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Abstract

Over the next decade, both ground-based (e.g., the Laser Interferometer Gravitational-Wave Obser-
vatory, or LIGO) and space-based (the Laser Interferometric Space Antenna, or LISA) gravitational-
wave detectors should detect gravitational waves emitted by the motion of compact objects (e.g.,
black hole and neutron star binaries). These waves potentially contain useful information about the
structure and dynamics of the compact-object systems that emit them. Since gravity-wave signals
are inherently weak, any efforts to detect them naturally involve high-quality detectors and good
models for expected signals. This thesis presents methods to improve (i) LIGO detector quality, (ii)
our knowledge of waveforms for certain LIGO and LISA sources, and (iii) models for the rate of

detectability of a particular LISA source. More specifically, this thesis studies:

1. Plunge of a compact object into a supermassive black hole: LISA is likely to detect many inspi-
rals of compact objects (i.e., neutron stars or ~ few-stellar-mass black holes) into supermassive
black holes (~ 10° — 107 Mg, on the small end of what one expects to find in the center of a
galaxy). Because these compact objects very slowly lose energy through their emitted grav-
itational waves, their motion is well-approximated at any instant by a stable geodesic orbit,
and over long periods by a succession of stable geodesic orbits. Eventually, each inspiralling
compact object will reach its last stable orbit, and will subsequently plunge rapidly into the
hole. The location of this last stable orbit provides a sensitive probe of strong-field geometry
near the supermassive black hole. Since this entire process (i.e., the transition from inspiral
to plunge) takes place within the frequency band of greatest LISA sensitivity, LISA could
conceivably observe this transition and thereby constrain the location of the last stable orbit

and hence strong-field general relativity.

Previous computations by Ori and Thorne have suggested that, while the entire inspiral —
by virtue of its long duration — can be easily seen by LISA, the transition from inspiral to
plunge cannot (albeit just barely so). In Chapter 2, I perform a more generic computation — I
estimate the chances that LISA could detect the transition from an eccentric equatoral inspiral
to plunge — that comes to the same conclusion: LISA can expect a maximum signal-to-noise
ratio of order ~ 1 from transition-to-plunge events. Therefore, the present LISA design cannot

be expected to reliably measure the last stages of inspiral. However, a LISA design with a
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slightly lower noise floor could potentially encounter a few events with strong enough signal

to observe the transition.

. Scheme to reduce thermoelastic noise in advanced LIGO: After its first upgrade, LIGO will use
sapphire mirrors. Because sapphire expands considerably when heated, the upgraded LIGO
detector (advanced-LIGO) will have high thermoelastic noise. [Thermoelastic noise occurs be-
cause millimeter-scale thermal fluctuations in the mirror bulk induce expansion and contrac-
tion, causing the mirror surface to shimmer.] The advanced-LIGO interferometer’s sensitivity
could be significantly enhanced by merely reducing thermoelastic noise. In collaboration with
Kip Thorne, Erika d’Ambrosio, Sergey Vyatchanin, and Sergey Strigin, I developed a proposal
to reduce thermoelastic noise in advanced LIGO by switching LIGO cavity optics from simple
spherical mirrors to a new, Mexican-hat shape. If advanced LIGO were redesigned to use
these mirrors, it would have significantly greater effective range (i.e., for binary neutron star
inspirals, an increase by a factor ~ 1.4) and would thus detect more inspiral events (for binary

NS inspirals, a rate increase by a factor ~ 2.5).

. Geometric-optics-based analysis of stability of symmetric-hyperbolic formulations of Finstein’s
equations: The late stages of binary black hole inspiral and merger should produce some of the
strongest and potentially most detectable signals for LIGO. But the waveforms emitted by the
late stages of inspiral and merger remain poorly known; the simulations which would provide
accurate predictions for these waveforms — full numerical evolutions of Einstein’s equations —
cannot yet be successfully completed. More generally, no matter how they are performed —
Einstein’s equations admit many possible representations — numerical simulations of sufficiently

generic spacetimes always fail after a relatively short interval.

Different simulations fail for different reasons: each representation of Einstein’s equations
presents its own difficulties. For example, when solving first-order symmetric hyperbolic for-
mulations of Einstein’s evolution equations, errors naturally present in simulations acciden-
tally excite ill-behaved ezact but unphysical solutions to the equations we evolve (i.e., solutions
which both grow exponentially and violate the Einstein energy and momentum constraints).

Eventually, these solutions grow so large that the simulation fails.

Certain special types of these ill-behaved solutions (i.e., short-wavelength wave-packet solu-
tions) are particularly easy to analyze; and by understanding their properties, I can (and did)
make definite predictions about which simulations (based on first-order symmetric hyperbolic
formulations of Einstein’s equations) will be particularly ill-behaved. [These predictions have

not yet been systematically tested in full nonlinear simulations.]
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Chapter 1

Introduction

Classical astronomy is a mature field that uses the electromagnetic spectrum to explore the universe.
But by using gravitational rather than electromagnetic waves—by using waves produced only by the
most energetic events in the universe; waves that, unlike their electromagnetic counterparts, cannot
easily be obscured by dust or other intervening low-density matter—the budding field of gravitational
wave astronomy will provide an entirely new view of the universe [1, 2, 3].

Because gravitational-wave signals will be very weak, both sensitive detectors (to maximize the
potential for detection) and knowledge of the most likely signals (to permit detection of the signal
in the presence of detector noise) are needed. Thus, gravitational-wave astronomy has consisted of

efforts in four closely related areas:

1. Source statistics and estimates of detectability: Each class of source has been (often roughly)
assessed, to determine whether its members are worth looking for (and potentially to simplify
the process of finding them). Estimates of the frequency and distribution of signal strengths

of each likely source (if they can be obtained) have therefore been developed.®

2. Detector design, construction, and commissioning: Detectors sensitive to likely sources—such
as the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO)—have been
designed and built, and are presently being commissioned.? Further, future detectors—such
as planned upgrades to the LIGO interferometer, along with the Laser Interferometer Space
Antenna (LISA)—are being planned, to further increase the overall sensitivity and bandwidth

of the present gravitational-wave-detection network.

3. Source simulation, waveform modelling, and template extraction: Each source produces some

associated waveform, which must be modelled (more or less accurately) to provide a reference

1For example, these estimates can help guide the design of both future detectors and signal-detection algorithms.

2The LIGO interferometer is an extremely complicated combination of interlocking systems; problems with any
subsystem can easily cause problems with the whole interferometer. During the “commissioning” phase, the interfer-
ometer’s components are successively installed and integrated, and these components and the entire interferometer are
systematically tested, until the interferometer finally reaches design specifications (or some acceptable approximation
thereof).
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against which data can be compared. Ideally, either accurate waveforms are unnecessary (e.g.,
for burst sources, whose waveforms are strong short pulses whose internal structure need not
be modelled) or are fairly well-determined (i.e., for equatorial inspiral of a compact object
into a supermassive hole). When more accurate waveforms are needed than are available, the

waves are modelled by (for example) some plausible parameterized functions (e.g., [4, 5]).

4. Detection and parameter estimation: Finally, statistical analyses can be developed to determine
whether signals are present in the detector’s data and what sources these signals most likely
come from, based on knowledge of what signals are likely, of the the detector sensitivity, and of
the waveforms associated with various sources. In practice, the optimal statistical analyses may
be difficult or impossible to implement (i.e., because of the large number of templates needed,
as compared to the computing power available, or because the waveforms needed for optimal
searching simply aren’t well-enough known); suboptimal alternatives are being developed to

handle these cases.
This thesis surveys three topics, drawn from each of the first three categories of research:

e Compact inspirals into supermassive black holes (source statistics and detectability; some
source modelling): If data analysis challenges are addressed, each year LISA should poten-
tially detect several inspirals (possibly more) of compact objects (i.e., a neutron star or ~
few stellar-mass black hole) into supermassive (M ~ 10° — 107 M) black holes. The last few
waves from each inspiral tell (e.g., through their frequency) where the compact object made
its last few orbits, so these waves provide a simple probe of strong field gravity. Section 1.1
and Chapter 2 describe whether LISA could be reasonably expected to detect these last few
orbits, when the compact object’s inspiral is confined to the equatorial plane of the capturing

hole.

e Thermoelastic noise in advanced LIGO (detector design): If the current plans for the next-
generation LIGO interferometer (advanced LIGO) are used (and various materials can indeed
be produced at material specifications), thermoelastic effects (i.e., the effects of stochastic tem-
perature fluctuations, and their associated expansions/contractions) will dominate the noise
in the detector. Section 1.2 and Chapters 3 and 4 present a scheme, relying primarily on
modified optics, to reduce the effect of this noise and increase the sensitivity and range (both

by a factor ~ 1.5 in amplitude) of the interferometer.

e Growth of undesirable analytic solutions in numerical simulations of Finstein’s equations (source
simulation): Numerical simulations of Einstein’s equations are necessary to obtain waveforms
for binary black hole inspiral which are accurate enough to be used for signal detection. For

the purposes of numerical simulation, one can devise many formulations of Einstein’s evolution
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equations. As these formulations differ in their treatment of functions which are not solutions
of Einstein’s equations (e.g., which violate the energy and momentum constraints), they pos-
sess different stability properties. Section 1.3 and Chapter 5 present a novel analytic technique

to analyze the stability properties of various formulations of Einstein’s evolution equations.

1.1 Late stages of the inspiral of compact objects into super-

massive black holes

One of the many goals of gravitational-wave astronomy is to test strong-field general relativity in
the neighborhood of a black hole. Specifically, while we expect the weak- and distant-field geometry
of a black hole spacetime to closely correspond to the predictions of general relativity (as weak-field
relativity has been extensively tested [6]), closer to the black hole the stronger fields involved could

possibly unmask any potential differences between general relativity and the true theory of gravity.

1.1.1 Last stable orbits as probe of strong-field gravity

Perhaps the simplest (but not the only®) measure of strong-field gravity in a black-hole spacetime
are the last stable orbits in that spacetime [9]. The last stable orbits are those orbits (i.e., geodesics)
which lie at the boundary between i) bound, stable motion about the black hole and ii) capture by
the hole.*

This surface plays a critical role when a compact object (i.e., a neutron star or stellar-mass black
hole) orbits a supermassive black hole (M ~ 10° — 107 M,). Because gravitational radiation is weak,
over any short period the compact object’s orbit may be well-described by a geodesic. Over longer
periods, gravitational radiation causes slow changes in the conserved constants parameterizing the
geodesic; effectively, the orbit slowly move through a sequence of instantaneously geodesic orbits.?
Eventually, this radition-reaction-induced flow through the space of stable orbits encounters the
surface of last stable orbits; or, in other words, eventually under the action of gravitational radiation
the orbit draws so close to the black hole that the object’s motion can no longer protect it from the
pull of gravity. In short, the particle plunges into the black hole. Therefore, the waves emitted during

the inspiral abruptly cease.® The abrupt termination of the wavetrain can be used to determine the

3Fintan Ryan [7, 8] has performed a suggestive computation, arguing that measurements (by LISA) of gravitational
waves emitted from a compact object (i.e., a neutron star or stellar-mass black hole) orbiting a a supermassive black
hole (M ~ 10%° —107 M) can be used to partially reconstruct some of the multipole moments of the supermassive black
hole’s spacetime geometry. [Because the LISA detector has noise, the multipole moments are not known perfectly,
and higher-order moments are harder to constrain.]

4The space of geodesics inherits a natural topology from the six-dimensional space that parameterizes it (four initial
values for the coordinate location and four values of the coordinate momentum, modulo the conservation-of-rest-mass
constraint, and modulo equality of two geodesics that overlap entirely).

5Sam Finn, Scott Hughes, Dan Kennefick, and others have implemented codes to model these compact-object
inspirals using precisely this technique.

6To take a concrete example, consider a particle in the late stages of inspiral into a Kerr black hole. At some well-
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radius of the last stable orbit, a simple probe of strong-field physics.”

1.1.2 LISA detection of the last stable orbit

Inspirals of compact objects into supermassive black holes are common enough [10, 11], and emit
strong enough waves [12], that they can potentially be seen (both high signal to noise and frequency
greater than ~ few/year) by the planned detector sensitive to their waves (the Laser Interferometer
Space Antenna, or LISA) [13].® Unfortunately (for our purposes), while these inspirals produce a
high S/N, much of the signal is accumulated while the compact object is relatively far from the last
stable orbit [12]. Estimates of the strength of these last few waves and of the overall rate of inspirals
must be combined to determine whether LISA can measure the waves emitted during the last stable

orbit from any inspiral.

1.1.3 Prior and present work: Circular and eccentric equatorial inspirals

Ori and Thorne [14] performed the first computations to estimate, for waves emitted from a compact
object orbiting a supermassive black hole, how effectively LISA could detect the transition from
inspiral to plunge. For simplicity, they limited attention to circular equatorial inspirals. For those
limited inspirals, they found a disappointing result: for plausible sources (10M, orbiting 10°M)
LISA could expect only S/N ~ 1—not even enough for reliable detection, let alone parameter
estimation.

But since Ori and Thorne limited attention only to circular equatorial inspiral, possibilities still
remained that some more generic (yet still physically plausible) combination of orbital parameters
could produce a longer or stronger signal (i.e., larger S/N). For example, eccentric equatorial
inspirals offered the potential for significantly longer transition times (because the transition involved
an unstable equilibrium of the effective one-dimensional radial potential).?

My own work, presented in Chapter 2, generalized the Ori-Thorne approach to include the case
of eccentric equatorial inspiral into a Kerr black hole. As with Ori and Thorne, the analysis was
o

based upon how an effective one-dimensional equation for the radial motion'? [i.e., an equation for

defined Boyer-Lindquist radius (which depends on the inclination and eccentricity of the orbit)—the radial location
of the transition from inspiral to plunge is exceedingly well-determined, with errors that go as an inverse power of the
mass ratio.—the particle ceases to orbit the hole in a stable fashion and plunges rapidly into the hole.

TFor example, for circular equatorial orbits, the wave are predominantly quadrupole, emitted at twice the orbital
frequency of the particle’s orbital motion. Therefore, when the waves terminate, the frequency of the last few waves
seen provides a simple and direct measure of the orbital frequency of the last stable orbit.

8 Unfortunately, the signals emitted by compact-object inspirals are very complicated, making data analysis difficult.
Thus, while potentially LISA could detect many inspirals, practical data analysis issues may significantly reduce the
effectiveness of LISA in detecting those inspirals. Indeed, the LISA design may be modified (i.e., lower noise floor)
specifically to compensate for limitations in our ability to optimally detect these signals with matched filtering.

9As will be discussed in greater detail in Chapter 2, for an eccentric orbit near the transition from inspiral to
plunge, the transition occurs about a turning point of the one-dimensional radial effective potential V(r). The
particle naturally stays a very long time near that turning point during the transition.

10 As noted in standard references [24], the geodesic equation for test-particle motion in a Kerr black hole seperates
into equations for the radial and angular motions. The radial equation depends on the conserved constants E and L.
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r(t)] changed with time as the conserved constants (energy and orbital angular momentum of the

compact object) gradually changed. Using this potential, T ...

1. Dewveloped models for the last stable orbits: Because the effective potential varies slowly under
the action of gravitational radiation, I realized that, for all except nearly circular transitions
from inspiral to plunge, the geodesic orbit is a “zoom-whirl” orbit. In a zoom-whirl orbit, the
particle spends much of its orbit circling (“whirling”) many times around the central black
hole; the object then “zooms” out to its outer turning point and back. In the case of the

transition, the particle comes in, whirls several times, and then plunges rapidly into the hole.

2. Predicted the possible range of durations of the transition: The number of times the particle
“whirls” around the hole is a simple measure of how long the transition lasts. Unfortunately,
the number of whirls a particular particle will perform depends sensitively on initial conditions.
I found a simple formula to express the range (and even probability distribution) of possible
transition durations. For example, for inspiral of a 10M¢ hole into a 10°My Schwarzchild
hole, I found that the transition could last from ~ 5 to (in very unlikely cases) ~ 10 orbital

cycles.

