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Abstract

Continuous-field Image Correlation Velocimetry (ICV) is an extension to the
ICV technique of Tokumaru & Dimotakis (1995). The method determines the
optical flow in sequences of images, and relies on a convected Lagrangian marker,
e.g., a conserved scalar field, or particles, etc.. The method has been applied
to several simulated-flow test cases and results are presented for the error of the
method, with and without noise added to the correlated test-images. The results
of further tests are reported, for two laboratory flows, a NACA—-0012 airfoil at high

angle of attack, and a transverse jet in a coflowing stream.
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1. Introduction

The computational analysis of motion from a sequence of images has been a
continuing focus of researchers for the better part of two decades. Contributions
have been made from a wide range of disciplines, resulting in a variety of methods.
In the context of fluid mechanics, the measurement is especially valuable, potentially
providing velocity field information, over the imaged domain. A recent overview
by Dracos & Gruen (1997) of various two- and three-dimensional implementations,
as applied to fluid mechanics, dubbed “videogrammetric methods in velocimetry”
by these authors, provides a comprehensive discussion and bibliographical reference

list.

In their review of the various so-called optical-flow methods, Barron et al.
(1994) classify the techniques into four categories, two of which are supersets of
techniques commonly used in experimental flow velocimetry. One category iden-
tified by Barron is region-based matching, which rely on matching of sub-regions
between images. Velocimetry methods that fall into this general category have ap-
proached the problem from a variety of bases. Various incarnations of PIV/DPIV,
for example, effectively solve the matching problem using spatial cross-correlations
of discrete windows of image pairs (e.g., Adrian 1991; Willert & Gharib 1991, Sholl
& Savas 1997), or by actually calculating the spatial correlation function (Huang
1994). Other techniques from photogrammetry define systems of equations using a
least-squares formulation of the matching criterion for small regions of pixels (Ack-
ermann 1983, Gruen 1985, Maas 1993). Anandan (1989) uses a similar approach,
but implementing a coarse-to-fine procedural hierarchy by decomposing the optical

features by length scales.

A very similar implementation to the previous ICV method that relied on a
variational approach, described by Tokumaru & Dimotakis (1995), is by Szeliski
& Shum (1996). These authors employed a multiresolution-spline representation
of the displacement field between image pairs, as also adopted in the implemen-
tation to be described below. The development by us of this idea is surprisingly
similar to the Szelinski & Shum approach, that was developed in a different con-

text. Variational methods have been used to infer displacement fields in a variety
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of contexts, as done, for example, by Zhou et al. ( 1995), who employed a multireso-
lution representation of the three-dimensional displacement field in the interior of a
cylindrical asphalt/aggregate core, assuming a volume-preserving (divergence-free)

displacement field.

Another general category identified by Barron et al. (1994) are the so-called
differential techniques, pioneered by Horn & Schunck (1981). These methods calcu-
late the components of the scalar transport equation and use additional constraints
to remove ambiguities. Recent work has investigated and compared the required
additional constraint(s) to the scalar transport equation proposed by various re-
searchers after Horn & Schunck (e.g., Willick & Yang 1991). Strong proponents
of the application of this technique for fluid velocimetry have been Dahm et al.
(1991, 1992). More recently, a variational approach was offered by Su & Dahm
(1995) and Dahm et al. (1996). Pearlstein & Carpenter (1995), however, noted
that the method of Dahm and collaborators suffers from a local ambiguity problem
in that the local velocity field is only defined in the direction of the imaged-scalar
gradient. Pearlstein & Carpenter proposed to mitigate this ambiguity problem by
simultaneously tracking of multiple scalar fields. Additionally, these methods must
differentiate the image data to deduce the convecting velocity field, rendering them

rather susceptible to the inevitable image noise.

While it is appreciated that no one method is best for every situation, the
general methodology for ICV can be shown to reduce, to leading order, to the
scalar-transport equation, for the case of negligible diffusion. The continuous-field
ICV methodology to be described below draws from proven techniques for fluid
velocimetry and utilizes approaches found useful in machine-vision contexts. It also
has the ability to impose known boundary conditions and a hierarchy of spatial
resolutions, as by Szeliski & Shum (1996). This results in a robust procedure for
the recovery of motion from images of scalar markers transported by a fluid, subject

to certain assumptions, as will be discussed below.



2. Continuous-field ICV method

The ICV procedure seeks the displacement field, £(x), such that the region
in the neighborhood of x, in the image I;(x), at time #;, is best mapped into the

region X + & in the next image, I2(x), at ¢, = #; + 7, 7.e., such that,
Ii(x) = L(x+§). (1)

Quantitatively, the procedure seeks the displacement field, £(x), that minimizes the
square of the difference of the two images, integrated over the correlation domain,

Q, i.e., a cost function given by,
e} = [lhbx+&) - L) d9x) — min @
Q

This cost function itself does not guarantee either a unique or smooth solution.
Such attributes depend on the functional representation of & and are addressed in
Sec. 2.2. Furthermore, in the implementation to be described below, the correlation
domain may, but need not, extend to the full imaged domain (less a small boundary

region that would allow both x and x + £ to remain within the two images).

If the time differences, 7 = t5 — t;, between the two images is small, in some

appropriate sense, one can Taylor-expand the displaced-image field at t,, i.e.,
0 0 ,
IQ(X +€,t1 -+ T) = Il(X,tl) + 7 E?Il(x,tl) + é a—x' Il(x,tl) —+ H.O.T.'s .

where the higher-order terms would be O (7'2), O (52), or O(7€). A mapping
(displacement) field (Eq. 1), i.e., one that produces,

IQ [X + E(X), i + ’7'] >~ I]_(X,tl) s
1s seen to be equivalent to the requirement that,

9] 0
T'é’t*Il(X,tl) -+ f 'éx*-Il(X,tl) ~ 0 )

* again, to leading order in the space/time displacements, i.e.,

a é]
é—t-Il—}—u-—é-;Il ~ 0, for, u = -¢. (3a,b)

|
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Equation 3 is the standard scalar-transport equation, provided diffusive effects are
negligible, which typically translates to an upper limit on the time interval, T,
between the image pair. Since scalar diffusivity is essentially fixed by the choice
of the fluid, the time interval must be chosen such that diffusion is negligible (cf.
Tokumaru & Dimotakis 1995).

If the time interval, 7, between the image pair is not small, such that the actual
convection velocity varies (temporally) within this interval, the ICV algorithm will
still produce a mapping displacement field, £(x), that may be regarded as a time
integration of some effective Lagrangian velocity, u[x + &€(x;t),¢], at intermediate

times, t. That is,

147
E(xits +7) = / ulx + £(x; 1), 4] dt . (4)

1

The assignment of the inferred velocity to a midpoint in space and time is then seen

to be correct to second order in the image-pair time interval, 7, z.e.,
1
u = —§(x) [x+&x)/2,t; +7/2] + O (72) . (5)

The ICV method does not actually require images closely-spaced in time to produce

a successful mapping (displacement) field.

