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Abstract

In this thesis we introduce an algorithm, based on the boundary integral equation method,

for the numerical evaluation of singular solutions of the Laplace equation in three dimen-

sional space, with singularities induced by a conical point on an otherwise smooth boundary

surface. This is a model version of a fundamental problem in science and engineering: accu-

rate evaluation of solutions of Partial Differential Equations in domains whose boundaries

contain geometric singularities. For simplicity we assume a small region near the conical

point coincides with a straight cone of given cross section; otherwise the boundary surface

is not restricted in any way. Our numerical results demonstrate excellent convergence as

discretizations are refined, even at the singular point where the solutions tend to infinity.
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Chapter 1

Introduction

The problem of evaluating numerical solutions of Partial Differential Equations (PDE) un-

der conditions that give rise to solution singularities (such as reduced differentiability and

even blow up of the solutions themselves) is one of fundamental importance in science and

engineering. Yet, a wide variety of such problems have not been adequately addressed from

a computational perspective. In this thesis we consider a central and prototypical problem of

this type, namely, solution of Laplace’s equation in domains containing conical singularities.

Many other problems in domains containing conical singularities, including problems of wave

propagation and scattering, electromagnetics, diffraction, solid mechanics and acoustics, can

be tackled by similar techniques; further, many of the ideas developed in this text can be

applied to other types of geometric singularities, including edge and polyhedral singularities.

As mentioned above, however, our presentation will be restricted to the fundamental exam-

ple provided by the Laplace equation in domains which, containing conical singularities, are

otherwise smooth.

In Section 1.1 we mention a class of engineering and scientific problems closely related

to the PDE conical-singularity problem considered in this thesis. In Section 1.2 we present

some background concerning singular integral equation formulations, and in Section 1.3 we

then outline our new approach for the solution of conical-singularity problems—presenting

illustrative examples that demonstrate, in simple contexts, the character and main elements

of our methodology. A detailed presentation of this methodology, including a variety of

numerical results, is then presented in Chapters 2 through 7; an outline of the contents of

these chapters is presented in Section 1.4.
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1.1 Background

As indicated above, a wide variety of areas of science and engineering give rise to problems

containing geometric singularities of the type considered in this thesis. In fracture mechanics,

for example, treatments are often needed for interior and surface flaws that are often found in

solid structures. Analysis leading to predictions of whether these flaws may grow and become

liable to produce catastrophic failure of the structure, are, clearly, of great importance.

Mathematically, the stress field σ, a quantity that derives from solution of a system of PDEs

akin to Laplace’s equation, becomes infinite at the crack-tips—thus giving rise to singular

problems closely related to the main model problem considered in this thesis [18, 21, 25, 35].

In aerodynamics, in turn, the problem of evaluating the flow around an airfoil is one of

great interest. In an inviscid fluid, the speed of air around the trailing edge of a moving

airfoil can be infinite. Of course, in a real fluid, air does not move infinitely fast, but strong

viscous forces are caused near the trailing edge: vortexes are accumulated and carried along

with the moving airfoil, until a stagnation point moves to the trailing edge, and the Kutta

condition is satisfied. In any case, generally, solution of the Laplace equation in singular

domains arising from airfoil and wing geometries is of significant importance in theoretical

and computational aerodynamics [8, 28].

Problems of diffraction of acoustic and electromagnetic waves by domains containing ge-

ometric singularities arise in a wide range of contexts—including optics, remote sensing,

antenna design, electromagnetic compatibility, etc. In the optics case, for example, diffrac-

tion effects such as those originating at geometric singularities set a fundamental limit to

the resolution of camera, telescope, or microscope. It is to be noted that, as is the case in

the Laplace problems considered in this thesis, at sharp edges of the diffracting obstacle, the

electromagnetic field vectors become infinite [14, 41].

In view of these and other scientific applications, the problem of evaluating numerically

solutions of PDEs akin to the Laplace equation in geometries containing geometric singu-

larities has drawn significant attention from the mathematics community: singular solutions

induced by non-smooth domains have been actively studied in the last few decades. Theoreti-

cal contributions such as the ones in References [1, 11–13, 19, 22, 37, 42, 43] discuss singularity

structures and degrees of smoothness expected in solutions around singular points. Refer-
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ence [30] provides a theoretical analysis of the behavior of solutions for Laplace equations in

polyhedral domains.

Significant contributions regarding the numerical solutions of such problems have been

put forward as well. For the sake of completenes we first mention references concerning

2D elliptic equations with singular boundaries, although, we must note, problems in 2D

are significantly simpler than their 3D counterparts. Early 2D contributions, in which the

problem is approached through use of spatially refined meshes in the singularity region in-

clude [3, 4, 15–17]; References [20, 24, 29, 40], in turn, use singular basis functions as part

of finite element spaces. A different approach, which is well suited to the two-dimensional

context, is proposed in References [26, 44, 45]: A separation of the domain near the geomet-

rical singularity is introduced, and “DtN” conditions are imposed on the artificial boundary.

Other recent contributions include [38] (which gives a method for evaluation of the number

of singular terms for a two-dimensional elasticity problem with two different wedge-shaped

elastic materials bonded together along a common edge and subject to tractions on the

boundary); Reference [46] (which uses the infinite element method to obtain singular solu-

tions of the Helmholtz equation), and [36] (which, using the infinite element method, seeks

solutions for composite-material problem with singular interfaces); References [2, 7] (which

treat elliptic equations with boundary singularities using the singular complement method);

Reference [23, 27] (which provides high-order integral equation methods for elliptic equa-

tions), and Reference [23] (which provides a comparison of a method based on use of special

basis functions with an approach based on adaptive mesh refinement); and finally, Refer-

ence [33] (which treats the Maxwell equations with boundary singularities, using the Fourier

finite element method).

We now mention some important references for the 3D case. We first consider Refer-

ence [32], in which Laplace equation with conical boundary points is considered; in this work

the solution of these problems are decomposed into the singular components and a smoother

remainder. This contribution also provides us with an analytical formula for the order of

singularity for a straight circular cone surface. Reference [5] also considers the Laplace equa-

tion, and assumes bounding geometries containing both conical points and edges. In this

reference a Steklov problem is used to compute the order of singularity, while finite element

methods of various types are otherwise used to evaluate solutions. Reference [39] describes
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an approximate asymptotic method, valid in the high-frequency regime, for evaluation of

the scattering of a plane polarized electromagnetic wave by a perfectly conducting cone.

Reference [31] studies the boundary element method for integral equations of the first kind

in 2D and 3D for problems of scattering. Reference [34] treats the Maxwell equations with

boundary singularities, using the Fourier finite element method.

As mentioned above, in this thesis we address one of the main problems in this area,

namely, solutions of elliptic equations around conical singularities; as shown in what follows,

our work resulted in solvers that can produce solution to 3D problems containing conical

singularities with a high order of accuracy obtained. In detail, our work focuses on Laplace

equation with constant coefficients;







∆u = 0 in D

u = f or ∂u
∂n

= g on ∂D,
(1.1)

in domains whose boundaries contain conical points. The solution u of such a problem is

smooth for smooth boundaries; in presence of boundary singularities, however, the solution

becomes singular itself. In many cases, a straightforward numerical implementation of such

problems (e.g., a finite element, variational formulation or a direct quadrature rule for an

equivalent integral equation) will give rise to poor accuracies, as a result of the singular

characteristics inherited by the solution. An extension of these methods with more com-

plicated basis functions does tend to produce beneficial effects, but, as suggested in what

follows, previous contributions in these regards leave significant room for improvement. In

Reference [5], for example, the hp-version of the finite element method is used to compute

singular solutions of Laplace’s equation. A full implementation is given for the case in which

the solution is bounded, and for which a mild singularity takes the form of a relatively small

but positive power of the distance from the conical point. This positive power is evaluated

by means of a Steklov problem; in addition to this exponent, only values of average quanti-

ties such as mean square norms and vertex intensity-factors are reported—no indications are

given in this contribution of the errors arising in the solution itself. Other algorithms have

also been developed in References [30, 32]. Once again, these methods are only implemented

for rather special cases, or only report on a few particular quantities (such as the intensity

factor) but not on the full solutions. As we shall show, the contributions introduced in this
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thesis give rise to significant improvements in the numerical accuracy of the singular compo-

nents and the full solution—even for cases containing negative exponents for which integral

densities blow up at the singular point. These integral densities correspond to physically

meaningful quantities such as solution derivatives or, in the electromagnetic case, to the

electrical current itself. To the best of our knowledge, this is the first contribution enabling

accurate numerical evaluation of such types of singularities for solution of PDEs in domains

bounded by closed singular boundaries.

The approach introduced in this thesis is based on consideration of integral equations and

algorithms that can provide high-order accuracy for approximation of singular integrals. To

achieve such high accuracies our methods proceed by first splitting off the most singular part

of the solution. These singular parts are determined by means of a novel (surface) nonlinear

eigenvalue problem which, to the best of our knowledge, has not been considered previously.

Our algorithm then proceeds to evaluate integrals whose integrands involve such singular

functions. Evaluation of these integrals amounts to a rather challenging problem; in our

approach these quantities are obtained, with high order accuracy, by means of appropriate

series expansions we developed. With singular parts pulled out, the remaining relatively

smooth(er) part of the solution can be computed by means of an application of high-order

quadrature rules based on the use of graded meshes around the singular points. With this

high order quadrature rule in place, our algorithm proceeds to formulate the full discrete

linear-algebra problem, which is solved by means of the iterative linear-algebra solver GM-

RES. As shown in Chapter 4, finally, a small modification of the integral operator can be

used to reduce the number of iterations required by the iterative linear-algebra solver to fully

separate the singular parts from the smooth parts of the solution.

1.2 Integral equation formulations

The method of boundary integral equations is commonly used in the solution of boundary

problems of mathematical physics, including the two main boundary value problems for



6

Laplace equations that are considered in this thesis, namely







∆ui = 0 in Di

ui = f on ∂D
(Interior Dirichlet Problem) (1.2)

and






∆ve = 0 in De

∂ve

∂n
= g on ∂D

(Exterior Neumann Problem). (1.3)

Here Di is a bounded region in R
3; De is the exterior of Di: De = R

3 \ Di; n is an exterior

normal to Di; ∂D is the common boundary of Di and De.

According to the method of boundary integral equations, the solutions ui and ve of the

boundary problems (1.2) and (1.3) can be represented as double-layer and single-layer po-

tentials with densities µ and ν:

ui(x) =

∫

∂D

∂G(x, x′)

∂nx
′

· µ(x′)dS(x′) (1.4)

ve(x) =

∫

∂D

G(x, x′) · ν(x′)dS(x′) (1.5)

where G(x, x′) is the Green’s function of Laplace operator

G(x, x′) =
1

4π|x − x
′| ,

and where the functions µ and ν are solutions to the following boundary integral equations

on ∂D:

−µ(x)

2
+

∫

∂D

∂G(x, x′)

∂nx
′

· µ(x′)dS(x′) = f(x) for x ∈ ∂D (1.6)

−ν(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· ν(x′)dS(x′) = g(x) for x ∈ ∂D. (1.7)

We note that the density functions µ and ν are connected with solutions of conjugate
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problems:

µ = ue|∂D − f (1.8)

ν = (
∂vi

∂n
)|∂D, (1.9)

where ue and vi are solutions of the conjugate problems

∆ue = 0 in De,
∂ue

∂n
=

∂ui

∂n
on ∂D

∆vi = 0 in Di, vi = ve on ∂D.

A proof of (1.8) and (1.9) can be found in [32].

The regularity properties (smoothness or lack thereof) of the solutions µ and ν deter-

mines to a significant extent the order of accuracy of a numerical solver for equations (1.2)

and (1.3)—since the accuracies delivered by quadrature rules themselves depend on the in-

tegrand regularities. As is known, however, when the boundary ∂D has conical points, the

integrands are not smooth around those points. For example, as shown in [32], the density

function ν(x) in (1.7) tends to infinity at the conical point.

In what follows we develop a method for solution of PDE problems including a conical

boundary point on the basis of equation (1.7). We point out that the Laplace equation with

the Neumann boundary conditions can be solved by means of alternate integral equations,

whose solution does not tend to infinity at the conical point. Indeed, the solution of the

“direct” integral equation (see e.g., [9, 10]) equals the solution ve of the Neumann problem

and is thus bounded. In many circumstances, however, use of singular solutions and re-

lated quantities is unavoidable. The simplest example of this involves the evaluation of the

normal derivative of the solution vi of the interior Dirichlet problem which, according to

equation (1.9) tends to infinity at the conical point—since so does ν. The present approach

thus allows one to evaluate this meaningful physical quantity; clearly, solution of the alter-

nate equation followed by differentiation would give rise to very poor results. An additional

example results from consideration of the Maxwell equations, which include an equivalent of

∂vi

∂n
as a component of the unknown surface current along an edge. Thus, in addition to ac-

curately producing the singular behavior of derivatives of solutions of the Laplace equation,

the method in this thesis can be related to the problem of solving a PDE Maxwell system



8

around a conical point.

For simplicity, in this thesis we only consider a three dimensional body with one conical

point, in a neighborhood of which the surface coincides with the boundary of a straight cone

of arbitrary (smooth) cross section, as depicted in Figure 2.12. Generalization to a curved

cone boundary surface should result as an extension of the method developed in this work.

1.2.1 Decomposition of the density function ν(x)

In equation (2.5) we define the coordinates (rx, θx) on the integration surface ∂D near the

conical point O: with an appropriate interpretation, implicit in (2.5), rx denotes the distance

from the conical point O and θx is the azimuthal angle. These coordinates are depicted in

Figure 2.12.

According to [32], we have an asymptotic expansion for ν(x) near the conical point:

ν(x) =
∑

i

ciai(θx)

rqi
x

ω̂P1(x) + b(x), (1.10)

where

qi > 0, (1.11)

and where the function b(x) is bounded throughout ∂D. (The definition for the terms in

equation (1.11) is in equation (3.1))

Using the decomposition in equation (1.10), the integral in equation (1.7) becomes

− ν(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· ν(x′)dS(x′)

=
∑

i

(

−ciai(θx)

2rqi
x

ω̂P1(x) +

∫

∂D

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

+

(

−b(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′)

)

.

(1.12)

In the following chapters we develop a number of procedures for accurate evaluation of the

right hand side of equation (1.12); note that this requires, in particular, evaluation of a

bounded difference of infinite quantities; see Section 1.3.2 below for a simple example in

these regards.
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1.3 A new approach to the conical singularity problem: Prelimi-

nary examples

To demonstrate, in simple settings, some of the main issues that arise as we address the main

problem considered in this thesis, in this section we present two elementary introductory

examples. The purpose of this section is thus to provide an indication of the nature of the

algorithms developed in the following chapters.

1.3.1 Example: Numerical integration with a singular integrand

Let’s first consider an elementary integration problem:

∫ 1

0

1√
x
dx (1.13)

This is a finite integral with infinite integrand near x = 0. The integrand, f(x) = 1√
x

is

shown in Figure (1.1) Left. A direct application of a quadrature rule such as the trapezoidal

rule results in slow convergence as shown in the second column of Table 1.1. In order to

address this difficulty we follow [9]: we use a change of variables x = x(t), depicted in the

middle portion of Figure 1.1, to obtain a new integrand f(x(t))x′(t) = 1√
x(t)

· x′(t), depicted

in Figure 1.1 Right. One important feature of x(t) is that x(t) = tn with n > 2 for t close 0.

As a result of this property of x(t), the integrand becomes

ntn−1 · 1

t
n
2

near t = 0. This new integrand is a smooth function, for n large enough this function vanishes

as t → 0 together with several of its derivatives. The function x(t) increases smoothly to

1, and stays constant in an interval where t is close to 1. So x′(t) = 0 near t = 1 as well.

