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ABSTRACT FOR PART 1

In this work, we establish the structure of the large O(1)-sized separatrix-
swept regions in Hamiltonian systems which depend on a slow-varying parameter
z: H = H(p,q,z = €et), where 0 < € <« 1. These regions are complementary to
those in which the theory of adiabatic invariance and Arnold’s extension of the
KAM Theorem to adiabatic systems apply. We prove the following theorem about
the structure of lobes, which, being regions of phase space bounded by segments
of intersecting stable and unstable manifolds terminating on principal homoclinic
points, are the fundamental building blocks of homoclinic tangles. Theorem: The
area of a lobe in (1.1) is: A = szol Ma(z)dz + O(e), where Zy and Z; are two ad-
jacent simple zeroes of M4(z), the adiabatic Melnikov function of the system. We
also derive a corollary: The area of a lobe in these systems is given to leading order
by the difference between the areas enclosed by two sequential extremal instanta-
neous separatrices, '?° and I'?*. The remaining terms are O(e). Theorem 1 and
the corollary establish several important results: First, the area occupied by the
homoclinic tangles formed by the intersection of the stable and unstable manifolds
is O(1) to leading order. Second, Theorem 1 implies that the flux between regions
separated by instantaneous separatrices is O(1) asymptotically, see Part II for an
application. Third, for systems in which H depends periodically or quasiperiodi-
cally on z, Theorem 1 states that the region in which orbits evolve chaotically is
O(1) in the limit of ¢ — 0. This result stands in marked contrast to the known
examples of chaotic systems in which the “stochastic” regions are either of O(e) or
O(y/e) and vanish as ¢ — 0. Finally, since islands must lie outside of the lobes,
Theorem 1 shows that the phase space area in which islands must lie vanishes with

€ as € — 0. We remark that we lower the upper bounds on island size presented
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in Elskens and Escande [1991] using asymptotic expansions of the exact resonance-
zone area formula of MacKay and Meiss [1986]. We also derive an exact lobe area
formula for general time-dependent Hamiltonian systems, which eliminates the need
for the existence of a recurrent p — ¢ section in the extended phase space assumed
in the previous work. A direct measurement of the type used on weakly-perturbed
Hamiltonian systems is not possible in adiabatic systems since the pieces of sta-
ble and unstable manifold defining the boundary of the lobe cannot be expressed
as graphs over the unperturbed separatrix. Therefore, the shape-independence of
this exact formula is needed. We illustrate our results on the adiabatic pendulum:
H = ”2—2 + (1 — ycos(z = €et))cosq and on a model due to Hastings and McLeod.
Finally, for z-periodic H, we show for the first time in an example that a Smale

horseshoe map can be created in one iteration of the Poincaré map.



—vi-
Abstract for Part II
We study the transport of tracer dye in a low Reynolds number flow in the two-
dimensional eccentric journal bearing. Modulation of the angular velocities of the
cylinders continuously, slowly, and periodically in time causes the integrable steady-
state flow to become nonintegrable. In stark contrast to the flows usually stud-
ied with dynamical systems, however, these slowly-varying systems are singular-
perturbation problems in which the nonintegrability is due to the slow O(1) modu-
lation of the position of the saddle stagnation point and the two streamlines stag-
nating on it. We establish an analytical technique to determine the location and
size of the region in which mixing occurs. This technique gives us explicit control
over the mixing process. We also develop a transport theory based on the lobes
formed by the segments of stable and unstable manifolds of the fixed points of the
Poincaré map, which are responsible for the transport of tracer in the mixing zone.
In particular, we show that the radically different shape of these lobes, as compared
to the shape of the lobes studied in the usual flows, readily makes them identifi-
able as the mechanism by which the modulation causes the patches of tracer to
develop into elaborately striated and folded lamellar structures. When the mod-
ulation frequency is small we apply the tools developed in Part I to analytically
predict several important quantities associated with the lobes and transport theory
for the first time. From the measurement of these quantities, we determine the
combination of the flow parameters with which one achieves the most efficient mix-
ing possible. Furthermore, we use an extension of the KAM theory to explain the
highly-regular appearance of islands in quasi-steady Stokes’ flows for the first time.
Finally, we we show that diffusion enhances stretching, discuss the robustness of
our model by analyzing the influence of the inertial terms, and compare our results

to those obtained experimentally using so-called blinking protocols.
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CHAPTER 1. INTRODUCTION.

In the first part of this thesis, we consider the dynamics of orbits in the separatrix-
swept regions of slowly-modulated Hamiltonian systems which arise in many phys-
ical, chemical, and fluid mechanical applications. For simplicity of the presentation
in this introduction, we begin by classifying six of the various types of orbits which
exist in a prototypical slowly-modulated system, namely a slowly-modulated nonlin-
ear pendulum, which we studied in Kaper and Wiggins [1991a}]. This classification
progresses from the fundamental periodic orbits of the slowly-modulated pendulum,
through its quasiperiodic orbits, on to the special asymptotic orbits and the large
classes of separatrix-crossing orbits that exist in this (and similar) problems. We use
this progressive classification to lead the reader to consider the large, O(1)-sized re-
gions of the vector field (restricted to the p—¢ components) in which orbits cross the
slowly-varying separatrices. It is for these orbits and the structure of these regions
that we present new results in Part I of this thesis. The main results we obtain,
which are actually valid for a large class of slowly-modulated Hamiltonian systems
where the modulation can have quite general time dependence, are presented after

the classification for the pendulum, later in this introduction.

The Slowly-Modulated Pendulum.

For the standard nonlinear pendulum, the angle the pendulum makes with the
vertical is the coordinate . When the pendulum hangs vertically downward, it is
at the stable equilibrium point ¢ = 0; and, when it stands vertically upward it is at
the unstable equilibrium point ¢ = 7. In addition to these stationary configurations,
there are two types of periodic orbits the pendulum can execute. The pendulum

either rotates (either clockwise or counterclockwise ) so that ¢ runs through the
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angles [0, 27) every period or it oscillates periodically with ¢ € [gmin, gmax] C [0, 27]
for all time. Finally, there are two orbits which take an infinite amount of time
to depart from the unstable equilibrium and return to it. These correspond to the
separatrices that connect (p,q) = (0,7) and (p,q) = (0, —7), and they constitute
the boundary between the oscillatory and rotational regimes. These dynamics are

all contained in the Hamiltonian for the standard nonlinear pendulum:
2
H(p,q) = % +1—cosg,
and the phase portrait showing all of these features is well known. With out loss of
generality we absorb the constant one in to H.

Now, for various reasons which we discuss later on in this introduction, we
want to study the dynamics of a slightly more complicated pendulum. In the
standard pendulum, the point from which the pendulum is suspended stays fixed.
The complication we now add is to force the suspension point to move up and
down an O(1) distance in a periodic fashion such that the frequency, ¢, of this
pertodic modulation satisfies 0 < € <« 1. The Hamiltonian for this more complicated

pendulum is:
2

H(p,q,et) = % — g(et)cos g,

where g(et) is periodic in ¢ with O(%) period. For simplicity, we may assume that
the amplitude of the potential energy g(et) > 0 for all ¢, so that the sign of this
term is determined solely by the function cosq. We note that the possibility of ¢
vanishing leads to interesting bifurcation questions which are beyond the scope of
this work.

The dynamics of the modulated pendulum are much richer than those of the
standard pendulum, due to the addition of the slow-time scale, which we denote z =

et. In order to discuss the different types of orbits which exist for these modulated
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systems, we consider the system obtained from the following particular choice:

g(et) =1 — v cos(et),

where the constant 4 € (0,1). This system, which we term the adiabatic pendu-
lum, exhibits the same types of dynamics as many other slowly-modulated systems,
although the details for a particular orbit, e.g., the coefficients in a matched asymp-
totic expansion representation of the orbit, depend on the choice of g(et).

We now classify six of the different orbits which exist in this system.

First, as the suspension point moves slowly up and down, the two equilib-
rium positions become periodic orbits of the modulated system. In particular, the
modulated system has one stable periodic orbit which corresponds to the pendu-
lum always hanging straight down (¢ = 0); the other periodic orbit is unstable and
corresponds to the pendulum always standing straight up (¢gv). We give references
to the proofs of these statements for both this special periodic case and the general
time-dependent case in Chapter 2. Although this unstable periodic orbit occurs
with probability zero, it plays a central role in understanding the dynamics of many
other orbits, as we will see further along in this classification and in the following
chapters.

Second, the adiabatic pendulum possesses three large families of quasiperiodic
orbits. The first of these families lies in the oscillatory region, inside the well of the
slowly-modulating potential surrounding the stable periodic orbit identified above.

The position and momentum coordinates of these orbits are confined to lie well

within the intervals (—7,7) and (—+/1 =7, /1 —7), respectively. The other two
families lie in the two rotational regions, one in the upper region where p > /T + 7,
and the other in the lower region where p < —\/1 + 4. The existence of these fam-

ilies of quasiperiodic orbits has been established in at least three different ways:
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constructing the series for the adiabatic invariant that Kruskal [1962] proved these
orbits have; using Arnold’s extension of the KAM Theorem to slowly-modulated
systems which states that periodic orbits of the initial unmodulated system suffi-
ciently far away from the separatrices persist under the modulation as invariant tori
on which the orbits are quasiperiodic, see Arnold [1963]; or using the Kuzmak-Luke
method, see for example Chapter 3.6 of Kevorkian and Cole [1981]. We return to
these results and discuss why they cannot be used for orbits too near the separa-
trices when we list the fifth type of orbit. We also remark that for general periodic
adiabatic Hamiltonian systems, the number and locations of these families depend

on the details of the Hamiltonian.

Third, there are resonant subharmonic and superharmonic responses to the
periodic modulation. The subharmonics are periodic orbits with a period equal to
some integral multiple of the modulation period T = 27" In fact, subharmonics
of all integral multiples exist, and they can rotate or oscillate. Realizing that the
outer solution corresponds to when the orbit is near the unstable equilibrium and
that the inner solution corresponds to when the pendulum swings from being near
the unstable equilibrium through ¢ = 0 and back again to being near the unstable
equilibrium, i.e., makes a near-separatrix excursion whose duration is O(¢€) in the
slow time z, one can construct the subharmonic orbits using matched asymptotic
expansions. The problem may be classified as a stiff, non-autonomous two-point
boundary value problem. Furthermore, the subharmonics are either stable (locally
elliptic) or unstable (locally hyperbolic) orbits. As we will see in Chapter 5, the
orbit’s action determines its stability, because the action measures whether the
near-separatrix excursions from 7 to —x (or, vice versa) occur near z = Q or z =

7. Recently, there have also been attempts to prove the existence of the orbits

constructed by matched asymptotics using shooting methods; we refer the reader



to Hastings and McLeod [1991].

The superharmonics are also periodic orbits but have a period which is some
rational fraction of T. Orbits of all rational fractional multiples exist. Since these
orbits make more than one rotation or oscillation per period, one can construct
them by matching the “middle” rotations or oscillations, which are farthest away
from the unstable equilibrium and instantaneous separatrix, to an orbit obtained
by adiabatic invariance theory (or the Kuzmak-Luke method), see Ockendon, et al.
[1986] for an example. Again, action theory can be used to determine the orbit’s
stability type, and the value of the slow time z at which it makes its excursions.

The fourth type of orbit is quasiperiodic just as the second type. However,
rather than lying on a persistent torus as the second type of orbits do, these
quasiperiodic orbits are created in the same global bifurcation as the resonant el-
liptic periodic orbits and form a tube around them. One can establish their exis-
tence rigorously using the theory of the Birkhoff normal form. These families of
quasiperiodic orbits make up the so-called island chains that lie in the middle of the
stochastic- appearing separatrix-swept regions. These islands are most O(¢) in size
asymptotically, see Elskens and Escande [1991] and the implications of Theorem 1
below. We return to the topic of islands when we sharpen this upper bound on

their size in Chapter 5.

Separatrix-Crossing Orbits.

Now that we have arrived at the fifth type of orbit in our classification, we can dis-
cuss some exciting, bounded, yet seemingly unpredictable orbits, namely separatrix-
crossing orbits. We remark that we will shortly arrive at the end of the classifica-
tion for the slowly-modulated pendulum when we discuss the sixth orbit type on

the next page. We follow the evolution of a pendulum orbit with initial condition
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(po, 0,20 = w) which lies on the instantaneous periodic orbit enclosing an area
equal to Apo, where Ag;i; < Apo < Agp*. The first term, the action I of the orbit,
in the series for the adiabatic invariant J, is exactly the area A,, enclosed by the
instantaneous periodic orbit at z = .

Adiabatic invariance theory states that, even though the path of the orbit may
deform considerably, it will evolve in such a way that numerically J is equal to A,
to within O(e). Now, as the system evolves (i.e., as z increases from =), the area
enclosed by the instantaneous separatrix decreases. Hence, by our choice of Ay,
there exists a value of z, label it z,, such that

l. <2, <21

2. Asep(24) = Apo

3. Asep(2) < Apo for z € (24,%), where z7 = 47 — Z.
Therefore, our orbit must have crossed the instantaneous separatrix near z = z,
and changed type from being an oscillating pendulum to being a rotating pendulum,
because there is no longer enough area inside the separatrices when z > z, for it
to maintain its initial adiabatic invariant. Its adiabatic invariant also changed.
We sketch the location of the initial condition and illustrate the above argument
in Figure 1.1, where we acknowledge Bruhwiler [1990] for the idea of making this
figure.

Besides illustrating why orbits must cross instantaneous separatrices, this ex-
ample also identifies the fundamental problem of analyzing near-separatrix orbits.
The ratio of successive terms in the series for J is WLO, which is « 1 if we(7,2) is
bounded away from zero uniformly in I and 2. However, when an orbit gets too near
an instantaneous separatrix, i.e., when wy(%, z) is of the same order as € for some z,
then adiabatic invariance theory is no longer applicable. The Kuzmak-Luke method

and Arnold’s Theorem do not apply either, because the two time scales, which must
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be asymptotically distinct for these methods to apply, are no longer separated. We
recall that wyp decays logarithmically to zero as the separatrix is approached. Note
that we briefly review the theory of adiabatic invariance in Appendix D.

The particular orbit we focused on above is not an isolated case. Rather, it is
one of a large class of separatrix-crossing orbits, orbits not included in any of the
previous types in our classification. One is lead to suspect that the class separatrix-
crossing orbits is large simply because the difference between the areas enclosed by
the maximum instantaneous separatrix and the minimum instantaneous separatrix
is O(1). Recall for the pendulum that the value of p on the separatrix is /T — 7 at
z =0 and /T +7 at z = 7. As we will see shortly, the size of this separatrix-swept
region is O(1) as € — 0. Therefore, methods must be devised to understand these
orbits. We also add a explanatory note here about the concept of instantaneous
separatrices. These do not exist in the modulated system, rather they are the
separatrices which one gets if one freezes the parameter z at its instantaneous value
and then lets the system evolve in the steady state corresponding to that z value.

Thus, they are a convenient, and commonly used, fiction.

There are two types of results, which are distinct yet complementary, one can
obtain about separatrix-swept regions. First, one can seek representations for in-
dividual separatrix-crossing orbits. This goal has been pursued successfully using
asymptotic matching analysis in action-angle coordinates, which is referred to as
separatrix-crossing theory, see Cary, et al., [1986], Cary and Skodje [1989], and
Neishtadt [1986], or the concise review in Bruhwiler [1990]. Using this basis a de-
scription of large classses of these orbits in terms of a diffusion process has been
made, see Bruhwiler and Cary [1989].

Second, one can try to determine the geometry of the invariant structures which

govern the dynamics of the orbits in these regions. Although this second program



Fig. 1.1. A separatrix-crossing orbit. The instantaneous (or “frozen”) portrait at
z = 7 mod 27 is in the top figure; and, the instantaneous (or “frozen”) portrait at

z

0 mod 2~ is in the bottom figure. The orbit may have crossed an instantaneous
separatrix, Y7+, with 7 < 2, < 27, because the area inside T forall z, < z < 47—z,

is smaller than Ap,.
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yields fewer details about each individual orbit, it provides important information
about large classes of orbits, so many that they can not all be calculated individually
using the first approach. We establish the global approach in this thesis for the first
time.

The two principal governing structures are the homoclinic tangles formed by
the sixth type of orbit in these systems and the families of quasiperiodic orbits,
or “islands,” created around resonant elliptic periodic orbits, see the fourth orbit
type discussed above. The sixth orbit type comprises those which are backward
and forward asymptotic in time to the main unstable periodic orbit (in which the
pendulum is always standing up). Looking in the extended p — ¢ — ¢t phase space,
the union of all of the orbits forward asymptotic to this periodic orbit constitutes
a two-dimensional surface which we refer to as its stable manifold. Similarly, the
union of all of the orbits backward asymptotic to this periodic orbit constitutes
a two-dimensional surface which we call its unstable manifold. Due to the local
hyperbolic structure of this unstable periodic orbit, each of these manifolds has two
branches. We analyze the geometry exactly in Chapter 2. The case which is of
most interest in the applications is when the branches of the stable and unstable
manifolds intersect, because the intersection implies the existence of orbits which
are biasymptotic to the hyperbolic periodic orbit corresponding to the pendulum
always standing straight up. These biasymptotic orbits have asymptotic phase.

Having discussed six different types of orbits which exist in this pendulum
example, we now stop our classification. We turn our attention to general slowly-
modulated systems with Hamiltonian H = H(p,q,2 = ¢€), in which H is not neces-

sarily periodic in z.

Main Results for General Slowly-Modulating Systems.
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We now present the main results of Part I of this thesis. The equations of motion

of the general slowly-modulated Hamiltonian systems we consider are:

. OH
q= —a';(P,q,Z)

.__OH (1.1),
P=- (p,q,2)

zZ =g,
where p,q,z € IR and 0 < € < 1. Assuming that H is at least C? and that (1.1)
has one hyperbblic fixed point for every value of z with a homoclinic orbit, T2,
attaching it to itself, we prove the following theorem about the structure of lobes,
which, being regions of phase space bounded by segments of intersecting stable and
unstable manifolds terminating on principal homoclinic points, are the fundamental
building blocks of homoclinic tangles:

Theorem 1. The area of a lobe in (1.1), is:

Z,
A= g M(2)dz + O(e), (1.2)

where Zy and Z; are two adjacent simple zeroes of M 4(z), the adiabatic Melnikov

function of (1.1), which we define below.

We prove this theorem in Chapter 3 and remark that it appears in Kaper and
Wiggins [1991b). From the proof of Theorem 1 we derive a maximum property for

the lobe area:

Corollary. The area of a lobe in (1.1), is given to leading order by the difference
between the areas enclosed by two extremal instantaneous separatrices, T*° and
T*, where Zy and Z, are two adjacent simple zeroes of M4(z). The remaining

terms are O(e).

We remark that T? and T? are such that none of the instantaneous separa-

trices T* with z € (zo,2;) are extremal.
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Theorem 1 and the corollary establish several important results:

First, Theorem 1 and the corollary establish that the area occupied by the
homoclinic tangles formed by the intersection of the stable and unstable manifolds
is O(1) to leading order, since Ma(z) = O(1) for all z € IR and lobes are the
fundamental building blocks of the homoclinic tangles. The stable and unstable
manifolds therefore form a “backbone” for this O(1)-sized region.

Second, Theorem 1 implies that the flux between regions separated by instanta-
neous separatrices is O(1) asymptotically, because lobe area is the fundamental unit
of flux in separatrix-crossing transport theories used in the applications, which are
often referred to as “lobe-dynamics” theories, see Rom-Kedar and Wiggins [1990b).
For example, in Part II of this thesis, we have used it to make many quantita-
tive predictions about the mixing and transport properties of low Reynolds number
fluid flows which were previously only available through extensive experiments or
numerical simulations.

Third, for systems in which H depends periodically or quasiperiodically on z,
the criterion for the existence of Smale horseshoes in the separatrix— swept regions is
established in Wiggins [1988b] using an extension of Melnikov’s method to adiabatic
systems and the Smale-Birkhoff Homoclinic Theorem. Thus, Theorem 1 states that
the region in which orbits evolve chaotically is O(1) in the limit of € — 0. This result
stands in marked contrast to the known examples of chaotic systems in which the
“stochastic” regions are either of O(€) or O(y/€) and vanish as ¢ — 0. The essential
reason for this difference is that (1.1), is a singularly-perturbed system, whereas
the usual systems are regular perturbations.

Finally, as is discussed in Elskens and Escande [1991], islands must lie outside of
the lobes. Hence, Theorem 1 shows that the phase space area in which islands must

lie vanishes with € as e — 0. In these singularly-perturbed systems it appears to be
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much easier to estimate the size of islands than it is in the case of the standard map
or regularly-perturbed Hamiltonian systems. We remark that we refine the upper
bounds presented in Elskens and Escande [1991] using asymptotic expansions of the
exact resonance-zone area formula of MacKay and Meiss [1987] for the island size

in Chapter 5.

Before proving Theorem 1, we step back from focusing on adiabatic systems
and derive an exact lobe area formula for general time-dependent Hamiltonian sys-
tems, see Theorem 2 in section 2. This result gives the area of a lobe independently
of its shape in terms of the difference in the actions of two distinguished homoclinic
orbits. It was motivated by the formula for time-periodic Hamiltonians first derived
by MacKay and Meiss [1986] and eliminates the need for the existence of a recur-
rent p — ¢ section in the extended phase space assumed in the previous work. The
shape-independence of the exact result from Theorem 2 is necessary for establishing
Theorem 1. A direct measurement of the type used on weakly-perturbed Hamil-
tonian systems is not possible in adiabatic systems since the pieces of stable and
unstable manifold defining the boundary of the lobe cannot be expressed as graphs
over the unperturbed separatrix. This difficulty, observed for the first time numer-
ically on the adiabatic pendulum: H = 323 + (1 — 4 cos(z = et))cos g, see Elskens
and Escande [1991] and Kaper and Wiggins [1991a] and the references there, in
large part motivated this work. To be precise, it was observed that the lobe area
in this example is to leading order the difference between the areas enclosed by
the maximal and minimal instantaneous separatrices and, which is the same, the
integral of M4(2) between two consecutive zeroes.

Then the proof of Theorem 1 consists of two steps. First, since we know of
no way to evaluate the exact formula in closed form, we develop an approximation

using the adiabatic Melnikov function, which gives the leading order term in (1.2).
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Second, we prove rigorously that the error made in this approximation vanishes
asymptotically with ¢ as ¢ — 0. This second step constitutes the main difficulty
of proving the theorem and relies on measuring the flux of (1.1), through surfaces
spanned by special homoclinic orbits of the intermediate systems H = H(p,q,z =
pet), where p € [0, 1].

Part I of this thesis is organized as follows. In Chapter 2 we analyze the
geometry of the stable and unstable manifolds. In Chapter 3, we derive the exact
action-based lobe area result, prove Theorem 1, and establish a maximal property
for lobe area. In Chapter 4, we give two examples, one is the adiabatic pendulum
already introduced here, and the other is an equation due to Hastings and McLeod
[1991]. Finally, we present new (sharper) upper bounds on the size of islands in
these systems in Chapter 5.

Before embarking on Chapter 2, we make three remarks.

Remark 1. With regard to the chaotic orbits in z-periodic H, we show in Chap-
ter 4 for the first time that a Smale horseshoe map is created in one iteration of
the Poincaré map of the slowly-varying oscillator. We discuss the orbits that ex-
ist in the Smale horseshoe. It is an open problem whether some of the periodic
orbits constructed with matched asymptotic expansions are the same or different
from the hyperbolic periodic orbits in a horseshoe, see Hastings and McLeod [1991]
and Kaper and Wiggins [1991c]. Also, the horseshoe gives the existence of in-
finitely many bounded, non-periodic orbits. Therefore, one is led to ask: Are these
separatrix-crossing orbits of the fifth type in our scheme? or are they different?
Finally, a kneading theory, relying on the ordering-property of the line (the g-axis,
on which the initial conditions in the equations of Hastings and McLeod [1991] lie,
for example), has been developed in Hastings and McLeod {1991]. Can the this be

used to further classify separatrix-crossing orbits? We list a number of other open
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questions in Kaper and Wiggins [1991c].
Remark 2. Elskens and Escande [1991] have simultaneously and independently
established a result related to our corollary using the WKB method and the asymp-
totic results of separatrix-crossing theory, by defining a “crossing-ribbon” and then
using it to estimate lobe area. Their result is a formal one, and it is somewhat
weaker than ours because they calculate that the remainder terms are O(e$—4) for
some a > 0, whereas we prove rigorously that they are O(¢). Furthermore, they do
not discuss the role of the adiabatic Melnikov function in these results, and M 4(z2)
makes a priori verification of the existence of these O(1) tangles possible using only
information from the reduced (unperturbed) system.
Remark 3. The use of perturbation theory to approximate the exact, action-
based formula was first made in MacKay and Meiss [1988] in the context of weakly-
perturbed, time-periodic Hamiltonian systems: H = Hy(p,q) + é6H1(p, q,t), where
0 < 8§ € 1. They showed that lobe area is given to leading order by integrating the
usual Melnikov function between two adjacent zeroes. The fact that the remaining
terms are of higher order was established for time-periodic H; in Rom-Kedar and
Wiggins [1990] using a direct measurement on the Poincaré map and for general
time-dependent H; in Kovacic [1991] using action theory as in MacKay and Meiss

[1988], which was inspirational for our work.
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CHAPTER 2. GEOMETRIC AND ANALYTIC STRUCTURAL PRE-
LIMINARIES.

In this chapter we identify the geometrical structures of adiabatic systems which
are essential to Theorem 1. We have already identified these structures in the
introductory chapter as being the hyperbolic orbit (along which the flow is slow)
and the two-dimensional surfaces spanned by orbits which are either forward or
backward asymptotic to it (the stable and unstable manifolds). However, we want
to make the necessary statements mathematically precise, and so we spend a few
pages doing so in the beginning of this chapter and in Section 2.1.

Next, we briefly review the theory of the adiabatic Melnikov function in Section
2.2. The adiabatic Melnikov function constitutes a tool with which one can detect
the existence of lobes and homoclinic tangles based exclusively on information about
the unmodulated system. We relegate its derivation to Appendix C.

We do, however, give an alternative derivation of M4(2) in Section 2.2, different
from that reviewed in Appendix C. This alternative definition shows that M4(z)
is equivalent to the closure condition on the energy modulation equation for these
systems, i.e., a Fredholm Alternative solvability condition for this equation in the
hierarchy of perturbation equations for a homoclinic orbit.

Finally, in Section 2.3, we establish analytically a technical result which we
need concerning the asymptotic (¢ — +0o0) behavior of the derivatives of solutions

on the stable and unstable manifolds of the hyperbolic orbit with respect to e.

We begin by stating precisely the assumptions we make on (1.1),. As stated in
Chapter 1, these assumptions are minimal and are satisfied by most physical systems

with an unstable equlibrium. For convenience we recall the equations governing
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adiabatic systems:

 OH
q= ap P, q;

. GH( . 2)
p—" aq p1 Q7
zZ=e¢
H is defined for all (p,q) in a large open subset U C IR and for all z € IR. We

assume

Assumption Al. H(p,q,z2) is C", with r > 2, and that H and all of its first and

second derivatives are uniformly bounded in U x IR?.

We pick the solution parametrizing an orbit by setting z = et, a convention
we use throughout this thesis because it is consistent with our definition of action.
We refer to (1.1), as the perturbed system. We denote the unperturbed systems,
(1.1)¢ with € = 0 and z = 2z fixed, by (1.1)o. The time variable of (1.1)¢ is s and ’
indicates a derivative with respect to s. We use s for the time of the unperturbed
system to distinguish it from ¢, that of the perturbed system.