To compute an optimal mapping field, the ICV method relies on a parametric
representation of the displacement field, £(x). In several refined DPIV implemen-
tations (e.g., Huang 1994, Sholl & Savas 1997), as well as in the previous ICV
implementation (Tokumaru & Dimotakis 1995), local Taylor expansions of the dis-

placement field were employed, to various orders, i.e.,

£(x) = &(xc) + (X —xc)i e,

+ % (X — xc)i (X - xc)j ﬂc,ij
(6)

1
-+ 5"' (X - Xc)i (X - Xc)j (X - Xc)k Ye,ijk

+ etc. ,

where X is any expansion point with the parameters, ac i, fc,ij, 7c,ijk, etc. deter-
mined by the DPIV or ICV solution.
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In the ICV implementation of Tokumaru & Dimotakis (1995), the cost func-
tion that was minimized included terms that increased the cost function with the
(square of the) amplitude of any discontinuities of the displacement field and its
derivatives at the boundaries of the array of Taylor-expansion regions around the
selected control points, X.. As a consequence, much of the built-in flexibility in
describing spatial variations of the displacement (velocity) field was lost, with de-
grees of freedom gained from the Taylor-expansion coefficients in Eq. 6, in effect,
expended to minimize discontinuities of the velocity field and of its derivatives at

the Taylor-expansion region boundaries.

To mitigate this difficulty, the present ICV implementation relies on a displace-
ment field that possesses the required, C", continuity properties by construction
(where the order of continuity, n, is chosen appropriately as described below). The
remaining (true) degrees of freedom are utilized to minimize the cost function, J{£},
with no added (smoothing) terms in the integrand. Velocity- and vorticity-field so-
lutions of the Navier-Stokes equations are continuous, with continuous derivatives
to all orders, i.e., are C*°. In the present implementation, which was limited to
two-dimensional fields, a C? displacement (velocity) field was employed, i.e., pos-
sessing continuous second derivatives, corresponding to inferred vorticity fields that
possessed continuous first derivatives. This was achieved by representing the dis-
placement field in terms of B-splines with appropriate basis functions, whose control
parameters, qﬁ;’R) € R?, then provided the parametric description of the displace-

ment field, z.e.,

&x) = ¢[x o], (7)

as will be described below.

With the solution space of the minimization problem (Eq. 2) restricted in this
fashion, the cost functional, J{£}, becomes a function of the control parameters,
€.,

gie - 7[5 . (8)

possessing a minimum where derivatives of J, with respect to each qE;’R)

This allows a global minimization over the (selected) image-correlation domain to

, vanish.

be sought, using an iterative, multi-dimensional, conjugate-gradient method over



6

all parameter values, with a suitable initial guess, as will be described below.

2.1 Multi-resolution B-splines

Almost any interesting fluid flow will entail a wide range of spatial scales in
its velocity field. Flows near a body will possess relatively-thin boundary layers,
where the velocity will increase from the body velocity at the solid wall, to near
freestream velocity values, in a relatively short distance as compared to length of
the entire flow field. In regions outside the boundary layer, velocity-field length
scales might be large, with the field itself relatively featureless. Flows which can
generally be classified as turbulent, however, are likely to possess the entire range

of scales throughout the turbulent-flow regions.

In representing the velocity field, it is desirable to employ a representation that
has sufficient degrees of freedom, but no more. Determining how many degrees of
freedom are required is itself a challenging problem and, in the current implemen-
tation, 1s a user-defined parameter. As shown in the test-case section, the accuracy
of the method decreases when the solution space is allowed more degrees of freedom
than the local flow field warrants and attempts to fit the (high wavenumber) noise,

chasing image and other noise in the data.

In the ICV implementation described here, a multi-resolution B-spline repre-
sentation of the velocity field was employed to address these considerations. With a
multi-resolution construction, high-resolution basis functions can be used near the
boundary of an object, for example, or in any region of the flow that warrants their
use. In other regions of the flow, only the lower-resolution basis functions need to

be activated, as appropriate.

The complete B-spline representation is, effectively, a summation of sets of
different-resolution basis functions. The parameters of the lowest-resolution basis
functions carry the information for the overall offsets of the velocity field, while the
parameters of higher-resolution basis functions contribute refinements, as suggested
by Forsey & Bartels (1988, 1995). The actual implementation of this concept,

however, has been modified for its use in ICV, as will be described below. In
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general, the Forsey & Bartels (1988) method deals with surface construction in the
context of 3 — D modelling. The concept of an induced frame of reference for the
higher resolution surfaces is useful for intuitive interactive modelling, but is not
important in an automated method such as that employed in ICV. Futhermore, the
concept of individual patches of higher resolution is foregone in favor of a unified,

multi-resolution basis set.

F1G.1 One-dimensional, three-level, multi-resolution cubic B-spline basis function
set. Top: lowest spatial resolution, one knot interval; middle: two-knot
intervals; bottom: four-knot intervals.

The multi-resolution B-splines were implemented as follows. A complete set of
basis functions is generated for the entire low domain, starting with the coarsest

resolution, up through the highest (finer) resolution. The number of knot intervals in
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a given dimension always doubles for each increase in resolution. A one-dimensional
example employing cubic B-spline basis functions is depicted in Fig. 1, showing three

levels of the multi-resolution hierarchy.

The final spline, f(x), is (conceptually) a summation of the different resolution

level splines, i.e.,

R
fx) = 3 fIx) (92)

where the superscript denotes resolution level and each individual level, f(7)  is

evaluated as,

) = > a) B (@) B (w) - (9b)

(]
All parameters of lower-resolution splines are first transformed to those correspond-
ing to the highest-resolution level. The general procedure has been referred to as

“knot refinement” by Piegl & Tiller (1995). Let r denote a particular resolution

level and parameters qur_,r

be represented with a higher number of parameters, in particular, corresponding to

the highest-resolution level, R. Parameters qE;’R)

) define a spline at that resolution. The spline can also

result in an R-resolution, B-spline

representation that matches the r-resolution representation, z.e.,

f0x) = Y af B (=) B (v Z TP B BPy) . (10)

1]

where the intermediate equation is employed only once in computing the mapping of

(R,R)

the coefficients and included here as a conceptual aid. The coefficients q;; "~ can be

seen to correspond to the highest-resolution contribution to the total representation.

As implemented here, where knot grids of lower-resolution representations are
derived as spatial binary subdivisions of higher-resolution knot grids, lower-level
knots are subsets of higher-level knots and Eq. 10 can be solved exactly. This scheme
permits the resulting spline evaluation to employ a single (the highest-resolution)

basis-function set throughout and can be written as,

BP@)BP(y) = Y qy BP(2)BF(y) . (11)

i!j

R
f(x) = > {qu;’m

7,7 r=1
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The transformation of all lower-resolution parameters that map the B-spline rep-
resentation to the highest-resolution representation is computed ahead of time, al-
lowing fast repetitive evaluations of the solution vector field, as required for the
efficient, iterative solution of the optimization algorithm. The desired variable res-

olution across the solution domain is then implemented setting q(T’R) = 0, for

3]
Tmax < T < R, with 7.« selected, as appropriate, in each region.