Overall, the new integrand is smooth and vanishes near the two end points of the interval

t ∈ [0, 1] as depicted in Figure 1.1 Right. Using the change of variables x = x(t), the integral

(1.13) becomes
∫ 1

0

1

x(t)
1
2

x′(t)dt. (1.14)
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N error without COV error with COV
20 0.3016 0.0092
40 0.2184 -0.0014
80 0.1570 -6.3545e-6
160 0.1123 7.4472e-10
320 0.0801 2.4425e-15

Table 1.1: Error arising from the trapezoidal quadrature rule applied to the function 1√
x

with and without

the change of variables (COV) x = x(t), and using N function values/quadrature points.
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Figure 1.1: Left: Function 1√
x
. Middle: Change of variable function x = x(t). Right: The integrand

1

x(t)
1

2

x′(t) obtained after the change of variable x(t)

The trapezoidal rule provides excellent convergence for this new integral, as shown in the

third column of Table 1.1. Similar changes of variable will be used in our algorithms to

tackle problems of integration of unbounded functions with finite integrals.

Remark 1.3.1. Changes of variables designed to produce smooth and periodic integrands

play major roles in the algorithms developed in this thesis. Indeed, we transform all singular

integrands into integrands that are smooth and periodic, for which the trapezoidal quadrature

rule is highly (spectrally) accurate.

1.3.2 Example: Resolution of a singular limit

Our next example brings up an issue that lies at the heart of the issues considered in this

thesis.

We consider the problems of evaluating the limit

lim
y→0+

Fs(y) (1.15)
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as well as values of Fs(y) for very small y > 0, where Fs is given by

Fs(y) = y−s −
∫ 1

0

xys

(y + x2)
3
2

dx, (1.16)

where the exponent s is determined by the requirement that the limit (1.15) must be finite.

In the present case all three problems, the evaluation of s, the limit, and the function val-

ues for small y can be solved easily through closed form integration; for the corresponding

nonlinear eigenvalue problems considered in Section 3.1.3, in contrast, no exact integration

can be performed, eigenfunctions are involved, and nonlinear equations must be solved—so

that the simple closed-form manipulations presented in what follows need to be substituted

by a sequence of numerical procedures. With a view to the analysis in Section 3.1.3, below

we show that, even in the context of the simple example under consideration, use of numer-

ical quadrature rule would not give rise to accurate determination of the exponent s, the

limit (1.15) or values of Fs(y) for small values of y.

Remark 1.3.2. In the context of our integral equation problem on surfaces containing conical

singularities, the need to evaluate integral quantities “very small values” of a parameter y

arises from the graded meshes used near the conical points: some of the sampling points we

use can be as close to the conical point as 10−8 or even 10−10 times the size of the surface

diameter.

We thus proceed with our highly idealized example: integrating with respect to x we

obtain

Fs(y) = y−s − ys− 1
2 + ys(y + 1)−

1
2 (1.17)

from which it is a simple matter to check that the condition

−s = s − 1

2
,

or s = 1
4
, is necessary and sufficient for the limit (1.15) to be finite.

Having determined the exponent s = 1
4

we now seek to evaluate Fs(y) for small values

of y. Certainly, in the present case we can use equation (1.17) to perform an analytical

evaluation. As discussed above, in the cases considered in this thesis the integrals cannot

be computed analytically; for illustrative purposes we thus undertake the task of evaluating
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Fs(y) without recourse to the closed form expression of the integral

∫ 1

0

xy
1
4

(y + x2)
3
2

dx. (1.18)

The integral (1.18) tends to ∞ as y → 0+, and, thus, a numerical evaluation of this

quantity by means of a standard quadrature rule would produce inaccurate results. Further,

the subtraction of two nearly infinite quantities as in equation (1.16) would give rise to

significant cancellation errors, and, thus, additional accuracy loss.

An alternative approach we use can be demonstrated in the present example: taking into

account the fact that

y− 1
4 =

∫ ∞

0

xy
1
4

(y + x2)
3
2

dx,

and that, as a result,

y− 1
4 −

∫ 1

0

xy
1
4

(y + x2)
3
2

dx =

∫ ∞

1

xy
1
4

(y + x2)
3
2

dx, (1.19)

we can evaluate F1/4(y) for small y by means of an expansion of the integrand:

xy
1
4

(y + x2)
3
2

=
y

1
4

x2
· 1

(1 + y
x2 )

3
2

=
y

1
4

x2
· (1 − 1

1!

3

2
(

y

x2
) +

1

2!

3

2

5

2
(

y

x2
)2 − · · · ). (1.20)

In all we obtain

F1/4(y) =

∫ ∞

1

xy
1
4

(y + x2)
3
2

dx = y
1
4 − 1

1!

3

2

y1+ 1
4

3
+

1

2!

3

2

5

2

y2+ 1
4

5
− · · · (1.21)

The right hand side series in equation (1.21) converges very fast for the small values of y we

consider. Thus, instead of approximating an integral whose value is close to ∞, and then

subtracting two nearly infinite quantities, the procedure described above evaluates the quan-

tity (1.16) by means of the series (1.21), with high accuracy and at very low computational

cost.

1.4 Outline of chapters

This thesis is organized as follows.
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In Chapter 2 we describe our parametrization of the boundary surface ∂D. In order to

discretize our integral equations with a high order of accuracy, we first make the integrand

smooth and periodic on a parameter space by partitioning the integration problem by means

of certain smooth and periodic functions.

In Chapter 3, we present novel methods to compute singular pairs (ai(θx), qi), which are

determined by the left hand side of the integral equation, and, thus, by the geometry of the

conical surface. With (ai(θx), qi) computed, we develop methods to evaluate accurately the

quantities

−ai(θx)

2rqi
x

+

∫

∂D

∂G(x, x′)

∂nx

· ai(θ
′)

rqi

x
′

dS(x′). (1.22)

This is a challenging issue since, as discussed in Section 1.3.2, as the target point x approaches

the conical point the overall integrand becomes more and more singular, in such a way

that, regularizations similar to that considered in Section 1.3.1 do not suffice to produce

acceptable accuracies. (As noted in Section 1.3.1, use of changes of variables give rise to

useful regularization of infinite integrands, as long as the integrands admit a finite integral,

of course. In the present case the integrals are finite, but tend to infinity as x approaches

the conical point—so that a change-of-variable regularization scheme becomes less and less

useful, and ultimately completely losses all accuracy as x approaches the conical point.)

Using ideas demonstrated in Section 1.3.2, a methodology to address these difficulties is

presented in Section 3.2.

In Chapter 4, we describe our discretization scheme for the integrals on surface ∂D through

isolation of the integral kernel singularity, and application of the trapezoidal rule to every

part of the integral. We shall see the discretization indeed exhibits high order of accuracy

in any cases.

In Chapter 5, the discretization schemes introduced in previous chapters are used to

produce a full discrete formulation for the boundary integral equation (1.7) using ci and

b(x) as unknowns (see equation (1.12)). In this formulation, we utilize the singular pairs

(ai(θx), qi) computed previously, and the unknown b(x) is determined for all points on a

mesh on the surface ∂D.

In Chapter 6, we present a variety of test cases that demonstrate the properties of the

algorithms developed in previous chapters. In particular we study the convergence of our
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method as discretization meshes are refined, and we show that the overall methodology can

produce both (singular) bounded and unbounded unknowns with a high degree of accuracy.

In Chapter 7, we give a summary of the work we perform and possible future improvements

and extensions.
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Chapter 2

Boundary Parameterization and the

Fixed Partition of Unity

We seek to solve numerically the boundary integral equation (1.7) on the surface ∂D. In this

thesis, the surface ∂D is assumed to be the boundary of a three dimensional body D with

a conical point O; throughout this work we assume that in a neighborhood of the conical

point O the surface ∂D coincides with the boundary of a straight cone defined by a given

cross sectional curve, see Figure 2.12, and that, with exception of the conical singularity, ∂D

is a smooth surface.

Our goal is to solve a discretized version of equation (1.7) by means of an iterative

linear-algebra solver; the main difficulty to achieve this goal lies in producing an accurate

algorithm for evaluation of the operator on the left hand side of equation (1.7), and the

associated integral
∫

∂D

∂G(x, x′)

∂nx

· ν(x′)dS(x′), (2.1)

for given points x ∈ ∂D. (As mentioned in Section 1.3.2, for x close to the conical point O

the complete operator on the left hand side of equation (1.7) must be evaluated as a unit,

and not as a difference of two large quantities.)

To evaluate these operators, we use an adequate representation of the boundary surface

∂D in terms of local charts together with a Partition of Unity, as indicated in Sections 2.1

and 2.2 below. Our algorithm for the actual evaluation of the integral (2.1) is discussed in

Chapters 3 and 4. The iterative solution of the discretized operator and numerical examples

demonstrating the performance of the overall solver are then presented in Chapters 5 and 6,

respectively.
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2.1 Overlapping patches Pk

Since the surface ∂D generally cannot be represented by a single parametrization, in order

to evaluate the integral in equation (2.1) we follow the approach [6], which is based on use

of local coordinate parametrizations and Partitions of Unity (POU).

According to the POU method, we describe the boundary surface ∂D using several over-

lapping coordinates patches Pk, k = 1, . . . , n. In particular, to describe a surface with a

conical point, such as that shown in Figure 2.1, we use two patches: one patch, which we

call P1 and displayed in blue in Figure 2.2, contains the region near the conical point O;

the second patch, which contains the complement of the first patch P1 and overlaps with

P1, is called P2 and shown in red in Figure 2.3. Note the existence of a significant region of

overlap between these two patches.

The coordinates patches Pk, (k = 1, 2) are assumed to satisfy the following conditions:

1. Each patch Pk is an open set within ∂D, and the union P1 ∪ P2 covers all of ∂D.

2. Each patch Pk is the image of a coordinate open set Hk, contained in a plane. The

coordinate set Hk is mapped to patch Pk via a parametrization

x
k = x

k(uk, vk) defined for (uk, vk) ∈ Hk, k = 1, 2. (2.2)

A curve O1 ∈ H1 is mapped to the conical point O through the k = 1 parametrization

defined in equation (2.2).

3. The parametrization in equation (2.2) is smoothly invertible, and the vector product

V k(uk, vk) =
∂x

k

∂uk
× ∂x

k

∂vk

is bounded away from zero in (H1 \ O1)∪H2. We assume V k is an outward normal, so

that the outward unit normal on Pk is given by

nk =
V k

|V k| .

We use the open sets Hk and its coordinates (uk, vk) to evaluate the integral operator on

the left hand side of equation (1.7). In Appendix A, we describe the explicit parametrization
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Figure 2.1: The surface ∂D with one conical point

Figure 2.2: Patch P1 covers the area near the conical point

Figure 2.3: Patch P2 covers the area opposite to the conical point
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and patches we use for the numerical examples in this thesis. The corresponding coordinate

domains are Hk = [0, 1] × [0, 1], (k = 1, 2).

2.2 Fixed POU function

According to the POU method, the overlapping patches Pk are used to decompose the

integral on surface ∂D into the sum of two integrals over Pk, k = 1, 2. To achieve this

decomposition, we use a set of partition of unity functions {ωk(x); k = 1, 2} subordinated

to these overlapping patches Pk, k = 1, 2.

Specifically, we use the set of functions {ωk(x); k = 1, 2}, such that

1. ωk(x) is defined, smooth, and nonnegative on ∂D;

2. ωk(x) vanishes outside Pk;

3.
2
∑

k=1

ωk = 1 throughout ∂D. (2.3)

This pair of smooth functions will be referred to as the “fixed” partition of unity, in contrast

with certain “floating” partitions of unity that are introduced in Chapter 4.

Using patch parametrizations x
k(uk, vk) and POU functions ωk(x) as discussed above,

the integral in equation (2.1) can be decomposed as

∫

∂D

∂G(x, x′)

∂nx

ν(x′)dS(x′)

=

2
∑

k′=1

∫

Pk′

∂G(x, x′)

∂nx

ν(x′)ωk′

(x′)dS(x′)

=
2
∑

k′=1

∫

Hk′

∂G(x, xk′

(uk′

x
′ , vk′

x
′))

∂nx

ν(xk′

(uk′

x
′ , vk′

x
′))

·Jk′(uk′

x
′, vk′

x
′)ωk′

(xk′

(uk′

x
′, vk′

x
′))duk′

x
′dvk′

x
′. (2.4)

Here, Jk′(uk′

x
′ , vk′

x
′) is the Jacobian of the parametrization (uk′

x
′, vk′

x
′) for the patch Pk′

.

Clearly, on the non-overlapping regions of a patch Pk, ωk must be equal to 1; further,

the fixed POU function ωk(x) should vanish smoothly towards the boundaries of the k-th

patch. To construct such smoothly vanishing POU functions, we use as a building block
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Figure 2.4: Auxiliary function P (t, t0, t1)

the function P (t, t0, t1) depicted in Figure 2.4. The analytic form of function P (t, t0, t1) is

described in Appendix A. In particular we note from Figure 2.4 that P (t < t0, t0, t1) =

1; P (t > t1, t0, t1) = 0, and P (t, t0, t1) decays smoothly from 1 to 0 as t goes from t0 to t1.

In Figures 2.5 and 2.6, we show, in color code, the values of the fixed POU function ω1(x)

on the patch P1 and the domain H1, respectively; the values ω1(x1(u1, v1)) as a function of

the coordinates (u1, v1) are shown in Figure 2.7. In Figures 2.8 and 2.9, in turn, we display the

function ω2(x2(u2, v2)) as a function of the parameters (u2, v2). These figures show the fixed

POU functions as well as the manner in which each one of the two dimensional coordinate

domains Hk is mapped onto the patch Pk in three dimensional space. (The analytic forms

of the fixed POU functions and the coordinates mappings x
k(uk, vk) are further discussed in

Section 4.1 and described in Appendix A.)

The main feature of these fixed POU functions is that ωk(x) = 1 in the center of the

patches, and ωk(x) smoothly decays to 0 towards the boundary of the patch Pk, where the

patches overlap. On patch P1, ω1(x) = 1 for x near the conical point O, and smoothly decays

to 0 as the distance to the conical point O increases. Clearly, the region {x; ω1(x) < 1} on

patch P1 must overlap with patch P2.
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Figure 2.5: Values of the Fixed POU function ω1(x) on its support set (⊆ P1); in color code.

Figure 2.6: Values of the Fixed POU function ω1(x1(u1, v1) on its domain H1; in color code.
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Figure 2.7: Graph of the Fixed POU function ω1(x1(u1, v1)) on its domain H1 .
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Figure 2.8: Color-coded values of the Fixed POU function ω2(x) on its support set on patch P2

Figure 2.9: Color-coded values of the Fixed POU function ω2(x2(u2, v2)) on its support set in domain H2.
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Figure 2.10: Graph of the Fixed POU function ω2(x2(u2, v2)) on its support set in domain H2.
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Figure 2.11: The straight-cone region Sσ (in red) near the conical point on the surface ∂D.

2.3 The parameterization for the region Sσ near the conical point

As mentioned above, in this thesis, we assume the surface ∂D coincides with the boundary

of an infinite straight cone near the conical point O. More precisely, we assume there is a

number σ > 0 such that the region Sσ of all points on ∂D whose distance to the conical

point is less than or equal to σ which coincides with the boundary of a straight cone with a

smooth cross section; see Figure 2.11 for a depiction in which Sσ is a portion of an elliptic

cone. Note that the region Sσ is generally bounded by a non-planar curve: the boundary

line lies on a plane only when Sσ is a section of a circular cone.

To represent points x in Sσ we use the spherical coordinates (rx, θx, φx) with azimuthal

plane parallel to the x − y plane and with origin at the conical point O:



















xx = rx sin φx(θx) cos θx

yx = rx sin φx(θx) sin θx

zx = rx cos φx(θx);

(2.5)

Figure 2.5 displays a point x on a straight cone surface with spherical coordinates (rx, θx, φx).

