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Abstract

Waves are everywhere, from the distribution of cars on a highway to the wave pat-

terns in the ocean. Intriguing phenomena in wave propagation, such as Soliton reso-

nance, kink-antikink interaction, self-focusing, and Peakon generation can be used in

many practical applications leading to novel architectures for signal processing and

generation. These E/M based approaches could be particularly useful in the case of

Extremely Wide Band (EWB) (DC to more than 100GHz) circuits and systems where

the limited transistor cut-off frequency, maximum power efficiency, and breakdown

voltage pose serious constraints on the use of conventional circuit techniques.

To overcome the limitations of active devices in EWB signal processing and gener-

ation, we propose a general class of solutions based on novel circuit topologies inspired

by commonly used structures in electromagnetics, and more specifically optics. The

proposed methodology is based on nonlinear and/or inhomogeneous one-dimensional

(1D) transmission lines which we have successfully extended to two-dimensional trans-

mission lattices. The principles behind these designs stem from the mathematical

theory of linear and nonlinear wave propagation. By analyzing the models for the

transmission lines/lattices, we are able to exploit the large body of theory to design

circuits, demonstrating the narrowest reported pulse on silicon (2.5ps), and for a sin-

gle integrated-circuit silicon-based amplifier, the highest achieved center frequency

of operation (85GHz) and the highest achieved power output (120mW) at this fre-

quency. In addition, we have reported the first in-silicon transmission line system

capable of sharpening both rising and falling edges of NRZ data by increasing the

bandwidth. In the end, we will also present how the same approach can be applied to

realize ultra-fast computation systems (such as a sub-nanosecond Fourier and Hankel
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transformers in silicon) and other structures, leading to a new design discipline we

like to call “Optotronics”.
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Chapter 1

Introduction

“The future of integrated electronics is the future of electronics itself. The advantages

of integration will bring about a proliferation of electronics, pushing this science into

many new areas.” as prophesied G. Moore forty years ago [1]. Today we see the

realization of his insight. Not so long ago, a single transistor used to cost a few

dollars. Nowadays, for a few dollars we can buy a memory or a microprocessor which

has tens of billions transistors on it. It seems that no other field has had such a fast

growth.

The continuous development of high performance integrated circuits has led to an

explosion in the communication and computation systems. Over the past few years,

wireless communication has had an immense growth. Cellular phones are an example

of this development. One of the most appealing aspects of wireless networks is that

they avoid the high cost of reconfiguring networks: they can be created in just weeks

by deploying a small number of base stations, to create high-capacity wireless access

systems. They also function well in places where using wires is not an option. The

users have the ability to access voice or data while they are mobile, and thousands of

subscribers could be connected to a network and share its capacity.

This level of efficiency has broken the boundaries and limits of communication by

providing the users easy, unlimited access from any location in the world. Any user

could connect to the network -even from the remotest location- and utilize all the

available resources. This has made the world a smaller place, removing the barrier

in space. According to the U.S. Census Bureau, in 2003, there were 159 million
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cell phone subscribers in the US, up from the 34 million users in 1995. More than

25 million households now own laptop computers, and 5.3 million households have

wireless Internet access [2].

In this expanding marketplace, integrated circuits technology is chosen based on

cost and performance. Technologies such as CMOS, SiGe BiCMOS, InP HBT, GaAs

HBT, and GaN HBT can coexist in today’s market due to performance and cost

tradeoffs. Most microwave and mm-wave (frequencies beyond 30GHz) applications,

such as broadband wireless access or vehicular radars, were only within the realm of

compound semiconductors devices. The main problem with compound semiconductor

technologies is that they are not cost effective. This is due to their inability to reliably

integrate different functions (e.g., digital circuits with large number of transistors)

on a single chip. However, unlike compound semiconductors, the major advantage of

silicon-based technologies is their ever increasing capacity for integration that enables

realization of complex circuits at very low cost. Yet silicon has limited performance

at high frequency applications, creating a need for other compounds.

Fortunately, the speed of integrated devices improves as their size shrinks. Device

scaling has been the main key to success in the semiconductor industry, and it is

applicable for all semiconductor processes including silicon. However, there are at

least two impediments to scaling; The first limitation is the huge development cost of

a new process, and the second problem is technical complications in very small sized

devices. For example, decreasing the size of CMOS devices will result in increasing the

gate leakage due to decreasing the gate dielectric thickness and subthershold leakage.