In the case of the unsteady-flow around an accelerating airfoil, for example,
after the irrotational regions (that, generally, lack high velocity gradients) have
been captured by the lower-resolution parameters, the higher-resolution parameters,
near the boundary layer, wake, and in any shed structures, are enabled by increasing
Tmax locally, as necessary. The final effective knot grid for this example is depicted
in Fig.19. Plotted white lines connect knot points at each resolution where full

support of the basis functions has been enabled, at that resolution.

2.2 ICV algorithm implementation

The ICV implementation described here is comprised of a sequence of iter-
ative, algorithmic steps: image-data preparation, image-correlation domain def-
inition, cross-correlation displacement-field initialization, and conjugate-gradient

displacement-field optimization.

The procedure starts by further processing individual data images, after back-
ground removal, illumination normalization, etc., for shot-to-shot intensity varia-
tions of the illuminating laser sheet. A geometry file is generated next, which locates
the correlation domain, {2, within the image domain. An initial hierarchy of the B-
spline resolution knot grid is specified and any excluded regions from the correlation
domain (e.g., laser shadows, imaging occlusions, etc.) are also identified. The outer
boundary of the correlation domain, {2, is specified as a polyline (n-sided polygon).
Inner boundaries can also be accommodated, allowing correlation domains to be
defined that are not simply-connected, as necessary. These boundaries are defined
on the first of the two images (for each pair). The algorithm permits the extension

of the domain outside (%, ), as required by the mapping field, £(x), provided it isn’t
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trying to map from a point within an excluded region. For example, if only a small
portion of an image pair is being correlated, the algorithm 1s free to look anywhere
in the second image for a match to the correlation region of the first image, except

in excluded regions that may have been identified, as described above.

The next step is to initialize the solution at the coarsest resolution level; usually,
one spline patch. The initialization is performed by cross-correlating spatially-local
windows, using Fourier techniques, as in DPIV analyses (e.g., Adrian 1991, Willert
& Gharib 1991). The results of these correlations initialize the mapping vector
field, &(x). No equations are solved to improve the displacement vector field, at
this stage, with results from each cross-corelation window representing an average
of the displacement of the two imaged fields in each window. Windows are then
centered at the peak of each B-spline basis function and the cross-correlation results
are used to determine the corresponding B-spline control parameters, qg-), at the
resolution level r. Near edges, or where the window will not fit within the image,
the window is placed as close as possible to the desired location. Velocities returned

by the cross-correlation procedure that exceed a maximum threshold are discarded

and replaced by the average of the values determined for neighboring regions.

The initialization, 5(0) , of the B-spline representation for £, allows Eq.1 to be
invoked, producing an initial mapped version of the second image, i.e., Io(x + 5(0)),
that is “closer” to the first image, I;(x). Further cross-correlations are run between
I;(x) and I(x + &) to produce subsequent estimates, &™) Had the best possible
mapping been found in the first pass, the result of later correlations would be a null

vector field. This, however, is seldom the case.

A similar process for determining the displacement field in DPIV, but without
FFT’s, is outlined in Huang (1994) and termed, “Particle Image Distortion”. A fast
version, termed, “Lagrangian Particle Tracking”, was introduced by Sholl & Savas
(1997). In these implementations, the deduced displacement field was specified in

terms of local Taylor expansions, to first and second order, respectively.

- The ICV initialization step starts with large cross-correlation windows (up to

256 x 265 pixels, or 1/4 x 1/4 the image domain, for example) to avoid spurious
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correlations and to pick up any large displacements. This initialization step is par-
ticularly important, if there are displacements greater than 1/2 times the charac-
teristic length of a continuous scalar used to mark the flow (equivalent to a Nyquist
criterion). While large correlation windows tend to average out small features of the
velocity field, they produce robust estimates of large, near-uniform displacements.
Small-scale features of the velocity field are then determined in subsequent stages.
This aspect is particularly important, in as much as the subsequent minimization
stages may not correct for errors introduced at this stage and a local minimum of

J (&) might be found instead.

Once large-scale displacements have been found with such windows, the size
of the window is successively reduced by a factor of 2, cross-correlations are per-
formed, and the corresponding B-spline parameters are computed to yield the next
window-size estimates of the displacement (mapping) field. These successive halv-

ings continue until a user-determined minimum window size is reached.

The cross-correlation initialization sequence does not attempt to solve the min-
imization equation (Eq.2), although it does typically reduce the cost function, J.
The displacement field, &, produced by the cross-correlation sequence is used to
initialize an iterative minimization procedure. This procedure solves Eq. 2, within
the solution sub-space spanned by the parametric B-spline representation of the
displacement field, as described above, driving J to a minimum via a (multi-

dimensional) conjugate-gradient scheme (Press et al. 1992).

Numerical evaluation of the J integral is fairly straight-forward. The continu-

ous integral expressed in Eq. 2 is converted to a pixel-by-pixel summation, with I,

reconstructed as I(x + £), using a 2-D Mitchell filter (Mitchell & Arun 1988).

The projection of the displacement field on the set of B-spline basis functions
(¢f. Eq. T and discussion in Sec.2.1) converts the integral J to be minimized from
a functional of £ to a function of the finite number of B-spline control parameters
(¢f. Eq.8), as noted above. The required minimization of J is now performed in a

finite-dimensional space.

While no one minimization method is clearly better than others, good success
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was realized with a multi-dimensional, gradient-based approach. The specific al-
gorithm implemented here is the Polak-Ribiere variant of the conjugate-gradient
algorithm (Press et al. 1992). Our implementation of this algorithm has modi-
fied termination criteria based not only on a decrease of the cost function but also
on the magnitude of the gradient and parameter-space “distance” traveled by the

optimization iteration step.

The conjugate-gradient algorithm requires gradient information (with respect
to the B-spline parameters). The components of grad{.J} were estimated using a

centered, two-point, finite-difference scheme. Symbolically, for each component of
Qij,
1
(grad{T )y, = 3 (TG g+ h/2, )= T (g =2, 0] . (12)

where h is small in an appropriate sense.

As a result of the compact support of the basis functions associated with an
individual g;;, significant benefits, including mitigation of roundoff-errors, were re-
alized. In particular, the entire integral (whole correlation domain) need not be
calculated in Eq. 12, since a change in a particular parameter will only influence the

local region where the associated basis function is non-zero (compact support).

The conjugate-gradient minimization is “local”, i.e., it cannot guarantee global
minimization and will converge to the first minimum encountered. It was found
that the coarse-to-fine cross-correlation initialization sequence was generally able to
position the solution “close” enough to the global minimum. This allowed the subse-
quent conjugate-gradient minimization sequence to complete the multi-dimensional-
space path and converge to a plausible global minimum, at least as ascertained by

visual inspection, for the cases presented in this paper.

