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ABSTRACT

Consider a second order ordinary linear differential operator
on a real half-open interval (O,b] (b > 0) which contains no singular
points. Suppose x = 0 1is a singular peint. The basic characteristic
value problem is defined on this interval when suitable boundary conditions
are adjoined at the endpoints. Two classes of perturbed characteristic
value problems are defined on subintervals [a,b], where a is a small
positive number., It is proved under certain conditions on the basic
problem that for each isolated characteristic value /\ of the basic
problem, there is a characteristic value N of the perturbed problem which
is developable in an asymptotic expansion with leading term A s valid
as a - O, Purthermore, the characteristic function corresponding to A
possesseg an asymptotic expansion valid as a - O uniformly in the interval
[asb]e These expansions are not asymptotic power series, but are asymptotic

expanslons of a more general type.
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ASYMPTOTIC EXPANSIONS FOR CHARACTERISTIC VALUES AND FUNCTIONS OF A SECOND
ORDER ORDINARY LINEAR DIFFERENTIAL OPERATOR.

1s Introduction.

We shall consider characteristic value problems for a second
order ordinary linear differential operator defined on certain intervals
of the real x-axis. We designate as the basic interval a half-open
interval (0,b] (b > 0) which contains no singular points of the differ=
ential operator, and we suppose that the point x = 0 is a singular point
of the operator. A self-adjoint operator over a suitable Hilbert space
can then be defined by the application of appropriate boundary conditions
(if needed) at the endpoints of the basic interval. We shall call this
the basic operator and assume that there are isolated points in its
spectrum.

Our aim is to investigate the spectrum of a self-adjoint
differential operator defined on a subinterval [a,b] of the basic
interval, where a is a small positive number. Such an operator will be

referred to as a perturbed operator. We shall give a perturbation procedure

for estimating the difference between the characteristic values of a
perturbed operator and those of the basic operator. Coddington [1]* has
shown that for problems of this type, the spectral families belonging to a
set of perturbed operators converge to the spectral family belenging to
the basic operator as a - 0. We shall establish more specific results for

certain classes of problems when there are isclated points in the spectrum

¥W*
Numbers in brackets are references to the books, reports, and articles

which are listed at the end of the thesis. Pairs of numbers in
parentheses are labels for statements in the text; thus (p.q) refers to
statement q in section p.
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of the basic operator: we shall obtain ssymptotic expansions for the
perturbed characteristic values and characteristic functions as a - Q.

We shall consider two clesses of problems, which roughly
correspond to the cases when the basic operator possesses or does not
possess lirnearly independent solutions whose ratio tends to zero as a = (.
In the one class, an essentially arbitrary homogeneous boundary condition
is imposed on sclutions of the differential equation at the point x = a,
and it turns out that the characteristic values of the perturbed operator,
whose domain is restricted by this boundary condition, converge to those
of the basic operator. In the other class, the homogeneous boundary
condition at x = a must have a special character in order for the
characteristic values to converge to those of the basic operator. The
first class includes problems of both the 1limit circle and the limit point
type in Weyl's classification of singular points [7 ], [10]. On the other
hand, the second class includes only problems of the limit circle type.
Thus the criterion for distinguishing between our two classes of problems
is not Weylls criterion.

In the next two paragraphs we shall state certain known results
in perturbation theory and indicate how our results differ from these.

We are interested in problems where the perturbation arises from the domain
of the operator, while in most existing theories it arises from the operator
iteelf, In the latter, one considers a set of not necesserily bounded self=-
adjoint operators {lﬁs}‘ defined on a certain Hilbert space, where & > O
is supposed small, such that Ag converges in some sense to a self-adjoint
operator Ao as ¢ -+ (. The characteristic values )\c and the

characteristic functions Ve of A_ are then developed in convergent

£
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or aaynptotic power series in € as ¢ = 0., Specifically, the following
result is true in analytic perturbation theory: 1if the resolvent R8
corresponding to Aa converges uniformly to the resolvent Rc correspond=
ing to Ao and if R8 is analytic in ¢ in some neighborhood of ¢ = Oy
then for each isolated point /\ in the spectrum of A (say of
maltiplicity one) there is a corresponding }\a in the gpectrum of Ag
which converges to AN ag &£ - 0, and furthermore 7\C is an analytic
function of ¢ for small values of ¢,

If the resolvent RC converges strongly bubt not wniformly,
weaker resulls are obtained; in fact, the spectral family corresponding
to Ac then converges gtrongly to that corresponding to AQ. In
asymptotic perturbation theory [5], the perturbed operator Ac is defined
formally by the relation Aa = Ao + € A(1) + 52A(2) + eee wyhere the
operators on the right side are symmetric and semi-bounded from below.

The right side is not in general self-adjoint even if Ao and all the
operators A(j) (3 =15 25, see ) are self-adjoint, but a distinguished
self-ad joint extension of the right side can be obtained (the Friedrichs
extension [5]). Then the spectral family corresponding to A, will
converge strongly to that corresponding to Ao as ¢ = 0. In order to
obtain asymptotic expansions of the characteristic values and characteristic
functions belonging to A&’ when Ao has Isclated points in its spectrum,
one has to assume that the domain of AC is large enough to include the
characteristic functions of Ao.

In the problems we wish to treat, such iz not the case, and a
different procedure is needed. Coddington [1] has discussed situations

where the spectral family corresponding to a perturbed operator indeed
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converges, but we wish to obtain more: +to give asymptotic expansions of
the characteristic values and the characteristic functions of the perturbed
operater a8 a - 0y in the event that there exists at least one isclated
point in the spectrum of the basic operator. Our general procedure is a
familiar one in thes thecry of asymptotic solutions of differential equations:
we compare the solutions of the perturbed problem with those of the baslc
problem by means of an integral equation of Voliterrals type. Our
agymptotic expansions will not be power series in the small parameter
& as in analytic or asymptotic perturbation theory, but will be asymptotic
expansions ip a more general sense, and in fact these expansions will be
convergent for sufficiently small values of a. The properties of general
types of agymptotic expansions have been investigated by van der Corput
(9l.

In section 2 we shall give precise definitions of the basic and
perturbed operators and their domains, make the appropriate assumptions
for the two classes of problems under consideration, and set forth the
asymptotic terminology to be used in the sequel. In section 3 we shall
describe the machinery used for the comparison of the basic and the perturbed
problems. This section includes the appropriate lemmas stating the
existence of solutions of integral esquations, and lemmas giving the
agymptotic behavior of certain functions and estimates for other funcitions
near the singular point. In section 4 we present the main theorem, which
states the existence of asymptotiec expansions for the characteristic
values and the characteristic functions as a -» 0., Furthermors, we obtain
explicit asymptotic forms, not depending upon integrals of characteristic

functions of the basic problem, by replacing the first term in the above
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asymptotic expansion by an asymptotic form, and these asymptotic forms
will be extremely useful in applications. Only in the trivial case that
the exceptional point x = 0 is an ordinary point of the differential
equation (so that it is not exceptional at all) will the results be
convergent power series in the small parameter a. In section 5, we shall
treat the case when the sxceptional polnt is a regular singularity of the
differential equation; then the asymptotic form referred to above will

be dominated by certain elementary functions., For problems of the firsd
class described earlier in this introduction, these functions will turn
out to be simply powers of &, depending upon the exponents belonging

to the regular singularity. In section 6, we shall treat the case when

x = 0 is an irregular singular point of finite rank, and obtain
agymptotic forms which are dominated by exponential functions multiplied
by powers of a. In section 7, we shall weaken the assumption that x =D

is an ordinary point of the differential operator and permit it to be a

regular singularity.
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2, Formulation of the Problem.

This section contains a detalled formulation of the charace
teristic value problem under consideration, including all the definitions
and assumptions needed in the sequel.

First, we give the asymptotic terminology to be used, of the
type introduced by van der Corput [9]. It is to be observed that thesse
definitions are not squivalent to analogous definitions used in Poincaré's
classical theory of asymptotic series: the former make weaker demands
than the latter on the functions under consideration. We shall be
interested in obtaining asymptotic expansions of functions f(&’) for

small values of the real variable & .

Definition 1. A constant is a function which is independent of 2/ .