We assume the description of the straight cone surface is given by a relation between the

polar and azimuthal angles, φx and θx respectively: the points on the straight cone surface
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Figure 2.12: The parameters r, θ, φx near the conical point O.
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are given by (rx, θx, φx(θx)):

Sσ = {(rx, θx, φx(θx)); 0 < rx < σ},

for a certain smooth function φx. As an example, in Appendix A, we present the function

φx(θx) for the surface of a straight elliptic cone.

Remark 2.3.1. In this thesis we often use the notation x(rx, θx, φx(θx)) for a point in the

region Sσ. The coordinates (rx, θx) are most useful in our discussion of the computation of

singular terms in Chapter 3.

Remark 2.3.2. Throughout this thesis we assume (as we may) that the parameter σ is small

enough so that Sσ does not overlap with patch P2. Consequently, the fixed POU function

ω1(x) equals 1 for x ∈ Sσ.
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Chapter 3

On Singular Exponents, Singular

Coefficients and Their Evaluation

In Reference [32], it is shown that the density function ν(x) in equation (1.7) can be expressed

in the form

ν(x) = ω̂P1(x)
∑

i

ciai(θx)

rqi
x

+ b(x) (3.1)

with

qi > 0, (3.2)

where |b(x)| . rp as r → 0 for some p > 0. We call qi the “singular exponent”, ai the

“singular coefficient”, and (qi, ai(θx)) the “singular pair”. Here rx and θx are the spher-

ical coordinates of the point x as described in Section 2.3, and, denoting by (u1
x
, v1

x
) the

coordinates of x in the domain H1 we have set

ω̂P1(x) =











0 x ∈ ∂D \ P1

ω1(u1
x
, v1

x
) x ∈ P1,

(3.3)

where ω1(u1
x
, v1

x
) is the fixed POU function of patch P1. Note that, according to the definition

of fixed POU functions in Section 2.2, the function ω̂P1(x) vanishes outside the patch P1.
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Using the decomposition (3.1), the integral equation (1.7) becomes

− ν(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· ν(x′)dS(x′)

=
∑

i

(

−1

2

ciai(θx)

rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

+

(

−b(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′)

)

= g(x).

(3.4)

In equation (3.4), the integrand ciai(θx)

r
qi
x

ω̂P1(x) is only integrated on patch P1 since the

windowing function ω̂P1(x) vanishes outside P1.

The rest of this Chapter is organized as follows: In Section 3.1, we describe a numerical

method for the evaluation of singular exponents qi and coefficients ai(θx) for a given straight

cone boundary surface of arbitrary cross section. As we will see, the determination of the

singular pair (qi, ai(θx)) is independent of the explicit form of the right hand side g(x) in the

integral equation (3.4).

In Section 3.2, in turn, we describe a method for the evaluation of

−1

2

ai(θx)

rqi
x

ω̂P1(x) +

∫

Sσ

∂G(x, x′)

∂nx

ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) (3.5)

in cases for which x is either close to or coincides with the conical point O. (Note that the

integration domain in equation (3.5) is region Sσ, which is contained in but is different from

patch P1.) In Chapter 4, we describe a method for numerical evaluation of the integral in

the complementary region P1 \ Sσ.

Both our method for evaluation of singular pairs presented in Section 3.1 and the proce-

dure described in Section 3.2 to evaluate the sum in equation 3.5 are essential elements of

our overall algorithm. The former element allows us to isolate the most singular terms in

our integral equation formulation. The latter element, on the other hand, which is closely

related to the simplified example presented in Section 1.3.2, provides a means to produce

bounded quantities that result as differences of quantities that tend to ∞ as x tends to the

conical point O.
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3.1 Computation of the singular pair (qi, ai(θx))

The evaluation of singular pairs proceeds through a reduction to the case of an infinite

straight cone, as shown in the following three subsections.

3.1.1 Preliminary calculations

The right hand side of the integral equation (3.4) is a given function g(x) which in this

thesis is assumed to be bounded and continuous: this function coincides with the boundary

condition in equation (1.3). The left hand side of the integral equation (3.4), on the other

hand, may be expressed as the sum of a quantity involving singular terms

∑

i

(

−ciai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

(3.6)

and a quantity involving (more) regular terms

−b(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′). (3.7)

As x tends to the conical point O, both terms in equation (3.7) have finite values. There-

fore, in order for the left hand side in equation (3.4) to remain bounded as x tends to

the conical point (as they should, since the right hand side g(x) does), the singular pairs

(qi, ai(θx)) should satisfy the following condition:

lim
x→O

∑

i

(

−ciai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

< ∞. (3.8)

Considering the terms under the summation symbol in equation (3.6), we note that, since

the coordinate rx tends to 0 as the point x tends to the conical point O, we have

−1

2

ciai(θx)

rqi
x

ω̂P1(x) ∼ 1

rqi
x

→ ∞ as x → O.

As shown in Section 3.1.4, we have the following asymptotic formula for the integral con-

taining the singular integrand term,

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) ∼ 1

rqi
x

as x → O. (3.9)
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It follows that, assuming, as we may, that the exponents qi are pairwise different,

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) and
ciai(θx)

rqi
x

ω̂P1(x)

are the only terms in equation (3.4) that tend to ∞ like 1
r

qi
x

as x tends to O. Consequently,

the condition in equation (3.8) becomes: for each i, singular pair (qi, ai(θx)) should satisfy

the condition

lim
x→O

(

−ai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

· ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

< ∞. (3.10)

Notice the common factor ci (cf. equation (3.8)) has been removed at this stage.

Re-expressing the boundary integral in equation (3.10) as a sum of two integrals, one over

the region Sσ and the other one over its complement P1 \ Sσ, the condition (3.10) becomes

lim
x→O

(

−ai(θx)

2rqi
x

+

∫

Sσ

∂G(x, x′)

∂nx

· ai(θx
′)

rqi

x
′

dS(x′)

)

< ∞ (3.11)

since, for x ∈ Sσ, ω̂P1(x) = 1 and since the integral

∫

P1\Sσ

∂G(x, x′)

∂nx

· ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) (3.12)

is a smooth function for x ∈ Sσ.

In order to evaluate singular pairs (qi, ai(θx)) on the basis of the condition (3.11), we use

the coordinates (rx, θx) described in Section 2.3 as integration variables; condition (3.11)

then reads

lim
x→O

(

−ai(θx)

2rqi
x

+

∫ σ

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

)

< ∞
(3.13)

where

Jr,θ(rx, θx) = rx

√

(
dφx

dθx

)2 + sin2 φx (3.14)

is the Jacobian of the transformation, and where for any two points x(rx, θx) and x
′(rx

′ , θx
′)
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in the region Sσ, the integration kernel is given by

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′)

=
1

4π

rx
′[cos φx

′ sin2 φx − sin φx
′ sin(θx − θx

′)dφx

dθx

− sin φx
′ sin φx cos φx cos(θx − θx

′)]

[r2
x

+ r2
x
′ − 2rxrx

′(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

.

(3.15)

3.1.2 Reduction to the infinite straight-cone case

To proceed with the evaluation of singular pairs, we re-express the rx
′-integral in equa-

tion (3.13) in the form
∫ σ

0

·drx
′ = (

∫ ∞

0

−
∫ ∞

σ

) · drx
′ (3.16)

and we use the explicit forms (3.14) and (3.15) of the functions

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) and Jr,θ(rx, θx)

for the integral between σ and ∞. Integrating first with respect to θx
′ and then with respect

to rx
′ we obtain

∫ ∞

σ

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ciai(θx
′)

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′

=

∫ 2π

0

√

(
dφ

x
′

dθ
x
′

)2 + sin2 φx
′

√

(dφx

dθx

)2 + sin2 φx

ciai(θx
′)·

(cos φx
′ sin2 φx − sin φx

′ sin(θx − θx
′)

dφx

dθx

− sin φx
′ sin φx cos φx cos(θx − θx

′))·
∫ ∞

σ

r2−qi

x
′

[r2
x

+ r2
x
′ − 2rrx

′(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

drx
′dθx

′ .

(3.17)

For the explicit integration w.r.t. rx
′ in equation (3.17), we apply the change of variable



30

x =
r
x
′

rx

, and we obtain

∫ ∞

σ

r2−qi

x
′

[r2
x

+ r2
x
′ − 2rrx

′(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

drx
′

=
1

rqi
x

∫ ∞

σ
rx

x2−qi

[x2 + 1 − 2x(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

dx

=
1

q · σqi
+ O(rx).

(3.18)

The last equality results from the large x Laurent expansion

1

[x2 + 1 − 2x(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

=
1

x3
(1 + O(

1

x
)). (3.19)

The expansion in equation (3.19) is applicable to equation (3.18) for x close to O, so that

rx is small and σ
rx

is large.

Equations (3.18) and (3.19) show that the absolute value of the integral with respect to

rx
′ in equation (3.17) is bounded by a finite constant that is independent of θx and θx

′ (recall

that φx and φx
′ are functions of θx and θx

′, respectively, cf. equation (2.5)). Since all θx

and θx
′ dependent terms are also finite in the integral in equation (3.17), the full integral in

equation (3.17) is uniformly bounded as x tends to the conical point O:

lim
x→O

∫ ∞

σ

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′ < ∞. (3.20)

Combining equations (3.13) and (3.20) we obtain

lim
x→O

(

−ai(θx)

2rqi
x

+

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

)

< ∞,

(3.21)

or equivalently,

lim
x→O

1

rqi
x

(

−ai(θx)

2
+

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ai(θx
′)

rqi
x

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′

)

< ∞.

(3.22)

As shown in the following section, this condition determines the singular pair (qi, ai(θ)).
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3.1.3 Evaluation of the singular pair

The expression in equation (3.22) equals the product of 1
r

qi
x

with the quantity

− ai(θx)

2
+

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ai(θx
′)

rqi
x

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′

=



−ai(θx)

2
+

∫ 2π

0

∫ ∞

0

√

(
dφ

x
′

dθ
x
′

)2 + sin2 φx
′

√

(dφx

dθx

)2 + sin2 φx

ai(θx
′)

x2−qi(cos φx
′ sin2 φx − sin φx

′ sin(θx − θx
′)dφx

dθx

− sin φx
′ sin φx cos φx cos(θx − θx

′))

[x2 + 1 − 2x(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]

3
2

dxdθx
′) ,

(3.23)

where, once again, we have used the explicit forms (3.14) and (3.15) and the change of

variables x = rx

r
x
′

. Clearly, the quantity in equation (3.23) is independent of rx. Thus, for its

product with term 1
r

qi
x

in equation (3.22) to remain finite in the limit as x → O (rx → 0), it

is necessary that the expressions in equation (3.23) equal 0:

−ai(θx)

2
+

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ai(θx
′)

rqi
x

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′ = 0. (3.24)

Using the notation

Kq(c) =

∫ ∞

0

x2−q

(x2 + 1 − 2xc)
3
2

dx, (3.25)

this condition can be expressed as the following equation for the singular pairs (qi, ai(θx)):

(

−ai(θx)

2
+

∫ 2π

0

√

(
dφ

x
′

dθ
x
′

)2 + sin2 φx
′

√

(dφx

dθx

)2 + sin2 φx

ai(θx
′)Kqi

(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))

(cos φx
′ sin2 φx − sin φx

′ sin(θx − θx
′)

dφx

dθx

− sin φx
′ sin φx cos φx cos(θx − θx

′))dθx
′

)

= 0.

(3.26)

Remark 3.1.1. The function Kq(c) in equation (3.25) can be computed analytically and

expressed in terms of special functions. This can be performed easily with a software such as
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Mathematica.

Equation (3.26) determines the singular pairs (qi, ai(θx)). The exponents qi are those

quantities for which equation (3.26) admits nonzero homogeneous solutions ai(θx). In order

to solve this “nonlinear eigenvalue problem” numerically we discretize equation (3.26) using

the trapezoidal rule, and thus obtain the following finite dimensional homogeneous linear

system for the approximation of each exponent qi and discretization {aj
i , j = 1, . . . , Nsp} of

ai(θx):

1

2
aj

i+
1

4π

Nsp
∑

j′=1

(Kqi
(cos φ(θj) cos φ(θj′) + sin φ(θj) sin φ(θj′) cos(θj − θj′))·

[cos φ(θj′) sin2 φ(θj) + sin φ(θj′) sin(θj′ − θj)
dφ

dθ
(θj)

− sin φ(θj′) sin φ(θj) cos φ(θj) cos(θj′ − θj)]·
√

( dφ
dθ

x
′

(θj′))2 + sin2 φ(θj′)
√

(dφ
dθ

(θj))2 + sin2 φ(θj)
aj′

i



 = 0 forj = 1 . . . Nsp.

(3.27)

Here Nsp is the number of integration points we use to discretize equation (3.26), and aj
i is

the numerical approximation of the value ai(θj). The numerical values of the quantities qi

are determined as those for which the matrix associated with equation (3.27) admits 0 as an

eigenvalue, and the values {aj
i} are the corresponding eigenvectors.

Analytical forms for the singular pairs (qi, ai(θx)) of cones with circular cross sections

are given in Reference [32]; using these analytical forms in Chapter 6 we demonstrate the

accuracy of the approximations (qi, {aj
i , j = 1, . . . , Nsp}) resulting from equation (3.27). Of

course, the procedure described above is valid for conical points of arbitrary cross section.

Remark 3.1.2. Using the quantities {aj
i , j = 1, . . . , Nsp}, we can use an interpolation al-

gorithm to obtain approximations to the function ai(θx) for arbitrary angles θx. (Note that

given the periodic nature of function ai(θx), a high order of accuracy for the interpolation can

be achieved by means of Fourier series and FFTs). Thus an approximation to the singular

term ai(θx)

r
qi
x

can be obtained for any given point x ∈ ∂D.
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3.1.4 Asymptotic behavior of the integral in equation (3.9)

In Section 3.1.1 we used the asymptotic behavior (3.9) of the integral

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) ∼ 1

rqi
x

as x → O;

here we provide a proof of this relation.

Considering the split P1 = (P1 \ Sσ)∪ Sσ as in equations (3.11) and (3.12), focusing first

on the integral on Sσ, and recalling equation (3.16), we obtain

∫

Sσ

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

dS(x′)

=(

∫ ∞

0

−
∫ ∞

σ

)

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ciai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

=
1

rqi
x

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ciai(θx
′)

rqi
x

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

−
∫ ∞

σ

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ciai(θx
′)

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′ .

(3.28)

Recalling equations (3.20) and (3.26), we note that

∫ ∞

σ

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ciai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

is uniformly bounded, and that

1

rqi
x

∫ ∞

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ciai(θx
′)

rqi
x

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′ =
ciai(θx)

2rqi
x

.

As a result we obtain

∫

Sσ

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

dS(x′)

=
ciai(θx)

2rqi
x

−
∫ ∞

σ

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ciai(θx
′)

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′

∼ciai(θx)

2rqi
x

∼ 1

rqi
x

as x → O.

(3.29)
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Since the integral
∫

P1\Sσ

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

is a smooth function when x ∈ Sσ, the relation used in equation (3.9), namely

∫

P1

∂G(x, x′)

∂nx

· ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) ∼ 1

rqi
x

as x → O, (3.30)

follows directly.

3.2 Evaluation of −ai(θx)

2r
qi
x

+
∫

Sσ

∂G(x,x′)
∂nx

· ai(θx
′)

r
qi
x
′

dS(x′) for x close to the

conical point O

To complete our formulation for the integral equation (3.4), we need to provide approximate

numerical methods for the evaluation of all the terms of the left hand side operator. In

Section 3.1, we computed the singular pair (qi, ai(θx)), and we showed that the integral
∫

Sσ

∂G(x,x′)
∂nx

· ai(θx
′)

r
qi
x
′

dS(x′) tends to ∞ as x tends to the conical point O. Clearly, therefore,

a straightforward quadrature rule would not evaluate this integral accurately, and, further

the difference of the two associated infinite quantities, which should remain bounded, would

give rise to significant cancellation errors and numerical instability.