The algorithmic sequence benefits, at all stages, from visual inspection by the
user, since the human eye is extremely adept at detecting motions. In particular,
viewing an animation of I;(x), compared to Ip(x + &), one can typically assess
whether it is not some local minimum that has been found. This assesment is very
effective, in that a successful mapping will produce no apparent motion between

the first and mapped second images. The only residual visual difference should
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———* Cross correlaiion inifialization
; 4
<~ map second image
H v
+——— reduce window size

conjugaie gradient (iterative) |
minimization |

I
¥

increase B-spline resolution |

F1G6.2 ICV algorithmic sequence. Windows on the right depict gray-scale images of
the (algebraic) difference between I;(x) and I;(x+&), at each step. Uniform
(half-scale) gray level denotes zero.
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be from image-acquisition noise, consequences of representiation/resolution inade-
quacies, and in the present implementation, spurious consequencs of out-of-plane

motion, for example.

Following convergence at the spatial-resolution hierarchy specified in the domain-
definition initialization, the user has the option of revising the spatial resolution.
This 1s done interactively by scripting a new geometry file. The process is then
repeated, either anew, or retaining the initialization, or last-iteration solution, and

confining the iterations to the optimization steps of the algorithm.

This implementation using multi-resolution B-spline representation is akin to
multigrid methods generally employed for solving elliptic equations. A coarse ap-
proximation of the solution is calculated and then refined as the spatial resolution

of the solution is allowed to increase.

The combined algorithmic sequence of cross-correlation steps, followed by the
conjugate-gradient minimization (&-optimization) steps, is schematically depicted

in Fig. 2.

The ellipticity of subsonic-flow equations results in a potentially strong de-
pendence on boundary conditions. As a consequence, it is desirable to incorpo-
rate knowledge of the boundary conditions, as is feasible. The local representation
(compact support) of the displacement field adopted in the present implementation
localizes effects of errors at the boundary and they do not tend to propagate, as

strongly, throughout the entire domain.

Boundary conditions present significant challenges due in part to irregular ge-
ometries and a lack of image data to correlate on one side of the boundary. In the
case of a physical correlation domain with a straight boundary (along a coordinate
direction), there is an elegant solution using the B-spline formulation implemented
here. One can simply “turn off” control points which correspond to the basis func-
tions yielding full support along the boundary, 7.e., the outer-most basis functions.

An example is presented in Sec. 3.3.

This idea could be carried into the general case, where a curvilinear domain
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is mapped into a Cartesian computational domain, where the boundary conditions
can be applied, in a similar manner along a straight edge in the computational
domain. This has not been implemented as yet, however, and in our accelerating-
airfoil experimental test case, where such a curvilinear boundary was encountered,
the no-slip boundary condition on the foil surface, for example, was imposed at

discrete points along the airfoil.

wmm—mmmmmmmnmm-mmmmmwmm
7 S 7 G207 ) PP Pl D R 7 P P I ) S 20

F1G.3 Discrete constraint points and the set of parameters devoted to satisfying
the chosen boundary condition.

The Cartesian grid upon which the correlation was performed presented a chal-
lenging problem in imposing a boundary condition on a curve, within the B-spline
representation. The chosen method relied on user-identified, multiple, discrete con-
straint points (circles with x’s in Fig.3) within the correlation domain, on which
the specified boundary condition was enforced. For the accelerating, NACA-0012
airfoil flow experiment described below (Sec. 4.1), the chosen constraint points were
evenly spaced (highest-resolution knot-grid spacing) along the airfoil chord. At each
chosen constraint point, the displacement field was prescribed to satisfy the no-slip
condition, z.e.,

€&(x) =0

The velocity field within the airfoil has no physical significance, even though the
functional B-spline representation is still defined there. The parameters which define
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the B-spline in the airfoil interior can then be used to enforce the no-slip boundary
condition at the selected points on the airfoil surface. The position of the peaks of
the basis functions used to enforce the boundary condition are denoted by concentric
circles in Fig. 3. This is termed “constraint-based surface modification” in Piegl &
Tiller (1995), although applied here to a vector field. The solution to the problem
is solved once and stored for multiple applications of the constraints in the ICV

algorithm.

A set of equations can be written for the dependance of the chosen B-spline
parameters used to satisfy boundary conditions, as a function of the parameters
that remain to be determined by the optimization equation. For each boundary

constraint point, (zp,ys), the displacement field is set to zero (cf. Eq. 11),

R R
0= Zqij BE )(:I:b)B§- )(yb) , (13a)
,J
and the no-slip boundary condition, in this case, is imposed by the implicit equality

(cancellation) on the boundary control points, i.e.,

R R R R
> @ B BPw) = - > ai; BP(e) BP(n) -
1,7: constrained ,7: optimized

(13b)
These equations can be written in matrix form, and solved once (influence matrix)
during initialization of the program by singular-value decomposition, allowing the
resulting dependence relations to be efficiently applied. The B-spline parameters
for which this calculation was performed were those at the highest resolution, R,
of the B-spline hierarchy. These constrained parameters are effectively taken out of
the optimization equation, reducing the degrees of freedom for the problem. While
this changes the dynamics of the multi-resolution implementation, the change only
affects a small region (compact-support extent from the influenced points) around

the imposed boundary.

Alternative boundary conditions can also be implemented in this fashion, corre-
sponding to an a prior: knowledge of irrotational in-flow on a boundary, for example,

etc.
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3. Simulated-flow test cases

The algorithmic sequence described above was tested on a set of simulated
flows (displacement fields). Simulated flows corresponding to a Lamb-Oseen vortex
and a parallel boundary-layer were employed. The robustness of the ICV-inferred
displacement field with respect to image noise was also assessed by comparing the
results as a function of additive noise, independently superimposed on each one of
the two images that were processed in each case. The results of these test cases will
be described below.

3.1 Lamb-Oseen vortex

The continuous-field ICV algorithm has been tested on a simulated model-
flow field of a Lamb-Oseen vortex, with an added (vertical) freestream component,
U, =¥ V. The Lamb-Oseen vortex flow is an analytical solution for the temporal
decay of a vortex filament (e.g., Batchelor 1967, Saffman 1992),

u(x,t) =T Vcosé + 8 {-K— [1~€-T2/(4Ut)j] +V sin@} . (14)

2nr

This field was used to convect the two-dimensional image in Fig. 4 into a simu-
lated scalar image at two times, t; and t; = t; +7. The (800 x 800)-pixel test image
in Fig.4 was formed using a fluorescent dye (kriegrocine) and a (1 — 2mm)-thick
Nd:YAG laser sheet in water, recorded on a 1134 x 486 (physical) pixel, TI CCD-
camera (Model TI MC-1134P), digitized at 12 bits/pixel, at 10 frames/s as dictated
by the laser pulse-repetition frequency, and acquired on an in-house data-acquisition
system.” A single image from that sequence was mapped (bilinear interpolation)
from the (rectangular) physical-pixel grid onto a square-pixel grid for subsequent
processing. The resulting square-pixel image is the one displayed in Fig. 4. The pair
of ICV input images were produced by numerically-convecting this single image into
the simulated scalar images at two distinct times as described above. The ICV al-
gorithm was applied to a (650 x 650) correlation-domain, © in Eq. 2, subregion of

the full images.