We make the following structural assumptions on (1.1)o:

Assumption A2. Forevery z € IR the autonomous planar system (1.1)§ possesses
a hyperbolic fixed point, X = (p,q§), which varies smoothly with z and which is
connected to itself by a nontrivial homoclinic orbit, T?, lying in U. Furthermore,
the set of points X§ is uniformly bounded in U for all 2 € IR and is uniformly

hyperbolic.
Thus (1.1)¢ has a one-dimensional hyperbolic invariant manifold,
v = U.er(Pg, 95, 2),

which is of course just a line of unstable fixed points. We remark that eventhough

we also use 4 to denote a constant in the adiabatic pendulum example, the context
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will always make it clear as to its meaning. In fact, in Chapters 2 and 3, it will
always refer to the hyperbolic invariant manifold. We use the homoclinic orbit
(p&(—30),9¢(—s0)) to parametrize T*. We call the point (p§(0),¢§(0)) on T* the
reference point. Furthermore, A2 implies that 4 has two-dimensional stable and
unstable manifolds which coincide in a homoclinic manifold, I' = U,em(Y?, 2). We
refer the reader to Figure 2.1 for an illustration of the unperturbed geometry.
Remark. The assumption A2 is made for simplicity of the analysis. If a planar
autonomous Hamiltonian system of the form (1.1); possesses more than one homo-
clinic orbit our method can be applied to each isolated one separately, or if it has a
heteroclinic orbit then our technique can be applied to it directly, as well.

Furthermore, we suppose:

Assumption A3. The adiabatic Melnikov function for (1.1), which we state below,

has at least two distinct simple zeroes.

We now turn our attention to the geometry of the perturbed system.
2.1 Geometry of the Perturbed System

Assumption A2 allow us to use the theory presented in Sakamoto [1990] and Kaper
[1991] (or in the special case in which H depends periodically or quasiperiodically
on z, the theory presented in Fenichel [1979] and reviewed in Wiggins [1988]) and

conclude:

Theorem 2. There exists a hyperbolic orbit, v, in (1.1) for e sufficiently small.
This orbit is C™! smooth with respect to p,q,z and € and is C™~! — O(¢) close to
~. Moreover, W3 _(v.) and WY_(7.) are C™=! — O(e) close to W;S (v) and WY, (7),

respectively.
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Fig. 2.1. The geometry of the unperturbed system (1.1)p in the extended p—g— 2

phase space.
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Furthermore, the perturbed manifolds are actually C" if 4 is compact. The proof of
this theorem states that solutions on these manifolds converge exponentially to 7,
as t — £o00, and the rates of contraction are bounded away from zero and attributes
to ve the properties listed below.

Let X; € U be the unique intersection point of v, and II;, the plane ¢ = const.
Also, for any p > 0, let D,(X;) C U be the disk of radius p around X, and let
V,(7¢) be the tubular neighborhood of ve: V,(7e) = U,em(DPo(Xt),t). Hyperbolicity
of 7 implies that for some p > 0, there exist two-dimensional manifolds W3 ()
and W[U_(7.) in V,(v.) and a positive constant ¢ bounded away from zero such that:

i) W3.(7e) (vespectively WU (7)), the local stable (unstable) manifold of 7,
is invariant under the forward (backward) time evolution of (2.1);

if) W3.(7e) and WU, (7.) intersect along 7., and the angle between the mani-
folds (defined in terms of the normals to the manifolds) at any point X is bounded
away from zero uniformly for all ¢ € IR;

iii) every trajectory on W3 (v,) (respectively W)V (7.) ) can be continued to
the boundary of V,(v.) in backward (forward) time;

iv) trajectories starting on W;S (7e) (respectively WS (v,)) at time ¢ = ¢,
approach 7, exponentially in forward (backward) time, e—clt=tol;

v) all other trajectories in V,(7.) not on either W;3_(v¢) or WiZ.(v,) must leave

Vo(7¢) in both forward and backward time.

Remark. Properties ii) and iii) stem from the uniform hyperbolicity of 4. The ex-
ponential contraction listed as property iv) is exploited in Chapter 3 and in Section
2.3. For the general theory of hyperbolic orbits (or, more generally, of normally-
hyperbolic invariant manifolds) we refer the reader to the following sources: Fenichel

[1979] and wiggins [1988] (with Lyapunov type numbers), Coppel [1978], Sakamoto
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[1990], and Sell [1978] (with exponential dichotomies), and Hirsch et al. [1983] (with
hyperbolic splittings).

Also, the global stable and unstable manifolds, W5(«y,) and WY(~,), are ob-
tained from the local ones by letting the orbits on them evolve in backward and
forward time, respectively. Of course, W5(v,) and WY (4,) will in general not coin-
cide. Instead, we expect them to intersect along isolated orbits. We refer the reader
to Figure 2.2 for an illustration of the geometry of the perturbed system.

The existence of these intersection orbits is implied by A3. We turn now to the

implications of A3 and define the adiabatic Melnikov function.
2.2. The Adiabatic Melnikov Function.

In this section, we briefly review the theory of the adiabatic Melnikov function.
More importantly, we give an alternative derivation of it in order to illustrate that
it is equivalent to the closure condition on the energy modulation equation.
Geometrically the adiabatic Melnikov function is the first term, up to a normal-
ization factor, of a Taylor expansion of the distance between the stable and unstable
manifolds of a hyperbolic orbit along the normal to the separatrix, T#, of (1.1)g,
as measured at the reference point (p§(0),¢3(0)). A zero of the adiabatic Melnikov
function corresponds to a principal intersection of the stable and unstable manifolds
of a hyperbolic orbit. Now the reason for making Assumption A3 is clear, because
we need two principal intersections to define a lobe, as we will show in Chapter 3.
Define f = (%, —%%). Let X denote the hyperbolic fixed point on II, of
the unperturbed system in p — ¢ — z space. The orbit qi(—to) = (p§(—t0), 5 (—20))
is homolinic to X&; we use it to paramatrize I'*. The normal to I'* on II, is

n(to,z) = f+(qé(—t0),2). In the rest of this section we need the normal, n(0, z), to

['* at the reference point qZ(0).
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Fig. 2.2. Geometry of the perturbed system (1.1)¢ in the extended p— ¢ — z phase

space.



_923 -
Let q5(0, 2;0) and qY(0, z; 0) be solutions on W(7,) and WU (7.), respectively,
which cross n(0, z) at time ¢t = 0 closest to 7, in time-of-flight. The geometry is

illustrated in Figure 2.3. The signed distance between q°(0, z;0) and qY(0, 2;0) is

given by o )
) = f(q(z)(o)’ Z) A Qe (0723 0) — g (01 2 0))
Ao = 6(a5(0), 2 ' @1
Asymptotically as € — 0:
£(a3(0),2) A (30,2 0)lm0 — £ (0,20)e=0)
daie) = ECHOR FOE)

= Malz) o2
o

1£(q§(0), 2)ll
In Appendix A, we give a fairly standard derivation of the following computable
expression for M4(z):

M) = [ e Sy ey (23)

In the derivation there, we follow Robinson [1983] and Wiggins [1988] in several
places and also use the result of Lemma 2.1 given in the next section. See also
Palmer [1986] and Neishtadt [1975]. We remark that we always measure along
n(0,z) so that our derivation of M4(z) applies to all systems (1.1),, which is a
point misunderstood in Elskens and Escande [1991].

Here, however, we give an alternative derivation of M4(z). We stated the
reason for wanting to give this above. We show

M) = [ |08 45060, 5) - G XD (2.4

-0

which may also be obtained from (2.3) upon using integration by parts and realizing

that the boundary terms vanish due to the exponential contraction to v, as ¢t — Fo0.
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M,(z) <0
Fig. 2.3 The geometry of the adiabatic Melnikov function.
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We now show that an alternative method, one using the unperturbed (z fixed)
energy contour lines as a coordinate system, with H = 0 on I'* for all z, to measure
the distance between qY(0, z;0) and q3(0, 2;0) yields the same result, as obtained

in the standard derivation.

The energy modulation equation is:

OH, OH. OH., OH

. { .
H—app+ 3qq+8z2—€62’ (2:5)
where we used the equations of motion to get the last equality. Let
oo
Ho = / OH ((5(t, z:t0), 2)dt (2.6)
0 (3z
® 8H,
Hy = / OH (U ¢, 2 t0), 2)dt. 2.7)
—oo 02

We remark that these integrals are well-defined because the integrands converge
exponentially to zero as t — +oo respectively. The distance between qU(0, z;0)

and q5(0, 2;0) is

AH = ¢(H, — Hs). (2.8)

Next, we expand AH in a series in . We recall that z = 29 — et and that

QZ(t,2) = a5°(t) + eqi (t,2) + €€ qz (¢, 2) + €q5 (¢, 2) + O(e*) 29)
q/(t,2) = a3°(t) + eqy (t,2) + €°q3 (¢, 2) + €°q5 (¢, 2) + O(e*)
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Therefore, asymptotically as ¢ — 0,

afr == [~ Liapio),

- 00

2
- |- [T Sttt + [ D2 ez - afe

+ [ o, " D2 (a0, 0) - ¥ 2|

6633 (q00(t), Zo)tzdt_ / Dq 372 (qo (t),z()) q; (t 2)tdt

2 Dq‘f;’f (@), 20) - Ve, 2t

o),

(PG @000 a8(,2)) - a1 )
+f ( (a0 20) - af(,2)) - af (e
D

oo
oo

+ ((lo (t),20) - 5 (¢, z)dt

(o]
0

I
+/0 Dq a(8), z0) - 4V (¢, z)dt+/ D2 (g (1), z) - 99T (t dar(t,2)
/ D2

.20 D] 4 o

(2.10)
We discuss the computation of q(0,2;0) and q$(0,z;0) in Section 2.4 (on the
angle at hy).

As shown above, via an integration by parts we can rewrite the O(e) term in
(2.10) as M4(z0). Therefore the two calculations lead to the same leading order
result. We remark that all of the improper integrals exist because qz(t) converges
exponentially as t — Fo0.

Furthermore, this calculation shows that the closure condition on the energy
phase modulation equation (or the Fredholm Alternative solvability) is the same as

the adiabatic Melnikov criterion for the existence of homoclinic orbits in (1.1).
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We have also calculated the first three terms to show (something which has
not been noticed before) that for a large class of systems AH(z¢) = 0 to all orders
in e. This class of systems includes those in the form H = F(p) + V(q)G(z), a
group which includes many of the problems studied in the literature, including
the two example in Chapter 4. We consider systems of the form (1.1)¢ in which

2 (qg°(t),20) = 0 for all ¢, 2 az2 9 H (qz(t),2) is an even function of ¢ about ¢ = 0 for
z # zg mod 7, where we assume without loss of generality that H is 27-periodic in z.

For these systems, DESHE %}: (a3°(t), 2z0) = 0 for all ¢t and for all £ € IN, qS’U(t z) =0,

%—:‘;':ri—(qg"(t),zo) = 0 for all ¥ € IN, and W(qg°(t),zo)t2k ~1 is odd in t about

t = 0 for all ¥ € IN. Therefore, using these observations in (2.10), we conclude that
AH(zy) vanishes to all orders in e. As a corollary, because H(qg°(t), z0) = 0, this
result implies that the distances between both qV(0, 2;0) and q¥(0, 2;0) and the

point q3° on the unperturbed homoclinic orbit are beyond all orders in e.
Location of pips

All but one of the pips lie inside of a small neighborhood of v.. We readily establish
this fact by observing that the time-of-flight in between the orbits corresponding
to pips is O(2). For an example of this phenomenon in the case of the adiabatic

pendulum, we refer the reader to Figure 4.2 in Chapter 4.
2.3. Behavior of Derivatives of Solutions on Manifolds with respect to e.

The reader who is not interested in these details may skip to Chapter 3 without
losing the thread of the results. In this section, we establish that the derivatives of
solutions on the stable and unstable manifolds with respect to € grow at worst lin-
early in time as t — +o00. The following lemma says this precisely in mathematical

symbols:
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Lemma 2.1. a) For solutions x(t,to) on Wi3.(ve), %(t,t0) = O(t) as t — oo,
and for solutions x.(t,to) on W (ve), %=(t,t0) = O(|t|) as t — —oo; and b)
%‘gl:g — 0 exponentially as t — Foo, where xP(t,to) and x2(t,ty) are adjacent

homoclinic orbits.

The idea of the proof of part a) is to show in the simple case in which ~, is rectified
(i.e., 7 lies at the origin of IR? for every z so that 7. N II; = (0,0) for all t),
then these derivatives are uniformly bounded. Thus for general systems of the form
(1.1)¢, in which the p — ¢ location of 4, N II; can change linearly in time (since the
location of v, N II; can move an O(1) distance), the derivatives with respect to € of
solutions on W3 (v¢) and W (v.) grow at worst linearly in time. Furthermore, as
we show in the proof of part b), the difference in any of these derivatives between two
sequential intersection orbits decays exponentially in time due to the exponential
contraction on the local stable and unstable manifolds.

Now, we perform the detailed calculations for the proof in one limit, namely
that of t — 400, looking at solutions on WS5(7,). Those for the other limit will be
the same except that one considers solutions on WY(~,).

In order to proceed with proving the lemma we write the scalar equation for
the evolution of orbits on W;5_(7e) which we solve in the proof. The scalar equation
may be obtained from (1.1), by rectifying v, and using the fact that y2 = ¢(y1,1,¢)

for orbits on W;3_(v¢), where ¢ is C” smooth in both y; and t. Thus we get:
1 = -A5(2)y1 + Fy,1), (2.11)

where y; € IR and F(y;,t) is a nonlinear function of y; satisfying F(0,t) = 0. Here
A5(2) is the contraction rate on the stable manifold. A%(z) varies in the interval

[A§, Af], where A§ is bounded away from zero as a consequence of the uniform
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hyperbolicity, and A§ is finite. Similarly, for the proof in the other time limit
(t - —oo) and solutions on WU(~,), the expansion rate along WY (v.), AV(z2),

varies in the interval [A§, A§],

Proof of Lemma 2.1 The above scalar equation for orbits on W5(«,), (2.11),
enables us to write down the equation

9%, 0) = 4 t, 02 (4 €) + Bl o), (212)

where A(y1,t,€) = —/\S(z)+aF(y1,t) and B(y;,t,¢€) = _ox7 S (tn (2, e)+ (yl,t)t
and z = et.

Using variation of constants we can solve this equation:

6y1 (t e) = 6y1 (0 o)e = [, AGs,e,y1(s,0))ds N /tB(s,e, v (s, €)e™ S atrenGrendr ;o
0 (2.13)

From the persistence theory we know that y;(t,€) = O(e~*i%) as t — +oo be-
cause \§ is the minimum contraction rate for all ¢ (taken uniformly in z) and thus

—Ait, Thus the terms in the functions A and

y1(t,€;y1(0)) — O as least as fast as e
B involving F and its derivatives with respect to y; and z are O(e~*i*). Hence
we know that |A(%,e,y1)] > a for |t] sufficiently large where 0 < a < A{. Also,
|B(t, €, y1)| = O(te=*i*) because %’\z—s(z:) is uniformly bounded. Thus,

oy oy

| 5¢ (B S | 5-(0,€)le™" + Kitfe™, (2.14)

and the proof of part a) of the lemma is complete.

Part b) of the lemma follows from the simple observation that the two adjacent
homoclinic orbits approach each other exponentially in both backward and forward
time because they both approach v, exponentially in backward and forward time.
Thus, even though each term separately may grow linearly in time, their difference

vanishes exponentially.
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2.4. The Angle between W5(y,) and WY(7,) at h.

Let the homoclinic orbit q§(—t¢) = (pi(—to), ¢é(—t0)) parametrize the homoclinic
loop T'?. Let n denote the normal to I'* through the reference point qg(0) on
II,. Assume that W5(v,) and WY(~,) intersect transversely at a point ho which
is e-close in the extended phase space to q(0), the reference point on I'*. In this
section, we derive a computable expression for the angle, a, between W5(7,) and
WU(5,) at ho.

From purely geometrical considerations on the constant z slice II, of the ex-

tended phase space, one can readily write down the following formula for a:

oS Gal
a=f — P =cos™! (ﬁ . —a(:—;) —cos™? (ﬁ . 0(:; ) (2.15)
9;;.(0,:;0) %}2(0,2;0)

;S s U
where %‘:—*— and %—‘}‘- are the unit tangent vectors — 5
° ° 153 (0,50)1 1532 (0,50)]
to WS5(ve) and WY(7.), respectively, at the intersection point kg, q(0,2;0) =
qY(0, 2;0), and i is the unit normal ﬁ-". We refer the reader to Figure 2.4 where

the geometry is explicitly illustrated. Now we derive a computable expression for

(2.15).

First, we know that @« — 0 as ¢ — 0. In fact 4; and B; are both near Z. Thus we

may use the expansion :

5 ,
cos”lz = Zrz- -z - — — — +0(z7) (2.16)

~

r S
with |z = n-%ﬂt;—] < 1 and with |z

~

S U
i - %I < 1 because 0 < cos™!

r < 7.
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Fig. 2.4. Measurement of the angle between W5(v.) and WY (+.) at the pip hq.
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Therefore, substituting (2.16) into (2.15) we get:

(a _ dac
Oty  Oto
U .S < U < U

. [0q, Oaq. . Oq, Aaeﬂae da,

o Ae e ) (5. Qe yz n. ey q)+( q)?

6to 5t0

Oty  Oto

~ S ~ U
a_a(k 5 a.aQe 5
+0((n By, 0 Gl ).

R
Il
=

+

(oo o

(2.17)

The leading order contribution to a comes from the first term in (2.17). The
contributions from the second term (involving the z*® terms) and from the remainder

terms are all of higher order in e. We demonstrate these two claims now.

We rewrite the first term of (2.17) as follows. On II, at ¢ = 0, the distance
between q°(0, z;0) and qY(0, 2;0) is

d(to = 0,2,¢) = ir- (q7(0,2;0) — q7(0, 2;0)) . (2.18)

Therefore, since %os = %‘tl;! + e%‘t‘ol + O(€?) = ~f(q3,2) + e%‘-}% + O(€?),

. a”qf_a“qf _ f .(3qU__6qS)
Oty Oto I£(a5(0), )l \ dto  Oto

¥ ellf(qsg)),z)ll ' (%3 15 aq* +0(e)ll - @_ j2a aql 4 o(e)ll) (2.19)
B m [—@J - 7 (a/(0,0) - 5(0,2;0))] +h.o.t.s.

However, fi does not depend explicitly on to: at = 0. Furthermore, we can rewrite

%‘o- using M4(z). We know from the theory of the adiabatic Melnikov function
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given in Section 2.2 that asymptotically as € — 0,

Ma(z) + € .
I£(ag(0), Il [1£(a(0), 2)Il

U:, - (%g-(xg) + af;g(qé(t), z)) tdt

[ (24 (8E) @i0.2)) - afte =500t
4 /° (Dq (aa_’:) (qg(t),z)).qif(t,z;())dt] +O(e),

d(0,z,¢) = ¢

—00
(2.20)
where we record qf and q} below.
Now,
OMag, . dMa 2
B, (2) = —¢ P (20) + O(€%). (2.21)

We remark that the O(e) term in (2.21) is nonzero because 434 (zy) # 0. As for
the O(€?) terms in (2.20), when evaluated at to = 0, the second and third integrals
vanish to leading order because in"a—'f-(qg° (t),20) = O for all ¢t € IR. Furthermore,
the integrand of the first integral is odd about ¢ = 0, and so the first integral

vanishes. Hence,

-ai Z, € —62 —%(ZO) 63
Bt 02 = € T (0), 20 T O (2:22)

Therefore, plugging (2.22) into (2.19), we get:

~ U ~ S dM ’

. (dq, _9q 2 — 32 (%) 3

- =) =¢ + O(e®). 2.23

( 3t~ o ) LERONSRRR (229
Of course, the result of Section 2.3 leads one to believe that this is only an upper
bound on the angle. Furthermore, (2.21) is only an approximation, and the actual
result may be much smaller.

To finish, we show that the remaining terms in (2.17) are O(e*). We expand



_34 -

q3(0, z;0) and qU(0, z;0) for € sufficiently small near ho:

S z
%%—(0,2;0) ~ 3%(0) a‘h (0,2;0) 0(62)

Oty dto
94 0 .01 ~ 2950  ,0a7(0,20) 2
ja't—(O,%O) ot Bt + O(€).
By definition of the normal n,
995 _
n- 5to = 0.

Thus the leading terms of - —a— and i- -a— are O(¢). Hence, using (2.23), the z°

terms are O(e?) and the remaining terms are all at least O(e®).

Therefore, inserting (2.23) into (2.17), the asymptotic formula for a as € — 0 is:

— 44 (z) 3
a = €2 T (0), 20 + O(e’). (2.24)

We have finished the work of this section.
Just for completeness we record the solutions q7 and q here. Recall that qf
and qV are the coefficients on the O(e) terms in the solutions q° and qV. They

satisfy the following equation:

. 0*H 0’H 0*H
= 5 (ag°, z0)q1 + 6 5oz (A0 20)P1 + 5—- Bp (qg°, 20)t

. a 6 20
n = —5‘;2—((1 o)<11 6p3 (qo »20)P1 — 52-56(% ,20)t.

(2.25)

The solution of (2.25) is obtained using the variations of constants formula
(see Coddington and Levinson, for example). Let q;(t) = (q1(t), p1(¢)). Then the

solution is

) = X0 X D) - [ X @F @] @29

where X(t) is the fundamental matrix of the homogeneous problem. We remark

that the homogeneous part of (2.25) has the solution (¢3°,ps°). In the particular
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case in which the Hamiltonian is separable, i.e., H = p* + V(q,2), (2.25) reduces

to: H

.V, 2V, .
G + _azz_(qoo(t), 2’0)(]1 + az—a—q-(qo y 20 )t =0 (227)

of which the solution is:

oV (t,20) = ¥V (t, 20) + K5V g0 (1), (2.28)
where
*oo +o0 92
pSU iz dr oV 2047
U§] (t’ZO) = —49 ‘/t (q.go)g . azaqqo tat
and where

- S,U
ESU — _Qf (0, ZO)_
ﬁgo(o’ 20)



- 36 -
CHAPTER 3. LOBE AREA AND THE PROOF OF THEOREM 1.

We prove Theorem 1 in this chapter. The proof is split into several parts: First,
we derive an action-based formula which gives the lobe area in (1.1), exactly. This
formula states that the area of a lobe is given by the difference in the actions of the
two biasymptotic orbits which define the lobe. Second, we develop an approximation
to this exact formula which may be evaluated using only quantities known from
the unmodulated system. Thus, our result offers an easily verifiable test for the
existence of rich dynamics in these systems. We find that the lobe area for these
systems is O(1) in the limit of ¢ — 0. Finally, we prove that the error made in the
approximation is O(e). This proof is the most difficult part of the work. It involves
calculating the flux of the fully perturbed Hamiltonian through surfaces spanned
by biasymptotic orbits of the intermediate systems H = H(p,q,z = per), where
¢ € [0,1].

After finishing the proof of Theorem 1, we establish a maximal property for
lobe area. To conclude this chapter, we derive some additional results about the
orbits defining the lobes using further ideas from action theory.

The chapter is organized into five sections: Section 3.1 contains the exact
formula; Section 3.2 the approximation; Section 3.3 the proof of the error; Section

3.4 the maximal property; and Section 3.5 the additional results.

3.1. EXACT ACTION-THEORETIC FORMULA FOR LOBE AREA.

In this section we derive an exact, action-based formula for lobe area in (1.1). In
particular, we prove Theorem 3 which states that the difference in action between
the orbits of the two homoclinic points defining a lobe gives its area. Before pre-

senting this proof, we give the precise definitions of a primary intersection point
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and a lobe, and we briefly review the concept of flux of a Hamiltonian vector field
through a two-dimensional surface in the extended phase space.
We define a primary intersection point (pip) as follows. Let X; denote the

point of intersection of 4 with the slice II;.

Definition 3.1. Let P be a homoclinic point on the slice II;. Let X5P denote
the segment of WS5(y)(II; between X; and P, and let XU P denote the segment
of the intersection of WY (y)(II; between X, and P. We say that P is a primary
intersection point (pip) if X° P and XV P intersect only in P. The reader is referred

to Figure 3.1 for an illustration of this concept.

Now we use pip’s to define a lobe.

Definition 3.2. If P and @ are two pips such that there are no other pips on
the segments of W5(y) (N II; and WY(y)NII; connecting them, then the region on
the two-dimensional slice II; bounded by the pieces of stable and unstable manifold
which connect these two points is called a lobe.

We label this lobe by LPQ (see Figure 3.2), and we label its perimeter with o}
and oV , where af and oY are pieces of W5(y) and WU(y), respectively, on the
slice IT; terminating on P and Q. Also we label the trajectories through P and @,
by P and Q. The reader is referred to Figure 3.2. We shall refer to P and @ as
adjacent pips and remark that our definition of a lobe includes that of Rom-Kedar,
et al, [1987], Rom-Kedar and Wiggins [1990a], [1990b]. The final consequence of
our assumptions we remark upon is that there is at least one lobe to study in (1.1)
on every time slice of U x IR because by A3 and its immediate consequence there

are at least two intersection points on any time slice.

Next, we briefly review the concept of flux of a time-dependent Hamiltonian

vector field through a two-dimensional surface in the extended phase space U x IR.
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Fig. 3.1 The points p; are pips. The points ¢; are not.
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Fig. 3.2 The lobe LP9.
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To study this flux in (1.1), we need the two-form dw; = dpAdgq — dH A dt. We refer

to dw; as the flux form because the phase space volume crossing a two-dimensional

surface = in U x IR is defined by the integral

/d“)l’

see Arnold [1978], p.237. The flux form, dw;, is evaluated on a pair of vectors in
U x IR. The orientation of these vectors with respect to the tangent spaces of =
and their magnitudes determine the value of dw;. In particular the value of dw; on
a pair of vectors that lie in the tangent plane of a surface spanned by trajectories,

a surface that Arnold calls a vortex tube, =, is identically zero. Hence

dwy = 0.

vt

For an arbitrarily chosen surface, =, however, the orbits of (1.1), are transverse

to the tangent spaces of =. Hence the integral

fo

will in general be non-zero, indicating a non-zero flux of the vector field (1.1), across
the surface =.

We now establish the theorem which gives the area of a lobe in system (1.1),:

Theorem 3. Under assumptions A1-A3 the area of a lobe L¥? in system (1.1) is

ALP) = [ (pdg— Hat), (3.1)
Jp-g
where P and Q are the trajectories from t = —oo to t = oo of the adjacent pips P

and Q which define the lobe LFQ on the given reference time slice II;, of U x IR.

Our proof of (3.1) is based on the hyperbolicity of the orbit v and Stokes’ Theorem.

Furthermore, as we will see, the proof of this theorem is independent of the nature of



—41 -
the time-dependence in H. Thus, although we state the theorem only for the slowly-
modulated systems which are the focus of this thesis, it applies to all general time-
dependent Hamiltonian systems with a hyperbolic orbit and at least two distinct

orbits biasymptotic to it, see Kaper and Wiggins [1991b)].

Proof of Theorem 3. Choose an arbitrary time slice, II;, = U X {t1}, of U x IR.
The area of the lobe L on II;, is defined by

A(LP?) = dpAdg. (3.2)
LPQ

Since the lobe lies entirely on the one time slice II;, we can subtract the two-form

dH A dt, which is identically zero on LF?, from the integrand to get

A(LPQ) = dpAdg—dH Adt. (3.3)
LPQ

The area integral (3.3) can be recast as a line integral around the boundary of
the compact two-dimensional surface LF? in II;, using Stokes’ Theorem
A(LPQ) = / (pdq — Hdt). (3.4)
ey T
This result is also illustrated in Figure 3.2 where one replaces ¢t everywhere by t;.
The boundary of the lobe LF? is af — af/. The orientation of the boundary of
the lobe is chosen so that the interior of a region lies to the left as one traverses its
boundary.