Definition 2. A function f(2/) is of the same order as g(V ), in symbols

£f(v) = 0[g(+ )], if there exist positive constants 4 and C such

that |£(< )| < ¢lg(v/)| whenever |2/| S L

Definition 3. The order relation f£(J) = o[g(L)] as & =+ 0 means
that given any constant &£ > 0, there exlsis a constant 4/’0 such that

[£(> )] < elg(e)] whenever |2/] < L e

Definition 4. Suppose f£(</) depends upon an additional real variable
¥ on an interval I. The order relation in definition 2 (or definition
3) is said to hold uniformly in x if L/ o amd C (or 2/ ) can be

chosen independent of x for all x ¢ I.
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Definition 5. The formal series > £ (&) 4s said to be an asymptotic
3=

expansion of a function f£(L/), in symbols f(2/) ~ Zzlfj(iJ), if

— h -
f“f1”f2” °fh-0(l/)for h“igzyeooo

Definition 6., A function fl is said to be an asvmptotic form for f
ag L/ =0 if £ = £, + o(ft) as L’ -+ 0, The form is said to be valid

updformly in x if the order relation holds uniformly in =x.

Suppose now that L/ = L/(a) is itself a function of a small
positive variable a and that 2/ (a) = o{(l) as a - 0., The function
2 (a) will be called a scale function, or simply a scale. Suppose that
V=y(a) is an additional function of a. Then we make the convention
contained in the following definition.

o

Definition 7. The formal series jz; fj is said to be an agymptotic
3=

expansion of £(L/) with scale ./ (a) as a - 0 if there exists a

& = o 99 B eu = h
function \/(a) such that f £, - £, W o(yr™) for

:ly 2, e»® o

If f has such an ssymptotic expansion and if in addition
Vo = o(fi) as a >0, then f=1f, + o(fj) as a = Qe

Suppose now that f and fj (] =15 2, ees ) are functions of
a and X, X £ Ia' The subscript a means that the x-interval can depend
upon a. let ¥V =V/(a,x) be a function of a and x and let
L/ =]/ (a,x) be a function of a and x such that L/ = o{(1) as a =0

uniformly for x ¢ I&.
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Definition 8 The formal series f? fj
=l

expansion of £ with scale ./ (a,x) as & = 0, valid uniformly for

is said to be an agymptotie

x eI, if there exists a function \/(a,x) such that f - f1 - sen = fh
= o(yy") uniformly for xc I (h=1, 25 «u0 )o

We now proceed to formmlate the characteristic value problems
to be investigated in the sequel.

Differential operators of the type

2
(2.1) L= [k@)]7 (- ﬁ + q(x)] O0<x=<b

are under consideration, where q(x) and k(x) are real-valued,
piecewise continuous functions on (0,b] and k(x) is positive-valued,
Let /%r’denota the Hilbert space of all complex-valued functions U(x)
measurable on (O,b) for which the integral J’b lU(x)iz k(x) dx
exists in the sense of gebesgue. The inner procht in this space is

defined by (U,V) = f’ U(x) V(x) k(x) dx and the norm is defined by
o

iluij = (U,U)i/é. We shall now proceed to define certain self=adjoint

operators in‘/%r which are asgsociated with the formal operator Le

Definition 9. Suppose that the point x = 0 comes under the 1limit point

cagse in Weyl's classification of singular points. Then we defins the
domain AE)QD to consist of those functions Y e.ﬁafwhich satisfy the
following conditions:

{(a) Y and Y' are continuous and Y® is pilecewise continuocus

on (0sbl.

(b) LY&/%/.
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(c) Y satisfies a homogeneous boundary condition at x =b of
the type
(2.2) B (Y] =B, 1) + B, T'(b) =0,
where ﬂg, ﬁ1 are real numbers, not both zero.

et /X (x) be a non-identically zero solution of the equation

L= 1 such that
Mo [ R (x) K ) = K (x) Xix)l=0.
x-+0
Such a function exists according to Weyl's theorem [10].

Definition 10. Suppose that the point x = 0 comes under the limit
circle case in Weyl's classification. Then we define the domain 08/ o
to consist of those functions Y cjb/ which satisfy (a), (b}, and (c)
of definition 9 and in addition

() Y satisfies the following boundary condition st x = Os

(2.3) B [¥] 5 1m [R1(x) Yx) = (&) 1)) = o
x-0

Definition 1l. In either the 1limit point case or the linmit circle case,

we define the basic operator A = in /@5 as follows: A, has domain 09/ o

and
A =
A, Y =LY Y e 090 .
It is known [7] that A_ on jB% , 18 @ self-adjoint operator

in/%/o

points in the spectrum of AO. If the inverse opsrator (Ao - i }“i is

We shall be interested only in the cass thal there exist isclated



completely continuous on the subspace of plecewise continuous functions
of /%T {71, then the spectrum will be entirely a point spectrum. However,
we shall not in general assume the complete continuity of (Ao - 1)“"a ’
but shall be content to assume that there sxist isolated points in the
spectrum,

Suppose there exists an isolated point f\ in the spsctrum of
Aje Thus, if ¥, = Zi(X} = Yi(x,/\ }) 1s the corresponding characteristic

function,
(2.4) Iy, = /\Y1 I 09/0 .

A1l characteristic functions Y(x) will be normalized so that

b
(2.5) HYHzf _( Qz(t)!’?’ k(t)dt =1 .

o

let Y. = Yz(x) = Yz(x,/mx) be a real-valued solution of the equation

2

¥ =N\Y such that Y, and Y form a fundamental set of solutions,

1 P

The Wronskian determinant of }[.l and Y2

taken to be =1 wilthout loss of generality,

is a constant which may be

(2.6) OV\([Yi, 1] = -1,

We shall now give formal definitions of the two classes of
problems which will be under consideration in the sequel. These are the
classes which have been discussed summarily in seectlon 1. It is implicit

that the assumptions of the previous paragraph apply to either class.



- 11 =

Definition 12. For a class ] problem the point x =0 1is not an

accumalation point of the zeros of Y1 and#*

Yi(X) ° 1Y, (t) T.(t)] k() at = o(1) as x>0
1 2 ®

(2.7) f;T;T %
This implies that

(2.8) Y1(x)/Y2(x) = o(1) as x - 0,

Definition 13. For a class 2 problem, there exists a pair of linearly

independent solutions Uj(x), Uz(x) of the equation LU = AU such that
the point x = 0 4is not an accumilation point of the zeros of these
functions, the ratio U1(x)/32(x) is bounded and bounded away from zero

in a nelghborhood of x = 0, and

x
(2.9) f u, (t) Uz(t) k(t) dt = o(1) as x>0,
o

Then for class 2 problems, the ratio Yi(x)/Yz(x) is not
supposed to be small for x near O, and in fact the limlt of this ratio
ag x - 0 may not exist at alle It follows from the assumptions that
both U1 and 02 belong to /ﬁy', and hence class 2 problems are always
of the 1limit circle type.

The perturbed characteristic value problems for class 1 and

class 2 will now be defined,

Definition 14. The domain éEVa for class 1 problems is the set of all

functions y 6.4%'having the properties (b), (c) of definition 9 and

%
Since the zeros of a pair of linearly independent real solutions of

a second order ordinary linear differential equation separate each
other, it follows that the zeros of Y2 as well do not accumulate
at x = 0,
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also the following three properties:

(e) y and y' are continuous on (a,b] and y" is plecewise
continuous on [a,b]. Furthermore, y has a right derivative at x = a,
which will be designated hereafter by y'(a). Both y and y' are
continuous from the right at % = 8.

(f) ¥y 20 on (0,a).

(g) y satisfies a homogeneous boundary condition at the point

x = a of the type

i

(2,10) 4gaﬁy] = qo(a) y(a) + aj(a) yi(a) =0

where uo(a), a1(a} are real=valued functions, not both zero for any
value of a, subject to the following condition: there exists a positive
number a, such that all the functions

a(0) Tya) o @) 1) o(e) L(a) ¥i(a)

(2.11) :%?;rggT"'” 3 ‘jg”;[?;T" ; 1,(2) B, l1,]

are bounded whenever 0 < a < a .

Once the basic problem has been prescribed, this last condition
is equivalent to the exclusion of certain special cholces of the functions
ac(a), a1(a) from consideration. This condition implies that the function

1,(a) B[]

(2.12) 11655 ﬁBa[Yéj

is bounded whenever 0 < a < a e We shall now show that (2.11) will
still be bounded if Yz(x) is replaced by any solution Zz(x) of

1Y = AY which is independent of a, and which forms with I, a



fundamental set of solutions of LY = N\Y. There are constants 01 and

c, # 0, independent of a, such that Zz(x) = 01Y1(x) + °2Y2(X)° Then

o (2) Zy(a) o (a) Y,(a) 1 +e¥, (a)/e ¥, (a)
ZIRE2S - W ¢ 5 R IV N S VOV R E A

The first factor on the right side is bounded by (2.11), and the second
factor tends to 1 as a - 0 by (2.8), (2.12). Hence the boundedness

of the first function (2.11) is independent of Y Similar remarks apply

20
to the second and third functions (2.11). This means that the dominant
behavior of the excluded functions ao(a), aj(a) for a in the neighbor-
hood of 0, as determined by (2.11), does not depend upon a special choice

of the function ¥

59 but only on the nature of the basle problen.

