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.ABSTRACT 

A column of ionized mercury vapor is placed in a parallel 

transmission line and the reflection coefficient observed. From 

the measurement of reflection coefficient as a function of discharge cur-

plasma resonance is demonstrated. In accordance with the 

applied, but in contrast to the results of other investigators) resonance 

is found at only one value of discharge current. The discharge current 

required to produce resonance is measured as a function of 

The functional dependence observed is as predicted theory, but the 

current is higher than the theoretical value. The discharge current 

required to produce resonance is measured as a function of gas pressure. 

The d<:~pendence that is found follows that predicted theoretically at 

higher gas pressures) but deviates sharply from the theoretical form at 

lower gas pressures. 
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I INTRODUCTION 

The discovery and utilization of scatter propagation (1) has led 

to interest in the details of the mechanism of this mode of 

horizon" radio transrrdssion. Some (2)3) have examined 

the possibility that the ionized trails from meteors may play an impor

tant part in this mode of propagation. It is well known (4) that 

radio echoes may be obtained from meteor trails. 

It has been pointed out by Herlofson (2) that under certain condi

tions a resonance effect may exist in the scattering of a plane wave 

an ionized cylinder. When this resonance effect occurs, the effective 

scattering diameter of the cylinder may be many times greater than its 

physical diameter. The presence of this enhanced effectiveness of 

scattering may be correlated with the excitation of "plasma resonance", 

an effect apparently first described by Eckersley (5). 

The phenomenon of "plasma resonance" involves the existence of a 

frequency at which a particular configuration of an ionized gas will be 

strongly excited by an externally generated electric field. The frequency 

at which this occurs, called the critical frequency Herlofson, 

on both the shape of the plasma and which of its possible modes is ex

cited. This frequency is disLinct from the "plasma frequency" familiar 

to workers in the field of gaseous discharges. However, for certain 

shapes, the frequencies may assume the same value. 

Only a few investigators have done work in the field 

of plasma resonance. In 1931 Tonks (6,7) reported a series of 

ments in which he placed a discharge tube between the plates of a 

parallel plate capacitor. He verified the existence of plasma resonance, 

and the dependence of the phenomenon on the shape of the plasma. However, 
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his method did not permit a evaluation of the effect of 

the presence of the plasma on the terminal impedance of the parallel 

plate capacitor. Tonks observed in the of the capa-

citor at discharge tube currents other than that at which plasma 

resonance was expected to occur. In 1951 Romell (8) reported the re

sults of an experiment in which 30 centimeter radiation was beamed at 

a discharge tube 3 cm in diameter and the back-scattered signal ob

served. Romell observed pronounced back scattering at several values 

of discharge tube current. He measured only relative values of the 

back-scattered signal) and was) therefore; unable to obtain any y_uan

titative relation between the magnitude of the signal and the para

meters describing the plasma. 

It appeared that it would be of interest to perform an experiment 

in which the properties of the plasma resonance of an ionized column 

could be more carefully studied. Such an experiment 1vas performed 

placing a cylindrical section of a gaseous discharge tube between the 

conductors of a parallel plate transmission line. Theoretical 

relations were developed connecting the reflection coefficient measured 

on the line with the characteristics of the gaseous dischar~e. A dc:s

cription of the experiment and a conrparison of the:: th::oretical and 

results is here. 
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II THEORETICAL RELATIONS 

A. Nomenclature 

A Arbitrary constant 

13 Arbitrary consta..'J.t 

Nth order s amplitude 

B/A Reflection coefficient 

c Capacitance per unit width 

D Scattering diameter 

E Electric field strength 

H Magnetic field strength 

Hankel function) nth orderJ first kind 

(1)' 
H 

n 
Derivative of with 

I Current in discharge tube 

J Bessel function) nth order 
n 

to its argument 

Derivative of J with respect to its 
n 

K Dielectric constant relative to free space 

M Line dipole moment 

M' Line dipole moment 



M" Line dipole moment 

N Number of electrons per unit 
e 

P m Associated Legendre polynomial 
n 

Q Charge per unit width 

R Function of radius 

T Electron temperature 
e 

U Potential function of complex potential 

V Stream function of complex potential 

w Complex potential; W U + iV 

w
1 

Complex potential; line charge -betv1een 

Z Characteristic impedance 
0 

z_ Shunt impedance 
s 

a Cylinder radius 

a' Fractional radius 

a Constant depending on n 
n 

a Constant depending on s 
s 

b Outer cylinder radius; Distance between planes 

d Width of parallel plate line 



e Charge on electronj Base of natural logarithms 

2 2 2 g Ellipse parameter) g = (m - n ) 

i Imaginary unit) 

j Current density 

k Propagation constant 

k' Propagation constant in medium of E' 

k (q) Constant depending on n and q 
n 

ill Mass of electronj Semi-major axis of 
summation 

· Index of 

n Electron concentration; Mode number; Index of summation; 
Semi-minor axis of ellipse 

n Electron concentration at cylinder axis 
0 

n Mean electron concentration 

n Electron concentration for resonance in uniform plasma 
u 

p Arbitrary constant 

p
0 

Gas pressure reduced to o0 c 

q Index of su.rnrnation 

r Radius in cylindrical coordinates r J cp J z J and spherical 
coordinates r J Q ; cp 

s Index of summation 

t Time 

u Distance from plane to charge 

v Velocity 
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x Coordinate position) rectangular coordinates x,yyz 

y Coordinate position) rectangular coordinates x,y>z 

z Coordinate position, rectangular coordinates x,y,z 

a Angle; Parameter describing non-uniform plasma 

Damping factor for Plasma) J) /w 
c 

y Parameter descri.bing non-uniform dielectric constant 

o Fractional lengthy dimensionless 

E Dielectric constant 

E' Dielectric constant of plasma 

E Dielectric constant of free space 
0 

E Dielectric constant at cylinder axis 
c 

Q Colatitude in spherical coordinates rJQJ~ 

Free space wavelength; Electron mean free path 

µ
0 

Permeability of free space 

iJc Collision frequency 

¢ Scalar potential 

Polar angle in cylindrical coordinates 
Azimuth angle in spherical coordinates 

w Circular frequency 

Note: All formulas are in rationalized MKS units. 

r, ~ , z; 
r JG, ~ 
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B. Dielectric of a Plasma 

The dielectric properties of an ionized plasma have been exten-

sively studied theoretically (9-11) and experimentally (11-13). .An 

idealized treatment of the problem is presented here primarily for 

reference. 

In the plasma of an electrical discharge, positively and nega-

tively charged particles are present in equal numbers. In the of 

discharge considered the negative particles are electrons and the 

positive are ions. However) the mass of the lightest positive ion is 

almost 2000 times that of an electron, whereas they carry the same 

charge. A a consequenceJ the electric forces on electrons and ions 

are the same) but the motions induced an electric field are thou-

sands of times greater for electrons than for ions. For this reason 

it is permissible to treat the plasma as though it were composed of 

electrons only. 

It is customary to neglect magnetic forces in comparison to elec-

tric forces. This is justified if the imposed frequency is high compared 

to the gyro-magnetic frequency (roughly 1 megacycle in the earth's field), 

and the induced velocity small compared to the velocity of light. 

The equation of motion of an electron is 

where m is the electron mass, e the charge on the electron, and v 

the velocity of the electron; E is the electric field, and j) is 
c 

the collision frequency. It may be seen that m is a retarding or 

damping force. Its form was suggested Eccles (14) in 1912. Everhart 

and Brown (10) show that under certain conditions Marganeaus' results (9) 
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reduce to this form at sufficiently high 

If all quantities vary as -iwt 
e ; the electrons equation of motion 

may be written 

- i w m v + m J)c v E e 

which may be solved to give 

v E e 

m( - iw) 