The integrals in (3.4) along o, and af can be evaluated individually by study-
ing the forward and backward semi-orbits of the pips P and @ in U x IR. We use
Stokes’ Theorem on a strip of W3(7) to express the integral along af in terms of
integrals on the positive semi-orbits, ¢t € (¢;,00), of the pips P and Q. Similarly, we
use Stokes’ Theorem on a strip of WY(7) to express the integral along ag in terms

of integrals on the negative semi-orbits, t € (—o00,1;), of the pips P and Q.
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We first work on the integral along af . Let P+7T and Q*7 denote the restric-
tions of the orbits P and Q to the time interval (¢;,T), where T > t;. Let %,
label the strip of W5(7) between the orbits P+T and Q*7. Finally let a3 denote
the curve on W5(y) () II7 which connects the points P (II7 and Q" IIr. We refer
the reader to Figure 3.3a for an illustration of the geometry of Ef_T.
An application of Stokes’ Theorem on the compact two-dimensional strip £3 1,

using the same orientation convention as used above, yields

dp/\dq—dH/\dt:[/ +/ —/ -—/ }(pdq—Hdt). (3.5)
zir P+T afr Q+T af)

The integral of dp A dg — dH A dt over Ef_T is identically zero because the vector
field is tangent to IS at every orbit on it, and hence the flux of the vector field
(1.1)c through £% 1 is identically zero. Therefore (3.5) implies:

/as qu—*Hdt:[[P”-k/;s —-/Q+T](pdq—Hdt). (3.6)

t1 +T

The same argument can be made to rework the integral along ag in (3.4). Let
P-T and Q-7 be the restrictions of the orbits of the pips P and Q to t € (=T, ;).
We refer to the strip of WY () between the orbits P~7 and Q=T as £V, and oY
denotes the curve on WY (y)(II_7 connecting the points P (\II_r and QN II_7.
The reader is referred to Figure 3.3b for an illustration of the geometry of Y.

Stokes’ Theorem for the compact two-dimensional strip Y. in U x IR yields

/ dp A dq — dH A dt = / _/ _/ +/ (pdq — Hdt). (3.7
U, jJe-T af’l P-T a¥,

The left hand side of (3.7) is identically zero, just as the left hand side of (3.5) is
identically zero, because there is no flux of the vector field (1.1), through the surface
Y lying on WY(y). Thus (3.7) implies:

[ pia-mae= [ L1 -], ] (pdg— HE).  (38)
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Finally we note that the lengths of a, and aY; are O(e=°T) as T — oo.

This length contraction follows from hyperbolicity because the orbits of the pips P

and @ are orbits on W3(y)(\WVU(v) and, hence, are biasymptotic to each other.
S

Hence, the integrals over a$ - and aY;. vanish exponentially as T — co. Therefore

we arrive at (3.1) by putting (3.6) and (3.8) into (3.4) and letting T — oo

a0 =fim [ fort [ |t a0

(3.9)
:/ (pdq — Hdt).
P-Q

Thus we have completed the proof of Theorem 3. As one can see from the proof,
Theorem 3 holds for all time-dependent one degree of freedom Hamiltonian systems
with a hyperbolic orbit because we require only one time slice of U x IR.
We conclude this section with two observations about Theorem 3.

Remark 1. We observe that (3.1) is independent of the choice of time slice IIy,
because of the following simple argument based on (3.6) and (3.8): The choice of a
reference slice with ¢ different from ¢, lengthens either the pair of semi-orbits P+
and @ or the pair of semi-orbits P~ and @~ and shortens the other pair by the
same piece it lengthens the first pair. Thus in picking a different value of ¢; one does
not alter (3.9), and the lobe area, (3.1), is independent of the choice of reference
slice.

Remark 2. MacKay and Meiss [1986] developed a formula for time-periodic Hamil-
tonian systems which is the same as (3.1). Their hypothesis that time-dependent
systems possess a pair of homoclinic orbits which are homotopic to zero in the sense
defined there is a slightly weaker hypothesis than A1-A3 because it also covers the
situation in which the two homoclinic orbits defining the lobe need not be asymp-
totic to a hyperbolic orbit. They need only be asymptotic to each other or to a

degenerate hyperbolic orbit to be homotopic to zero.
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3.2. Approximate Lobe Area.

In this section we develop a computable closed form approximation of the lobe
area for systems (1.1),. The approximation Ay consists of evaluating the flux of
the vector field (1.1), through a piece of the homoclinic manifold I' of the unper-
turbed system. The specific piece is determined by applying our homotopy method.
However, for the purposes of this section it suffices to identify the piece. We state
explicitly how the homotopy method yields it in Section 3.3. After identifying the
piece we use, we show in Lemma 3.1 that the flux integral over the piece of I" can
be expressed in closed form in terms of the adiabatic Melnikov function.

Let T be the piece of the homoclinic manifold I" defined by the restriction of the
z- component to lie in the interval [Z,, Z;], where Zy and Z; are two adjacent zeroes
of the adiabatic Melnikov function whose existence is guaranteed by Assumption

A3:
L= U (1%, 2).

2€[Z9,24]

¥ is the surface over which we will integrate the flux form to get Ay. See Figure
3.4. We recall that z = €t and make two remarks about the piece of : i) ¥ is
a compact two-dimensional surface in U x IR, and 1) the value of the two-form
dw = dpAdq—dH Adt on vectors in U x IR which intersect ¥ is uniformly bounded.

As stated above, we take the difference in action between two homoclinic orbits
to get Ag. The two homoclinic orbits we take are the separatrices, YZ° and Y%,
on the two reference slices Iz, and IIz,, respectively:

do= [ (pdg— Hdt)— / (pdq — Hat).
T 21 TZo

Defining the curves Py and Qo as the union of each of T#° and Y%, respectively,
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iz

Fig. 3.4. The surface ¥ in the extended p — ¢ — z phase space. The sketch
is misleading because T# and T?' should be the local minimum and maximum

instantaneous separatrices.
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with v, we can write equivalently:

A = / (pdg — Hdt) — / (pdg — Hdt) = / (pdq — Hdt),
5 %o Po-Qo

where the second equality is a result of the fact that we just add and subtract
the integral over finite pieces of 4, that is with z € [~Z, Z], a process which does
not contribute to the integral, and then we let Z — co. We remark that we have
attached v to both T2 and Y2 so that the surfaces we will define in Section 3.3
have closed boundaries.

Finally, since X is a compact surface, we can use Stokes’ Theorem to rewrite

our integral for Ay as a surface integral over £. Thus the approximate lobe area A

is defined by

Ag://dp/\dq—dH/\dt. (3.10)
b))

We now show in Lemma 3.1 that (3.10) leads directly to a closed form expression

for Ap in terms of the adiabatic Melnikov function.

Lemma 3.1.
Zy
Ao = My(2)dz, (3.11)
Zo
where Zy and Z; are the two consecutive zeros of the adiabatic Melnikov function,
M4(z), corresponding to the two adjacent pips defining the endpoints of the lobe

in question.

Proof of Lemma 8.1: Throughout the following derivation we keep in mind
that the integrand is evaluated on I, i.e., p and ¢ take their values on the the piece

of the unperturbed homoclinic manifold X.
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First we change variables from p, q to s, z:

dpAdg = (g’(’°’q‘;)d s Adz

_ (6.00 95 _ 94§ 31)6) ds A ds

ds 0z Os Oz

OH 0q¢ OH Op¢
<6q 0z + dp Oz ds A dz

dH OH
= (_Td-; +32-°) dsAdz.

(3.12)

For the second term in the integrand we change variables from H,t to s, z, noting

that ¢t is independent of s and that z = et is a fixed constant on every slice II:

it a2 X0
(B2 B e
(2% ) 1y @19
(-5 ) e
=0.

Inserting (3.12) and (3.13) into (3.10), we get

Ao_// [—flg aH] ds A dz, (3.14)

which can be rewritten as the iterated integral

Ag = /21 (/oo [ a BHJ (P5(s — s0),45(s —so),z)ds) dz, (3.15)

Zo -—00

where the variable z is held constant in the inner integral over s.

We remark that neither the integral of ﬂz{- nor that of ﬂj— over s need exist

individually (because H may have different values on T?° and T* and because aaH
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need not asymptote to zero as s — +oo). However, the entire integral is finite

because ¥ is compact and the sum ‘%{ - %g is uniformly bounded. See Remark 6
after this proof.
Since i‘g = %— at the fixed points (X¢,z) (because %1;’- and %—I: vanish at

(X§,2)), we can add and subtract these terms from the integrand in (3.15) and
then the two total derivative terms cancel each other (because H is constant on the

entire separatrix for each value of 2):

to= [ (7 - [SEwits - sonaito -0 - L o)

Zo -0

H H
+ | rite = shgito = ). - SE 5,0 o) e

-/ Z () |5t - sonaite - ) - Grx5,] as) s
— [ M)z,

Zo

(3.16)

because the inner integral over s in the middle line of (3.16) becomes the adiabatic
Melnikov function, M4(z), upon sending s to s + so. Hence we arrive at our closed
form expression (3.11), and we have completed the proof of Lemma 3.1 and also the

first half of the proof of Theorem 1.

To conclude this section, we make several remarks about the content of Lemma 3.1:

Remark 1. We can find a more convenient form for M4(z) as follows. We observe
that upon using integration by parts with respect to s on the definition of M A(2),
the boundary terms vanish (because

OH |(p5(s),95(3),2)

—67 (Xg’z) - 0 (3.17)
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d 3H

as t — +o0o) and the term J-52(X§,z) vanishes because it is independent of s.

Thus, we are left with
Zv (> d8H
A = — ——(p§ 4 . .
o= [ ([ s w6501 5)ds) a (3.18)
Now, the mixed second partial of H by s and z is identically zero because H is a

constant on any orbit on I'. Therefore,
([ [92H Ops , O*H 0gs
AO N _/Zo (/—oos [6'}’52 Js + aqaz Os ] ds) dz
z 00
' OH O0H 0°H OH
B v/Zo (‘/;003 [6})32 6(] B 6(]62 ap] dS) dz (319)

A OH
= s{H, — ds) dz,
/Zo (/—OO { az }

where the inner integral in the middle line of (3.19) represents a more convenient

way to compute M4(z) and is the form of M4(z) found in the references. Here
{H, 3} denotes the Poisson bracket of H and 22 with respect to (g, p).
Remark 2. The result of Lemma 3.1 is a striking one. In the limit of ¢ = 0,
the lobe area is an O(1) quantity. The collapse onto the autonomous system as
€ — 0 is a discontinuous process, because slowly-modulated oscillators are singular
perturbation problems. For every non-zero value of € orbits evolve upward along the
z-axis in U x IR, and the smaller e gets the more slowly they evolve. However, as
soon as € vanishes identically orbits are constrained to lie on one slice with z fixed
and the rich structure of the tangling manifolds and the lobes no longer exists.
Remark 3. At first glance, (3.11) seems identical to the result for Hamiltonian
systems subject to small-amplitude perturbations, see Rom-Kedar and Wiggins
[1990a), MacKay and Meiss [1988] and Kovacic [1991]. However, whereas both the
integrals of M(s) and M4(z) are O(1) quantities, the integral of M(s) is multiplied

by € in the regular perturbation case and the integral of M4(z) is not. Thus A,
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is an O(1) quantity to leading order for systems (1.1), as opposed to the O(e)
quantity it is for Hamiltonians subject to weak perturbations. This is because
Zy — Zy = O(1) and M4(z) is of O(1) throughout the interval [Zg, Z,]. In turn the
previous statement implies that for e sufficiently small, all except possibly one of
the pips may lie exponentially close to the point v, N II,, because the time of flight
along the separatrix between adjacent intersection points is O(1). See Figure 4.2
in Chapter 4 for an example in which this phenomenon occurs.

Remark 4. The integrands of the regular Melnikov function (for regularly-
perturbed systems with H = Hy(p,q) + e¢Hi(p,¢,t)) and the adiabatic Melnikov
function (which as we have seen in Chapter 2 is for the singularly-perturbed sys-
tems we study with H = H(p, ¢,z = €t)) may be written in terms of a single Poisson
Bracket, as follows

(#,%8 ) = (0, 11,)

OH
= t{H’ E‘}’

respectively.
Remark 5. A, is determined entirely by the integral of dp A dg over L.

Remark 6. A straight forward computation shows that neither the integral of %ﬁ
nor that of %é’- in (3.15) need exist individually. We begin with the first term in

the integrand:

Zy
/ / ——dsdz—/ / -di]-dzds
= / H|Z\ds

(o *]
=H|§;/ ds
—00

= (B .28 ),20) — H@f* (), 2(5),20)) [ ds

— 00
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which is infinite in general because H(¢Z°,pZ°,Z) # H(¢Z',p%*,Z,) in general.
For the second term in the integrand of (3.15), we find that aH S2(p5(),45(s), z) need
not asymptote to zero as s — *oo. In fact in the pendulum example of Chapter 4
we find 82 (pi(s), ¢é(s),2) — —1 as s — Foo. Thus the integral

| i) g5(e), i

is infinite in general and hence so is the integral

/Z —o0 g-{l-(p‘)(s) 5 (s), z)dsdz.

However, the integral in (3.14) is finite because  is compact and the sum — 4% + aa—f:
is uniformly bounded. The integral in (3.15) exists as well because the first integral

cancels out the infinite piece of the second integral.

3.3 Asymptotic Accuracy of the Approximation.

In this section we complete the proof of Theorem 1. We establish the expression
for the difference A — Ay between the exact and approximate lobe area formulas in
Lemma 3.2, and in Lemma 3.3 we prove that |4 — Ag| = O(e).

We first establish the homotopies which we use throughout the remainder of

this section. We look at biasymptotic orbits of the vector fields

aH
¢ = (p,q, z)
p= —gli(p,q, z) (3.20)
2 = pe

with r as the time variable which is related by per = et to the time ¢ of (1.1),, and

! indicates the derivative with respect to r. Here u € [0, 1] is the parameter of our
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homotopies. We remark that 4 = 0 and g = 1 correspond to the unperturbed and
perturbed vector fields (1.1)g and (1.1), respectively. We refer to the vector fields
with g € (0,1) as the intermediate vector fields. Finally, we remark that we use r
to indicate the time variable of the intermediate vector fields.

Let Zy and Z; be two adjacent zeroes of the adiabatic Melnikov function whose
existence is guaranteed by Assumption A3. The theory of the adiabatic Melnikov
function states that there exist two orbits, P and @, in (1.1), which correspond to
the above zeroes of M4(z) and lie in the intersection of W5(«.) and WY (). These
two orbits define the lobe whose area we measure. The theory of the adiabatic Mel-
nikov function further guarantees that every intermediate vector field for p € (0,1)
has a pair of intersection orbits as well. We label these intermediate intersection
orbits by P, and Q,. Then the Implicit Function Theorem can be used to show
that, as u is varied in the interval (0, 1], P, and Q, vary smoothly. In the limit of
pu — 0, outside of the small tubular neighborhood, V,, with radius p of v, P, and
Q, tend to the orbits Y2t and Y%, respectively. However, as curves, P, and Q,
limit on Py and Qo as u — 0.

The homotopies define two smooth surfaces

Q7 = (UneP) J7UT? = (UsePu) U Po

and
Q¢ = (Upe(0,119n) U v lJ T? = (Une(0,11%0) U Qo-

Q7 is spanned between P and Py, and Q€ is spanned between Q and Qg. See
Figure 3.5 for the three-dimensional visualization of 27 and Q€.

We now introduce the the solutions which uniquely parametrize P, and Q,
by taking z = per, just as we took z = et for (1.1) at the beginning of this sec-

tion. We let x% () and x2(r) denote the solutions which parametrize P, and Q,,
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Fig. 3.5. The surfaces Q% and Q€.



Fig. 3.5.b Detail of the surface Q€.
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respectively. We remark, however, that this parametrization does not include the
(¢ — 0) limiting orbits YZ° and TZ! because of the discontinuity in the evolution
of the z variable when p = 0. This discontinuity does not pose any difficulties in
our calculations and is the reason why we defined the surfaces 27 and Q< as unions

of P, and Q,, respectively, over p € (0,1] with ~.

Lemma 3.2. The difference between the exact lobe area, A, and the approximate

area, Ao, 1s given by:

A—A0=// dp Adg— dH A dt. (3.21)
Qr —qe ‘

This integral must be performed over the difference of the two surfaces so that it is

finite.

Proof of Lemmma $.2: Starting from the definitions of A and Ag, we know that

A-A4) = /p-Q(pdq — Hdt) - Ao_go(pdq — Hdt)

= lim {/ (pdq—Hdt)—/ (pdq—Hdt)},
Z—00 PZ—QZ p()Z_Qg

where PZ, Q% PZ, and QF are the intervals of the curves for z € [2; — Z, z; + Z],
where 2, € IR chosen such that Zy and Z; lie in the interval and Z is sufficiently
large. We remark that in all of the estimates in this proof the value of Z is fixed
at the sufficiently large value used here. Furthermore, when we need r or ¢ to be
large, say R and T, respectively, the values of R and T are explicitly related to Z
via R = “—Ze and T = %, respectively.

We will rewrite these integrals over the closed intervals of the curves P, Q, Py,

and Qg as integrals over compact pieces of the surfaces Q% and Q€ using Stokes’
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Theorem. We will then show that the improper integrals obtained in taking the
limit Z — oo exist.

We define QF to be the compact section of the side surface Q% truncated by
the slices I, 4z and I1,,_7z. Q% is defined similarly. Let 8%, 82, 8%, and 82, be
the intersections of the surfaces Q? and Q9 with the slices II,=,+z and II,=;, 7z,
respectively. We recall that x7%.(r) and x2(r) denote the solutions we chose to
parametrize P, and Q,, respectively. The curves A7 and ﬂg are formed by the
solutions x%(r) and x2(r) for z = Z fixed (i.e., r = R = %) and letting p vary
between 0 and 1. The other two curves are formed in a similar fashion. These
curves will be referred to as the top and bottom pieces of the side surfaces 2% and
Q2 and are are illustrated in Figure 3.5.

We now apply Stokes’ Theorem to recast the integral over the compact surface

Q% — Q2 as a line integral around its boundary:

// dpAdg—dH Adt = / _/
a7 -af pz_Qz Jpz-QzZ

+/ —/ )(pdq-Hdt)
Br-8¢ JBFP,-B2,

The contributions from the integrals along the curves PZ, QZ, Po? , and Qo? as
Z — oo are exactly the pieces inside the limit in our original expression for A — Ap.
Thus to establish (3.21), we only need to show that the contributions to A — Ao
from the top and bottom pieces of 27 and Q% vanish in the limit Z — oo.

We evaluate the contribution from the top piece:

/ (pdq — Hadt),
8% -8

as that from the bottom piece in norm is bounded by the same term. First, we

observe that, since we are on a slice of constant z, dz = edt = 0. Hence,

/ (pdg — Hdt) = / pdg.
BT -8 BT 8%
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Next, noting that ¢ = que(r), dz = 0 = e(pudr + rdu), and that R is dependent on
4 in the way specified above so that Z is fixed for all u € (0, 1], we can express the

right hand side of the above expression as:

dq Or 3q]
dg= [ [ + 22 4y
//,;_,,g” 1= Jopss ¥ orou ™ B
! [0g Or g
—/; Ploroa + —-]) (x}e(R))dp

_ /01 piggg; ])(x,“(R))dp (3.22)

1 [ ¢ R BqD ”(R)

= -4+
/o (p_ or p (R)
V7 [6H T ) “(R)

= +
/; (p Op u? ] x,“<R)

We rewrite the integrand in (3.22) in the usual way:

( [aH T, an xP(R)  \xZ(R) [61{ T aq] x}.(R)
— —_— =17 o | ——— —
Plop i T oul) Ixguam ~ F Op p? =~ Op) Ixg(R)
» (3.23)
x, (R) [H T aq "fe(R)
tr x2(R) | Op p? ~ Op

We now find explicit bounds on each of the terms on the right hand side of the
above expression: First, p asymptotes to 7p7,, where 7, denotes the projection of a
point (p, ¢,2) onto its first component. Second, the (p,¢) components of orbits on
~e are bounded in time by Assumption A2 and the persistence theory of Chapter 2.

From these two facts we can conservatively estimate that for T' sufficiently large,

x;.(R) N T
lp| | < K@iR = K1—,
U
for Z = €T sufficiently large. Second, due to exponential contraction of the inter-

section orbits lying on W5(v.) and WY () to v,

xfe(R) T cT
KyRe B = Ky(=)e™ %,
|p (R)I 2 2( ﬂ)
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for T sufficiently large. Furthermore, by Assumption Al, there exists a constant

K3 such that

I%Ig(p,q; eur)| < Ks
for all r € IR. Finally, from Lemma 2.1, we know

Lty

S (R) T
< = -_—
oy | < K4R K4(”),

for Z = €T sufficiently large. Putting all of these estimates together, we arrive at:

| a_I££+_a_(1_
Plopu? " ou

for T sufficiently large.

xz: (R) °T

| < KsRe™°F = Ks(%)e" " (3.24)

x(R)

Using (3.24) to estimate (3.23), we immediately have:

| / (pdq — Hdt)| < KeTe=eT,
8% -8% ¢

for T sufficiently large. We remark that one gets the same result for the contribution
of the bottom end.

Therefore, combining the contributions from the top and bottom ends and
letting Z — oo, i.e., T — 00, establishes (3.21) and the existence of the improper

integral as follows:

// (dpAdg—dH Adt) = lim [// (dp/\dq—dH/\dt)]
QP —Qe Z—00 Q-pZ _QQZ

= lim / —/ +/ -—/ (pda — Hdt)
Z—00 PZ_Q2 PZ-QZ ﬂ;—ﬂze ﬁfz‘ﬁgz

- / (pdg — Hat) - [ (pdg — Hat)
P-Q Po—Lo
=A - Ap.

Hence the proof of Lemma 3.2 is complete.



- 61 -
The above lemma again made strong use of hyperbolicity and its consequence
that the orbits with the same x on Q% and Q€ approach each other exponentially
as t — *o0o. In order to complete the second step of the proof we still need the

estimate:

Lemma 3.3. |A — Aq| = O(e).

Proof of Lemma $.3: We start with the expression (3.21) for the difference

A — Ap derived in the previous lemma:

A—Ao=// dp Adg — dH A dt.
QP -qe

We change coordinates to p and r as follows:

Ap,q)

dp/\dq—a( )d,u/\dr
_ Opue Oque  Oppe a‘lue)
= ( 9n or " or 04 du A dr (3.25)
O0H Op,. OH aq,“)
= d .
(ap ou +8q ou WA dr
_ 0(H,1)
dH Adt = ) du A dr
OH Ot OH Ot
_(—3781" or 6p)d A dr

OH Bp,“ O0H 0q,e A OH @)
Op Ou 0q ou 0z Ou

”
<5H apuc OH 9quc + BH?_E) r] du A dr (3.26)

dp Or Bq or 0z Or

OH Bp,,e O0H 0q,. A OH )
(Bp ou Bq 8u+8z€r H

(8H Opuc , OH Baue , OH
=p

Il

aq g + ER ue) r] du A dr

OH Opue A OH 3q,“)
dr.
(310 op T 3 ou d A dr
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Next, we observe that:

apue —e apue
Op A(pe)
3q,;e —¢ aq;tc
O O(ue)

Thus, the integrand in (3.21) can be rewritten as:

OH Opye + OH 0Oqye

dpAdg—dHAdt =e(1—p) ( Op O(ue) ~ Oq O(ue)

) du A dr. (3.27)

Now we rewrite each of the two terms in (3.27) evaluated on the difference
of the two surfaces in the usual way, ignoring the common factors out front. We
rewrite only the first term here, because the second term can be handled in exactly

the same fashion, to obtain:

(6H 3p,u) xpe(r) ( ap,“) x,’f.(r)(aH) xP(r)
—B xS (r N 6 _3— xQC r
Op O(pe) J IxLu(r) 7 (ne) ) D/ Ixg.(r) (3.28)
+ ( aplle ) xpe(r) (gg) x,?e(r)
6(#6) x2.(r) 8p
x5 (r)

For the first term, we observe that (gi%) grows at worst linearly in r

x5 (r)
) decays exponentially for
x2(r)

sufficiently large |r| because of the exponential contraction of the intersection orbits

by Lemma 2.1 in Chapter 2 and also that (%%)

to ve. Switching variables from r to ¢ (see the remark in the first paragraph of the

proof of the previous lemma), we find that for ¢ = T sufficiently large

Opue \ ne(F) (6H> xF (L) (T) _er
it L1 Jd = < l -
'(a(m) 5 I<K\Z)e

xgc(%) - H
9 xp(r)
For the second term in (3.28), we observe that (3{%‘%) 2.0 decays exponentially
IR X0
for [r| = R sufficiently large by Lemma 2.1. Furthermore, (a—f) is bounded

by Assumption A1l for all » € IR. Thus upon changing variables from r to ¢, we see
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that the second term in (3.28) can be bounded by exactly the same expression as

the first term, with a different constant of course. Therefore, we conclude that

aH 6p”e x:,e(r) T T
'(E?a(ue)) =X (‘) " (3.29)

xZ(r) [z
for r = % and T sufficiently large. As remarked above, we get the same estimate

for the second term in (3.27).

Now we rewrite the integral of (3.21) as an iterated integral on g from 0 to 1
and on r from —oo to 400, change the variable on which the inner integration is
performed from r to t so that the inner integral can be done uniformly in x, and
use (3.29) to estimate the integrand. The integrand of the inner integral vanishes
exponentially as ¢ — +oo for all u € (0,1] because of the b.ound given in (3.29).
Hence the inner integral converges uniformly in p. Finally, we bound the absolute

value of the outer integral by the maximum value of the inner integral:

l/l /+oo (9}1 6pl‘€) x2. (%) (QE aq;u) x2(%) tdﬂl

0 Joco \ Op O(ue)/ Ixp.(4) \ Og O(ue)/ Ixz.(£)

< max |/+oo (QE OPpue \) xZ. (L) (Q_H_' aqm) x2.(%) '
~ uel0,1]] J_oo \ Op O(ue)/ Ix2(+)  \ Og O(ue)/ IxF (%)

which is finite because the convergence of the integral is uniform in g. Therefore,
|A — Ap| £ Ke. (3.30)

Thus we have completed the proof of Lemma 3.3 and also that of Theorem
1. Furthermore, we have established the rigorous connection between the theory of
actions for adiabatic systems from the field of classical mechanics and the theory of

the adiabatic Melnikov function from the field of global bifurcations.

3.4 A Maximum Property for the Lobe Area.
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In this section we state Proposition 3.1, a maximum property for the lobe area,
in systems (1.1),, which we published in Kaper and Wiggins [1991a]. In particular,
we show that the zeroes of the adiabatic Melnikov function occur in such a way that
the area Ao (determined by the separatrices YZ° and YZ!) is locally the largest
possible. We remark that unless stated otherwise the notation used for and the
assumptions made on the equations of this section are identical to those used in the
previous sections.

We take X(z;,z) to be the piece of I' with the variable z restricted to the

interval [2;, 2], where z; is a constant. Second, we define the function:

A(Z;,z):/L( ' )dpAdq, (3.31)

which is the area of the projection of (zi, 2) on a slice II,. A proof identical to the

one of Lemma 3.1 shows that the function A can also be written as:

A(zi,2) = /: []‘30 s{H, %Izi}ds] dz, (3.32)

- 00

which is the integral of M4(z) over L(z, z).

We establish:

Proposition 3.1. The adjacent zeroes, Zy and Z,, of M 4(z) choose the separatrices

YZ° and Y2 in such a way that A(Zy,Z;) is a local maximum of A(z;, z).

Proof of Proposition 3.1 Clearly,

%—?(z;,z) = / " o, 28 ds = Ma(2). (3.33)

S
Thus we know that Zy and Z; are simple zeroes of %(z;, Z), because Zy and Z, are

simple zeroes of M4(z). Now we remark that because ¥4 (2) has different signs
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at Zo and Zl,
d’A d’A

-(E;(Zi, Zy) and ‘d?_,-(zi, Zy) (3.34)

are of opposite signs, as well. Thus the adiabatic Melnikov function picks out in a
natural fashion a pair of adjacent local extremas, one minimum and one maximum,
of A(z;,z) and the minimal and maximal separatrices TZ° and YZ!, respectively.