Definition 15. The domain 9& for class 2 problems is the set of all

functions y a.i%/ having the properties (b), (c¢) of definition 9, (e},

(£) of definition 14, and alsc the property

(2.13) B [y1 = X'(a) y(a) - X(a) y'(a) = 0

where the function A (x) has been defined in connection with definition
1Ce

The boundery condition (2.13) has been chosen so that
Ega{Y1] =o0(1) as & - 0 for any function 1, which satisfies condition
(2.3). The same purpose could be achieved by replacing X (a) by any
function with the asymptotic form X (a) [1 + o(1)] as & » 0 in (2,13).
However, there is very little fresdom for this function, and sccordingly

we refer to (2.13) as a distinguished boundary condition.



Definition 16. In either class 1 or class 2 problems, we define the

perturbed gperator A, in /f%'as follows: Aa has domain j;Ya given

by definition 14 or 15 and

A y=Ly ye £, -

Then {;Aa—} defines a set of self-adjoint operators on the space /ﬁr'
[7]. cCoddington [1] has shown that under a slightly different definition
of Aa’ the spectral family of AO is the limit of the spectiral family of
Aa as a = 0., We shall proceed in a different way and show in a
constructive fashion how tc estimate the difference between the character—
istic values of Aa and Ao for small values of a, and the difference
between the corresponding characteristic functions.

The distinction between the boundary conditions (2.10) and
(2.13), corresponding to class 1 and class 2 problems respectively, should
be emphasized: the former is virtually arbitrary while the latter is
determined in an essentially unique manner from the nature of the basiec
problem; the former may apply to either the limit point or the limit
circle case while the latter is always a condition for the limit ecircle

case, There are in fact problems which may be treated either way, so

that class 1 and class 2 problems are not mutually exclusive,.



3¢ The Comparison Technique.

The characteristic value problem under consideration is

(3.1) Iy = Ay yed, (0<a<b),

It has been assumed that there exists a solution /\ s Yi of the basic

problem; that is

(3.2) LY, = /\Y1 T, e 090 .

It is our purpose now to connect the solutions of these two problems. Let
Yl’ Y2 be the fundamental set of solutions of the equation I¥ = AY
which has been described in section 1, and let Y be any soclution. Let

y satisfy the Volterra=type integral equation

b
(33) 3@ ) =T + (A=N) [ clot) k() y(EN) dt (a<x<b)
X

and let

y{xs N) =0 (0<x<a),

Here
(3e4)  olxst) = Y (6) Ypx) = ¥, (x) T,(t)e
Then the following lemmas esre valid.

Lemma 1. For each fixed value of N and a (0 < a <b), there exists a
unique solution y(x, A\) of the integral equation (3.3) which is continu-
ously differentiable and twice plecewise continuously differentiable on
(a,b], and which is continucusly differentiable from the right at x = a.
This function satisfies the differential equation (3.1), and if Y(x)
satisfies a homogeneous boundary condition at x = b, then y{x, \)

gatisfies the same condition.
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This result follows from the Liouville=Neumann theorem on non=singular

Volterra=type integral equations.

lerma 2., Let /\ be an isolated point in the spectrum of the self-adjoint
operator AO, and let 2’1 be the corresponding characteristic function.
Let y{x, N} be the solution of (3.3) when Y = Y4+ Suppose that A
satisfies the condition ,@a[y(x, N)] = 0. Then y(x, N) is a character-
istic function for Aa with corresponding characteristic value N

In the sequel we shall always choose Y = Y1 in (3.3) so that

Jemma 2 can be applied.

lemma 3. Let X (x) be the function defined in comnection with
definition 1C. Let /\ be an isolated point in the spectrum of Ao and
let Yi’ Y2 be the fundamental set of solutions of LY = NY used in
(3+4)s Then, for class 2 problems, there is a constant C such that
(3.5) Ax) = CY, (x) [1 +o(1)] as X *>0 .

Purther, there exists a number a, such that B a[YZ] is bounded away
from zero whenever a < & .

o]

Froof: Let U, (x)s Uz(x) be the sclutions of LU = N\U postulated in
definition 13. Let f51 (x)s ﬁz(x) be defined by means of the integral

equations
x

(3:6) #;G) = U0 + (4= N) [ aGet) k(e) B8 as (3 = 1,2)
O

where the function G(x,t), given by (3.4), has the representation

6lxst) = 47U (8) Uy(x) = U, (x) U, (5)]
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in which A 1is a non-zero constant. Consider the sequences of successive
approximations to the solutions of equations (3.6)s The first approxima=

tions are for j =1 and j =2 respectively

U, (x)
U, (x) + L....m); U, (x) ( ( - U?"(t) U1(t) Uz(t)J k(t) dt

x
Uz(x) + LL:EM U‘z(x) fo [U (t) U, (t) = Uz(t)] k(t) dt,

which are U, () [1 + o(1)7, U, (x) [1 +0(1)] as x - 0 because U, € /%T/
and U 5,£T » and the assumptions of definition 13 apply. Then it
follows by a standard procedure that for each j, equation (3. 6) possesses

a solution ¢j(x) with the property that
ij(X) = Uj(x) [1+0(1)] as x=-0 (3 =152),
and furthermore ﬁj satisfies the equation Lf = ifle Iet

A=) = Vi g, (x) + Vz g, (x)

Y ) = 5, U )+ §, 0,0 .

Since ii(x) = K(x) [1 + o(1)], the condition (2.3) leads to

£~1: gé = Yfgs ‘12 and hence

7K(x) = CY‘(X) [1+0(1)] as x>0,

which is (3.5)s Further, it follows from condition (2.13) that
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A a[xz‘]

i

¢ WY, (a), Y,(a)] [1 + o(1)]

i

-c[1 + o(1)] as a0,

which is bounded away from zero for a sufficliently small. This completes
the proof of lemmsa 3.
The solution of the integral equation (3.3) when Y = Ty, for

each fixed value of x and N\ s 18 represented by the serles
(3.7) ylxs W) =T (x) + (N=A) HY (x) + eoo + (N=N)" H' X, (x) + ooo
where the operator H 1is defined by

b
(3.8) Hf(x) = f G(x,t) k(t) £(t) dt
x

and H© is the mth iterate of H (m = 2,3, +.. )o For each fixed a
and each fixed A , the series on the right of (3.7) is uniformly and
absolutely convergent for a < x < b, and may be differentiated termwise.
Consider a characteristic function li’1 = Y1 (xs\) of the
operator Ao for a class 1 or a class 2 problem. Let Yj, Yz be the
fundamental set of solutions of LY = A Y described in section 2. We

shall use the following notation:

(3.9) T(x) = maximum {BYj(xﬁl, IYZ(X)Q} (0<x<b).,

For class 2 problems we define

b
(3.10) glx) = f frz(t) k(t) dt (0<x<b),
X

which is bounded since class 2 problems are always of the limit clrcle type.



- 19 =

For class 1 problems, we know from equation (2.6) and definition 12 that
there exists a number X, such that the ratioc Yi(x)/Yz(x) is a positive

monotone increasing function of x whenever 0 < x £ Xy Then we define

b
(3.11) g(x) = j, ?2(t) k(t) dt (xo <x <b)
x
%o
= glx,) + / 7, (¢)] T(t) k(t) at (0<x<x)
x
and further define
(3.12) ¥1(x) = maximum {lY{(X}{’ ‘YE(X)‘} (x, <x<b)
(%) :
= maximm m Y; (x)!, ﬂYz(x)] (0 <x< xO) .

Lemma 4. The following asymptotic form is valid for class 1 problems:
(3,13) HY1(x) = Yz(x) {1+ 0(1)] as x>0,

Furthermore, there is a number CI independent of x and m such that

m
(3.14) I v, @)l ¢ =E5 c,Le()1™ t(x)

(0<Xﬁb) (m=1,2, Y )Q
Proof: It follows from equations (3+4) and (3.8) that

HY1(x) - Y, (x)

x T, ( )
LI e B
o

/ T, () T, (t) k(t) dat »
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The first term on the right side is o(1) as x = 0 since T, € J%/,
and the second term is o(1) by assumption (2.7). This establishes
the form {3.13).