If n is the electron concentration7 the current 

given by n e v , hence the current density may be >.vri tten 

j 
2 

ne E 

m( J) - iw) 
c 

j is 

If this result is substituted in Maxwell 1 s Equation v x H j - iWE E 
0 

there is obtained 

vxH 

which may be written 

vxH 

2 
ne E 

m( j) - iw) 
c 

iw E E 
0 

2 l ne 
-m-E -(-w~2-+-v~2~) E • 

0 c 

If the presence of the electrons is considered to modify the dielectric 

constant; then Maxwell's Equation may be written v x H = -i w E' E : where 

2 ne 
~~~~~~ + i 

mE (m
2 + 

0 

(1) 

It should be noted that the modified dielectric constant is complex} 

having an imaginary part if collisions are present. It should be noted 
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also that the effect of the presence of the plasma is to decrease the 

dielectric constant of free space. This is different from nearly all 

real dielectric substances, which have dielectric constants greater 

than that of free space. If the electron concentration is large enough 

or the frequency low enough) the dielectric constant may become nega-

tive. It should also be noted that a plasma is a strongly dispersive 

medium, since its properties are dependent. 

In this section the equations describing the scattering of a plane 

wave an infinite cylindrical plasma will be presented. The case where 

the electron concentration is a function only of the radial distance from 

the center of the cylinder will be considered. 

Maxwell's Equations are) using the results of the last section 

\JXE iw µ H 
0 

\JXH -im E' E 

Taking the curl of each gives 

VXVXE im µ
0 

v X H VXVXH -im V X E 1 E 

The curl must operate on E' , since it is taken to be a function of 

position. Using the vector identity 

v x E 1 E 

and substituting to 

\JX\JXE 

VXVXH 

v E 1 v x E + E' v x E 

equations in E and H only) 

im µ ( - im E 1 E) 
0 

= -im ( V E 1 X 
VXH 

+ E' im µ
0 

H) -im E 1 

At this point two separate cases can be distinguished. In the case 

where the electric vector of the incoming wave traveling in the positive 
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x direction) is parallel to the axis of the colurrmy taken to be the 

z axis, all scattered radiation will have an electric vector with 

a z component &'ld the equation in E ~hill become a scalar rather 

than a vector equation. where the electric vector is per-

pendicular to the axis of the cylinder, the H vector in the 

and scattered radiation will have only a z component. In this case the 

equation in H will be a scalar equation. Writing for -9
2 

for 

\] x \] x and for 
2 

m µ E , there are obtained 
0 0 

2 EI - 1) E -k J parallel incidence 
E 

0 

-k2 (~ - 1) H - 'VE
1 

X \J X H , perpendicular 
E E 1 

o incidence 

Since E1 is a function of only the radial distance r , these become, 

in cylindrical coordinates, r,qll,z 

d
2

E 1 dE 
2 

-k2 Et 
+ + _:!:.._ d E + k2E - 1) E 

dr2 r dr r2 d£p2 E 
0 

and for the case of perpendicular incidence 

d
2
H 1 dH --+--+ 

dr2 r dr 
1 -k2(.§..'._ - 1) H + 1 dE

1 

dH 
E -ET dr dr 

0 

( 2) 

It is the case of perpendicular incidence, where the electric vec-

tor of the plane wave is transverse to the axis of the cylinder, that may 

give rise to resonant scattering. No further reference w~ll be made to 

the case of parallel incidence. 
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Dielectric 

If the electron concentration in a plasma is uniform, the dielec-

tric constant within the plasma is not a function of position. It is 

possible in this case to consider a cylindrical column of plasma to 

be an cylinder of dielectric its 

dh:lectric constant Equation 1. For the case of a plane 

wave incident upon such a cylinder, v1hose axis is normal to the direc-

tion of ptropagation, it is possible to obtain an expression for the 

scattered radiation the Fourier-Lame method. 

Consider a plane wave traveling in the positive x direction, 

with electric field in thE:: y direction: striking a cylinder of radius 

a and dielectric constant E' centered on the z axis. 'rhe incident 

magnetic field is taken to be of unit strength, and to vary as 

ikx -iwt 
e e The scattered magnetic field, H , lies entirely in the z 

direction. A result given in Smythe ( ), page 503, may be used to ob-

tain H . After changing notation this becomes 

H 

where 

00 

LB H(l)(kr) cos nqpi 
n= 0 n n 

1/2 
J ( ka) J ' ( k ' a) - ( E ' / E ) J ' ( ka) J ( k ' a) n n o n n 

( 3) 

In the expressions above r and ,~ are coordinates in the 

x-y }Jlane. J is the Bessel function of the 
n 

order and first kind. 

J' 
n 

is the derivative of 11i th respect to its argument. 

Hankel function of the first kind and H(l)' its derivative with 
n 

to its argument. The 

the 

k is to 
1 2 w( µ E ) I 

0 0 
or 

of the incident radiation in free space. 

is the 
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1/2 <:P The quantity k' is ectual to w(µ E 1
) • The symbol 

0 0 

the Kronecker delta) to zero if n f 0 J and if n = 0 

Each represents the of the mode of scattered 

radiation) n = 1 corresponding to the dipole mode. The various 

may be used to the scattering diameter of the r.rhe 

s diameter is defined as the diameter of a fictitious cylinder 

which abstracts from the incident wave all the pov1er contained in the 

portion of the wave front it subtends and reradiates this power in such 

a vmy as to duplicate the scattered radiation. 

The total scatten:d power may be found integrating the power 

per unit area around a cylinder of unit height and a very large radius. 

If this power is set equal to the power inciden upon an area of unit 

and width D , the quantity D so determined is the 

diameter. It is usually expressed nondimensionally as k D Since the 

incident radiation that produced the scattered field given Equation 

2 was assumed to be of unit amplitude) the IJrocedure outlined will give 

2n: 

D lim f H(rJf) H*(r,cp) 2n: r dr r_.,.oo 
0 

where H* denotes the conjugate of H . Recalling that 

lim 
r~oo 

we can viri te 

where 

D 

ijr = 

m 

L 
n= 0 

2n+l 
kr - ~ n: 

00 

iijr ~ 
E cos ncp L__, 

n = 0 

It may be seen that only terms of the form 
2n 

survive th". integration, since/ cos mqp cos rnp dcp 

0 

2n+l ni 

* 

cos ncp d!lp 

will 
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Now noting that I 1
2

) the expression for scat-

tering diameter may be written 

D 

or 

kD 

4 
nk 

4 

2:n: 

(1 + cP) 
0 

\2 ( 4) 

From Equation 4; it is apparent that each contributes to 

the scattering diameter according to the square of its modulus. 

E. 

It is of interest to determine the scattering properties of a 

cylinder whose radius is very much smaller than a Using 

the series representations valid for small values of the argument to 

represent the various Bessel functions in Equation 3 

lim 
ka-+0 

and lim 
ka~O 

1 + i 

0 

n 
-i 

for any ratio 

It may be seen that if 
E1 

-1 

E1 

E 
0 

(5) 

= 1 independent of the 

value of n . 'This indicates that for very small values of ka J each 

mode is scattered equally when 
E1 

E 
0 

-l J and the scattering diameter 

is infinite. This rather remarkable result appears more reasonable when 

the expression for E1 given in Equation l is examined. It is seen 

that if J)c >0 then 
El 

cannot become equal to -1) but must always ) 
E 

0 

have an imaginary part. The ratio v I w may be considered a damping 
c 



factor for the plasma. Introducing the 

i3 , Equation 1 may be written 

E' 

2 
ne 

2 2 
mE (w + J} ) 

0 c 

i3 J vlhere 

(1 - i~)] 

If n J the electron concentration) is such that the real of 

E' becomes -E 
0 

and 

then 

E' 
+ 

E 
0 

-
E 

0 

1 

""--" ,,.._,. 

1 

2 i i3 

-2 -2i i3 

1 

n n: 

""" -i ........, 

i3 
(ka)2n 

i3 i3 << 1 

From this expression for it may be seen that for any 

finite i3 , no matter how small, the amplitude of the higher order 

modes will vanish and the scattering diameter remain finite. To con-

sider a numerical case take ka = .1 and i3 = .01 . These parameters 

represent a cylindrical plasma having a diameter about 30 of the 

wavelength of the incident radiation, with a collision of 

about 1/20 the frequency of the incident radiation. For this case 

It is apparent that far the greatest 

contribution to the scattering diameter is from the dipole mode. But 

even with only the dipole mode the scattering diameter is 

much than the physical diameter. It may be seen from 

that in this case the scattering diameter D z- 7'.,/2 J more than fifteen 

times the actual diameter of the cylinder. 

4 



-15-

F. -Static-Resonances of Other 

It has been shovm that resonance exists for a column whose radius 

is vanishingly small compared to a wavelength. This indicates that some 

insight into the nature of the phenomena may be gained consideration 

of situations in which radiation effects are neglected. This will 

information concerning the field distributions and resonant frequencies) 

but can) of course, no information on the damping due to radiation. 

Starting with the problem of a cylinder of radius a and dielec-

tric constant E 1 immersed in a medium of constant E J the potential 
0 

outside the cylinder may be expressed as 
-n 

Ar cos ncp and the potential 

inside as - n A Br cos ncp Y where and B are arbitrary constants. 

equating potentials and normal displacements at the surface of the cylin-

der the equations 

Aan cos ncp 

n-1 
E ' n Aa cos ncp = 

-n 
Ba cos ncp 

-nB E 
0 

-n-1 
a 

are obtained. These may be simplified to read 

' 2nA EB E a + 
0 

2n 
a 

which is satisfied if 

or E' = -E 
0 

2n 
a E 1 

0 

0 

-1 

E 
0 

cos ncp 

0 

Hence) all the possible modes of free oscillation are satisfied 

the same value of E' J and all occur at the same This will 