Finally, we know that
A(Z], Zo) = A,(Z,', Zl) - A(Z,‘, Zo) (335)
Hence A(Zy, Z,) is a local maximum of A(z;, z), and the proposition is proven.

As a corollary to the above proposition, we have:

Corollary 3.2. If H is periodic in z such that there is one value of z, say Z,, per
period such that the area enclosed by the separatrix of (5.1)§ is a maximum and
such that there is one value of z, say Z,, per period such that the area enclosed by
the separatrix of (5.1)§ is a minimum and if in between Zy and Z,, the area enclosed
by the separatrix of (5.1)f is a monotone function of z with nonvanishing derivatives
with respect to z, then to leading order A is the area between the separatrices which

enclose the maximum and minimum areas.
We remark that the result of this corollary is exactly what we find in the
adiabatic pendulum example below.

3.5. Action-Minimizing and Minimax Homoclinic Orbits.

We conclude this chapter with a few observations about the nature of the two
biasymptotic orbits defining a lobe. The homoclinic orbits of (1.1)¢ are of two

types. One corresponds to a minimum of the action and the other type corresponds
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to a minimax (i.e., local maximum) of the action, see MacKay et al., [1984]. The
observations we made about M4(2) in the previous section determines this corre-
spondence.

As € — 0, the homoclinic orbit Q limits on the separatrix I'2:. Therefore,
because I'?! is a local minimum of A(z;,z), @ is a local minimum of the action.
Similarly, as € — 0, the homoclinic orbit P limits on the separatrix I'2°, Therefore,
because I'%° is a local maximum of A(z;,z), P is a local maximum of the action.
In other words, the homoclinic orbit corresponding to z such that ¢X4(z) > 0 and
M4(Z) = 0 is a local minimum, and the homoclinic orbit corresponding to z such
that 2¥M4(z) < 0 and Ma(2) = 0 is a local maximum. We remark that a similar
correspondence, between the well-known Melnikov function for small-amplitude per-
turbations (see MacKay and Meiss [1986]) and the type (either action-minimizing
or minimax) of the homoclinic orbit, must also apply in the case of small amplitude
perturbations where the geometric identification of the minimum and the minimax
homoclinic orbits is not as clear as it is for adiabatic problems. Finally, we remark
that the action-minimizing homoclinic orbits can only be the accumulation points
of action-minimizing periodic orbits; and the action-minimax homoclinic orbits can
be the accumulation points of both action-minimizing and action-minimax periodic

orbits.
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CHAPTER 4. TWO PARADIGM PROBLEMS IN ADIABATIC
CHAOS.

In this chapter we study two paradigm problems in adiabatic chaos: a pen-
dulum whose base support is oscillated vertically, slowly, and periodically in time,
see Chapter 1, Kaper and Wiggins [1991a], Elskens and Escande [1991], and Wig-
gins [1988a, 1988b], and a model equation due to Hastings and McLeod involving
a slowly-varying cubic potential, see Hastings and McLeod [1991] and Kaper and
Wiggins [1991c]. These two problems illustrate the result of Theorem 1 and the
Corollary. Furthermore, on the second example we show for the first time in the
literature on slowly-modulated systems that a horseshoe map can be created in only
one iteration of the Poincaré map. A similar construction exists for the pendulum
example. We remark that we study a third example, namely the fluid mechanics

problem analyzed in Part II of this thesis, in great detail there.
4.1. The Adiabatic Pendulum.

The results of Chapter 3 are nicely illustrated on the adiabatic pendulum. As
discussed in the introductory chapter, this is a pendulum with slowly varying base

support governed by the Hamiltonian
p?
H= ?—(1—7cos(z=et))cosq, (4.1)

where v € (0,1). For every value of z € [0,27), the autonomous system, (4.1) with
e = 0, has hyperbolic fixed points at (k=,0), for all £ € Z. These points are all
the same point due to the periodicity of the vector field in ¢. We only look at

(—m,0) and (7,0). These two points are connected to each other by upper and
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lower separatrices parametrized by
(p3(s),95(s))
= (£24/1 — ycos zsech(y/1 — v cos 23), +2arcsin(tanh 1/1 — 7y cos zs)),

where we use s as the time variable of the unperturbed system just as in Chapters
2 and 3. For convenience we consider only the upper half plane p > 0. The picture
for the lower half plane is obtained by a 180° rotation. From the definition, we

compute
+oo

Ma(z) = 7/ spé(s)sin(g§(s))sin zds

—ee 4.2
4ysinz (42)

VI=~cosz

Thus we see that M4 has an infinite number of simple zeroes, and we know

that the stable and unstable manifolds of +, intersect transversely in an infinite
sequence of pips for e sufficiently small. The Poincaré maps for sg = 0,7 = 0.75,
and various values of ¢ are shown in Figure 4.2.

From (4.2) we compute

i sin z

) T—veos "
—S(/TF7 - VT=7) (43

=AS’

Ao =4‘7

where Ag is precisely the difference in the areas enclosed by the separatrices of the
unperturbed system in the upper half plane corresponding to z = 7 and z = 0,
respectively. See Figure 4.1 and Table 4.1. Thus by Theorem 1, A = Ag + O(e).
We discuss some transport issues about how the lobes are mapped for the
adiabatic pendulum later in this subsection. The simplest way to untangle the two
entwined heteroclinic tangles is to write down the Birkhoff signatures for each and

then nest them. A further study of transport via the wildly-shaped lobes of adiabatic
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epsilon lobe area
¥y=0.5 27 /15 3.74
¥y=10.5 27/18 3.84
v=10.5 27 /20 3.88
vy=0.5 27 /25 3.94
v=0.5 27/30 3.97
7=0.5 0 Ag=A,=4.14

Table 1: Lobe area vs. ¢ based on a numerical trapezoidal rule sum integration.
The lobe area increases as ¢ decreases.
Numerical solution of (5.1). done using a fourth order symplectic integrator.

Table 4.1.
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systems is presented in Part II of this thesis. Also, one can readily construct Smale

horseshoes in one iteration of the Poincaré map.
Smale Horseshoes in the Adiabatic Pendulum.

The existence of orbits homoclinic to hyperbolic periodic orbits in systems of the
form (1.1), has interesting dynamical consequences. From the Smale-Birkhoff The-
orem (see Smale [1963], Guckenheimer and Holmes [1983], and Wiggins [1988]), we
know that some iterate of the Poincaré map, i.e., that T™ for some n € N and
n 2> 1, has an invariant Cantor set, A, on which it is topologically conjugate to a
Bernoulli shift on the space of sequences of a countable number of symbols. From
this it follows that T'|5 has:

1. a countable infinity of periodic orbits of all periods;

2. an uncountable infinity of (bounded) nonperiodic orbits; and

3. an orbit that is dense in A.

Moreover, all of the orbits of A are of saddle stability type.
4.1.1. The Homoclinic Tangles of Adiabatic Systems.

To conclude this section, we make a few remarks about the homoclinic tangles in
slowly-modulated oscillators, and the implications this knowledge of the homoclinic
tangles has on orbits crossing the pseudo-separatrices and on the study of transport,
which we study in Part II of this thesis.

The lobes of the tangles in time-periodic adiabatic systems are nested in a com-
plex manner. The geometry of the lobes in the tangles is given by the intersection of
two Birkhoff signatures, see Abraham and Shaw [1984], one signature for each of the
two broken heteroclinic orbits. For the pendulum, see Figure 4.3, one lobe from each

turnstile L7 77(1) from the upper tangle lying at at the pip hg (0) near the reference
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point, and Ly r1(1) from the lower tangle (equivalent to Ly (1) under 180° rota-
tion in the p — ¢ plane) lying at the pip A, (0) lie completely in the rotating regions
at the 2z time for which the minimum separatrix occurs. Most of the area contained
inside the other lobe from each turnstile pair lies nested in these first two turnstile
lobes in the rotating regions I and III, respectively. The other turnstile lobes have
only thin slivers in the oscillating region. For example, the images of L rr(1) and
Lirr,11(1), labeled as TLy ry(1) and TLyrr 11(1), respectively, have extremely thin
slivers in region II but most of their content lies in regions I and III. Thus, there is
a mechanism for an orbit to get transported from one rotating region into the other
rotating region in one period of the vector field, and this type of transport should
occur much more frequently than that between the middle (oscillating) region and
either of the rotating regions I or III. This may have consequences for schemes which
use asymptotic approximations for describing the rate of change of the adiabatic
invariant near separatrices. Much more work using the detailed knowledge of the
tangles and lobe dynamics to answer the pseudo-separatrix crossing and transport

questions for adiabatic Hamiltonians needs to be done.
4.2. The Example of Hastings and Mcleod.

The system studied by Hastings and McLeod [1991] is:

g=p
p=¢°— (14 c+cosz) (4.4)
Z=c¢€

where 0 < e < 1.
The Hamiltonian is given by:
2 P

H(p,q,2) =%”?+Q(1+C+COSZ)-
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AP

Fig. 4.3. Turnstile lobes and their images in the pendulum.

Y
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For every z € [0,27) and for ¢ > 0, (4.4) has fixed points at (£/1+ ¢ + cos z,0).
The point (1/1 + ¢ + cos z,0) is a hyperbolic fixed point connected to itself by a

homoclinic orbit

(ps(s),95(3))

= (F% (2) |1

where F(z) =14 ¢+ cosz.

3sech2(F\/(_z) :l 3\/_F4(z)sech2( \/(_z) s) - tan (F\/(—Z) )) )

(4.5)

Using (4.5), we compute the adiabatic Melnikov function:
Ma(z) = 6V2F3(2)sin z. (4.6)

Hence, Ma(z) has simple zeroes at z = km, WU (v(z)) and W5(y¢(z)) intersect
transversely, and (4.4) possesses a Smale horseshoe. We sketch the domain of the
Poincaré map for z = 7 in the figures. Just as for the adiabatic pendulum, we find
that at most one of the pips lies outside of an (arbitrarily) small neighborhood of
X.. The existence of transverse intersections and the Smale horseshoe implies that
some iterate of the Poincaré map T', say T" for some n > 1, has an invariant Cantor
set, A, on which it is topologically conjugate to a Bernoulli shift on sequences of a
countable number of symbols. In the figures we sketch a horseshoe with n = 1.

We remark that
dM,
5 (™)

= —6V2ct < 0. (4.8)

Hence, the relative orientation of WY(y¢(z)) and WS5(y¢(z)) at hg is as illustrated.
Also, the homoclinic orbit through hy is a local minimum of the action, due to the

results of Chapter 3.5.
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Fig. 4.4.a. A sketch of the basic structure of the tangle in the example of Hastings
and McLeod.
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WS(X,)

Fig. 4.4.b. The domain S of the horseshoe map is shaded.
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_—

Fig. 4.4.c. The image, T3S, of the boundary of S, which we denote by 35.
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W3(X,)

The

s

aré map.

Fig. 4.4.d. Formation of the horseshoe in one iterate of the Poinc

“horizontal” rectangles Hy and H; get mapped over themselves as the “vertical”

rectangles V5 and V;.
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CHAPTER 5. ISLANDS.

In this extremely brief chapter, we summarize a new result for the size of islands
in systems which are modulated periodically in time. We will publish the full
presentation of this result elsewhere in the next several months.

On slices of constant time in the extended phase space, as for example on
a Poincaré map, islands are cross-sections of invariant tori, which are created in
bifurcations at ¢ = 0 around stable resonant periodic orbits. The orbits on these
tori are quasiperiodic. Now, for slowly-modulated systems, the stochastic-appearing
separatrix-swept regions contain only small invariant regions. Because Elskens and
Escande {1991] have shown that islands lie in the regions of the separatrix-swept
regime that are complementary to the lobes, we know that islands occupy at most
an area of O(e) in the limit as ¢ — 0, because lobe area limits on a special O(1)
quantity.

Since numerical simulations we have run indicate that many of the islands are
much smaller than O(e), we address the question of whether or not one can obtain
sharper bounds. We now show that many of the islands occupy at most an area
of O(e?) as ¢ — 0. In particular, we focus on the islands about the m : 1 stable
resonant subharmonics, for m > 1. Each of these islands lies in the resonance
zone formed by the stable and unstable manifolds of the hyperbolic m : 1 resonant
periodic orbit. Now, using action theory, MacKay et al., [1987] derive an exact
(although not computable in closed form as it stands) formula for the area enclosed
in these resonance zones. This result states that the area is given by the sum of the
actions of two orbits homoclinic to the hyperbolic periodic orbit (one along each
branch) minus twice the action of the hyperbolic orbit itself. We refer the reader

to MacKay et al. [1987] for the derivation of this formula.
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In the forthcoming work, we show how to construct matched asymptotic expan-
sions for the m : 1 hyperbolic periodic orbits and how to use these to approximate
the exact resonance area formula. The m : 1 hyperbolic resonant subharmonic
makes one near-separatrix excursion every m periods of the modulation, and it
does so near the value of z such that the instantaneous separatrix encloses a mini-
mal area. We simply match the inner expansion obtained from this near-separatrix
excursion to the outer expansion, which corresponds to the (long) time intervals
when the orbit is near the instantaneous saddle.

Next, we approximate the action of the two orbits homoclinic to the hyperbolic
periodic orbit. These orbits execute almost exactly the same trajectories as the hy-
perbolic periodic orbit, with one important exception. The homoclinic orbit which
is slightly further away from the saddle, i.e., slightly deeper inside the potential
well, picks one period of the modulation to make an extra near-separatrix excur-
sion; whereas the the homoclinic orbit closer to the saddle selects one modulation
period not to make a near-separatrix excursion.

Using our matched asymptotic expansions, we find that the leading order term
for the area inside the resonance zones for m > 2 is O(e?). We conclude by re-
marking that it seems possible to devise a procedure similar to that of Chapter 3

in order to determine the error made in this approximation.
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APPENDIX A. New Technique for Generating the Unstable

Manifolds in Singularly-Perturbed Systems.

In this appendix, we describe the numerical methods we use on the examples of
Chapter 4, as well as for the equations of Part II. In particular, we outline the
procedure by which we generate the stable and unstable manifolds of the hyperbolic
fixed points of the Poincaré maps for these problems. Although we only treat 2-
periodic examples (and report the numerical procedures in the context of this special
case), the techniques we use are applicable to more general time-dependent problems
once a good representation of the hyperbolic orbit v,(z) is at hand.

The process we use in order to generate the stable and unstable manifolds in
each of the problems we studied is split into three parts. First, we use numerical
shooting to determine the location of the hyperbolic fixed point, XZ, of the Poincaré
map. Second, we generate the “base” segments of both of its unstable manifolds.
This part is where we needed to develop a new technique because of the slowness
of the modulation. Finally, we proceed “segment by segment” to obtain more and

more of the manifold. We now describe each of these steps in more detail.

For the Poincaré maps we study, except that of the pendulum in Chapter 4
(where we know the position of the fixed point is (¢ = 7, p = 0) for all times), we find
their hyperbolic fixed points using numerical shooting. The accuracy to which they
are found uniformly in z is determined by the requirements of the manifold plotting
routine, described below. In all cases, the accuracy is at least eight significant
figures, and for the smallest values of the modulation frequency € considered, we
obtain an accuracy of 18 significant digits using double precision arithmetic on the
CRAY. We remark that we have also written an integer arithmetic routine to obtain

however many significant figures are desired, although the code is slow at present,
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which can be remedied by putting it on a parallel computer. Also, for the Hastings
and McLeod example, we verified the accuracy of the numerically obtained fixed
point by computing the asymptotic expansion for it and using Padé approximation.
Having found the hyperbolic fixed points, we generate the base segments of their
unstable manifolds in the following fashion. At every time step, starting with z = 2
and ending after one full period when z reaches zy 427, we drop one initial condition
a distance of 10~™ out from the hyperbolic periodic orbit v,(z) of (1.1). along the
instantaneous unstable eigendirection on II,. Each of the initial conditions which
are dropped in during the previous time steps are simultaneously iterated forward.
Thus, when z reaches z¢ + 27, these points formed the base segment of the unstable
manifold, see figure A.1. Therefore, the last point of the base segment (i.e., the last
initial condition dropped in) is the image after one period of the first point in the
base segment, to within the tolerance we solved for. For the case of the pendulum,
we verified the accuracy of our numerically generated base segment using a WKB

calculation.

We also generated approximate base segments — a straight line segment be-
tween X2 and X?*27 on which the points are distributed using a Gauss-Lobato
distribution densest near X? - in a few cases (only with the largest values of ¢),
and the results are similar to those obtained by the more accurate method just

described.

The manifolds are then found segment by segment starting from the base seg-
ments. Points from the base segment, taken one at a time in the order they are
encountered moving away from X?, are iterated forward one period. The distance
between the image of a base point and the image of the previous base point is re-
quired to a specified tolerance. This tolerance is determined so that the manifold

has a minimum degree of smoothness. If the tolerance is met, the next base point
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SECOND IMAGE OF
BASE SEGMENT

FIRST IMAGE OF BASE SEGMENT

BASE SEGMENT

Fig. A.l. The segments of the unstable manifold are generated segment by seg-

ment.
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is taken. However, if the tolerance is not met, then a point is inserted in the base
segment in between the current and the previous base points. Then the procedure is
repeated until either the tolerance is met or the pre-determined maximum number
of divisions of the troublesome part of the base segment have been made, in which
case the routine signaled the lack of smoothness and proceeded to the next base
point.

In this way, the second segment of the manifold is generated from the base
segment, then the third segment is generated using the second one as the base
segment, and so forth...

Finally, for the problems we studied, we used the symmetry properties of the
Poincaré map to get the stable manifolds. Although in general, one can also find

these by simply reversing time and applying the above process.
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APPENDIX B. On the Use of Symplectic Integration Schemes in Stiff,

Non-Autonomous Systems.

In this appendix, we briefly discuss the two main symplectic integration algorithms
we used: a Gauss-Legendre Runge-Kutta scheme and a scheme based on generating
functions. The philosophy underlying these is to enforce that the integration step
is a canonical map and hence preserves the symplectic invariants of a Hamiltonian
vector field. The advantage of using the first one over the second is that it requires
only function evaluations and not the first n derivatives of the vector field compo-
nents, as well, where n is the order of the scheme. For discussions of the second
scheme, we refer the reader to Channell and Scovel [1989).

The algorithm for an s-order implicit Gauss-Legendre Runge-Kutta scheme is:

Ynt1 = Yn +7'Zbif(tn +Ci7'7Yi) (*)
=1
where for 1 <i<s
Yi=yn+7Y_ aijf(ta + ¢, Y5), (¥%)
i=1

y=(g,p), f= (%ﬁi, —%), ai; are the entries of the s X s matrix A of constants
and b and c are s-dimensional column vectors given by the Butcher tableau:
c A
bT
and 7 is the time-step, see Dekker and Verwer [1984]. We implemented this scheme
with s = 4 and s = 5. As it would take a page to write down all of the constants
needed for the tableau, we refer the reader to pp.56-57 of Butcher [1964] for them.
The proof that this scheme is symplectic is interesting. The simplest proof I can

give entails first rewriting the nonautonomous system (1.1), as a degenerate two-

degree-of-freedom system (which has the benefit that we deal with an autonomous



~ 89 —
system), in which the second coordinate-like variable is z and its conjugate momen-
tum is —H. Then y and Y in (%) and (**) are four-dimensional column vectors,
and so is the now autonomous f. Let y, = (q,p), ¥n+1 = (Q,P), Y; = (Y, Z;).
and f = (g, h), where g; = %‘p}%, g2 = %’;, h; = —-g%, h; = —g—:{;. Therefore, to
show that (*) is symplectic we need to prove that dQ A dP = dq A dp. Calculating

the differential ofs (*) and (*%), we get:

dQ = dq + 75}, b:idg(Y;, Z;)
(B.1)
dP =dp + 7¥}_,bidh(Y;,Z;)

dY; = dp + 'TZ“!:Ia;jdh(Yj, ZJ')
(B.2)
dZ; = dq + 7%}, 0:d8(Y, Z;)
Then, taking the wedge product of (B.2.a) and dg(Y;, Z;) and that of dh(Y;,Z;)

and (B.2.b) , respectively, and plugging these expressions into dQ A dP, we get

dQAdP =dp Adq+ 7Z{_,b; [dY; A dgi + dhj A dZ;]
(B.3)
+ T22;=1 [b,'bj - b;a,-j — bjaj.-] dh; A dgj.

Finally, the second term in the above expression vanishes because a Hamiltonian
vector field is divergence free and the wedge product is a skew-symmetric operation.
Therefore, since m;; = ai;b; + ajib; — b;b; = 0, for all ¢ and j, for Gauss-Legendre
RK schemes, the last term in (B.3) also vanishes, and we arrive at the desired

conclusion that these schemes are symplectic.
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APPENDIX C. Derivation of M4(z).

In this appendix, we present a derivation of the adiabatic Melnikov function, using
the result of Lemma 2.1. As we stated in Chapter 2.2, the signed distance between
q3(0,2;0) and qY(0, z;0) is given by

4oy = £(a5(0),2) A (aZ(0, 20) — 95(0, 23 0))
dlzie) = 1630, 2)] ' (C.1)

Asymptotically as € — 0:

£(a5(0):) A (550,21 0leco - 0,2 0)le=0) .y
HEAO™] YO g

+ O(e)

d(z;e) =€

] Ma(z)
l|£(a§(0), 2)||

I

Our goal is to derive the following computable expression for M4(z).
* 0H
M) = [ HH T @0) (c3)
We begin by defining a time-dependent version of (C.2), which we label d(t, z; €),
and write a differential equation for d(t,z;€), which can then be solved to yield
(C.3).

The time-dependent distance is:

£(5(t), 2) A (% (2, 73 0)lmo — ZE (£, 2 0)l o)
lI£(ag(®), 2)I

d(t,z;€) =€ + O(€%) (C.4)

For convenience, we rewrite (C.4) as

(AY(t,2;0) — AS(t,2;0))

Iz (), 2)l + O(¢%), (C.5)

d(t,z;€e) = ¢
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where

AY(t,26) = £(a5(8),9) A 221,20 emo
(C.6)

S — z 6qf
A°(t,z;€) = f(qd(t),z) A -—O?(t,z;0)|e=o

We first work on AV. The equation and its solution for AS are similar. Letting
Dgyf denote the Jacobian of f with respect to q, suppressing the arguments at e = 0

of all of the functions, using the relation ¢(t) = f, we compute:

3qe oq!
AU(t,2;0) = (Dqf - f) A +f'\E(a ) (C.7)

The first variational equation yields the last the term in the above expression:

oqv\ _ oqY  ofdz _ oqf . Of
dt(a )-qu"5:+m;-1’qf B "o

We recall that all terms are evaluated at ¢ = 0 and remark that the latter term is

responsible for the slow t-growth in a%:i. Thus,

AU(t,2;0) = (Dqf - f)/\aqf +fA(D f. agf>+tf/\-g-§

= Tr(Dqf) [f/\ 99/ ] et
Oe 0z (C.8)

of

=t A5

= t{H, 3H}

since a Hamiltonian vector field is divergence free.

Integrating the result in (C.8), we get:

AV(0,50) - AY(To,50) = [ HE N0, (€9

where Ty < 0. Performing the same steps on AS, we also get:

Ts
83(Ts,50) - A%0,50) = [ HE G a0 (C10
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where Ts > 0. Now, at the end of this section, we show that
lim AY(Ty,z;0)=0

Tu—v—oo

lim AS(Ts,z;0) =0.
Ts-voo
Therefore, adding (C.10) and (C.9) together and taking the limits on Ty and T,

we get:

LA IO Rt

Thus, we have completed the derivation of the adiabatic Melnikov function. We

Ma(z) = AY(0,2;0) — AS(0,2;0) = /

t
-0

remark that
et OH
Ma) = [ (8,57 NG, )t
because %—Ig = t%—f—. This observation allows us to write both the adiabatic

Melnikov function and the usual Melnikov function (for weakly-perturbed sys-
tems) M(to) = [ {Ho, H1}(qo(t),t + to)dt in terms of one expression, because
{H? %} = {H03H1}°

As mentioned above, we conclude this appendix by proving
lim AY(Ty,z;0)=0

TU-o-oo

lim A%(Ts,20) =0

Ts—o00

(C.12)

Our proof consists of two observations. First,

f(q3(Tv),2) = 0

f(q5(Ts),2) - 0

exponentially fast as Ty — —oo and T's — oo, respectively. Second,

(C.13)

oaV
|5 (Tv, 5 0)| < Ka|Tu|

| dq’
Oe

as Ty — —oo and Ts — o0, respectively. This follows from the proof of Lemma 2.1

(C.14)

(Ts,z;0)| < K2Ts

of paper. Therefore, combining (C.13) and (C.14), we have proven (C.12).
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APPENDIX D. Brief Review of Adiabatic Invariance Theory.

In this appendix, we review some aspects of adiabatic invariance theory as it applies
to systems of the form (1.1).. As a preliminary step, we transform (1.1), to action-
angle coordinates, a realization of Kruskal’s “more appropriate variables.” The ac-
tion of an orbit which lies on the closed contour H(q,p,z) = h with p = P(q,h, z)
is:

1
I(h,2) = Q—;fP(q, h, z)dg.

For € # 0, the time-dependent canonical transformation from (p, g) to action-angle
variables (I, ) is determined by the mixed-type generating function
q
FoLo)= [ P@HU2):)d

QQ(I,Z)

which satisfies the Hamilton-Jacobi equation

OF
H"—_11 =h7
(557 0%)

where h = h(I,z). The solutions of the equations p = % and 0 = %? implicitly

determine the relations p = p(I, 6, 2) and ¢ = ¢(I, 6, z). The periodic orbits of (1.1)¢
are now curves of constant action I parametrized by 8 € [0,27) with frequency
wo(I,z) = 2ffe(I,2). Furthermore, the new Hamiltonian is simply the old one

augmented by the time-derivative of F:
oF
K(1,60,z) = Ho(I,z) + e—a—z—(q(I, 8,2),1,z) = Ho(I,2) + eH1(1,96, 2),

where H, is 2m-periodic in 6. Thus, the equations for (1.1). may now be written

= oH
1
—6—56—'(1, 9, Z)
O0H,

0 = wo(I,z) + e—a—I—(I,G,z)

I=
(D.1)
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Clearly, |I(t) — I(0)| < K for t € (0, £1) because H; and its derivative with
respect to 8 are O(1). We recall that a function J(p, g, z) is an n-th order adiabatic
invariant if |J(t) — J(0)] < Ke® for t € (0, £1), where J(t) = J(p(t), q(t), 2(t)) and
n € IN. Therefore, I is a zeroeth order adiabatic invariant. With a little more
work, one can show that the action of an orbit in (1.1), is a first order adiabatic
invariant if wo(I, z) is nowhere zero. We refer the reader to Percival and Richards
[1984] Section 9.4 or Arnol’d [1978] Section 52.E for an exposition.

The action is the leading term of a series for the adiabatic invariant. Kruskal
showed (assuming H is C*°) that “nice variables” J and ¢ exist, and may be found

in the form of a perturbation series in the small parameter e:

J=I+eli(1,8,2)+eJo(1,6,2) + -

(D.2)
d=0+¢€b0,(1,0,z) +€*0:(1,6,2) +---
They are termed “nice” because
J =0 toallordersine
(D.3)

¢ =wo(I,2) + eG:i(I,2) + E€Go(I,2) + - -,
i.e., J is an infinite-order adiabatic invariant.

