. It is

computed as

Ve, (7) = VAL (7 +70) + Y VE"*(7 - 7p), (a — 15)
B



64

where V4 (r) is the far field for Ay, shifted by ro to the center of By. The sum
of Taylor coefficients is over 8 x 27 — 27 = 189 B cells, whose parents are nearest-
neighbors of Ay but themselves are not nearest-neighbors to By. Vgo represents the
fields that are due to all atoms in cells labeled A or B in Fig. 1c. This procedure
is then repeated at level 4 for Cy to obtain the Taylor series for Cy. Excepting the
level 2 cells A, all far cells to C are computed in the series of sums (a-15), each
over a 189-cell domain with cell-size (d), which reduces gradually as the distance
to Co (R) becomes closer. During this process, d/R is approximately a constant
~ 0.5, an optimum condition when the multipole series (a-2) is used to sum over

many groups of charges. This completes the algorithm.

The timing of the algorithm is estimated as follows®. For the assignment of
atoms to the deepest-level cells and calculations of the multipole moments of these
cells, a single loop over all atoms is used; hence the calculation time is proportional
to N. The calculations of the multipoles of lower-level cells involve the manipulation
of poles of 8 children cells. At level [, calculation time is proportional to 8 x 8! = 8!+1,
since there are 8' cells at this level. Total time of this operation is proportional to
Z{Z__O 81 =8(8L —1)/7 =8(N/a —1)/17. Here, L is the maximum level and a ~ 4
is the average number of atoms in the deepest level cell. Therefore, this operation
is proportional to N. The calculations of Taylor expansion coefficients of each
cell involve a maximum of 189 cells. The time is proportional to EIL=2 189n8' =
189nr x 8(8% — 8)/7 = 189n7 x 8(N/a — 8)/7. Here, ny is the number of Taylor
coeflicients used. Therefore, this is again proportional to N. We have to shift the
Taylor coefficients 8 times for each parent cell; this shifting time is proportional to

IL=_21 8n78' = nr8(8L — 8)/7 = nr8(N/a — 8)/7, and thus is proportional to N.
Once the Taylor coeflicients of the deepest level cells are obtained, the potential
at the atomic position is evaluated by a single loop over all atoms, whose time is

proportional to n7N. Finally, for each atom we have to evaluate the exact potential
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from atoms in 27 neighbor cells at the deepest level. An estimated number of
interactions for each atom is 27a/2; therefore, the total time for this operation is
proportional to 27aN /2. Since the calculation time of all operations is proportional

to N, the total calculation time is proportional to N.

Discussion. Grouping objects into larger rectangular boxes as the distance in-
creases was first implemented by Appel® as an important application of tree struc-
tures to the gravitation problem. It reduces the computations to order Nlog(N).
Barnes and Hut* devised an efficient algorithm of using cubic boxes and recursively
opening up smaller boxes based on a geometric criterion that keeps the expansion
pafa.meter d/R at a fixed number close to 1. To further reduce the computation to
order N, Greengard and Rokhlin® ,Greengard® introduced a local Taylor expansion
and demonstrated it for a two-dimensional problem (using complex variables so that
the expansion series is particularly simple).

These adoptive tree-structured methods have been applied mostly in grav-
itational problems, which typically lack intrinsic scales and often exhibit diverse
structures and large density fluctuations. In contrast, molecular systems and crys-
tals typically have clear length scales, and their structures are more stable and the
density fairly uniform. These characteristics suggest that uniform cells should be
adequate. We use the multipole expansions as in electrostatics®, where the charge,
dipole, and quadrupoles, etc., have clear physical content and are easy to manip-
ulate. The CMM algorithm is a further development over the two-dimensional
method of Greengard and Rokhlin, but with a simpler structure and capable of
treating all interactions with a single program. The resulting algorithm is very
efficient in execution and scales linearly with N with a very small proportional con-
stant; thus, even for the 1792-atom case, CMM is already six times faster than the

exact method. We find that terminating the expansions at quadrupole moments is
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quite adequate. Independent developments for the three-dimensional problem have
been reported® 1%, but the use of spherical harmonics® or partial derivatives!? makes
these algorithms rather complex.

Although the relation between a cell and the eight subcells leads to a tree
structure, we find it more useful and efficient to use a Cartesian integer system to
index cells at each level. This index system alleviates the use of recursive subroutine
calls in the computer program (which is written in FORTRAN), and the calculation
easily proceeds cell after cell at each level, and then, level after level. The Cartesian
indexing also greatly facilitates algorithm improvements and verification.