The result (3.14) will be proved by mathematical induction on
the positive integer m. First suppose that Xq £ x < be Then it

follows from equations (3.4), (3¢8)s (3.9), and (3.11) that

b
|HY, ()] < ‘f; {:izf(t) L(x)| + |7,(8) 1,(t) Y1(x)§} k(t) dt

2g(x) ¥(x) .

i A

Since g(x) is bounded above for x, Sx < b, the result (3.14) is true

for m =1, Under the hypothesis that it is true for m, it follows that

m b A
B el s g e ) {Ine $e) Rl -
X

+15,00) T(8) 1,01} (a1 x(t) av

2m+1

b
A A m""‘
< E=r 6 Y f; (e) [g8)1™ k(t) at

+1

=2 o lel® )

Hence it is true for m+l, and the induction is complete.

Suppose now that 0 < x < X Then

£
(3.15) |, ()] < / O{hﬁ‘(t) L]+ 1T,(8) T(0) T, } k(t) at +

b
+fx {I2@) 60l + 17,(8) 1,00) ¥, ()|} k(t) at
o
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Since the ratioc Y1(x)/Y2(x) is a positive monotone increasing function

on the interval 0 < x < xc, it follows that
(3.16) 17, (6) ¥, () < 1y, (8) ()] (x=st2x)

Substitution of the inequality (3.16) into the inequality (3.15) then

leads to

iHY1 (X”

iA

x
A b A
2, (x) f " R(8) k(t) at + 2 2 [ P k) as
x X
e/

§A

2 T(x) + 2 ¥(x) glx,) «

Hence the result (3,14) is true for m = 1, It follows from the

induction hypothesis and the inequality (3.16) that
X
4 3 ()] < 2oy © fo{lr(w?(tnuH
(AN ) i B 1 2 \¥

+ 5,080 ¥(t) ¥, ()] [e(t)1™ " x(t) at

2m+'l

+ m=1)4

~ b A )
¢, Y(x) f ) [g(+)]™ L k(t) at
X
[o]

2 J/xo > =}
< gy €1, ()] @ T (g™ k() ae

2m+1 ~ b n=1
+ c, T(x) () [gt)1™ 7 k(e) at
(m_;‘;! 1 (x fxo ( [g( (

+1 .
2m {g(x)] Y(x) (0<x< xo).

This completes the inductive proof of the result (3.14).
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Lemma 5. Let ,aga{y] = 0 be the boundary condition (2.10). Then the

following asymptotic form is valid for class 1 problems:
(3.17) A a[HlYl} = @&[Yzj (1 +o(1)] as a -0,
Forthermore, there is a number¥® C1 independent of x and m such that

L A
(3.18) I 1,01 2 gy oleG™ $1(x)

(O<Xf_b) (m=1,2, ooa)
and

m A -
(3:19) 1B, [H" 1,11 < 7By ¢yle(al)™ {Ja (2)[¥(@) + |o, (@)|T'(2))
(0<a<b) (m= 1525 oee ).

Proof: In forming @B a[HYﬂ, we may differentiate HY, under the

integral sign and obtain

A (0] = B (1]
ﬁa[YZZ]

(3.20)

b
a B 1]
2 a1 Y, (t) Y (t) k(t) dt
= - () k(t) at - 1 2
o 1 B aiYZI a
The first term on the right side is o(1) as a - 0. The second term may
be decomposed into the factors

Y, (a) /b Y, (a) B LY,]
1 2 a1
LE J, T, (t) T,(t) k(t) at, - ENON AR

There is no loss of generality in assuming that the constants Gg
in lemmes 4, 5, and 6 are identical,
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The first factor is o(1) by hypothesis {2,7) and the second factor is
bounded by hypothesis (2.12). These statements establish the asymptotic
form (3.17). The proof of (3.18) is similar to that of (3.14) and will

be omitted. The result (3.19) follows from (3.14) and (3.18).

Lemma 6, Iet /d3a[y] = 0 be the boundary condition (2.13). Then the

following asvaptotic form is valld for class 2 problems

2 =
(3.21) B, lm,] =36, 0] [1+001)] as a-0
Furthermore, there is a number¥® C.3 independent of x and m such that

m A
(3.22) [ Y, (x)] < G%ﬁ? Cﬁg(x)]m«“i ¥(x) (0 < x <b)
and

I
G23) LRI Y s oyp ¢ @I LB,I,)| (0<aca)

Proof: Equation (3.20) holds as in lemma 5, The first integral on the
rizht side is o(1) as a - 0 since Y1 6,4%/, and the second integral
tends to a finite limit as a - 0 because class 2 problems are always
of the 1limit circle type. On account of conditions (2.3) and (2.13) it
follows that @ a[Y,x] = o{(1) as a - 0, and on account of lemma 3,
ﬁBa[Yz] is bounded away from zero whenever a < ao. Hence the right side
of equation (3.20) is o(1) as a = 0. These considerations establish
the asymptotic form (3.21).

The proof of the result (3.22) is similar to that of (3.14)

on the interval X, $%x % b, and will be omitted. It follows from (3.22)

There is no loss of generality in assuming that the constants Cl
in lemmas 4,5, and 6 are identical,
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that
2m~1 c b
LB, 1" 1,] < WT% fa {1y, (6) T(6).8,[¥,0] +
+15,0) T B (51} (@)™ k() av

Since assumption (2.13) and lemma 3 show that lx8a[11]! f.!lgaleji

whenever a < a_, it follows that

= o Cl b 22 m=2
LB, )| < Tty 18,11, fa P(e) [gt)™2 k(t) at
2 Gy m=1
= ot e 18,15 (aga)

Hence lemma & has been established.
Lermas 5 and 6 can now be combined to give results which are
valid for class 1 or class 2 problems. Iet g(x) be defined by equation

(3.11) for class 1 and by equation (3.10) for elass 2, Then

BalTy] ~ BalYy]

(3.24) B [Hyﬂ "‘“/68 {Yz] [1+0(1)] as a0,
a : a
and
[Hm Y, ] I _
(3.25) jggigﬂyj}i = %m~?)z [g(a)1™ !

where C denotes an upper bound for

la (@)l T(a) + |a;{a)| ¥'(a) B,I1,]
(3.26) Cy lABa{31175 or C4 Zgzigfn
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for class 1 or class 2 respectively. The first expression (3.26)
is bounded by equation (3.17) and assumption (R.11) and the second

expression is bounded by equation {3.21) and lemma 3,
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4Le Asymptotic expansions for characteristic values and characteristic

functions.

The boundary condition /43a{y] = 0, given by (2.10) for class 1}
and {2.13) for class 2, is to be applied to the function y(x, \) with
the series expansion (3.7). Considered as a function of the complex
variable /\ = A\, the series is an entire function of /\ = A for each
fixed value of a, and it represents y(x, N) for a < x < b, Termwise
differentiation is valid since a standard argument shows that the derived

series is uniformly convergent (see lemma 1), Thus

(4e1) B,ly] = BIY,] + (A=) B [H,] + coo + (N=N)" B [HY] + oo

The series on the right is an entire function of N\ = A,

Lemma 7. For each fixed value of a < a_, the function /08a[y(x, N
possasses a unigue zero N = A(a) in the neighborhood of N = N\

which may be represented by the convergent series expansion

]
Ia
w

(4o2) Na) = N=8_(a) %m(w ,

where the coefficients M j(a) are determined recursively by the formal

raelation
S = < m
. 0=w+ g
(4e3) v m% C m(gzm"j) ,
where

[Y{J

(4ed) 8 (a) = wmr«]



and

B, Y]
(4e5) e (a) = mr“*r’“ (m = 1525 oee ) o

Proof: let N =\ = -g eo(a). Then equation (4.1) may be rewritten

in the form

B Ly]
(4+6) "TW“T - 1 = F(s)
where

(47)  Fs)=a+ Vya® koot (a4 on

and
(428) (o= Vae) =@ g, (m=1,2y o0 )

It follows from the asymptotic form (3.24) and the inequality (3.25)

that
eo(a) = o(1) as a0,
(4+9)
le_(a)] < 2c[2g(a))™" (0O<aga) (=152, wue )o
Then
(4.10) |V (a)] < 20[2g(a) 6 (@))™"  (0<asga) (m=1,2, c0r )o

For class 1 problems, it follows from lemma 5 that

Blrd b R -
gla) Qo(a) = Zé‘;T?;T . Y1(t) Y(t) k(t) at{1 + o(1)] = o(1)

as a = 0, For class 2 problems, g{a) is bounded and hence

g(a) eo(a) =0(1) as a = 0.