This phenomenon increases the idle power of digital gates resulting in the loss of

an important advantage of silicon-based technologies. Furthermore, as we reduce

transistors sizes, mesoscopic and short channel effects such as hot electron effects,

drain induced barrier lowering and mobility degradation transpire. The fundamental

limit that we face in scaling the transistors is the gate-dielectric tunneling effect which

limits our gate-oxide thickness to a few atoms or approximately 1nm compared to

the 3.5nm in production today.

As a solution, we should develop innovative circuit design methodologies capable
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of building circuit blocks which operate close to the cut-off frequency of the devices

or even beyond it. In other words, as faster processes are continuously being de-

veloped, we need to develop novel circuit architectures to enhance high frequencies

performance.

1.1 Contributions

In this work, we propose novel circuit topologies inspired by commonly used structures

in electromagnetics, and more specifically optics. The proposed methodology is based

on nonlinear and/or inhomogeneous one-dimensional (1D) transmission lines which we

have successfully extended to two-dimensional transmission lattices. The principles

behind these designs stem from the mathematical theory of linear and nonlinear wave

propagation. By analyzing the models for the transmission lines/lattices, we are able

to exploit the large body of theory to design circuits, demonstrating:

• The narrowest reported pulse on silicon (2.5ps),

• The first in-silicon transmission line system capable of sharpening both rising

and falling edges of NRZ data by increasing the bandwidth,

• For a single integrated-circuit silicon-based amplifier, the highest achieved cen-

ter frequency of operation (85GHz) and the highest achieved power output

(120mW) at this frequency,

• Ultra-fast computation systems such as a sub-nanosecond Fourier and Hankel

transformers in silicon.

Also we show how the same approach can be applied to realize other structures,

leading to a new design discipline we like to call ”Optotronics”.
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1.2 Organization

This thesis concentrates on new ways of designing circuits for very high frequency

and/or high power applications. Chapter 2 reviews the roots of these design ideas

which is the theory of wave propagation in different disciplines. We see that different

effects can be studied by wave propagation theory if the natural wavelength is large

compared to the microscopic length. Then historical background of soliton pulses is

presented. An overview of nonlinear wave propagation in electronics winds up the

chapter.

Chapter 3 to 5 cover the theory of wave propagation in one and two dimensional

LC lattices. they show how to treat the effect of dispersion, nonlinearity, and inhomo-

geneity. Several analytical solutions as well as numerical results have been presented.

The equations that we consider are mostly the model equations for the circuits shown

in chapter 6 and chapter 7. The link between these model equations and well-known

equations such as KdV and nonlinear Schrödinger equation is studied.

Chapters 6 and chapter 7 introduce the application of these theories. Chapter

6 presents two nonlinear transmission lines. The first one is a soliton line, capable

of generating ultra narrow pulses on silicon substrate. Second transmission line can

sharpen both rising and falling edges of NRZ data by increasing the bandwidth. The

design and measurement of these lines is covered. Chapter 7 shows the application of

2D transmission lattices in broadband power combining. this chapter is wrapped up

with simulation and measurement results of a power amplifier fabricated in silicon.

Chapter 8 deals with the interaction of nonlinear waves in LC lattices in the

regime where both (1) wave amplitude is large compared with wavelength and (2)

wavelength is comparable to lattice spacing. Direct numerical simulations show that

two plane waves of equal amplitude A incident on the lattice boundary can result in

a single outgoing pulse of amplitude > 6A, which exceeds the A+A→ 4A bound in

resonance theory for the Kadomtsev-Petviashvili (KP) equation. The KP equation

is the weakly nonlinear continuum limit of the lattice equations. This study shows

that resonance is robust even in a strongly nonlinear, highly discrete system. The
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effects of unequal input amplitudes, out-of-phase input signals, multiple collisions,

and non-sinusoidal inputs are considered.

Finally we generalize these techniques in chapter 9. We show, through direct

numerical simulations of Kirchhoff’s laws, that two-dimensional (2-D) LC lattices

support optical phenomena such as refraction and diffraction, which can be applied

to design (1) electrical lens and (2) analog Fourier transform circuits. Numerical

simulations are validated by analysis of continuum models that effectively capture

the behavior of the discrete lattice equations, for signals with frequency content in

a certain range. These models consist of, respectively, a two-dimensional Helmholtz

equation and a two-dimensional Helmholtz equation with a fourth-order dispersive

correction. Solutions of these models are used to derive standard and dispersively

corrected versions of Snell’s law, as well as diffraction integrals for 2-D waves. Issues

related to fabricating such lattices on a standard silicon substrate are discussed.
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Chapter 2

Wave Propagation

Waves are everywhere; from the distribution of cars on a highway [3] to the formation

of clouds in sky [4], most waves are disturbances that propagate through a medium,

often transferring energy. By propagating, waves transfer energy from one point to

another, with little or no permanent displacement of the particles of the medium. In

other words, relative to the total mass of the medium, there is little or no associated

mass transport. Usually waves are oscillations around some fixed positions in a given

medium. Figure 2.1 shows few examples of wave phenomenon.