serve to explain the scattering behavior of a cylinder as found previously. 
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For a dielectric sphere; the potential outside may be taken as 

Ar-(n+l) pm (cos Q) sin Iill1p J and that inside as 
n 

Here cal coordinates are used, with Q the colatitude angle) 

d P m the · t d L d f t · an associa e egen re unc ion. 
n 

The same procedure used for 

the cylinder gives the result 

E' 
n + 1 

- --- E n o 

For a of plasma the various modes possible do not all occur 

at the same freg_uency. To produce dipole resonance) it is necessary that 

E 1 -2E 
0 

For an infinite half-space of dielectric E' occupying the 

x > 0 ; the region x <: 0 being free space; with dielectric constant E:
0 

J 

the following potentials may be used. For x > 0 , ¢ = A E - px sin py 

f 0 ~ B bx . or x < , ~ = - E sin py . Here ¢ is the potential, and A, BJ 

and p are arbitrary constants. Ey_uating potentials and normal dis-

placements at the boundary gives the result 

E 1 -E 
0 

It is instructive to consider the case of an elliptic cylinder to 

further illustrate the dependence of plasma resonance on the of the 

plasma and its manner of excitation. 

In Smythe (15); page 97, an expression is derived for the 

outside of ari 

Changing notation 

w 

c cylinder under the influence of a uniform field. 

2 
+(z -

the potential is given by 

2 1/ 2] . . [ 2 2 1/ 2]~ g) +(A" cos o:+iA' sin o:) z-(z - g ) fJ. 
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In the expression above) the field of strength E makes an angle 

a with the major axis of the cylinder. W is a complex potential 

U + iV , U being the potential function and V the stream function. 

The coordinate position is z = x + i y , and the major axis of the el-

e lies along the x axis. The quantities A' and A" are 

A' 

E' -(m + n) (- m -
Eo 

(m - n) E' m + n) 
Eo 

Et 
+ n) (m - - n) 

Eo 

(m - n)(m + 

where E' is the dielectric constant of the cylinder, E the constax1t 
0 

of free space) m the semi-major axis of the ellipse) and n its semi-

minor axis. The quantity g is determined by 
2 2 

= m - n 

If in the equation for W J only very large values of z are con-

sidered, the approximation 
2 

_JL) -~-- may be used. The 
2z

2 

corresponding expression for W becomes 

w (A cos a+ jA' sin a - i)J} 
If a 0 , the field is aligned the major axis of the ellipse and 

w i (A" - l)} 
'+Z 

when 
1( 

the field is aligned with the minor axis of the a 
2 ) and 

w E {e+l 4z 
(Ai - l)}. 

The of a line dipole of moment M per unit is 

w = 
M 1 

z 
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Hence it may be seen that if the major axis is aligned with the field, 

there is an equivalent induced dipole moment M" 
J(E o-2 oa 

(A" - 1) ) 

whereas for the minor axis aligned with the fieldJ the equivalent dipole 

moment M' 
J(E o-2 Oo 

(A' - 1) 

These dipole moments may be expressed as 

M" 
rm+ n)(m 

E' 
n) - (m- n) (m 

nE (m + n) E 
o E 0 

E' 
ill + n 

E 
0 

(m+ n) 
E' 

m) - (n - m) (m 
nE (m + n) E 

o E 0 

E' 
m + n 

E 
0 

E' n)} +-
E 

0 

E' 
n) +-

E 
0 

If the field is along the major axis) the induced dipole becomes 

infinite and resonance occurs when E' 

the minor axis) resonance occurs when 

ill 
E 

n o 
n 

E 1 = - - E 
ill 0 

For the field along 

If m = n = a ; 

the case reduces to that of a circular cylinder and the dipole moment 

becomes 
E' 

- 1 

a
2

E 
E 

M" M' 2:rrE 
0 ( 6) 

0 E' 
+ 1 

E 
0 

and resonance occurs when E' - E ) a result obtained previously. 
0 

From these results it is seen that the frequency of plasma reson-

ance depends not only on the shape of the plasma but on the mode of 

oscillation excited by the external field. 

G. Gaseous Tube in a Parallel Plate Line 

1. The Idealized Case. In an experiment in which an obstacle is placed 

in the vicinity of the conductors of a transmission line) some of the 

properties of the obstacle may be deduced from its position relative to 
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the line together with a measurement of the reflection coefficient pro-

duced the obstacle. 

In the case where a voltage wave of the form Aeik~ traveling in 

the positive x direction} encounters an obstacle at x 0 J a re-

fleeted vmve of the form -ikx Be will be generated. The quotient 

a complex quentity in general} is called the reflection coefficient or 

reflection factor. If the obstacle is considered to to the line 

an equivalent shunt impedance z 
s 

and the characteristic impedance of 

line is Z J then the reflection coefficient is by: 
0 

B 
A 

1 
Zs 

l+ 2 z 
0 

( 7) 

In the quasi-static case the field in the neighborhood of the ob-

stacle is found by solving Laplace's equation. The equivalent shunt 

impedance is given i/wc J v1here C is the added capacitance that 

may be considered to exist at the location of the o-bstacle due to its 

presence. 

'ro find the capacitance induced a dielectric rod midway between 

the plates of a parallel plate transmission line; consider the wiQth of 

the line to -be very great compared to its spacing} and consider a 

typical section in a plane at right angles to the plates and parallel 

to the axis of propagation. The problem is thus reduced to the two-

dimensional situation of parallel planes with a dielectric rod between 

its axis parallel to the planes. 

The problem may be set up as follows. A dielectric rod of radius 

a and dielectric constant E' has its center at the origin in the com-

plex z plane. Located at x = b/2 and x = -b/2 are conducting 

planes. In the region remote from the rod a potential of the form 
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W == E z exists in the between the 'I'o find the ecJ..Ui-

valent capacitance it is necessary to find the charge induced on the 

planes the. rod. 

In the case where the diameter of the rod is very much smaller 

than the distance between the planes, this may be approximated find-

the dipole moment induced in the rod a uniform field in free 

spaceJ and the rod this line dipole. 

In Smythe )J page an expression is given for the 

due to a line between conducting planes. 

tion slightly this may be written 

i 
1(€ 

0 

-1 
tan 

[ 
1lZ 1lU l tanh 2b cot 

no ta-

Here w
1 

is the complex potential, the conducting planes are at y = o, 

and y = b A line charge of unit strength per unit length is located 

at z = iu The potential W due to a line dipole of M at 

y u may be found as follows 

dW 
1lZ 2 1lU 

iM tanh 2b csc 
2b w M 1 

2bE 2 1lZ 2 1lU 
0 1 + tanh 2b cot 2b 

( 8) 

The charge Q induced by the dipole on the y 0 may be expres-

sed as 

Q E x == co' y = 0) - V(x = -co) y o)] 
0 

since v is the stream function. Noting that lim tanh 
JfZ the J 

x->±co 
equation for Q becomes 



Q 

Q 

E 
0 

M 
b 

2 
M 

csc 

2b 
l+ 
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:n:u 2 :n:u 

] - csc 

:n:u 
l+ 

:n:u 
2b 

( 9) 

It may be seen that the induced does not depend on u J the 

location of the dipole. As a consequence the induced by a multi-

pole of order is zero) since such a multipole may be constructed 

a superposition of dipoles. In other words, the of the dipole 

affects only the distribution of charge, but not its total amount, so 

the total charge induced any comprised of and opposite 

dipoles is zero. This result will be used later. 

Equation 6, which gives the moment induced in a cylin-

der a uniform field, the expression for Q may be written 

2:n: E 
2 Et 

1 a -
<oi 

Eo 
E' 
- + 1 
EO 

Since the capacitance c is equal to 
Q 
Eb 

and z 
s 

pedance per unit width becomes 

E' 
+ 1 

i b
2 E 

z 0 

s 2:n:w 
E' 

1 E -
0 E 

0 

For a parallel plate line, whose width d is 

its spacing b , a result in (15), page 466, 

teristic impedance 

i 
w C , the shunt im-

compared to 

for the charac-
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The reflection coefficient may be calculated from the expressions 

for Z 
s 

and Z 
0 

Equation 7y and the relation 1 12 
k = w(µ E ) I 

0 0 

B 
A 

1 + 
i b 
:rr a 

-1 

1 
ka 

E1 
+ 1 

E 
0 

E1 
- 1 

E 
0 

It should be noted that the expression for B 
A 

(10) 

is very similar to 

that for B1 J the amplitude of the dipole mode scattering of a small 

cylinder in free space; since from Equation 5 

- i 
E1 

+ 1 

1 + 4i _l_ 
Ea 

:rr (ka) 2 E1 
1 -

Ea 

The expressions cannot be derived from each othery since they apply 

to different physical situations. 

2. Effect of Quasi-Static Approximation. It is difficult to account 

rigorously for the effect of using a quasi-static solution. In general, 

it is customary to take such a solution as satisfactory if all distances 

of importance are small compared with A/2:rr • 

In the case of a cylinder of radius a between the plates of 

parallel plate line, the excitation of the cylinder the v:rave 

is not in phase at all points on the cylinder. The difference in 

radians across the diameter of the cylinder is given 
2a 

2 • :n: ) vvhich 

is 2ka . 

The charge induced on the plates the cylinder is spread out 

rather than concentrated at the center line of the cylinder. The extent 
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of this spreading out may be estimated from Equation SJ giving the poten-

tial between the planes due to a dipole bet,1een them. Placing 

the dipole midway ·between the J the potential becomes 

w iM 
:n: b 
4 

v1here w is the complex potential; the planes being 

y b . This 

w 

The charge Q' 

is given 

Q' 

may be simplified to give 

M tanh :n:z 
2E b 

0 

induced on the 

M 
E b 

0 

tanh :n:a 

lower plane bet ween 

at 

x 

From Equation 9 the total charge induced on the plate is 

y 

a 

0 and 

and x -a 

M 
The 