For each value of a, N = N is a zerc of /QSa{yJ if and only
if s satisfies the equation F(s) = =1, since ‘ﬂga{yl] exists and is
different from zero. F(s) represents an analytic function of the
complex varisble s for |s| < R, where R 1is arbitrarily large. Further,
F(s) has the properties that F(0) =0 and F'(0) # O. Then the
equation F(s) = —v possesses a unique solution s = s(w), regular near

w = 0, of the form

M

(4011) 8 =

t"j"j

il
B

3

according to Lagrange's theorem on the inversion of power series [2].
One obtains the coefficients V4 3 by substituting (4.11) into the equation

F(s) = =w, with the result
oM W)=Y ( (Z Ar
=g 321‘\4 mZ r\j

and equating the cosfficients of succesgsive powers of we

The radius of convergence of the series on the right side of
(4011) is not less that Rle'(O)|2/6M, where M is an upper bound for
F(s) in the region of regularity |s| < R. Since (4.7) and (4.10)
show that |F(s)] < 2|s| whenever a < a_, such an upper bound is
M = 2R, However, R is arbitrary and hence the series on ths right side
of (4e11) converges for all values of wW. Let w = 1., Then it follows
that the equation F(s) = =1 possesses a unique solution, which is
represented by the convergent series s = j?_ j° The substitution

AN=N = 88 then establishes the result (4e2)s
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let g(x) and Qo(a) be the functions defined by (3.10),
(3.11) and (4+4) respectively. The next lemma yields an asymptotic
expansion for the zero N(a)} with scale L (a) = g(a) Go(a) as a = 0

in the sense of definition 7.

Lemma 8. The series on the right side of (4.2) iz an asymptotic expansion
for the zero A(a) in lemma 7, with scale g(a) eo(a) as a - O

The function w/(a) in definition 7 is in this case ee(a),

Proofs The coefficlents rA f in lemma 7, as determined by (4.3), have

the form

(4312> V‘j:gj“z@\(’hvkl\vkkz .O’V kh (jzlﬁzs soe )9

where the summation extends over indices h, k1, kz, see 3 X, with the

h
properties

]

h 2’3’oos;k1+k2+"'+kh=j,

where g‘i = =} 83 =0 for J =233, see s and where the coefficients

é? depend upon the indieces h, kﬁ, kz, ese 3 K, but not on o/

h
It follows from (4.10) that ‘Jh = O(L/hwz} (h = 1,25 vee )o Clearly
rJ ;= 0(1)s Under the assumption that t{£= O(Lfghi) for all

A £ 3=1 it follows from (4.12) that

hei+k, 4k + see k =h
szgw 1y b7

- D()jjnz) (j = 293, ess )o
Hence FJ j = o 3“1) is valid for J = 1,25 seee Dby mathematical

induction. Then it follows that
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Na) =N+ 6 (@) [My(a) + *= + ()] = o(e 1)

(j = 1,29 see )

and hence the series on the right side of (4.2) is an asymptotic expansion
for Na) with scale L/(a) as a - 0, in the sense of definition 7,
The function \/(a) in that definition is in this case Go(a).

It follows in particular from lemma 8 that the following

asymptotic forms are valid

H

N(a) N1 + o(1)] as a =0

(413)

1]

Na) = N + 60(8.)[1 + 0(1)] as a=>0.,

The proof of lemma € has been modeled after the proof of a

general theorem of van der Corput [9], pp. 59-61.

Theorem }. For each characteristic value |\ of the self-adjoint operator
Ao’ for class 1 or class 2 problems, there exists exacily one characlter—
istic value N= A(a) of Aa in the neighborhcod of [\ such that the

convergent asymptotic expansion (4o11) is valid. Also the corresponding

characteristic function y(x, A\) possesses the asymptotic expansion

Gete) 3l M)l =40 + 2 (=A@ B 1 R)
i=

with seale L'(a,x) = g{x) eo(a) as a = 0, valid uniformly for
a < x <b, in the sense of definition 8, The function \[/(a,x) in this

case is eo(a) '§(x),



Proof: The zero A(a) described in lemmas 7 and 8, with the asymptotic
expansion (4.11), satisfies the condition .ﬂBa{y(x, N1 = 0. Then all

the conditions of lemma 2 are satisfied and it follows that N(a) is a
characteristic value of Aa with corresponding charascteristic function
vlxs N2a)]. If L # N were another characteristic value near /\ , then

433{y(x,/5)] # 0 by the uniqueness of the zerc, which contradicts
vy, L) e & .

a

In order to prove (4.14) we observe that

Go1) 3o M) =360/ = 3 IA= NI 8 7 6o ).
3:

Because of lemmas 4, ©, and 8 it follows that
i ¥, (e NI 2 20, (28600197 £(x) (a<x<b) (§=1,2 wou )
IN- NI 2 |28 ()] ©<asga) (=125 aue o

The terms after the mth in the series on the right of (4.15) can then be

egtimated as follows:
L= NPT E G+ (N TR R ) 4 e |
< 4c,1e_(a) T {lselx) 8 (a)|™ + |4g(x) 636(:51‘)1"@"’“i ey

< acyle (2) 1(x)| l4g(x) o (a)]"
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Then (4.15) yields the result

G16)  yln N = Y6 = 2 IA = M # 1  )
j:

=0 { o (a) 20 La() 0, (@)1

as a > 0 uniformly for a <x <b (m = 152, oes Jo Then, according to
definition 8, the series on the right of (4.14) constitutes an asymptotic
expansion of ylx, AMa)] with scale g(x) e@(a} as a - 0, uniformly

for a < x < bs This completes the proof of theorem 1.

Corollary 1. For class 1 or class 2 problems, the characteristic value
N(a) of A, has the asymptotic form

[Y,]
% [1+001)] as a - 0,

a8

(4o17) Aa) =N+

Proof: This follows from (3.24)s (4e4)s and (4.13)s

Corollary 2, Let I[Yl} be a2 closed subset of (0,b] with the property

that Y1 (x,/\) # 0 whenever x ¢ I[Yi]" Then the characteristic function

y{(x, N) has the asymptotic expansion

(4.18)  ylx, N&)] = ¥, (x, ) + i (A= N B v, )+
J::

+ I (xs\) 0[@2“ (a)]

with scale eO(a} as a = 0, uniformly for x ¢ I[Yi]»



Proof: Since Yl(x,/\) is bounded away from zero and Q(x} is bounded
whenever x & I[Y!], it follows that §(x} can be replaced by Yj(x,/\)

in the error term on the right side of {4+16)s Purthermore, the function
g(x) in the error term can be replaced by a constant whenever x ¢ I{YE}O

It follows in particular from corollary 2 that

(419)  ylxs Me)] = 2, N) {1 + ol (a)1}

as a - 0, uniformly for x ¢ I[Yj]o

Corollary 3. The characteristic function y(x, A) has the following

asymptotic form

’ﬁga[YI]
(4.20)  ylx, Na)] = ¥, (x, N) + m HY, (%, N)[1 + o(1)]
alio

as a - 0, wiformly for x ¢ I[YI]’

Proof: This follows from (4.17) and (4.18).

Corollary 4. The characteristic function y{x, A\) possesses a convergent
series expansion, consisting of the series on the right side of (4.14),

valid for a <a uniformly for a < x <b. Furthernore, y[x, Na)l

has the property that

(4.21) [Hyl=zs Na)] = Yi(x,/\)ﬁi = o) as a-=>0.,

Proof: The first statement follows from the proof of theorem 1. Since

vy =0 for 0<x<a bydefinitions 14 and 15, it follows that
(4022) |lylxs M@ = ¥, (e, AP

& 2 b 2
= J/ Yi(x,/\) k{x) dx + (, lylxs A(a)] = T(x, N)|* k{x) dx.
o

a



The first term on the right side is o(l1) as a = 0 since 21 £ /%ra

It follows from (4.16) that there exist constants C and a, such that
lylxs N@)] = ¥, (x, A < cle, (2)] T(x, A)

whenever a < a s uniformly for a < x < b. On account of (2.8) and
(3.9) there exists a number x such that §(x,f\) = Yz(x,f\) whenever
a £x < x . Hence the second term on the right side of (4422) does not
exceed

x

[¢)
(4.23) czlec(a)yz f Yg(x;/\)k(x)dx-i»
a8

b
2 2 A
+ c°le (a) YZ,/\)k)d
e (a)] /"o (x (x) dx

provided that a <a . The second term in (4.23) is O(Gi) = o{(1) as

a » 0, In the first term,

T,(a) Y1(x)

Yafaj

¥, (a)
Bo(a) =0 §;T§7 s !Yz(x)l <

whenever a < 2 uniformly for a < x < X e Then the first term is

dominated by

Yi(a) %5

§ZT£7 . Yq(x) Yz(x) k(x) dx,

which is o(1) as a - C by hypothesis (2.7). Hence the expression

(4623) is o{1) as a - 0. This completes the proof of (4.21).
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5. Regular singularities.