3. Estimated the signal to noise from transition waves seen by LISA: Using a simple model to
estimate how effectively LISA might detect the simple sinusoidal waves emitted during the
transition, I determined how strong a signal LISA could see from a characteritic source. For
a 10Mg source at 1Gpc inspiralling with eccentricity e = 1/3, I expect most inspirals should

have signal-to-noise ratio between 0.9 and 1.

4. FEstimated the rate at which strong signals could be seen: Finally, using simple statistics, 1
tried to estimate the strongest signal LISA could plausibly see. Because I had to use relatively
poorly-known statistics for the capture rate of compact objects into supermassive holes, I could
not make definitive statements. However, even with relatively optimistic assumptions about
the number of compact-object captures [11], I found LISA had only a 50% chance of detecting
one strong signal (i.e., with S/N > 4); for more realistic parameters, LISA would have a 50%

chance of detecting no signal with strength S/N > 2.3.

In short, my conclusions remain the same as Ori and Thorne’s: unless significantly more black hole
inspirals occur than I assumed, LISA stands little chance of even detecting waves emitted during the
transition from inspiral to plunge, let alone of using those transition waves to significantly constrain

the innermost stable orbit and (more generally) strong-field gravity.!!

It is this equation we solve.

1 The waves emitted during the transition are merely the simplest measure of strong-field gravity; they are not the
only measure. For example, Kip Thorne (private communication) suspects that the location of the last stable orbit
can be accurately (to ~ one percent) determined using waves emitted before the transition.
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1.2 Methods to reduce thermoelastic noise in advanced-LIGO

designs

According to current plans for the first LIGO upgrade (i.e., advanced LIGO, or LIGO-II) [15, 16],
the interferometers will substantially increase in sensitivity. If all goes as currently planned (e.g.,
if sapphire test-mass mirrors are used and if the mirror coatings can be created with sufficiently
low mechanical losses), the sensitivity of the interferometer will be limited by thermoelastic noise.
The next largest expected sources of noise, radiation pressure noise and shot noise, will produce a
significantly lower amount of noise. Therefore, the sensitivity of the advanced-LIGO design could

be easily increased by merely reducing thermoelastic noise.

1.2.1 Review of thermoelastic noise

Thermoelastic noise is one of many forms of noise that enters the LIGO output through motions of
the test-mass mirrors. Physically, gravitational waves cause the centers-of-mass of the four LIGO
test-mass mirrors to move; therefore, ideally, the LIGO output should be related to measurements
of the mirror center-of-masses. Practically, however, the LIGO interferometer output is directly
related not to the distances between mirror center-of-masses, but rather between mirror surfaces,
where the effective mirror surface location z.g is determined in terms of the true mirror surface

location xpiy(r) by an average, weighted by the power in the beam:

- [ / d(area) Toiee (F)I(r)| /P ; (1.1)

here I(r) is the beam intensity at radius » and where P = [ Id(area) is the beam power. When the
mirrors move and deform, the effective location x.g changes, in a manner not necessarily correlated
to the center-of-mass mirror location or to any passing gravitational wave. In particular, stochastic
motions of the mirror surfaces produce noise in the LIGO output.

Many different processes cause the mirror surfaces to move and deform randomly, with different
names given to the noise produced by different processes.'? For thermoelastic noise, the relevant
mirror deformations are produced by elastic deformations in the bulk of the mirror, deformations
which in turn arise due to temperature fluctuations in various small regions in the bulk.

To be very explicit, at any given instant thermal fluctuations, via their bulk expansion and the
elastic properties of the mirror, produce many small deformations on the surface of the mirror.

Loosely, these deformations are very small bumps (or dips) in the surface of the mirror, with bump

12For example, seismic noise arises because of assorted motions of the ground near the LIGO site, motions which
cause the LIGO site (and hence the mirror suspensions and eventually the mirrors themselves) to move. Also, brownian
(thermal) noise is the name given to noise associated with oscillations in the low-frequency vibrational eigenmodes of
the mirror. These modes are thermally excited and evolve stochastically.
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width of order the diffusion length of heat inside the mirror over a gravity wave timescale, or
~ 0.3mm.'3 At each instant, the LIGO laser approximates the true surface location via Eq. (1.1);
because bumps and dips are equally likely, most bumps and dips cancel (i.e., they average out).
But because the beam has a finite extent and because therefore Eq. (1.1) involves an average over a
large but finite number of possible bumps and dips, the bumps and dips to not perfectly cancel: the
mirror location estimate g retains some small error, related to whether, at the given instant, more
bumps or more dips happened to lie within the beam cross-section.!'* Therefore, since the bumps
and dips change stochastically, so too does LIGO’s estimate of the mirror surface location. This

random process is the source of thermoelastic noise.

1.2.2 Using a larger beam to lower thermoelastic noise

To reduce thermoelastic noise without significant complications (i.e., cooling the mirrors or changing
the mirror substrate), one must improve the average used in Eq. (1.1) so more bumps and dips tend
to cancel. But the framework of conventional optics (i.e., spherical mirrors) and conventional mirror
shapes (i.e., cylinders) does not allow for substantial reductions in thermoelastic noise. To improve
the average one necessarily must broaden the beam (i.e., increase the width of the gaussian beam). In
order to significantly broaden the beam without losing significant amounts of power off the mirror’s
edges, the cylindrical mirror’s radius must be increased. [For thermoelastic noise, a bigger mirror is
always better than a smaller mirror of the same proportions.] But unfortunately technical problems
associated with the manufacture of large sapphire mirrors in effect limit the radius of a sapphire
cylinder one can buy; also, practical limits of the advanced LIGO suspension limit the mass of
the mirror advanced LIGO can use. Therefore, we cannot substantially improve upon the baseline
advanced LIGO design by simply requiring larger beams and mirrors.

Indeed, as one would expect, the current advanced-LIGO design is already a near-optimal choice,
given the limitations of conventional mirrors and optics. Therefore, as groups at Caltech and Moscow
independently realized, to obtain lower thermoelastic noise without cooling the mirrors, LIGO must

use unconventional mirrors and optics:

1. Mirror reshaping: At Moscow, Sergey Vyatchanin and Sergey Strigin proposed studying mirror
shapes more generic than simple cylinders (e.g., frustum).'®> With a broader class of mirrors to
explore, they could potentially find certain combinations which could both be manufactured

and possess a larger front face size than the baseline cylinder. Because the mirror front face size

13This number should be taken only as a rough guide to the scale of the relevant thermoelastic deformations. In
fact, just as thermal fluctuations occur over all time and length scales, so the associated thermoelastic deformations
exist over a range of scales.

14 As described in greater detail in Chapter 3 and below, the error in the mirror location estimate also depends on
the beam shape. A flatter beam performs a more equitable (and therefore better) average.

15A frustum is the shape resulting when an axisymmetric cone is cut along two planes perpendicular to the cone
axis.
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is larger, the thermoelastically produced bumps and dips should cancel out more completely,

thus lowering thermoelastic noise.

2. Nonstandard optics: At Caltech, Kip Thorne and I realized that a LIGO laser with a flatter
intensity profile should produce a more equitable average in Eq. (1.1) and thus lower thermoe-
lastic noise. Moreover, Kip realized how to explicitly construct a simple form for a flat-topped
beam (mesa beam) and for mirrors (Mezican-hat mirrors) that reflected that beam back into

itself.

Since these two approaches seemed to offer independent methods to reduce thermoelastic noise, these
two collaborations—augmented at Caltech by Erika d’Ambrosio—joined together, to discover how
effective these two ideas would be when combined. But after consulting with GariLynn Billingsley—
who told us that, because of mirror fabrication issues, any large sapphire block we could cut to
make a frustum could just as well be cut to create a larger cylinder— the collaboration focused its
attention primarily on the Caltech mesa beam proposal.

Chapter 3, adapted from a paper composed by Kip Thorne, summarizes the principal results of

our collaboration:

o Configurations with lower thermoelastic noise exist: If mesa beams are used with otherwise un-
changed cylindrical sapphire advanced-LIGO test-mass mirrors, the thermoelastic noise power

will be lower, by a factor 0.34, than the corresponding noise produced with conventional optics.

e Recycling cavities are insensitive to the arm cavity mirror shape: Because the power and signal
recycling cavities are short and have low finesse, just about anything can resonate inside them:
they are highly insensitive to the light used. (Thus, an interferometer using mesa beams can

operate with conventional advanced LIGO recycling mirrors; no redesign is required.)

e Fach arm cavity, and the overall interferometer, is not overly sensitive to small tilts and dis-
placements: Even though the Mexican-hat mirrors needed in a mesa-beam arm cavity are much
flatter in the center than their conventional counterparts, each arm cavity is only marginally
more sensitive to tilt and displacement than their gaussian counterparts (as measured by the
power going out the dark port of an interferometer with one mirror perturbed, and by the

change in the power spectrum of noise as a function of tilt and displacement).!

e Each arm cavity, and the overall interferometer, is not overly sensitive to mirror figure error:

We determined how accurately the Mexican-hat mirrors need to be fabricated.!” For example,

16Since mesa-beam arm cavities are roughly as sensitive to displacement and tilt as the planned advanced-LIGO
arm cavities, roughly the same feedback control servo system planned for advanced-LIGO (albeit with the feedback
control loops adapted for the appropriate mesa-beam-induced weights) can be used to control mirror displacement
and tilt.

I7Since the Mexican-hat mirrors are very flat in the center (and of an unfamiliar shape), they pose a potential
machining challenge: Mexican-hat mirrors might have greater surface figure errors than a corresponding conventional
mirror.
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to keep changes due to mirror figure error in the power spectrum of noise below 1%, the
peak-to-valley variations Az in the mirror shapes must be less than ~ 2.0 nm (for a wideband

interferometer).

1.2.3 Methods behind supporting computations

Where Chapter 3 provides the overall results of the entire collaboration, in particular providing a
broad survey of those results of practical significance to LIGO design, in Chapter 4 I describe the

three techniques I used to obtain many of the results quoted in Chapter 3:1®

o Numerical solution for optical modes in the cavity: I formulated a (standard) integral eigenequa-
tion for the modes of an optical cavity bounded by arbitrarily shaped (but finite and axisym-

metric) mirrors. I then wrote numerical code to find the optical eigenmodes of these cavities.

e Optical perturbation theory: 1 wrote out (and designed code to rapidly evaluate) second-order

optical perturbation theory for the cavity.

e Numerical approach to thermoelastic noise: 1 constructed both semianalytic (series) and fully-
numerical (finite-element) elasticity models to determine the thermoelastic noise associated

with a given beam shape.

As described in detail in Sections 4.6 and 4.7, I combined these tools to obtain almost all the
results presented in Chapter 3 (with the exception of Sections 3.4.8 and 3.4.9). For example, to
describe how the contribution to thermoelastic noise from an individual mirror increased due to
mirror figure errors in another, I (i) used a basis of numerically tabulated eigensolutions to (ii)
construct an explicit form for optical perturbation theory; applying that expansion, I (iii) deduced
how the ground state of the cavity changed due to mirror defects; and then I (iv) evaluated the

thermoelastic noise associated with the deformed beam configuration.

Erika d’Ambrosio also independently corroborated many of our results, using a standard code
(the “FFT code”)'? designed to simulate the full optical properties of the whole LIGO interferometer
[25].

18Tn our collaboration, we tried to provide several independent checks of all key results. While I wrote Chapter
3 and performed all the computations mentioned in it, Strigin and Sergey Vyatchanin are coauthors because they
corroborated many of my results, using similar (but independent) methods.

9The code simulates the optical fields (on a grid) at key locations of the interferometer. The name follows from
the Fourier transforms used to accelerate computations.
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1.3 Stability analysis of various formulations of Einstein’s

evolution equations, based on geometric optics techniques

In order to provide models for waveforms produced by the late stages of comparable-mass binary
black-hole inspiral (e.g., two stellar mass black holes) sufficiently accurate to be used as templates
for LIGO detection waveforms, we must solve Einstein’s equations numerically.

Usually, Einstein’s equations are solved by rewriting them in a “3+1” form (i.e., a space and time
decomposition), with 6 evolution equations and 4 constraint equations (the energy and momentum
constraints) for the spatial metric g, and extrinsic curvature K,p, (both 3 x 3 tensors). [Section 1.4
of this introduction, an appendix, provides a brief review of the ADM 341 decomposition designed
for the nonspecialist.] To find solutions to Einstein’s equations, one selects initial data for K,
and g, which satisfy the constraints; one then uses only six of the equations and constraints to
deduce the behavior of the metric and extrinsic curvature at later times. If the equations are solved
without error, the remaining four equations must hold automatically. [For example, in unconstrained
evolution one uses only the six evolution equations to evolve the system forward in time; the four
constraints hold automatically.]

Unfortunately, numerical simulations of realistic black hole binaries—and even of simple static
black hole spacetimes?°—fail dramatically after only a comparatively short time. Moreover, the
problems presently limiting simulations do not arise merely from numerical problems (e.g., poor
code or lack of resolution) or insufficient computer time. Rather, considerable evidence suggests
that fundamental features of the continuum equations and boundary conditions lead to most observed
problems with simulations. For example, various authors have discovered that certain ways of writing
Einstein’s equations (and various ways of adding boundary conditions to Einstein’s equations) are
ill-posed (e.g., [17, 18]).2! In addition, Kidder, Scheel, and Teukolsky found evidence suggesting
that, when they evolved various well-posed forms of the 341 equations, their simulations were
always limited by the presence of constraint-violating solutions which were excited by small (i.e.,
roundoff-level) errors in their initial data [19, 20].

Since the equations themselves largely determine the stability properties of numerical simulations
that employ them, many different, continuously parameterized formulations of Einstein’s evolution
equations have been introduced [19, 21], in part motivated by the hope that—somewhere among the
many formulations—better-behaved formulations might be found. And somewhere among the vast

array of presently proposed formulations a well-behaved formulation might well exist; the problem is

201f symmetries are exploited, such as O(3) symmetry or even quadrant symmetry for a static Schwarzchild black
hole, then most serious, debugged numerical relativity codes run forever. However, full 3-d simulations run into
problems.

21Technically, ill-posedness means that the growth rate of errors cannot be bounded by a constant, independent
of the solution being simulated. In practice, ill-posedness implies errors associated with shorter scales grow faster.
Ill-posedness causes terrible problems for numerical simulations; typically, simulations run at successively higher
resolutions do not converge (i.e., they have errors which increase with increasing resolution).
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finding it. Even putting aside the difficulties inherent in a blind search through a high-dimensional
parameter space of formulations, we still have trouble rapidly determining how “well-behaved” a

given formulation is.

Of course, we can always simply run full simulations to deduce the stability properties of a
given formulation. Unfortunately, numerical evolutions are slow, often expensive, and, furthermore,
at present require some human oversight to produce believable answers (e.g., through convergence
testing and other sanity checks). In other words, full numerical simulations are far from suitable
for a blind search in a high-dimensional parameter space. Therefore, we would much prefer analytic

insight into the stability properties of various formulations of Einstein’s equations.

1.3.1 Geometric optics approach to stability

Chapter 5 presents a simple quasianalytic technique, based on the growth of analytically tractable
solutions, which can rapidly discover the most ill-behaved well-posed formulations of Einstein’s

equations. Generally speaking, this technique consists of ...

1. Constructing (approxzimate) solutions, based on the geometric-optics approximation, to a broad
class of well-posed partial differential equations which include many formulations of Einstein’s

equations;

2. Measuring the amplification of certain linearized transients—or, more precisely, measuring how
certain geometric-optics solutions of the PDE, when linearized about a known solution, grow

in the future domain of dependence of the initial data slice;?? and finally

3. Determining if the amplification is practically unacceptable, based on a reasonable conjecture
about how a numerical simulation of a nonlinear PDE will behave in the presence of exceedingly

large, generic initial data (i.e., the simulation will rapidly fail).

To provide a clear demonstration of these methods, Chapter 5 also applies this technique to
the KST 2-parameter formulation of Einstein’s equations [19], when those equations are linearized
about two elementary spacetimes:?* (i) flat space in Rindler coordinates and (ii) a Schwarzchild
black hole in Painleve-Gullstrand coordinates. In each case, this method reveals a large region of

KST parameter space permit enormous (i.e., a factor of 1032) magnification of some transients within

a light-crossing time.