All waves, longitudinal or transverse, electric or elastic, linear or nonlinear, have

certain similar behavior in common. The model of wave propagation in a dispersive

medium developed by Lord Kelvin, has been successfully used for different types of

waves. One can model and explain various phenomena by applying wave propaga-

tion theory. As this work focuses more on nonlinear waves and their characteristics,

we present the following examples to illustrate this approach. There are excellent

references on linear wave phenomena, such as [5][6][7].

2.1 Nonlinear Phenomena

We have all seen propagation of wave in a corn field. Microscopically, this wave is

generated since the stalks of the corn move harmonically due to the wind, causing

the neighboring ears to interact with each other. Macroscopically, the corn field can

be viewed as a dense fluid with waves propagating on its surface due to the flow of
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Figure 2.1: Waves are everywhere: from music instruments to the surface of ocean
and from freeways to Mexican wave in stadiums.

the air. This is the well-known Kelvin-Helmholtz instability which results from two

adjacent shears of fluids traveling with different velocity. Interestingly, this instability

is a function of relative velocity of the shears and it is independent of the density of

the fluids. A non-zero curvature will lead to a slight centrifugal force which can cause

the flow of one fluid around the other. This effect leads to a change in pressure, which

amplifies the ripple. The most familiar example of such a behavior is wind blowing

over calm water. Tiny dimples in the smooth surface will quickly be amplified to small

waves and finally to frothing white-caps. Referring back to the corn field, if the stalk

bending is more than a threshold, the stalk will break resulting in a permanent finger

print of the wave over the field. One way to control Kelvin-Helmholtz instabilities is

to introduce perpendicular periodicities; that means we could save corns by adding

periodic trees perpendicular to the direction of the wind [8].

Another example of Kelvin-Helmholtz instability in the nature is the formation of
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a class of clouds called Herringbone clouds. Figure 2.2 shows a good example of such

clouds before it diffuses.

Figure 2.2: a Kelvin-Helmholtz instability rendered visible by clouds in Australia
(source: Wikipedia, the online encyclopedia)

Yet another place that we have experienced nonlinear effects is car traffic. Whitham

[3] was first who modeled car traffic using fluid mechanics and explained the effect

of traffic lights, condition of the road, and street junctions with the propagation of

shock waves. This approach had led to a breakthrough in studying and controlling

the car traffic. [9][10][11][12].

A tidal bore is a remarkable member of the class of the nonlinear waves. It occurs

in shallow rivers with a mild slopping riverbed and a broad funnel shaped estuary.

The tide forms a wave that travels up in such a river or narrow bay, against the

direction of the current [13][14]. For a tidal bore to be formed, a large tidal range

-typically more than six meters between high and low water- is necessary. Because of

these conditions, bores occur in relatively few locations worldwide. Figure 2.3 shows

an example of this fascinating wave.

The flow of electrons in a solid is easily explained by a Drude (1863-1906) model.

In this model, the current density J is related to the electrical field E by J = (σ)E =

(neµ)E = (ne2τ/m)E where n is electron density, e is its charge, µ is electron mobility,
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Figure 2.3: The tidal bore in Turnagain inlet (source: Wikipedia, the online encyclo-
pedia)

and m is its effective mass to take into account the periodicity of the lattice in which

the electrons transfer in. If the above parameters are constant, we will end up with

Ohm’s law which is a linear relationship between current density and electrical field.

However, for large values of electrical field, the electron might be excited to a higher

band where the effective mass of the electron may change, due to different relationship

between energy and wave number in the new band. For some materials, e.g., GaAs,

the effective mass of electron at the new band is larger, resulting in a decrease of J

with increasing E. In such a case, the differential resistance is negative and it results

in an instability mechanism that leads to propagation of nonlinear stable pulses known

as Gunn domains [15]. This phenomenon provide the basic idea for many oscillators

[16].