Based on the fact that the sum

−ai(θx)

2
+

∫

Sσ

∂G(x, x′)

∂nx

· ai(θx
′)

rqi

x
′

dS(x′) (3.31)

remains bounded (a condition which we used to determine the singular pairs (qi, ai(θx))), in

this section, we provide an indirect method for evaluation of this sum for x either close to

or at the conical point O. In Chapter 4, in turn, we describe methods for evaluation of all

the other terms on the left hand side of the integral equation (3.4), including the integral

with the singular term integrands in region P1 \ Sσ,

∫

P1\Sσ

∂G(x, x′)

∂nx

· ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′). (3.32)

Remark 3.2.1. The sum in equation (3.31) does not include the (constant) coefficient ci of

the singular term, which depends on the right hand side g(x) of the integral equation (3.4),
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and is an unknown that needs to be solved for as part of the full discrete formulation. Note

that, in particular, the evaluation procedure described in this section does not depend in any

way on the right hand side g(x).

To evaluate (3.31) we first express the surface integral in equation (3.31) in terms of the

spherical coordinates (rx
′ , θx

′):

−ai(θx)

2rqi
x

+

∫ σ

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′. (3.33)

Then we re-express the rx
′-integral in the form

∫ σ

0

·drx
′ =

∫ ∞

0

·drx
′ −
∫ ∞

σ

·drx
′,

so that equation (3.33) becomes

− ai(θx)

2rqi
x

+

∫ σ

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′, θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′ , θx

′)dθx
′drx

′

= −ai(θx)

2rqi
x

+ (

∫ ∞

0

−
∫ ∞

σ

)

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′ .

(3.34)

Taking into account equation (3.24) (which we used in Section 3.1 to compute the singular

pairs) and the explicit forms (3.14) of the Jacobian Jr,θ(rx, θx) and (3.15) of the integration

kernel ∂G(x,x′)
∂nx

(rx, rx
′, θx, θx

′), equation (3.34) becomes

− ai(θx)

2rqi
x

+

∫ σ

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

=
1

rqi
x

∫ 2π

0

(−
∫ ∞

σ
rx

)

√

(
dφ

x
′

dθ
x
′

)2 + sin2 φx
′

√

(dφx

dθx

)2 + sin2 φx

ai(θx
′)

x2−qi(cos φx
′ sin2 φx − sin φx

′ sin(θx − θx
′)dφx

dθx

− sin φx
′ sin φx cos φx cos(θx − θx

′))

[x2 + 1 − 2x[cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′)]]

3
2

dxdθx
′,

(3.35)

where once again we used the change of variable x =
r
x
′

rx

.

In view of the smoothness and periodicity with respect to θx
′ of the integrand in equa-
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tion (3.35), our algorithms use the trapezoidal rule to produce highly accurate approxima-

tions of the corresponding θx
′-integral. To obtain the x-integral in a half-line, in turn, we

do not resort to classical quadrature rules but, instead, we use term-wise integration of the

large-x Laurent series

[x2 + 1 − 2x(cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′))]−

3
2

=
1

x3
(1 +

T1(θx, θx
′)

x
+

T2(θx, θx
′)

x2
+ . . . + O(

1

xn
))

(3.36)

mentioned in equation (3.19).

The expansion in equation (3.36) provides us with a numerical evaluation algorithm for

the x-integral:

1

rqi
x

∫ ∞

σ
rx

x2−qi

[x2 + 1 − 2x[cos φx cos φx
′ + sin φx sin φx

′ cos(θx − θx
′)]]

3
2

dx

' 1

qi · σqi
− T1(θx, θx

′)

(qi + 1) · σqi

rx

σ
+

T2(θx, θx
′)

(qi + 1)(qi + 2) · σqi

r2
x

σ2
+ · · ·

+
TNE

(θx, θx
′)

(qi + 1)(qi + 2) · · · (qi + NE) · σqi
(
rx

σ
)NE .

(3.37)

Here NE is the number of terms we use in the Laurent expansion in equation (3.36); this

expression is valid for values rx

σ
smaller than 1.

Collecting results we obtain a complete algorithm for the numerical evaluation of the sum

in equation (3.31):

− ai(θx)

2rqi
x

+

∫ σ

0

∫ 2π

0

∂G(x, x′)

∂nx

(rx, rx
′ , θx, θx

′) · ai(θx
′)

rqi

x
′

Jr,θ(rx
′, θx

′)dθx
′drx

′

'
∑

j′

√

(dφ
dθ

)2(θj′) + sin2 φ(θj′)
√

(dφx

dθx

)2 + sin2 φx

ai(θj′)·

(cos φ(θj′) sin2 φx − sin φ(θj′) sin(θx − θj′)
dφx

dθx

− sin φ(θj′) sin φx cos φx cos(θx − θj′))·
(

1

qi · σqi
− T1(θx, θj′)

(qi + 1) · σqi

rx

σ
+

T2(θx, θj′)

(qi + 1)(qi + 2) · σqi

r2
x

σ2
+ · · ·

+
TNE

(θx, θj′)

(qi + 1)(qi + 2) · · · (qi + NE) · σqi
(
rx

σ
)NE

)

∆θ′.

(3.38)
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Here, {θj′} are all the points on an equi-spaced mesh in the interval [0, 2π), and ∆θ′ is the

step size of this mesh.

Remark 3.2.2. The accuracy of the algorithm embodied in equation (3.38) depends on sev-

eral parameters: the number of points in the {θj′} discretization, the number NE of terms in

the Laurent expansion, and the value rx

σ
which, certainly, must be smaller than 1. In order

to obtain a high order of accuracy from the algorithm in equation (3.38), its use is restricted

to the range rx ≤ σ
10

(including rx = 0!), or equivalently, to the region x ∈ S σ
10

: the set of all

x in ∂D whose distance to the conical point O is less than or equal to σ
10

(see Section 2.3).

For rx > σ
10

our algorithm evaluates the quantity (3.31), together with other portions of our

integral operator, by means of the quadrature rules described in the following chapter.
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Chapter 4

Discrete integral operator:

trapezoidal rule, polar coordinates

and graded meshes

In Chapter 3, we described our methods for the numerical evaluation of singular pairs

(qi, ai(θx)), as well as the numerical evaluation of the sum in equation (3.5) for small values

of rx. In order to obtain the full numerical solution for equation (3.4), we need methods for

the discretization of all the terms on the left hand side of that equation. In this Chapter we

describe the discretization scheme for the surface integral

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′), (4.1)

with any given target point x on the surface ∂D. Using the same scheme, we evaluate the

integral
∫

P1

∂G(x, x′)

∂nx

ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) (4.2)

when x is neither close to nor at the conical point O, and the integrals

∫

P1\Sσ

∂G(x, x′)

∂nx

ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) (4.3)

for rx > σ
10

that, as mentioned in remark 3.2.2, is not evaluated by means of the Laurent-

expansion based algorithm.

As a basis to all of our numerical methods in this Chapter, we recall the surface parametriza-

tion and fixed POU decomposition described in equation (2.4), which we use to evaluate the

integral in equation (4.1). That is, we decompose and transform the integral on ∂D to
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integrals in the following coordinate domains,

∫

∂D

∂G(x, x′)

∂nx

b(x′)dS(x′)

=

2
∑

k′=1

∫

Hk′

∂G(x, xk′

(uk′

x
′, vk′

x
′))

∂nx

b(xk′

(uk′

x
′, vk′

x
′))

·Jk′(uk′

x
′ , vk′

x
′)ωk′

(xk′

(uk′

x
′ , vk′

x
′))duk′

x
′dvk′

x
′ , (4.4)

and, our numerical scheme discretizes the integrand in the Cartesian coordinate domain Hk′

and produces approximate values of the integral by means of a quadrature described in the

following sections.

One of the issues we need to address to produce an integration algorithm exhibiting a high

order of accuracy is the singular nature of the integration kernel in equations (4.1) and (4.2):

∂G(x, x′)

∂nx

=
(x − x

′) · nx

4π|x − x
′|3 . (4.5)

The denominator of this kernel vanishes with a higher power of |x−x
′| than the numerator

does, and the kernel is thus singular at x = x
′.

In Sections 4.1 and 4.2 we present our integration scheme, which follows [6], for the surface

integral in equation (4.1). We start our description in Section 4.1, where we consider the

case in which x is far from the integration domain. In this section we also describe a change

of variables in the domain (u1, v1) ∈ H1 to make the integrand more smoothly periodic, so

that our discrete integration scheme produces high-order of accuracy. In Section 4.2, in turn,

we describe a scheme to accurately discretize the integral in the region containing the kernel

singularity point x
′ = x.

In Section 4.3, we consider the smoothness of the integrand in equation (4.1) in the case

that target point x and x
′ are both close to the conical point, and we discuss the impact of

smoothness and the use of graded meshes on accuracy. In Section 4.4, then, using the singular

pair approximations (qi, {aj
i , j = 1, . . . , Nsp}) obtained in Section 3.2 and the discretization

schemes discussed in Sections 4.1 and 4.2, we describe our numerical evaluation procedure

for the integrals in equations (4.2) and (4.3), and we thus complete our discrete method for

evaluation of the operator (3.4).
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4.1 Smooth integrands and trapezoidal rule

Remark 4.1.1. In what follows we use the letter k to denote the index of the patch containing

the target point x: the coordinates of a point x in domain Hk are denoted by (uk
x
, vk

x
). Thus,

a target point in the discretization is given by x = x
k(uk

x
, vk

x
).

Similarly, we use letter k′ to denote the index of the patch containing the integration

point x
′: the coordinates of a discretization point x

′ ∈ Pk′

are denoted by (uk′

x
′ , vk′

x
′). Thus,

x
′ = x

k′

(uk′

x
, vk′

x
).

Starting in this section, we present our various integration schemes in order of increasing

complexity. Thus, in this section we describe the discretization scheme for a portion of the

integral in equation (4.1), namely, the integral over a patch that does not contain the target

point x (that is k 6= k′); other cases are treated in subsequent sections. In the present

case, the product of the kernel and the partition of unity function is smooth; in terms of

the coordinate domains, in this section we consider evaluation of the integrals in (4.4) in

domains Hk′

for which x 6∈ Pk′

.

As mentioned in remark 1.3.1, the trapezoidal rule exhibits a high (spectral) order of

accuracy for integration of a smoothly periodic integrand over a Cartesian coordinate domain

Hk′

. In the remainder of this section we introduce a change of variables that give rise to

smooth and periodic integrands, and we set up the spectrally accurate trapezoidal rule for

the case x 6∈ Pk′

under consideration.

k′ = 1: Polynomial change of variables. We introduce coordinates for the patch P1 for which

the integrand for P1-integral is smooth and periodic, in spite of the singularity of the function

b(x′) (b(x′) is bounded but some of its low-order derivatives are not; see Figure 6.8). (The

discussion of the coordinates (u1, v1) is qualitative. For the analytical forms of them, see

Appendix A.)

In terms of the Cartesian coordinate zx and the angular coordinate

v1 =
θx

2π
,
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the parametrization (2.5) of a straight cone becomes



















xx = zxFx(2πv1)C(zx)

yx = zxFy(2πv1)C(zx)

zx = zx,

(4.6)

where Fx(2πv1) and Fy(2πv1) are two functions of v1, whose explicit forms depend on the

shape of the cone surface. The function C(zx) describes the (possibly) non-vanishing curva-

ture of the region P1 \ Sσ in the zx direction; in particular, C(zx) = 1 in the straight-cone

region Sσ.

The Jacobian of the transformation (4.6) is

J1(zx, v1) = zx · F (v1),

for some function F (v1). Clearly, as zx → 0, the Jacobian J1(zx, v1) ∼ zx vanishes to first-

order on the boundary zx = 0. In order to increase the vanishing-degree of the Jacobian, and

consequently the order of smooth periodicity of the integrands, we follow the idea described

in Section 1.3 and we introduce a change of variables of polynomial type:

zx

h
= (u1)n(u1), (4.7)

where h is the height of the straight cone and n(u1) is defined by

n(u1) = (nu − 1) · P (u1, u1
0, u

1
1) + 1. (4.8)

Here P (u1, u1
0, u

1
1) is the function described in equation (A.1) with the two parameters u1

0 < u1
1

chosen within [0, 1]. Note that the function n(u1) equals nu for u1 < u1
0, it equals 1 for

u1 > u1
1, and it transitions from nu to 1 as u1 varies between u1

0 and u1
1.

Remark 4.1.2. In all of our numerical examples we have chosen parameters in such a way

that n(u1) = nu throughout the region Sσ.

Using the coordinates arising from the change of variables (4.7), we can let the coordinate

domain H1 equal to (u1, v1) ∈ [0, 1]×[0, 1]. In these variables the Jacobian J1(u
1, v1) vanishes

with order (u1)2nu−1 as u1 → 0. Thus, a large positive value nu makes the full integrand
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vanish to high order on the boundary u1 = 0. We set u1 = zx

h
when u1 > u1

1 in order to

map the equi-spaced mesh points in the domain H1 to most of the patch P1 in a relatively

uniform fashion.

In the v1 direction, in turn, the boundaries v1 = 0 and v1 = 1 correspond to the same

line on the surface ∂D, and, therefore, the integrand (4.4) in the domain H1 is periodic in

the v1 direction as well. Thus, in terms of the independent variables (u1, v1) the integrand

is smoothly periodic in the integration domain H1. However, since the integrand does not

vanish on the boundaries v1 = 0 and v1 = 1, a careful treatment is necessary to preserve

this periodicity in the polar-integration described in Section 4.2.

k′ = 2: Smooth patch. For k′ = 2, we choose coordinates (u2, v2) in such a manner (see

Appendix A for their analytic forms) that all four boundaries u2 = 0, 1 and v2 = 0, 1 of

the integration domain H2 = [0, 1] × [0, 1] are where the fixed POU function ω2(x(u2, v2))

vanishes to high order in domain H2, as depicted in Figure 2.10. As a result, the full

integrand also vanishes to high order towards these boundaries. This feature makes the

integrand smoothly periodic in the domain H2.

Trapezoidal integration. Having parametrized our domains in such a way that (for the

case x 6∈ Pk′

considered in this section) all integrands are smoothly periodic, we use the

trapezoidal rule for the discrete integration of the integral in equation (4.1) on an equi-

spaced mesh. Specifically, we use a Cartesian set of nodes (uk′

m, vk′

l ) within each coordinate

domain Hk′

given by

(uk′

m, vk′

l ) ∈ {(m∆uk′

, l∆vk′

); m = 1 . . .Nk′

u , l = 1 . . .Nk′

v }.

Here, ∆uk′

and ∆vk′

are the step sizes of the discretizations in uk′

and vk′

directions, and

Nk′

u and Nk′

v are the total numbers of mesh points in uk′

and vk′

directions, respectively.

All the integrands in the domains Hk′

in equation (4.4) can be evaluated analytically

on any mesh point (uk′

m′, vk′

l′ ), except for the unknown regular part b(x′(uk′

x
′, vk′

x
′))—for which

we seek to obtain approximate values bk′

m′,l′ through solution of a finite-dimensional linear

algebra problem.