This structure of the CMM algorithm allows most parts to be easily vec-
torized. In addition, CMM is particularly simple to adapt to parallel computers,
when the processors are connected as a 4x4x4 (8x8x8 or 16x16x16, etc.) grid.
In this case, the three-dimensional space is naturally mapped into the processors
and the deeper levels work independently. Because the computations are domi-
nated by the deeper-level cells and by pairwise interactions that are well localized

in near-neighbor processors, we expect high efficiency.

Application to a Million-Atom Polymer. The speed and accuracy for CMM
were assessed by calculations of a realistic polymer system, poly(vinylidene fluoride),
denoted PVDF. PVDF has chains of (~CH,; — CF, —C Hy — C F,—) packed together
and exhibits at least four stable crystalline forms of which three are piezoelectric.
We started with form I (which has a net dipole per unit cell) and constructed
clusters as multiples of the crystallographic unit cell [2.56 x 8.58 x 4.91 A with
12 atoms (2 chains)]. Thus, combining 9x4x4 = 144 cells leads to 1728 atoms in
32 chains. We add an H or F' at the end of the chain to make (—C Hj or —CF3),
leading to a total of 1792 atoms and a size of 24.2 by 34.2 by 21.4 A. We constructed

progressively larger systems with 15360 atoms, 122880 atoms, and 1013760 atoms.
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The last system with one million atoms has 66x32x40 cells and a size of 168 x 272
x 196 A.

The total computation time divided by N is shown in Fig. a.2. The CPU
time of the CMM algorithm is linear with N, whereas the exact algorithm computes
N(N —1)/2 pairs”. For the 1013760-atom case, CMM is a factor of 1500 faster than
the exact method (even for the 1792 atom, CMM is already six times faster). All
tests were carried out using a single scalar processor on the Silicon Graphics 4D /380
workstation, where the million-atom system required 51 minutes for CMM versus
1280 hours for the exact calculation (estimated from the 1792 atom case).

A typical dynamical simulation involves calculations of the force on each
atom (and the total energy). The accuracy is controlled by the orders in the multi-
poles (a-2) and the Taylor series (a-8), which we implemented through third order
(the octopole level). Our estimates and explicit tests indicate that it is best that
these two orders be equal. At the second order (third order) for the Coulomb in-
teraction, the error in total energy is 0.014% (0.006%) while the rms error in force
is 0.36% (0.17%). For the London dispersion, errors in both energy and force are
extremely small (2 x 107% and 6 x 10~7) at second order and a factor of two
smaller at third order. This decrease in errors by a factor of two is expected since
the multipole series is essentially an expansion in term of d/R ~ 0.5. The accuracy
at the second order is already a factor of 5 to 10 times more accurate than stan-
dard approximations (spline cutoffs, vide infra). Thus, we consider the quadrupole
order to be adequate and report all results in this paper at this level (unless stated
otherwise).

The memory usage of the CMM is 140M+8N bytes, for storing multipoles,
Taylor coefficients, and cell indices, where M is the total number of cells. Including
28N for coordinates, charges and force, and assuming M ~ N/4 (optimum choice),

the total memory is ~ 43N bytes [keeping all quantities in fast memory, our program
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requires 45 MBytes for N = 1 million].

The Cutoff Method. The most common approach for treating the Coulomb
interactions of large molecules is the cutoff method!'*'2, which evaluates exactly
all contributions that are due to the nearby atoms (up to 7;,), while those atoms
beyond 7,4+ are ignored completely. Between r;, and 7oy, typically!112 7, —7ip ~

1A, a cubic spline function S (r?) is used to take the potential smoothly to zero,

where
S(r*) =1, r < rin (a — 16a)
2 .2\2(.2 22 _ 3p2
S(Tz) — (rout r(z‘z(roit:; : Tin , Tin <1< Pout (a _ 16b)
out in

S(rz) = 0: r 2 Tout- (a — 166)

This method requires an order N2 search to establish a near-neighbor list. Although
the time for setting up this list could be ignored (the list is refreshed infrequently),
the list requires a substantial memory to store (several gigabytes for one million
atoms). Given 7,4¢, the average number of atoms with which each atom interacts
is roughly independent of the total number N. Thus, the computation time and
storage are linear in N. However, as 7,,; increases, the proportional constants of

these linear relations increase very quickly (as r3,,), whereas, the errors decrease!*