As the last example, let’s briefly discuss one of the great discoveries of the last

century: morphogenesis (from the Greek morph shape and genesis creation), which

is one of fundamental aspects of developmental biology. Theory of morphogenesis

involves an attempt to understand the processes that control the organized spatial

distribution of cells during the embryonic development of an organism and which give

rise to the characteristic forms of tissues, organs, and overall body anatomy. Some of
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the earliest ideas on how physical and mathematical processes and constraints affect

biological growth were written by D’Arcy Wentworth Thompson [17] and Alan Turing

[18]. They showed that a homogenous mixture of chemicals could lead to periodic time

variation in the concentration of a particular chemical or to an inhomogeneous spatial

separation of chemicals. Also Turing demonstrated that nonlinear chemical reactions

together with diffusion could lead to a spatial separation of the chemicals. Later

experiments showed that a homogenous mixture of certain chemicals could result in

spatial color pattern. All of these effects can be explained in terms of nonlinear wave

propagation in time and space.

Conclusion. The message of these wide range of examples is that we could effec-

tively study different effects by wave propagation theory if the natural wavelength is

large compared to the microscopic length.

2.1.1 Soliton

Perhaps soliton is the most famous nonlinear wave. Soliton is a self-reinforcing soli-

tary wave caused by a delicate balance between nonlinear and dispersive effects in

the medium. It is not easy to define precisely what a soliton is unless we get into

substantial mathematics. Drazin and Johnson [19] describe solitons as solutions of

nonlinear differential equations which

1. represent waves of permanent form;

2. are localized, so that they decay or approach a constant at infinity;

3. can interact strongly with other solitons, but they emerge from the collision

unchanged apart from a phase shift, so they act somewhat similar to particles.

The concept of a solitary wave was introduced to science by John Scott Russell

170 years ago [20]. In 1834 he observed a wave which was formed when a rapidly

drawn boat came to a sudden stop in narrow channel. According to his diary, this

wave continued ”at great velocity, assuming the form of a large solitary elevation,
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Figure 2.4: Soliton on the Scott Russell Aqueduct on the Union Canal (Photograph
by K. Paterson)

a well-defined heap of water that continued its course along the channel apparently

without change of form or diminution of speed”. He pursued the wave on horseback

for more than a mile before returning home to reconstruct it in a water tank. Figure

2.4 shows where he observed soliton and a successful attempt to recreate it. After

this discovery, soliton has become important subject of research in diverse fields of

physics and engineering. Solitons also occur in other media such as:

• The flow of heat in solids is related to the propagation of solitons. The rela-

tionship between soliton amplitude, velocity, and width has been verified. At

the microscopic level, usually we deal with phonons. There are number of in-

teresting phenomena that can be explained by this point of view. For example

we could study phonon-phonon interaction which is essential for understanding

thermal conductivity. Fermi, Ulam, and Pasta [21] numerically showed that

phonons don’t come to thermal equilibrium, but rather they have nearly pe-

riodic variations. Ten years later Zabusky and Kruskal [22] showed that this

is correct and it can be explained in terms of solitons. We will discuss this

remarkable discovery in the section 2.2.

• A. S. Davydov [23] has applied similar rules to the transport of energy in protein
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chains. He studied chemical changes which leads to the transfer of adenosine

triphosphate (ATP) in α-helical protein chains with the idea of soliton propa-

gation. Here the dispersion caused by the resonance interaction of intrapeptide

dipole vibrations amide-I and nonlinearity caused by the connection of these

vibrations with local displacement of equilibrium positions of peptide groups.

• In 1973, Akira Hasegawa [24] of Bell Labs was the first to suggest that solitons

could exist in optical fibers, due to a balance between self-phase modulation

[25] and anomalous dispersion [26]. He also proposed the idea of a soliton-based

transmission system to increase performance of optical telecommunications.

Regardless of their medium, solitary waves show very intriguing properties, for

example in a 2D medium, under certain conditions, two solitons can combine in a

nonlinear fashion meaning that they combine to a single outgoing wave with peak

amplitude greater than the sum of the incoming waves’ amplitudes. Figure 2.5 shows

an example of this phenomenon on the coast of California.