The trapezoidal rule we use for the numerical evaluation of the integral using nodal values
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bk′

m′,l′ can thus be described as follows: for a given target point x not within patch Pk′

,

∫

Hk′

∂G(x, xk′

(uk′

x
′, vk′

x
′))

∂nx

b(xk′

(uk′

x
′, vk′

x
′))Jk(u

k′

x
′ , vk′

x
′)ωk(xk′

(uk′

x
′ , vk′

x
′))duk′

x
′dvk′

x
′

'
∑

l′

∑

m′

∂G(x, xk′

(uk′

m′, vk′

l′ ))

∂nx

bk′

m′,l′Jk(u
k′

m′, vk′

l′ )ω
k(xk′

(uk′

m′, vk′

l′ ))∆uk′

∆vk′

. (4.9)

4.2 Kernel singularity and polar coordinates

In this section, we describe a discretization scheme for the integral in equation (4.1) in the

case that the target point x is within the integration patch Hk′

. In this case, the integration

kernel ∂G(x,x′)
∂nx

is singular at the point x
′ = x ∈ Pk′

—a difficulty that does not exist in the

case discussed in Section 4.1.

Remark 4.2.1. For the sake of simplicity, whenever the target and integration domains are

clear from the context, the coordinates (uk
x
, vk

x
) ∈ Hk of a target point x = x

k(uk
x
, vk

x
) ∈ Pk

will be denoted by (u, v). Analogously, the coordinates (uk′

x
′ , vk′

x
′) ∈ Hk′

of an integration point

x
′ = x

k′

(uk′

x
′, vk′

x
′) ∈ Pk′

will be denoted by (u′, v′) ∈ Hk′

instead of (uk′

x
′ , vk′

x
′).

4.2.1 Floating partition of unity

In order to reduce the region (and therefore the cost) required for resolution of the kernel

singularity, we use an infinitely smooth, finitely supported, windowing function ηx(x′), with

adequately small support, to split our integration problem as follows:

∫

. . . dS(x′) =

∫

. . . (1 − ηx(x′))dS(x′) +

∫

. . . ηx(x′)dS(x′). (4.10)

The function ηx(x′) is equal to 1 when x
′ and x are close on the surface ∂D, and smoothly

decays to 0 as the distance between x
′ and x increases. In what follows, we describe the

definition of ηx(x′) in the coordinate domains Hk in general cases, and the modified definition

of ηx(x′) regarding the v1 dimension in domain H1.
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ηx(x′) in the domain H2. In the coordinate domain H2, ηx(x′) is defined as follows

ηx(x′)























equals 1 for |(u, v)− (u′, v′)| < γ0

smoothly decays from 1 to 0 for γ0 ≤ |(u, v)− (u′, v′)| < γ1

equals 0 for γ1 ≤ |(u, v)− (u′, v′)|,

(4.11)

where | · | denotes the length of a vector in the two-dimensional space (uk, vk). The function

ηx(x′) can be expressed simply in terms of the function P (t, t0, t1) introduced in Section 2.2.

Like the global partition of unity introduced in Chapter 2, the pair (ηx(x′), 1−ηx(x′)) is also

a POU. One such POU needs to be constructed for each target point x: the collection of all

such partitions of unity is referred to as the “floating” POU. Figure 4.1 depicts the function

ηx(x′) on the surface ∂D; Figures 4.2 and 4.3, in turn, depict ηx(x′) on the coordinate

domain H1. For these figures, we used the values γ0 = 0.04 and γ1 = 0.2, which are used in

all computations in this thesis.

We point out that function ηx(x′) is periodic in the domain Hk, except when its support

set reaches the boundary of Hk. However, the integrands overall are still periodic as long

as other parts of the integrand vanish on these boundaries. In u1
x
′ dimension, the fixed

POU function ω1(x1(u1
x
′ , v1

x
′)) vanishes on the boundary line u1

x
′ = 1, and the Jacobian

J1(u
1
x
′ , v1

x
′) vanishes on the boundary line u1

x
′ = 0; while in domain H2, the POU function

ω2(x2(u2
x
′, v2

x
′)) vanishes on all boundary lines u2

x
′ = 0, 1 and v2

x
′ = 0, 1. In all these cases,

even if the boundary lines are within distance γ1 to the point (uk′

x
′ , vk′

x
′), the full integrand

still vanishes on them, and is periodic.

ηx(x′) in the domain H1. For the domain H1 the definition of the floating POU function

ηx(x′) needs to be modified slightly from the one given previously in equation (4.11). Indeed,

the integrand

∂G(x(u1
x
, v1

x
), x1(u1

x
′ , v1

x
′))

∂nx

b(x1(u1
x
′, v1

x
′))J1(u

1
x
′ , v1

x
′)ω1(x1(u1

x
′ , v1

x
′)) (4.12)

is periodic in the v1 direction—since v1 = 0 and v1 = 1 correspond to the same line on

∂D. This periodicity, however, would not be inherited by the floating POU if we used

the definition (4.11). Specifically, when the distance between the point x
1(u1

x
, v1

x
) and the
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boundary v1
x
′ = 0 is smaller than γ1, the function ηx(x1(u1

x
′, v1

x
′)) is not equal to 0 on the

portion of the boundary line v1
x
′ = 0 with distance to the point (u1

x
, v1

x
) smaller than γ1. On

the boundary line v1
x
′ = 1, which on the other side of the domain, ηx(x1(u1

x
′ , v1

x
′)) is equal to

0 as long as γ1 is chosen smaller than the distance between point (u1
x
, v1

x
) and line v1

x
′ = 1.

Thus, the function ηx(x1(u1
x
′ , v1

x
′)) and in turn, the whole integrand in equation (4.12) is not

periodic across the boundary lines v1
x
′ = 0 and v1

x
′ = 1. This issue also arises for the case in

which the distance between point (u1
x
, v1

x
) and the boundary line v1

x
′ = 1 is smaller than γ1.

In order to keep the integrand periodic after being multiplied by functions ηx(x′) and

1 − ηx(x′), we need to modify the floating POU function ηx(x′) in domain H1. These

floating POU functions should extend periodically across the boundary lines v1
x
′ = 0 and

v1
x
′ = 1, and the support set of ηx(x′) should cross these two boundaries. In detail, when

v1
x
′ < γ1, as the distance between the point (u1

x
, v1

x
) and v1

x
′ = 0 is smaller than γ1, the

floating POU function should be given by

ηM
x

(x′) = max(ηx(x′), ηx(x1(u1
x
′ , v1

x
′ − 1)))

where, ηx(x′) is defined in (4.11) and x
1(u1

x
′, v1

x
′−1) is the point on patch P1 with coordinates

(u1
x
′, v1

x
′−1). This modified floating POU function ηM

x
(x′) carves a disc-shaped region around

x on the coordinates domain across the boundary lines v1
x
′ = 0 and v1

x
′ = 1—as displayed in

Figure 4.4 on the surface ∂D, and displayed in Figures 4.5 and 4.6 on the coordinate domain

H1. Since the modified floating POU function ηM
x

(x′) is periodic in the coordinate domain,

the full integrands of both parts of the integral in equation (4.10) are periodic.

The product of the function (1−ηx(x′)) and the integrand in equation (4.1) (which tends

to infinity at x
′ = x, see Figure 4.7) is a smooth function of x

′. For this nonsingular and

periodic integrand (displayed in Figure 4.8) the trapezoidal rule on an equi-spaced mesh

(uk′

m′, vk′

l′ ) yields spectral accuracy; we thus have the highly accurate approximation

∫

Hk′

∂G(x, xk′

(uk′

x
′, vk′

x
′))

∂nx

b(xk′

(uk′

x
′, vk′

x
′))Jk(u

k′

x
′ , vk′

x
′)ωk(xk′

(uk′

x
′ , vk′

x
′)) ·

(1 − ηx(xk′

(uk′

x
′, vk′

x
′)))duk′

x
′dvk′

x
′

'
∑

l′

∑

m′

∂G(x, xk′

(uk′

m′, vk′

l′ ))

∂nx

bk′

m′,l′Jk(u
k′

m′, vk′

l′ )ω
k(xk′

(uk′

m′, vk′

l′ ))

(1 − ηx(xk′

(uk′

m′, vk′

l′ )))∆uk′

∆vk′

. (4.13)
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Figure 4.1: Support of a floating POU function not crossing the boundary v1 = 0 (displayed on the patch
P1).

Figure 4.2: Support of a floating POU function not crossing the boundary v1 = 0 (displayed in H1).
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Figure 4.3: Graph of a floating POU function whose support does not cross the boundary v1 = 0.
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Figure 4.4: Support of a floating POU function crossing the boundary v1 = 0 (displayed in P1).

Figure 4.5: Support of a floating POU function crossing the boundary v1 = 0 (displayed in H1).
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Figure 4.6: Graph of a floating POU function whose support crosses the boundary v1 = 0.
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The integral containing the factor ηx(x′), on the other hand, remains singular, but its

support is confined to a small region in parameter space. As explained in what follows,

to obtain these integrals with high-order accuracy we use, for each target point x, a polar

coordinate change of variables—a procedure which fully regularizes the kernel singularity. In

detail, on each patch Hk′

, we need to integrate numerically the product of a smooth function

fk′(u′, v′) = b(xk′

(u′, v′))Jk′(xk′

(u′, v′))ωk′

(xk′

(u′, v′))ηx(xk′

(u′, v′))

and the singular kernel
∂G(x, xk′

(u′, v′))

∂nx

=
R · nx

|R|3

where, for an arbitrary evaluation point x ∈ ∂D, we have set R = x − x
k′

(u′, v′).

Polar integration in domain H2. In domain H2, to resolve the singularity, which occurs at

(u′, v′) = (u, v) ∈ H2, we use a system of polar coordinates centered at the coordinates (u, v)

of the target point:

u′ = u + ρ cos ξ

v′ = v + ρ sin ξ.

In this system of coordinates the relevant integrals are given by

I(u, v) =
1

2

∫ 2π

0

L(u, v, ξ)dξ, where (4.14)

L(u, v, ξ) =

∫ γ1

−γ1

f ∗
2 (ρ, ξ)

|ρ|
|R|

R · nx

|R|2 dρ. (4.15)

Here we have used the notations

R = R(ρ, ξ) = x(u, v) − x
∗(ρ, ξ),

x
∗(ρ, ξ) = x(u + ρ cos ξ, v + ρ sin ξ), and

f ∗
2 (ρ, ξ) = f2(u + ρ cos ξ, v + ρ sin ξ).

It is easy to check that the integrands in (4.14) and (4.15) are smooth functions of the
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Figure 4.7: Integrand in which a density function of the form 1
r0.28 is assumed, and without using the floating

POU factor.
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Figure 4.8: Integrand including a density function 1
r0.28 using the 1 − ηx floating POU factor.
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respective integration variables [6], and we have the limiting values

A = lim
ρ→0

|ρ|
|R| = |xu(u, v) cos ξ + xv(u, v) sin ξ|−1 (4.16)

lim
ρ→0

R · nx

|R|2 = −1

2
κn(u, v, ξ) = −A2

2
(
d2

x
∗(ρ, ξ)

dρ2
· nx), (4.17)

where κn(u, v, ξ) is the curvature of the surface at the point x(u, v) in the direction

xu(u, v) cos ξ + xv(u, v) sin ξ.

Since the integrand in equation (4.15) is a smooth function of ρ, and in view of the factor

ηx(x′), the corresponding integrand vanishes at the ends of the integration interval together

with all of its derivatives, the integrand is smoothly periodic. Thus, we can and do use the

trapezoidal rule to produce the radial quadratures with high order accuracy.

The trapezoidal rule also provides an appropriate high order integrator for the angular

integration of equation (4.14), since the corresponding integrands are, once again, smooth

periodic functions of ξ: we evaluate the angular integral by taking the sum of the integrands

at a set of equi-spaced points ξt(t = 1 . . . ) times the step-size of mesh ξt, t = 1, . . . , Nt. By

symmetry, the range of the angular integration can be reduced from 2π to π. When we do

this polar coordinates change of variables, the corresponding radial quadrature points do

not lie on the Cartesian grid associated with the given coordinate patch. Thus, use of an

appropriate interpolation strategy [6] is necessary for evaluation of the necessary function

values at the radial integration points ρs, s = −Ns, . . . , Ns for each angle ξ = ξt.

Polar integration in domain H1. Since the support set of the floating POU function in

domain H1 is modified, in order to keep the periodicity of the integrand, the integration

interval in equation (4.15) w.r.t. ρ should also be modified correspondingly. For example,

for a point (u, v) ∈ H1 with v < γ1 and at point (u, v), a radial line ξ = ξt intersecting

with the boundary line v1 = 0, as we integrate on this radial line ξ = ξt (integrate w.r.t. ρ),

when proceeding to a point on line v1 = 0 with coordinates (u1
x
′, 0), the integration should

continue over to the point (u1
x
′, 1) on line v1 = 1, and keep the same angle ξt, until reaching

the boundary of the floating POU function support set.
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4.2.2 Efficient interpolation scheme

To obtain accurately interpolated values of the integrand f ∗
k at points lying on the lines

u′ = u + ρ cos ξt, v′ = v + ρ sin ξt, ξt = tπ/n, t = 0, . . . , n − 1,

from the corresponding values at the Cartesian nodes, we interpolate the products

b(u′, v′) · ω1(x1(u′, v′)) · J1(u
′, v′). (4.18)

b(u′, v′) · ω2(x2(u′, v′)) (4.19)

in the domains H1 and H2, respectively. Since, as explained in Section 4.1, the func-

tions (4.18) and (4.19) are smoothly periodic, the interpolation scheme we describe in what

follows exhibits a high order of accuracy.

The functions (4.18) and (4.19) to be interpolated are given by their values at the nodes

(uk′

m′ , vk′

l′ ); where uk′

m′ = m′∆uk′

, vk′

l′ = l′∆vk′

, m′ = 0, . . . , Nk′

u , l′ = 0, . . . , Nk′

v .

Thus, to evaluate an integral along the line

uk′

= u + ρ cos ξt, vk′

= v + ρ sin ξt for ξt ∈ [π/4, 3π/4],

we utilize a trapezoidal rule with discretization step

(∆ρ)ξt
=

∆vk′

sin ξt

on ξ = ξt,

in such a way that the radial discretization points are situated on the straight coordinate

lines vk′

= vk′

l′ = l′∆vk′

; see [6].

Since for each fixed value vk′

= vk′

l′ = l′∆vk′

the function is known at the equi-distant

points uk′

= uk′

m′ = m′∆uk′

, a one-dimensional interpolation in the u direction suffices to

provide all the required values. To speed up calculations while maintaining high order

accuracy, we use the following interpolation and approximation algorithm:

1. Obtain the Fourier coefficients of the given function for each one of the lines vk′

= vk′

l′ =

l′∆vk′

by means of the fast Fourier transform.
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2. Evaluate the resulting Fourier series on a much finer equi-spaced grid. These evaluations

can be obtained efficiently by FFT.

3. On each interval of the refined grid construct an interpolating polynomial of degree 3

such that its values and the values coincide with those of the trigonometric polynomial

at the endpoints of the interval.

As a result of this procedure, we obtain polynomial splines that closely approximate the

interpolating Fourier series. We have explained the radial integrations on lines determined

by angles ξt in the interval [π/4, 3π/4]. Integration over the lines corresponding to the

complementary set of angles ξt ∈ [0, π/4]
⋂

[π/4, 3π/4] can be performed similarly, in which

case interpolations along the lines uk′

= uk′

m′ = m′∆uk′

should be used; full details of the

overall strategy can be found in Reference [6].

4.3 Hölder density singularity and graded meshes

In this section we show that smooth integrands indeed result, as asserted previously, from

the use of polynomial-type change of variables (4.7) of appropriately chosen degrees. We

establish this in the two cases arising from our use of floating POU (see Section 4.2): first

for the integral away from target point (integrand containing the (1 − η) factor), and then

for the integral around the target point (integrand containing the η factor).