* Designed and fabricated by Dan Lang.
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F1G.4 Laser-induced fluorescence image, scaled to 800 x 800 pixels, use as source-
image data for Lamb-Oseen vortex simulated test case.

The simulated flow field, defined in Eq. 14, has the Lamb-Oseen vortex cen-
tered in the image, with parameter values: x = 7000 pixels® /frame (“frame” here
denotes “frame-time interval”), vt = 1000 pixels?, and V = 1 pixel/frame. Figure
5 reproduces the surface plots of the analytical vertical component of the velocity

field, v(z,y), and out-of-plane component of the vorticity, w, = w(z,y).

Iterative refinements of the ICV solution for the Lamb-Oseen vortex test case
are plotted in Figs. 6 through 9. For the test case presented here, one resolution
level of the B-spline representation was enabled. The solution was represented with
bicubic B-splines defined on a (16 x 16)-grid of evenly-spaced knots, with collapsed
knots at the boundaries. Figure 25 (Appendix A) depicts the set of basis functions

used for both dimensions.
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F1G.5 Surface plot of the analytical vertical component of velocity, v(z,y), and
out-of-plane component of vorticity, w(z,y).

The first three figures show the ICV solution after successive cross-correlation
nitializations. The surface plots of Fig.6 show the solution after two iterations
using (128 x 128)-pixel cross-correlation windows. Figures 7 and 8 depict the result
of successive refinements to (64 x 64)-pixel and (32 x 32)-pixel correlation windows,
respectively, as described above. Considerable errors are evident, in both velocity

and vorticity, when visually compared to the analytical fields in Fig. 5.

Starting with the initialized solution and following to the next step in the ICV
algorithm, the mapping-error integral, J{&(x;q;;)} of Eq.2, was iteratively min-
imized, using the conjugate-gradient minimization algorithm, as discussed above.
The final velocity- and vorticity-field results are presented in Fig.9. A preliminary

visual comparison with the analytical expression in Fig.5 helps assess the level of
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F1G.6 Surface plot of the ICV solution for v(z,y), and, w(z, y), after initialization
and refinement using 128 x 128-pixel cross-correlation windows.

accuracy attained at this step.

To assess the inferred velocity-field errors, the error surface, €(z,y), for the

experimentally-determined vexp(z, y)-velocity and wexp(z, y)-vorticity fields, i.e.,

_ Pexp(Z,y) — vin(2,y)
€v(x7y) - maxlvth(xay)l (15)
and
ew(x,y) = wexp(xay)'—wth(x;y) ’ (16)

max |wn(z,y)]

are plotted in Fig. 10, expressed as percentages, i.e., 2, = 100 €,(z,y), on the left,
and z, = 100 €,(z,y), on the right. The error in the “experimental”, ICV-deduced

v-velocity is 0.4% (rms) over the whole field, with a maximum error of 7.7% on one
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F1G.7 Surface plot of the ICV solution for v(z,y), and, w(z,y), after refinements
using 64 x 64-pixel cross correlation windows.

corner. The error in the deduced vorticity over the whole field is 0.6% (rms) with a
maximum error of 13.5%, for this test case, at the same corner. Overall, the high-

error regions are in the neighborhood of the image correlation-domain boundaries.

3.2 Effects of noise

Tests were also performed to assess the effects of image noise on the robustness
of the deduced velocity fields. The same LIF-image data shown in Fig. 4 were again
numerically convected with the same velocity field (Eq.14). Each image in the
pair was then independently degraded with additive noise, in a simple way, with

amplitudes up to 15%rms. Specifically, a random-number generator was used to
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F1G.8 Surface plot of the ICV solution for v(z,y), and, w(z,y), after refinements
using 32 x 32-pixel cross correlation windows.

produce (a top-hat pdf of) noise, that was added pixel by pixel and was quantified
by its rms magnitude. The magnitude of the noise was normalized by the rms of
the image data, before the noise was added, and expressed as a percentage. Sample

sub-regions, with and without additive noise, are shown in Fig. 11.

ICV results with the flow field of Sec. 3.1 were attained using bicubic B-splines
with a (16 x 16) knot grid (patches). The discussion in this section considers two
different-sized correlation areas, as a single level and as the highest multi-resolution
level of a B-spline hierarchy, as well as the effect of noise degradation of the images.
Knot grids of 16 x 16 and 32 x 32 were used in the B-spline representation of the
displacement (velocity) fields. In test cases for which multi-resolution was enabled,

all basis functions were allowed to contribute at all levels, in other words, every
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F1G.9 Surface plot of the ICV solution for v(z,y), and, w(z,y), after conjugate-
gradient optimization.

parameter, q;;, participated in the ICV correlation.

The number of knot regions is inversely proportional to the effective size of the
individual correlation regions. The higher knot-number, :.e., number of piecewise
regions, the denser the spacing of basis functions for the same image area. The
rms error of the ICV solutions for the vorticity, defined as in Eq. 16, for the various

cases, is plotted as a function of added noise level, in Fig. 12.

As can be seen the ICV implementation has an improved ability to correlate
noisy images when using the (spatially) wider basis functions of the 16 x 16 knot grid
representation. The wider basis functions are less prone to erroneous correlations of

low spatial-frequency noise components, acting as low-pass filters as a consequence
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FI1G.10 Surface plot of percent error in ICV solution for the vertical velocity, v(z, ),
left, and out-of-plane vorticity w(z,y), right, for the simulated Lamb-Oseen
vortex flow (cf. Eq. 15 and related discussion).

of their effectively-larger image-correlation regions.

3.3 Boundary-layer flow

The ICV algorithm was also tested on the simulated flow field of a two-
dimensional boundary layer, with a velocity profile approximated by a quarter-sine
function, u.e.,

u(x,t) = KU sin (%) ; for y <65 (17)
1, otherwise .
The image pairs were generated from (a portion of ) the same scalar image (Fig. 4)

in a similar fashion (with and without added noise) to the Lamb-Oseen vortex test
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F1G.11 Sub-region of LIF image data showing original data, left, and with 15% rms
noise added, right (see text).

case. The results with a hierarchical, full-resolution B-spline representation were
compared to those from a multi-resolution representation. A (32 x 32) reference
grid is superimposed on the scalar-field image in Fig. 13 (left). The ICV solution of
the displaced second image (per Eq.17) was then used to derive the mapped grid
depicted in Fig. 13 (right).