Figure 2.5: Nonlinear interaction of two solitary waves in the coast of California
(Photograph by author)

We will discuss this behavior and other properties of solitons in the following

chapters.
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2.2 Wave Propagation in Periodic Structures

The first work on wave propagation in periodic structures was that of Newton [27] in

his effort to derive a formula for the velocity of sound. He modeled the propagation

of sound in the air by propagation of an elastic wave along a lattice of masses and

springs. The lattice consists of equispaced equal masses, m, that attract each other

with elastic force with constant e as shown in figure 2.6.

m m m m m

d

Figure 2.6: The one-dimensional atomic chain model

He obtained a closed form expression for the velocity of sound:

V = d

√
e

m
=

√
ed

ρ
(2.1)

where d is the spacing of masses and ρ is density. To verify this model, he used the

density of air and isothermal bulk modulus of air as ed. This computed result was

smaller than experimental value and hence the model did not match with reality. In

1822 Laplace noticed that expansions and condensations associated with sound waves

occur adiabatically and hence adiabatic elastic constant should be used instead of the

isothermal value. With this correction the model matched experiments. After this

initial work, number of scientists have looked into various kinds of wave propagation

in periodic structures. For a complete historical background see [33].

2.2.1 Fermi-Pasta-Ulam Experiment: Birth of Soliton

Among different problems in this category, heat-transfer probably concerns us the

most. Fermi, Ulam, and Pasta [21] studied the flow of incoherent thermal energy

in a solid by modeling it by a 1-D lattice consisting of equal masses connected with

nonlinear elasticity (similar to Figure 2.6 but with nonlinear springs).
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For small displacements, the interactions among particles are harmonic and there-

fore the equations of motion of particles can be decoupled and the dynamics of the

lattice can be described by superposition of mutually independent normal modes.

Because these normal modes are independent, if a normal mode is excited, its energy

is not transferred to other modes. As a result, a lattice with harmonic oscillations is

called nonergodic: it never reaches the thermal equilibrium.

What would happen if we add nonlinearity to the equation? Debye [28] and

Peierls [29] suggested that in this case, the normal modes will interact and the energy

transfers from one mode to others. Consequently, after many iterations, the system

would exhibit ’thermalization’ that is an ergodic behavior in which the influence of

the initial modes of vibration fades in importance and the system becomes random,

with all modes excited almost equally. In 1955, Fermi, Pasta, Ulam attempted to

verify this assumption with one of the first dynamics calculations performed on a

computer. They assumed a quadratic nonlinearity and surprisingly they realized that

the system does not approach energy equilibrium, that is, the energy in one mode

does not spread to the rest. Instead the energy almost periodically returned to the

original mode.

This recurrence phenomenon, known as FPU problem, suggests that the system

is almost completely integrable. Ten years later, Zabusky and Kruskal [22] showed

that, for the FPU problem with a cubic nonlinearity, the Korteweg-de Vries (KdV)

equation [30] (discovered in 1895 by D. J. Korteweg and G. de Vries to model water

waves in a shallow canal) represents a good approximation to the actual equations of

motion of the system. They also observed the asymptotic breakdown of the solution

of the KdV equation into a train of solitons, whose particle-like behavior allowed

them to interpret the FPU recurrence as a Poincaré recurrence of the initial state:

A sinusoidal initial condition launched to the system evolves to multiple solitons

which travel with different velocities. These solitons collide but they emerge from

the collision unchanged apart from a phase shift. At some point in time, there is an

instant when the solitons collide at the same point and hence the initial condition

comes close to recurrence. The exact recurrence is not possible due to small phase
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shifts associated with soliton collisions.

In 1967 Gardner [31] showed that if the initial condition is localized, we can

find the analytical solution of the KdV equation through inverse scattering method.

One year later, Miura [32] developed a method of generating an infinite sequence of

constants of motion associated with the KdV equation. This was another explanation

of why solitons have their structural stability.

At the end of this section, let us note that the classical work of Brillouin [33]

on crystal lattices makes explicit the analogy between crystal lattices, mass-spring

models, and LC lattices in one, two, and three spatial dimensions. Brillouin’s primary

focus in this work was the development of band-gap theories for lattices with periodic

inhomogeneities.

2.3 Nonlinear Waves in Electronics

2.3.1 Motivation

Recently, there has been growing interest in using silicon-based integrated circuits

for broadband, high frequency applications. The high level of integration offered by

silicon enables numerous new topologies and architectures for low-cost reliable SoC

applications at microwave and millimeter wave bands, such as broadband wireless

access (e.g., WiMax), vehicular radars at 24GHz and 77GHz citePfeiffer, short range

communications at 24GHz and 60GHz, and ultra narrow pulse generation for UWB

radar.