Trapezoidal rule integration: integration away from the target point. In the case x is on the

patch P1 we use the trapezoidal rule to evaluate the integral

∫

H1

∂G(x, x1(u1
x
′, v1

x
′))

∂nx

b(x1(u1
x
′ , v1

x
′))J1(u

1
x
′, v1

x
′)ω1(x1(u1

x
′, v1

x
′))·

(1 − ηx(x1(u1
x
′, v1

x
′)))du1

x
′dv1

x
′ .

(4.20)

As long as the target point x is not close to the conical point O, it is easy to check that the

integrand in equation (4.20) vanishes smoothly as u1
x
′ → 0—since the Jacobian J1(u

1
x
′, v1

x
′) ∼

u1
x
′

2nu−1 → 0 as u1
x
′ → 0 and all other terms in the integrand are bounded functions.
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As x approaches the conical point O, the integration kernel

∂G(x, x′)

∂nx

=
R · nx

4π|R|3

becomes more and more singular for points x
′ also close to the conical point, however, and

the question arises as to whether the kernel will remain uniformly smooth, and thus make the

trapezoidal rule accurate to uniform high-order for points x arbitrarily close to the conical

point.

In order to demonstrate the kernel singularity, we note that, on a smooth portion of the

surface, the vector
R

|R| =
x − x

′

|x − x
′|

is nearly tangent to ∂D for x close to x
′, and it becomes orthogonal to the normal vector nx

as x
′ → x. Consequently, the numerator of the integration kernel R · nx vanishes to second

order as R → 0, since both quantities R

|R| · nx and |R| vanish in the limit |R| → 0.

When both x and x
′ are close to the conical point O, however, the near orthogonality

between R

|R| and the normal nx is lost. For example, when x → O on a curve on ∂D of

all points with a constant θx value (see Figure 2.12), and x
′ is on a curve on ∂D given by

a different angle θx
′ (θx

′ 6= θx), |R| = |x − x
′| can be small while R

|R| is not orthogonal to

nx. Clearly, along these curves the denominator in the kernel ∂G(x,x′)
∂nx

vanishes cubically (like

|R|3), while the numerator vanishes to first order only. The special geometrical arrangements

of x and x
′ that take place when these points lie in a neighborhood of the conical point O

have a significant impact in the character of the integral and differential equations under

consideration as well as their solutions. In what follows we show that, in spite of the singu-

larity of the kernel at the conical point O, use of polynomial-type change of variables (4.7)

of appropriately chosen degrees does result in smooth integrands.

In order to analyze the singular behavior of the integrand at the conical point it suffices

to restrict attention to the integrand in equation (4.20) for the target point x ∈ Sσ and the

coordinates (u1
x
′ , v1

x
′) ∈ (x1)−1(Sσ) ∈ H1: points x and x

′ sufficiently close to the conical

point clearly lie within Sσ. With these restrictions, the fixed POU function ω1(x1(u1
x
′, v1

x
′))
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is equal to 1, and according to remark 4.1.2, the parametrization (4.6) simplifies to



















xx = h(u1)nuFx(2πv1)

yx = h(u1)nuFy(2πv1)

zx = h(u1)nu.

(4.21)

In terms of the parametrization (4.21), the integrand in equation (4.20) can be expressed

in the form

W (v1
x
, v1

x
′)(1 − ηx(x1(u1

x
′, v1

x
′)))b(x1(u1

x
′ , v1

x
′)) · (u1)3nu−1

x
′

[D1 + D2 + D3]
3
2

, (4.22)

where

D1 = ((u1
x
)nuFx(2πv1

x
) − (u1

x
′)nuFx(2πv1

x
′))2,

D2 = ((u1
x
)nuFy(2πv1

x
) − (u1

x
′)nuFy(2πv1

x
′))2, and

D3 = ((u1
x
)nu − (u1

x
′)nu)2,

(4.23)

and where W (v1
x
, v1

x
′) equals the product of the (v1

x
, v1

x
′)-dependent components of the Jaco-

bian J1(u
1
x
′ , v1

x
′), and the integration kernel

∂G(x,x1(u1
x
′
,v1

x
′
))

∂nx

. Clearly, in the present context,

the function W (v1
x
, v1

x
′) can be expressed in terms of the functions Fx(2πv1) and Fy(2πv1).

In order to evaluate our integral operator, we must use values of the integrand on an

equi-spaced mesh in the domain (u1
x
′ , v1

x
′) ∈ [0, 1]× [0, 1]. Denoting by h the step size of this

mesh in the u1 direction, the integrand is evaluated at mesh points with integration- and

target-point coordinates given by u1
x
′ = h, 2h, 3h . . . , and u1

x
= h, 2h, 3h . . . , respectively. In

particular, in the discrete formulation, u1
x

and u1
x
′ can both take the value of the step size

h, which tends to 0 as the mesh is refined.

Since b(x′) ∼ rp
x
′ for some p > 0 as rx

′ → 0 (see [9]), it follows that b(x′) ∼ (u1
x
′)nup.

Using this asymptotic formula, we see that all the components of the integrand in (4.22)

depending on u1
x

and u1
x
′ are smooth functions multiplied by the quantity

F (u1
x
, u1

x
′) =

(u1
x
′)3nu+nup−1

[D1 + D2 + D3]
3
2

. (4.24)

An important situation in which the smoothness of the function F (u1
x
, u1

x
′) must be studied



55

occurs in the limit

lim
x→O

∫

∂D

∂G(x, x′)

∂nx

b(x′)dS(x′),

—whose evaluation is necessary in our method to solve the integral equation problem (1.7).

When x → O, u1
x
→ 0, and, thus,

F (u1
x
, u1

x
′) ∼ (u1

x
′)nup−1,

which vanishes if nup > 1, and tends to ∞ if nup < 1. This condition thus provides a

constraint on the possible values of nu that can be used by our algorithm for a given p: we

must select nu so as to guarantee that the condition nup > 1 is satisfied.

A related but different situation arises when the point x is different from but close to

the conical point—a situation that occurs, for example, when u1
x

is equal to the step size

h of the mesh in the u1 direction. Figures 4.10 and 4.11 display the integrands, for the

(arbitrary but otherwise reasonable, see e.g., Figure 6.8) sample exponent p = 0.3, for the

change-of-variables exponent nu = 1 (no change of variables) and nu = 7 (high-order change

of variables). Specifically, for this example we used an elliptical-conical-point surface, as

defined in Chapter 6, and we take b(x) = r0.3
x

sin(θx). As shown in these two figures,

the integrand becomes smoother as nu is increased. Corresponding one-dimensional graphs

(integrand as a function of ux
′ for ux = 1/128) are presented in Figure 4.9 for three values

of nu, showing, once again, that higher values of nu give rise to smoother integrands.

In our context, the added smoothness translates into significantly higher-quality integra-

tion: Table 4.1 demonstrates the increase in accuracy that results as the high-order change of

variables is used. This table displays the errors arising from use of the trapezoidal quadrature

rule (4.9) to produce the integral (4.20), for the two values of nu chosen, and for the target

point x set to equal x
1(h, v1 = 0.53), where h is the mesh size used, and v1 is arbitrarily set

at 0.53. (The errors were evaluated by comparison with the results obtained by means of

fine 256 × 256 integration meshes for each power nu.) Clearly, use of the smoothing change

of variables has a highly beneficial effect.
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Figure 4.9: Integrand as a function of u1
x

′ for various values of nu.

Mesh Error (nu = 1) Error (nu = 7)
16 × 16 1.7× 10−3 7 × 10−3

32 × 32 1 × 10−3 1.3× 10−4

64 × 64 7 × 10−4 8 × 10−5

128× 128 4 × 10−4 6 × 10−6

Integrals ∼ 4 × 10−2

Table 4.1: Errors arising from use of the trapezoidal quadrature for evaluation of the integral (4.20) using
two values of the change-of-variables exponent nu.
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Figure 4.10: For nu = 1 and r close to 0, the integrand containing the (1 − ηx(x′)) factor has a large peak
around r′ = 0 that is not uniformly-integrable as r → 0.
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Figure 4.11: Integrand containing the (1 − ηx(x′)) factor and incorporating an nu = 7 change of variables.
Clearly this change of variables effectively eliminates the r′ = 0 peak shown in Figure 4.10.
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Figure 4.12: For nu = 1 and r close to 0, the integrand containing the ηx(x′) factor has a large peak around
r′ = 0 that is not uniformly-integrable as r → 0.

Polar integration; integration around the target point. We now consider the remaining case

to be discussed in this section: evaluation of the integral around the target point, i.e.,

∫

H1

∂G(x, x1(u1
x
′, v1

x
′))

∂nx

b(x1(u1
x
′ , v1

x
′))J1(u

1
x
′, v1

x
′)ω1(x1(u1

x
′, v1

x
′))·

ηx(x1(u1
x
′ , v1

x
′))du1

x
′dv1

x
′.

(4.25)

In Figures 4.12 and 4.13 we display the integrands in equation (4.25) as functions of the

polar coordinates ρ and ξ, and using the change-of-variable powers nu = 1 and nu = 7,

respectively. Once again, we see that the higher-order change of variables gives rise to a

smoother integrand: note, in particular, that the significant peak in Figure 4.12 is not even

discernible in Figure 4.13, and that only traces of the features prominent in Figure 4.11 have

remained in Figure 4.13.

In Table 4.2, in turn, we present the numerical errors arising from the integration scheme

described in Section 4.2; once again we use the value obtained from a 256 × 256 meshes to

evaluate the errors resulting from the coarser meshes. Clearly, the integrand resulting from

the change of variables z1

h
= (u1)n(u1) with nu = 7 gives rise to significant improvements in

the integral evaluations; the value nu = 7 is used in all of the numerical examples presented

in Chapter 6.
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Figure 4.13: Integrand containing the ηx(x′) factor and incorporating an nu = 7 change of variables. Clearly
this change of variables effectively eliminates the r′ = 0 peak shown in Figure 4.12.

Mesh Error (nu = 1) Error (nu = 7)
16 × 16 2.6× 10−4 4.3× 10−4

32 × 32 8 × 10−5 1.7× 10−5

64 × 64 1.7× 10−5 1 × 10−7

128× 128 1.6× 10−6 5 × 10−9

Integrals ∼ 4 × 10−3

Table 4.2: Errors arising from use of the trapezoidal quadrature for evaluation of the integral (4.25) using
two values of the change-of-variables exponent nu.
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4.4 Evaluation of −ai(θx)

2r
qi
x

ω̂P1(x) +
∫

P1

∂G(x,x′)
∂nx

ai(θx
′)

r
qi
x
′

ω̂P1(x′)dS(x′)

Case x ∈ (∂D) \ S σ

10
. To numerically evaluate the integral (4.2) in cases in which the target

point x ∈ (∂D)\S σ
10

(so that, in particular, x is not close to the conical point), our algorithm

uses a combination of the trapezoidal rule described in equations (4.9) and (4.13), with the

polar integration procedure described in Section 4.2. Clearly, it is necessary to replace

the nodal values bk′

m′,l′ by the approximation to the singular term
ai(θx

′ )

r
qi
x
′

at nodes (uk′

m′, vk′

l′ ),

which, according to Remark 3.1.2, can be evaluated without difficulty. Moreover, since we

can evaluate numerically the singular term
ai(θx

′ )

r
qi
x
′

for any point x
1(u1

x
′, v1

x
′), we can perform

the polar integration procedure described in Section 4.2 using such direct evaluations instead

of the interpolation scheme described in Section 4.2.2.

We can also evaluate the term ai(θx)

2r
qi
x

ω̂P1(x) for a target point x
1(u1

x
, v1

x
) away from the

conical point. Thus, combining this quantity with the value of the integral in equation (4.2),

we obtain the numerical value of the sum

−ai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′) (4.26)

for any target point x
1(u1

x
, v1

x
).

Remark 4.4.1. It is shown in [32], that all exponents qi are smaller than 1. Since, further,

J1(u
1, v1) ∼ (u1)2nu−1, we have that, in the present case x ∈ (∂D)\S σ

10
, J1(u

1, v1)
ai(θ

x
1(u1,v1))

r
qi

x
1(u1,v1)

and several of its derivatives tend to 0 as u1 tends to 0. Thus the integrand in equation (4.2)

is a smooth and periodic function for x ∈ (∂D) \ S σ
10

.

Case x ∈ S σ

10
. For cases in which the target point x ∈ S σ

10
the kernel is not singular in the

integral (4.3)—since S σ
10

does not overlap with the integration region P1 \Sσ. Moreover, the

integration region P1 \ Sσ is bounded away from the region near rx
′ = 0, where the singular

term
ai(θx

′)

r
qi
x
′

tends to ∞. So the integrand in equation (4.3) is smooth. We use Simpson’s

rule on a very fine mesh in the integration domain (x1)−1(P1 \ Sσ) for the evaluation of

this integral. Adding the integral (4.3) to the sum in equation we already evaluated in

Section 3.2, we obtain the sum in equation (4.26) for x ∈ S σ
10

.
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Chapter 5

The discrete linear system and

accurate evaluation of disparate

singular quantities

After summarizing and combining in Section 5.1 the numerical methods introduced in pre-

vious Chapters for the portion of the operator involving the singular terms on the left hand

side of equation (3.4), we present, in Section 5.2, the overall linear system for the discrete

form of this integral equation, including the all-important conical-point equations. This lin-

ear system is suitable for evaluation of a numerical solution by means of an iterative solver

such as GMRES.

Since the integral equations under consideration admit solutions that tend to ∞ at the

conical point, conditioning issues can give rise to inaccurate evaluation of the the bounded

component b(x) of the decomposition (3.1). In the last section of this Chapter, Section 5.3,

we consider this problem and we present a preconditioning strategy that removes the ill

conditioning to some extent, and improves the convergence for the quantity, b(x) for points

x arbitrarily close to the conical point.
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5.1 The overall discrete operator

According to the descriptions in the previous chapters, in order to construct the discrete

version of the operator on the left hand side of equation (3.4), that is, the operator

∑

i

(

−1

2

ciai(θx)

rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

+

(

−b(x)

2
+

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′)

)

,

(5.1)

we start by evaluating the components involving the singular term, as indicated in what

follows:

1. We evaluate the singular pairs {qi, {aj
i , j = 1, . . . , Nsp}} using equation (3.27).

2. With {qi, {aj
i , j = 1, . . . , Nsp}} we evaluate the sum in equation (4.26) for the target

point positioned at a mesh point: x = x
k(uk

m, vk
l ) (The equi-spaced mesh (uk

m, vk
l ) is

introduced in Section 4.1). To evaluate (4.26) for points x = x
k(uk

m, vk
l ) ∈ S σ

10
\ O,

we use equation (3.38) to evaluate the sum (3.31) and proceed with the evaluation

method described in Section 4.4 for the integral in equation (4.3). Adding these two

contributions, we obtain the sum in equation (4.26). To evaluate the sum (4.26) in the

limit x1(u1
m → 0, v1

l ), in turn, we use the algorithm (3.38) with rx set to 0.

3. For the target point x = x
k(uk

m, vk
l ) ∈ P1 \ S σ

10
, as described in Section 4.4, we use the

same scheme described in Sections 4.1 and 4.2 to evaluate the integral in equation (4.2),

and take the sum of it with the singular term − 1
2

ai(θx)

r
qi
x

ω̂P1(x). So as to obtain the sum

in equation (4.26).