The differential operator (2.1) is under consideration when
q{x) and k(x) are real-valued, piecevwise continuous functions of the
real varisble x, and k(x) is positive-valued. The following specific
agsumptions will be made in this section

a(x) ~ 9, x %+ a4 xai 4+ ceo as x -0

(a_4» a_, not both zero)

(5.1)

kix) ~ k:‘a3 xa’?'m + ko X"Hm + eoe as x =+ 0

(m = 192, 286 3} k > 0)0

=1

The gymbols @1 and §‘2 will denote the roots of the quadratic equation

(542) (S -1)-a, =0

Class 1 problems. It is assumed that 4o 2 - -}: « If 9p >~ %, then

the roots §1 and 8)2 are distinct (§1 > gz). The differential

equation LU = AU under consideration possesses linearly independent

1,2) with the asymptotic behavior

3

solutions Uj (=) (3

(503) Uj(X) ~ X as x =0 (j = 1’2)0

If in addition A5 2 -};(mz - 1) > -:,l-: (m = 152, oos ) it follows that

§,< %(1%), so that U,

case and no boundary condition is needed at the point x = Q, If

is not in /%/ o Hence this is the limit point

1 1, 2 1 ,
-7 <q, < Z(m = 1), then ¢ 5 :,2-(1 - m) and hence both linearly
independent solutions belong to j’zf » This is the limit circle case and
will not in general lead to a class 1 problem. However, it is known [7]

that ths function X(x) in section 2 can be chosen so that the boundary
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condition (2.3) reduces to
_ "’92

(5.4) ﬁom Z 1im x Y(x)=0.

%0
This condition requires that Y(x) ~ ng as x = 0, with € > §’2 in
order that ¥ c.Jé/. Since Y is supposed to satisfy the differential
equation LU = AU in order to be a characteristic function of Ao, it
follows that Vi{(x) ~ Cx §1 as x - 0. With the choice (5.4) for the

boundary condition (2.3), any characteristic function Y, of &

1 o
satisfies the hypothesis (2.7).

The boundary condition (5.4) ensures that the characteristic
functions for the basic problem will have the same asymptotic behavior
as the small solution Ui in (5.3)s If a more general boundary condition
of the type (2.3) were to replace (5.4), a problem would arise which is in
neither class 1 nor class 2.

If q == -}:, the roots of (5.2) are identical, ga = §’2 .
Then there are linearly independent solutions of IU = AU with the

agymptotic behavior

(5.5) UE(X} ~ x1/2 Uz(x) ~'x§/2 in x as x - 0,
The boundary condition (5.4) is replaced by
(5.6) B[] = 11n x7% (1 )7 1(x) = o

X

Again this demands that Y{(x) ~ CU1(x) as x - 0, so that (2.7) is

gatisfied in this case also,



Class 2 problems. It 1s asgumed that a5 € - % » The solutions g 1

and @ 5 of (5.2) are then of the form

G.7) @ =griw, ¢,=3- 1w

where W 18 a positive number. The point x = 0 comes under the limit

point case, and appropriaste boundary conditions are known [7] to be

il

(5.8)  MB[¥] =i [(1x) ¥l) = () v)] =0
x~0

where

i

= 4{x

§
Cx) ; ( 4 10,02 8

(5.9) (0<@<mj,

These conditions are deduced from (2.3)., Then the condition (2.9) is

clearly satisfied for the solutions U of LU= NU with the

Si

1* %2

asymptotic behavior Hj(x) ~x as x>0 {(J=152)e

In order to define the perturbed self-adjoint operator Aa,
we shall now formulate the appropriate boundery conditions (2.10) for
class 1 problems, or (2.13) for class 2 problems. We assume that

a uO(a)

(5910) (5 = 1im "'“‘“'( ’) *
as0 %\
exists. The limit may be finite or = . For class 1 problemas, the

restriction (2.11) on the coefficients uo(a) and al(a) will be

satisfied provided that

(5¢11) 6+g2;é0.

This may be eased in the limit point case, bul we shall not pursue this
now. For class 1 problems, therefore, j;?a ig the domain of definition

14 with the condition (5.11) on the functions aﬁ(a), a?(a)e For class 2
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problems, the distinguished boundary condition (2.13) is equivalent to

(5.12) B,y = (@) (@) - {(a) y'(a) = 0,

where the function g (a) is given by (5.9)s

Because of the assumptions (5.1), it can be seen that the
inverse operator (Ao - :‘L)“1 is completely continuous on the (dense)
subspace of plecewise continuous functions 0f<J%(, Then it follows from
the result of von Neumann [7] that Ao on JE?& has a denumerable set
of characteristic values {f\l;§ and a corresponding set of character=
istic functions {»Y1n‘} (n = 1,2, see J)o The existence of these sets
has also been established by McCrea and Newing [6]. The problem of finding
characteristic values N of Aa on CE}Q is the regular Sturm=Liouville
problem, 8o there exists a denumerable set {7\11} and a corresponding
set { yn} « The following theorem can then be esasily deduced from

theorem 1.

Theorem 2, Let L be the differential operator (2.1) for class 1 or
class 2 problems, under the assumption that the point x =0 is a regular
singularity and all points in the interval (O,b] are ordinary points.
Then the condition (2.7) is satisfied for class 1 problems and (2.9) is
satisfied for class 2 problems. Suppose the functions ae(a) and ay {(a)
in (2.10) satisfy the condition (5.11). Then for every characteristic
value N\ n of the operator AO there exists a unique characteristic

value A\ n(a) of A, which possesses the asymptotic expansion

(5.14) A n(a,) ~ /\n - Go(a) épj(a)



= 3G e

with scale eo(a) as a =0 {n=1,2, so. J» The coefficients M j(a}
are given by (4.3). Furthermore, the characteristic functions yn[x, ?\n(a}]
have asymptotic expansions of the type (4.14) with scale 8@(& ) as a =0

uniformly for a £ x < b.

Corollary 5. et U, = Um(x, /\n} be the solution of the equation

LY = I\n‘I (n = 1,2, eos ) with the asymptotic behavior (5.3) or (5.5)
1 __1 _

sccording as qs - % or q_, = 7 let Qn = HUm] la Then for

class 1 problems, the characteristic values ?\n(a) of Aa have the

following explicit asymptotic forms, valid as a = 0 (n = 1,2, «es )

under the restrictions stated.

(5.16) N ()= N + 078, - ¢, 2782 11 o

FSEN

when O = w, g, >~

_ Q.- 6 +
G @ = A, af(g gt L Tt “’J

when § is finite, G+ ©, 7 0, qﬂ_2>«.%

(5.18) N (a)= N\ - 7 @ &)™ [1 +0(1)]

E
L ]

when q_, = =
We shall now obtain the analogous corollary for class 2., Let
@a{y} = 0 be the distinguished boundary condition (5.12). Then theoren

2 and lemma 6 give the asymptotic form

BT,
(5.19) ?\é&) "[\n‘" m (1 +o0(1)] as a0,



To obtain a more explicit result, we need to investigate ,éga[an]
and /éga[an] ag a - 0. For class 2 problems the asymptotic behavior

of the solutions U&n(x) (3 = 1525 n= 152, e0s ) of LU= /\nU is

+ iwlin x

(5.20) an(x) “'xi/z e 1+ Ué;) x + °es ] as x = 0

(é = ‘392; n = 1,2’ 28 e }.
Then it follows from the boundary condition (5.8) that the characteristic
functions have the form
(5.21) ¥, {x) =¢ {'X1/2 sin{w In x +8) [1 +B_ x + ¢ ] +
° in n n

+ x1/2 cos(wW 1n x + 8) [an + oo ] }

0<x<b, 0<8<u (n = 1525 oos )

whers Cn is a normalization constant determined so that liz1n$i =1,
and Bn and Dn are constants. The segond linearly independeni solution

of LU= /\nU, determined as in sectlion 2, has the asymptotlc behavior

(5.22) an(x) = C;3 w ™ x1/2 [cos(wiln x + 8) + 0(x)] as x - 0,
O§S<H (n=1,2, 228 )o

When (5.21)y (5.22) as well as (5.9) are inserted into (5.12), the follow=

ing resulis are obtained:
2
2 = =D
(5.23) B[y, 1=c_ a[B_ sin"(W lna +8) =D w +

+ % Dn sin(Rwlin a + 28) + 0(a)] as a = 0,
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(5.24) B Ir,) == [1+0()] as a0

Substitution of (5.23) and (5.24) into (5.19) then leads to the following

corollary.