If we attempt to build these high frequency boradband circuits with transistors,

we are limited by the highest possible transistor cut-off frequency fT , the maximum

efficiency of the transistor, and also its breakdown voltage. These same considera-

tions hold for the wider class of active devices. Even if we restrict consideration to

silicon-based technologies, active devices are technology-dependent, making it diffi-

cult to port the design from one CMOS technology to another. Therefore, active

device solutions to the signal generation/processing problem will be limited in both
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functionality and portability. Also, existing high frequency circuits typically use ei-

ther tuned circuits (e.g., LC tank) or microwave techniques (e.g., transmission lines as

impedance transformers). These approaches are inherently narrow band and cannot

be used in applications such as ultra wide-band impulse radio and ultra wide-band

radar (e.g., ground penetrating radar), pulse sharpening, jitter reduction, or a wide

band power amplifier.

The theory of wave propagation in linear and nonlinear media is an attractive

candidate to face these challenges. For example the ability of solitons to propagate

with small dispersion can be used as an effective means to transmit data, modulated

as short pulses over long distances; one example of this is the ultra wide band impulse

radio that has gained popularity [34].

Furthermore, another advantage of using electrical medium as the wave propa-

gation medium is that it could provide a great platform to demonstrate and verify

mathematical and physical theories. For example, a two dimensional LC lattice,

shown in the next section, is a perfect medium to observe nonlinear wave propaga-

tion phenomena such as formation of solitons, kinks, Kelvin-Helmholtz instability,

and nonlinear Schrödinger equation. It is also possible to develop new phenomena in

electrical circuits which have many applications such as power combining and ultra

fast specialized computations.

2.3.2 Electrical Wave Propagation Medium

An electrical wave propagation medium could be formed by connecting inductors and

capacitors. Figure 2.7 shows two examples of these medium: a 1D LC ladder and

a 2D LC lattice. Of course, these are not the only possible configurations for LC

lattices: We could build high-pass, band-pass, and low-pass structures, triangular,

rectangular, and hexagonal lattices, add resistors or active devices to the lattice, and

add nonlinear elements. These structures can support wave propagation in certain

frequency ranges. For example, Figure 2.8 shows three low-pass electrical lattice with

their cut-off frequency, ωc, that is the maximum frequency that can travel inside the
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Figure 2.7: Two examples of electrical wave propagation media: a a 1D LC ladder
and a 2D rectangular LC lattice

lattice. For details on how to compute this frequency please see Chapters 4 and

8. It is noteworthy that with today’s state of the art integrated circuit technolo-

gies, on a silicon substrate, if we use micro strip lines, as inductors and metal to

metal capacitance as capacitors, the minimum possible inductance and capacitance

are, approximately, LM = 30 pH and CM = 5 fF. Below these values, the parasitic

inductance and capacitance would be dominant. Using these values, we find that the

maximum frequency for plane wave propagation on a 2-D rectangilar silicon trans-

mission lattice is fM ≈ 1.16 THz which is much higher than the cut-off frequency of

actives in the same process.

Generally, these lattices can be inhomogeneous where the values of inductors and

capacitors vary in space. When the inductors and capacitors do not change too

abruptly, it is possible to define local parameters such as characteristic impedance,

propagation delay, at each node as a function of the location of that node. Defining

local impedance and velocity as functions of location, allows us to engineer the lattice

to achieve the desired propagation and reflection properties. In general, we might

change one of the lattice parameters such as impedance, velocity, inductance, capac-
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Figure 2.8: A few possible discrete 2D low-pass LC Lattices: each branch is an
inductor and at each node, there is a capacitor to the ground.

itance, or even the termination of different nodes in order to get the desired transfer

function. Figure 2.9 shows an example of this idea where input signal is applied to

the left boundary and the output signal is taken from the right boundary.

So a transmission surface could be used to process the input signal. This is poten-

tially a very fast computation technique and is very similar to changing ε and µ of a

medium to change the propagation of an EM wave, or the case of quantum mechanics

where changing potential barrier could result in desired scattering parameters.

2.3.2.1 Sources of Nonlinearity

The nonlinear elements could be added to the electrical lattice in order to form

electrical nonlinear wave propagation media. The nonlinear elements could be voltage

dependant capacitors or current dependant inductors. In this work, we mainly focus

on nonlinear capacitors, since it is not easy to fabricate nonlinear inductors in today’s

integrated processes.

An accumulation mode MOS varactor [35] is an example of the voltage dependant

capacitance. Figure 2.10 shows the structure and characteristic of this device. The

structure is very similar to an nMOS transistor but it has n+ source and drain inside

an n-tub instead of a p-tub. As gate voltage increases more electron accumulates un-

der the gate, reducing the effective spacing between capacitor plates. The secondary
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Figure 2.9: The lattice can be engineered to achieve desirable transfer function

reduction in capacitance is due to poly-silicon depletion [36][37] and short-channel

charge quantization [37] effects.
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Figure 2.10: An accumulation mode MOS varactor with its characteristic

2.3.3 Historical Remarks

Compared to other disciplines like optics or plasma physics there has not been lots

of work on nonlinear wave propagation in electrical domain.