The functions J; and 6;, for 1 € IN, are determined pairwise in ¢ using near-
identity transformations. The prescription is that J; and 6; depend on 1,6, and =
in such a way that the new Hamiltonian only depends on 6 in the terms of O(e't!)
and higher. Hence, the time rate of change of I +¢eJ; +-- -+ ¢€'J; is O(e'*t!) and the
time rate of change of § + €6, + --- + €'6; is independent of § up to and including
the O(e') terms. The first term is:

I(I,2) = m% - L h. / q%(q’,h,z)dq’dﬁ (D.4)

q

The next term, Jz, is proportional ;. We refer the reader to Henrard [1989] for
0

further terms in J and a general review.
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The ratio of successive terms in the series for J is: = which is <1 if wo(7, 2)
is bounded away from zero uniformly in I and z. Therefore, when an orbit gets too
near an instantaneous separatrix, i.e. when wg(I,z) is of the same order as ¢ for
some z, then adiabatic invariance theory breaks down. We recall that wy decays

logarithmically to zero as the separatrix is approached.
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PART II: ON THE QUANTIFICATION OF
MIXING IN CHAOTIC STOKES’ FLOWS:
THE ECCENTRIC JOURNAL BEARING
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CHAPTER 1. INTRODUCTION.

The distinction between the eulerian and the lagrangian approach to fluid mechanics
is one of the first things one learns in a fluid mechanics class at Caltech. In the
eulerian approach, the equations of motion are derived by applying the principles
of conservation of mass, momentum, and energy to the fluid flowing through a
fixed control volume. The particular fluid particles inside the control volume are
continually changing. In contrast, in the lagrangian approach, the equations of
motion are derived by applying the same conservation principles to a patch of
“labeled” fluid particles and following the patch as it evolves and deforms in time.
Now, in experiments, a dye that does not alter the density of the fluid and has a small
molecular diffusivity is usually used as the “label.” Thus, theoretical and numerical
results obtained using the lagrangian approach may be compared to experimental
results in a natural fashion.

Although the eulerian approach is the one in greater use, the lagrangian de-
scription has advantages for a number of problems. Among the topics well-suited
to the lagrangian approach is mass transport, which can be a highly complicated
problem even for simple velocity fields, as has been shown in recent experimental
and numerical work (see Ottino [1989] for an overview). Although the flows in
these studies are laminar, they simultaneously possess chaotic particle paths and
large-scale structures, such as whorls, tendrils, periodic points, Smale horseshoes,
and islands.

Dynamical systems theory is ideally suited to analyzing these flows and the
problems of mass transport in them. Setting aside the more complicated case of
three-dimensional flows, we limit our discussion to the use of dynamical systems

theory in two-dimensional problems. The two-dimensional flows which have been
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studied using dynamical systems theory are from both ends of the Reynolds num-
ber range, including inviscid flows such as the blinking vortex flow (Aref [1984]),
the oscillating vortex pair flow (Rom-Kedar et al. [1990a]), Rayleigh Benard con-
vection (Camassa and Wiggins [1991]), and scattering of point vortices, as well as
low Reynolds number flows such as the two-dimensional cavity flows, the eccentric
journal bearing, the two-roll mill, geophysical flows, and others (see Ottino [1989]
and the references). They are often referred to collectively as problems in chaotic

advection or lagrangian turbulence.

Furthermore, most of the flows that have been studied are time-periodic. In-
deed, it is precisely the unsteadiness of these flows which is responsible for breaking
the integrability of the steady-state flow and for creating the chaotic particle paths
and large-scale structures identified above. These flows have been analyzed using
the maps that are the common currency of dynamical systems theory, such as non-
integrable, area-preserving twist maps and Poincaré return maps of near-integrable,
one-degree-of-freedom Hamiltonian systems. In the Lagrangian formulation of these
flows, the equations of motion for fluid particles are Hamiltonian with the stream
function serving as the Hamiltonian, and the fluid domain as the domain of the
map, because the two Cartesian coordinates ¢ and y are the canonically conjugate

variables.

In addition to its having been fruitful for identifying the structures mentioned
above, dynamical systems theory has led to progress toward the goal of determining
various transport quantities in these flows. We discuss this progress in the following
paragraphs. As the transport literature is vast (see for example Rom-Kedar et al.
[1990a) and Ottino [1989] for references), however, we narrow the focus of this work
and discussion to the study of low Reynolds number two-dimensional flows. The

large amount of literature on these flows and the initial successes of dynamical
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systems theory in understanding them attests to their fundamental importance.

However, as has been observed by Ottino and Swanson [1989], existing dynam-
ical systems theory is inadequate to study the large chaotic regions in these flows.
Experimentally and numerically, it was discovered that a patch of tracer fluid in
a periodically-blinking Stokes’ flow rapidly develops into a highly-striated lamellar
structure as it gets stretched exponentially and folded and covers a large area in
the flow domain, see Aref and Balachandar [1986] and Chaiken, et al. [1986]. We
remark that, for the eccentric journal bearing, for example, blinking implies that
the cylinders each rotate with a constant angular velocity for half of the period
and are stationary during the other half period while the other one rotates. Since
then, these discoveries have been pursued in the different geometries listed above.
In the study of reacting species in a cavity flow, to name just one example, this
exponential stretching is highly desirable because it can be used to create a large

interface between two reacting species.

The main tool for quantifying this stretching and transport has been the con-
cept of Lyapunov characteristic exponents (LCEs) from dynamical systems theory.
LCEs have been computed for some of these flows with different geometries and
with stirring protocols of the blinking type. First the existence of positive Lya-
punov exponents implies that nearby trajectories separate exponentially in time
in these flows. Second, there typically exists a spatially non-uniform distribution
for the LCE’s in the fluid domain that depends in a nonlinear way on the flow
parameters.

This work is also directed toward the goal of quantifying transport and mixing.
Rather than rely on LCEs, which are a posteriori measures of stretching and mix-
ing, however, we develop for the first time a theory for quasi-steady Stokes’ flows

which predicts many important stretching and transport quantities before any ex-
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perimental or numerical simulations are performed. In fact, the main techniques we
use are new tools (developed largely in Part I of this thesis) for slowly-modulated
dynamical systems that are ideally suited for describing fluid motion in large (O(1))
chaotic regions. In the process of demonstrating their suitability, we will show how
our results are markedly different from those of the usual (small-amplitude) per-
turbations usually studied in dynamical systems theory and how these new tools
these results provide us with enable us to overcome the inadequacies of the usual

dynamical systems theory.

In particular, we study transport of tracer dye in a low Reynolds number flow
in the two-dimensional, annular domain between two nonconcentric counterrotating
cylinders. This geometry, known as the eccentric journal bearing, is widely used in
the study of mixing. The inner cylinder is referred to as the shaft, and the outer
cylinder as the casing. Modulation of the angular velocities of the cylinders contin-
uously, slowly, and periodically in time causes the integrable steady-state flow to
become nonintegrable. As a result the tracer particles exhibit many of the features
characteristic of chaotic advection or lagrangian turbulence discussed above. In
stark contrast to the flows usually studied with dynamical systems (in which the
perturbation on the integrable flow is of small amplitude and with O(1) frequency),
however, these slowly-varying systems are singular-perturbation problems in which
the nonintegrability is due to the slow O(1) modulation of the position of the saddle

stagnation point and the two streamlines stagnating on it.

We may summarize the difference between our modulation protocols and the
“stirring” protocols used in the literature as follows. The protocols used in the
literature prescribe the angular velocities of the two cylinders Q; and Q;, where

the subscripts 1 and 2 refer to the casing and the shaft, respectively, either as a
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small-amplitude modulation:
Q1(t,e) =0y + ecoswt
Qa(t,€) =Ny + esinwt

where 0 < € € 1 and w and ©; = O(1), and Q:(¢) - Q2(¢) < 0 for all ¢, or as a

blinking modulation:

931 0<t<T/2
Q‘(t)“{o T/2<t<T
0 0<t<T/2
Qz(t)‘{az T/2<t<T

where Q; # Q9, ;-Q2 < 0, and the period, T, is long compared to the characteristic
time of the steady state flow. In contrast, our modulation protocols prescribe a slow,

large-amplitude modulation:

Qi(t,e) =y + ycoset

Qa(t,€) = Qg + ysinet
where 0 < e € 1, and Q2 < =y < 0 < v < Q. This fundamental difference
forces us to look at the transport problem in a new way. We discuss these details
of the modulation protocols in Chapter 2.1. Furthermore, as we prove rigorously
in Chapter 4.4, the requirement on the Strouhal number, St = “’—UL & 1, where L
and U are characteristic lengths and velocities, and w is the modulation frequency,
shows that our slow modulation is the natural way to study these flows, because we
take w = e. We remark that we denote the slow time by z = et and the ratio of the

two angular velocities by (z) = g:gg .

We remark that the Fourier series for the blinking protocols in the counterro-
tating case are infinite sums of higher harmonics of the periodic modulation (whose
amplitudes decrease linearly with the order of the harmonic); just write the Fourier

expansion for a square wave. Thus, one may get the results for the blinking case by
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looking at the trend in a sequence of results obtained from continuous modulation
protocols with more and more harmonics added.

We establish an analytical technique to determine the location and size of the
region in which mixing occurs, a region we call the mizing zone. We show that
the mixing zone is, to leading order, the region swept out by the instantaneous
separatrices during the period of the modulation. It is precisely the zone in which a
patch of tracer develops into a highly-striated lamellar structure, the vector field is
nonintegrable, the exponential separation of nearby trajectories occurs, orbits are
chaotic, and the islands lie. We discuss the mathematical definition of mixing later
in this work.

In the course of showing how each of the three independent flow parameters:
the eccentricity of the bearing €, the time-dependent ratio of the angular velocities of
the cylinders Q(z), and the modulation frequency ¢, influences the location and size
of the mixing zone, we determine the choice of parameters for which the mixing zone
occupies the entire fluid domain. The same reasoning used for this determination
can also be used to achieve mixing zones at other desired locations and sizes. Thus,
our techniques offer a new manner in which mixing can be controlled.

After determining the location and size of the mixing zone, we develop a trans-
port theory based on the regions, or lobes, formed by the segments of stable and
unstable manifolds of the fixed points of the Poincaré map, which are responsible
for the transport of tracer in the mixing zone. In particular, we show that the rad-
ically different shape of these lobes, as compared to the shape of the lobes studied
in the usual flows, readily makes them identifiable as the mechanism by which the
modulation causes the patches of tracer to develop into elaborately striated and
folded lamellar structures. We are therefore able to refine the notion commonly ex-

pressed in the literature that tracer evolves along unstable manifolds. Furthermore,
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we analytically derive exponentially growing lower bounds on the rate of stretching
of the manifolds defining the lobes and use these to get similar bounds on the rate
at which patches of tracer fluid stretch.

The results described so far are obtained independently of how small the mod-
ulation frequency, ¢, is. When e is small (we find € < 0.3 is small enough in practice)
we show rigorously that these flows constitute adiabatic dynamical systems. This
fact enables us to use recently developed tools (see Part I of this thesis, Kaper
and Wiggins [1991a] and Elskens and Escande [1991]) from that field to analyti-
cally predict several important quantities associated with the lobes and transport
theory. The ability to predict these quantities theoretically is very important, not
just because their determination has hitherto depended on experimental data or the
calculation of Lyapunov exponents, but also because it leads to a practical way in

which our definition of mixing can be verified, as we will show in Chapter 3.

From the measurement of these quantities, we determine theoretically (and
confirm with numerical simulation) the combination of the parameters &, Q(z),
and €, with which one achieves the most efficient mixing possible. This optimal
combination, which also maximizes the size of the mixing zone, consists of chosing
& to be fairly small, so that the bearing is nearly concentric, {)(z) to vary in a
large, negative interval so that the instantaneous saddle stagnation point moves
across most of the narrow gap between the two cylinders of the bearing, and e
to be moderately small, but not too small. In the process of finding this optimal
combination, we show how our theory makes it possible to control the rate and
various other aspects of the mixing process with these parameters largely from

theoretical considerations.

Having established our transport theory, we turn to the objects which obstruct

mixing, and show how, for these objects as well, adiabatic dynamical systems theory
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constitutes a useful framework. Using an extension of KAM theory, we show for the
first time that the theory of adiabatic dynamical systems predicts the size of the
regions, or “islands,” in which the flow looks integrable and which obstruct mixing.
Through our choice of ¢, this theory gives us the ability to control, and hence to
minimize, the area of islands. As in the analytical determination of the efficient
mixing geometry, we find that a moderately small, but not too small, value of
achieves the aim of minimizing the regular zones. Furthermore, we also use this
extension of the KAM theory to explain the highly-regular appearance of islands
in quasi-steady Stokes’ flows, which is in contrast to the behavior of islands seen in

weakly-perturbed flows, for the first time.

Finally, in studying the influence of diffusion on the evolution of tracer in these
flows, we identify the mechanism of diffusion-enhanced stretching, which has not
been studied systematically in the context of chaotic flows. We also discuss the
robustness of our model by analyzing the influence of the inertial terms. In the last
section, we compare our results to those obtained experimentally using so-called
blinking protocols, and show how our results apply to other quasi-steady Stokes’

flows, such as the cavity flow, the two-roll mill, and a geophysical flow.

Part II of the thesis is organized as follows. In Chapter 2, we discuss the
steady state flow and the prescriptions for making them time-periodic which we
use. We show how these prescriptions give us control over the location and size of
the mixing zone. Then, the presentation of the transport theory is split into four
sections, one on each of the structures governing the stretching and transport, the
half-period and full-period inter-regional transport formulae, and the computation
of an exponentially-growing lower bound on the rate of stretching of material in-
terfaces. Chapter 3 is devoted to the application of adiabatic dynamical systems

theory, including the ideas developed in Part I of this thesis, to this modulated
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Stokes’ flow. In particular, we obtain analytical results in the limit of slow mod-
ulation. We also discuss the issues of chaos, highly-regular zones, and islands in
the context of the eccentric journal bearing and other quasi-steady Stokes’ flows.
In Chapter 4 we study the robustness of the purely-convective model presented in
Chapter 2. The quantitative effects of molecular diffusivity are measured, and we
identify the mechanism by which diffusion leads to enhanced stretching of tracer
patches. We also include the effects of inertia and compare results from the con-
tinuous modulation proto;:ols we use to those obtained in experiments on blinking
flows. Finally, we show that in general quasi-steady Stokes flows are adiabatic dy-
namical systems and how the results of our study apply to other flows such as the
cavity flow, the flow in the two-roll mill, and a geophysical application. The two

appendices contain the derivations of some results quoted in Chapter 2.
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CHAPTER 2. TRANSPORT THEORY.

In this chapter, we state the equations of motion for the evolution of tracer pal;ti-
cles in the counterrotating eccentric journal bearing and introduce the modulation
protocols we use to make the two-dimensional flow time-periodic. In addition, we
study the mixing zone and show how the three flow parameters may be used to
control its location and size. Finally, by identifying the structures which govern the
transport of tracer in the time-periodic flow, we develop a transport theory which

analytically predicts important mixing quantities.
2.1 Governing Equations and Modulation Protocols.

The geometry of the eccentric journal bearing is clearly illustrated using the bipolar
coordinate system, an orthogonal curvilinear system which is related to Cartesian

coordinates (z,y) by the following transformations:

e = —b sinh
cos}}f — cosn (2.1)
sinn
v= coshé — cosn
2 4 .2
=50 (o)
(2.2)

i z? + (y —1b)?
= —2-ln (a:'-’ + (y + tb)?

The curves of constant £ and 7 are exhibited in Figure 2.2. The two poles are at
(z,y) = (£b,0), which correspond to £ = Foo, respectively. 7 is the angle made by
the two segments connecting the point (z,y) to the poles, and ¢ is the ratio of the
lengths of these two segments, i.e., of the polar radii. We remark that both ¢ and
n are real numbers.

The casing and the shaft of the bearing correspond, respectively, to the level

curves { = £; and £ = &3, where £; < €1 < 0 so that the shaft lies inside the casing
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in the open half plane z > 0. We remark that although the level curves of ¢ are
circles, they are not concentric. Hence, this is a natural coordinate system to use
in studying the eccentric journal bearing.
The radii of the casing and shaft are R) and Ry, respectively, where R; > R,,
and Q; and Q. are the angular velocities. We define the Reynolds number in terms
of these and the kinematic viscosity v:

RIQ? + R3] R,
- .

ReE[

Since we are interested in studying the evolution of tracer particles in Stokes’ flow,
we require 0 < Re « 1 so that the inertial terms in the Navier-Stokes equations may
be neglected. The integrable, unperturbed flow between the shaft and the casing is
governed by the stream function, 1, which is the solution of the biharmonic equation
V4 = 0 subject to no-slip boundary conditions on the two cylinders, see Ballal

and Rivlin [1976]. Hence, the equations of motion for a tracer particle are:

b = b [(Ao + Co€) cosh € + (Bo + Do&)sinh €]

cosh € — cosn

b .
M [A1 cosh 2 + By sinh2¢ + C1€ + D;]cos .

(2.3)

The constants Ay, By, Cg, Dy, A1, By, C1, and D; are given in terms of the radii and
angular velocities of the cylinders, and the constants f;,7 = 1 — 14, (which depend
only on the location and eccentricity of the two cylinders and which may be found

in Appendix A):

(Ao, Bo, Co, Do) = (f1, fs, f5, f1)Qu Ry + (f2, fs, fe, f3)2 Rz
(A1, B1,C1,D1) = (fs, f11,—f5, f13)U Ry + (fr0, f12, —f6, f14)Q2R.

We remark that since 1 is linear in ©; and 5, it effectively depends only on the

(2.4)

ratio of the two.
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Using the inverse transformation (2.2), we put the streamfunction in Cartesian
coordinates, which is the form of ¥ we use in our study so that our results may be
directly compared to those of experiments. The unperturbed equations of motion

are:

. 0

T= %(%y;ﬂl,ﬂz)
Ay (2.5)

Y= —E(w,y; 0, Q).

We remark that, in contrast to the case for Hamiltonian systems in mechanics, the
phase space of these Hamiltonian systems (2.5) is the fluid domain, and the two
Cartesian coordinates z and y are the canonically conjugate coordinates.
We concentrate on the counterrotating (2; -2 < 0) case. In Chapter 4.2, we discuss
the remaining cases: corotating, and the two cases in which a cylinder is stationary.

In the counterrotating case, there is precisely one saddle stagnation point (hy-
perbolic fixed point) on the z-axis in the narrow gap for all values of €, 7, 2, and
{22, which is attached to itself by two stagnation streamlines (orbits homoclinic to
the hyperbolic fixed point). We denote the fixed point by Xj, and we denote the
inner and outer stagnation streamlines by I' and A, respectively. The two stagna-
tion streamlines separate the fluid domain into three regions: region A is the area
adjacent to the shaft; region B is the backflow region; and region C is the annular
piece adjacent to the casing. In Tables 2.1-2.3, we give the area of each of these
three regions for various values of € and the ratio Q = %f The streamlines (in-
tegrable flow field) for a typical case in Figure 2.1, where Q; = 1,Q; = —4,¢ =
—0.9397,&; = —1.9966,b = 1.0843, R; = 1.0, R; = 0.3,& = 0.5.

We remark that we first specify Ry, 7 = %f, and €, which determine the cylinder
geometry uniquely, and then determine the parameter b and the level curves, £ = §;

and § = £;, on which the cylinders lie from this choice. Although this choice, which
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Fig. 2.1. Steady state flow in the counterrotating eccentric journal bearing

with 7 = 0.3, = 0.5,8; = 1.0,y = —-4.0.
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Fig. 2.2. Geometry of the bipolar coordinate system.

xY
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is made without loss of generality, means that b and hence the absolute bipolar
coordinate system we use depends on the value of € we specify, this choice makes
everything easier to implement numerically. The appropriate formulae and a more

complete catalog of streamline plots, including ones for the corotating case, may be

found in Ballal and Rivlin [1976], whose notation we use throughout this work.
Modulation Protocols.

As discussed in the introduction, we are interested in studying the system when the
angular velocities of the cylinders change slowly and periodically in time. We refer
to the prescription for these variations as modulation protocols, and we present

results from simulations for three of them in this work:

Q}(t, 6) =1
(MP1)
Q2(t,€) = —6 + 4 cos(et)
Q]_(t, 6) =1
(MP2)
Qa(t,e) = —11 + 9 cos(et)
Q(t,e) =1
(MP3)

Qa(t,e) = —30.5 + 29.5 cos(et)
Here the modulation frequency e satisfies 0 < ¢ < 1. This choice guarantees that
the modulation occurs on a time-scale much larger than the characteristic time of
the unperturbed system and satisfies the requirement on the Strouhal number given
in the introduction.
Furthermore, we have three intervals in which Q2 varies: [~2, —10] with (MP1),
(-2, —20] with (MP2), and [-1, —60] with (MP3), so that we may study the influ-

ence of the parameter ) on the mixing process. In particular, since the ratio of 2,
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to 2; determines the location of Xy, we can study the dependence of the mixing
results on the size of the interval in which the saddle point oscillates. For (MP1)
that interval is small and near the middle of the narrow gap, whereas for (MP3)
that interval is almost as wide as the narrow gap itself. Finally, (MP2) yields an

intermediate interval.

(MP1) — (MP3) have been chosen so that their implementation is the sim-
plest experimentally. The experimental set-up of Swanson and Ottino [1990] may
be used, for example, replacing their motor to drive the shaft with a computer-
controlled stepping-motor, so that the angular velocity may be changed many times
per period of the modulation, Leal, private communication [1989]. We remark that
our techniques are valid for general, small frequency, time-periodic modulation pro-
tocols. We have chosen (MP1) — (MP3) as representative examples. The choice of
,(t) =1 for all ¢ in both modulation protocols is made with out loss of generality
because the equations are linear in the angular velocities. Finally, using (MP1) —
(MP3), we operate well within the range of angular velocities for which Ballal and

Rivlin [1976] report their results.

The introduction of the modulation protocols (MP1) — (MP3) makes the equa-
tions of motion for the tracer particles, (2.5), nonintegrable and puts their perturbed

equations in the form of an adiabatic dynamical system (see Introduction):

. _ Oy,
T = a_y(x’yaz)

y= —%%(x,y; z) (2:6)

Z =€,

where the dependence of ¢ on z is through the time-dependent functions 2; and 2,

as given by (MP1), (MP2), or (MP3). Since the modulation protocols are periodic
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in z = et, we use the Poincaré map
T., (z(zo)) _ (a:(zg +27r))
y(20) y(zo0 + 2m)

with zg € [0, 27), which gives a stroboscopic picture of the fluid domain and enables
us to isolate the main features of the nonintegrable flow in the next sections. We
remark that T,, is area-preserving. As for the notation in this work, z always
denotes the time-dependent value: z = et, and zp denotes some fixed value of 2.

One other concept we will use often in the remainder of this work is that of
an instantaneous streamline. The instantaneous streamline is the closed trajectory
the particle would execute if the system evolves with the value of z frozen at its
instantaneous value. Thus, it coincides with the orbit one would obtain in the steady
state flow with the constants {; and 22 equal to their value at the instantaneous
value of the slow time variable z that passes through the particle’s instantaneous
position. Of course, since particle paths in the modulated flow no longer coincide
with streamlines, this concept is a fictitious one; nevertheless it is widely used in
the literature on adiabatic dynamical systems, and we will find it helpful in our

discussions.
2.2. Location and Size of the Mixing Zone.

In this section, we isolate the region in the fluid domain in which mixing occurs
and discuss how its location and size can be optimized and controlled. We use the
term mixing loosely now, and remark that we discuss mixing from the mathematical
point of view further on. We also remark that, although we give numerical results
here for one particle over long time periods, the good mixing for patches of tracer
in the flows begins in the very first period, as we will see in the next sections. The
purpose of this section is to show how one can control the size and location of the

mixing zone.
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The three independent parameters which determine the location and size of the
mixing zone are the eccentricity of the bearing, €, the interval in which the time-
dependent ratio of the angular velocities of the shaft and the casing, Q(z) = %
varies, recalling that z = ¢t, and the modulation frequency, e. In the counterrotating
regime, we show that the largest possible mixing zone is obtained when these three
parameters are chosen such that: & ~ 0.1; Q(z) varies in an interval which is finite,
negative, and as large as possible, on the order of [-1,-60], as in (MP3); and ¢ is
moderately small, but not too small. With this choice of parameters the mixing
zone occupies virtually the entire fluid domain. We remark that islands in this zone
are negligibly small for this optimal choice of parameters and that we discuss them
in Chapter 3. Also, our € is the identical to the variable € in Ballal and Rivlin
[1976].

Although &, Q(z), and € are mutually independent parameters, the search for
the combination of these three parameters which maximizes the size of the mixing
zone requires that we study their effects simultaneously. For clarity, we begin by
considering the influence of the first two parameters, and maximizing the potential
area for mixing. Then we add to these considerations the influence of €, which
determines how much of the area potentially available for mixing is actually used.
We remark that this optimal combination of the three parameters can be determined
without any knowledge of the invariant structures in the mixing zone and with only
a minimal amount of numerical simulation.

Finally, we present the results of our numerical simulations for a geometry with

%f =7 = 0.3 at the end of this section. These results support the claims we made

In the course of our discussion, we shall observe that the use of continuous

modulation protocols gives us explicit control over the location and size of the
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mixing zone. Thus, although we focus on how to optimize the size of the mixing
zone, the theory we present and the type of data we collect also enable one to chose
a modulation protocol which achieves an alternatively specified location and size
for the mixing zone. In this sense, we provide a new tool for control over this aspect

of chaotic mixing.
Optimizing the choice of & and of the interval in which Q(z) varies.

As we mentioned in the introduction of this chapter, the (fictitious) instantaneous
stagnation streamlines sweep out a predetermined O(1) area in the fluid domain
during one period of the modulation protocol as Q(z) varies over a chosen interval,
e.g., the interval [—10,—2] with choice of (MP1). In the mixing zone, the theory
of adiabatic invariance and the extension of the KAM theorem are not applicable
because the assumption that those theories rely on, namely that the frequency of the
instantaneous steady state orbits be one order of magnitude larger, s.e., O(1), than
the modulation frequency ¢, ceases to be valid on and near stagnation streamlines,
which are zero frequency orbits. In fact, observations collected from theoretical and
numerical work on various model problems, see the discussion in the introduction
and the references cited there, suggest that tracer particles can explore most of this
region because there are very few barriers to their transport in this region. Hence
this is the region in which mixing can be expected to occur.
For (MP1) - (MP3), the region swept out may be specified exactly as:
(Y myu(ly »). (2.7)
z€[0,7] z€[0,x]

Because the area of the set (2.7) is to leading order the area potentially available
for mixing, we label region (2.7) as the potential mizing zone. We refer the reader

to Figure 2.3 for illustrations showing this zone.
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1.0

2n

Fig. 2.4. Actual mixing zone for & = 0.1, ¥ = 0.3, (MP1), e = 7. One initial

condition integrated for 20,000 modulation periods. We emphasize that we only
use these pictures to illustrate what area a fluid particle can sample; the results of
Chapters 2-4 concern mixing for all times especially the very short time intervals

(on the order of a few periods) which are of most interest in mixing studies.
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We tabulate the area of this zone as a function of both the parameter & and
the range over which the parameter {(z) varies in Table 2.4. The determination of
the area can be made analytically once one has found a numerical representation of
the instantaneous stagnation streamlines. As may be seen from the data, the choice
of &8 < 0.1 combined with prescribing Q(z) to vary in the largest possible finite,
negative interval during one modulation period maximizes the size of the potential
mixing zone.

We remark that symmetry in (MP1) - (MP3) about z = m, namely (z) =
Q27 — 29) for zp € (m,2x], implies that we only need to take the unions over
29 € [0,7] in (2.7). For more general protocols, the unions are taken over all 2o
between the two values of zy corresponding to an instantaneous separatrix which
locally (i.e., compared to the instantaneous separatrices for nearby values of z)
encloses a maximum area and an instantaneous separatrix which locally encloses a
minimum area, see Kaper and Wiggins [1991a]. Also the analysis for more general
protocols is most readily performed after one has found a canonical transformation
which brings the systems in a form such that the instantaneous saddle lies at one
point for all z. Furthermore, we remark that when we measure the area of this

region, we must be careful not to count the overlapping pieces in (2.7) twice.
Influence of the parameter e.