fraction of the total charge included in a distance a either side of 

the center of the cylinder is then tanh :n:a 
b 

For a cylindrical plasma 

whose diameter is half the distance between the plates of the transmission 

line) 90% of the induced charge is concentrated in a distance equal to the 

diameter of the plasma. For such a cylinder a cant dimension 

pertaining to the spreading out of charge may be taken to be 2a The 

ratio of this distance to the quantity 2:n:j'A is 2ka 

For the experiments to be described) the quantity 2ka had a value 

of .14 at 300 megacycles) and it is assumed that this is suffici 

small compared to unity to permit the use of a quasi-static solution. 
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3. Effect of Non-Uniform Plasma Density. Equation 2, the differential 

equation governing scattering for the case of perpendicular incidence, 

is difficult to solve if the dielectric constant is not uniform. Interest 
2 

in the problem has centered on the Gaussian distribution, n = n e-(r/a) , 
0 

since this is assumed to the electron concentration in a meteor 

trail. Mackinson and Slade (16) attempted to approximate the solution 

breaking the colmnn up into five regions: adjusting the concentration in 

each to approximate a Gaussian distribution. then employed the 

Fourier-Lame method to solve the problem. Their results indicated the 

presence of five resonant frequencies. The cability of this result 

was questioned by Keitel (17) who cited a paper of his own (18). Keitel 

performed numerical computations on a high-speed digital computer to ob-

tain scattering amplitudes for colU1Dlls having G mssian distributions of 

electron density. His results for a colU1Dll of ka = .1 , ~ = 10-
4 

did 

not indicate any appreciable resonant response. The same of 

electrons uniformly distributed over a column of radius a would display 

a very strong resonance. 

Herlofson (2) attacked the problem considering a uniform cylin-

drical plasma surrounded a thin shell in which the electron concentra-

tion dropped linearly to zero. He concluded that the presence of 

concentration gradient would reduce the amplitude of the scattering 

eoefficient and broaden the resonant peak. Herlofson 1 s results are of 

uncertain use if the thickness of the shell is not small to the 

radius of the column) and do not 

tion very closely. 

In a 

taken (19) 

gaseous discharge tube the 

to be n J ( 2 · 4r) where 
o o a+a' 

any obtainable physical situa-

electron concentration is usually 

r is the radius within the 
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cylindrical plasma, a the radius of the confining tube; and a' a 

related to the mean free J- is the Bessel function of 
0 

zero order. This distribution is very close to that by 
2 

n (1 - a ~r~) where a 
0 2 

1 _ J (2.4a) 
o a+a' 

A solution for this parabolic 
a 

distribution of electron density may be obtained using the LJ.Uasi-static 

approximation. 

Equation 2) being a differential equation in H , the c 

is of no utility in the quasi-static approximation. The differential 

equation to be satisfied may be derived from Maxwell's equation 

\J. D 0 . Using the vector identity E · \J E' + E' \J • E 0 ) 

and defining the potential ¢ by E = -\!¢ J there is obtained 

\!
2 ¢ + ~' \!¢ • \JE' = 0 In cylindrical coordinates, wi.th E' a func-

tion of r only, this equation becomes 

0 

If a product solution of the form ¢ R( r) cos cp is assumed, this 

differential equation may be written 

If 

d ~ + (.! + 1 dE I dR R 
dr2 r E' dr ) dr - r2 

0 

2 
E' = E (1 - yr ) , the differential ey_uation becomes 

c 

d~ 
-- + 
dr

2 
(l- 2yr) dR 
r 

1 
2 dr 

- yr 
0 

Recogni that when y = 0 , this equation is solved (jJ = Ar, 

a solution of the form R = Ar g(r) is substituted. This gives a dif-

ferential eLJ.uation for g(r) 



2 (1 - yr ) 

If a series 

it is found that 

g(r) 

where a 

a 

s 
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(r) + (} - 5yr) g'(r) - 2y 
r 

solution of the form r) 

2 2 4 
+ ya

2
r + y a

4
r + . 

0 

2 
+ 4s + 2 

a 
s+2 (s+2) (s+4) s 

r) 

CD 

~ 
s=O 

s 

0 . 

s 
a r 

s 

2s 
y a2sr + 

is substituted, 

. 

If at r = 1 the dielectric constant changes abruptly to that of 

free space) then a criterion for resonance may be determined. Asswning 

B 
a potential outside the cylinder of the form - cos Q and equating 

r 

potentials and normal displacements at the boundary} the criterion for 

resonance becomes 

E 
c 

-E 
0 

g( 1) 
-E f( y) 

0 (1 - y) [g(l) + g' (1)] 

This quanti may be related to a ) the parameter in the equation 

for electron concentration by recalling Equation 1 relating dielectric 

constant to electron concentration. If the electron concentration neces-

sary to produce resonance in a uniform cylinder is denoted 

collisions are neglected} equation 1 becomes 

E' E 
0 [1-~:] E 

0 

2n (1 -
0 

n 
u 

2 

, and 

Since it has been assumed that E' E (1 - y £_) ) the relations between 
c 2 

the various parameters become 

E 
c 

y 

a 

n 
-2 ° a 



-27-

Using the criterion for resonance E 
c 

-E f( y) 
0 

two relations may be 

obtained 

n 
0 

n 
u 

ex 
2 

y f( y) 

l+ f(y) 

In a cylinder in which the electron concentration is 
2 

(1- ex r 
2

) ) the mean electron conctmtration n is 
a 

From this the equation 

n 
n 

u 

may be written. 

( 1 - ~) _l_+_~ 
2 2 

Figure 1 shows graphically the relation between 
n 
n 

u 

n 

and 

may be seen that for small departures from uniform concentration the 

mean electron density necessary for resonance is almost unchanged. 

It 

For 

ex= .11 J corresponding to the experimental situation at a mercury vapor 

pressure of 1.54 x l0- 3mm (see section on "Properties of a Gaseous Dis-

charge") J the necessary increase in electron density is .12?/o 

Therefore no correction is made for non-uniform plasma density. 

4. Effect of Finite Cylinder Radius. To calculate the capacitance 

that is added the dielectric rod when its radius is comparable to the 

spacing) it is necessary to take account of the fact that the field due 

to the presence of the rod produces a redistribution of charge on the 

In order to accomplish this an iterative procedure may be utilized. 

First; the field from the rod induced the uniform field bet1;1een 

the planes may be found. Next; the effect on this field due to the 

presence of the planes may be obtained. The effect of the rod on the 
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additional field of the may then be found. This process may 

then be repeated as often as necessary. The procedure is similar to 

that used Smythe (15) page 118, for finding the field in the 

borhood of two spheres successive iteration of images. A step-by-

illustration of the procedure is in 2. 

A complex potential W outside of the rod but due to its presence 

may be expressed as 

w 
00 

L 
n= 1 

c 
n 

since the rod contains no net charge and its field must die off at in-

finity. Each C may be related to the 
n 

of an nth order 

multipole located at the origin. Of all these multipolesJ only the 

dipole, corresponding to n = 1 , can induce net charge on the 

If a field due to the charges on the planes is expressed as 

w A 
n 

which is permissible since the field must be finite at the origin) then 

a relation may be written between the components A of an external 
n 

field due to charges on the planes) and the components C of the field 
n 

produced from it by the dielectric rod. This relation may be obtained 

equating potentials and the normal displacements at the surface of the 

rod) and is given 

E' 
1 -

2n E 

c Aa 0 

n n Ei 
+ 1 

E 
0 

It may be seen that only the A
1 

term in the expression for the potential 

due to charges on the contributes to the induction of dipole moment 
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in the cylinder, the A
1 

term the uniform field of 

the ential betvit:en the 

The effect of presence of the planes on the potential due to 

a multipole at the origin may be calculated replacing them with an 

infinite set of images of the multipole located at x ± mb ; m rang-

ing from one to If the potential of a multipole at the 

origin is 
-n 

C z ; the potential due to the presence of the 
n 

planes may be expressed as 

w c 
n 

1 

(z + mb)n 
m= 1 

1 + -----
( z - mb )n 

It is desirable to express this in the form of w 
00 

since 

this will be necessary for the iterative procedure to be followed. 

the use of Maclaurin's Series 

00 

w 
r=l 

00 

L=: 
r=l 

ef (o) r 
:r! z 

where ef(o) represents the rth derivative of W(z)J evaluated at 

z 0 Proceeding formally 

w 1 1 +-----
( z + mb) n ( z - mb) n 

dW c -n 
dz n 

m =l (z + nib) 
+ 

-n 

( z - mb) 

d
2
W 

00 

c L=: 
dz

2 n n 1 (z + 
+ 



w (o) 
r 

c 
n 
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00 
r r 

+ r - 1) (n + r - 2) · · · (n) 
( z + mb)n+r 

n = 1 
(z - mb)n+r 

(n+ r- l)(n+ r - 2) · · · (n) 

(-l)r C (n+ r- l)(n+ r- 2) · 
n 

CD 

m = 1 

·n 

(mb)n+r 

CD 

m 1 

( , )n+r -mo 

1 + (-l)n+r 
n+r 

m 

hence for n + r odd; if (o) = 0 J and for n + r even 

( r 2C ( n + r - 1 )( n + r - 2) · 
wr(o) n 

bn+r 

but a well-known relationship) ( 20) 

00 1 nn+r 2n+r -1 
--

n+r (n+r)! 
m = 1 

m 2 

where B is the Bernoulli Number; Bl n 

hence 
(-l)r n+r 2n+r B 

1( n+r 
if (o) c 

bn+r (n+r) (n-1) ! 
n 

(]) 

and finally w L Arz 
r where A = ) r 

A 
r 

r =l 

bn+r(n+r)(n-1)! r! 
c 

n 

. (n) 
CD 

1 L --
Ill = 1 

n+r even 

1/ 30, etc . and 

n+r even 

if (o) 
r! J so 

n+r even 

E' - 1 

This with the previously obtained relation c 
n 

2n -a --=--A 
- + 1 n 

is all that is needed to proceed with the iteration procedure. 

E 
0 
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First) the uniform field between the has a potential 