It has been known [38][39][40][4] since the 1960s that the presence of voltage-

dependent capacitors in these one-dimensional structures leads to nonlinear wave
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phenomena. Scott’s classical treatise [4] was among the first to treat the physics of

transmission lines. Scott showed that the Korteweg-de Vries (KdV) equation describes

weakly nonlinear waves in the 1D uniform nonlinear transmission line (NLTL). Later,

Nejoh showed that if the nonlinearity is moved from the capacitor parallel to the

shunt branch of the line to a capacitor parallel to the series branch, the nonlinear

Schrödinger (NLS) equation is obtained instead [41].

In 1982, model equations for 1D lines that combine nonuniformity, nonlinearity,

and resistive loss have been derived by Pantano [42]. In his work, he showed the

Burgers- and KdV-type equations govern propagation of waves in NLTL. He also

found solitons with varying characteristics. This was a great step toward modeling

the NLTL, but more analytical and numerical results were necessary. In other work

by Ikezi, numerics and experiments [43] indicated that a nonuniform NLTL could

be used for ”temporal contraction” of pulses. Later, Rodwell [44] used nonlinear

capacitors on a GaAs substrate to generate picosecond pulses. He also used NLTL to

form shock waves with very fast rising edge.

Also, 1D nonlinear transmission lines have been studied by various groups [45] [46]

[43] [47] [48] with a focus on generation of ultrashort, high-power, stable electrical

pulses. Finally, Ballantyne [49] used a uniform NLTL and a feedback loop to make a

baseband soliton oscillator in electrical domain.

Because of lack of application and higher level of complexity, two dimensional

nonlinear LC lattices have received much less attention. Recently, Dinkel [50], as-

sumed a uniform, nonlinear 2D lattice and showed that the Kadomtsev-Petviashvili

(KP) equation [51] describes weakly nonlinear wave propagation in such lattices.

At the other end of the spectrum, nonuniform linear transmission lines have been

extensively used by the microwave community for impedance-matching and filtering.

In fact, the idea of a nonuniform linear transmission line goes back to the work of

Heaviside in the nineteenth century–see Kaufman’s bibliography [52] for details.

It seems that more analysis and physical interpretation in this area is needed,

specially for two dimensional structures that promise new applications. Theory of

wave propagation in one- and two-dimensional transmission lattices with the aim of
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clarifying the effects of discreteness, nonuniformity, and nonlinearity is necessary. By

finding the links between wave propagation in electrical structures and other media

such as fluids or plasma, we could exploit the theory of wave propagation and find

new applications for NLTLs. In the following chapters, we will discuss the theory of

1D and 2D transmission media and then demonstrate various applications for them,

and compare their performance with classical approaches.



22

Chapter 3

Theory of One-Dimensional
Transmission Line

Before proceeding to the theory of wave propagation in 1D transmission line, we make

a few definitions , in table 3.1 that will help categorize the transmission lines under

consideration.

In this work, We review one-dimensional transmission line theory with the aim

of clarifying the effects of discreteness, nonuniformity, and nonlinearity. Continuum

equations that accurately model these effects are derived. The speed and ampli-

tude of outgoing signals are analyzed directly from the continuum model. We show

numerically that introducing weak nonlinearity causes outgoing pulses to assume a

soliton-like shape. In the present work, we do not consider current-dependent induc-

tors because of implementation issues.

Definitions:
Linear Capacitors and inductors are constant with

respect to changes in voltage.
Nonlinear Capacitors are voltage-dependent and/or

inductors are current-dependent.
Uniform Identical capacitors and inductors are used

throughout the line.
Nonuniform Different capacitors and inductors are used

in different parts of the line.