Corcllary 6. The characteristic values %\n(a) of A for class 2

problems have the asymptotic forms
_ 2 2 _
(5.25) 7\n(a) = /\n ¢ a[Bn gin“(wW 1n a + 8) D+

+ % Dn sin{(2wW1ln a + 28) + o(1)] as a -0

(0§9<ﬁ) (n=1,2, 200 )e

Success in obtaining a result like (5.25) depends in a crucial
manner on & distinguished boundary condition being applied at the point
% = a., The necessity of introducing such a boundary condition can be
understood on the basis of Weyl's theorem [107, but the details of the

discussion will be omitted here.

Example l. The annular membrane with fixed outer edge. The characteristic
value problem is to solve

2 2

Q—ége+@m%+ ANw =0 (a° <r = x> +3° < 1),
8x” Oy

where O < a < 1, under the boundary conditions

w=20 when r =1,
0w _ o
aw+ta, ™—=0 whan r = e
s} 1 Br

It is assumed that a, and a, are independent of a and that they are
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not both zero, The characteristic functions have the form
- r‘i'/z ﬁ(r) Gme (m = O, i ?9 ® 52 )

W

where r and © are polar coordinates in the plans. The function

u{r) satisfies the equation

2 ; 2
if%+u[?\+l&a54§_gggg
dr T

and the boundary conditions

u(1) = 0, a, u@) +a u(a) =0
where

A =31f2 - 1 =3/2 . A =4/2

a, =@ o, =5 a ay qj-—a aj.

The problem is in class 1, and corollary 5 gives the results

= -1 2m
(5.26) A ()= N 27 zma™ 14 0(1)]
ag a = (n,m = 1929 es® )9

where the + or =~ sign is chosen according as a, =0 or ay # 0,

1
and where

/2, _
/\h o Satisfies Jm(f\n,m) = O,

9

1
ﬁAl = f/ 3Yn,m(r)§2 drs

e
# o

- 1/2 1/2
Yn,m - Cn,m r Jm(r p\n,m>’

and

Cn,m is independent of re
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An explicit calculation yields [11], p. 381

Q = szmj [P(KH"H )]2 J§+’I(/\ ]/2) /\ :fm

N feyed

(ﬂ,m = qug ® % ® }0

Hence (5.26) becomes

) N ) A 2m f\i 0 a2m
(5.27 (a) = + - 3
Nl 1% 22111 1 {I‘(m‘*"i )'}2 Ji+3(/\311:i)
as a =+ { (n,m = 1929 vz )o
If m =0, this is replaced by
(5.28) N (a)= N 1 2 ] [1+0(1)]
° Ny ny0 = o ( p\a/z) in a
1 Ny0
as a -0 (n = 132, ew o ),

172, _
where /\n , satisfies JQ( f\ngo} = O,

14

Similar resulis can be obtained in the event that

depend upon a.

a
o]

[1+0(1)]

and ag



6. Irregular singularities.

It will be assumed in this section that the differential
operator (2.1) has an irregular singularity of finite rank p
{p = 1525 »0o ) at x = 0. For convenience the singularity will be
transformed to the point at infinity, and the characteristic valus
problems will be considered on the interval b € x < o, The differential

equation involved in these problems is

a%y
(6.1) =+ U=q(x) + Nk(x)] =0 (b<x< )
dx

where q(x) and k(x) are piecewise continuous, real-valued functions on
the interval [byx), and k{x) is positive-valued. The following specific

agsumptions will be made¥

(6e2) q{x) ~ Qgp_z x2pw2 + QZP*B x2p“3 + ese as x - o
(Q2p-=2 >O) (p = 1 ,2 g ees )
(6.3) k{x) ~ K, o+ K e L 88 X » o

(K, > 0) (m = 2p=3, 2p=4s 00 )o
The positive integer p is the rank of the irregular singularity at
X = o, Unece p 4is prescribed, m assumes one of the values 2p~3, 2p=i,
ees o It is known [3], [7], that (6.1) possesses linearly independent
solutions Uj(x) (3 = 152), called the normal solutions, with the

agymptotic behavior¥#

The case that the dominant term in g(x) at x = « has an odd exponent,
or szaz = 0, will be treated later in this section.
¥
The convention will be made that J = 1 corresponds to the negative
sign and j =2 %o the positive sign.
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(6.4) Hj(x} ~ e+w(") x 3 (1 + Z Ujh x ) as x = o
h=1

(3 = 1,2)

where (W(x) is the polynomial

pid m1 L ]
w(x) = wpxp‘*“”p»1 x4 eee + Ox,

(6.5) w = 1/2

P sz_z 0 (p = 1,2, s®e )0

The coefficients (£ =p=1y D25 eoe 5 1)s rj’ and Ujh
(3 =123 h = 152, «o. ) are determined recursively after formal
substitution of (6.2), (6.3), and (6.5) into (6.1). Observe that (A)p

is a positive number and W, , XJJ, and Ujh are real when /\ is real.

Further, V1 + t“,. =1p (p = 1525 eoe Jo

In this section,/%y‘denotes the Hilbert space of all complex~
valued functions U(x) such that f‘ lU(x)lz k(x) dx exists, with
inner product defined analogously to that in section 2. The domain ng
consists of those functions Y belonging to /%r which satisfy (a), (b),
and (c) of definition 9, with the interval (0,b] replaced by [bje).
Definition 10 is vold because the point x = « always comes under the
1imit point case according to (6.4) and (6.5). Ilet =a be a number in the
interval b < a < w, Then (iyg is defined by definition 6 with [a,b]
replaced by [b,als The operator AO ag well as Aa is a self-adjoint
operator in the space‘ié/, but the inverse operator (AO - i)na is not

necessarily completely continuous on the subspace of piecewise continuocus

functions of,i%r for arbitrary integers p and m < 2p~3.
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It will be assumed that there exists an isclated point N\ in
the spectrum of Ao. et Y1 be the corresponding characteristic
function and let Y2 be a real linearly independent sclution of the
equation LU = AU such that [Y!, *12] = -1. Let U;s U, be the normal

solutions of this equation and let

£
i

WLy, U,] = sz'zﬁz ’

(6.6) N
()= Huji% = fb Uf(t) k(t) dt.
It follows from (6.4) that the condition
Y. (x) * _
” 1 Y, (t) Y. (%) k(t) dt = o(1) - w0
(6.7) §;Z§7 J; 1 5 ( of as  x

is slways satisfied under the assumptions of this seetion. Clearly (6.7)
is equivalent to the assumption (2.7). Let ac(a), ai(a) be the
coefficients occurring in the boundary condition (2.10). Suppose that

aigp uc(a)

(6+8) 5= 1im *“”E;ngm“ (p = 1525 ses )

a-reo
exists. It may be a finite number or « . We shall assume that ao(a),
ai(&) satisfy

which is a sufficient condition for (2.11) to hold. Then the following
result is established in the same way as theorem 1. The details of the

proof will be omitted.
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Theorem 3. ILet L be the differential operator (2.1) defined on the
interval [b,x), where x = « 1is an irregular singularity of finite rank
and all other points are ordinary points. Under the assumptions of this
section the problems will always be of class 1. For each isclated point

/N in the spectrum of A there exists exactly one point Na) in the
spectrum of Aa with the property that the convergent asymptotic expansion
(4e2) 18 valid as a8 » w, The corresponding characteristic function

y{x, N) possesses a convergent asymptotic expansion of the type (4.14),

valid as a = o« uniformly for b < x < &,

Corollary 7. The characteristic valus A(a) in theorem 3 has the

following explicit asymptotic form:

-0 6= pw
(6.10) 7\(a)=/\+bé-31 2 gm2w(a) fm&ﬁ“’“”

a8 a = w, 0 + p(&% # O

Results can still be obtained when O + pLL% = 0 by nmodifying

the treatment slightly. Suppose that ¢ + p‘&% = 0 and that w is

p=J
the first non~vanishing coefficient in the series (6.5) after cu)p. In

this event

V.-L+i . § -
@a[yﬂ i rz 33“’%@0(&3 [_.,_,Wj:fg + o(1)] &

= a =
B 1] (=3l
Then (6.10) is replaced by
I PR SRS B § - pw
(6.11) )ﬁa) =N+ z%; a L e 2w(a) {f§:3371;~2 +0(1)] as a - «

p=]

5+ pw = W = ssa = (0 =0 o 0.
P* p~1 p=j~1 ’ p=j 7 O
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Simjlar results can be written down in the event that J + p‘&% =0 and
CU%“E =0 for each J = 1,25 ees » (p=1)
Consider the special case p = 1. Let w= Wys (=Y :»(;y

Then (6.10) reduces to

(6.12)  N@@) =N + %’w o2V 2w [S=L 4 6(1)] as a - w,

6 +w #0 .,

For the case p =1, it can be seen that the inverse operator
(AO - i}-i is completely continuous on the subspace of plecewise
continucus functions of-l%y. Then there is a denumerable set of character=-
istic valuves {/\ n} of Ao and a corresponding set { Yin} which is
complete (n = 1,2, .s0 Jo Then asymptotic forms like (6.12) are valid
for each Ah(a) a8 a =2 o (0= 1,25 ese Jo