by W = E z, hence for this field only A
1 

exists and its value is 

E . This is the first term in the expression for the total 

uniform field. 

'rhe corresponding field due to the presence of the rod is 

w cl z 

all other C being zero. 
n 

2 
-a 

E' 1 
E 

0 E 
+ 1 

E 
0 

The field produced by the presence of the plates may -be expressed 

as 

00 

L r w A z 
r 

r = 1 

since only cl exists. 

The important r 

uniform field is 

w 

nr+l 2r+l E' 
- 1 m 

A 
2 L a E r E 1 br+l(r+l)~ -+ r= 315 E 

0 

1 term giving the second contribution to the 

2 
E rt 

2 
a 

b2 

E' 
E 

0 

E' 

- 1 

+ 1 

'rhe multipoles that are produced from this field the rod are 

w 
n 

-n c z 
n 

E 
0 

2n n+l n+l 
a :r:: 2 B n+l 

E -z-
n = 1,3,5 bn+l (n+l) ! 

-n 
z 

This in turn induces charges on the plates. The desired A
1 

term is 



E' 

2 E 

Al 
0 a 

E 
+ 

E 
0 

This is equivalent to 

E' 

2 2 2 E 

Al (~)2 (~) 0 

3 b2 E 

E 
0 

+ 
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2n 2n+2 
a :n: 

2 

b
2
n+

2
(n+l)!(n+l)(n-l) ! 

2 
4 4 8 

E 1 + 
:n: a :n: 

~4+ 36.}.72 2· .52 

8 
... ] a 

+ 

It may be seen that qth repeated application of the iteration process 

will give a similar result which can be expressed as 

+ 

f 4 8 l l l + k4 ( q) ; + k8 ( q) ; + . • . 
b b 

where k4 , kB J • • • will be functions of q only. As the process 

is continued they will each approach a limiting value as the fields be-

come more similar. The total uniform field may be written as 

. ·] 
where q becomes large 11ill approach 

values; k4' k8J 
4 8 

To evaluate the value of the 1 + 
a 

+ ks 
a 

sum k4 ~ + 
b 

the 

case of a conducting cylinder may be considered. In this case be-

comes infinite and the factor ( E' / E )- 1 I( E '/ E ) + 1 becomes unity. In 
0 -11 0 

the case of the limiting value 
a 
b 

~ J when the conducting cylinder is 

just touching the planes) the field must become infinite. Hence we can 

write 
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l 

or 

12 
1.2158 

In order to evaluate the contribution of this series for smaller 

values of 
a 
~ ) note that the excess over the value unity must decrease 
0 

at least as' rapidly as Hence for a rod whose diameter is half 

the distance between the planesJ the maximum value the series can have 

is 1 
.2158 

+ 16 or 1.0135 . As a conseY,uence, the total field for 

values of 
a 
b 

less than 
1 
4 is given to an accuracy of better than 1.5% 

the expression 

00 

E L 
q 0 

This expression can be written as 

Al 
E 

E' 
2 2 - 1 

l -
n a EO 

E' 
+ l 

E 
0 

From EY,uation 6; the total dipole moment M induced is 

E' 
- - l 

-€-,--
+ l 

M 

E' 1 2 2 -

1 
:n: a Eo 

- --
3 b2 E' + 1 

E 
0 

Since Equation the total charge Q induced on plates a distance 

b apart a dipole of strength M is M 
b and since C = Q J the 

Eb 



capacitance per unit width due to the presence of the dielectric rod is 

by 
E' 

- 1 

c 1 
E' 

1 2 2 -
rr a Eo 

1 - 3 b2 -+ 1 
E 

0 

Hence Equation 10, the reflection coefficient in the idealized 

case, must be modified to include the effect of finite cylinder radius. 

The reflection coefficient, becomes 

B 

A 

-1 
E' 

+ 1 
1 + J: E_ .l_ _E_o __ 

rr a ka E' 
- 1 

(11) 

'.:). Effect of Finite Tubing Thickness. In the laboratory; an approxi-

mately Tu"liform plasma must be produced in a confined cylinder. The 

characteristics of the tube that confines the discharge have an effect 

on the phenomena observed. 

Following the method used by Smythe (15) in finding the scattering 

due to a uniform dielectric cylinder) the scattered radiation from a 

cylinder of radius a and dielectric constant E' J surrounded a con-

centric cylindrical shell of outer radius b and dielectric constant 

may be found. The result is as given in Equation 3 that is 

modified. For this case the expression for becomes 

H(l) (kb) (A - B) - H(l) 
1 

(kb) (C - DJ 
n n 

"Where 



A 

B (k"a)- 1
( J (k"a) 

n 

c __ 
1

/
2 

J (k'a)[J (k"b) Y'(k"a)- Y (k"b) J'(k"a)) n n n n n j 

D ) Y (k" a)- Y ( 
n n 

IfJ in the expression above) the leading terms in the expansions 
for the Bessel Functions are substituted for the functions themselves) 

and n set equal to the dipole mode scattering amplitude for 

small ka can be found. If the imaginary part of the denominator is 

set equal to zero) to make the modulus of the scattered dipole mode am

plitude a maximum, the following equation is obtained: 

and if b a(l + o) J E" 

E"] +-
E 

0 

K E J and terms in o2 
are neglected 0 

This same result may be obtained very simply considering the 

y_uasi-static case of concentric dielectric cylinders. The radius of the 

inner cylinder is a and its dielectric constant € 1 
J the radius of 

the outer cylinder b and its dielectric constant E
11 

• 

A Potentials may be assumed of the form - cos G outside the outer r 

cylinder) £ cos G + Cr cos G within the outer cylinder) and Dr cos G r 

vii thin the inner cylinder. If potentials and normal displacements are 

equated at the boundaries 7 four equations are obtained. The determinant 

formed the coefficients of the four unkno·dns may be set equal to 



zero to 

If 

E' 

E 
0 

the relation for free oscillation. 

these operations results in the 

(b2 i) + (b2 - ~ 2+ 
EO a2 a 

-E 

(:~ i) (:~ ~ 
0 E 

0 
+ + 

is set equal to K , b to 

are neglected, this expression becomes 

-E 
0 

[ 1 + 0 (K - R) ] 

which is identical to that prc:viously obtained. 

(12) 

a( 1 + o) , and terms in 

'I'he effect of the dielectric walls is to the inner dielec-

tric constant to be more negative (the electron concentration 

for resonance to occur than would be the case in their absence. 

For the experiment described here, the tubing was No.774 pyrex, 

having a relative dielectric constant of 4.3 at 300 megacycles. The 

ratio 
b 
a 

was 1.143 . Substituting these quantities in Equation 12 

the result E' = -1.52 E at resonance. 
0 

6. Effect of Finite Line Width. In the idealized case it was assumed 

that the width of the parallel plate transmission line was very com-

to its spacing, and its characteristics were computed for a cal 

section. In a practical case these results may be modified the presence 

of the of the plates. 

Where the cylindrical plasma extends far the of the 

, the degree of of an element of of the plasma to 

the plates falls off rapidly beyond the edges. ~:his may be seen 
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following a line of force from the top of the upper to the bottom 

of the lower plate. The potential difference along the line of force 

between the points where it enters and leaves the cylinder may be taken 

as a crude measure of the degree of coupling. The potential difference 

across a diameter of the cylinder decreases with increasing distance 

from the 

From the results in the discussion of Finite Cylinder 

Radius") it may be seen that the resonant frequency of the cylindrical 

plasma is modified by the presence of the parallel plates. For a dielec-

tric cylinder of radius a in line of infinite width and spacing b , 

the dielectric constant for resonance is given 

E 1 
- E 

0 

2 
1 + :n: 

2 
a 

3 b2 

1vhereas for the same cylinder in free space the dielectric constant for 

resonance would be E 1 - E 
0 

It is apparent that each element of 

of the plasma will contribute to the total shunt admittance, but 

that the magnitude and phase angle of its contribution will depend on the 

location of the element. The contribution of all the plasma outside the 

region between the plates may ·be approximately compared to that of the 

plasma vii thin the region betv1een the plates a comparison of the rela-

tive contributions of these regions to the total capacitance per unit 

of the transmission line. 

If the plates of width d were very wide compared to their spacing 

b J the capacitance between them would be per lmit The 
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actual capacitance per unit C J may be found from a relation 

c K(k 1
) 

E
0 
~ J where 

K(k t)E( -1 E(k
1

) kt} E(k')F f -1 E(k') k 1} leas K(k.1) J - cos K(k.1) J 

K(k) E(k 1
) - (~ 1 ) 2 E(k) K(k') 

Here EJ Fy and K are the elliptic integrals whose moduli are k or 

k 1 
J as indicated; and k

2 + k'
2 

1 The transmission line used for 

d 
b 

the experiments described here had a ratio of -b/d = 5. 72 • The approxi-

mation for C used in the idealized case a ca:paci tance of 5. 72E 
0 

per unit length; v1hereas the use of the exact expression results in a 

capacitance :per unit length of 7. 22E . (This correlates well with the 
0 

fact that the ratio b/d was adjusted to match )0 ohm 

theoretically a capacitance of 7. E per unit 
0 

which would 

. ) It may 

be seen from these figures that about 75% of the total capacitance may be 

attributed to the region between the plates. 

Since the plasma outside the is less effective in producing 

shunt admittance than that between the plates; somewhat less 'Ghan 25°/o 

of the total admittance will be due to the portion of the plasma not 

between the plates. It is difficult to make any y_uantitative modifica-

tion of the results from the idealized case to account for this situation. 

H. of a Gaseous Dis 

To predict the reflection coefficient due to the presence of a 

plasma in a transmission line it is necessary to know the mean electron 

concentration in the discharge tube; the radial variation of this con-

centration; and the collision frequency. 



-39-

At the state of understanding of the processes occurring 

in the cylindrical positive column or plasma of a gaseous discharge is 

such that only reasonably close numerical values may be calculated for 

these quantities. Experimental work in this field involves techni~ues 