The ICV solution, using the hierarchical, full-resolution representation, is de-
picted in Fig.14. As can be seen, ICV was able to capture the steep gradient near
the (simulated) wall, as well as properly accommodate the no-slip boundary condi-
tion. In this case, because the flow boundary (wall) is along a B-spline coordinate
direction, it was possible to impose it exactly. The rms error of this solution, com-
~puted over the whole image domain, is 0.3%, as normalized by the freestream value,
U. The full-resolution representation performed better, with no noise added to the
image pair, than the multi-resolution displacement-field representation (Fig.15).
However, with added noise, the multi-resolution representation was slightly better,
employing larger freestream correlation regions, while still possessing sufficient de-
grees of freedom to accurately represent the velocity field. The resulting rms-error

is plotted in Fig. 16, as a function of the added (rms) random noise.



26

15 T ' T ¥ T 4 T i
- ——— 16x16 knot grid (larger correlation area)

< o e 32x32 knot grid (smaller correlation area)
E - — — — multi—resolution spline to 16x16 knot grid
3 - —-—--  multi—resolution spline to 32x32 knot grid
S 1o
- L
3 J—
s T T
_ i e
= S5 -7
(5]
v R
= L
&
& b

0

% RMS noise added to images

F1G.12 Percent-rms error of vorticity, vs. added noise, for the simulated Lamb-
Oseen vortex image pair, for two sizes of image-correlation regions (see
text).

4. Laboratory-flow test cases

The ICV method was applied to two laboratory flows. The first was a two-
dimensional flow over an accelerating airfoil at an angle of attack and utilized both
particles and scalars as Lagrangian markers. The second was a three-dimensional
flow generated by a transverse jet in a coflowing stream, utilizing the jet-fluid con-
centration field, as labeled with a fluorescent dye, as a Lagrangian marker. These
two test and illustrate different issues in the ICV methodology and will be discussed

below.
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Fi1G.13 Simulated boundary-layer flow. Hierarchical, full-resolution representation.
Left: Reference grid on first image. Right: ICV solution superimposed on
displaced scalar image.
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F1G.14 Simulated boundary-layer flow. Hierarchical, full-resolution representation.
ICV solution surface for velocity field.

4.1 Accelerating NACA-0012 airfoil

The experiment described here focused on the investigation of the unsteady,
low-Reynolds number flow over a uniformly-accelerated, a = 0.108 cm/s?, NACA—-
0012 airfoil in a water tow-tank. The airfoil had a chord of ¢ = 9.05cm, and was
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F1G.15 Simulated boundary-layer flow. Hierarchical, multi-resolution representa-
tion. Left: Reference grid on first image. Right: ICV solution superimposed
on displaced scalar image.

r — multi—-resolution 32x32 (maximum) knot grid
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FiG.16 ICV solution error (rms) for the simulated boundary-layer flow, as a func-
tion of added (rms) random noise.

mounted at a fixed angle of attack, & = 22.5°. The water temperature of 7' = 21.9°C

yielded a kinematic viscosity of v = 1.05 x 1072 cm?/s.

The airfoil was attached to a computer-controlled, linear-traverse carriage sys-

tem that allowed it to follow a prescribed motion profile in a water-filled tow
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Correlation region

Laser sheet
shadow

F1G.17 Accelerating NACA-0012 airfoil and image geometry. CCD camera was
positioned to image the lifting surface, with the lower surface occluded, as
a consequernce.

tank. The final velocity in the acceleration profile was 2.41 cm/s, s.e., below sur-
face capillary-wave speed. A CCD camera was attached to the same carriage that
supported the airfoil and was oriented with one pixel axis (approximately) parallel

to the airfoil chord, so that the images were recorded in airfoil-fixed coordinates.

The camera recorded instantaneous images of a Lagrangian flow tracer. Both
fluorescent dye and particles were tried as markers in the fluid. The results pre-
sented are from a run seeded with particles only. These yielded similar, but slightly-
better, results than the continuous-scalar-field images. A 2-D slice of the flow at
the mid-span of the airfoil was illuminated with a frequency-doubled (532nm),
pulsed (10 pulses/s) Nd:YAG laser, synchronized with the camera. The CCD cam-
era, timing-control electronics, and data acquisition system were built in-house.
The system was capable of recording up to 42 images of 1024 x 1024 pixels each,
digitized to 12 bits. The timing controllers were programmed to record a three-
image séquence, of images spaced by 7 = 0.1s, pause, record the next three-image

sequence, etc. The period of each cycle was 177 = 1.7s.

As opposed to continuous-scalar Lagrangian tracers/markers that can provide

misleading information when the velocity component perpendicular to the imaged
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plane is large (Tokumaru & Dimotakis 1995, Sec. 4), particles can produce correct
information for the in-plane velocity components, even in the presence of an out-of-
plane velocity component. Out-of-plane motion may cause particles captured in one
image to disappear, or change intensity, in the next image. This can lead to errors
in the inferred local convection and a higher minimum value of the cost function,
J{€} (Eq.2). The requirement for a correct measurement of the in-plane velocity
components is that the probability that a particle will leave the illumination sheet
in the time interval, 7, between images must be small, 7.e., the product of the local
image-plane-normal velocity component and 7 must be small compared with the

laser-sheet thickness (e.g., Dimotakis et al. 1981).
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0.0 0.5 1.0 1.5 2.0
¢

FIG. 18 Image data-acquisition sequence indicated on velocity s time airfoil history.
Velocity and time scaled with v/2ac and /2c¢/a, respectively, (see text).

The exposure times for the second and third images in each triplet are indicated

in Fig. 18. The scaled velocities and times are given by,

7t * t
ut(x", %) = uxt) oL (182)
Ug to
with,
2c . 1
up = V2ac ~ 1.40cm/s , to = {/— =~ 129s, and x"=-x. (18b)
a C
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For the constant acceleration employed here, the airfoil velocity (in the lab frame)
plotted in Fig. 18 was given by uj,;; = t*. The middle image of each triplet sequence

was recorded at times (recall that 7 = 0.1s >~ 7.75 x 1073 ¢g),

t, = (ITn+1)7, for n = 1,2,...13. (19)

F1G.19 NACA-0012 accelerated airfoil test case image data with knot grid overlay
depicting multi-resolution hierarchy.

Figure 19 depicts the multi-resolution correlation grid overlayed on one of the
(particle) images. This grid was used throughout the sequence and was chosen
iteratively to possess sufficient spatial resolution to capture the velocity field and
its derivatives. The no-slip boundary condition was enforced on the foil surface as
discussed in Sec.2.2. No boundary condition was enforced on the (outer) domain
boundary in the flow (free ends) with associated control parameters in the solution

as determined by the cross-correlation/optimization algorithm.
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F1G.20a Streamline field for accelerating airfoil during attached-flow initial-phase.
Flow derived from image recorded at ¢ = ¢,.

T

./,

F1G.20b First appearance of separation bubble. Streamline field derived from im-
age recorded at t = t7.

The resulting flow is found to remain attached to the airfoil, with little change
in the topology of the streamline field until a small separation bubble appears on the
lifting surface. Figure 20a depicts the velocity-tangent (streamline) field during the
attached-flow phase, recorded at t = ¢5 (Eq.19). The inclination of the streamlines

above and away from the airfoil reflect the freestream at an inclination near the angle
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of attack (a = 22.5°C). Figure Fig. 20b depicts the streamline pattern recorded at
a later time, t = t7. It was the first to capture the separation, which must have

occurred during the previous time interval, i.e., tg < tsep < t7.