—1/2
out

as r In Figure a.3, calculation time and memory for 1792-atom PVDF are

shown as a function of 7,4¢, with those of CMM. If the size of the system is much
larger than 7,4¢, time and memory would be proportional to 73 ,, but in this case,
the size of the system is not very large (~ 30 A) so that the relations are almost
linear in the range of 7,,; shown in the figure. The time of CMM is 1.4 times faster
than that of the cutoff method even at a small cutoff distance 7,,; = 10.5 A (2.7

seconds vs. 3.8 seconds). Also CMM requires only 10 % of memory compared with

the cutoff method at r,,; = 10.5 A (0.146 MB vs. 1.43 MB).
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The cutoff method leads to large errors. Using the common choice!! in
the spline cutoff method [(rin, 7out)= (9.54, 10.54)] for the 1792-atom PVDF, the
rms force error is 43.8 [units are (kcal/mol)/A for force and kcal/mol for energy],
while the corresponding error in CMM is 0.411 (0.218 at third order), two orders of
magnitude lower. The error in total energy is also large —4666.31 for cutoff versus
—18.6 for CMM (—4.7 at third order). Although use of larger cutoffs can decrease
the error, we find that the errors remain at least five times larger than the CMM.
Thus the cutoff method is incapable of providing the accurate results of CMM. (In
addition, more accurate cutoff requires ~ 15 times more storage and 10 times the
computer time than CMM.) In Figure a.4, rms force errors as a function of r,,; are
shown. Here, given r,,:, the rms force errors are calculated for three different values
of A = 7oyt — Pin. For a given 7,4:, the rms force error decreases as A increases.
Also for a given A, the rms error decreases!* according to ro_ult/ 2. CMM gives a 5.7
times smaller error compared with the best case in the figure (rout = 25 AA=5
A).

Perhaps more significant than the errors in force, the long-range tails in the
interactions ignored in the cutoff methods can have profound effects on thermody-
namical properties!? and can lead to large errors in structures. Thus, in F 1g. a.b,
we compare the minimized structures for the 1792-atom cluster of PVDF. We see
here that CMM produces a structure almost identical to the exact calculation (rms
deviation 0.061 A) For the spline cutoff method, two different calculations using
different spline functions (A = 2 A and 5 A) are shown. Both spline functions
give visibly distorted structures, although a structure obtained by larger A is less
distorted (rms deviation 0.812 A for A=1 A and 0.639 A for A = 5 A). [In all cases

the minimization started with the exact structure.]

Summary. The Cell Multipole Method is an efficient and practical approach to
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handle long-range interactions, as demonstrated with calculations (on a laboratory
workstation) of systems having up to a million atoms. This method should be ap-
plicable for a wide range of materials simulations. The computer used here (Silicon
Graphics 4D /380, one processor, 5 Mflops!®) is well short of the state of the art
(Cray YMP,one processor, 160 Mflops'?). The vectorization and pa.raileliza,tion ca-
pability intrinsic to CMM should allow further gains of 10-20 in speed to be achieved
on existing super computers (Cray YMP, 8 processor, 2Gflops!? or Intel Delta 512
nodes, 3Gflops). Thus, we believe that CMM will allow atomic-level simulations on

million-atom systems to become quite practical.
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Figure Captions

Fig. a.1. Cell hierarchy for CMM. All cells are 3D cubes.

Fig.

Fig.

Fig.

Fig.

a.2.

a.3.

a.4.

a.5.

Computational costs for calculation of the Coulomb nonbond interactions
for a series of poly(vinylidene fluoride) polymers (N = 1792, 15360, 122880,
and 1013760 atoms).

Computational time and memory usage of cutoff method as functions of 74y

compared with CMM.

RMS force error of cutoff method as functions of 7,,; with different A =

Tout — Tin compared with CMM.

Optimized structures for the 1792-atom PVDF polymer with exact (a), CMM
(b) and spline (rout,min) cutoff methods (c and d). This shows 8 layers
of chains, most of which are in the shadow of the top layer (for accurate
calculations). Optimizations for CMM and spline cutoff methods started

with the exact structure.
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(b) The Cell Multipole Method for Coulomb Interactions in Periodic

Systems with Million-Atom Unit Cells

Abstract

Standard methods for calculating Coulomb interactions of periodic systems
use Ewald-type formulations or Minimum Image approximations, neither of which
is practical for megacrystals (million atoms per unit cell). Here we describe the Cell
Multipole Method for Periodic Systems, which for a polymer with one million atoms
per cell is more than 700 times faster than either the Ewald or Minimum Image
methods, making megacrystal calculations practical. The method is well suited for