of considerable difficulty. The disparity ·between the values o·btained 

different investigators for a quantity such as mean electron density 

may be as great as a factor of two. In general, however, the experimen-

tal values determined by careful investigators will fall within 30-40% 

of the value expected. 

A rather complete theoretical treatment of the low pressure mer-

cury vapor discharge, together with a summary of experimental resultsJ 

is given Klarfeld (21). Using his results, two important parameters 

of the discharge may be determined. rrhe first of these is , which 

is the number of electrons per unit length of the tube per ampere of 

discharge current. The second of these is T 
e 

the electron tempera-

ture. These are both functions of the quantity ap
0 

, a being the 

radius of the discharge tube, and p
0 

the gas pressure reduced to o0 c. 

The situation regarding the radial variation of electron density 

is somewhat less clear cut. Ambipolar diffusion theory indicates that 

the electron density should be given n - n J (
2 · 4r) where 

- Lo o a+a' is 

the density on the axis and a the radius of the tube. It can be shown 

(19) that if diffusion takes for electrons of all energies, and if 

the mean free is the same for electrons of all energies, thc:n 

a' = 3/4 A. , where A, is the electron mean free path. While neither of 

these conditions is clo approximated in a typical mercury vapor dis-

charge, Howe (19) measured radial distributions that agreed fairly well 

with the assumption that the mean free path was that using 
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the collision cross section for electrons in mercury vapor measured 

Brode (22) at an energy corresponding to the electron temperature. 

Radial distributions measured by Killian (23) do not fit this assump-

tion as well. Nonetheless) it appears that this assumption offers a 

satisfactory method of calculating the radial variation of electron 

concentration in terms of the known parameters describing the discharge. 

With regard to the collision frequency; the situation is also not 

clear cut. Margenaus 1 (9) theory of the high frequency behavior of a 

plasma the complex conductivity for the assumption that the mean 

free path of electrons does not depend on their velocity. Everhart and 

Brown (11) show that for high frequencies Margenaus' expression is 

valent to Equation 1. Adler (13) measured the complex conductivity of 

a mercury vapor discharge and concluded that the assumption of a mean 

free path independent of velocity gives satisfactory agreement with the 

measured complex conductivity. Adler computed a value for the mean free 

path of electrons in a mercury vapor discharge. 

A reasonable procedure for predicting ~ J the damping factor for 

the plasma, is to use Margenaus 1 theory together with Adler 1 s measured 

value of the mean free path. This procedure gives the result 

-where c 

T c 
e 

4 -c 
A, 

(Jj 

is the mean velocity corresponding to the electron temperature 

8kTe l/2 
(~~) k being Boltzman's constant, and A the mean free 

nm ' 

path of the electrons. 
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J. of Theoretical Relations 

use of Klarfeld's (21) relation connecting Ne/I with 

the number of electrons per unit length of cylindrical plasma may be 

determined. 'I'he only y_ua.n.ti ties necessary for this determination are 

the discharge tube radius; the temperature of the condensed mercury; 

the temperature of the mercury vapor; and the discharge tube current. 

use of equation 1 which relates the plasma dielectric constant; E'J 

to n J the electron concentration; the electron concentration neces-

sary to produce the condition E' -E may be determined. For this 
0 

to be done the only experimental quantity that needs to be known is 

the frequency. If it is assumed that the plasma density in the dis-

charge tube is uniform) and that resonance occurs when E' = -E ) the 
0 

discharge tube current that v1ill produce resonance may be computed. 

This discharge current must be corrected to account for the various ap-

proximations made in obtaining the result €
1 = -E 

0 
at resonance. 

use of Klarfeld's relation connecting the electron tern-

peraturey with 

8 1/2 c = ( kTe) 
:n:m 

ap ; together with the relation from kinetic theory 
0 

that relates electron temperature to mean electron 

velocity) the mean velocity may be determined. Using Brade's (22) dat(jl,J 

a collision cross section corresponding to this velocity may be found. 

Using this cross section and the pressure a value of mean free 

JJath may be calculated. The quanti a' which is necessary to com-

electron concentration gradient) may be calculated from this mean 

free path. From a and a' the ratio of electron concentration at 

the wall to that at the axis may be calculated. For the experiment re-

ported here) the smallest value of this ratio that was obtained from 

this procedure is .64 J corresponding to a pressure of 3. 
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From the section "Effect of Non-uniform Plasma Density" it may be seen 

thaL, this corresponds to an increase of 2.5r1ja in the electron concentra-

tion necessary for resonance. Since at all other pressures the correction 

is even smaller) no correction was made for non-uniform concentration. 

It is shown in the section "Effect of Finite Tubing Thicki.J.ess 11 

that the presence of the pyrex tube used would cause resonance to occur 

E1 /E = -1.52 • 
0 

It is shown in the section "Effect of Finite Cylinder Radius"J 

that in a very wide line resonance would occur at E'/E = -1.52 J the 
0 

ratio a/b 1/4 having been used in this experiment. It is sho1m in 

the section "Effect of Finite Line Width" that the correction for the 

finite width would reduce the excess over -1 less than 25r1ja. Since 

the amount of this reduction is uncertain, the full amount may be used. 

The corrections due to tubing thickness and finite width both 

being small) it may be assumed that they are superimposable. This re-

sults in a figure E'/E = -2.31 at resonance. 
0 

The current required to produce an electron density corresponding 

to €'/€ = -2.31 may be calculated 
0 

the method outlined previously. 

This procedure was used to give the theoretical curve in Figure 9J 

showing current for resonance versus frequency, and Figure llJ 

current for resonance versus gas pressure. 

To calculate f3 , the damping factor of the plasma, a result of 

Adler (13) is utilized. From measurements of the complex conductivity 

in a mercury vapor discharge) he found that the as of a mean 

free of 9.5 x 10- 3 cm at 1 millimeter pressure gave agreement with 

his experimental results. (The pressure range covered Adler's ex-

overlapped but vvas generally higher than that used here.) 
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this mean free path, and the mean velocity corresponding to T 
e 

the factor i3 may be calculated from Margenau 1 s results (9) in 

the section "Properties of a Gaseous Discharge". This procedure was 

used to the theoretical curve in Figure 10, showing i3 versus 

and 12, showing i3 versus gas pressure. 

From Equation 11; a value of i3 may be computed using the mea-

sured value of 

showing l~I 
IBAI at resonance. 'I'he calculated curves in 

versus current, and Figure 8; showing the angle of B 
A 

7 

versus current; are simply of these quantities from Equation 11. 

These calculated curves were made without reference to values that might 

be obtained from the theory of the gas discharge. 

III EXPERIMENTAL APPARATUS AND TECHNIQUES 

A. Choice of Experimental Method 

Scattering experiments in free space require rather formidable 

techniques in order to obtain accurate results. One particular diffi-

culty lies in separating the desired scattered radiation from energy 

scattered by miscellaneous objects in the vicinity of experimental area. 

A second difficulty is measuring the scattered radiation in the presence 

of the incident radiation. 

A generally accepted technique involves the use of an artificial 

ground many wavelengths in extent. A probe is used to sample the 

total field in the neighborhood of the scattering specimen. All experi-

mental apparatus other than the radiating antenna, the s object, 

and the~ probe are located -below the ground plane. In general; the scat-

terer is bisected by the ground plane so a half model is necessary. 

While this technique is satisfactory for experiments involving 

three-dimensional scatterers; it leaves a great deal to be desired if 
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applied to the tvio-dimensional of scattering an ionized 

colwnn where the electric vector is transverse to the colwnn. Also; 

apart from the two-dimensional nature of the problem) there are dif-

ficulties in the method to an ionized colwnn formed a 

gaseous discharge. 

The basic trouble is that in the neighborhood of the ground plane 

the electric field is normal to the ground plane. This requires the 

axis of the colwnn be parallel with the ground plane. If the ground 

is slotted to admit the column the fields in the neighborhood of 

the colwnn are severely distorted. The ground cannot) of course) 

continue through the colwnn as this would short out the voltage main

taining the discharge. If a discharge of special section is constructed, 

such that placed upon the ground plane it represents half a cylinder) 

then the ion concentration is no longer approximately uniform, in fact 

it does not even have radial symmetry. If the colu:m..n is located some 

distance above the ground plane) then many of the advantages of the 

method are lost, since the necessary leads to the colm1m and the pro-be 