-

7

NACA 0012

0.5
-

F1c.20c¢ Color streamline pattern at tg. Color codes (scaled) velocity magnitude
(Eq. 18).

The streamline fleld is useful in displaying the topology of the instantaneous
flow but does not convey velocity-magnitude information. The two can be combined
in a streamline plot, however, in which color denotes velocity magnitude. Such a plot
is reproduced in Fig. 20c, recorded at t5. As can be seen, the low-velocity (blue-
purple) separation bubble has grown in the interim, with a high-velocity region
(green-yellow) projected some distance above the airfoil. Some distance away from
the airfoil, viscous effects are small, the (unsteady) Bernoulli equation applies, and

color (velocity magnitude) may be used as an indicator of the low-pressure regions

in the flow.

Figure 20d reproduces the flow field captured in the next interval, t;5. The
separation bubble has grown further and moved aft. The ICV solution has captured
the front- and rear-stagnation points on the lifting surface. The scaling employed
(Eq. 18) results in dimensionless velocities that continuously (linearly) increase in

magnitude with time.



34

77N+ WiacAooi2

0.0 0.5
-

F1G.20d Color streamline pattern at tjp, indicating front- and rear-stagnation
points on airfoil lifting surface.

F1G.20e Color streamline pattern at t;3 , indicating secondary separation bubble.

Figure 20e reproduces the flow field at t;2 . The rear stagnation point of the
primary separation bubble is now (approximately) coincident with the airfoil trailing
edge, while a secondary separation bubble has appeared. Evidence of high-shear
regions are evident on the periphery of the separated-flow region, as well as in the

wake.

The final realization in the time sequence is depicted in Fig. 20f. The primary-
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vortex rear-stagnation point is now off the airfoil, the secondary vortex has been
substantially lifted, and a tertiary separation vortex has been ejected in the low-

velocity region above the airfoil. The shear-layers on the periphery of the separated

region and in the wake are stronger yet.

0.5

F1G.20f Color streamline pattern at the final time, ¢35, indicating tertiary separa-
tion vortex.

F1G.21 Velocity vectors and vorticity field (color) plot at ty3 (same time as in
Fig. 20f).
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A traditional velocity-field plot, superimposed on the computed vorticity field,
1s depicted in Fig. 21. The primary vortex can be seen to be accumulating the flux
of vorticity emanating from the leading-edge region. The wake is seen to possess an
asymmetric vorticity field, indicating a strong net positive (counterclockwise) vor-
ticity and a net shear in the wake. Also noteworthy is the strong positive-vorticity
region on the rear portion of the lifting surface that is induced by the primary
vortex and sustained by the no-slip boundary condition. The weak, alternating
positive/negative vorticity layers that parallel the main vorticity trough, as well as
the indicated, small, positive-vorticity bubble near the leading edge are, most likely,

artifacts.

Comparing the visualization in Fig.21 to that in Fig.20f, the value of both
can be appreciated. The topology in the separated-flow region is not discernible
in the latter, while the high-shear (vorticity) regions are difficult to identify in the
former. Both are required to capture the important features of this unsteady-flow

realization.

As can be seen in the streamline plots, the computed streamlines in the separated-
flow regions are very nearly closed, for most images. While a failure to close exactly
could indicate (weak) out-of-plane motion, only small changes in the computed ve-
locity field would be required to close the streamlines, in most realizations. Stream-
line spiraling is conspicuous, however, in the ¢;, flow, indicating a reduction in
radius as high as, roughly, 1/3 to 1/2 to local radius per turn. Interestingly, the
spiraling at the next (and final) time, t13, is negligible (actually, slightly outward).
The robustness of the in-spiraling in the t;; realization was checked by processing
the second and third images in the ¢, triplet sequence, as an independent pair. The
deduced velocity-streamline pattern was virtually the same. We are led to conclude
that a transient, three-dimensional phenomenon has been captured, possibly akin
to the axial flow in the vortex cores reported by Koochesfahani (1989), in his study
of the shed vortices in the wake of an oscillating NACA-0012 airfoil.



4.2 Transverse jet

The ICV method was also used to analyze scalar images derived from a trans-
verse jet in a co-flow in the GALCIT Free Surface Water Tunnel. The jet fluid
was marked with kriegrocine dye and illuminated by a pulsed, frequency-doubled
(532nm) Nd:YAG laser sheet. The laser was formed into a sheet with a cylindrical
lens, aligned with the freestream and centered on the jet axis. The width of the
sheet was narrowed by a long focal length spherical lens. Image data were acquired
at the laser PRF of 10Hz, on the same 1024 x 1024 CCD camera used for the
accelerating NACA-0012 flow test case.

In the image domain in the far field correlated by ICV (100 < z/d < 200),
inter-frame displacement of the scalar field, i.e., labeled jet fluid, was predominantly
in-plane. Such images do not provide a correlatable scalar field throughout the field
of view (e.g., there is no scalar gradient beyond the boundary of the jet fluid) and
require an adaptive definition of the correlation domain, 2. This was defined for
these images as a non-convex domain with a polygonal boundary, as described in

Sec. 2.2.

F1G.22 Transverse-jet in coflow. Image of jet-fluid concentration in the plane of
symmetry of the jet. Reje: &~ 3000.

As mentioned, the velocity is predominantly in plane within the correlation
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region, however, there is a small amount of out-of-plane (spanwise) velocity. In
this case of a 2-D slice of a 3-D flow labeled by a scalar with 3-D structure, the
out-of-plane velocity component manifests as an apparent in-plane divergence, and

also as error in the inferred in-plane velocity. For more discussion see Tokumaru &

Dimotakis (1995).

An example of the resulting images is depicted in Fig.22. Successive pairs of
such images were correlated only within a specified domain with the displacement
field represented on a hierarchical, 32 x 32-knot grid, using a bicubic B-spline rep-
resentation for the displacement field. The results are presented in Fig. 23, that
also indicates the correlation domain. Color labels the inferred (out-of-plane) z-
component of the vorticity, as identified in the color table, in units of reciprocal
frame intervals (1/7), with overlaid arrows representing the inferred velocity field.
The primary components of vorticity for this flow are in-plane, corresponding to
a counter-rotating vortex pair, asymptotically tending towards the streamwise di-
rection, with substantial amplitudes for the instantaneous out-of-plane component,

however, for this turbulent flow.
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FiG. 23 Continuous-field ICV results for correlation of transverse jet in co-flow test
case. Black regions are outside of the correlation domain 2, while color
indicates out of plane vorticity, velocity arrows are overlayed in black.
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F1G. 24 Divergence field for results as described in Fig. 23 and text.