22Loosely speaking, the future domain of dependence of a slice is that part of spacetime which depends only on
information supplied on the data slice; that part of spacetime depends in no way on the boundary conditions.
23These spacetimes are well-understood, and are used as model problems for generic numerical simulations.
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1.4 Appendix: Writing Einstein’s equations in a manner suit-

able for numerical solution

In this appendix, we briefly review the ADM 341 decomposition, a technique for decomposing
Einstein’s equations in a manner suitable for numerical time evolution—that is, for slicing up a
4-manifold into timeslices, and for expressing the metric on each timeslice in terms of the metric
on preceding timeslices. This review is intended as a brief summary for the nonspecialist, so that
nonspecialist can better appreciate the significance of Chapter 5. For those seeking a more system-
atic treatment, the literature contains many excellent surveys of 34+1 decomposition of Einstein’s

equations.?*

Notation

Following traditional notation in this field (cf., e.g., [24]), we use a coordinate-based tensor notation
(20,21, 2% %) = (t,z,vy, 2), with Greek indicies (a, 3,...) that run from 0 to 3 and latin indicies

that run from 1 to 3. The time coordinate will always be indexed by zero (i.e., 2° = t).

1.4.1 Basic Einstein’s equations

Einstein’s equations in vacuum may be expressed as
1
Gaﬁ = Raﬁ - gRgaﬁ =0,

where the Ricci tensor R, a is contraction of the Riemann tensor (i.e., Roag = """ Rapugy). In terms
of an explicit family of coordinates, the Riemann tensor can be expressed in terms of first and second
partial derivatives of the metric tensor [cf., e.g., MTW (8.24) and (8.44) [24]]. Thus, because the
Ricci tensor is symmetric and because spacetime has four dimensions, Einstein’s equations are 10
equations involving the metric gnog.

The Riemann tensor (and hence Gog) is linear in the second derivatives.

1.4.2 341 perspective

As a practical matter, we usually solve physical equations by evolving them forward in time—that
is, we subdivide spacetime into slices, and we express fields on future slices in terms of their values
on earlier slices. We can do the same with Einstein’s equations, expressing the value of the metric

Jap on later slices in terms of its values on earlier slices.

24KST Section IT A [19] provides a brief summary of the essential equations. York’s review article [22] is the classic
treatment of the subject. Chapter 10 of Wald’s book [23] provides an excellent survey to 3+1 methods for relativity;
note, however, his sign for the extrinsic curvature differs from the usual numerical relativity convention.
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1.4.2.1 Gauge freedom

Strictly speaking, the 10 fields of the metric gog cannot be fully specified with Einstein’s 10 equations
(Gap = 0) alone: because we have freedom to choose coordinates (i.e., four spatial functions)
completely freely, in reality we have only 6 true degrees of freedom, which we usually express as the
spatial components of the metric g,;. The remaining metric components must be specified by some
additional procedure (i.e., equivalent to choosing coordinates on the 4-manifold); typically, these

remaining components are expressed in terms of the lapse («) and shift vector (5%):
ds? = —a?dt? + gap(da® + podt)(dx® + Bdt) .

Conversely, Einstein’s 10 equations contain only 6 equations which involve second time derivatives
of the metric. Only the components G, for both a and b spatial involve second time derivatives;
the components G,gn” (for n” the normal to the timeslice) involve only first time derivatives. In
other words, if we express these equations in first-order form, defining a quantity K., to be closely
related to first time derivatives of the metric?®, only the 6 equations G, = 0 for a, b spatial involve

first time derivatives of K; the expressions Gagnﬁ involve no time derivatives at all.

1.4.2.2 Constraint and evolution equations

To summarize, we may express Einstein’s equations in first-order form (that is, using as variables

the spatial metric g, and the extrinsic curvature K,p) as two separate sets of equations:

e Constraint equations: The equations Gagnﬁ = 0 do not involve any time derivatives K, and
Jap; they depend only on values on the present timeslice. These four expressions are denoted

the constraint equations.

e Fwvolution equations: The equations G4, = 0 for a and b spatial are linear in first time deriva-
tives of K,p. Combined with the definition of K in terms of the first time derivative of the
spatial metric, which may be thought of as an evolution equation for K,;, these equations
provide a coupled first-order system of evolution equations for K, and g, equivalent to the
original second-order system for g,, alone. These six expressions are therefore denoted the

evolution equations.

One can show that the evolution equations preserve the constraints: if initial data for Ky, and ggp
are chosen to satisfy the constraints, then at each later time, the metric g4, and extrinsic curvature
K, also always satisfy the constraints. Therefore, to solve Einstein’s equations, one need only

choose some gauge convention for the lapse « and shift 8%; choose initial data for g, and K, which

258trictly, Kqp = —Lngap/2 is the Lie derivative of the spatial metric along the normal direction n® to the timeslice.
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satisfies the constraint equations; and then evolve that initial data according to the 6 evolution

equations to find the metric at all later times.
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Chapter 2

Inspiral of compact objects into
black holes

[This chapter, along with the associated appendicies, is precisely the text of R. O’Shaughessy, Phys.
Rev. D 67 044004 (2002).]

Abstract

Ori and Thorne have discussed the duration and observability (with LISA) of the transition from
circular, equatorial inspiral to plunge for stellar-mass objects into supermassive (10° —108M) Kerr
black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital
parameters near-exactly determined, we find that there is no universal length for the transition;
rather, the length of the transition depends sensitively—essentially randomly—on initial conditions.
Still, Ori and Thorne’s zero-eccentricity results are essentially an upper bound on the length of
eccentric transitions involving similar bodies (e.g., a fixed). Hence the implications for observations
are no better: if the massive body is M = 10°M, the captured body has mass m, and the process
occurs at distance d from LISA, then S/N < (m/10Mg)(1Gpe/d) x O(1), with the precise constant
depending on the black hole spin. For low-mass bodies (m < 7Mg) for which the event rate is at least
vaguely understood, we expect little chance (probably [much] less than 10%, depending strongly on
the astrophysical assumptions) of LISA detecting a transition event with S/N > 5 during its run;
however, even a small infusion of higher-mass bodies or a slight improvement in LISA’s noise curve

could potentially produce S/N > 5 transition events during LISA’s lifetime.

2.1 Introduction

The gravitational waves emitted during inspiral and infall of a body (mass m) into a black hole

(mass M) should reveal detailed information about the orbital geometry and the hole’s spacetime
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geometry, thereby providing high-precision tests of general relativity [1]. While the scattering of
waves off background curvature implies that waves emitted at any time during the inspiral provide
some small measure of even the smallest scale variations in the background spacetime geometry,
the waves emitted as a particle passes through a region provide the most sensitive tests of that
region: they reveal what path the particle has followed, and therefore constrain the spacetime to
permit such a path. Therefore, to provide a sensitive probe of the innermost regions of black-hole
spacetimes, we want to study orbits that pass as near as possible to the hole itself. Unfortunately,
this means that the signals that are potentially the most informative about the hole’s innermost
structure are typically the briefest: they arise from the end of the bound portion of the orbit and
from the transition from inspiral to plunge. Since the relevant fraction of the orbit persists for only
a small fraction of the overall detectable inspiral, we have significantly less probability to resolve
waves during this interval than to resolve earlier, longer portions of the inspiral. One therefore wants
to roughly characterize the waves emitted during these intervals (in the case of LISA sources, the
goal of this paper). If this characterization suggests that planned observatories such as LIGO or
LISA could detect them, one should then carry out much more detailed studies of these last few

orbits and the waves they emit.

For inspirals appropriate to the LIGO band (~ 10-10® Hz) and which LIGO can plausibly detect
(n =m/M ~ 0.01 to 1), order-of-magnitude computations (say, by post-Newtonian methods) suggest
the last few waves are detectable [2]. But because in this regime simple approximation techniques
(such as post-Newtonian [2, 3, 4] or test-particle approximations) break down, and because numerical
relativity [5] codes remain incapable of evolving orbits accurately enough to find the waves, the

community does not yet possess a waveform trusted for any purpose beyond detection.

LISA’s band (~ 1073-10~'Hz) will prove more sensitive to extreme mass-ratio infalls—that is, to
stellar-mass black holes, white dwarfs, and neutron stars falling into supermassive [M = O(10°—108),
so 1 ~ 107% to 1078] black holes [6]. With such extreme mass ratios, the computation of detailed
waveforms for purposes beyond mere detection should prove much simpler: to understand evolution,
we need do nothing more than solve the classical radiation-reaction problem, albeit on a curved
spacetime and with a gravitational, rather than electromagnetic, field [7]. While this problem hasn’t
been solved to the accuracy required to construct long-integration-time coherent detection templates,
one can employ adiabatic approximations to address most preliminary investigations. For example,
as Ori and Thorne [8] have discussed in the context of circular inspiral, to understand the n < 1
transition’s duration—measured in experimentally observable gravitational wave cycles—we do not
need a precise knowledge of the reaction force. An averaged reaction force—one we can easily deduce
from the radiation of conserved constants—suffices for the short interval we will coherently employ
it. Applying this reaction force, we can follow the particle through transition and thereby predict

roughly how long this transition will last.
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The goal of this paper is to extend the Ori-Thorne analysis to eccentric Kerr orbits, in an effort
to estimate the prospects of LISA detecting a transition from inspiral to plunge.

This analysis relies on using the radiation of two conserved constants F, L to compute the effect
of radiation on the orbit. But for Kerr inclined orbits there is an additional constant—the Carter
constant—whose evolution has not yet been related to fluxes at infinity. Since we lack the necessary

tools, we leave the Kerr inclined case to a future paper.

2.1.1 Outline of this paper and summary of conclusions

In Sec. 2.2, we will outline the basic physical framework behind our approach. In particular, we
will introduce an explicit procedure to estimate the time duration of a transition. This procedure
takes as input the net (time-averaged) fluxes of energy and angular momentum from the particle’s
instantaneously geodesic orbits, input one obtains from a solution of the Teukolsky equation given
a geodesic orbit as source. This procedure also takes as input some observationally-defined inter-
pretation of what “the transition region” is. As the latter is ambiguous, and depends on exactly
what sorts of templates one uses to find it, the exact length of the transition will depend on the
convention one uses.

Ideally, one should define some unambiguous set of templates and match those against the
simulated emitted waves to both define the transition duration and deduce the resulting signal-
to-noise ratio for a given source. But for brevity and simplicity, as discussed in Sec. 2.3, we will
use a much cruder scheme—based on a purely sinusoidal, quadrupolar model for the waves— to
characterize the expected LISA signal-to-noise ratio from a specific transition crossing. Given S/N
for an event and loosely-understood rates for transition events, we then develop, in Sec. 2.3, a scheme
for estimating the probability that LISA will see an event with S/N greater than some detection
threshold.

With this complete scheme for estimating the signal-to-noise of a characteristic source and de-
termining the probability that LISA, in its currently-planned configuration, will see something, in
Sec. 2.4 and Sec. 2.5 we will apply it to inspirals into Schwarzchild and Kerr holes, respectively. We
find in Sec. 2.5.4 that Ori and Thorne’s zero-eccentricity results are essentially an upper bound on
the length of eccentric transitions involving similar bodies (e.g., a fixed). It follows, in Sec. 2.5.5,
that if we accept current (rough) astrophysical estimates of the masses and numbers of inspiralling
stellar-mass black holes and if we employ only the current LISA design, we expect LISA will not see
any transitions from inspiral to plunge during its lifetime, though it may come close.

Slight changes in LISA could make some transitions detectable. Dramatic improvements would
be required to render LISA sensitive to prograde inspirals of stellar-mass black holes into rapidly-
spinning (a > 0.9) supermassive holes. But assuming such inspirals are a small proportion of all

inspirals, if the LISA noise curve is lowered by a factor of 3 (as is under currently discussion for
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other reasons), or if nature provides black holes more massive than 10M, (say 30Mg) in numbers
approaching current estimates for 10M¢, LISA would have a good chance of seeing one or two

transitions sometime during its lifetime.

2.2 Physical framework underlying the transition length es-

timate

In the (formal) absence of radiation reaction, a particle in equatorial orbit about a Kerr hole moves
along a geodesic. Its radial motion can be determined from a first integral of the geodesic equation
(equivalent to conservation of rest mass; see comments in Appendix A.1) [9]:
dr\?
e +Vir(r),E, L =0, (2.1)
-

(12 —a®(E*=1)) 2(L-aB)’

Vz—(E2—1)—§+ (2.2)

r r3
Here and throughout this paper all quantities are, for simplicity, made dimensionless using the parti-
cle’s mass m and the hole’s mass M: E =(orbital energy)/m, L =(orbital angular momentum)/mM,
r =(orbital boyer-lindquist radius)/M, T = (particle’s proper time)/M, and a = (hole spin angular
momentum)/M?2. Physical solutions may be specified by (E,L) or by any other pair of equivalent
orbital parameters. It is conventional in the inspiral literature to employ as alternatives the pa-
rameters p (a relativistic generalization of semi-latus rectum) and e (a relativistic generalization of
orbital eccentricity) [10, 11]; these parameters are discussed in more detail in Appendix A.2.

We concern ourselves with a region of parameter space for which the maximum Vi, of the
potential is nearly 0 (Fig. 2.1) and which therefore nearly admits a circular orbit at the radius rmax
of the maximum. The geodesic equation Eq. (2.1) implies that particles can spend an extremely
(logarithmically) long time near the maximum; i.e., the particle can “whirl” several times about the
hole in angle without moving significantly in r. It is conventional to call this portion of the orbit
the “whirl.”

In the presence of radiation reaction (henceforth assumed weak), we must add to the geodesic
equation (gauge-dependent) time-varying terms which reflect the (gauge-dependent) influence of
gravitational radiation on the test particle’s path. These gauge-dependent terms oscillate on the same
characteristic timescale as the radiation field. Since the radiation field is predominantly produced
during the whirl part of the orbit, the radiation field predominantly oscillates at harmonics of the
angular frequency 2 of circular orbits at the maximum. By averaging these reaction forces over a

few cycles (e.g., over times ~ 27/2) to obtain their secular effect, we in principle find expressions
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Figure 2.1: The effective potential V (r, E, L) for radial geodesic motion gradually evolves during
inspiral. If the initial eccentricity is nonzero, the maximum of the potential will gradually decrease
until it passes below zero, thus permitting the particle to fall into the hole. By way of illustration,
we plot V(r, E, L) for a = 0 and (solid) (F,L)=(0.948157, 3.53038) and (dashed) (F,L) =(0.947454,
3.52092). Under the action of radiation reaction, if n = 2 x 1073 (an exaggerated mass ratio) the
first system will evolve into the second after one radial period (of the first potential).

for E(7) and L(7). Since the averaging time can still (particularly when the particle whirls several
times about the hole) be shorter than the time the particle spends whirling around the central hole,
we can to a good approximation employ Eq. (2.1) with ¢ime-varying E(7), L(7) to follow the orbit
when the particle is near the maximum of the potential-—and in particular the interval in which the
particle goes from nearly-geodesic bound orbit into rapid plunge into the hole.

In this paper, we do not compute E(7) and L(7) in the thorough, general manner described here.
See Sec. 2.2.4 for a discussion of what information about E(t) and L(t) is required for our estimate

and how that information is obtained.

2.2.1 Why we may still approximate the potential as static when com-

puting the radial orbit

According to Eq. (2.1), a test particle on an approach to a black hole will fall into the hole if the

local maximum of V' is negative, or equivalently if
I = —V(rmax) = —Viax » (2.3)

is positive. Radiation reaction reduces the local maximum faster than this potential V' flattens out.
As the maximum decreases, the particle spends ever-more of its radial cycle near the local maximum.
Eventually, we reach configurations such as those shown in Fig. 2.1, where the particle can slip over
the maximum and fall into the black hole.

While configurations with I ~ 0 appear delicately balanced and therefore highly sensitive to
small changes in (F, L), in fact under weak conditions (conditions made more explicit in Sec. 2.2.3)

one may ignore radiation reaction when computing a radial orbit and treat the potential V' as static.
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Suppose a particle starts its whirl with some values for (E, L) (and therefore I). During the
whirl, even though (E, L) change, the peak of the potential (I) will not change significantly (see
Appendix A.1). Moreover, the location of the peak usually moves slowly relative to the particle. A
condition for when the latter holds is presented in Sec. 2.2.3. Therefore, during the whirl one can

ignore radiation reaction.