Until now, our considerations have only involved the parameters € and the time-
dependent ratio of the angular velocities Q(z = et). In the remainder of this sub-
section, fixing € = 0.1 and using (MP1), we show how the modulation frequency, ¢,
influences the size and location of the actual mixing zone. In particular, we show
that there exist two qualitatively different regimes — one, corresponding to small

values of ¢, i.e., € < 0.1, in which the actual mixing zone is considerably smaller
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than the potential mixing zone, and the other regime, corresponding to moderate
values of ¢, i.e., 0.14 < € < 0.34, in which the actual mixing zone is as big as the
potential mixing zone. We find a similar dependence on € using (MP2) and (MP3),
although the lower bound on the range of “moderate” ¢ is smaller for (MP3) than it
is for either (MP1) or (MP2) in the same geometry, see Figure 2.13 for an example.
We show how the value of this lower bound can be obtained analytically before ex-
periments or numerical simulations are performed from knowing the thickness of the
minimal backflow region in the course of our analysis of the regime corresponding to
moderate values of . Furthermore, we illustrate what the transition, corresponding
to € increasing from being less than 0.1 to being approximately 0.14 in this case, be-
tween the two regimes looks like. We discuss the regime of small € first, describe the
transition, and then present the results for the regime corresponding to moderate

values of €.

For small values of € and zp = 0 mod 2, the theory of adiabatic invariance and
an extension of the KAM Theorem (see Kruskal [1962] and Arnold [1963], resp.)
state that many orbits in the backflow region (region II on the Poincaré section
II,,) will remain in the region II for all times. In particular, many orbits have a
perpetually conserved adiabatic invariant and lie on invariant tori. Hence a large
part of the backflow region appears to be a regular zone, and since region Il is a part
of the potential mixing zone, the actual mixing zone is smaller than the potential
zone (2.7).

These theories, along with some numerical results, enable us to justify and
quantify the above statements as follows. The leading order term of the perturba-
tion series in the small parameter € for the adiabatic invariant of an orbit in the
instantaneous backflow region is exactly the area enclosed by the instantaneous pe-

riodic streamline it is on. For example, if one starts an orbit in the backflow region
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at a given value of the slow time z, say 2, then the leading order term of its adia-
batic invariant is the area Ap,(z;1) enclosed by the instantaneous periodic streamline
Spo that it starts out on. Howeyer, as we discussed in the previous section, because
the backflow region grows and decreases in size periodically during the modulation,
only those orbits for which Apo(21) is sufficiently less than the minimum size of the
backflow region over all z (see Table 2.2 for an example with € = 0.1 and (MP1)
in which the area is 0.4716) stay in region II for all times and have an adiabatic
invariant. We can use Arnold’s extension of the KAM theorem to get slightly more
information since the modulation is periodic in z. In particular, the theory states
that most of the orbits for which Apo(z1) is sufficiently less than the size of the
minimal backflow region lie on invariant tori which fill all but some exponentially
vanishing, O(e~¢) where c is a positive constant, part of the interior of the backflow
region.

Observing that the backflow region is at its smallest for z = 0 mod 27 with the
choice of any of (MP1) - (MP3), we conclude that most of the orbits which are in
the minimal backflow region at the slow time z = 0 lie on invariant tori and have
a perpetually conserved adiabatic invariant. We also conclude that the minimum
backflow region is what we have referred to as a regular zone since the irregular or
stochastic part of it is at most O(e™¢), see Arnold [1988].

Therefore, no mixing occurs in the interior of the O(1)-sized minimal backflow
region, and we exclude it from the actual mixing zone. We show a case in which the
minimum backflow region contains a large regular zone in Figure 2.6. We remark
that we discuss regular zones in detail in the section with the same name, i.e.
Chapter 3.3.

Finally, as we discussed in the previous section, most of the orbits for which 4,

is larger than the minimal size of the backflow region may be expected to cross an
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instantaneous stagnation streamline for some z. The adiabatic invariants of these
orbits change after each crossing, and they cannot lie on invariant tori. These orbits
lie in a layer, ¥, just inside the minimal backflow region. The thickness of I, see
Figures 2.5 and 2.6, which cannot be obtained from the theories cited above, is
exactly what we need in order to completely determine the location and size of the
mixing zone for small e.

¥, has an annular shape. Its inner boundary is the outermost (or last) Arnold
torus in the minimal backflow region, and on the outside it is adjacent to the
potential mixing zone. Thus, as we see in the figures, it forms part of the actual
mixing zone. We report the values for the thickness of ¥, as measured along the
z-axis in the wide part of the gap between the shaft and the casing, obtained from
our numerical simulations for various of the canonical cases in Table 2.5. The data
indicate that the width of £, is O(¢) as € — 0.

While a general theory is not yet available to give the asymptotic scaling of X,
for € — 0, Neishtadt and coworkers, private communication [1990], have extended
their work and that of Cary, et al. [1986], and shown for a model problem that the
layer which corresponds to I in this problem is O(e?|1n 1|?) as € — 0. One can try
to fit the data from one case (€ = 0.1, ¥ = 0.3, (MP1) with various values of ¢ for
€ < 0.14) - see Table 2.5 - to this functional dependence on ¢, however, the fit is
not good. This completes our discussion of the location and size of the mixing zone
in the first regime, that corresponding to € < 0.1.

Now, we study what happens in the transition regime, t.e., as € increases to
approximately 0.14 in the case we consider. We observe that because the minimal
backflow region has a kidney-like shape and the layer ¥, is inside its boundary,
there exists some critical value of € at which the ¥, is as thick as the half-width of

the backflow region. The plots and data show that the regular-appearing backflow
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Fig. 2.5. Actual mixing zone for & = 0.1, ¥ = 0.3, (MP1), ¢ = £5. One initial

condition integrated for 10,000 periods.
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Fig. 2.6. Actual mixing zone for & = 0.1, 7 = 0.3, (MP1), ¢ = 25. One initial

condition integrated for 10,000 periods. Also see invariant tori.
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region becomes smaller as € grows from being very small (less than 0.03), looks
like a tiny island for € & 0.13 (see the plot for 2% in the figures), and ceases to

exist altogether for ¢ > 0.14. Thus, this critical value is approximately ¢ = 0.14.

Furthermore, we remark that the transition appears to be smooth.

In the second regime the actual mixing zone is at least as big as the potential
mixing zone. For 0.14 < e < 0.34, our numerical simulations show that the entire
backflow region belongs to the mixing zone. We illustrate the results of two typical
cases in Figures 2.7 and 2.8. Furthermore, we remark that if one uses (MP3), the
lower bound on this interval of “moderate values” of € is smaller than that obtained
for either (MP1) or (MP2). This is because the smallest value of € for which X, is
wider than the minimal backflow region using (MP3) is less than that when using
(MP1) or (MP2). From Figure 2.13, we can see that the lower bound for (MP3)
with the given values of € and 7 is less than 0.14.

We round off our discussion of the parameter ¢ by showing, for the optimal
choice of parameters, that the actual mixing zone is slightly bigger than the potential
one. Of course, the conclusions made in the above discussion of the layer £, apply
with suitable modifications to the layers around the inner and outer boundaries of
the mixing zone. As we discuss in Chapter 3.3, most orbits in the regular zones
adjacent to either the shaft or the casing, i.e., in region I or III, lie on invariant tori
(since the modulation is time-periodic) and have adiabatic invariants (which is true
for all slow-time modulation protocols). However those which lie within some layer
(of width O(e)) just inside and outside, respectively, of the extremal instantaneous
stagnation streamlines I'° and A™, which form the inner and outer boundaries of
the potential mixing zone (2.7), are part of the mixing zone. So in fact, the actual
mixing zone is slightly larger than the set (2.7). We refer the reader to Figure 2.7

for a representative Poincaré section.
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Fig. 2.9. Actual mixing zone for & = 0.1, 7 = 0.3, (MP1), ¢ = 2Z. One initial

condition integrated for 20,000 periods.



4 .6 .8 1.6 1.2 1.4 1.6 1.8 208 2.2 2.4 2.6
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condition integrated for 20,000 periods.
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The theory and data therefore establish the claims we made at the beginning
of this section. By chosing a small value of the eccentricity, € < 0.1, by prescribing
that Q(z) vary over a large negative interval such as the one in (MP3), and by
using a moderate, but not too small, modulation frequency, we can obtain a mixing
zone which is as large as possible for the counterrotating eccentric journal bearing.
From our steady state measurements we saw how to optimize the potential mixing
zone so that it occupies virtually the entire fluid domain, see Figure 2.3b, and from
adding the considerations involving the parameter ¢, we have shown that the actual
mixing zone is slightly bigger than the potential one with this optimal choice of
parameters, see Figure 2.12.

We remark that the results for geometries with different values of 7 € (0,1) can
be treated in exactly the same fashion we have treated the case of # = 0.3 here, and
the results should be qualitatively similar. We also remark that we deal with the

question of efficiency of mixing within the mixing zone in Chapter 3.1.
2.3. Transport theory.

In the time-modulated system, the amounts of fluid which are in the various regions
(which we define shortly) of the mixing zone oscillate periodically and, as a result
of incompressibility, many fluid particles are forced to cross the instantaneous stag-
nation streamlines I'* and A?. For example, as we see from Figure 2.3 and Table
2.1, the area enclosed by I'? increases as I'* sweeps outward away from the shaft
for z increasing from 0 to 7, and then that area decreases for the second half of
the modulation period as I'* sweeps back inward toward the shaft. Thus, a group
of fluid particles, which are initially outside of '*=? and which account for an area
equal to the difference between the maximum and the minimum areas enclosed, are

ingested during the first half of the modulation, and an equal amount (although
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by no means the same particles necessarily) are ejected from it as z increases from
7 to 2x. Similarly the amount of fluid in the other regions oscillates periodically,
and fluid is transported into and out of them across the instantaneous stagnation
streamlines in each period of the modulation. Of course, since the flow is time-
dependent, particle paths do not coincide with streamlines anymore, but we shall
show that the instantaneous stagnation streamlines guide us in determining the
natural boundaries between the regions in the mixing zone.

In this section, we discuss the structures upon which the transport theory is
built, such as the fixed point and the homoclinic tangles of the Poincaré map, de-
fine three special regions in the mixing zone, identify the mechanism - turnstile
lobes — by which the transport between these regions occurs, show how the inter-
twined tangles form the template from which quantitative information about this
transport can be obtained, and show that material interfaces are stretched at least
exponentially in time.

The tangles one observes in slowly-modulated (singularly-perturbed) systems,
such as ours, are both qualitatively and quantitatively very different from those
studied in weakly-perturbed systems, i.e., systems to which the usual Melnikov
theory applies and about which much has been written (see Wiggins [1991] and the
literature cited there for examples). Furthermore, the structure of the tangles in
slowly-modulated systems has only recently been understood (see Kaper and Wig-
gins [1991a] and Elskens and Escande [1991]). Therefore, we describe the relevant
structure in detail in this and the following sections. The differences between the
tangles in the two types of systems are especially striking in the measurements of
the stretching and transport quantities which we give in these sections.

Chief among the differences, we remark that the turnstile lobes are very long

and thin - of length O(2) and area O(1) so that their average width is O(¢) asymp-
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totically as ¢ — 0, as we show in Chapter 3.1, and as we shall demonstrate each
successive image (both forward and backward) of a turnstile lobe is longer and
thinner than the preceding image, while having the same area due to the area-
preservation property of the Poincaré map. This stands in stark contrast with the
usual (regular-perturbation) systems in which the lobe area is O(€). Thus, besides
giving us the results listed in the previous paragraph, these features enable us to re-
fine the notions in the literature that transport occurs along unstable manifolds. As
we see in our numerical simulations and in the experiments and numerical simula-
tions with blinking protocols, tracer fluid appears to follow the unstable manifolds,
deforming itself into a kind of fattened-up unstable manifold, i.e., a strip of tracer is
thicker than the corresponding segment of the unstable manifold (at least for finite
times). In the following sections, we show that these fattened-up regions are lobes
for continuous modulation protocols and measure their thickness using the trans-
port theory and the special features of homoclinic tangles in adiabatic dynamical

systems.

In addition, the singular-perturbation nature of these modulated flows implies
that lobe area is the inter-regional flux per half period, and, as a result, the transport
in these flows is more complicated than in the usual case in which transport is
studied every full period only. Finally, although these three major differences do
not exhaust all of them, we mention the fact that the turnstiles permeate the entire
mixing zone, causing the tangle to function as its “backbone,” because the tangle
sweeps out the entire, (1) separatrix-swept area, which is also in marked contrast
with the usual, regular-perturbation case where the turnstile lobes only cover some

O(e¢) fraction of the stochastic layer.

We identify the relevant structures in section 2.3.1 and present the transport

theory in sections 2.3.2 and 2.3.3. Section 2.3.4 contains our results on the stretching
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of interfaces. In Chapter 3.1 we develop analytical estimates for the dimensions
— areas, lengths, and average widths — of these features using newly-developed
asymptotic theory (see Kaper and Wiggins [1991a] and Elskens and Escande [1991])

which applies when e is sufficiently small.
2.3.1. Structures governing stretching and transport.

The saddle stagnation point of the steady flow with z = 2z, persists as the saddle
stagnation point X(zo) of the Poincaré map T, i.e., as a periodic point of the flow,
see Wiggins [1988] for an exposition of the theory. Since X¢(zo) lies near Xo(2¢), one
can construct an asymptotic expansion in powers of € for its position as a function
of z. We perform this expansion in Appendix B. From the calculations presented
there, we know that the leading order term is Xy(zp) and that the first correction
term is O(e) in the y-component and O(€?) in the z-component. From symmetry
considerations (or, alternatively from the asymptotic expansion in the appendix),
we know that X(zo) lies on the z—axis for zp = 0 mod 27 and for zp = 7 mod 2.
We identify the stagnation point of T,, on a Poincaré section with z9 = 0 mod 2«
in Figure 2.14. We remark that when we refer to time, we refer to the discrete time,
n, of the Poincaré map.

If one were to watch the experiment continuously as z increases from z¢ to
29 + 27, instead of sampling it stroboscopically with the Poincaré map, one would
see that the saddle executes a periodic orbit v(z). This closed path lies in the fluid
domain inside a strip of width O(€) around the segment [Xo(z0 = 7), Xo(20 = 0)]
oh the z-axis in the narrow gap between the shaft and the casing in the mixing
zone. We show the closed path the saddle executes for several values of € in a
representative geometry in Figure 2.15.

Introduction of the time modulation breaks the coincidental stable and unsta-
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Fig. 2.14.a. The unstable manifold I'V(X(0)) for the flow with e = 2%, & = 0.1,
7 = 0.3 and (MP1).
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Fig. 2.14.b. The unstable manifold AY(X,(0)) for the flow with € = Z—g, € =0.1,
7 = 0.3 and (MP1).
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Fig. 2.15. The orbit y(z) for various values of € with € = 0.1 and 7 = 0.3 and

(MP1). The curve with the largest maximum value of y is for ¢ = 2% and those
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ble manifolds (stagnation streamlines) A% and I'*° and causes them to intersect
transversely. To be precise, there exist four infinitely long distinguished streaklines
(manifolds) which intersect in two intertwined homoclinic tangles. Two of these
consist of all of the points in the fluid domain which are forward (n — +00) asymp-
totic to X¢(z0). We label these I'S(X(2p)) and AS(X(20)) to remind ourselves
that that they are the stable manifolds of X.(29) and remnants of the branches of
the stable manifolds of X¢(2¢) which coincide with I'*° and A*9, respectively. The
other two are backward (n — —o0) asymptotic in time to X(z9). We denote these
last two by I'V(X(20)) and AV(X,(20)), because they are the unstable manifolds of
Xe(z0). Although one only observes the unstable manifolds in experiments, one can
obtain the stable manifolds from symmetry considerations for special 2y (20 = 0,7
mod 27 for (MP1)-(MP3)) and in general by performing a second experiment in
which the directions of the rotation of the two cylinders are reversed.

Going outward on I'V(X(2z)) from X(z) there is a point ko at which
Y (Xe(20)) first intersects I'S(X(29)). Similarly, leaving from X.(2) along the
manifold AY(X(20)), we see that AU(X(29)) first intersects AS(Xe(20)) at a point
on the z-axis which we label kg. We label the segment of I'V(X,(z)) between
X(2z0) and hg by U[X(20), ho] and that of ['*(X.(z)) between X¢(zo) and ho by
S[X(20), ko). Similarly, U[X(20), ko] denotes the segment of I'V(X,(20)) between
X(z0) and ko, and S[X(20), ho] denotes that of I'S(X(z0)) between X(z9) and
ko. See Figure 2.16. h¢ and kg are special, or primary, homoclinic points p in the
sense that U[X(z),p] and S[X.(z0),p) intersect only in the point p.

With the choice of zp = 0 or 0 mod 27, the symmetry of the Poincaré map:

n— —n

I =T

y— -y
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Fig. 2.16. The segments of the unstable manifolds, the pips h; for : = -1,0,1,

and the region boundaries with & = 0.1, # = 0.3, e = 2%, and (MP1).
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Fig. 2.16.b. A sketch to show how the area inside R1 increases as z increases from

0 to =«.
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Fig. 2.16.c. A schematic sketch of the homoclinic tangle formed by the Apair.
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or 0 mod 27, the symmetry of the Poincaré map:

n—-n
Tz
y—=-y

1s such that the unions

Bl,2 = U[XE(ZO), ho] U S[XE(Z()), ho]
B3 = U[X<(20), ko] | S[Xe(20), ko]

naturally divide the mixing zone into three regions in the time-periodic flow. Region

(2.8)

1 is the annular domain bounded on the inside by the outermost Arnold torus of
the family of tori which make up the regular zone adjacent to the shaft and on
the outside by B, ;. The kidney-shaped domain in the middle of the mixing zone
bounded on the outside by Bj 2 and B3 is region 2. To completely define it,
however, we recall from the previous section that there are two possibilities. Either
€ is large enough, e.g., € > 0.14 in the case when & = 0.1, # = 0.3, and one uses
(MP3), such that the entire domain between B; 2 and B3 is part of the actual
mixing zone, or € is small and there exists a regular region occupying part of the
minimal backflow region. In the former case, the entire kidney-shaped domain
is region 2, and in the latter case, region 2 is an annular domain and the inner
boundary is the outermost Arnold torus in the family of tori which make up the
regular zone. Finally, region 3 is also an annular domain bounded on the inside
by B2,3 and on the outside by the smallest Arnold torus in the family of tori in
the regular zone adjacent to the casing. Thus, the boundaries B; 2 and B; 3 act
as the watershed between the three regions. We refer the reader to Figure 2.16 in
which these regions, which we label R1, R2, and R3, are identified. One can identify
three regions and their natural boundaries for every value of zy in [0,27), but for

simplicity, we focus only on these two choices of zg.
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These regions are remnants of those from the steady flow identified in section 2.
In contrast to the situation in the steady state, however, transport between the three
regions is possible in the time-modulated case. Before showing how the structures
we have just identified form a template from which we can determine stretching and
transport quantities, we introduce one final cbncept, that of a turnstile lobe.

Invariance of the manifolds implies that homoclinic points are mapped to
homoclinic points under T, and its inverse T;-!. In particular, principal homo-
clinic points are mapped to principal homoclinic points, see Rom-Kedar and Wig-
gins [1990b], and thus, the streaklines I'S(X(29)) and I'V(X,(2¢)) intersect each
other infinitely many times as X.(zo) is approached from both sides along the
stable manifolds, forming a homoclinic tangle, as do the streaklines AS(X(zo))
and AY(X(z0)). The segments of I'’(X(29)) and TV(X(z9)), which we label
S[hi, hit1] and Uk, his1], between any two adjacent principal intersection points k;
and h;4+1, where 7 € Z, bound an area on the Poincaré section which is called a lobe.
Similarly, the segments S[k;, ki+1] and Ulki, kiy1] of AS(X(20)) and AY(X(20))
form a lobe. Now, because the system is Hamiltonian, T;, is an area-preserving
diffeomorphism of the fluid domain to itself. Thus, one can show that all of the
lobes of a given tangle, i.e., of the I'-tangle or of the A-tangle, have the same area.
We give the area of the lobes in both tangles in Chapter 3.1.

The lobes which are defined by the segments between h_; and hy and those
between h_; and h_;, as well as the corresponding ones between k_; and ko and
between k_; and k_; of the A-tangle, play a special role in the stretching and

transport of fluid. We refer to them as turnstile lobes, see Figure 2.17.
2.3.2. Transport in Half Period Intervals.

The mechanisms convecting particles from one region to another are the turnstile
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Fig. 2.17.a. The turnstile lobes and their intersections with € = 0.1, ¥ = 0.3,
e = 2% and (MP1).
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Fig. 2.17.b The turnstile lobes and their intersections with & = 0.1, 7 = 0.3,

e = 2 and (MP1).



-152 -

Fig. 2.17.c The turnstile lobes and their intersections with & — 01,7=03,e=2x

20
and (MP1).
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lobes. As we stated in the previous subsection both the I'- and the A-tangles have
a pair of turnstile lobes. Now, in this and the next section, we prove that the pair of
lobes Ly 3(1), defined by h_; and h_;, and Ls1(1), defined by A_; and ho, govern
the transport out of and into R1, and the pair of lobes L; 3(1) and L3 (1), defined
by the pairs k_, with k_; and k_; with ko, govern the transport into and out of
R3.

The usual way to proceed, as is done in the transport studies for weakly-
perturbed systems (see, for example, the review in Wiggins [1991]), is to compute
inter-regional transport every unit period of the flow. However, in order to com-
pletely determine the dynamics of separatrix-crossing orbits in slowly-modulated
systems, one must analyze the mechanism for inter-regional transport on a half-
period basis.

Indeed, we find that the flux across the inter-regional boundaries per half period
is given by the turnstile lobes. Furthermore, upon examining the turnstile lobes
every half period, we readily see that the continuous modulation causes the turnstile
lobes to be the mechanism by which tracer patches deform into long, thin spirals
and elaborate lamellar structures. Thus, the singular perturbation case is markedly
different from that usually studied in which full period transport is the only quantity
of interest. This work represents the first time analysis from adiabatic dynamical
systems theory is brought to bear on a fluid mechanical problem, except in the
conference proceedings Kaper and Wiggins [1988]. In this section, we show that
half-period transport is a natural technique to quantify stretching and mixing in
quasi-steady Stokes’ flows. We remark that the half-period analysis we present here
is an extension of the methods developed in Elskens and Escande [1991] and Kaper

and Wiggins [1991a] for general slowly-varying planar Hamiltonian systems.

Before giving the details of this transport, we note that uniqueness of solutions
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implies that initial conditions on stable and unstable manifolds can not jump ahead
of each other. This orientation preservation implies that the ordering of points on
them as the system evolves is fixed by their initial ordering. Thus, the segments of
manifold in between the adjacent homoclinic points defining the lobe always remain
between the two intersection points as the system evolves, i.e., the boundaries of
the lobes are invariant. This result enables us to give the following description of
the transport process:

During the first half of the modulation period, the areas of R1 and R2 increase,
while that of R3 decreases. In particular, only those tracer particles which are in
lobe L, 1(1) (which is a subset of R2 and R3) at time z = 0 mod 27 enter into R1 in
one half of a period. Similarly, only those particles which are in lobe L3 5(1) (which
is a subset of R3) at time z = 0 mod 27 will be in R2 and R1 at time z = 7 mod
27.

An analogous result is true for the remainder of the modulation period. During
the second half of the period, the above is reversed, because the areas of R1 and
R2 decrease, while that of R3 increases. The mechanisms by which fluid must exit
these regions are turnstile lobes. In particular, only those tracer particles which are
in lobe Ly 2(1) (which is a subset of R1 ) at time z = 7 mod 27 enter into R2 and
R3 during the second half of the modulation period and lie entirely in those regions
at time z = 0 mod 2x. Similarly, only those particles which are in lobe L, 3(1)
(which is a subset of R2 and R1) at time z = 7 mod 27 will lie completely in R3 at
time z = 0 mod 2.

To illustrate the above statements, we examine the case in which € = 0.1,
7 =0.3, e = 2%, and (MP1) is used. We cover the lobe L;1(1) in R2 (and partially
in R3) with a uniform grid of points (spacing= see data in folder) at time z = 0,

as shown in Figure 2.17a. We then show in Figure 2.17b that the tracer lies inside
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R1, exactly in the spiral-shaped turnstile lobe TO'I‘ L;,1(1), at time 2z = 7. In Figure
2.18, we blow up the region marked in Figure 2.17b so that the boundaries of the

thin, lamellar striations are clearly visible.

Furthermore, we remark that two cases are possible, one in which L; (1) N
L3 2(1) # 0, as shown in Figure 2.17, and the other in which L, ;(1) N L3 2(1) = 0.
However, for ¢ < 0.3 in all of the cases we analyzed the former holds true. This
explains why we said above that L3 3(1) is a subset of R2 and R3, among other
things. The results we present in the remainder of this paper apply in both cases;
one need only be slightly careful about justifying the formulae we use in the former

case, as we show in the next section.

2.3.3. Transport in Intervals of Unit Periods.

In this section, we look at the inter-regional transport proéess from the usual,
per-unit-period point of view and obtain results giving the probability that an
orbit initially in one region can be found in another region after any period of
the modulation. Rather than treat this problem in its full generality immediately,
however, we first consider the particular problem of what fraction of tracer initially
in R3 gets transported to R1 in each period of the modulation. One may then
compute the other eight quantities T; j(n) for ¢, = 1,2,3, which can be used
to give all of the other probabilities, using the same procedure as we do here for
Ts,1(n) and the conservation equations. These equations, five in all for the nine

independent quantities T; j(n) for ¢,j = 1,2,3, express the conservation of tracer
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Fig. 2.18.a Transport in half-period intervals. At z = 0, turnstile lobe in the case
€=0.1,7=0.3, e= 2%, with (MP1).
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Fig. 2.18.b. Image of above turnstile lobe at z = 7 showing that all of the fluid is
in R1.
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Fig. 2.18.c. Blowup of Fig. 2.18.b to show that all of the points are inside the

image of the turnstile lobe at z = .
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Fig. 2.18. Same as Fig.2.18.c.
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Fig. 2.18.e. Schematic of Fig. 2.18.b. We only show one of the eight spirals

inward for clarity.
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and the conservation of the areas u(R;) for : =1,2,3:

Z(T.-,,«(n)_T.-,,-(n- 1)) =0 i=1,2,3
N (2.9)
D (Tij(n) = Tij(n—1))=0 j=1,2,3

i=1

Illustrating another way in which the structures identified in the previous sec-
tions can be used and extending the analysis of the mechanism by which patches of
tracer are stretched and folded, the solution to this problem represents the proba-
bility that an orbit, initially rotating in the same sense as the casing, changes the
direction it is flowing in as a function of the modulation period. To define the prob-
lem precisely, we assume that the tracer is uniformly concentrated in R3 initially,
i.e., at the slow time z = 0. The question we answer, then, is: how much tracer is
in R1 at time 2z = 2n7 for n = 1,2,...7 We label this quantity as T3 1(n).

Before proceeding, we must redefine the turnstile lobes to eliminate the intra-
turnstile overlap areas L; 2(1) N Ly 3(1) and Ly 3(1) N L32(1). In particular, we

set:

1;;1,2(1) = Ll,z(l) NR1

.Zz,](l) = Lz,l(l) - Lz,l(l) n Ll,z(l)
. (2.10)
L, 3(1) = Ly 3(1) N (R2UR1)

L32(1) = La2(1) — L3 2(1) N L2 3(1)
The excluded parts of the original turnstile lobes, although they get mapped across
the inter-regional boundaries during the first half of the modulation period, get
mapped back across before the end of the period to the region they were in at the
beginning of the period. For example, during every period the fluid in L, ;(1) N
L,,2(1) gets mapped from R2 into R1 and back again. Therefore, the orbits in these

overlapping regions change their orbit type (i.e., rotate in the same sense as the
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shaft or the casing, or are in the instantaneous backflow region) an even number of
times in each period, and the parts in the redefined lobes do so an odd number of
times.