massively parallel and vector computers.
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Introduction. Atomic-level simulations of periodic materials are typically lim-
ited to hundreds or thousands of atoms, whereas studies of such problems as par-
tially amorphous polymers might require 10° or 10® atoms per unit cell. The
most difficult problem with infinite crystals is computing the Coulomb interac-
tions V; = Z; q;/Rij, which are conditionally convergent. The most general ap-
proach is the Ewald method?, which separates the Coulomb sum into two parts,
one of which converges rapidly in the real space, and the other which converges
rapidly in the reciprocal space (Fourier transforms). The potential calculated by
the Ewald method corresponds to the limiting value inside the crystal made of a
charge-repeating unit whose charge, dipoles, quadrupoles, and second moments all
vanish”; therefore, the potential is shape and surface character-independent. More-
over, the potential is periodic and its average inside the unit cell is zero!. The
Ewald potential is called the intrinsic potential®. However, the calculation time for
Ewald is T = CreqiR2,;N + Crecik3,,N?, where N is the number of atoms in the
unit cell, Rcy¢ and kcy: are cutoffs for the sums in the real and the reciprocal space,
and Ceq; and Cr..; are constants (see Appendix A.). The presence of the quadratic
terms renders the Ewald impractical for megacrystals (million atoms per unit cell).

Because the Ewald calculation is so time-consuming, many simulations use
the Minimum Image Approximation®*. In Minimum Image, any given atom A
interacts with only N — 1 atoms, each of which is either the atom in the central
cell or one of its 26 images in neighboring cells, depending on which is closest to A.
This method gives approximate potential of the crystal whose shape (of the infinite
crystal) is cubic. Since dipoles and quadrupoles are not zero in general in the unit
cell, it gives a different potential and force from those of the Ewald method (see
Table I). It requires N(N —1)/2 pairwise calculations, so that it is also impractical
for megacrystals.

In this paper, we propose a new and efficient approach, the Cell Multipole
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Method for Crystals (CMMX), to compute the Coulomb and van der Waals interac-
tions (in fact, it handles all interactions of the type E = Zij giq;/|ri — r;j|?, where,
p > 1). The main elements of CMMX are that it:
1. use the Reduced Set of P = 35 atoms to replace all distant unit cells;
ii. represent the interactions from all distant cells by a Taylor series;
1i. compute the interactions from neighboring cells through the Cell Multipole
Method recently developed for finite systems®.

The standard Ewald procedure is applied only to the Reduced Set so that the
calculation time becomes a fixed constant independent of the system (2 seconds on

a SGI 380 workstation for 1 million atoms).

Reduced Set. The central unit cell plus its 26 neighbor cells are referred to as
neighbor cells (see Fig. b.1). The remaining co — 27 cells are referred to as distant
cells. In each distant cell, we replace the original N atoms with a Reduced Set of
P virtual charges, which have the same dipoles, quadrupoles,- - -, up to Kth-order
multipoles (with K > 2) as the original cell.

The principle behind this Reduced Set approach is that the difference be-
tween the Reduced Set system and the original system involves only high-order mul-
tipole and is both small and absolutely convergent. All subtleties associated with
the conditional convergence of Coulomb sums are taken care of by the P charges
in the reduced set, which is evaluated with the standard Ewald method. The re-
maining interactions fall off very quickly (1/7%%!) and can be well approximated

by including only the interactions from neighbor cells. Therefore, we have
Vew () % Vibe(7:) + Vi (ra), (b —1a)

where

Vdﬁt("i) = VEPW(Ti) - Vn{;r(ri)' (b - 1b)
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Here, V¥ is the potential that is due to original N atoms, V¥ is due to the reduced
set of P charges. The subscript “EW” denotes that the potential is calculated
through the Ewald procedure and “nbr” indicates the 27 neighbor cells. For details,
see Appendix B. The subtraction of V. (r;) in (b-1b) is conveniently included in the
real space sum inside the Ewald calculation of Vi&y (7;). We are left with calculations
of a finite system composed of the 27 neighbor cells. This formula provides a
practical way to calculate accurately the enérgy and the force for megacrystals.

The construction of the Reduced Set of atoms proceeds by generating a set
of P = (K +1)(K +2)(K +3)/6 random points in the unit cell. Assuming that each
point has a charge g;, we calculate up to Kth Cartesian moments of this Rgduced
Set and set them equal to those of the original set (this guarantees that the multipole
moments are the same since the multipole moments are linear combinations of the
Cartesian moments). We then solve the resulting P linear equations to obtain
g; (j =1,---,P). For up to 1 million atoms per cell, we find that K = 4 (P = 35)
is sufficient (the neglected 5th and higher-order terms fall off as 1/79).

The accuracy of the Reduced Set method can be assessed from calculations of
amorphous polyethylene periodic systems listed in Table I. We calculated the total
energy FE,,; and the force gn each atom F;. The error in total energy was about
0.02kcal/mol, or 0.001%. The rms error in force was about 0.003kcal/mol/A, or
0.0