After the particle finishes whirling about the hole, it moves outward to its outer radial turning
point and back. During this period, the maximum does change, from I to I’ = I + AI. Unless
the potential is nearly flat, however, the potential away from the neighborhood of the hole will not
change much as (F, L) change. Again, a condition for when the latter holds is presented in Sec.

2.2.3. Therefore, in this interval one can again ignore radiation reaction.

When we attempt to evolve the particle through the next “whirl,” we need the correct value of the
height of the maximum (now I’ = I+ AT) to determine how long the particle whirls around the hole.
Therefore, when we start the cycle anew, we must use a potential with parameters (E+AFE, L+AL),
with AF and AL the change in these constants over the preceeding full radial period. If I’ < 0, the
particle will “bounce” off the maximum and we repeat the cycle above once more. But eventually
we will have I’ > 0, at which point the particle will move across the maximum during its whirl and

will subsequently “plunge” into the hole.

To summarize: so long as the potential is approximately static (cf. Sec. 2.2.3), we expect we
can understand transitions from inspiral to plunge by way of examining the geodesic equation [Eq.

(2.1)] in the neighborhood of the local maximum, using I € [0, AI].

2.2.2 Adiabatic approach to estimating the duration of the transition

from inspiral to plunge

So long as we can treat the potential as static, we can approximate Eq. (2.1) in the neighborhood

of the potential’s maximum at r = ryax by the form

dsr\>  or?
’)/2 <%) + o = I. (2.4)

To

Here 7 = r — rmax; Tmax is the instantaneously static location of the local maximum of V', and also

the point about which we have expanded the potential;
= (V"/2)7 2 (2.5)

is a constant related to the curvature of the potential at the transition location; ¢ is the (dimension-

less) time at infinity; and v is the redshift factor relating proper time 7 to Boyer-lindquist coordinate
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time at r = rpax:

v =dt/dTr=r,,, - (2.6)

Estimating the duration of a given transition: Solutions to Eq. (2.4) give hyperbolic motion; for
example, the solution appropriate to I > 0 (and therefore to a particle crossing over the maximum

and falling into the hole) is

7(t) — Fmax & VITgsinht/(mo7) . (2.7)

Using this solution, we conclude that the transition time going from r — rpax = —07ref tO0 7 — Pmax =
57‘ref is

T.(6rver, ) =~ 2797, sinh™* |:5'I"ref/(7'0\/f):| ~ 29T, In {257}%/(7’&/7)} . (2.8)

Hence given d7yef, a quantity which defines what we mean by “the transition extent,” we can estimate
the length of any transition (characterized by I) at any transition location (characterized by the
explicit values that go into v, 7).

Estimating the distribution of transition durations: There is no unique transition duration.
Rather, we have a distribution of durations, depending on the distribution of I at the start of
the particle’s final whirl. But that distribution is simple: since an initial configuration of particles
will have some distribution of I, since this distribution evolves smoothly with no “knowledge” of
the preferred scale A, and since Al will be smaller than any scale in the distribution function, a
test particle on its final, plunge-triggering whirl has an approximately equal probability to have any
I € [0, AI]. Therefore, the probability density for a test particle to have a given duration between
T, and T, + dT. is dP o« dT.(dI/dT.) x dT, exp[—T./v7o); see Eq. (2.8). Denoting by

T._ = To(8rrer, AI) (2.9)

the minimum possible transition duration, and ignoring the tiny regime of transitions which are

nonadiabatic (see Sec. 2.2.3 below), we conclude that
dP =~ O(T, — T,_)e~Te=Te)/77oqT, /y7, . (2.10)

[where ©(z) =1 when = > 0, 0 otherwise].
We can also characterize distribution of crossing times by a function T.(p) such that only a
fraction p of particles could (assuming the conditions of Sec. 2.2.3 hold) have longer crossing times.

For example, only a fraction 10~ of particles will have duration longer than

_ 25Tref :|
Ty = To(0rer, AT 10~ ~ 297, In | ——oret | 2.11
= TelOrrer )~ [Tomn/zm (211)
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Additional comments:

e Converting to number of cycles: As the particle passes through the transition region, the
particle “whirls” about the black hole a few times. Since its radial location is largely fixed
while it whirls around the hole, so is its angular frequency d¢/dt = Q; therefore, we can re-
express any duration T, in terms of a “number of orbital cycles” the particle “whirls” around
the hole N, defined by

.0

N, ===, 2.12
o (2.12)

Since we concern ourselves with only Kerr equatorial orbits, we have

Qr) = % (2.13)

e Characteristic duration and variation of T, with e: By examining the quadratic approx-
imation to the potential [Eq. (2.4)], or equally well from Eq. (2.8), we see that the transition
duration is always T, ~ (few)x~y7,—that is, the crossing time is around the natural timescale
of the effective potential. Admittedly, since O(AI) = O(n), the quantity labeled (few) could
be—and will be—significant; therefore, the logarithmic correction in Eq. (2.8) is necessary.
But for purposes of understanding the variation of crossing time with orbital parameters,
largely we can regard T, ~ y7,. For example, we expect T, to increase monotonically with
decreasing orbital eccentricity e—that is, as the maximum possible energy barrier decreases
and the potential flattens out—simply because 7, does. [By way of example, see Eq. (2.41),

an expression for 7y appropriate to Schwarzchild.]

e On variation of T, with 7: Similarly, we can loosely characterize the dependence of the
duration distribution—or, for clarity, T._— on 7 by noting i) sinh™*(z) ~ In2z when z is
large and ii) AT « 7, so we can characterize variation with n by H(n,), defined by

T.—(n) In\/n,/n

—1 =~ ) = In(no/n)H (1)

Te—(m0) In ((5Tref/7'o\/m

[where we have used the fact that AT/n is independent of 7 to justify writing the denominator
as 2/H(n,)]. In other words, while the minimum transition duration will grow slightly shorter
with larger mass ratios, the dependence (like the dependence on Al /n) is weak; typically (e.g.,
for Schwarzchild) we find H €~ [0.1,0.4].
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2.2.3 Explicit conditions under which we may continue to approximate

the potential as static

Throughout our analysis, we have approximated the potential as static. As outlined in Sec. 2.2.1,
there are two ways in which this approximation could fail.

First, the potential away from the maximum could change significantly during one whole radial
orbit. Generally the change of V' at any specific location is small. Such changes therefore matter
only if the potential is delicately balanced near zero at every point in which the particle orbits.
More explicitly, we expect problems if the change ATl of the potential’s maximum during one whole
radial orbit is comparable to the difference between the maximum and minimum of V. Therefore,
we conservatively require

Imax = V(Tmax) - V(Tmin) > AI . (214)

An explicit form for I,y is presented in Eq. (A.11). Since the potential gets very flat as e — 0, our

approximations will break down at eccentricities below ey, defined by solutions to
AT = Iyax(€min) - (2.15)

Second, the radial location rp,,x of the maximum could move significantly while the particle is in

its last whirl about the hole. Based on Eq. (2.1), to prevent against this we require I = (dr/dr)? >

(drmax/dT)?, i.e., that
I L = ((@rme )" () drme)* (2.16)
ad,min = dr =\ di . .

The precise procedure that we will use to estimate dryax/dr will be discussed in Sec. 2.2.4. In

summary, so long as I > I,qmin, Or equivalently so long as the crossing duration significantly

shorter than

Tqad,min = Tc((srrefa Iad,min) ) (2]‘7)

gradual motion of the potential will not significantly alter the transition length estimates presented

earlier.

2.2.4 Inputs necessary for estimating the transition length

In the above we have outlined a computational procedure which takes as input dr.ef and knowledge
about radiation reaction (namely, about Al and about dryax/dt) and which gives us in return an
estimate of the length of any specific transition from inspiral to plunge. We now describe the explicit
approximations we shall use to estimate AT and I,4 min from known information about E(7) and

L(7). We also make an explicit choice for d7ef.
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Figure 2.2: The (log of the) change of the potential’s maximum during the last radial orbit
(log1o[AI/n]) versus a. The points show our AI for various cases with parameters (p,e) close to
those consistent with circular orbits (the boundary between stable and unstable orbits); these points
were obtained from numerical solutions of the Teukolsky equation by Glampedakis and Kennefic,
using the procedure described in Sec. 2.2.4.1. For each a, solid circles show values of log,,[AI/n] for
several different values of e; that these points are all consistent with a single fit demonstrates that
AlTis approximately independent of e. The solid curve is the quadratic fit Eq. (2.18). [In cases where
insufficient data was present for extrapolation to the line p = ps(e,a), solid circles also indicate
rough upper and lower limits expected of log,,[AI/n)].]

2.2.4.1 Estimating Al

As described in Sec. 2.2.1, we obtain Al by comparing the potential V' when the conserved con-
stants are (E, L) to the potential V' when they are (E + AE,L + AL), where AE and AL are
the change in the appropriate conserved constants over one radial orbit. We obtain AE and AL
from numerical solutions to the Teukolsky equation. From their code, Glampedakis and Kennefick
have kindly provided time-averaged fluxes (dE/dt) and (dL/dt) [11], which, when combined with an
expression for the radial period T(E, L) as given in any classical relativity text [e.g., Eq. (33.37) of
MTW [9]], yields AE and AL, and thus AI [Egs. (2.2) and (2.3)]. In this fashion, for each black
hole (parametrized by spin parameter a), we can find Al(p,e,a) for any equatorial geodesic with
parameters (p, e).

We need AT only for the particle’s last whirl. Since the maximum is extremely close to zero, the
orbital parameters (p, e, a) nearly satisfy a condition for the existence of (unstable) circular orbits
p = ps(e,a) (see Appendix A.2). This curve also necessarily serves as the boundary between stable
orbits and plunge. In the vicinity of this boundary line, Al is well-approximated by its nonzero
values on the boundary. So for our computation we seek an expression Al(e, a).

In practice, from the values of Al at points near this boundary line, we extrapolate to estimate
AT on the boundary surface itself. Figure 2.2 shows the results of our extrapolation.

One can argue that AI(p,e,a) on the last-stable-orbit boundary p = p(e, a) should largely be

independent of e at moderate eccentricity '. For this reason, Figure 2.2 shows results only as a

ISince the orbit is nearly circular, radiation of conserved constants should be nearly uniform in time, so assume
E = E,+txdE/dt and similarly for L. Take a third-order approximation to the potential. Find an explicit expression
for dI/dt in terms of the solution r(t) and the motion of the maximum rmax. Use an approximate (sinusoidal+constant)
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function of one parameter (a). Numerical data over the range e € [0,0.5] support this conjecture.
Therefore, so long as we avoid e =~ 1, where this conjecture has not yet been tested and likely
fails, we can approximate AI/n by a function independent of e. Fitting a relatively simple function

(exponential form in a, independent of e) to the data in Fig. 2.2 we find
Al 9
log;, r = —0.8972+40.7911a + 0.3047a“ . (2.18)

2.2.4.2 Estimating l.q,min

To evaluate Ind min, We need no more than i) knowledge of the potential (which tells us rmax as a
function of E, L) and ii) knowledge of dE/dt, dL/dt when the particles are in nearly-circular orbit
near the hole.

In principle, we could approximate the latter by the appropriate values for an exactly circular
(unstable) orbit. As a practical matter, comprehensive tabulation of the physically appropriate
instantaneous dE/dt and dL/dt for all transitions of interest—namely, the values appropriate to a
circular unstable orbit—proves time-consuming and technically challenging. Furthermore, because
the crossing time depends only weakly (logarithmically) on I, and because exceedingly few particles
will have I < Ind,min, we only need In4 min to order of magnitude.

Therefore, for practical purposes, when estimating I,q min by way of Eq. (2.16) we will i) perform
the computation for drpax/d7 analytically in terms of dE/dt and dL/dt, ii) simplify under the
assumption dE = QdL, which would be valid if we used the true forms for dE/dt and dL/dt, and
then iii) insert for dL/dt the Peters-Mathews expression (an estimate obtained using linearized,

quadrupolar emission from newtonian orbits) [12]

dL _ 32 1

7
2\3/2 2
e p—7/2(1—e )3/ {1+§e} . (2.19)

2.2.4.3 Choosing 0rpefr

To complete our procedure, we must define “the” transition duration. Unfortunately, because “the”
transition from inspiral to plunge occurs at no definite location, has no well-defined start or finish,
the transition duration remains a matter of convention 2. We shall adopt a convention motivated
by a simple model of gravitational-wave data analysis.

The key feature of waves emitted during the transition is their considerable simplicity: they are

emitted from a nearly-circular-equatorial orbit at ryax, and hence are characterized by the angular

solution for r(¢) in the previous expresion to show that Al over one radial period is approximately independent of
eccentricity.

2The closest “natural” definition would be some fraction, defined some way or another, of the length of the binding
region. But since the binding region goes to zero length, when the potential gets flat, the length of the transition
would go to zero. We therefore would have the unusual result that the transition from circular inspiral to plunge took
no time. This result is inconsistent with the Ori & Thorne value.
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frequency €2 associated with circular orbits there. If we were to try to detect these gravitational
waves—for simplicity, focusing on the dominant frequency component, w = 2Q—we would want to
insure that our model ¢ = 2Q¢ for the gravitational wave phase agrees, within 7, with the true wave
phase.
The true rate of change of orbital phase is

g??L — g®*E
_gttE+gt¢L )

@(r,E7L) =

7 (2.20)

where g% are known Kerr metric functions in Boyer-Lindquist coordinates, and F, L are consistent
with the circular orbit at r = ryax (use standard expressions for E, L appropriate to circular orbits,
such as Egs. (2.12) and (2.13) of Bardeen, Press, and Teukolsky [13]). Demanding that the difference
between the true angular phase and our fiducial reference 22t be no more than 7 over the length of
the transition, we find a constraint on the crossing duration 7%:
2 [do dp
+27/4 = —(r(t)) — = (rmax) | dt. 2.21

wa= [ | Geo) - G (2:21)

When we insert 7(t) — rmax = Asinh [t/7,7] with A = /I, [Eq. (2.7)] into the above, we find an

expression we can invert for 0rps(AT):

d(de/d d(do/d
/4 = ‘7( f;{ t) } VTor) 072 + A? = }7( ZZ{ ) ‘ VToOTret (2.22)

[where the constant A has been neglected in this expression, as it is always much smaller than dr.].

Solving for dr.¢, we obtain
T

Aymo|d(de/dt)/dr|”

We will use this form even when it predicts d7ef = O(1) [in other words, when 07y = O(M) when

STvef = (2.23)

we convert to physical units]. Notice this dryes is independent of mass ratio.

2.3 Estimating the probability for LISA to observe a transi-

tion

We wish to estimate, for each choice of the supermassive hole’s angular momentum and distance
from earth, and for each choice of test particle orbital parameters, the signal-to-noise (S/N) LISA
would obtain from waves emitted during the transition. By combining this S/N with the (poorly-
known) statistics of black-hole inspirals, we can estimate the probability LISA will see a transition

event (e.g., have S/N > 5).
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2.3.1 Estimating LISA’s signal-to-noise for a given transition

Since the transition waves are emitted by a circular orbit of frequency
forb = Qrmax) /27 M, (2.24)

the gravitational waves will be at that frequency and its harmonics. For simplicity, assume that
LISA detects only the strongest waves, the waves emitted from the second harmonic fi, = 2fop.

These waves will last for an interval
At = N./ forn(= MT,) . (2.25)

We can approximate their characteristic rms (source-orientation-averaged) amplitude [following OT

equation (4.7)] as a Peters-Mathews-style quadrapole term (averaged over all orientations) times a

rms __ i% 2/3 /¢
h - \/5 d nQ(Tmax) 50072' (226)

Here d is the distance to the source and 5002 is a relativistic correction factor defined explicitly in

OT equation (2.3).

relativistic correction:

LISA has a spectral density of noise S}, for waves incident on it with optimal propagation direction
and polarization; it has spectral density 55}, for typical directions and polarizations. Therefore, on

average, LISA should accumulate a signal-to-noise from the transition event given by

hTmS

V/B5Sn(fur) /AL

Particularly special sources could have significantly higher S/N. For example, we can pick up

(S/N)y = (2.27)

an increase of /5 if the source is ideally positioned on the sky, and a similar increase if the source
itself is optimally oriented. But overall, the above scheme suffices to estimate the signal-to-noise
LISA would see from the transition between inspiral and plunge for any capture m into M with any

specific source parameters (e.g., e, a) at any distance d.