It has been assumed so far that sz-g >0 (p = 1425 seo Jo
If Q2p~2 =0 and Q2p~3 > (0, then there do not exist normal solutions
of equation (6.1). However, the problem can be reduced to the normal

case by the transformatiom

E :X1/2, V(Z) - §~1/2 U(X)

of equation (6.1)s
Example 2. Consider the characteristic value problen

a> 2
(6.13) “ﬂ% +u(N =-x") =0 (0<x<a)
dx

(6.14) u(0) =ula) =0 .
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The corresponding basic problem is

2

(6.15) @—wg%-u{/\»xz‘}r:(:: (0<x < )
dx

(6.16) u(o) = 0 Ue JZU

Solutions of the latter are

(©17) ¥ (x, N ) =5 b, 2172 )

where LV = (/\n = 1)/2, where Bn is a normalization constant to be

determined, and where f\n satisfises the eguation

(6.18) D, (0) = 0,

1/2

The function D, , (2 x) is a parsbolic cylinder function of the first

kind, with the asymptotic forms [11], p. 347

, U 2
DL/(21/2 x) =2 /2 x e /2 [1+ o011 as x -

(6.19) (1)
s Y,
x) = “”Tmz 3 2 /2, o{1) as x -0
INC I

1/2

D, (2

The condition (6.18) requires that

(6.20) L= 2n + 1 (n = (31325 ese )9
or
(6023) /\n =24+ 1= in + 3 (n = 093329 6ae )o

The normal solutions of (6.15) are

2
Uj .o /2 X2m+§

(6.22) 2
U2 ~ Bx /2 x32n02 28 X < w (n = O,],Qgg oo )o



Comparison of (6.17), (6.18), (6.22) shows that

—n=1/2

(6.23) B, =2 (n = 05152y soe Jo

Then the normalized solutions of the basic problem are

- 2~nw?/2

(6:24) YH(XQ /\n) - 3/2 (ﬂ = Ogg ;2, 2o )

2n+3 (2

where A is given by (6e21)s Then (6.10) can be applied to the

problem at hand, with the identification

. =2n -2

-1
L]

B
4

_=2n=1 ((F 2 1/2 B 1/2 ~2n=2
Qn-_z LDZM(Q x) dx = 7 (2n + 1)1

(see [11], pe. 351), and the following asymptotic forms are obtained for

the characteristic values:?

2n+3 2
(6.25) 7\n(a) = {4n + 3) + 2 a4n+3 e & [1+0(1)]

a2 (2n41)1

as a8 * w (n = 091,2’ XX ).

Asymptotic forms for the characteristic values of the problem

2
§~% +u(A - x2) =0 (0<x<a)
dx
u'(0) = ufa) =

can be obtained in a similar fashion. Combipation of these forms with
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(6.25) then leads to asymptotic forms for the characteristic values of
the bounded guantum mechanical osecillator problem

d2u 2
(6426) == +u(N=x")=0 (=a < x < a)

d:ecz

u(~a) = ufa) = 0,

as follows:

N \ 2n+2 a2n+1 ewaz
(6.27) n(a) ={(2n + 1) + n1/2 - [1+ 0(1)]

asgs &a - w (nzOgl,Q, apw ,}-
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7. Eguations with two singularities.

So faer it has been assumed that the fixed endpoint b of the
interval under consideration is an ordinary point of the differential
equation. We now weaken this restriction somewhat, and permit b to be
a regular singularity.

Consider the differential operator L given by (2.1) on the
intervel (Osb), where now q(x) and k(x) are plecewise continuous
on (Osb)s It will be assumed that these functions have the asymptotic
expansions

a(x) “P_,Z(b - X}—az*' p-1(b - x>—1 4+ soe as x - b,

(7.1)

k(x) ~ h___z(b - x) + h...q (v - ees ag x = b,

(h,>0) (£ =125 60 ) o

=g

let 421 and Mo denote the roots of the quadratic equation

(7.2) N =1)=p_, =0

Then the differential equation LU = AU possesses linearly independent

1,2) with the asymptotic behavior

i

solutions wj(x) (3

K

(7.3) Wj(x} ~ (b - x) as x - b (”’z]#ﬂz) (3 = 1,2)

W) ~ (b - 02, Wy(x) ~ (b - 02 1n(o - x)
as x -+ b (/)11:472>0

The same Hilbert space,J%/is used as In section 2, The boundary

conditions at x = a for both class 1 and class 2 problems are left
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unaltered. However, the boundary condition (2.2) is not appropriate when
x = b is a singular point of the differential equation: in the limit
point case no condition is applied at x = b, and in the 1limit circle

case (2.2) is replaced by the condition
(7.4) ﬁb[ﬂ = lim [R%(XJ Y(x) - ~7'“3(3':) v (x)] = 0,
x-*b

where the function 7(tjx) is defined analogously to 7((x) in section 2,
Accordingly, the definitions 9, 10 and 14, 14 of 090 and £,
respectively are modified by the omission of (2.2) in the limit point case
and the replacement of (2.2) by (7.4) in the limit circle case. Other
definitions and assumptions are modified in an obvious way. The crucial
assumption (2.7) for class 1 problems is left intact; this is reasonable
because the contribution to the integral for values of t near b is
small on account of the behavior (7.1) of k(x) and (7.3) of wj(x) as
x = be Then results corresponding to theorems 1, 2, and 3 and their
corollaries can be obtained without substantial alieration of the proofs.
We shall omit the formal presentation of these modified resulis,
and shall be content to treat an exemple of some importance in the case

that the endpoint x = 0 as well as x = b is a regular singularity.

Example 3. The bounded rigid rotator in quantum mechanics [8]. A mass
particle is restricted to rotate at & comstant distance from the origin
in three=dimensional Euclidean space. For the bounded problem, the
particle is excluded from entering a cone defined by an azimuthal angle
ay and in solving the problem in quantum mechanies, one regulres that

the wave function wvanish on the surface of the cone.
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It turns out that the wave function must have the form
(7.5) \V(G,ﬁ} = -1/2 8 y(e) emiﬁ (m =05 +1; oeo )
where y(8) satisfies the equation

1
2
(7.6) i—%+y[é‘;*—;+ AN = (0<exa)
8in

and the conditions
\ 2
(7.7) y(a) =0 y € L (0,8).

The variables € and § are spherical polar angles ranging over the
domain O < @ <20, 0<®<a<nmn, Asimple linear transformation of
the independent variable € sends w into 0 and 0 into n. The
problem at hand is then of the type discussed sarlier in this section,
and hence corollary 5 is applicable. The asymptotic form (5.16)

becomes in the present notation

$4

(78)  A(a)=N_+Q7Ng =g -a) | T2 [1+o(1)]

as a - 0= (§’1>€2) (n = 1425 eee )

In this example, the functions q{x) and k(x) described by

(5¢1)s (7.1) are replaced by

q(e) = (mz - '}:) sin'.z 8, k(8) =1 (0<8<u)
and
q‘-a2- mZ"%)Za?Z (mzosi?’ 2 ®s )
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It can be shown that the basic problem

1 2
2 - = 7

(7.9) d g + Y(A 5 +N\7 =0 (0<8&<u)
ae sin® 8

T chy= LE0,m)

has solutions

(7.10) Y1(8) = (8) = C, sini/g 8 ?i(cos ©),

=Y
Tsn.m 5T

NN = (n+1)?
Nl
(n3031’2, see 5 M = Og i 1, oo @ ﬂ)

where Pﬁ(z} is the associated legendre function of degree n and order m,

as defined on the cut (=1,1) [4], and

= (_1\D ol nem )l
Cn,m = (-1)" 2" ml n+m )i

The constant jr) 0 in (7.8) is given by [11], p. 325

"
— " 2 m 2 .
@) a =( Zn,m = [ [Pn(cos 8)1° sin & 48

nsm

o
or
_ 22 wi)? (nem)
Tigi 2n + 1 (n+m)!
Hence (7.8) is rewritten
, o 12 m@a+1) (nEm)l . _ 2w
(7.11) ?\n,m(a} (n+3)" + L2 (m1)2 (n=m)! (m-a)

ag 4a - i, (n :09}’ eoe 3 M = ?’2, 290 gﬂ)'
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Similarly, it i3 found that
. 12 _2n + 1 o -1
(7.12) 7\n’o(a) (n+ 2) == [In(m - a)]

as &8 -+ 1 (n=0,1,2, 998 )o
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