Since, as mentioned earlier, the surface ∂D determines the singular pairs (qi, a
j
i ), the

evaluation procedure above needs to be performed only once for a given surface. For a given

target point x, we denote the numerical evaluation of the sum in equation (4.26) involving

the singular terms by Q+
x
(aj′

i , qi):

Q+
x
(aj′

i , qi) ' −ai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

ai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′). (5.2)
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5.2 Discrete linear system

Recall the definition, given in Section 4.1, of the equi-spaced mesh (uk′

m′, vk′

l′ ) and associated

nodal values bk′

m′,l′ that are used by our algorithm for numerical evaluation of the integral

∫

∂D

∂G(x, x′)

∂nx

b(x′)dS(x′). (5.3)

Our complete procedure for the numerical evaluation of this integral is described in Sec-

tions 4.1 and 4.2. In what follows we denote by Qx(bk′

m′,l′) the approximate integral provided

by this algorithm on the basis of the nodal values bk′

m′,l′:

Qx(bk′

m′,l′) '
∫

∂D

∂G(x, x′)

∂nx

b(x′)dS(x′). (5.4)

We construct our linear system by evaluating high-order accurate numerical approxima-

tions each one of the terms the integral operator in equation (5.1); clearly, the unknowns

in our problem are the quantities bk′

m′,l′ arising from the operator (5.3) and the quantities

ci in (5.1). Thus, we obtain a part of our linear system by enforcing a discrete version of

equation (3.4) at each one of the mesh points x
k(uk

m, vk
l ):

χ
∑

i=1

ci

(

Q+
x

k(uk
m,vk

l
)
(aj′

i , qi)
)

+

(

−
bk
m,l

2
+ Q

x
k(uk

m,vk
l
)(b

k′

m′,l′)

)

= g(xk(uk
m, vk

l )) for all {k, m, l}
(5.5)

where Q+
x

k(uk
m,vk

l
)
(aj′

i , qi) is defined in equation (5.2); as shown in what follows, additional

“conical-point” equations must be included, that correspond in some sense to the unknowns

ci, to obtain a uniquely solvable system of equations.

Clearly, the system (5.5) contains
∑

k Nk
u ×Nk

v equations and
∑

k Nk
u ×Nk

v +χ unknowns:

an additional χ equations must be obtained. We do this by considering the action of the

operator at the conical point O. Specifically, we first take the difference of the limit of both

sides of equation (5.5) as x → O in N 1
v different directions: using equation (3.38) with

rx set to 0, we can obtain the limit Q+
x

k(u1→0,v1
l
)
(aj′

i , qi); noting that (5.4) can be evaluated

numerically at any target point, including the conical point itself (by means of the method

described in Sections 4.1 and 4.2), in turn, the limit Q
x

k(u1→0,v1
l
)(b

k′

m′,l′) can be obtained
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simply by integration for the value u1 = 0. We can thus obtain the quantities

h(v1
l ) = g(x1(u1 → 0, v1

l )) −
∑

i

ci

(

Q+
x

1(u1→0,v1
l
)
(aj′

i , qi)
)

− Q
x

1(u1→0,v1
l
)(b

k′

m′,l′)

for l = 1, . . . , N1
v ,

(5.6)

where a term of the form − bk
0,l

2
is not incorporated (compare equation (5.5)) since, indeed,

b(x) vanishes at the conical point [32]. Note that according to equation (5.5), the quantity

h(v1
l ) is an approximation to the term

b(x1(u1→0,v1
l
))

2
:

b(x1(u1 → 0, v1
l )

2
' h(v1

l ) for l = 1, . . . , N1
v ,

which should vanish. In order to enable our linear system to enforce the vanishing of this

quantity we need to provide a means to distinguish between the unknowns b and ci; we do

this by incorporating a number χ of “conical-point” equations of the form

∑

l

h(v1
l ) · a(θ

x
1(u1→0,v1

l
)) = 0 for i = 1, . . . , χ. (5.7)

That is, we enforce an orthogonality condition between h(θl′) and a(θ
x

1(u1→0,v1
l
)), l = 1, . . . , N1

v :

clearly these conditions identifies b as a quantity that does not tend to infinity at the conical

point. Equations (5.5) and (5.7) form our complete linear system, which we solve by using

an iterative linear solver GMRES.

5.3 Conical-point preconditioning

In the continuous formulation, the singular terms
∑

i ci
ai(θx)

r
qi
x

and the regular term b(x) are

separated in the equation (3.4), so that b(x) → 0 as x tends to the conical point O; as shown

in Sections 4.1 and 4.3 our discrete quadrature rule for the integral with function b(x),

∫

∂D

∂G(x, x′)

∂nx

· b(x′)dS(x′)

produces a high order of accuracy as a result of the fact that the integrand is smooth and

periodic in the integration variables associated with the domains Hk.

We have observed that errors introduced in the solution of the linear equations (5.5)
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and (5.7) can give rise to significant errors in the qualitative behavior of b(x) as x tends

to the conical point, b(x) should tend to zero as x approaches the conical point, yet some

numerical solutions can exhibit a large peak instead; see e.g., Figure 5.1. This behavior

suggests a degree of ill-conditioning in the determination of the quantity b near the conical

point. (This is quite reasonable: recall that the true unknown in the problem is the sum

ν = b(x) +
∑

i
cia(θx)

r
qi
x

of b(x) and a term that tends to infinity at the conical point!)

In Figures 5.1, and 5.2 we display some of the the values of b1
m,lo

, m = 1, . . . , N1
u produced

from our linear system by means of the iterative solver GMRES: the nodal values are shown

for nodes along a polar curve of the surface ∂D. (Using the coordinates (rx, θx) defined in

equation (2.5) a polar curve is given by θx = Const: a polar curve is a planar curve in ∂D

that joins the conical point to the top of the cone body). In order to correct the numerical

errors in b(x) that are evident in Figures 5.1, and 5.2, we decrease the residue level ε for the

GMRES convergence criterion. As shown in Figure 5.3, setting as low as ε = 10−16 we begin

to obtain a solution b(x) with a correct qualitative behavior. Unfortunately, however, the

achievement of the low GMRES residue level requires a large and sometimes unacceptable

number of iterations—increasingly so for finer and finer meshes.

In order to reduce the numerical errors in b(x) we can instead modify the linear equations

and the ill-conditioning inherent in the original problem: we recast equation (3.4), in the

“preconditioned” form

∑

i

(

−ciai(θx)

2rqi
x

ω̂P1(x) +

∫

P1

∂G(x, x′)

∂nx

ciai(θx
′)

rqi

x
′

ω̂P1(x′)dS(x′)

)

+

(

− b̃(x)

2rd
x

+

∫

∂D

∂G(x, x′)

∂nx

b̃(x′)

rd
x
′

dS(x′)

)

= g(x)

(5.8)

with some positive quantity d, where we have made the substitution

b(x) =
b̃(x)

rd
x

; (5.9)

clearly, in the discrete formulation the factor 1/rd
x
′ we introduced appears as a diagonal

preconditioner. As shown in what follows, the preconditioned system determines b with a

decreased degree of ill conditioning.
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ε Iterations Accuracy Indicator
10−14 86 Figure 5.2
10−15 146
10−16 206 Figure 5.3
10−17 238 Figure 5.4, in red
10−18 268

ε Iterations Accuracy Indicator
10−5 84
10−6 116
10−7 146
10−8 177 Figure 5.4, in blue

Table 5.1: GMRES residual tolerances ε, number of iterations required to meet such tolerances, and accuracy
indicators for the un-preconditioned (table on the left) and preconditioned (table on the right) systems.

With the modification embodied in equation (5.8), the error tolerance ε required in GM-

RES and the corresponding number of iterations it takes to converge to produce b with a

given error level both change. To demonstrate the improvements arising from use of the

preconditioned system, we present an example concerning a circular-conical-point surface

with a right-hand-side ∂N(x)
∂n

. (The definition of both the circular-conical-point surface and

the right-hand-side ∂N(x)
∂n

are given in Chapter 6). In Table 5.1 Left we list the number

of GMRES iterations required for convergence to GMRES residual tolerances ε using the

un-preconditioned system (equation 5.8 with d = 0); in Table 5.1 Right, in turn, we present

the corresponding number of GMRES iterations required when the value d = 0.14 is used

in equation 5.8 instead. Using the numerical solution for the problem produced by the un-

preconditioned system with ε set to 10−20 as the basis for evaluation of errors, we compare

the errors of the numerical solutions produced by the un-preconditioned and preconditioned

systems. The results presented in Table 5.1 demonstrate the advantages resulting from use

of the preconditioned system. The preconditioned system can produce a given error in the

solution obtained by means of significantly smaller iteration numbers and significantly larger

residual tolerances than those required for the corresponding un-preconditioned system to

produce a comparable error. This difference becomes more pronounced as the discretization

meshes are refined.
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Figure 5.1: Error in the function b arising from use of the un-preconditioned system; residual tolerance
ε = 10−12
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Figure 5.2: Same as Figure 5.1 but with residual tolerance ε = 10−14
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Figure 5.3: Same as Figure 5.1 but with residual tolerance ε = 10−16
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Figure 5.4: Red: error in the function b arising from use of the un-preconditioned system, ε = 10−17. Blue:
error in the function b arising from use of the preconditioned system, ε = 10−8 (compare Table 5.1).
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Chapter 6

Computational examples

In this chapter, we present a variety of numerical solutions for our problems. In all cases, the

PDE is solved in a domain exterior to a surface containing a conical point, which coincides

with a straight cone surface near the conical point. We provide a number of examples of

varying degrees of complexity. The program we use to obtain the numerical solutions to

equation (1.7) was implemented as a test-bed for our algorithm and our ideas, and has not

been optimized or accelerated in any way.

We present numerical solutions for two closed surfaces, namely

1. a circular-conical-point surface, depicted in Figure 6.1, which, near the conical point

coincides with a straight circular cone (of height = 1 and base-radius = 0.8); and

2. an elliptical-conical-point surface, depicted in Figure 6.2, which, near the conical

point coincides with a straight elliptic cone (of height = 1, and whose base is an ellipse

of major semi-axis = 1.2 and minor semi-axis = 0.8).

In both cases the upper part of the scattering body is a portion of a sphere.

To test our algorithm we consider exterior Neumann problems with two different boundary

conditions and associated right hand sides (RHS) g(x):

A. The first RHS is g(x) =
∂Px0(x)

∂n
, where Px0(x) = 1

|x−x0| , and where x0 lies inside the body

and away from its boundary. Note that the function Px0(x) is a solution of the Laplace

equation outside the body. Clearly, then, the solution arising from the first RHS is

the function Px0(x) itself; this case thus provides a valuable test for the accuracy and

other properties of our algorithm: the numerical solution ν(x) of equation (1.7) can

be used to evaluate the corresponding numerical values of ve(x) using equation (1.5),
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Figure 6.1: The circular-conical-point surface.
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Figure 6.2: The elliptical-conical-point surface.
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Figure 6.3: Bounded part b(x) of the solution for the right-hand-side ∂N(x)
∂n

on the circular-conical-point
surface.
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Figure 6.4: Bounded part b(x) of the solution for the right-hand-side ∂N(x)
∂n

on the elliptical-conical-point
surface.
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Figure 6.5: Bounded part b(x) of the solution for the right-hand-side
∂Px0

(x)

∂n
on the circular-conical-point

surface.
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Figure 6.6: Bounded part b(x) of the solution for the right-hand-side
∂Px0

(x)

∂n
on the elliptical-conical-point

surface.
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which can, in turn, be compared with the known analytic solution Px0(x). We choose

P0(0.11, 0.12, 0.75).

B. The second right hand side is g(x) = ∂N(x)
∂n

, where N(x) = d̄ · x. d̄ is an arbitrary

direction. We choose d̄ = (1, 2, 3).

6.1 Singular pairs: Numerical results

According to Reference [32], for a circular cone with apex angle 2δ, the associated singular

exponents are

q1 = q2 = Λ(cos δ),

where

λ = Λ(x) if and only if P m=0
λ (x) = 0.

Here P m
λ (x) is an associated Legendre function of the first kind. It is shown in [32], further,

that the associated singular functions are given by a1(θ) = sin θ and a2(θ) = cos θ.

Using these circular-cone analytical expressions we obtained the “exact” values of the

exponents of the singular terms for a circular cone with apex angle equal to π/2; these are

given by q1 = q2 = 0.14283232400194. Table 6.1 displays the errors (obtained by comparison

with this exact value) arising from our numerical evaluation of these exponents by means of

the algorithm described in Section 3.1—with various numbers Nsp of discretization points.

In order to determine the accuracy with which the vectors {aj
i , i = 1, 2; j = 1, . . . , Nsp}

are obtained, in turn, we compute the projection error:

aj
i −

2π

Nsp

Nsp
∑

j′=1

aj′

i · sin(θj′)√
π

sin(θj)√
π

− 2π

Nsp

Nsp
∑

j′=1

aj′

i · cos(θj′)√
π

cos(θj)√
π

;

these errors are displayed in Table 6.2.



77

Nsp Errors
32 2 × 10−6

64 3 × 10−7

128 4 × 10−8

256 4 × 10−9

512 5 × 10−10

Table 6.1: Errors in the numerical values of qi for a circular cone with apex angle π for various numbers of
discretization points Nsp.

Nsp Maximum error
4 0.5
8 0.35
16 2 × 10−15

32 1 × 10−15

Table 6.2: Maximum error (0 ≤ θ ≤ 2π) in the numerical values of ai(θ) for a circular cone with apex angle
π for various numbers of discretization points Nsp.

6.2 Numerical solution for the circular- and elliptical-conical-point

surfaces

In this section we present a number of results for the circular- and elliptical-conical-point

surfaces described in points 1. and 2. above; in what follows these surfaces are referred to

as surfaces 1. and 2., respectively. In all computations, we set nu = 7 in equation (4.8).

The values of the singular exponents resulting from numerical calculations based on the

algorithm introduced in Section 3.1 are as follows: q1 = q2 = 0.129333226 for surface 1, and

q1 = 0.105667028 and q2 = 0.182260175 for surface 2. The preconditioner exponents (see

Section 5.3), in turn, were taken to equal d = 0.14 for surface 1., and d = 0.19 for surface 2.

In all computations, we set the GMRES residue tolerance ε = 10−8.

Figures 6.3 through 6.6 display the values of the regular parts b(x) of the solutions ν(x)

(cf. equation (3.1)) on the boundary surfaces 1. and 2., for the right hand side (Neumann

condition) g(x) = ∂N(x)
∂n

and g(x) =
∂Pp0(x)

∂n
. In Figure 6.7, in turn, we display the values of

b(x) on the polar line θx = π/64 (selected at a slight departure from θx = 0 for a degree of

generality); in Figure 6.7, we display the values of b(x) on azimuthal lines u1 = c (constant)

for the six values of c (four of these constants are also listed in the first columns of Tables 6.3

through 6.5). Note that Figure 6.8 displays values of b(x) along a curve that passes through

the conical point, and thus, as expected, it has an infinite derivative that is expected there.

We discretize the parameter spaces (uk, vk) (k = 1, 2) with an equi-spaced mesh (uk
h, v

k
h),
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Figure 6.7: Bounded part b(x) of the solution on the azimuthal lines zx = Const. for an elliptical-conical-

point body, and RHS ∂N(x)
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Figure 6.8: Bounded part b(x) of the solution on the polar line θx = π/64 for an elliptical-conical-point

body, and RHS ∂N(x)
∂n
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θx = 0 π/8 2π/8 3π/8 4π/8 5π/8 6π/8 7π/8
zx = 4.7× 10−7 0.00913 -0.0021 -0.0043 -0.0007 0.0123 -0.0001 -0.0036 -0.0016
zx = 6.1× 10−5 0.01186 0.0010 -0.0008 0.0020 0.0137 0.0023 -0.0005 0.0011
zx = 3.5× 10−4 0.0289 0.0019 -0.003 0.0024 0.0302 0.0026 -0.0028 0.002
zx = 4.4× 10−2 0.0203 -0.005 -0.0091 -0.0051 0.0220 -0.0040 -0.0077 -0.0043
zx = 0.24 0.0756 -0.018 -0.032 -0.013 0.012 -0.0267 -0.026 -0.0314

Table 6.3: Errors (shown at selected mesh points close to the conical point) in the bounded part b(x) of

the solution of an elliptical-conical-point problem with RHS ∂N(x)
∂n

obtained from a computational mesh
containing 16× 16 points per patch.