Explicit expressions needed to compute LISA’s signal-to-noise for a given transition

To evaluate Eq. (2.27), we need in addition to N, and € [which enter into S/N via 6t and fi,]
the LISA noise curve S}, and the relativistic correction factor 5"00,2. The LISA noise curve may be

modeled by [OT equation (4.9)]

Hz ' (2.28)

4 2
Si(f) = (4.6 x 107212 4 (3.5 x 10726)2 (1THZ> + (3.5 x 107192 (é)
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The appropriate relativistic correction factor 5.'00)2 can in principle be extracted from simulations
of waves emitted by particles in unstable circular orbits. As in practice the latter proves time-
consuming to evaluate and tabulate for all possible eccentric orbits and for all a, for simplicity we
will assume that the appropriate relativistic correction factor is i) fixed for all orbits close to a black
hole of angular momentum a and ii) given explicitly by the value appropriate to the innermost stable
circular orbit (ISCO). This latter expression has been tabulated by Ori and Thorne (see the £, 2

column in their Table II); we approximate their results by
logy, (Sw,g)OT ~ —0.0473 +0.2112 — 0.0532% 4 0.0342> 4+ 0.0102* (2.29)

where z = log;,(1 — a).

Dominant terms in the signal-to-noise estimate

As written, the signal-to-noise estimate Eq. (2.27) disguises what kinds of effects predominantly
influence it—for example, whether changes in the strength of radiation emitted prove more important
or less than changes in the duration 7. of the transition. To clarify the dominant contributions to
our estimate, fix some a and compare the signal-to-noise between two transitions (1,2) involving
otherwise arbitrary parameters (e.g., m, M, d, e). Substituting expressions for At [Eq. (2.25)], h™*
[Eq. (2.26)], and fir = 2forb [Eq. (2.24)] into Eq. (2.27); assuming £ 2 is a fixed function of a; and

comparing the resulting S/N at two sets of orbital parameters, we find

(o) mads [N (80)'7, (230

(S/N)l mld_Q Nc,l Q_Q

The first two terms reflect the natural m/d scaling of emitted waves. The third term reflects
the fact that more orbits around the hole during the transition mean more gravitational wave cycles
seen by LISA. The fourth term, which combines the fact that gravitational waves emitted closer to
the hole are stronger and yet last for less time, is to a good approximation constant. Finally, the
last term reflects LISA’s sensitivity. The only term which depends explicitly on M (ignoring the
weak variation in N.), this last term selects black hole masses which have their transition close to
optimally positioned in the LISA band, or M =~ (few) x 10°. So long as the mass is so, this term

varies comparatively little.
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2.3.2 Method for estimating the probability of detecting some transition
during LISA’s operation

Above we gave a procedure for computing the S/N for any given source. But the sources which
produce the strongest signals (inspirals very close by) are rare. Therefore, for any given (S/N), we
have a certain probability that, during the entire operation time 7', of LISA, we detect no inspirals
with S/N > (S/N),.

Since the relevant statistics for supermassive black holes and compact objects are poorly known,
we will not attempt a detailed calculation that allows for all possible factors (e.g., source-orientation
effects). Instead, for a first-pass estimate of the likelihood that LISA will see a transition, we will i)
fix M = 106, ii) approximate LISA’s noise curve as flat (in other words, ignore variations in S/N due
to the emitted radiation being slightly off LISA’s peak sensitivity), iii) ignore any orientation-related
increase in the emissivity of the source or the sensitivity of LISA, iv) approximate N, as independent
of m, v) further replace N, at each a by some characteristic number of cycles (the precise value to
be chosen later, when we understand how N, varies), and vi) assume all black holes have the same
value of a (again, to be chosen later). To be particularly explicit, we assume the S/N varies with

m, d, and a in the following manner:

S m 1Gpc [ S m
— =~ — =K—. 2.31
(N>(m’d’a) 10M, d <N>A d (231)

Here (S/N)a = (S/N)a(10Mg, 1Gpc, a) is a fiducial approximation to the signal-to-noise ratio for

an inspiral with m = 10Mg, d = 1Gpc, and a.

Suppose we have a discrete family of possible compact objects of masses mj with rates (per
galaxy containing a 10°Mg, hole) ry; suppose the number density of galaxies containing a 105Mg,
hole is pgy. Subdividing the universe into cubes of cell size Ar, we find the probability a given
cell has an inspiral of mass my, into a 10°M hole at some time during the lifetime 77, of LISA is
Pr = pgT'kTLATB. Suppose we’re concerned with a threshold S/N level S/N = s,. At such a level
we could see a source of mass my, out to a distance dp = Kmy/s,. If no inspirals have S/N > s,,
then for every cell in range, we have no inspirals of any mass type. Therefore, the probability that

no inspirals occur with S/N < s, is

_AmRue Ty K2 (m?)
3 53

P(no S/N >s,) = H(l —pk)“”li/BAT3 A exp
k

(2.32)

where in the last line we use pp < 1, Rnet = D pg7i (the net event rate per unit volume for all
inspirals), and < m? >= Y pgrkm3 /Ryt (the mean cubed mass of inspiralling bodies, where weights

are by event rate). Note that 4mK® (m?) /(3s3) is the volume of space in which an inspiral involving

1/3

a mass <m3> can be seen with a signal-to-noise ratio > s,. Necessarily, the probability that some
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source has S/N > s, is P(some S/N > s,) =1 — P(no S/N > s,).

We can reorganize this expression to tell us, for a given probability P,,, at what S/N we will

have a probability Py, of having no signals of stronger strength:

S — <m3>1/3 1Gpc 1 S
(N)no (Fro) = 10Mg (%’TRnetTL)_w (1) Poo)] /3 (N)A : (2.33)

2.3.3 Probability of detecting a transition during LISA’s operation

The S/N threshold [Eq. (2.33)] depends very sensitively (through <m3>1/ %) on low-probability high-
mass inspirals. By way of illustration, a family of 0.6 Mg white dwarfs inspiralling with rate R and
a black hole family of mass 30M, and rate 10~*R contribute in similar proportions to <m3>1/3. At
present, the astrophysical community lacks sufficiently understanding of the high-mass tail to be able
to reliably compute <m3>1/ %, Therefore, we will neglect such objects and focus on the slightly better
understood problem of capture of conventional compact objects. Doing so, we will underestimate

the true (S/N)no-

Even disregarding the high-mass holes, event rates for capture [14, 15] remain very loosely de-
termined, ranging from rates of ~ 2 x 107%/yr/galaxy to ~ 10~%/yr/galaxy. We take two cases as

characteristic:

e Freitag (F) Based on astrophysical discussion by Miralda-Escude and Gould [16], Freitag allows
for three species: white dwarfs (mwp = 0.6Mg, rwp ~ 1075/yr); neutron stars (mns =
1.4Mg, rns ~ 2 x 1075 /yr); and black holes (mpuy = 7TMg, reg ~ 107%/yr). In this case,
the net event rate Ryt is dominated by low-mass WD inspirals, but black holes dominate the
events seen by LISA. Using a LISA lifetime 77, = 3 yr and (based on Sigurdsson and Rees’s
estimate that the density of 106M holes at their cores is around the density of spirals, since

spirals have low mass and ellipticals high mass supermassive holes [15]) py ~ 0.003/ Mpc?, we

find

e Sigurdsson and Rees (SR) They consider two types of galaxies—spirals and dwarf ellipticals—
but only the latter leads to significant event rates. In that case, they uses the following masses
and rates for the three species: WD (mwp = 0.6 Ma, riyp ~ 3x1078/y1); NS (mns = 1.4Me,
rns ~ 1077/yr); and BH (mpuy = 5Mg, rgu ~ 1075/yr). (For black holes, these authors
provide only an off-the-cuff estimate; we have taken some liberty in interpreting it, choosing a

mildly optimistic characteristic black hole mass.) Again using T, = 3 yr and p, = 0.003/Mpc?,
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we find

In performing both calculations, we use Sigurdsson and Rees’s estimate that the density of galaxies
with (spirals have low-mass holes; ellipticals and others tend to have more), so p, ~ 0.003/ Mpc?.
Also, we use a LISA lifetime 77, = 3 yr.

In sum, we suspect that on astrophysical grounds we will have a 50% chance of seeing no source

V) (¥)
2 ~25x (=) (2.34)
(N no,guess N A

where the (S/N)a will chosen to be the most reasonable S/N over all orbital parameters (e) and

with S/N roughly greater than

black hole spins (a), given the fiducial parameters d = 1Gpc, m = 10My, and M = 105M,.

2.4 Schwarzchild supermassive black hole (SMBH)

To illustrate this scheme in a case where all terms are algebraically tractable, we discuss the range

of probable transition durations when the capturing hole has no angular momentum (Schwarzchild).

2.4.1 Choosing parameters

Rather than using F, L to characterize the orbit, when the orbit is confined in radius between two
turning points (i.e., when it is bound), it is far simpler to characterize the potential V = —(dr/dr)?
by the location of its 3 roots, r4,7, where r1 are the inner and outer turning points of the bound
orbit and 7 is the innermost root:

(d’">2 = V= 1_—E2(T+_T)(T_T_)(T—F)

dr 73

= E%- (1 - %) (1 - f—j) (2.35)

Since we have only two free parameters, the three roots are not independent; they satisfy a self-
consistency polynomial. For this reason, we introduce p,e—parameters analogous to semi-latus
rectum and eccentricity in classical mechanics. Employing a consistency relation [generally Eq.

(A.9) of Appendix A.2] to set 7, we find

re = R . (2.36)
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p—2—2e)(p—2+ 2e) 12 p?M?

o S
plp—3—e?) ’ p—3—¢

(2.37)

These p, e parameters have the notable advantage that bound orbits (orbits that cannot escape to
infinity) and non-plunging orbits (orbits which avoid the central black hole) are easy to describe:
bound orbits have e € [0, 1], while non-plunging orbits have 0 < r_ —7 = p(p—6—2¢)/[(1+¢)(p—4)],
or

z=p—06—2e>0. (2.38)

As one approaches the transition, the maximum of the potential V' decreases, r_ approaches 7, and
z approaches 0. We can equivalently specify the location r of a transition by only one of p or e,
with the other determined by z = 0. I will typically use e. For example, a transition of eccentricity

e occurs at radius r =r_ =7 =2(3+¢)/(1 +e).

The parameters p, e used here are identical to those used the Teukolsky-equation-based inspiral
literature [10, 11]. For example, the above discussion mirrors that in Cutler, Kennefick, and Poisson
[10] between their equations (2.4) and (2.8), with the change of notation r1 — r_, ro — r4 and

r3g —T.

2.4.2 Dependence of transition parameters on eccentricity

We know the potential [Eq. (2.35)]; hence we find that when r_ = 7 (=the transition radius) we

have
T+ —Tr_

_ (2.39)

V"'=—-(1-E?*?2
(1- B2

and therefore, substituting r4 and E from Eqgs. (2.36), (2.37) into 7, = (V" /2)~'/? we find

2(9 — e?)

o = (3 —_—. 2.40

"= B+ 0y Ao (2.40)

Similarly, substituting » = r_ into v = —g** E gives us the characteristic time required to make the
transition:

2(3+e)?
. Ch ) ol (2.41)
e(l+e)3

Since do/dt = g**L/(—g"E) = L/r*(1 — 2/r)E, we find

dd¢ _ _20max—3) (2.42)
dr dt T=Tmax Tl?n/a?x (Trnax - 2) , .

when F, L are consistent with a circular orbit at 7 = ryax. Using the above and Eq. (2.23), we
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conclude that for moderate eccentricity the natural “transition extent” dref is
(2.43)

This scale naturally varies with the scale of the potential (namely, 07pef o< 1/v/V"") as e — 0.
Further straightforward computations using the potential [Eq. (2.35)] reveal how ry,,x varies due

to loss of F and L via wave emission when the particle is nearly in a circular orbit (so dE ~ QdL):

drmax _ d_L2 (Trnax - 3)3/2
dt dt” rmax—6

We therefore can express Iaq min in terms of (tabulated) known radiation-reaction angular momentum
fluxes (dL/dt):

~(dL\* (3—¢)* (3 +e)
Iad,min - <E) m . (244)

To obtain a rough approximation of Ind min, rather than use the true dL/dt appropriate to circular
orbits, we approximate dL/dt by the Peters-Mathews expression [Eq. (2.19)].

Our scheme ceases to apply when the eccentricity is below ey defined by AT = Iyax(emin) [Eq.
(2.15)]. In the special case of a = 0, where ps; = 6 + 2e, the definition of I,ax [Eq. (A.11)] reduces

to
32 e3

Irnax = ﬁm . (245)

2.4.3 Transition duration

With all the necessary elements assembled, we can apply our program [Egs. (2.9), (2.11), (2.17)] to
estimate the distribution in number of orbital cycles N, = T.Q/27 we expect when a particle spirals
into a nonspinning black hole at some fixed, known eccentricity e.

The results for n = 1075 are shown in Fig. 2.3. When our adiabatic approximation applies, we
find that to a good approximation (within around 1 cycle) most transitions should have duration
close to the shortest transition duration N¢aq = T¢,aa€2/27 € [3,5]. In particular, within the region
e > e,q where our adiabatic approximation applies, almost all transitions will last for less than the
Ori-Thorne (OT) circular duration; most will last for substiantially less. At low eccentricity, most
transitions seem to approach a result somewhat different than the OT circular estimate. Since OT
use a different convention for §r 3 and since significant changes could still occur in the fundamentally
nonadiabatic region between e = 0 and e = e,q, we do not find the discrepancy troubling.

In the above, we show results for only n = 1075 (say, for m = 10My and M = 10°). As the

3Since all results depend (mildly) on the convention for transition extent, and since the Ori-Thorne prediction
implicitly employs a characteristic length 67y ~ (few) X R, o 72/% with R, given by Ori-Thorne Eq. (3.20), while
the “standard” predictions [Eqgs. (2.9),(2.11)] use Eq. (2.23), with d7,.ef o< n°, we cannot guarantee that the results
should be precisely compatible.
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Figure 2.3: Plots of various predictions for the expected number of angular cycles (N.) versus
eccentricity (e) for a transition from inspiral to plunge with n = 1075. The top solid curve is
the number of cycles when T, = T¢ a4 [Eq. (2.17)], an estimate of the longest possible (adiabatic)
transition duration. The bottom solid curve is the number of cycles when T, = T, _ [Eq. (2.9)]. The
6 curves in between are the number of cycles when T, = T, 1,...T¢ 6 [Eq. (2.11)]; as only a fraction
~ 1071,...,107C of inspirals can have durations above these curves (respectively), they illustrate
how few particles have durations significantly differing from 7. _. The dot indicates the Ori-Thorne
(OT) prediction for circular equatorial inspiral. The dashed curve is a characteristic-scale-based
prediction based on T, = 4~7,, used to illustrate the significance of the “logarithmic correction.”
The plot starts at e = e q ~ 0.0215, at which point Al = Iax.

variation of the duration with n is weak—we find H(n, = 107°) € [0.1,0.4]) [Eq. (2.14)]—even
substantially different test particle masses (e.g., m € [0.1,30]Mg with M = 10°) lead to results of

the form above, scaled up or down by a factor < 2.

2.4.4 Prospects for LISA detecting a given transition

As discussed in Sec. 2.3, we can estimate the signal-to-noise ratio for a given transition using
Eq. (2.27). For the standard case of a 10M, particle falling into a M = 10%M,, application of
that formula reveals no higher S/N than that predicted by Ori and Thorne; moreover, barring
astrophysically unlikely masses, all transitions have too low a S/N to be detected. [See Fig. 2.7
below for details.] For example, if an inspiral of mass m into a 10°Mg hole occurs at the fiducial

distance 1 Gpc with e = 1/3, we have a 90% chance that S/N € [0.91,1.01](m/10Mg).