disturb the fields. 

In addition to the specialized difficulties caused the scatterer 

being a gaseous discharge; there are those connected with the two

dimensional nature of the problem. It would be desirable to have the 

column at least several wavelengths long in order to reduce the impor

tance of end effects. In addition the long colunm should be in an ap

proximately plane wave) which means the radiator must be several colunm

lengths from the colwnn. As a consequence of these two requirements the 

ground plane must e many wavelengths in extent to 

tory experimental situation. 

a satisfac-
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The cost and complexity of applying the ground plane method to 

investigating the scattering of a plane wave incident on an ionized 

column with the electric vector transverse to the axis of the column, 

leads to examination of other which may display the pheno-

mena involved in free space reflection. The most obvious of these is 

to span a waveguide with a discharge in such a way that the axis of 

the discharge is transverse to the field. 

Using a gaseous discharge tube in a waveguide has many features 

that make the experimental situation better than in free space. Since 

the energy is confined to the interior of the guide there are, in 

general) no radio frequency fields around the measuring apparatus. A 

wealth of conventional apparatus exists for measurement of standing wave 

ratio in waveguides. However, the dimensions of waveguide must be com

parable to the wavelength of the radiation to be scattered or the guide 

vrill not propagate energy. This limits the use of this techniy_ue to 

relatively high frequencies, and, in turn, entails certain disadvantages. 

It is desirable to have the radius of the discharge tube small compared 

to a wavelength. The reason for this is the simplified theoretical in

terpretation of the experimental results that may be made. To make the 

quantity ka equal to 0.1 or less at 3000 megacycles, the radius of the 

discharge tube must be less than .16 cm. However, even for this small a 

diameter, no adequate theory is available for the effect of a dielectric 

rod in a waveguide vii th its axis transverse to the electric field. 

Consideration of these difficulties led to examination of the pos-

sibility of conducting a scattering experiment in a parallel trans-

mission line. A parallel plate line will allo-v.r prupagation of a TEM vmve 

of any frequency. Furthermore, if the line width is compared to 
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the spacing, a nearly uniform electric field exists between the 

Hence the field to which the discharge is exposed is almost identical 

to that seen a column exposed to a plane wave in free space. With 

care the leakage of energy may be held to a low enough value so that no 

difficulty need be experienced from stray fields. It was felt that an 

experiment using a parallel plate line represented a good v1orking com

promise -betwec:n the experimental difficulties of the free space methods 

and the restrictions implicit in the waveguide method. 

B. Description of Apparatus 

A parallel plate transmission line was designed and fabricated for 

this experiment. The line consisted of a uniform central section 48 

inches long and tapered matching sections 20 inches long at each end. 

The matching sections were attached to the parallel plates short 

strips of flexible shim stock to allow the taper to be adjustable. The 

pieces comprising each matching section were trapezoids, 10 inches wide 

where they were joined to the 10-inch wide uniform line, and 3/4 inches 

wide at the other end. The pieces comprising the line were fabricated 

of 1/8-inch thick aluminum sheet. They were supported by insulators of 

adjustable length within a rigid wooden frame. By adjustment of the in

sulator heights the line spacing could be made uniform over its entire 

length, and the taper of the matching sections adjusted as required. 

In the experiments reported here the central section of the line 

was set at 1.75 inches, with a maximum variation of .030 inch from point 

to The small ends of the matching sections were fastened directly 

to RG58A/U coaxial cable having 50 ohms characteristic resistance. 

Figure 3 is a photograph illustrating certain features of the construc

tion of the transmission line assembly. 
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It was necessary to build a standing wave ratio indicator for the 

line. After several attempts) an indicator was designed that was sensi-

tive to satisfactory readings and ~was free from "hand 

capaci ty 11 effects. The sensing portion of the indicator was made of two 

small pieces of brass sheet) each of about 1/3 square inch area) placed 

about inch apart. This sensing portion could be moved along the line 

in such a way that its plates moved to the line >vhile pro-

jected into the space betvveen the conductors of the line. The depth of 

projection into the line was constant within about .020 inch. A silicon 

diode J 1N21B J ·was connected between the plates of the 

and each plate connected through a 500-ohrn resistor to the conductors of 

a short coaxial cable. 

At the other end of the cable the d. c. voltage that v1as developed 

across an 800-obm resistor was read an ar-

rangernent. The potential from a mercury reduced to a suitable value) 

was applied to the terminals of a precision voltage divider) and the 

divider ratio set to null a sensitive galvanometer connected bet1veen the 

divider and the 800-obm terminating resistor. these means a divider 

reading proportional to the square of the voltage on the line could be 

made easily and accurately. Figure 4 is a photograph of the standing 

wave ratio indicator assembly. 

A mercury vapor discharge tube was designed and fabricated for the 

purpose of the cylindrical plasma. The entire tube was 36 inches 

so when the tube was placed between the 10-inch 1-,ride of the 

line J both the anode and cathode were v1ell removed from the field re-

gion. An oxide-coated) electrically heated thermionic cathode was used. 

The entire cathode assembly was taken from a 866A mercury vapor rec-

tifier. 
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Two side arms were provided near the anode end of the tube. One 

v1as used as a mercury reservoir; and the second to provide a connection 

to the vacuum system. A photograph of the discharge tube, 

5, shows the details of its construction. 

In operation, the vacuum pump 1vas run continuously. The pressure 

of mercury vapor in the discharge tube was very nearly the vapor pres

sure of mercury at the temperature of the constant temperature bath. 

This condition was assured by making the pumping speed of the line con

necting the upper sidearm to the vacuum system very low compared to the 

pumping speed of the lower sidearm. 

A General Radio Type 857-A oscillator was used as a source of radio 

frequency energy. It was isolated from the transmission line a 10-

decibel pad. The power transmitted through the line was absorbed in a 

50-ohm terminating resistor. 

Power for heating the filament and maintaining the discharge ·,vas 

supplied from well regulated supplies. A resistance of at least 1000 

ohms >vas always used in series with the discharge tube. 

A general view of the experimental apparatus, with each important 

component labeled, is shown in Figure 6. 

C. Calibration and 

Before any data could be taken; it was necessary to minimize the 

residual standing wave ratio of the transmission line. This was easily 

ac com_pli shed 

and 

adjustment of the tapered matching sections. Sending 

ends were interchanged several times during this procedure 

to ensure the proper termination of both ends of the line. A residual 

standing wave ratio of 1.04 at 300 megacycles J and less than 1. at all 
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frequencies between 175 and 450 megacycles) was achieved. 

The of the standing wave indicator was checked making 

a standing wave survey v1i th the receiving encl termination removed. For 

a square law detector) the readings obtained would describe a 

wave of the form A(l + sin 
4~x) The readings obtained showed a 

maximum deviation from this curve of less than + 1% maximum reading. 

A copper tube was placed in the line at the position to be oc-

cupied the discharge tube. This was equivalent to the condition 

E' = oo in Equation 11. The measured standing wave ratio was 1.17 Y 

versus a calculated value of 1. 

During these preliminary standing wave surveys it was observed 

that the reading of the standing wave indicator was affected 

about two or three parts in 1000 due to movement of its cable, touching 

the galvanometer housing) moving about the roomy etc. However) an at-

tem_pt was made to minimize movement of any large conducting object in 

the vicinity of the line during the course of taking clata. 

The usual procedure in taking data was to fix the frequency of 

the oscillatory fix the temperature of the constant temperature 

at a selected value of discharge current to record the maximum 

and minimum values read at the standing wave ratio indicator. From 

their ratio the magnitude of the reflection coefficient could be ob-

tained. The mean of these values was then computed and the position of 

the probe on the line adjusted so as to produce a reading to this 

mean. 'rhis :position vms used to determine the of the re-

flection coefficient. The discharge current was then changed and the 

procedure repeated. 

No time lag in reaching a steady state was observed following a 
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change in discharge current. When the temperature of the condensed 