Now, the fact that I'S cannot self-intersect implies that L; 5(1) must lie in
L, (1) and R1, because as soon as it crosses 'V between X(zp) and h; it does so
at the pip which defines the boundary of L, 2(1). Thus, the overlap region is large,
in fact complete in the limit of ¢ — 0 as we will see in the next chapter.

In addition, exclusion of the intra-turnstile overlap, which may characterized
by saying that we exclude, for example, from L, (1) the (large) piece of the lobe
Ly 2(1) “nested” inside L3 (1), isolates the long, thin, folded structure of im(l)
that gets transported into R1 at the end of each cycle. We now show that it is
responsible for continuing the stretching and folding of the lamellar tracer structure
discussed in the previous section as z increases from z = 7 to z = 27 and in each
subsequent period.

L;,1(1) directly transports an amount of fluid equal to (L, 1(1)N L3 5(1)) from
R3 into R1 during each period, where u(L) denotes the area of the planar set L. In
fact, only the tracer contained in the intersections of L, ;(1) with T*~* L5 5(1), for
k=1,2,...,n—1,n, can enter R1 at the n-th iteration.

However, the intersection L3 1(1) N L3 2(1) is only uniformly filled with tracer
fluid initially. At later times, the concentration of tracer is not uniform. Further-
more, although the fluid in this and the other intersections is exactly what we need,
not all of it is tracer fluid. Thus, the problem requires us not only to identify the
flux mechanism, as we have done so far, but also to find a way to determine the
content of the lobes.

Fortunately, having redefined the turnstile lobes, we can directly use the trans-

port theory presented in Rom-Kedar and Wiggins [1990b] to determine the lobe
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content. The two main quantities we need are the amount of tracer which is in the
lobes L 1(n) and Lj2(n), which we denote by L} ,(n) and L} ,(n) following the
notation of Rom-Kedar and Wiggins [1990a], where the superscript 3 indicates that
we are following the tracer which was initially uniformly distributed in R3. For
n > 1, we find:

“ (zg,l(n)) =p (i:z,l(l) n f43,2(1))

" "E—:l {“ (Tok-"fzz,l(l) n L3,2(1)) —p (T(f’”zz,l(l) n I:z,s(l))}
k=

1

I (i?,z(n)) = U (1~31,2(1) n ia,z(l))

+ 3 {b (T E1a(0) N Lo (1)) — 4 (TE~"E1,2(1) N E(1)) }
k=1

(2.11)

At first glance it may seem that, in addition to redefining the turnstile lobes
as we did above, we also must modify the transport theory, because of the fact
that part of L (1) lies in R3 and part of 132,3(1) lies in R1. However, the above
formulae are exactly the necessary ones because the intersections with L3 5(1) and

f/2,3(1) are accounted for from the first period onward.

Next, the change in the amount of tracer in R1 at the n-th cycle is
Tya(n) = Tsa(n = 1) = p (£31(n) — u (B2 2(m)) (2.12)

Using (2.11), we evaluate the right hand side. Finally, we write a (telescopically-

collapsing) sum using the above difference formula to obtain T3 ;(n) strictly as a
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function of T3 1(0) and the lobe content expressions (2.11):

T3,1(n) = T3,1(0)
n-—1

+ 3 (0= m) {i (L2a) T Eaa(D)) - (E2a() N T3 E2a(1)) }.
™ (2.13)
Since by assumption all of the tracer is in R3 initially, T3 1(0) is identically zero,
and (2.13) reduces to

Ty 1(n) = 'f(n ~m) {u (Ban(W) N TP Es.2(1)) = 1 (21 () N TP Eas(1)) } -

m=1

(2.14)
2.3.4. Exponential Stretching of Material Interfaces and Lobes.

One of the most desirable features for good mixing is the creation of a large interface
between the regions in which different species lie. In quasi-steady Stokes’ flows, it
has been shown that material interfaces can be stretched exponentially in time. The
very recent work of Muzzio, et al., [1991], for example, presents a systematically-
collected set of data quantifying stretching rates for the eccentric journal bearing
subject to blinking protocols. Further examples and references may be found in
Ottino [1989]. The results reported in these works rely on experimental data and
the numerical calculation of Lyapunov exponents. Although the stretching rates
obtained from these techniques have been well-correlated to the flow parameters,
no theory has been developed to date with the power to predict these rates before
an experiment is run or before any Lyapunov exponents are calculated.

In this section we provide such a theory for the stretching of interfaces and
lobes in the eccentric journal bearing subject to continuous modulation protocols.
Using the notion of Birkhoff signatures and the lobe dynamics theory presented

in the previous subsection, we obtain exponentially growing lower bounds on the
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stretching rates for both interfaces and lobes. The numerical data we collected from
simulations with O(10°) points in typical cases agree with our analytical expressions
and are reported in Chapter 3.1. Finally, we show theoretically that the rate at
which a patch of tracer fluid is stretched asymptotes to some constant rate after the
first several periods. The actual stretching rates predicted by our theory for patches
in continuously-modulated flows appear to be similar to those reported in Muzzio,
et al., [1991] for blinking flows. We discuss reasons for this apparent similarity in
Chapter 4. We begin our discussion with interfacial stretching and then derive from

the results presented there further results for the rate at which lobes are stretched.

Birkhoff signatures are ideally suited to demonstrating that material interfaces
stretch at exponential rates. Relying on the invariance of the stable and unstable
manifolds, they represent a compact way to encode the relevant data about homo-
clinic tangles. We now show how they may be used to yield quantitative information

in quasi-steady Stokes’ flows.

We begin by illustrating schematically in Figure 2.19 on a simple example
how the unstable manifold winds around the stable manifold, forming a homoclinic
tangle, as the fixed point, X, of the Poincaré map is approached. The segments
between the principal intersection points hp and hp constitute the fundamental
pattern, or “basic signature,” which gets repeated every iteration of the Poincaré
map in the following sense. As we stated in section 2.3.1, pip’s get mapped to pip’s.
In particular, Toh; = hiyo for all i € Z, where this lower bound is conservative,
but rigorous. Now, as we saw in the previous section, the segments of the stable
and unstable manifolds between pip’s are mapped to the appropriate segments
between the forward images of the pip’s under the action of the Poincaré map
in such a way that the relative ordering of initial conditions stays the same, due

to uniqueness of solutions. Therefore, from the basic signature we can obtain a
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sequence of signatures which schematically (and topologically) encode the entire
tangle. In this example, as we go from h; to h; along WY (X,(20)), U[h1, h2] arches
back toward h¢ and intersects S[ho, h;] in two secondary homoclinic points, s; and
s2. Because s; and s; lie on S[hg, h1], we know that s3 = Tos; and s4 = Tys2 are
on the segment S[hy, h3] and that Ulhs, h4] intersects S[h2, k3] in those two points.
Therefore, Ulhs, h4] must wind around U[h,, h;] as sketched in Figure 2.19 because
the unstable manifold cannot self-intersect. Following Abraham and Shaw [1989)],
we refer to the segments of WY(X(z)) and WS(X(2)) between hy and hy as
the second signature. This fundamental process, i.e., U[H2i+1, h2i+2] intersecting
S[hai, h2i+1] and winding back to ho around the previous segments of the unstable
manifold (creating higher order homoclinic points), repeats itself for every : > 1.
Furthermore, this process implies that the interface is stretched by a factor of at
least twice the length of U{h,, ko] each iteration because the pieces of the segments
which wind back are at least as long as the “finger” of U[h,, h2] arching back. Thus,
denoting the length of a segment Ulhy, h141] by {(U[h1, h1+1]), we have:

[(U[k2is1, h2iga]) > 2°U(U[Ry, h2)),

forall i € Zt.

Using the concepts illustrated on this simple example, we now analyze a typical
case in the counterrotating eccentric journal bearing. For the parameters € = 0.1,
7 = 0.3, e = 2%, and (MP1), we focus on the tangle formed by AS(X.(z)) and
AY(X(20)). The basic signature for this tangle shows that U[h;, k2] and S[ho, k1]
intersect in many more (18) secondary homoclinic points. Thus, the long length of
these segments gets stretched exponentially in time by the above inequality. This
also implies that the length of a lobe (which we define carefully in the next chapter)

grows exponentially in time.
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Fig. 2.19. Basic and second Birkhoff signatures for the simple example of section

2.3.4.
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We conclude this chapter by observing that all of the results we have obtained
about stretching are independent of how small € is. We now turn our attention to

further results which are asymptotic for € — 0.
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é Q area of A (+ 4 x10~%)
0.1 -1 0.1231
0.1 -2 0.2404
0.1 -10 0.9586
0.1 -20 1.4563
0.1 —60 2.1725
0.3 -2 0.1406
0.3 —10 0.6778
0.5 —0.2 0.0253
0.5 -1 0.0492
0.5 -2 0.0924
0.5 -10 0.4614
0.5 —60 1.1297
0.75 —0.2 0.0121
0.75 -1 0.0261
0.75 -2 0.0497
0.75 —10 0.2205
0.75 —20 0.3205
0.75 —60 0.4483

Table 2.1: Area of region A in the steady state flow domain
as a function of & and Q. The total area inside
the fluid domain is = 2.8588.

€ Q area of B (+ 4 x10~%)
0.1 -1 0.2774
0.1 -2 0.4716
0.1 -10 0.8777
0.1 -20 0.7909
0.1 —60 0.4477
0.3 -2 0.9752
03 -10 1.5529
0.5 -0.2 0.8314
0.5 -1 1.2316
0.5 -2 1.5306
0.5 -10 2.0334
0.5 —60 1.6509
0.75 -0.2 1.8971
0.75 -1 2.0982
0.75 -2 2.2638
0.75 -10 2.5030
0.75 -20 2.4626
0.75 —60 2.3714

Table 2.2: Area of region B in the steady state flow domain

as a function of & and §).




-170-

é Q area of C (£ 4 x10~%)
0.1 -1 2.4584
0.1 -2 2.1468
0.1 —10 1.0225
0.1 -20 0.6117
0.1 —60 0.2386
0.3 ~2 1.7431
03 -10 0.6282
0.5 —-0.2 2.0021
0.5 -1 1.5780
0.5 -2 1.2358
0.5 -10 0.3641
0.5 —60 0.0783
0.75 -0.2 0.9496
0.75 -1 0.7346
0.75 -2 0.5453
0.75 -10 0.1353
0.75 —-20 0.0757
0.75 —-60 0.0392

Table 2.3: Area of region C in the steady state flow domain
as a function of & and Q.

é protocol area (£10~°) % of total area
0.1 MP1 1.643 57.5
0.1 MP2 2.007 70.2
0.1 MP3 2.497 87.3
0.3 MP1 1.514 53.0
0.5 MP1 1.150 40.2
0.5 MP3 2.170 75.9
0.75 MP1 0.541 18.9
0.75 MP2 0.656 229
0.75 MP3 0.957 33.5

Table 2.4: Area of the potential mixing zone as a function of & and the modulation protocol.
The area is given both in absolute units and as a percentage of the total fluid domain.

€ and €2In*(1/¢) A? layer I? layer
0.105 0.056 0.050 0.126
0.052 0.024 0.016 0.037
0.035 0.014 0.005 0.027

Table 2.5: Thickness of the layer X, for € = 0.1 and 7 = 0.3, with (MP1).
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CHAPTER 3. APPLICATIONS OF ADIABATIC DYNAMICAL SYS-
TEMS THEORY.

For sufficiently small ¢, additional quantitative information beyond that which we
presented in the previous chapter can be obtained from the theory of adiabatic
dynamical systems about the invariant structures responsible for transport and
stretching. In this chapter, we give asymptotic (¢ — 0) formulae valid for all times
(including the short times of most interest in mixing) for the areas and lengths of
lobes, the average striation thickness of spiral-shaped tracer patches (which may
be thought of as a convective length scale), and the length of material interfaces.
The formulae we use are derived for a large class of adiabatic dynamical systems to
which our flow belongs in Elskens and Escande [1991], Kaper and Wiggins [1991a]
and [1991b], and in Part I of this thesis. In addition, we report the data we obtained
from numerical simulations on six different cases. These cases have been chosen so
that we can study the effects of all three parameters, & (z), and ¢, on these
quantities. We find that the asymptotic-scaling is as predicted in the theory and
depends only on € and that the constants in front depend on & and the modulation
protocol through Q(z). Furthermore, the data from our numerical simulations show
that these formulae are fairly accurate for a wide range of small ¢, in fact up to
€ = 0.3 in most cases.

In the second and third parts of this chapter, we discuss the issues of chaos,

large integrable looking regions, and islands in these flows.

3.1. Analytical Estimates of Lobe Areas, Lengths, Stretching, and the

Average Striation Thickness.

The first tool we need is the adiabatic Melnikov function, M4(z). It is the coefficient
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of the leading order term in an asymptotic series for the distance between the stable
and unstable manifolds forming a “same pair” tangle as measured along the normal
to the instantaneous stagnation streamlines, see Neishtadt [1975], Robinson [1983],
Palmer [1986], and Wiggins [1988]. It is defined in terms of the following integral:

= (a¢ Py o Py

M= [ o (Br - DI aisinae, 6

—00

where (z§(t), y§(t)) is an orbit parametrizing the instantaneous stagnation stream-
line for which the function is being evaluated, either I'* or A*. A simple zero
of M4(z) implies that, for € sufficiently small, the two manifolds, I'* and I'V if
My(2) is evaluated for I'* (= MY(2)) and AS and AV if M4(z) is evaluated for
A?* (= MA(2)), intersect each other transversely. Furthermore, for periodic and
quasiperiodic systems, one intersection of the manifolds implies that there are in-
finitely many others, because, as we stated in the previous section, invariance of the
manifolds implies that a point on both manifolds must always be on both manifolds.

The theory presented in Kaper and Wiggins [1991a] shows that ML(z) =

dAT

(2, 20), where AT is the difference between the areas enclosed by the instan-

taneous separatrices I'* and I'** and zp is the zero of M’ (z) corresponding to the
nearest intersection and extremal instantaneous separatrix. A similar result holds
for M4(z). Thus, since % changes sign at the extremal values of 2, we know that
both MY (z) and M4 (z) have have periodically spaced simple zeroes for our modula-
tion protocols at z = 0, # mod 27, and hence the intersecting stagnation streaklines
form two homoclinic tangles as shown in the figures of the previous chapter. Thus,
we have rigorously established the existence of the intersections of the manifolds we
obtained numerically in the previous section. We refer the reader to either Wiggins
[1988] or Part I of this thesis for an exposition of the adiabatic Melnikov function.

Furthermore, the theory of the adiabatic Melnikov function enables us to show
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that all of the pip’s h; and k;, for i € Z except ¢ = 0, lie in a small neighborhood,
Ne, whose size depends on ¢, of X(z) on the Poincaré section. Since the z-distance
between adjacent zeroes of both MY (z) and M(z) is equal to m, we know that in
the fast time ¢, two adjacent pip’s are separated from each other by a time-of-flight
of At = X along I'* and A?, respectively. Thus, on the Poincaré section with z =0,
all of the pip’s h; and k;, for ¢ € Z, except hy and ko which lie near the respective
reference points on I'* and A?, lie exponentially close in time to X,(z) and, hence,
in M. This, in turn, implies that the tangles are as shown in the figures from the
previous section and that they are very difficult to obtain accurately numerically.
We remark that even for values of € as large as e = g—g ~ 0.314, the time-of-flight is
large enough so that all of the pip’s but k¢ and ko lie in M.

Finally, a propos the first result we use, we remark that one can rewrite (3.1)

in a computationally more convenient manner, as is shown in Kaper and Wiggins

Ma(z) = / ” (—a£|p(z) _ %—Ijlx;) dt. (3.2)

—oo \ 02

Using this form, one can see that the adiabatic Melnikov functions for both sepa-

(1991], as

ratrices have simple zeroes at z = 0,7 mod 2n, because the derivative on ¥ only
contains terms proportional to sinz and hence vanishes there.

The second result we can use is a formula for lobe area. The formula derived
in Elskens and Escande [1991] and Kaper and Wiggins [1991a] and [1991b] states
that the area of a lobe is given to leading order by the difference between the areas
enclosed by the maximum and minimum instantaneous stagnation streamlines that
occur during the modulation period. Thus, to leading order the area is an O(1)
quantity as e — 0, which is strikingly different from the regular perturbation case
in which the leading order term is O(e) asymptotically. Furthermore, we have

shown that the remaining terms in the asymptotic expansion are O(e) in Kaper
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and Wiggins [1991b)].

The data required to determine the O(1) contributions to the lobe areas for
our flows may be read off from the tables given in Chapter 2. To be precise, the
leading order term in the asymptotic expansion for the area of L, ;(1) and all of the
other lobes in the I'-tangle is the difference between the maximum and minimum
areas of region A attained during the given protocol, see Table 2.1. Similarly, the
leading order term in the asymptotic expansion for the area of L3 2(1) and all of the
other lobes in the A-tangle is the difference between the maximum and minimum
areas of region C attained during the given protocol, see Table 2.3. In Kaper and
Wiggins [1991a), we prove that the remaining terms in the asymptotic expansion
for the lobe area are O(¢).

We also computed the areas of the lobes in our numerical simulations. The data
are reported in Table 3.1 for various values of € in the case of a typical geometry
and protocol. Finally, the integral of M4(z) between two of its adjacent simple
zeroes gives the same result as the leading order term for the lobe area, see Kaper
and Wiggins [1991a]. We have used this property to verify the correctness of our
computations of M4 (z) and M4(z).

Finally, our lobe area result leads to some thoughts about achieving mixing in
the mathematical sense of the word. Let u/u(R1 U R2 U R3) be the normalized
invariant measure in the mixing zone. If

L _HMOFN)  p(M)
n—oo u(R1UR2UR3) ~ u(R1U R2U R3)?

for any two sets M and N in this domain, then F is said to be strong-mixing.
Although we cannot establish this for any M and N, our lobe area result does let
us establish it for the (trivial, as shall become apparent) case in which the only sets

are the two pairs of turnstile lobes (or their images), one pair from each tangle.
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This statement follows from the fact that in the limit of ¢ — 0, the union of one
lobe from the A and I' tangles has the same area as the mixing zone. That is, we
have the right to set u(R1 U R2U R3) = 1 and the quantities in the numerator
are one as well so that the equality is satisfied. We remark that all quantities are

computed in the limit ¢ — 0. Hence it is not necessary to interchange limits.
Shape of turnstile lobes.

Given that we know the lobe area, we now determine the shape of the first turnstile
lobes and then those of all of their images. Independently of our lobe area result
but essential in their own derivation of that result, Elskens and Escande [1991]
derived a result for the lengths of turnstile lobes which in the context of our flows
implies that the lengths of the two turnstile lobes Lz 1(1) and L3 3(1) are O(L) as
¢ — 0 to leading order. Here, we measure the length from the midpoint of the base
segment, U[X(z), ho] and U[X(2), ko], repsectively, of the lobe along the circle
intersecting the midpoint and centered in the middle of the casing to the (radial)
projection of its “tip” on that circle. This constitutes the measurement of lobe
length which corresponds to Elskens and Escande’s use of length along the g-axis
in the pendulum. The asymptotic scaling depends on ¢, and the constants in front
depend on & and the choice of protocol through (z). Thus, since our lobe area
result is independent of this length calculation, we also know that the average width
of the lobe is O(€), as measured along the normal to the segments of I'S and A
that define it.

We report the lengths and average widths of the lobes Lz 1(1) and L3 (1) for
the six different cases in Tables 3.2 and 3.3. We also see that the initial folds in the
boundaries of these two lobes, marked by FT and FA in the figures, move toward

X¢(z) as € decreases. This behavior shows that the manifolds are making room
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for the growing regular zone, which is made up of an increasingly larger number of
persistent Arnold tori as € — 0, in the instantaneous backflow region; see the next

section.

Average striation thickness.

The evolution of an arbitrary patch of tracer fluid in the mixing zone is de-
termined completely by the evolution of the set of lobes it is in. In general, any
part of the patch in a turnstile lobe gets stretched, folded, and “thinned” by the
same amount the lobe does. The same applies to those parts of the patch which
are outside of the turnstile lobes. Furthermore, we see that the rates are equal for
n 2 3 in most cases.

Quantitatively, the theory predicts that the patch gets stretched by a factor of
O(%) in each period of the modulation. In fact, we have shown that the unstable
manifold forming the boundary of the lobes grow exponentially in length. Thus,
we may estimate that the average striation thickness, which is approximately the

average width of the lobes, decreases with time as follows:
dstriation(z = 2n7 + zg;t = 2nwe) = O(e") (3.3)

for n € IN. In Table 3.4, we report the data for the average striation thickness and
the number of folds as a function of the modulation period for the first three-six

periods for many (approx 12) cases.
3.2. Chaotic Fluid Particle Motion.

Although chaos is not the primary focus of our study since the stretching and folding
in the flow responsible for it have already been quantified using the lobe dynamics

and Birkhoff signatures in the previous sections, we state briefly in this section in
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what sense the slowly-modulated counterrotating flows exhibit chaotic dynamics.
The novel feature these flows possess which has been shown only in the context of a
model flow for “whorl-tendril” flows, see Ottino, et al., is that the basic stretching
and folding required in the horseshoe construction can occur in one iteration of the
Poincaré map. Thus, a horseshoe in these flows can be created in the minimum

possible number iterates.

Chaos has been shown to exist in several experimental and numerical studies
of quasi-steady Stokes’ flows. A partial list of the relevant work includes Aref and
Balachandar [1986], Chaiken, et al. [1986], Ottino, et al. [1988], Ng [1989], as well
as the references cited in Ottino [1989]. Subjecting the two-dimensional flow to so-
called blinking protocols, these studies either point to the observation of stochastic
regions characteristic of near-integrable systems or locate regions that get mapped
over themselves as in a horseshoe construction to establish the existence of chaos.
Since time-periodicity of the blinking protocols plays an essential facilitating role
for chaos, the existence of chaos in continuously, periodically modulated flows, such
as the one we study, does not come as a great surprise. However, we can show
immediately the Smale horseshoe chaos also exists if the modulation protocols are
quasi-periodic in time, because the instantaneous separatrices still sweep out large
domains and the manifolds intersect in quasiperiodic flows. Thus, we broaden the

class of flows which are chaotic to a wider class than just time-periodic flows.

Wiggins [1988] has established that, in general, the splitting of separatrices in
adiabatic dynamical systems implies that the hypotheses of the Smale-Birkhoff Ho-
moclinic Theorem are satisfied and, hence, that these systems, as well as quasiperi-
odic systems, possess Smale horseshoes. Since the flow in the counterrotating ec-
centric journal bearing subject to the modulation protocols (MP1) — (MP3) has two

intertwined homoclinic tangles, we conclude directly from the Smale-Birkhoff Ho-
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moclinic Theorem that horseshoes, i.e., sets of initial conditions of measure zero on
which the motion is chaotic, exist. Among the possible horseshoe constructions, we
find that there are two types of horseshoes, one created by each of the tangles indi-
vidually, i.e., I'5(X,(20)) with I'V(X(20)) and A5(X(20)) with AV(X(20)), which
we refer to as “same pair” horseshoes, and the other by the transverse intersections
of “mixed pairs” of manifolds, i.e., I'S(X¢(z0)) with AV(X(20)) or AS(X(20)) with
I'Y(X¢(20)), which are of particular interest. We discuss these briefly below. Figure
4.4 in Part I illustrates the formation of a horseshoe in one period of the Poincaré
map. It applies to the “same pair” I'-tangle, in addition to the Hastings and McLeod

problem, because the set S used and the lobes it lies in are topologically equivalent.

The figure also illustrates how the stretching and folding required in order to
have a horseshoe map occurs in one iterate of the Poincaré map. It was obtained
by looking for a four-sided domain containing segments of I'S and I'V such that the
forward image contains a long segment of 'V and overlaps the original domain in
two disjoint regions due to the constraints placed on the evolution of the boundary

of the region by its touching the manifolds.

The utility of chaos for quantitative purposes in the study of macroscopic trans-
port properties is unclear, however, since we have already obtained quantitative
information about the structures responsible for the stretching and transport from
the lobe dynamics and the Birkhoff signature theory in the previous sections, and
it is precisely that stretching and folding type transport which is responsible for
the formation of the horseshoes. Certainly the existence of chaos indicates that
time-periodic modulation enhances transport. For example, “same pair” horse-
shoes contain orbits which are transported between a pair of adjacent regions in
the mixing zone, and “mixed pair” horseshoes have orbits which hop between R1

and R3. In addition, despite the fact that the set of initial conditions given by the
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horseshoe construction which exhibit chaotic motion is of measure zero, this set
appears to influence the dynamics of nearby initial conditions and causes them to
exhibit chaotic-like behavior.

We conclude this section with two remarks. First, one can show that a single
iterate of the Poincaré map suffices to create a horseshoe map in many adiabatic
dynamical systems and hence also in different quasi-steady Stokes’ flows, see Kaper
and Wiggins [1991a). Second, the theory presented in Wiggins [1988)] also enables

one to prove the existence of chaos in quasi-periodically modulated Stokes’ flows.

3.3. Regular Zones and Islands.

In some areas of the fluid domain, the flow looks highly regular (or integrable). The
main two regular zones lie adjacent to the cylinders, one attached to the inside of
the casing and the other attached to the outside of the shaft, and as we have seen in
Chapter 2.2, for € small enough, there can be a regular zone inside the instantaneous
backflow region, as well. The boundaries of these zones are the outermost invariant
Arnold tori of the family of tori which make up these zones, so that together with
the mixing zone, the regular zones account for the entire domain of the Poincaré
map. In this section we report on some observations concerning regular zones in
quasisteady Stokes’ flows. We believe that these observations represent the first
explanation of the highly-regular appearance of regular zones. At the end of this
section, we discuss islands, which are families of invariant tori that look like regular
zones, with one twist, the tori are created as resonant responses to the time-periodic
modulation in global bifurcations instead of being tori which persist, as those of a
regular zone.

Almost all fluid particles in the regular zones execute quasiperiodic orbits. On

the Poincaré map, these quasiperiodic orbits lie on closed curves, each closed curve
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being the cross-section of an Arnold torus. As we will see below, the exceptional
orbits lie in transcendentally narrow, O(e~¢) for sufficiently small € (where the con-
stant satisfies ¢ > 0), annuli in between these closed curves. The total area occupied
by these exceptional orbits is also transcendentally small. Thus, for € small enough,
a regular zone looks highly regular. In fact, in the singularly-perturbed case, a reg-
ular zone looks much more integrable than a regular zone in the regularly-perturbed
case. This difference in appearance arises because in regularly-perturbed systems
the regions in between any pair of invariant tori are O(,/€); whereas, as we have
just stated, invariant tori occupy all but an area of O(e~¢) in singularly-perturbed
systems, Large laminar regions of apparently integrable flow have been observed
experimentally, but not explained yet, in Stokes’ flows subjected to blinking proto-
cols. We predict such regions when continuous, periodic modulation protocols are
used and have direct control over the size of these zones via the parameters in our

protocols.