The results for S/N can be well-approximated by way of Eq. (2.30) and a comparison with
Ori and Thorne’s results for circular inspiral. (See Appendix A.3 for a summary of OT results).
Specifically, using the fiducial case of 10M on 10°Mg, at 1 Gpe, for which we have (S/N)or = 1.6
and N.or = 10.5, we find the general S/N for captures by a M = 105M¢, hole to be about

N, m  1Gpc
(S/N) -~ L6105 > Toa, d
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2.5 Kerr SM BH

The Kerr case follows similarly, save with an additional parameter (a).

2.5.1 Parameterizing orbits, potential

As before, it is simplest to characterize the potential by its three roots r4 = p/(1Fe), 7

<%) =-V= %(mr—r) (r—r_)(r—7). (2.46)

And as before we can define r+ = p/(1 Fe); as before, we find a self-consistency relation P(p, e, a,T)
[Eq. (A.9)], permitting us to solve for 7(p, e,a). As before, we can characterize the proximity to the
last-stable surface by way of the separation between the two innermost roots (r_ — 7). Finally, as
before, for each fixed black hole (a¢ =const) and each particle exactly on the transition line from
orbit to plunge, the particle can have e € [0,1); its p will be constrained by the analogue of the
Schwarzchild p = 6 + 2e: the self-consistency relation Eq. (A.10), which implicitly defines ps(e, a)
such that 7(ps,e,a) = ps/(1 + e).

2.5.2 Dependence of transition parameters on e,p

Since the potential has the same structure as before, the same general expression Eq. (2.39) applies,
with F now determined by expressions in Appendix A.2. By explicitly differentiating the potential
[Eq. (2.2)], inserting the definitions r+ = p/(1 F €), and demanding the inner turning point is a

maximum (so 7 =r_ = p/(1 +e)), we find
1+e)3

V"'=-8 (7 2.47
B-ow (247

and therefore know 7, = (V//2)~1/2 in terms of p, e at the transition.

The v factor follows from inserting » = p/(1 + ¢) into the usual expression for dt/dr:
vy = dar _ —g"E + ¢*L | (2.48)
dr

where g'* and ¢’ are known Kerr metric coefficients. Here, E and L are evaluated using the
expressions (A.7) and (A.8) discussed in Appendix A.2, with 7 = ps/(1 + e).

We obtain the transition extent drper with the usual Eq. (2.23). This requires v [Eq. (2.48),
above], 7, (also above), and d(d¢/dt)/dr [Eq. (2.20)].

Finally, as in the Schwarzchild case we estimate Inq min [EqQ. (2.16)] and thus T¢ a4 [Eq. (2.17)] via

1) expressing drmyax/dr in terms of dL/dt using explicit expressions for ryax(F, L) and dE = QdL,
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Figure 2.4: These two plots illustrate the shortest possible number of cycles N. = QT._ /27 [Eq.
(2.9)] a transition could last, versus eccentricity (e) and black hole angular momentum (a) for the
fiducial source (10M, into 105Mg). In both plots, contours are cut off, and bounding curves appear
(shown heavy solid), when Al = Iqmin and when a = 0.998.

giving
drmax  dL 2r(2a/r + r% — 3r)3/2
dt  dt (r3/2 +a)(r2 — 6r + 8a\/r — 3a?) ’

T=Tmax

(2.49)

(where we have used the orbital parameters E,L consistent with a circular orbit at r = ryax [13]);
then ii) using the Peters-Mathews expressions for dL/dt [Eq. (2.19)] to construct an approximate
expression for drpax/dt, which we then iii) insert in Eq. (2.16) to estimate the boundary between

adiabatic and nonadiabatic transitions.

2.5.3 Transition duration

Combining these together, we can deduce the range of plausible transition durations for a test
particle of eccentricity e falling into a hole of angular momentum a, measured as number of orbital
cycles Ne(e,a) = T.2/2n. Plots of the number of cycles appropriate to T, = T.— [Eq. (2.9)], to
T. =T, a4 [Eq. (2.17)], and to T, = T, 1 [Eq. (2.11)] appear in Figs. 2.4, 2.5, and 2.6, respectively.
These plots all assume a fiducial source (10M on 106My,). In these plots, we truncate the range
of e, a allowed because, i) we need e larger than e,q [Eq. (2.15)]; and ii) realistic astrophysical black
holes have a < 0.998 [17]. Also, in these plots, we do not extend to e &~ 1 because we do not have
data for I in this region, nor do we expect our estimate of Al [Fig. 2.2] to be reliable in this extreme.
At each a, we see behavior largely similar to the Schwarzchild results discussed in Sec. 2.4: i)

almost all transitions take less time than the Ori-Thorne result for e = 0; ii) as we increase the
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could last N, = QT .q/27 [Eq. (2.17)], versus eccentricity (e) and black hole angular momentum
(a) for the fiducial source (10Mg into 10°Mg). Transitions of such long duration are extremely
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Figure 2.7: This plot illustrates S/N [Eq. (2.27)], given a fiducial source (10M into 106Mg, at
1Gpc) given that the black hole has angular momentum a, the transition occurs at eccentricity e,
and given the transition takes the shortest possible time (or T, = T, _) [Eq. (2.9)]. As argued in the
text, this time (and thus this S/N) will be to a good approximation characteristic of all transitions
with those interaction parameters.

eccentricity, the transition duration decreases; and iii) since T¢ 1 &~ T,,— (compare Figs. 2.4 and 2.6),

most transitions last close to the shortest-possible transition duration.

2.5.4 Prospects for LISA detecting a given transition

As in the Schwarzchild case, since eccentric usually transitions last for fewer angular cycles than
their circular analogues, they are less detectable as well. Thus, in the fiducial case of captures of a
10Mg hole by a 10°M¢, hole, the data from Ori-Thorne Table II provides an upper bound on the
S/N seen by LISA (shown in Fig. 2.7). Since this bound is small, we have little chance of seeing
any given transition.

One should notice, however, that the distribution of S/N with orbital parameters is very flat
and not much below 1. Therefore, only a modest improvement in LISA’s noise spectrum Sy, could

render most (measured by volume of parameter space) of the transitions detectable.

2.5.5 On probability of detection

Because LISA at present has so poor prospects for detecting the “fiducial” source (m = 10Mg at
1Gpc), it has a poor chance of seeing any source at all. Even assuming all LISA sources had orbital
parameters chosen to give the longest-plausible transition length (the OT circular inspiral duration,
which has S/N4 < 1.6), by the estimate of Eq. (2.34) we expect we have a ~50% chance of no signal

with S/N 2 4 being present in the datastream. With more realistic orbital parameters, we would
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expect a ~50% chance of no signal 2 2.3. In other words, LISA has a good to excellent chance of
not seeing any transitions from inspiral to plunge in its lifetime.
A modest improvement in LISA’s noise curve, however, would make a few circular (and to a

lesser degree eccentric) transitions from inspiral to plunge detectable.

2.6 Summary

This paper has introduced a framework (depending on observational or other conventions) that
extends the Ori-Thorne prediction for the transition duration from inspiral to plunge to include
eccentric orbits. While the framework and applications contain many oversimplifications—most
notably, the fit to Al(e,a) and and the lack of a physically meaningful convention for dr,.s—the
essential physics should be captured by Sec. 2.2.

This paper then applies that framework to probable LISA sources to suggest that, because an
eccentric transition is generally only slightly briefer than a circular one, LISA should have only
slightly worse prospects to resolve the transition from inspiral to plunge for eccentric orbits than for
circular ones. While the prospects for detecting circular (and hence eccentric) transitions with LISA
are not good, they are not necessarily bad: modest changes to the LISA noise floor could render a
signal marginally detectable. Therefore, more detailed investigations could be of use.

Potentially, we could use other portions of orbits that pass close to the hole—for example, the
previous few “bounces” off the inner portion of the radial potential—as probes of the strong-field
metric. Analyzed separately (using the same AI framework) each of these “bounces” should provide
in itself at best of order the same S/N as the transition. If the source has already been detected
with good confidence, we should be able to coherently integrate over many such bounces and build
up excellent S/N.

Finally, we could hope that eccentric inclined orbits might, by some happenstance of parameters,
admit a regime of significantly longer transition times. The prospect seems unlikely, but the author

may address it in a future paper.
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Chapter 3

Reducing thermoelastic noise in
advanced LIGO by flattening the
light beams

[This chapter is closely adapted from a paper in preparation by E. d’Ambrosio, R. O’Shaughnessy,
S. Strigin, K. Thorne, and S. Vyatchanin, Reducing thermoelastic noise in gravitational-wave inter-
ferometers by flattening the light beams. After LSC internal review, it will be submitted to Phys.
Rev. D. Kip Thorne wrote the text of this paper.]

Abstract

In the baseline design for advanced LIGO interferometers, the most serious noise source is tiny,
dynamically fluctuating bumps and valleys on the faces of the arm-cavity mirrors, caused by random
flow of heat in the mirrors’ sapphire substrates: so-called thermoelastic noise. We propose replacing
the interferometers’ baseline arm-cavity light beams, which have Gaussian-shaped intensity profiles
that do not average very well over the dynamical bumps and valleys, by beams with mesa-shaped
profiles that are flat in their central ~ 7 cm of radius, and that then fall toward zero as quickly as
is allowed by diffraction in LIGO’s 4 km arms; see Fig. 3.2. The mesa beams average the bumps
and valleys much more effectively than the Gaussian beams. As a result, if the mirrors’ substrate
radii and thicknesses are held fixed at 15.7 cm and 13 cm, and the beam radii are adjusted so
diffraction losses per bounce are about 10 ppm, replacing Gaussian beams by mesa beams reduces
the thermoelastic noise power by about a factor 3. If other thermal noises are kept negligible,
this reduction will permit advanced LIGO to beat the Standard Quantum Limit (circumvent the
Heisenberg Uncertainty Principle for 40 kg mirrors) by about a factor 1.5 over a bandwidth about
equal to frequency; optical (unified quantum) noise will become the dominant noise source; and the
event rate for inspiraling neutron star binaries will increase by about a factor 2.5. The desired mesa

beams can be produced from input, Gaussian-profile laser light, by changing the shapes of the arm
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cavities’ mirror faces from their baseline spherical shapes (with radii of curvature of order 60 km) to
“Megzican-Hat” (MH; sombrero-like) shapes that have a shallow bump in the center but are otherwise
much flatter in the central 10 cm than the spherical mirrors, and then flare upward strongly in the
outer 6 cm, like a sombrero; Fig. 3.3. In this paper we describe mesa beams and MH mirrors
mathematically and we report the results of extensive modeling calculations, which show that the
mesa-beam interferometers are not substantially more sensitive than the baseline Gaussian-beam
interferometers to errors in the mirror figures, positions, and orientations. This has motivated the
LIGO Scientific Community (LSC) to adopt MH mirrors and mesa beams as an option for advanced
LIGO, to be studied further. The details of our modeling calculations are presented in companion

papers.

3.1 Introduction and summary

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to support successive
generations of interferometric gravitational-wave detectors. LIGO’s first interferometers are now in
operation [9], and the (negative) results of its first gravitational-wave searches have recently been
submitted for publication [10]. When they reach their design sensitivity (presumably next year),
LIGO’s initial interferometers, together with their international partners, will reach out into the
universe to distances where it is plausible, but not probable to detect gravitational waves [11]. After
a planned upgrade to advanced LIGO interferometers (planned to begin in 2007), wave detection
will be quite probable [11]. A baseline design for the advanced LIGO interferometers has recently
been adopted [20], along with several options, not currently in the baseline, that merit further study
and might be incorporated at a future date. This paper describes one of these options, which has
been much discussed within the LIGO Scientific Community (LSC) but has not previously been
presented in the published literature: the reshaping of the arm-cavity light beams so as to reduce

thermoelastic noise.

3.1.1 The context: noise in advanced LIGO interferometers

For advanced LIGO’s baseline design [20], the dominant noise sources in the most interesting fre-
quency range (above about 20 Hz) are thermoelastic noise and optical noise (also called “unified
quantum noise”). Other thermal noises (most especially coating thermal noise) might, in the end,
be important; but in this paper we shall assume them negligible and shall focus on the thermoelastic
noise and optical noise.

In Fig. 3.1 we show the thermoelastic noise [5, 18], the optical noise [6, 7, 8], their sum (labeled
total noise), and the standard quantum limit (SQL) for the advanced LIGO baseline design with

sapphire mirrors [20]. This figure suggests (as is well known [6]) that, if the thermoelastic noise can
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Figure 3.1: Noise curves for advanced LIGO.

be reduced significantly (and if other thermal noises can be kept negligible), then the advanced LIGO
interferometers will be able to beat the SQL, and the interferometers’ ranges (detectable distances)
for astrophysical sources will be increased significantly.

In this paper we propose a method (“flattening the interferometers’ light beams”) for reducing
the thermoelastic noise, we evaluate the resulting increased range for neutron-star / neutron-star
(NS/NS) binaries, and we explore practical issues related to our proposal. We have previously
discussed our proposal, the increased NS/NS range, and the practical issues in presentations at

meetings of the LIGO Scientific Collaboration [14, 2, 1, 4] and in an internal LIGO document [3].

3.1.2 The Physical Nature of Thermoelastic Noise; Motivation for Re-

shaping Beams

Our proposal is motivated by the physical nature of thermoelastic noise. This noise is created by the
stochastic flow of heat (random motions of thermal phonons) within each test mass (mirror), which
produces stochastically fluctuating hot spots and cold spots inside the test mass. The test-mass
material (sapphire for the baseline design of advanced LIGO) expands in the hot spots and contracts
in the cold spots, creating fluctuating bumps and valleys on the test-mass (mirror) faces. These face
bumps influence the light beam’s measurement of the test masses’ positions: the interferometer’s
output phase shift is proportional to the difference of the test masses’ average positions — with
the average being the position of a mirrored test-mass face, weighted by the light’s energy flux (its
intensity distribution).

If the intensity distribution is “flat” (nearly constant) in most regions of high intensity, then the

adjacent valleys and bumps (having been created by heat flow from one to the other) will average
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out, giving low net thermoelastic noise. If, instead, the energy flux is sharply changing in most
regions of high flux, then the adjacent valleys and bumps will not average well and the thermoelastic
noise will be high. Also, the larger is the light beam, the better will be the averaging and thus the
lower will be the noise.

These considerations suggest that large-radius, flat-topped beams with steep edges (e.g. the thick
curve in Fig. 3.2 below) will lead to much smaller thermoelastic noise than small-radius, centrally
peaked beams with gradually sloping sides (e.g., the thin, Gaussian curve in Fig. 3.2 below).

For Gaussian beams, the influence of beam radius r, has been quantified by Braginsky, Gorodet-
sky and Vyatchanin [5] (who first pointed out the importance of thermoelastic noise for sapphire
test masses): the thermoelastic noise power scales as S;'™ o 1/73 (aside from small corrections due
to the test masses’ finite sizes [18]). This has motivated the baseline design for advanced LIGO in-
terferometers with sapphire test masses: the beam radius r, is chosen as large as possible, given the
demand for small diffraction losses, £y < 10 ppm per bounce in the interferometer’s arm cavities.'

The baseline design uses light beams with a Gaussian distribution of energy flux, since such
beams are eigenfunctions of cavities with spherical mirrors, and spherical mirrors are a standard,
well-developed technology. However, the Gaussian energy flux is far from flat: most of the energy
is in regions where the flux is rapidly varying with radius (thin curve in Fig. 3.2 below), and corre-
spondingly the thermoelastic noise is substantially larger than it would be with “flat-topped” beams
(thick curve in Fig. 3.2). This has motivated a (previously unpublished) proposal by O’Shaughnessy
and Thorne [14] to replace the Gaussian beams with flat-topped beams, while keeping the beam

radius as large as is compatible with diffraction losses Lo < 10 ppm.

3.1.3 Summary of analysis and results

In Sec. 3.2 we construct an example of a flat-topped light beam — a flat-topped TEMO0O mode of
light that will resonate in an interferometer’s arm cavity, if the test-mass mirror faces are shaped
appropriately. Because the intensity distribution of our flat-topped beam resembles a mesa in the
southwest American desert, we call it a mesa beam? (a name suggested to us by Phil Willems). To
produce this mesa beam as an eigenmode of a symmetric arm cavity one must give the mirror faces
a shape, with a central bump and an upturned brim, that resembles a Mexican hat (or sombrero)
(Fig. 3.3), so we we call the mirrors Mezican-hat (MH) mirrors.