5. Conclusions

Continuous-field Image Correlation Velocimetry methodology is a versatile
means of recovering optical flow from a variety of image sequences of convected La-
grangian markers. This implementation uses B-splines of arbitrary (user-selected)
order to represent the displacement field between a pair of images. The user can also

select a multi-resolution hierarchical B-spline representation, where appropriate.

The method was tested on simulated flow fields. Numerically-generated images
with various levels of added noise were used as input to the ICV algorithm. In the
case of the simulated Lamb-Oseen vortex, the algorithm deduced the vorticity field
with a 0.6% rms error over the entire correlation domain. For the test cases with
noise added to the images, the advantage of using larger correlation regions, that

still had sufficient spatial resolution to capture the velocity field, was shown.

A further test case investigated the simulated boundary layer flow. Due to
simple geometry, the boundary condition was enforced exactly at the (simulated)
wall. The advantage of using a multi-resolution hierarchical vs. a full-resolution
hierarchical displacement field representation was investigated. The full-resolution

representation performed best with no added noise to the images, and was able to
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deduce the wall-parallel component of the velocity field with 0.3% rms error over the
entire correlation domain. For images with added noise, the multi-resolution repre-
sentation performed slightly better, but it is questionable whether the improvement

was significant enough to warrant the added complexity.

Two laboratory-flow test cases were also reported. The accelerating NACA-
0012 airfoil at high angle of attack shows the utility of the method to capture high
dynamic-range (in the velocity field) flows. From one set of full-field images, the
method captured the onset of separation, development of the primary shed vortex,
in addition to secondary and tertiary vortices. The latter of the three vortices was
found in a very low energy region of the flow and can only be identified when data are
displayed as an instantaneous streamline plot. A shift of the B-spline representation
knot grid (somewhat analogous to a CFD grid refinement study) revealed the same
structures, thus it is believed that the tertiary vortex was not an artifact of the

method.

The second laboratory-flow test case was a transverse jet in a coflowing stream,
where the jet concentration imaged using fluorescent dye. The boundary of the
correlation domain considered in the minimization sequence of the code was along
a prescribed, complex-curve. Significant regions of vorticity were found, with out-

of-plane motion producing as in-plane divergence.
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APPENDIX A

B-spline representation

B-splines are an eflicient means of representing curves and surfaces for compu-
tational evaluation. The NURBS (non-uniform rational B-spline) is a popular ver-
sion of B-splines used extensively in the computer-graphics and CAD/CAM/CAE
industries for its ability to analytically represent conic sections using rational poly-
nomials (Farin 1992). In the representation of fluid flows, there is of course no
need to model conic sections. Accordingly, the non-rational, non-uniform, B-splines
were chosen since they allow sufficient degrees of freedom without adding additional
complexity for unnecessary features. A brief introduction to B-splines will be given
below, demonstrating the construction of a curve, followed by a generalization to

higher dimensions (surfaces, volumes, etc.).

B-splines are piecewise polynomials of a chosen degree, p. The splines are con-
tinuous to the (p — 1) derivative, e.g., a cubic spline (p = 3) is C* (continuous sec-
ond derivatives). The advantage of B-splines, over other potential representations,
is that they are evaluated as a weighted sum of easily-computed basis functions that
by construction satisfy the specified continuity requirement, C (»=1) over a minimal

number of piecewise intervals. In one dimension, the sum,
f(s) = > aiBisls) . (20)

evaluates a spline, given the basis functions, B; 5(s), and a set of scaling or weighting
parameters, g;. The basis functions can be computed ahead of time and a different
spline, with different parameters ¢;, can be evaluated efficiently, over the same

piecewise domain.
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The independent variable, s, can be parametric, e.g., 0 < s < 1, so that
a curve embedded in a higher-dimensional space is parameterized along s, i.e.,
f(s) = [ fi(s), f2(s),...]. Alternatively, one could let the range of s coincide with
a chosen domain so that the B-spline representation is an explicit function of one
variable, z.e., f = f(s).
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F1G.25 Cubic non-uniform 1-D B-spline basis functions.

There are many methods to generate basis functions, including blossoming and
divided differences (Bartels et al.1987). One that lends itself particularly well to
numerical evaluation is the recurrence method attributed to deBoor (1978), or Cox,
deBoor, & Mannsfield (Piegl & Tiller 1995). A set of cubic basis functions, B; 3,
generated in this fashion, is plotted in Fig. 25.

To evaluate the basis functions, piecewise intervals must first be defined over
the domain of s. The resulting sequence of (non-decreasing) numbers is referred to
as a knot vector, where the joint between each interval 1s a knot. The knot vector

used in the generation of the basis functions in Fig. 25 was,
s = {0,0,0,0,1,2,3,...,13,14,15,16,16,16,16 } . (21)

There are 16 non-zero piecewise segments (knot intervals). The collapsed (zero-
length) knot intervals at the ends of the knot vector allow the generation of useful

basis functions for boundary conditions, as will be discussed below.
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F1G.26 Cubic non-uniform B-spline curve, (solid line). Basis functions (broken
lines) have been weighted by their corresponding parameters (diamonds).

Given the knot vector, s = { s; }, one can recursively evaluate the basis func-

tions from,

1, for s; <5< 84413
Bio(s) = 0. otherwi
therwise;
, O 15€; (22)
S — 8; Sitpt1 — S
Bip(s) = ————Bip-a(s) + ————Bit1-1 -
Sitp — Si Sidj+1 = Si4l

Each recursive evaluation of Eq. 22 increases the basis-function degree by one. Thus,
it is easy to select the order of continuity of a spline, for a given knot vector. Each
additional increase of basis-function degree will increase the number of knot intervals
over which the basis function is non-zero (excepting the boundaries), also resulting

in an increased computational burden when evaluating Eq. 20.

There are a total of 19 cubic basis functions for the example knot vector, with
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each B 3(s) basis function requiring a control parameter to define the spline. The
example curve of Fig.26 is constructed from the basis functions shown in Fig. 25.
Each basis function has been scaled by its control parameter, g;, whose value is

plotted above the peak of the corresponding basis function.

At the boundaries of the spline there are typically fewer continuity requirements
and one has more latitude in the shape of the basis functions. The common choice
(and the one made here) is to construct basis functions for the boundary regions that
give full support to the resulting spline, i.¢., the spline interpolates the bounding
(first and last) ¢;’s. These basis functions are generated by Eq. 22, with the collapsed

outer-knot intervals in the knot vector, s.
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Fic.27 Two-dimensional, cubic, uniform B-spline basis function.

Generalization to higher dimensions is straightforward. A surface, for example,
may be regarded as a summation of a grid of weighted 2-D basis functions, such

as the one shown in Fig.27. The 2-D basis functions are generated as the tensor
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product of 1-D sets of basis functions, with each 1-D set corresponding to a different
direction. A vector field can employ the same 2-D basis functions, with vector

parameters g;;, with the two-dimensional extension of Eq. 20 given by,

f(x) = D_aij Biplz) Bip(y) (23)

for a p*t-degree vector-field representation.
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