θx = 0 π/8 2π/8 3π/8 4π/8 5π/8 6π/8 7π/8
zx = 4.7 × 10−7 0.0011 -0.0016 -0.0018 -0.0009 0.00278 -0.0008 -0.0017 -0.00158
zx = 6.1 × 10−5 0.00033 -0.0008 -0.0007 -0.0003 0.0013 -0.0003 -0.0007 -0.0008
zx = 3.5 × 10−4 0.0018 -0.0021 -0.0025 -0.0018 0.0025 -0.0018 -0.0025 -0.002
zx = 4.4 × 10−2 -0.0026 -0.0044 -0.0045 -0.0040 -0.0019 -0.0039 -0.004 -0.0043
zx = 0.24 -0.0144 -0.020 -0.0184 -0.02 -0.021 -0.017 -0.012 -0.018

Table 6.4: Errors (shown at selected mesh points close to the conical point) in the bounded part b(x) of

the solution of an elliptical-conical-point problem with RHS ∂N(x)
∂n

obtained from a computational mesh
containing 32× 32 points per patch.

and use the mesh step sizes {1/8, 1/16, 1/32, 1/64, 1/128}. The numerical solution resulting

from the finest mesh, h = 1/128, is used to compute the errors in the solutions obtained on

the coarser meshes. To highlight the quality with which our solver evaluates the function b

near the conical point, we present the errors at various distances from the conical point. At

these distances, we also present the errors on azimuthal lines of the elliptical-conical-point

surface, to show how the errors vary in the variable θ for different distances from the conical

point.

For the circular-conical-point and elliptical-conical-point surface, Tables 6.6 through 6.13

list errors of the numerical nodal values of b(x) and the numerical singular term coefficients

values ck obtained with different mesh sizes. In each table for the error of numerical results

of b(x), maximum errors on azimuthal lines with various rx coordinate values (column) are

θx = 0 π/8 1π/8 5π/8 7π/8
zx = 4.7× 10−7 −0.95× 10−4 −3.48× 10−4 −0.52× 10−4 −0.27× 10−4 −3.22× 10−4

zx = 6.1× 10−5 −1.32× 10−4 −0.72× 10−4 1.09× 10−4 1.19× 10−4 −0.61× 10−4

zx = 3.5× 10−4 0.34× 10−4 −0.46× 10−4 0.80× 10−4 0.82× 10−4 −0.44× 10−4

zx = 4.4× 10−2 0.69× 10−4 0.62× 10−4 1.53× 10−4 2.21× 10−4 1.32× 10−4

zx = 0.24 −0.42× 10−4 1.17× 10−4 3.22× 10−4 3.39× 10−4 1.17× 10−4

Table 6.5: Errors (shown at selected mesh points close to the conical point) in the bounded part b(x) of

the solution of an elliptical-conical-point problem with RHS ∂N(x)
∂n

obtained from a computational mesh
containing 64× 64 points per patch.
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Mesh points per patch zx ∼ 10−7 zx ∼ 10−5 zx ∼ 10−4 zx ∼ 10−2 zx > 0.24
8 × 8 9.8666 4.7239 3.1939 2.5367 1.7536

16 × 16 0.0123 0.0138 0.0302 0.0220 0.0770
32 × 32 0.0027 0.0013 0.0025 0.0045 0.0212
64 × 64 0.0005 0.0002 0.0003 0.0003 0.0023
bmax 0.0559 0.1706 0.3818 0.9083 3.4003

Table 6.6: Maximum errors and maximum function values bmax on various azimuthal lines zx = Const. for
the bounded part b(x) of the solution of an elliptical-conical-point problem with RHS ∂N(x)

∂n
obtained from

meshes of varying degrees of fineness.

Mesh points per patch Error
8 × 8 0.3066

16 × 16 0.0813
32 × 32 0.0148
64 × 64 0.00114

Table 6.7: Errors on the numerical values of the singular-term coefficients c1 and c2 for an elliptical-conical-

point problem with RHS ∂N(x)
∂n

, obtained from meshes of varying degrees of fineness (the coefficients obtained
from the finest (128× 128) mesh are c1 = 19.197 and c2 = −42.1).

presented.

Finally, using the computed integral density ν on the 128× 128 mesh, equation (1.5) and

Simpson’s rule we produce our numerical solution ve(x) of the exterior Neumann problem

with Neumann data g(x) =
∂Pp0(x)

∂n
on the elliptical-conical-point surface. The errors of

the numerical values of ve(x), which were computed by comparison with the analytical

solution ve(x) = Pp0(x), are displayed in Table 6.14. This table gives the values of the

numerical errors on points outside the region D around the conical point with various rx

and θx coordinates. In Table 6.15, we show errors of the numerical ve(x) computed on points

outside the region D, tending to a point on the boundary surface ∂D. Clearly, the quality

of the solutions is very high indeed.

Mesh points per patch zx ∼ 10−7 zx ∼ 10−5 zx ∼ 10−4 zx ∼ 10−2 zx > 0.24
8 × 8 0.9460 0.5248 0.4424 2.0339 1.4312

16 × 16 0.0073 0.0072 0.0159 0.0505 0.6833
32 × 32 0.0027 0.0027 0.0036 0.0124 0.1972
64 × 64 0.0008 0.0005 0.0005 0.0004 0.0073
bmax 0.0010 0.0007 0.0046 1.4950 12.1382

Table 6.8: Maximum errors and maximum function values bmax on various azimuthal lines zx = Const. for

the bounded part b(x) of the solution of an elliptical-conical-point problem with RHS
∂Px0

(x)

∂n
obtained from

meshes of varying degrees of fineness.
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Mesh points per patch Error
8 × 8 3.6566

16 × 16 0.6631
32 × 32 0.0540
64 × 64 0.0036

Table 6.9: Maximum of the errors on the numerical values of the singular-term coefficients c1 and c2 for an

elliptical-conical-point problem with RHS
∂Px0

(x)

∂n
, obtained from meshes of varying degrees of fineness (the

exact singular coefficients are c1 = 0 and c2 = 0).

Mesh points per patch zx ∼ 10−7 zx ∼ 10−5 zx ∼ 10−4 zx ∼ 10−2 zx > 0.24
8 × 8 3.3375 2.1740 1.4186 1.0461 1.1225

16 × 16 0.0266 0.0186 0.0112 0.0139 0.0395
32 × 32 0.0060 0.0027 0.0034 0.0059 0.0115
64 × 64 0.0016 0.0007 0.0005 0.0004 0.0008
bmax(x) 0.0762 0.1861 0.3551 0.7251 1.1040

Table 6.10: Maximum errors and maximum function values bmax on various azimuthal lines zx = Const. for
the bounded part b(x) of the solution of a circular-conical-point problem with RHS ∂N(x)

∂n
obtained from

meshes of varying degrees of fineness.

Mesh points per patch Error
8 × 8 -13.9034

16× 16 -0.0237
32× 32 -0.0067
64× 64 -0.0032

Table 6.11: Maximum of the errors on the numerical values of the singular-term coefficients c1 and c2 for

an circular-conical-point problem with RHS ∂N(x)
∂n

, obtained from meshes of varying degrees of fineness (the
coefficients obtained from the finest (128× 128) mesh are c1 = −23.00635 and c230.56074).

Mesh points per patch zx ∼ 10−7 zx ∼ 10−5 zx ∼ 10−4 zx ∼ 10−2 zx > 0.24
8 × 8 3.7787 2.5741 1.8566 2.3220 1.7998

16 × 16 1.1428 0.6760 0.4577 0.2980 1.0821
32 × 32 0.0036 0.0041 0.0060 0.0153 0.2157
64 × 64 0.0008 0.0005 0.0004 0.0005 0.0098
bmax(x) 0.0009 0.0006 0.0007 0.7837 11.5502

Table 6.12: Maximum errors and maximum function values bmax on various azimuthal lines zx = Const. for

the bounded part b(x) of the solution of a circular-conical-point problem with RHS
∂Px0

(x)

∂n
obtained from

meshes of varying degrees of fineness.

Mesh points per patch Error
8 × 8 20.9947

16 × 16 5.1226
32 × 32 0.0592
64 × 64 0.0028

Table 6.13: Maximum of the errors on the numerical values of the singular-term coefficients c1 and c2 for an

circular-conical-point problem with RHS
∂Px0

(x)

∂n
, obtained from meshes of varying degrees of fineness (the

exact singular coefficients are c1 = 0 and c2 = 0).
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θx = π/5 θx = 2π/5 θx = 3π/5 θx = 4π/5
rx = 1 9.02× 10−5 7.79× 10−5 7.56× 10−5 8.19× 10−5

rx = 2 5.83× 10−5 5.18× 10−5 5.05× 10−5 5.41× 10−5

rx = 3 4.23× 10−5 3.85× 10−5 3.77× 10−5 3.99× 10−5

rx = 4 3.30× 10−5 3.06× 10−5 3.01× 10−5 3.15× 10−5

Table 6.14: Errors in the solution ve(x) of the exterior Neumann problem on an elliptical-conical-point
surface, at various points outside the body (characterized by their rx and θx coordinates).

distance to pk p1 p2

1e-1 18.1 × 10−5 14.7× 10−5

1e-2 6.91 × 10−5 16.3× 10−5

1e-3 44.3 × 10−5 15× 10−5

1e-4 49.1 × 10−5 112× 10−5

1e-5 49.6 × 10−5 112× 10−5

1e-6 49.6 × 10−5 112× 10−5

1e-10 49.6 × 10−5 112× 10−5

Table 6.15: Errors in the solution ve(x) of the exterior Neumann problem for an elliptical-conical-point
surface, at points outside the body limiting at p1(−0.33, 0.24, 0.53) and p2(0.38, 0, 0.32). The corresponding
solution values are ve(p1) = 1.54 and ve(p2) = 1.95.



83

Chapter 7

Conclusions

We have introduced a new method for the evaluation of singular solutions of the Laplace

equation in domains whose boundaries contain conical singularities. Our algorithm evaluates

the most singular terms of the solution separately and with high accuracy, on the basis of a

method of regularization related to a certain cancellation of infinities. This procedure allows

us to treat the remaining (smoother) integrands by means of a high order scheme, thus giving

rise to solutions with a high degree of accuracy.

As far as we know, these are by far the most accurate solutions to date for the cases we

considered, namely, solutions of the Laplace equation in three dimensional space, which blow

up at a conical point of general cross section. For example, Reference [32] only provides the

singular part of the solution for the case of a circular conical point. Reference [5], which

provides the full solution for a general geometrical singularity, only treats cases in which the

solution is bounded, and results in accuracies of low-order. Similar accuracy issues exist in

Reference [31]. We believe the accuracy gains resulting from the methods introduced in this

thesis for blow-up solutions at conical points are very significant indeed.

A number of issues associated with our problem have been left for future work. These in-

clude 1) Matters associated with the ill-conditioning arising at the conical points and require-

ment of large numbers of iterations in the iterative linear algebra solver: the pre-conditioner

introduced in Chapter 5 has only partially alleviated this problem. Future contributions

should also include 2) A generalization of the methodologies introduced in this work to cases

in which the boundary surface does not coincide with the boundary of a straight cone near the

conical point. To deal with such cases a detailed theoretical treatment of the perturbations

induced by the departure from a straight cone geometry must be undertaken. An additional
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item of interest concerns 3) Extension of the methodology developed to produce the most

singular term in the integral-equation solution to enable evaluation of a full asymptotic ex-

pansion for it. Such a result should enable us to improve the conditioning issues mentioned

in point 1) above, and, we expect, it allows one to tackle problems containing conical points

of small spherical angle without requiring inordinately large numbers of iterations. Certainly,

4) Extensions of the ideas introduced in this thesis to other singular problems, including the

Maxwell equations and the elasticity equations, should prove useful in a range of areas of

science and engineering.
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Appendix A

Parameterizations of the patches Pk

and the fixed POU functions

The auxiliary one-dimensional function P (x, t1, t0), which is depicted in Figure 2.4, should

smoothly vary from 1 to 0 between t1 and t0 and be infinitely smooth for all real values of

x; a possible such function is given by the expression

P (x, t1, t0) =



























1 x < t1

e

2.56085
x−t0
t1−t0

−1
×e

−
t1−t0
x−t0

t1 < x < t0

0 x > t0;

(A.1)

see [6].

Using the auxiliary function (A.1) we construct our model surface and its associated

partition of unity. The mapping (x1, y1, z1)x1(u1, v1) from the domain (u1, v1) ∈ H1 =

[0, 1] × [0, 1] to the patch P1 (which we use, indeed, to define this patch) is constructed

follows: we first map the domain H1 to the surface of a straight cone by means of the

transformation


















x̃1 = h · (u1)n(u1) sin φ(2πv1) cos 2πv1

ỹ1 = h · (u1)n(u1) sin φ(2πv1) cos 2πv1,

z̃1 = h · (u1)n(u1)

(A.2)

where h is the height of the straight cone surface, and where φ(2πv1) describes the shape

of the straight cone surface. Here, (u1)n(u1) is the change of variable displayed in equa-

tion (4.7). We then deform the cone so as to prepare it for addition of a sphere top; a com-



86

plete parametrization for the deformed cone patch P1 (as a function of u1 and v1; see (A.2))

is given by























x1 = x̃1 · P ( z̃1

h
, t1, t0) +

√

(h + d)2 − (d + z̃1)2 · x̃1√
(x̃1)2+(ỹ1)2

· P (1 − z̃1

h
, t1, t0),

y1 ỹ1 · P ( z̃1

h
, t1, t0) +

√

(h + d)2 − (d + z̃1)2 · ỹ1√
(x̃1)2+(ỹ1)2

· P (1 − z̃1

h
, t1, t0),

z1 = z̃1.

(A.3)

Here d > 0 is a parameter for the sphere surface to be attached: the sphere is centered at

(0, 0,−d) and has radius h + d. The quantities 0 < t1 < t0 < 1 are two parameters defining

the points at which the conical surface and the sphere surface are joined. The fixed POU

function ω1(x1(u1, v1)) on patch P1 is, quite simply, given by

ω1(x1(u1, v1)) = P (
z1

h
, t1, t0). (A.4)

To describe the mapping (x2, y2, z2) = x
2(u2, v2) from the domain (u2, v2) ∈ H2 = [0, 1]×

[0, 1] to the patch P2, we first map H2 to the surface of the sphere centered at (0, 0,−d)

with radius h + d:


















x̃2 = 2u2 − 1

ỹ2 = 2v2 − 1

z̃2
√

(h + d)2 − ((x̃2)2 + (ỹ2)2) − d.

(A.5)

Then we deform the sphere surface so as to match it with P1; and we thus obtain the

parametrization of the patch P2:























x2 = x̃2 · P (1 − z̃2

h
, t1, t0) + z̃2 · tan(φ(arctan(x̃2, ỹ2)) · x̃2√

(x̃2)2+(ỹ2)2
· P ( z̃2

h
, t1, t0)

y2 = ỹ2 · P (1 − z̃2

h
, t1, t0) + z̃2 · tan(φ(arctan(x̃2, ỹ2)) · ỹ2√

(x̃2)2+(ỹ2)2
· P ( z̃2

h
, t1, t0),

z2 = z̃2.

(A.6)

(Here, arctan(x̃2, ỹ2) maps a point (x̃2, ỹ2) to the angle between the positive x-axis and the

line crossing the origin O and point (x̃2, ỹ2).) The fixed POU function ω2(x2(u2, v2)) is

defined as

ω2(x2(u2, v2)) = P (
z2

h
, t1, t0). (A.7)
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