We have not optimized our mesa beams’ intensity distribution so as to bring the thermoelastic
noise to the lowest value possible, but in Sec. 3.2 we argue that our chosen mesa beams are likely to

be close to optimal.

IThe 10 ppm is dictated by the following considerations: For the baseline design there is 125 W of input power to
the interferometer and 830 kW of circulating power in each arm cavity. Ten ppm of diffraction loss per bounce results
in a diffraction power loss in the arm cavities of 4 X 10ppm x 830kW = 33 W, which is 25 per cent of the 125 W of
input light, a reasonable value.

2Tt is also called a flat-topped beam and a mezican-hat or MH beam in the internal LIGO literature (14, 2, 1, 4, 3]
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Figure 3.2 below shows the intensity distribution for our proposed mesa beam (thick curve) and
compares it with the intensity distribution of the baseline Gaussian beam (thin curve), which has
the same diffraction losses. Figure 3.3 below compares the mirror shapes that support these mesa
and Gaussian beams as eigenmodes of a 4 km LIGO arm. In their inner 10 centimeters of radius,
the MH mirrors that support mesa beams are much flatter than the spherical mirrors that support
Gaussian beams, but in their outer 6 centimeters (the upturned brim region), the MH mirrors are
far more curved.

As we shall see, this greater curvature at large radii compensates considerably for the flatter
shape at small radii, enabling a mesa-beam interferometer to exhibit only modestly worse parasitic-
mode behavior than a Gaussian-beam interferometer, and only modestly worse sensitivity to mirror
tilts, displacements, and figure errors.

Three of us (O’Shaughnessy, Strigin and Vyatchanin; OSV [19]) have computed the substantial
reductions in thermoelastic noise that can be achieved in advanced LIGO by replacing the baseline
spherical mirrors and their Gaussian beams with MH mirrors and their mesa beams. The method

of computation and the results are described in Sec. 3.3. Our principal conclusion is this:

1. By switching from the baseline (BL) spherical mirrors to MH mirrors with the same cylindrical
test-mass diameters and thicknesses and the same 10-ppm-per-bounce diffraction losses as the
BL, one can reduce the power spectral density of thermoelastic noise by a factor 0.34 and
increase the event rate for compact-binary inspirals by a factor 2.6. Larger improvements

could be achieved by using conical test masses with enlarged inner faces.

One might worry that the greater flatness of the MH mirrors, in the inner 10 cm where most
of the light resides, will make mesa-beam interferometers much more sensitive to errors in the
orientations, positions, and figures of the mirrors. We have explored this issue in great depth, with
the conclusion that mesa-beam interferometers are not substantially more sensitive to mirror errors
than the BL Gaussian-beam interferometers. Details of our explorations are given in companion
papers by d’Ambrosio [12] and by O’Shaughnessy, Strigin and Vyatchanin [19], and our methods
and conclusions are presented and discussed in Sec. 3.4 of this paper. Our quantitative conclusions,

in brief, are these:

2. Among those parasitic optical modes of a perfect arm cavity, that are not strongly damped by
diffraction losses, the parasite closest in frequency to the desired TEMOO mode is separated
from it by 0.099 of the free spectral range in the BL. Gaussian-beam case, and by 0.0404 of the
free spectral range in the mesa-beam case; see Sec. 3.4.3. This factor ~ 2 smaller mode spacing

leads to a modestly greater sensitivity of the mesa-beam interferometer to mirror errors.

3. The interferometer’s arm cavities are about four times more sensitive to mirror tilt when

MH mirrors are used than for the BL spherical mirrors. When all four cavity mirrors are
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tilted through angles # about uncorrelated axes, the fractions of the carrier power driven
into (dipolar) parasitic modes inside the arm cavities, and driven out the dark port, are about
0.001(6/0.01 prad)? and 0.002(6/0.01 urad)?, respectively for MH mirrors; and 0.001(8/0.035 prad)?
and 0.002(0/0.035 urad)? for BL mirrors; Sec. 3.4.4. This factor four greater sensitivity is not
a serious issue, since it turns out that the strictest controls on mirror tilt come from the signal
recycling cavity (and, if a heterodyne output were to be used, from the power recycling cavity),

and not from the arm cavities; see below.

. The sensitivity of the interferometer’s arm cavities to transverse displacements of the end
test-mass mirrors (ETMs) is nearly the same for MH mirrors as for the BL spherical mirrors.
For uncorrelated displacements of the two ETMs through distances s, the fractions of the
carrier power driven into (dipolar) parasitic modes inside the arm cavities, and driven out the
interferometer’s dark port, are about 100(s/1 mm)? ppm and 200(s/1 mm)? ppm, respectively,
for MH mirrors; and 100(s/1.3 mm)? ppm and 200(s/1.3 mm)? ppm for BL spherical mirrors.
For details, see Sec. 3.4.5.

. For MH mirror figure errors with peak-to-valley height variations Az in the innermost 10 cm
by radius: after the control system has optimized the mirror tilts, the fractions of the carrier
power driven into parasitic modes inside the arm cavities, and driven out the dark port, are
about 0.0008(Az/6 nm)? and 0.0015(Az/6 nm)?, respectively; Sec. 3.4.6. We do not know
the corresponding constraints for BL spherical mirrors, but the measured mirror figure errors
in the initial LIGO interferometers are of order 1 or 2 nm, which suggests that the MH arm

cavities’ required figure errors may be achievable. This is currently being explored.

. The most serious constraints on mirror tilt and on mirror figure accuracy come not from
the arm cavities but rather from the signal recycling (SR) cavity. The SR cavity and power
recycling (PR) cavity operate approximately in the geometric optics regime and thus are nearly
insensitive to whether one uses MH or spherical mirrors; Sec. 3.4.8. As a result, by switching
from spherical to MH mirrors, one pays only a small penalty, in terms of mirror tilt constraints

and figure-error constraints.

. More specifically, the most severe constraints on tilt and figure error arise from the driving of
signal power into parasitic modes when the signal light passes through the SR cavity. To keep
the resulting increase in shot noise below one per cent in the standard wideband advanced
LIGO interferometers, it is necessary to constrain the magnitude 6 of the vectorial tilts of
the input test-mass mirrors (ITM’s) and signal recycling mirror (SRM) to 655 < 0.024 urad
(for the baseline spherical mirrors) and 638 < 0.016 prad (for MH mirrors). For the third

advanced interferometer, narrowbanded at f ~ 500 Hz or ~ 1000 Hz, the constraint must be
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tighter: OR5 < 0.011 prad, and OME < 0.007 prad. These are approximately the same as
the constraints on LIGO-I tilt arising from the PR cavity, in the absence of an output mode
cleaner. If there were no output mode cleaner in advanced LIGO and heterodyne readout
were used in place of the baseline homodyne readout, then the constraint on tilts in the PR
cavity (due to mode mixing for the RF sideband light used in the readout) would be about the
same as that for wideband interferometers in the SR cavity. For the BL homodyne readout,
no such PR constraint arises. The increase in shot noise scales as 62; and we estimate that
our constraints are inaccurate by a factor < 2 due to ignoring correlations in the overlaps of

certain parasitic modes, and for the narrowbanded interferometers, due to inaccuracy of the

geometric optics approximation in the SR cavity. For details of all these issues, see Sec. 3.4.9.

8. We characterize the analogous constraints on mirror figure error by the peak-to-valley fluc-
tuations in the mirror height in the central regions of the mirrors (regions enclosing 95 per
cent of the light power; radius ~ 10 cm for MH mirrors and ~ 8 cm for baseline spherical
mirrors), with the fluctuations averaged over ~ 3 cm (an averaging produced by breakdown
of geometric optics in the SR cavity). Our estimated constraints for one per cent increase of
shot noise are Azwp < 2.0 nm for wideband advanced LIGO interferometers and Azng < 1.0
nm for narrowband, independently of whether the mirrors are MH or BL spherical—though
the region over which the constraints must be applied is different, 10 cm radius for MH and
8 cm for BL. The increase in shot noise scales as Az2, and our estimated constraints might
be inaccurate by as much as a factor ~ 3 due to exploring only one representative shape for
the figure errors, due to overlaps of certain parasitic modes, and for the narrowbanded inter-
ferometer due to inaccuracy of the geometric optics approximation in the SR cavity. These
are approximately the same constraints as arise (in our calculations) from the PR cavity in
LIGO-I, in the absence of an output mode cleaner. If there were no output mode cleaner in
advanced LIGO and heterodyne readout were used, then the constraint on tilts in the PR
cavity (due to mode mixing for the RF sideband light used in the readout) would be about the
same as that for wideband interferometers in the SR cavity. For details of these conclusions,

see Sec. 3.4.10.

Among all the constraints on mirror errors that arise from our modeling, the most serious are
the last ones: SR-cavity-induced constraints on mirror figure errors to avoid a one per cent increase
in shot noise. These constraints are nearly independent of whether the mirrors are spherical or
MH. These constraints would be relaxed if the SR cavity were made less degenerate. This could be
achieved by shaping the fronts of the ITMs as lenses that bring the light (Gaussian or mesa) to a
focus somewhere near the SR mirror — and also near the PR mirror.

Because MH mirrors and their mesa beams produce such a great (factor 3) reduction of ther-
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moelastic noise power, and they increase the sensitivity to mirror errors by only modest amounts,
they have been adopted as options for advanced LIGO, and they may be of value for LIGO’s future
international-partner interferometers. In Sec. 3.5 we describe some of the future research that is

needed in order to firm up our understanding of the pros and cons of MH mirrors and mesa beams.

3.1.4 Notation

We here summarize some of the notation used in the remainder of this paper. The numerical values
are for advanced LIGO interferometers, including sapphire test-mass substrates, with the sapphire

idealized as isotropic (its properties averaged over directions).

b: Diffraction lengthscale b = \/AL/27 = 2.603 cm for
light in the L = 4 km LIGO beam tubes; equal to a symmetric Gaussian beam’s
minimum possible radius at the end mirrors

(the radius at which the power flux has dropped by 1/e of its central value).
Cy: Specific heat of test-mass substrate per unit mass at constant volume [7.9 x 10 cm? s~ 2 K™ !]
D: Mesa beam radius; Eq. (3.3)
E: Young’s modulus of test-mass substrate [4 x 102 gs™2 cm™?]
ETM: End test mass of an arm cavity
H: Thickness of test mass
f: Gravitational-wave frequency at which noise is evaluated
F: Finesse of an optical cavity
I: Noise integral for a test mass, Eq. (3.15)
ITM: Input test mass of an arm cavity
k: Wave number, equal to 2w/
kp: Boltzmann’s constant [1.38 x 1076 g cms 2 K]
L: Interferometer arm length [4 x 105 c¢m]
L: Diffraction loss in a single reflection off a mirror
M: Mass of test mass [4 x 10* g]

r Radius in transverse plane
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7ot Radius of Gaussian light beam on test-mass face (radius at which the intensity has

dropped by a factor 1/e from its central value) [r, = 4.23 cm = 1.63b for baseline design]
P,.: Fraction of interferometer’s light power in mode n
R,: The physical radius of a test mass [15.7 cm]

R: The radius of the mirror coated onto a test mass [equal to R, or R, — 8 mm]|; also, the power

reflectivity of a mirror
s: Transverse displacement of an arm cavity’s ETM

Sh(f): Spectral density of noise (thermoelastic or other) for detecting a gravitational wave h with

optimal direction and polarization
T: Temperature of test-mass substrate [300 K]

u: Electric field of some light mode or superposition of modes (renormalized to unit norm, [ |u|?dArea=
1); usually evaluated at the transverse plane tangent to an I'TM mirror face, with the light

propagating away from the I'TM. Subscripts identify the mode.
U: Unnormalized electric field of some light mode.
v: Same as w: Unit-normed electric field of some light mode or superposition of modes.

Az: The peak-to-valley mirror deformation (mirror figure error) in the

central region

ay: Substrate’s coefficient of linear thermal expansion

5.0 x 1076 K1

aq,2: Amplitude of excitation of an arm cavity’s parasitic mode u; 2 by a tilt of the cavity’s ETM,;

Eq. (3.21)
B1: Amplitude of excitation of the parasitic mode v; by mirror figure errors; Eq. (3.34)
Yo Overlap of arm cavity’s fundamental mode ug with Gaussian mode ug that drives it; Eq. (3.20)
d¢ Fraction of the light power of some perturbed field uj that is in parasitic modes; Eq. (3.47)
k: Thermal conductivity of test-mass substrate [33 W m~1 K~1]

A: Wavelength of laser light [1.064 um]; also, in Sec. 3.4.9.3, a function appearing in the analysis of

the signal recycling cavity.

p: Density of test-mass substrate [4 g cm™3]; also, amplitude reflectivity of signal recycling mirror
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o: Poisson ratio of test-mass substrate [0.23]
f: angle of mirror tilt
O: expansion (fractional volume change) of substrate

w = 27 f: Angular frequency, corresponding to the frequency

f at which the noise 5}, is evaluated

C1,2: Amplitude of excitation of an arm cavity’s parasitic mode by transverse displacement of the

ETM; Eq. (3.29)

3.2 Mexican-mat mirrors and the mesa modes they support

In this paper we study a specific variant of a mesa light beam and the MH mirrors that support
it. We believe this variant to be near optimal for reduction of thermoelastic noise, but we have not

carried out the (rather complex) analysis required to prove optimality.

3.2.1 Mesa fields

The flat-topped (mesa-shaped) eigenmode of an interferometer arm cavity, which we seek to con-
struct, must have an intensity distribution that is nearly flat across most of the light beam, and that
then falls as rapidly as possible (constrained by diffraction effects) at the beam’s edges. Moreover, if
(as in baseline advanced LIGO) the cavity’s input test mass (ITM) and end test mass (ETM) have
the same physical dimensions, then to minimize the thermoelastic noise at fixed net diffraction loss,
the beam should be symmetric about the arm cavity’s mid plane, so its beam radii D are the same
on the two mirrors. Otherwise [since SEE o 1/D3 approximately, and diffraction losses increase
exponentially rapidly with increasing D; Eq. (B.8)], the mirror with the reduced beam radius and
smaller diffraction loss will have its thermoelastic noise power increased, while that with the enlarged
beam radius and larger diffraction loss will have its noise power decreased more modestly, leading
to a net noise increase.

The fastest possible falloff, for light in an optical cavity of length L, is that on the edge of the
minimal Gaussian beam — the Gaussian beam whose radius increases by a factor v/2 in going from
the beam waist (at the cavity’s center plane) to the cavity’s end mirrors. This minimal Gaussian,
at the mirror planes, has the following (unnormalized) form
exp [M} , (3.1)

Unin Gauss(") =
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where

b= /L/k = /AL/2% = 2.603 cm , (3.2)

with L = 4 km the cavity length, k = 27/\ the wave number, and A = 1.064um the wavelength of
the light.

The minimal Gaussian’s beam radius, r, = b = 2.603 cm, is somewhat smaller than the advanced
LIGO baseline beam radius r, g1, = 4.23. Correspondingly, the baseline Gaussian falls off much more
gradually with radius than diffraction effects require, and produces much larger thermoelastic noise

than necessary.

To produce a near-optimal flat-topped eigenmode, with near-minimal thermoelastic noise, we
superpose minimal-Gaussian fields, with a field density that is constant out to a radius r = D and

then stops abruptly. More specifically, our chosen unnormalized eigenmode has the following form:

/C exp |:_[(x_$0)2+(y_yo)2][l+i] d:vodyo ’

202
(3.3)

where r = /22 4+ y? and the integration is over a circle Cp of radius D: /a2 +y2 < D.

By carrying out the y, integral in Cartesian coordinates, with y = 0 and x = r, we obtain the

following expression for U(D,r), which we have used in much of our numerical work:

00 = w7 [ e [ ]

/D2 —xg\/—(l + 1)

b 2

xerfl

Here erfi(z) = erf(iz)/i is the imaginary error function.