mercury was changed) about one minute was required before elJ.uilibrium 

was attained. 

The only inconvenience noted in operating the apparatus v1as the 

necessity for constant attention to the temperature bath. A 

change of . 2°F v1as sufficient to produce a.n. observable change in 

standing wave ratio. 



IV RESULTS AND DISCUSSION 

Figures 7 and 8 show the results of a series of runs in which the 

discharge current v1as varied while the gas pressure and frequency •~ere 

kept constant. The different symbols represent runs made on different 

days. Figure 7 shov1s voltage standing wave ratio as a function of dis-

charge current. Voltage standing 101ave ratio is related to the modulus of 

the reflection coefficient, \~ \ , by the relation VSWR 1 +IB1AI 
1 - I B Al 

and is a somewhat more familiar quantity than 

the argument or angle of the complex quantity 

discharge current. 

I-BA I 
B 
A 

8 shows 

as a function of 

The calculated curves presented in Figures 7 and 8 are derived from 

Equation 11 only. Using this equation) the damping factor for the plasma; 

~ J may be computed from the observed maximum value of B 
A 

If this 

quantity is substituted back in Equation 11, and use made of the fact 

that electron concentration is directly proportional to current, the 

modulus and argument of B 
A 

at all values of discharge current may be cal-

IE.A I culated from the value of discharge current vihere reaches its 

maximum. 

It may be observed that the shapes of the experimental curves are 

aignificantly different from those calculated. Probably most of this dif-

ference is due to the effect of finite line width. In contrast to the 

experimental results of Tonks (6) and Romell (8), pronounced resonant 

response -was observed at only one value of dis current. 

Figures 9 and 10 show the results of a series of runs in which the 

frequency was varied and the discharge current necessary to produce reson-

ance observed. 9 shows the theoretical current required for reson-

ance compared with the experimental values observed. The difference 
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between the two values is somewhat greater than might be expected, but 

may be due to the approximations made by Klarfeld (21) in deriving the 

theory from which the theoretical curve was computed. 

The darrrping factor ~ , shown in Figure 10 as a function of fre

~uency, was computed from the standing wave ratio at resonance. The 

wide disagreement between the theoretical and experimental values is 

probably due to the effect of finite line width. The finite width 

causes the portion of the plasma remote from the plates to become 

resonant at a slightly lower current than that portion of the plasma 

between the plates. As a consequence the resonance is broadened and 

the apparent value of the damping factor, ~ , is increased. 

Figures 11 and 12 show the results of a series of runs in which 

the gas pressure was varied and the discharge current necessary to pro

duce resonance was observed. The disparity noted between the theoreti

cal and experimental values is nearly in constant ratio at gas pressures 

in excess of about l0- 3mm Below this pressure the curves are 

totally different. It would be of interest to make probe measurements 

of the electron density in the low gas pressure region in an effort to 

find a cause for this discrepancy. 

Figure 12, showing ~ as a function of gas pressure, was computed 

from the standing wave ratio at resonance. As in the case of ~ versus 

frequency shown in Figure 10, the disagreement between the theoretical 

and experimental curves may -be attributed to the effect of finite width. 
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Figure 3. Details of Transmission Line 

Figure 4. Standing Wave Ratio Indicator 

Figure 5. Gaseous Discharge Tube 



t • D1sc1-1AR.GE TvsE 7 .... TEMPERAT"\JR£ BATH 
A... lh:A.T£1) CA1HODE 8 •THERMOMETER 

B.Awollt: 9,., Mi:Ti: R STICK 
2.., 'fRA.NSMJS~IO~ ltNI. 10.., _AMMl::'TER. 

3-0scll.LA'l'OR 1 t •VA.CU\JM GAGE 
4 .... .Mt:RC'URY PooL 12..,, DifJ'\JSJON PvMP 

5- JERMl~ATl~C- Rt:SISTOR. 
6"' STA1'1.1D11'.1C. WAV{ R4-'ll0 )NlblCA..'fO.R 

A.PR.OEE 
.e. PoTENTtOM£TER 
C. GALVANOMETER. 

RlESCOhlA~ 1P lL1~SMi~. 
RIE~\EAlRCIH\ A.fl!'lPA\13<.A '\\'UJ~ 

/< 
// 

/// 

/// 

-------------

Fig.6 General View of Experimental Apparatus 

Vl 
(J) 



3.5,--,---,------r---,------,-----

3.or--+---+---+-----,~---+---+---l--_J 
300 MEGACYCLES 
1.54 x 10<~ mm Hg 

CALCULATED 
--- EXPERIMENTAL 0 

t-~ 25 -1-F-+~~+=~~ 
~ 
(9 2.0 ,---_J 
~ 

z 
0 
z 
<! 
ten 
w 
(.') 

<! 
t
_J 

~ 

I. 5 A 

1.0 ' 
0 20 40 60 80 100 120 140 160 

DISCHARGE TUBE CURRENT, MILLIAMPERES 

Figure.7. Standing Wave Ratio versus Discharge Current 

' Vl 
-.J 
I 



-27T 

([) 

~ - _3_11' i--
- 2 
0 
<( 
n::: 

mlc:::r - 11' 

LL 
0 

w 

300 MEGACYCLES 
1.54 x 10· 3 mm Hg 

~-
_J 

<..9 11' L.----==~~===========t:======-~-1-~~----_j~~--z --r 
<[ 2 

CALCULATED 
--- EXPERIMENTAL 

0--~~~--~~~_._~~~--~~---__..~~~---'--~~--..__~~----~--~-
o 20 40 60 80 100 120 140 160 

DISCHARGE TUBE CURRENT, MILLIAMPERES 

Figure 8. Angl~ of B/A is Dieeharge Current 

I 

?2 
l 



-59-

300 1.54 x 1 o<~ mm Hg 

({) THEORETICAL 
w --- EXPERIMENTAL 
0::: 
w 200 
CL 
2 
<! 
_J 1·50 _J 
-
2 

I-
z 
w 100 
0::: 
0::: 
::) 

80 0 

w 
CD 
::) 
I- 60 
w 
c..9 
0::: 
<! 
I 
0 40 ({) 

0 

30 

t 
20 

100 200 300 500 700 1000 

FREQUENCY, MEGACYCLES 

Figure 9. Current for Resonance vs. Frequency 



0:: 
0 
l
o 

-60-

.10.--.-----~----.---------~---

0 

0 

""'-o o 
0 '..Q 0 

(i"J 
............. 

. 05i--------+---~---...........--...+----+-----1 

~ .021------~:-+--~--+------+----+----l 

(.'.) 

z 
Q_ 

~ 
<! 
0 

1.54 x 10 -3 mm Hg 

THEORETICAL 

--- EXPERIMENTAL 

.005~. ______ ..__ __ __.__~ __ __.._ __ _..._ __ __, 
100 200 300 500 700 1000 

FREQUENCY, MEGACYCLES 

Figure 10. ~versus Frequency 



-6l-

THEORETICAL 

--- EXPERIMENTAL 
f:3 l20t--~+---i~~~-+~~~-+~~~-+-~~~-+-~~~-l 
0::: w 
Q.. 

~ 
<I: 
_J 

--1 IOOr--~-+~~~~--+~~~-+~~~-+~~~-+~~~-1 
~ 

1-
z 
w 
0::: 
0::: 801--~~--.r---J~~-t~~~~'c:::-~~-r-~~~-t-~~~~ 
:J 
0 

300 MEGACYCLES 

.5 1.5 2 2.5 3 

GAS PRESSURE 1 mm Hg 

Figure ll. Current for Resonance vs. Gas Pressure 



CQ 

et: 
0 
I-
0 
<t 
LL 

<..9 
z 
CL 
~ 
<( 
0 

-62-

I. 

.5 

THEORETICAL 

--- EXPERIMENTAL 

. I 

fu 
fl ~\ 
~ 

h 
-..... 
~~-6 _Q..-0-

rra--.. o--o 

.2 

.05 

.02 

.01 

.005 

------
~ 

v---~ 

~ 
v .. 

/ -----
" 

I 300 MEGACYCLES 

.002 

.001 
0 .5 1.5 2 2.5 3 

GAS PRESSURE , mm Hg 

Figure 12. ~ versus Gas Pressure 



-63-

VI LIST OF REFERENCES 

1. Bullington, K. 

Characteristics of Beyond the Horizon Radio Transmission 

Proceedings of the IRE, V.43 (1955) pp. 1175-1180. 

2. Herlofson, N. 

Plasma Resonance in Ionospheric Irregularities 

Arkiv For Fysik, v.3 (1951) pp. 247-297. 

3. Kaiser, T. R. and Closs, R. L. 

Theory of Radio Reflections from Meteor Trails 

Philosophical Magazine, V.43) 7th Series, (1952)) pp. 1-32. 

4. Lovell, A. C. B. 

Meteor Astronomy (book) pp. 23-85 

Clarendon Press, Oxford, (1954) 

5. Eckersley, T. L. 

Transmission of Electric Wave through the Ionized Medium 

Philosophical Magazine) V.4, 7th Series (1927), pp. 147-165. 

6. Tonks, L. 

High Frequency Behavior of a Plasma 

Physical Review) V.37 (1931), pp. 1458-1483. 

7. Tonks, L. 

Plasma-Electron Resonance, Plasma Resonance, and Plasma Shape 

Physical Review, V.38 (1931), pp. 1219-1223. 

8. Romell, D. 

Radio Reflexions from an Ionized Column of Gas 

Nature, V.167 (1951), p. 243. 

9. Margenau, H. 

Conduction and Dispersion of Ionized Gases at High Frequencies 

Physical Re::view, V.69 (1946), pp. 508-513. 



-64-

10. Adler, F. P. and Margenau, H. 

Electron Conductivity and Mean Free Paths 

Physical Review) V.79 (1950)) pp. 970-971. 

11. Everhart J E. and Brown, S. C. 

The Admittance of Frequency Gas Discharges 

Physical Review, V.76 (1949), pp. 839-842. 

12. Allis, W. P; Brown) S.C. and Everhart, E. 

Electron Density Distribution in a High Fre~uency Discharge in 
the Presence of Plasma Resonance 

Physical Review) V.84 (1951), pp. 519-522. 

13. Adler, F. P. 

Measurement of the Complex Conductivity of an Ionized Gas at 
Microwave Frequencies 

Journal of Applied Physics) V.20 (1949), pp. 1125-1129. 

14. Eccles, W. H. 

On the Decimal Variations of the Electric Waves Occurring in 
Nature, and on the Propagation of Electric Waves Round the Bend 
of the Earth 

Proceeding of the Royal Society of London) Series AJ V.87, (1912), 
pp. 79-99· 

15. Smythe, W. R. 

Static and Dynamic Electricity (book) 

McGraw Hill Book Company, Second Edition (1950) 

16. Mackinson, R. E. B. and Slade, D. M. 

Dipole Resonant Modes of an Ionized Gas Column 

Australian Journal of Physics, V.7 (1954)) pp. 268-278. 

17. Keitel, G. H. 

ON the Dipole Resonant Mode of an Ionized Gas Column 

Australian Journal of Physics, V.9 (1956)) pp. 144-147. 



-65-

18. Keitel) G. H. 

Certain Mode Solutions of Forward Scattering by Meteor Trails 

Proceedings of the IRE, V.43 (1955)) pp. 1481-1487. 

19. HovveJ R. M. 

Probe Studies of Energy Distributions and Radial Potential Varia
tions in a Low Pressure Mercury Arc 

Journal of Applied Physics) V.24 (1953), pp. 881-894. 

20. Dwight) H. B. 

Tables of Integrals and Other Mathematical Data (book) 

The Macmillan Company) New York (1934) 

21. Klarfeld) B. 

Characteristics of the Positive Column of a Gaseous Discharge 

Journal of Physics of the USSRy v.5 (1941)) pp. 155-175. 

22. Brode, Robert B. 

The Absorbtion Coefficient for Slow Electrons 

Physical Review) V.35 (1930), pp. 504-508. 

23. Killian, Thomas J. 

The Uniform Positive Column of an Electric Discharge in Mercury 
Vapor 

Physical Review) V.35 (1930)) pp. 1238-1252. 