For € sufficiently small, these observations about regular zones are direct conse-
quences of adiabatic dynamical systems theory. The specific theory we need consists
of Arnold’s [1963] extension of the proof of the KAM theorem to adiabatic dynam-
ical systems. The KAM Theorem applies to regularly-perturbed systems derived
from a Hamiltonian H = Hy(p,q) + 6Hi(p,g,t), where 0 < § < 1, for which the
frequency of the unperturbed periodic orbits satisfies the nondegeneracy condition
%‘}i(I ) # 0, where w is the frequency of the unperturbed orbit with action I. It
states that many of the periodic orbits of the integrable unperturbed (6§ = 0) sys-
tem persist for sufficiently small é as tori on which orbits evolve quasiperiodically.
Here many means those whose frequencies satisfy a Diophantine condition. The
area not occupied by invariant tori is O(\/e). For an exposition of the theory see

Arnold [1988].
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Adiabatic dynamical systems derived from Hamiltonians of the form H =
H(p,q; z = et), however, are singularly- perturbed systems. For the orbits which
satisfy a nondegeneracy condition, -‘%(I ,2) # 0 for all z, where w is the frequency
of the unperturbed orbit with action I, Arnold introduced a sequence of transfor-
mations, including an averaging-based coordinate change, to bring the equations of
motion of an adiabatic system into the standard form for KAM theory. Using this
transformation, he proved that most of the unperturbed, nondegenerate periodic
orbits survive as invariant tori on which orbits evolve quasiperiodically. He quanti-
fies “most” by showing that that part of a regular zone in which there are no tori on
the Poincaré section has a total size of O(e~ %) as € — 0 with ¢ a constant satisfying
¢ > 0. Since it is possible to carry out the transformations needed in the proof to
all orders in the perturbation expansion in €, as long as one stays sufficiently far
away from instantaneous separatrices, the result is that exceptional orbits must lie
in regions whose size is beyond all orders. We refer the reader to Arnold [1988] for

an exposition of this theory.

In addition to the fact that the gaps between tori are exponentially small, the
action of an orbit, which is the leading order term of the adiabatic invariant, stays
within an O(¢€) interval of its initial value for infinitely long times, see Arnold [1988],
and all orbits in regular regions have an adiabatic invariant which is conserved to

all orders, Kruskal [1962], on a time scale of length O(2).

Finally, we remark that besides guiding us in formulating the definition of the
regular zones, Arnold’s theory also motivated our definition of the mixing zone.
To leading order, the mixing zone is exactly the part of the fluid domain in which
Arnold’s theory is not valid. The frequency, w(I, z), of unperturbed periodic orbits
approaches zero logarithmically as a stagnation streamline is neared. Thus, when

the modulation frequency is very small (recall that we are interested inw =e 1)
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the separation of time scales on which his averaging-based coordinate change de-
pends does not exist anywhere in the region swept out by the stagnation streamlines
I'* and A* during one period of the modulation, which is exactly the region we have

defined as the mixing zone, see Chapter 2.2.
Islands.

We conclude this section with a brief discussion of the islands which exist around
elliptic subharmonic periodic orbits. Islands are invariant regions in which fluid
particles advect in a regular (integrable) sense. They obstruct the transport and
mixing fluid cannot leave or enter them. We apply new results to obtain informa-
tion about the location and size of islands in this section. Using our modulation
protocols, we can chose the frequency of modulation so that we minimize the area
in the mixing zone occupied by islands and hence maximize the area in which good
stretching and mixing occurs.

Elskens and Escande [1991] have shown that these islands are no bigger than
O(e). Using different means, we have been able to show that many of the islands
are no bigger than O(e?), see Chapter 5 of Part I of this thesis. Since the results
presented there apply to this flow, we briefly discuss the relevant features.

From a typical plot of the periods of the steady-state orbits versus the point
at which they intersect the z-axis in the wide part of the annular gap in the bear-
ing, one sees that the period diverges logarithmically to infinity as the stagnation
streamlines I' and A are approached. We refer the reader to Figure 3.1 for such
plots. Now, the frequency of the orbits is given by 27 divided by the period, so we
see that it vanishes logarithmically near either separatrix. Finally, we recall that
the modulation frequency satisfies 0 < ¢ <« 1. Thus, the orbits which resonate

with the modulation, i.e., those whose natural frequency is some rational multiple
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of ¢, lie very close to the stagnation streamlines. As a result, one must construct
matched asymptotic expansions for the resonant subharmonics, as we did in Part
I. Then using the same action-theoretic arguments we present there, one can show
that the islands about n : 1 subharmonics are no bigger than O(e?) for all n > 2.
In fact, all of the numerical simulations we performed with ¢ < 0.2 are consistent
with this observation.

Finally, we remark that the islands are created in global bifurcations. In the

case of € = 0.1, 7 = 0.3, (MP1), there is a global bifurcation between ¢ = g—; and

€ = g—g in which the manifolds I'S and 'V lose their intersection at the point A,

see Figure 3.2. This event is correlated with the fact that just below ¢ = %}’5, the

period of the modulation (= 20 in the units in Figure 3.1) first exceeds the minimum

period of orbits in the backflow region, see Figure 3.1, and recall that 0 = —2 at

z = 0 mod 2x. Now, for this same case, we first see the (small) 2 : 1 island when €

2

reaches Z7,

see Figure 2.9.
Also, these results are asymptotic. For example the 1 : 1 island in the case for
which € = 0.5 and (MP1) are used is big for as small an € as ¢ = 2%, see Figure 2.10.

Again, there is a global bifurcation below this value of € in which, as one decreases

€, a new homoclinic point is created.
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Fig. 3.1. Plots of the period of the steady state periodic orbits along the wide gap
between the shaft and the casing. The period goes to infinity logarithmically as the
stagnation streamlines I and A are approached. In Fig a, 3 = -2 and in Fig b,

Q, = —10. In both figures, € = 0.1, 7 = 0.3.
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Fig. 3.2. The I branches of stable and unstable manifolds of X(0) for € = L

This is just before the global bifurcation, where the modulation period is equal to

the minimum backflow orbital period.
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CHAPTER 4. ROBUSTNESS OF THE MODEL AND COMPARISON
TO EXPERIMENT.

In this chapter, we study several other important topics related to the mixing pro-
cess discussed in the previous chapters. First, we concentrate on the impact of
molecular diffusivity on the results of the purely convective model introduced in
Chapter 2. Second, we discuss the robustness of the model under the inclusion
of inertial correction terms. Third, we compare our results to some obtained in
blinking experiments. Fourth, we prove rigorously that quasi-steady Stokes’ flows
are adiabatic dynamical systems. Finally, we show how many of our results can be
applied to other quasi-steady Stokes’ lows of interest; in particular, we show why
for many quantities it is not even necessary that we know the stream function for

the problem.

4.1. Molecular Diffusion.

In the foregoing sections, we have restricted ourselves to simulating the ideal case
in which the transport of tracer particles in the quasisteady Stokes’ flow occurs
only via convection. We now make our study more realistic and consider also the
impact of molecular diffusion in the transport process. In particular, we identify
the phenomenon of diffusion-enhanced stretching for the first time in quasi-steady
Stokes’ flows and explain the mechanism responsible for it. This effect, which may
also be characterized as mechanical dispersion induced or facilitated by diffusion,
shows that diffusion of tracer particles is important from the beginning of any ex-
periment and has a macroscopic impact on the location of convectively-transported
tracer particles, as well as on the rate at which patches of tracer fluid are stretched.

The data we obtain from numerical simulations, for which the equations consist of
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adding a term representing the Brownian motion a tracer particle experiences due
to molecular diffusivity to the Lagrangian equations of motion, see (4.3), agree with

the theory we present.

For the treatment of the full problem, we rely on the exposition of the
convective-transport theory presented in the previous sections, as well as on a care-
ful analysis of the mechanical dispersion induced by molecular diffusion. We begin,
however, with a simple example — diffusion in a local shear flow — to illustrate the
idea.

In the absence of diffusion, fluid particles in a local shear flow governed by the
stream function ¥ = g—yz, where G is the magnitude of the shear, are constrained to
evolve along the horizontal streamline they start on. Now, diffusion in the vertical,
y, direction enables a particle to hop onto different streamlines. Hence, the distance
between two tracer particles initially on the same streamline can grow linearly in
time. In this way, diffusion induces a mechanical dispersion.

This example, though apparently trivial, illustrates the mechanism that is also
at work in the modulated flows we study. To be precise, the diffusion-induced dis-
persion enhances the stretching that occurs due to convection in the full problem.
At any given time, a particle at a point P may be expected to hop radially in-
ward or outward from the instantaneous streamline, Sp, that it lies on with equal
probability, because the tangent to Sp divides a local neighborhood, A, of P in
two, see Figure 4.1. Furthermore, at any given time, the particle is in a local shear
flow, because the frequencies of all instantaneous streamlines satisfy a nondegener-
acy condition; namely, the derivative of the frequency with respect to the action is
negative along these orbits, so that the instantaneous velocity of particles on the
instantaneous streamlines radially outward from Sp is less than that of P, and the

instantaneous velocity of particles radially inward is greater than that of P. Thus,
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diffusion induces the same type of mechanical dispersion in the full flow as it does

in the simple example.

Of course, the details for the full flow are more complicated than we’ve discussed
so far, and simultaneously the effect produced is much more dramatic in the full
flow than it is in the regions of local shear. The complications arise due to the
fact that the full flow is governed by a spatially non-uniform velocity field which
oscillates periodically in time. In particular, oscillation of the instantaneous saddle
and the streaklines stagnating on it imply that patches of tracer particles often pass
in the vicinity of the instantaneous saddle point. Now, in a local extensional flow,
the separation of nearby initial conditions is exponential. Thus, the mechanical
dispersion induced by diffusion during the time intervals in which a patch is near
the instantaneous saddle is much stronger than that which occurs in a local shear

flow.

One may attempt to quantify this dispersion in the following way. Since the
stretching of nearby particles is exponential, we know that in a local neighborhood
of a point (which can be any point in the flow outside of an exponentially- small in €
neighborhood of the saddle) initial conditions on adjacent streamlines are separated
exponentially in time at the rate determined by the difference in their individual
exponential stretching rates. We study the diffusion normal to the instantaneous
streamlines, observing that diffusion along them is less important. Furthermore,
for particles in the interior of the patch is not as important as it is for those near
the boundaries. Thus, we focus on particles near the spiral-shaped boundaries of
the deformed patch we observed in the purely-convective model. Now, for a given
time ¢, the distance a Brownian particle may reasonably be expected to randomly
walk in the radial direction is rqig(t) = v/Dt. Using this expression and the rate

of separation, one can determine the amount of enhanced stretching that a patch
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Fig. 4.1. The neighborhood N used in the diffusion example of Chapter 4.1.
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experiences as it deforms due to the radial diffusion of some of the particles inward
and outward beyond the spiral-shaped boundaries of the patch obtained from the
purely convective model. Rather than develop the detailed expressions necessary
for completing this analysis (since the relevant rate constants must be obtained on
a case by case basis), however, we conclude this section by discussing the data from

the numerical simulations we performed with O(10%) points.
Numerical experiments.

In the simulations, we model the effects of molecular diffusivity by adding a term
representing the Brownian motion a tracer particle experiences due to molecular dif-
fusivity to the characteristic equations (the purely convective model) of the partial
differential equation governing the advection and diffusion of tracer-concentration.

In particular, we use a generalized Langevin equation:

v
b= ey et) +(0)
%y 1 (a1)

i = -2 (@pet) + Ga),

where ¥ is the stream function given by (2.3) in section 2, and (i(t),? = 1,2, are
random variables drawn from a Gaussian probability distribution characterized by

the following correlations:
< Ci(t)Gi(t) > =2Ds(t - t')

< G(t)G(E) > =0.

(4.2)

for 1,7 = 1,2 and ¢ # j. The factor of 2 arises due to the derivation of the
Langevin equation from a Fokker-Planck formalism with coefficient of diffusion D.
Furthermore, we refer the reader to Chandrasekhar [1943] for the justification of

using a Gaussian for the position distribution of a Brownian particle.
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As expected from the discussion in the first part of this section, we find that the
amount by which patches are stretched is enhanced significantly due to diffusion. In
particular, we find that the “tips” of patches are lengthened by amounts on the order
of 5% of the length of the spiral-shaped patch in the first period alone. We report
the data for various € and D in a forthcoming paper. Although an effect of small
magnitude may seem insignificant at first glance, it is dramatized in subsequent
periods because as time goes on, convection will stretch also this extra piece of the
deformed patch exponentially.

Furthermore, we find that most of the boundary of a deformed patch remains
almost as sharp as they are in the purely convective case. Taking into account
that each data point in our numerical simulations represents an infinitesimal area
element that gets stretched during the modulation, we find that the deformed patch
is as sharp (up to an amount less than ten percent of the width) as the convectively-
stretched patch for runs we performed. The exceptions to this are the pieces of the
boundary near the “tips” of the patch, which become slightly fuzzier than they are
in the purely convective model.

Thus, we have shown that diffusion alters the macroscopic transport properties
of the flows by actually increasing the quantities predicted by the purely convective
model and that the effects of diffusion must be incorporated into the model from

the beginning of the simulation.

4.2. Robustness of the model — Inertial effects.

In our model, we assume that the flow is determined exactly by the solution of the
Stokes’ equations. The stream function we use is the solution of the biharmonic
equation which results from neglecting the inertial terms in the Navier-Stokes equa-

tions. We argue now that the results we obtained in the previous sections for the
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mixing zone, the rate of stretching, etc... in the counterrotating case are the same
to leading order for small Re. That is, one would get the same leading order results
if one ran an experiment, solved the Navier-Stokes equations numerically, or used
a stream function which incorporates inertial corrections as we do from the purely

convective model given in Chapter 2.

The essential features of the steady counterrotating flow are the saddle stag-
nation point, the two streamlines which stagnate on it, and the three families of
periodic streamlines bounded by them. We have found these structures in Chapter
2 using the equations of motion with Re = 0. For 0 < Re < 1, the position of the
saddle and the two stagnation streamlines changes by an amount of O(Re) from
that which we use. The expansion for the position of the saddle taking account the
first-order inertial terms performed in Ballal and Rivlin [1976] shows that the y-
component of its position changes by an O(Re) amount whereas the z—component
is unaltered from that of X;°. Furthermore, the saddle is still connected to itself by
two stagnation streamlines (slightly tilted from the position of I'** and A*®) which
are level curves of the enhanced stream function, i.e., the stream function obtained
when the first correction terms for inertial are included. We refer the reader to
Figure 26 in Ballal and Rivlin [1976], for an illustration of the effect of the linear
inertial corrections. Thus, although our steady state picture must be slightly tilted
(where the direction of the tilt depends on the direction in which the cylinders are
rotating), the essential features of the streamline pattern remain unaltered from
those of our model, and all of the analysis we performed in the previous sections

gives the correct leading order results.

Robustness of the streamline pattern is one of the main reasons we chose the
counterrotating case. The flow in the corotating case is more delicate. If Q > Qcyis,

Ballal and Rivlin [1976] showed that there exist two saddle stagnation points in
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the corotating connected to each other by four stagnation streamlines (heteroclinic
orbits). Although addition of the inertial effects only changes the locations of these
two saddle points by an amount of O(Re) (just as in the counterrotating case), the
topography of the level curves of the full streamfunction is changed drastically. In
particular, the value of the enhanced streamfunction is no longer the same at the
two stagnation points so that they cannot be connected to each other as they are in
the Re = 0 limit. Instead of having four heteroclinic orbits, one has two homoclinic
orbits, one to each saddle. Thus, although the time-periodic modulation should
make the corotating flow exhibit good mixing because the two homoclinic orbits
break and sweep out a large area, one cannot apply the results from the Re = 0
model to the full flow and one needs to perform a detailed analysis based on the

enhanced streamfunction instead.

4.3. Comparison to Results from Blinking Experiments.

In the mixing zone, thin, highly stretched and folded ribbons of dyed fluid de-
velop from initial clusters of dyed tracer particles. These ribbons appear to be simi-
lar to the whorls and tendrils described in experiments with Stokes’ flows subjected
to so-called blinking protocols, see Ottino [1989]. Indeed, the basic mechanism for
the formation of a long, highly-striated lamellar structure is the fact that some
fraction of the patch must pass to one side of the saddle and the remaining fraction
must pass to the other side. The difference between these two paths then becomes
exagerated due to the underlying convection, which in the case of the blinking pro-
tocols is the steady state convection (at all times except at the half-periods) and
in the case of modulation protocols is the continuously changing steady state. We
remark that one may succinctly summarize the difference between the two protocols

by saying that the streamline map gets changed every half-period in the blinking
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case whereas in ours it is continuously being changed but by tiny increments each
time step.

In addition, many important differences hide behind this semblance of similar-
ity. First and foremost, we take advantage of the fact that the theory of adiabatic
dynamical systems gives us a great amount of control over the formation, size, and
shape of ribbons when the flow is subjected to continuous modulation protocols. In
contrast, it does not appear that the blinking protocols enable one to have a prior:
control over the formation, size, and shape of whorls and tendrils. Quantitative in-
formation about the whorls and tendrils seems to be obtainable only after collecting
experimental or numerical data.

A more direct comparison (e.g. comparing LCEs) might be possible in the
counterrotating blinking case. This can be done by considering the blinking protocol
as the limit of a sequence of continuous modulation protocols. The Fourier series for
a square wave is infinite, so by adding on higher and higher modes to the periodic
modulation (with the correct amplitude) on can limit on the blinking case.

It does not appear possible to compare to the blinking case in which only one
cylinder spins at a time. For one thing, in the eccentric journal bearing, the position
of the stagnation point on the stationary cylinder depends only on the eccentricity
of the bearing and is independent of the angular velocity of the spinning cylinder,
at least to leading order (Re = 0). Since the corrections are O(Re), the area this

creates for mixing is much smaller than that which we studied here.

4.4. Proof of the Statement that Quasi-steady Stokes’ Flows Constitute

Adiabatic Dynamical Systems.

In this section, we use the definition of an adiabatic dynamical system given in Part

I to show rigorously that time-periodic, two-dimensional Stokes’ flows constitute



- 195 -
adiabatic dynamical systems. We also make a brief comment about the use of
Melnikov theory in these flows and state how the results we obtained in the previous
sections for the eccentric journal bearing apply to other quasi-steady Stokes’ flows,
such as the cavity flow, the two-roll mill apparatus, and a few others.

Recall that we defined an adiabatic dynamical system as a planar Hamiltonian
system which depends continuously and periodically on a slowly varying parameter.
The Hamiltonian for these systems is H = H(p, ¢;z = €t), where p and ¢ are the
canonically conjugate momentum and position variables, z is the time-dependent
parameter, H depends periodically on z, and the modulation frequency e satisfies

0 < € € 1. The equations of motion are

. OH
q= ‘a)'(pa% z)

._ _OoH (4.8)
bp=- aq (p1q1z)

zZ=c¢€.

General time-periodic two-dimensional Stokes’ flows are adiabatic dynamical
systems because they are systems which are exactly of the form (4.8). We demon-
strate the validity of this assertion as follows. First, the velocities of fluid particles
in these Stokes’ flows are given by the vector field

&= -g—;f(w, y;wt)

. B (4.9)

y ==, (&yiwt),
where 1 is the streamfunction (Hamiltonian) which depends periodically on time
(with frequency w), and the two spatial coordinates ¢ and y are the canonically
conjugate variables.

Next, we show that the frequency w must be finite and small. In addition to sat-

isfying the requirement on all Stokes’ flows, i.e., that Re = (YL) « 1, time-periodic
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Stokes’ flows must also satisfy the following criterion on the Strouhal number:

St = (ﬁI-‘) <1, (4.10)

U

where U and L are the characteristic velocity and length scale, respectively, of the
flow and depend on the geometry of the flow field at hand. The Strouhal number is
an extra dimensionless parameter which arises when U, L, and w are independent,
externally-imposed quantities, as they are in the eccentric journal bearing and many
other quasisteady Stokes’ flows that arise in practice. Note that the frequency w is
the rate at which the angular velocities, of the casing and the shaft, for example, are
modulated and is imposed independently of the characteristic length and velocity
in these flows. We refer the reader to Batchelor [1967] p.216 for a discussion of
the Strouhal number. Therefore, in flows for which U and L are O(1) (as they
are in the eccentric journal bearing and in the other Stokes’ flows mentioned in
the introduction), the criterion for the Strouhal number, (4.10), translates into the
requirement w < 1. Introducing notation that reminds us of this requirement, we
denote the frequency by € so it is clear that we are considering e = w < 1.

Finally, combining the above arguments, we rewrite (4.9) as:

z= al)(w,y;Z)

9y
i=-2(z,2) (a1)
zZ=c¢,
where we have replaced the quantity et in the last slot of ¢ by z and added an
extra equation z = e. Thus, our assertion is established. Once one accepts the va-
lidity of the quasisteady Stokes’ approximation for describing these flows, adiabatic
dynamical systems theory can be used to study them.

The above argument shows, for example, that in the case of the eccentric

journal bearing we must modulate the angular velocities continuously and slowly
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enough so that the system stays within the quasi-steady Stokes’ approximation.
When the angular velocities of the cylinders change periodically in time, ¥ depends
periodically on time. In fact, the angular velocities of the shaft and the casing are
functions of the parameter z. We have exploited this formulation of the eccentric

journal bearing problem in this work.

Before discussing some other quasi-steady Stokes flows to which our results may
be applied, we make two remarks. First, as long as one stays in the quasisteady
Stokes’ regime, some of the results describeu 1n this paper apply also to Stokes’
flows in which external parameters are varied nonperiodically in time. Instead of
studying modulations in which 1 is forced to vary periodically in time with an O(e)
frequency, one can consider (with methods similar to those used in this paper) a
much more general class of modulations in which 3 is forced to vary merely slowly
in time and not necessarily periodically, so that one speaks of the rate of change of
z being O(e). Many of the techniques which exist for adiabatic systems apply to
systems in which the Hamiltonian has general dependence on the parameter z, see

Kaper and Wiggins [1991a).

Secondly, when its use can be justified, regular Melnikov function theory, see
Guckenheimer and Holmes [1983] for an exposition, is of limited applicability in the
study of quasisteady Stokes’ flows. The requirement on the Strouhal number (4.10)
implies that the modulation frequency must be small, i.e. O(¢), and the interesting
case is when the velocity field undergoes O(1)-sized changes during each period of
the modulation. Regular Melnikov theory, however, can only treat the case in which
the perturbation amplitudes are O(¢€) and requires that the forcing be with O(1)
frequency. In contrast, as we have shown in Chapter 3.1, the adiabatic Melnikov

function is ideally suited to studying the interesting phenomena in Stokes’ flows.
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4.5. Application to Other Interesting Mixing Problems.

The above results may be applied to any system with features commonly found in
adiabatic dynamical systems. During the time evolution of the system through one
period of the modulation, or through some O(1) interval as measured in the slow
time if the modulation has more general time dependence, O(1) changes can occur
in the vector field. These O(1) changes include O(1) changes in the position of a
saddle point, O(1) motions of the stable and unstable manifolds of a hyperbolic
orbit, and O(1) changes in the areas in phase space of regions which are occupied
by a given type of orbit.

The two-roll mill is one important application in chemical engineering see for
example Ng [1989] and the references given there. In this device, there are two
cylinders in a box external to each other. Again, the externally-modulated angular
velocities of the two cylinders, both of which occur as terms in the appropriate
streamfunction, are functions of the parameter z. The interesting case is when the
saddle stagnation point moves back and forth along the entire gap between the two

cylinders.

In addition, our method may be applied to systems for which the streamfunc-
tion is not known. One merely needs to look at a sequence of steady state flows
and find a saddle stagnation point attached to itself or other points, even on a wall,
by a stagnation streamline for each flow in the sequence. If the position of that
stagnation streamline changes over an (1) distance in this family of steady-states,
then one can modulate the flow in time as we do, and one will know the leading
order terms for the transport quantities just from knowing the peaks and valleys of
the modulation protocol. Furthermore, recent work of Rand and Coppola indicates

that it may even be possible to get the good mixing when the saddle stagnation
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point disappears for part of the modulation, see Coppola and Rand [1991] to appear
in Nonlinear Dynamics.
Thus, in the case of the cavity flow or geophysical applications, in which the

stream function is not known, further analytical results may be possible.
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Appendix A.

In this appendix we archive the geometry-dependent constants in the streamfunction

¥, which are taken directly from Ballal and Rivlin [1976].

L /A
= (%—hlhv + hs)
1
fa= A (—hzh'z + h4)
1
fi=— X ( h ha+hs)
1
fa= A ( —hahs +h6)
A* A*
A*fr  A*fy

sinhé;  sinhé, sk (6r ~ &)
2870 _ 28710 _ _ Gnh(e + &)

hi ke
2A* 20*
fu = frz = cosh(§; + &2)
hy ha ]
2A* 2A* .
hlfw = h2f14 = sinh(§; — &) + 262 cosh(é; — €2)

Here the constants A, A, A*, and h;, i = 1 — 8 are given by:

A = (€1~ &) —sinh?(&; — €2) <0
= (1 — &) cosh(£1 — &2) — sinh(é1 — &2) > 0
A* = sinh(¢; — &) (2sinh €, sinh &3 sinh(&; — £2) — (& — &2)(sinh® &; + sinh? &)
= (€1 — &) sinh €, — sinh £ sinh(é; — £) > 0
ha = —(€1 — &) sinh & + sinh £, sinh(é; — &) > 0

= {1 sinh§; sinh(§; — &2) — &2(€1 — €2)sinhé; >0
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ha = —€2sinh & sinh(é) — &) + £2(61 — &) sinh s
hs = —1 cosh 2 sinh(&; — €2) + €2(é1 ~ €2) cosh &y

he = &2 cosh &y sinh(&; — &2) — &1(€1 — &2) cosh &

hy = sinh £ cosh £ sinh(é1 — &) + %’-51 sinh 2¢; — %gz sinh 26, — (€1 — £2)€2 > 0

hs = — cosh &) cosh &, sinh(€; — &2) + € cosh? & — € cosh? &,
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Appendix B. In this appendix we derive the asymptotic expansion of the position
of the saddle fixed point on the Poincaré map. First, we rewrite the equations of

motion for the fluid particles in terms of the slow time 2:

ez’ = fl(xy Y, Z)
(B.1)

éy' = f2(x, Y, Z),

where f; = %'f, fa= —%’f, and ' denotes the derivative with respect to 2. Next, we

expand about the location of the saddle stagnation point in the steady state case,

(20(2), y0(2)):
z(2) = wo(2) + exy(2) + -+ -
(B.2)

y(z) = yo(2) + epn(2) + - --.

Thus,

dfy df,
exg + €z} + - = fi(2o,Y0,2) + e‘f"-'lfl + €diyl + O(€%)

eyp + €y +--- = fa(zo, Y0, 2) +€df T +€gfzy1 + O(é%).

Now, we equate the terms of like powers in €. First, the O(1) terms give us the
steady state stagnation point (z(2),0), because fi(z¢(z),0,z) =0 for : = 1,2 and
for all z. Balancing the O(€) terms leads to:

dfl (:co(z) 0,z) + ——(a:o(z) 0,2)y1(2) = z5(2)

. f2 (B.3)

e zo(2),0,2) + dy (xo(z),O, z2)y1(z) = yp(2) = 0.

Thus, for all 2z, except 2 = 0 mod w, y;(z) is nonzero. In particular, we find
£1(0) = 0 because z((0) = 0. Consequently, y;(0) = 0. Further expanding the f;
and realizing that z1(0) = y1(0) = 0, the O(€?) terms yield:

d d
'dil'-l-yz d];l z

B4
i df (B4)

271—4'1/2'@' =y].
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Inverting this system and computing z} and y} from the solution of (B.3) for general

z, we get
i 2a(0) = 28 (4", dfidf
BV T [detAR \dy  dy dz

dfs =g (dfl dfz)

v2(0) =~ et \dz T dy

(B.5)

where A is the 2 X 2 matrix with entries a;; = #}, a;2 = —%%, ax; = —%, and
azy = %\. But, the vector field is divergence-free and hence y2(0) = 0. Proceeding

along these same lines, we get:
2(2) = zo(2) + O(e?)

y(z) =0.

(B.6)

Thus one gets the result expected due to the symmetry.
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