By converting to circular polar coordinates and performing the angular integral, we obtain the

following simpler expression for our unnormalized eigenmode

UuD,r) = 27r/0Dexp {_(T2+Tz)(1+i)}

2b2
r7o(1 4 1)

XI() |: b2

] rodrs . (3.5)

Here Ij is the modified Bessel function of order zero. Modes with other weightings of the minimal-
radius Gaussians can be obtained by inserting a weighting function f(r,) into the integrands of Egs.

(3.3) and (3.5).

In Appendix B.1 we give some approximate formulae for U (D, r) valid at large radii. These are
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useful for quick, clipping-approximation computations of diffraction losses.
The squared norm of U(D, r) (the area integral of its squared modulus) is given by the following
approximate formula, which is accurate to within a fraction of a per cent for 3.0 < D/b < 6.0 (the

regime of interest to us):
N?(D) = / |U(D,r)|*2rrdr = 4.66 — 50.58D + 62.10D? . (3.6)
0

We denote by u the normalized field on the mirror faces, and to distinguish it from a Gaussian field,

we sometimes will use a subscript “mesa”:

Umesa(D, ) = u(D,r) = (3.7)

3.2.2 Gaussian fields

The advanced LIGO baseline design uses arm cavities with spherical mirrors, which have Gaussian

modes whose field at the mirror plane is (cf. [21])

ug(r,ro) = ! e —ﬁ 1—2'—b2 (3.8)
G syto) — \/W Xp 2’["(2) rg—’_ Tg_b‘l . .

Here r, is the beam radius (at which the energy flux falls to 1/e of its central value). From the

phase of this field one can read off the radius of curvature of the mirrors:

m-r ()G () -] @
3.2.3 Diffraction losses

In the baseline design of an advanced LIGO interferometer [20], the test masses are cylinders whose
faces are coated with dielectric mirrors out to a radius R that is 0.8cm less than the cylinders’
physical radii

R=R,—-08cm. (3.10)

We shall explore MH mirrors that are coated in this same manner, R = R, — 0.8 cm and also MH
mirrors that are coated all the way out to the test-mass edges, R = R,. The diffraction losses in

each reflection of a cavity mode off a mirror are given, approximately, by the clipping approximation

Leip :/ lu(r)|*2mrdr . (3.11)

Here u(r) is the normalized field [umesa(D,r) for a mesa mode and ug(r,,r) for a Gaussian mode

with infinite mirrors, R = o0].
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In actuality, the mirrors’ edges at 7 = R modify the field thereby causing the true diffraction losses
to differ from this clipping formula. The true diffraction losses have been computed by OSV [19] via
a numerical solution of the eigenequation for the cavity modes, and independently by d’Ambrosio

[12] using an FFT code to propagate light in the cavity. The results are

1

Loy

0.85Lc1ip for mesa modes ,

Loy

1

2.5Lcip for Gaussian modes , (3.12)

in the parameter regime of interest — though the numerical coefficients 0.85 and 2.5 can oscillate
substantially as the beam radii and mirror radii are changed. When we need high-accuracy diffraction
losses (e.g. in portions of Sec. 3.4), we compute them with care using the cavity eigenequation [19])

or FFT code [12]).

3.2.4 Mirrors and normalized flux for mesa and gaussian modes

The baseline design for advanced LIGO interferometers has mirror radii R = 14.9 cm and Gaussian
beam-spot radii r, = 1.63b = 4.23 cm, corresponding to a diffraction loss of £y = 10 ppm and a

mirror radius of curvature R, = 54 km. The normalized energy flux |ug(r,,r)|? for this baseline
Gaussian field is shown in Fig. 3.2, and the shape of the mirror (segment of a sphere with radius 54

km) is shown in Fig. 3.3.

A cavity made from MH mirrors with the baseline radius R = 14.9 cm and the baseline diffraction
losses Lo = 10 ppm has a mesa beam radius D = 3.43b = 8.92 ¢cm [computed from Egs. (3.12) and
(3.11)]. The normalized energy flux |umesa(D,r)|? for this mesa field is shown in Fig. 3.2. Notice
how flat the top of this intensity profile is, and how much like a mesa the profile is shaped, and

notice the contrast with the Gaussian profile.

The surfaces of the MH mirrors coincide with the mesa field’s surfaces of constant phase; i.e.,

their height 0z as a function of radius r is given by
kéz = Arglumesa(D,1)] , (3.13)

where k = 27/ is the light’s wave number. This MH mirror shape is shown in Fig. 3.3. Notice the
shallow bump in the middle and the flaring outer edges. This bump and flare resemble a Mexican

hat (sombrero) and give the MH mirror its name.
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Figure 3.2: The power distributions of: (i) the Gaussian mode for the baseline mirrors with coated
mirror radius R = 15.7 cm and beam radius r, = 1.73b = 4.50 cm (thin curve), which has diffraction
loss per bounce £y = 10 ppm; and (ii) the mesa mode with D = 3.73b = 9.71 cm (thick curve)
which, for this same coated mirror radius R = 15.7 cm, has the same diffraction loss per bounce
Lo =10 ppm.
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Figure 3.3: The shape of the spherical mirrors (thin curve) and MH mirrors (thick curve) that
support the arm-cavity Gaussian mode (thin curve) and mesa mode (thick curve) of Fig. 3.2. The
height is measured in units of the wavelength of the light, A = 1.064um.
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3.3 Thermoelastic noise and neutron-star binary range for

mesa-beam interferometers

3.3.1 Thermoelastic noise
3.3.1.1 Quantifying the thermoelastic noise: the noise integral and the NS/NS range

Building on the seminal work of Braginsky, Gorodetsky and Vyatchanin [5], Liu and Thorne [18] have
used Levin’s [17] direct method to derive the following formula for an interferometers’ thermoelastic

noise in terms of a noise integral I4:

2
Sn(f) = 16xks (OV(;“_Z—’”;Z)M) I; (3.14)

where I is the average, over the four test masses, of the thermoelastic noise integral,

4
_ 1 1 -
J=2= I Is= — 2 dvol : 1
42 A, 1a F2 /VA(V@) dvolume ; (3.15)

cf. Egs. (3), (4) and (13) of [18]. Here the notation is as spelled out in Sec. 3.1.4, and we use numerical
values (shown in Sec. 3.1.4) that assume the test-mass substrate is sapphire, idealized as an isotropic
material. In Eq. (3.15), O is the expansion (fractional volume change) inside the test-mass substrate,
produced by a static force with magnitude F, and with profile identical to that of the light beam’s
intensity distribution over the test-mass face (e.g., Fig. 3.2), and the integral is over the volume V4
of test-mass A. Note that the dimensions of I and thence of I are length/force? = s*g=2cm™1!.
Equation (3.14) shows that the frequency dependence of the thermoelastic noise is independent
of the mirror shape and test-mass shape; it always has the same slope as the SQL (except in testbed
systems with tiny mirrors and light beams [18], which are irrelevant in this paper). As a result, the
thermoelastic noise produced by an advanced LIGO interferometer whose mirrors have some chosen

shapes, divided by the thermoelastic noise of the baseline advanced LIGO interferometer, is equal

to the ratio of the two interferometers’ noise integrals

[Sh(F)/SES(F)lre = I/Int (3.16)

This motivates our use of I/Ipy, as one measure of a candidate interferometer’s thermoelastic noise.

We shall also use a second measure: The LIGO network’s range for detection of NS/NS binaries,
with network amplitude signal-to-noise ratio 8. In computing this range, we assume that (i) the three
advanced LIGO interferometers (all with L = 4 km) are all being operated with signal recycling
mirrors optimized for NS/NS inspiral (the operation mode tentatively planned for the first year

of advanced LIGO observations), (ii) they all incorporate identical sapphire mirrors with the same
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Figure 3.4: The LIGO network NS/NS range as a function of the thermoelastic noise power, in units
of the baseline thermoelastic noise, (S,/SPY)rg. For each thermoelastic noise level, the advanced
LIGO interferometer’s optical parameters (homodyne readout phase and signal-recycling mirror) are
optimized to produce the greatest possible NS/NS range. The optimization has been performed for
us by A. Buonanno and Y. Chen (private communication), assuming that the only significant noise
sources are thermoelastic noise and optical (unified quantum) noise.

shapes and beam sizes, (iii) all thermal noises are negligible except thermoelastic noise, and (iv)
the remaining interferometer parameters have their baseline advanced LIGO values [20] (e.g., the
circulating power in each arm is 830 kW). This three-interferometer network range is larger by a
factor v/3 = 1.732 than the single-4km-interferometer NS/NS range that is often used by the LIGO
community and that is encoded into the “BENCH” LIGO software [15]. For the baseline advanced
LIGO design, the single-4km-interferometer NS/NS range is 200 Mpc, and the network NS/NS range
(which we use) is 346 Mpc.

Since the only noise source we change, in going from one candidate interferometer design to
another, is the thermoelastic noise, the NS/NS range must be some function of [Sy(f)/SEY(f)]tE =
I/ Tse.

Buonanno and Chen (private communication) have performed the optimization of the advanced
LIGO optical-noise parameters (the homodyne detection phase and the position and reflectivity
of the signal recycling mirror), as a function of the thermoelastic-noise level, to produce for us
a curve of optimized NS/NS signal-to-noise ratio S/N as a function of (S;,/SPY)rg. From that
S/N[(Sh/SPY)1E], we have computed the corresponding network range, (346 Mpc) x (S/N)(S/N)gi.

as a function of thermoelastic noise. We show that range in Fig. 3.4.

A third measure of a candidate interferometer’s performance is the ratio of its network event
rate for NS/NS binaries to that of the baseline advanced LIGO network. Since the NS/NS binaries

are very extragalactic, their event rate scales as the range cubed,

Rate/Ratey; = (Range/346 Mpc)? . (3.17)
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In a companion paper [19], OSV evaluate the thermoelastic noise integral I4 numerically for a
variety of test-mass shapes and beam radii. Here we summarize the most important conclusions of
those computations and their implications for our three performance parameters: [Sy,(f)/SEY(f)]E

[Eq. (3.16)], NS/NS range [Fig. 3.4], and NS/NS event rate [Eq. (3.17)].

3.3.1.2 Baseline test masses with spherical mirrors and Gaussian beams

The baseline design of an advanced LIGO interferometer entails four identical test masses: sapphire
cylinders with physical radii R, = 15.7 cm, coated-mirror radii R = R, — 0.8 cm, thickness H = 13
cm, density p = 4 g cm™3 and mass M = 40 kg; and the baseline light beam at the test-mass face is
Gaussian with beam radius r, = 4.23 cm = 1.63b so the diffraction loss per bounce is £y = 10 ppm.

For this baseline beam and test mass, OSV [19] find for the value of the noise integral
I, = 2.57 x 107 %s%g2em ™! . (3.18)

We advocate extending the mirror coating out to the test-mass edge so R = R, = 15.7 cm, and
increasing the Gaussian beam radius correspondingly, to r, = 4.49cm = 4.49b, so the diffraction
losses are still 10 ppm. With this beam expansion, OSV find that the thermoelastic noise is reduced
to Sy /SBL = I/Ipr, = 0.856 [19], from which we deduce (via Fig. 3.4) that the range for NS/NS
binaries is increased from 346 Mpc to 364 Mpc, and the NS/NS event rate is increased by a factor
(364/346)3 = 1.16; see Table 3.1.

3.3.1.3 Cylindrical test masses with MH mirrors and mesa beams

OSV have computed the thermoelastic noise integral I for cylindrical test masses with mesa beams.
The test masses’ volumes were held fixed at the baseline value of 10 cm? (masses fixed at 40 kg),
while their physical radii 2, and thicknesses H were varied. For each choice of R, two coated-mirror
radii were chosen, R = R, —8 mm (the baseline choice) and R = R,, (our proposed expansion of the
coating). In all cases the mesa beam radius D was that value for which the diffraction losses are 10
ppm per bounce inside the cavity.

To within the accuracy of their computations, ~ 0.5 per cent, OSV [19] found that the ther-
moelastic noise integral I is minimized when the test-mass dimensions have their baseline values,
R =15.7 cm, H = 13 cm. In other words, the optimal test-mass shape is the same for mesa beams
as for Gaussian beams. The optimized (10 ppm diffraction loss) radii D for the mesa beams, and
the values of our three measures of interferometer performance are shown in Table 3.1, in two cases:
for mirrors coated out to R = R, — 8 mm (the baseline choice), and coated out to R = R,,.

As is shown in the table, switching from Gaussian beams to mesa beams reduces the thermoelastic

noise Sy, oc I by about a factor 3; it increases the NS/NS range from 346 Mpc to 465 Mpc if R = R,—8
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Table 3.1: Optimized light-beam configurations, their thermoelastic noise compared to the baseline,
their neutron-star binary range, and their event rate for NS/NS inspiral divided by the baseline rate.
All test masses are assumed to be cylinders with the baseline advanced LIGO dimensions: physical
radius R, = 15.7 cm and thickness H = 13.0 cm. The beam radii r, and D are chosen so that the
diffraction loss per bounce in the arm cavities is 10 ppm.

Coated Radius  Beam Shape ( S%hL)TE NS/NS RIZ“E‘J;L

and Radius Range
R=R,—8mm BL: Gaussian

ro = 4.23cm 1.000 346 Mpc 1.00
R=R,—8mm mesa

D/b =343 0.364 465 Mpc 2.42
R=R, Gaussian

ro = 4.49cm 0.856 364 Mpc 1.16
R=R, mesa,

D/b=3.73 0.290 497 Mpc 2.97

mm, and 497 Mpc if R = R,; and it increases the NS/NS event rate by a factor (465/346) = 2.42
if R= R, —8 mm, and to (497/364)3 = 2.55 if R = R,,.

3.3.1.4 Conical test masses

By switching from cylindrical test masses to frustums of cones, with the same test-mass volume, one
could further reduce, substantially, the thermoelastic noise and increase the NS/NS range and rate.
For detailed explorations of this, see OSV [19].

We do not discuss this possibility in the present paper because the current technology for growing
sapphire boules, from which to cut the advanced LIGO test masses, places a tight limit on the test-
mass physical radius R,. It cannot be much larger than the baseline R, = 15.7 cm; and for that
maximum radius, and test-mass volumes of order the baseline 10* cm, the optimal test-mass shape
is cylindrical, with the baseline dimensions [19].

When it becomes possible, in the future, to grow larger sapphire boules, it might be worth

considering test masses with frustum-of-cone shapes [19].

3.4 Sensitivity to mirror tilts, displacements and figure er-

rors

The MH mirror figure (Fig. 3.3) is somewhat flatter than the baseline spherical mirror in its central
10 cm of radius where 95 per cent of the light power resides, but much more curved in its outer
~ 6 cm. One might worry that the central flatness will cause a mesa-beam interferometer to be
unacceptably sensitive to mirror-tilt-induced, mirror-displacement-induced and figure-error-induced

mixing of parasitic modes into the light beam’s fundamental, mesa mode. We have investigated this
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mode mixing and find that it is a modest problem, not a severe one. We describe our investigations
and conclusions in this section. They have been described previously in our internal LIGO report

[3], and a short summary of results was given in Sec. 3.1.3 above.

3.4.1 Foundations for investigation
3.4.1.1 Our tools of analysis

Our analysis of mode mixing and its consequences is based on three independent sets of tools. The
first two sets are designed for studying the effects of mirror errors on the interferometer’s high-finesse
arm cavities. The third set is for analyzing the highly degenerate power-recycling and signal-recycling
cavities.

Our first tool set (developed by Richard O’Shaughnessy with confirming calculations by Sergey
Strigin and Sergey Vyatchanin, and described in detail in OSV [19]) is an integral eigenequation for
the modes of an arm cavity. In the limit of infinite mirror radii (i.e., neglecting diffraction losses), the
cavity’s eigenmodes are orthonormal when integrated over the transverse plane; this is true for MH
mirrors, just as for spherical mirrors. OSV have used their integral eigenequation to compute the
modes with untilted, undisplaced and undeformed mirrors and with both infinite and finite radii.
O’Shaughnessy has then tilted, displaced and deformed the ETM of one arm cavity and applied
first- and second-order perturbation theory to its eigenequation to determine the tilt-induced and
deformation-induced mode-mixing, the resulting 