Table 3.1: Definition of terms
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Figure 3.1: 1D artificial transmission line

3.1 Uniform Nonlinear 1D Transmission Lines

In this section, we review a few facts about uniform NLTLs and their use for pulse

narrowing (Figure 3.1). The nonlinear transmission line we consider, consists of

series inductors and nonlinear (voltage dependant) shunt capacitors. At node n in

the transmission line, Kirchoff’s laws yield the following coupled system of ODEs:

Vn − Vn+1 =
dφn+1/2

dt
(3.1a)

In−1/2 − In+1/2 =
dQn

dt
. (3.1b)

Here φn+1/2 = `In+1/2 is the magnetic flux through the inductor that is between nodes

n and n+1, and dQn = c(Vn)dVn is the charge on the varactor at node n. Using this,

(3.1) can be rewritten and combined into

`
d

dt

[
c(Vn)

dVn

dt

]
= Vn+1 − 2Vn + Vn−1. (3.2)
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Starting from this semi-discrete model, we develop a continuum model in the standard

way. Write xn as the position of node n along the line; assume that the nodes

are equispaced and that h = xn+1 − xn is small. Then, define V (x, t) such that

V (xn, t) = Vn(t). This means that Vn+1 = V (xn+1) = V (xn + h). We Taylor expand

to fourth-order in h and find that (3.2) is equivalent to

`
∂

∂t

[
c(V )

∂V

∂t

]
= h2∂

2V

∂x2
+
h4

12

∂4V

∂x4
. (3.3)

Let L = `/h and C(V ) = c(V )/h be, respectively, the inductance and capacitance

per unit length. Then (3.3) becomes

L
∂

∂t

[
C(V )

∂V

∂t

]
=
∂2V

∂x2
+
h2

12

∂4V

∂x4
. (3.4)

We regard this as a continuum model of the transmission line that retains the effect

of discreteness in the fourth-order term.

3.1.1 Discreteness Generates Dispersion

Considering small sinusoidal perturbations about a constant voltage V0, we compute

the dispersion relation∗ for (3.4):

ω(k) = kv

√
1− h2

12
k2, (3.5)

where v = 1/
√
LC(V0)). We see that for h > 0, ω(k) depends nonlinearly on k.

Wavetrains at different frequencies move at different speeds.

In the applied mathematics/physics literature, one finds authors introducing dis-

persion into transmission lines through the use of shunt-arm capacitors [41]. This is

unnecessary. Experiments on transmission lines we have described, without shunt-

∗Here L and C are distributed parameters with units of, respectively, inductance per unit length
and capacitance per unit length—this implies that v has units of velocity. Meanwhile, k has units
of inverse length here, so the quantity hk is dimensionless, consistent with the h → 0 limit of the
dispersion relation that we describe later.
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arm capacitors, reveal that dispersive spreading of wavetrains due to the discrete

nature of the line is a commonly observed phenomenon. Accurate continuum models

of the transmission line we have considered should include this discreteness-induced

dispersion. Therefore, we use information about the h = 0 case only if it leads to

mathematical insights about the h > 0 case, which is what truly concerns us.

3.1.2 Traveling Wave Solutions

Retaining h as a small but non-zero parameter, we search for traveling-wave solutions

of (3.4), of the form V (x, t) = f(u) where u = x − νt. Using this ansatz and the

varactor model C(V ) = C0(1− bV ), we obtain the following ODE:

(ν2 − ν2
0)f

′′ =
h2ν2

0

12
f (4) +

bν2

2

(
f 2
)′′
, (3.6)

where ν−2
0 = LC0 and primes denote differentiation with respect to u. Now integrating

twice with respect to u, we obtain

(ν2 − ν2
0)f =

h2ν2
0

12
f ′′ +

bν2

2
f 2 + Ãu+ B̃. (3.7)

We search for a localized solution, for which f, f ′, f ′′ → 0 as u → ±∞. This forces

the constants to be zero: Ã = B̃ = 0. Now multiplying (3.7) by 2f ′, integrating with

respect to u, and again setting the constant to zero:

(f ′)
2

= Af 2 −Bf 3, (3.8)

where

A =
12(ν2 − ν2

0)

h2ν2
0

and B =
4bν2

h2ν2
0

.

The first-order ODE (3.8) can be integrated exactly. Taking the integration constant

to be zero, we obtain the single-pulse solution

V (x, t) =
3(ν2 − ν2

0)

bν2
sech2

[√
3(ν2 − ν2

0)

ν0h
(x− νt)

]
. (3.9)
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The sech2 form of this pulse is the same as for the soliton solution of the Korteweg-de

Vries (KdV) equation. Indeed, applying the reductive perturbation method to (3.4),

we obtain KdV in the unidirectional, small-amplitude limit.

3.1.3 Reduction to KdV

Starting with (3.4) and again modeling the varactors by C(V ) = C0(1−bV ), introduce

a small parameter ε� 1 and change variables via

s = ε1/2(x− ν0t), T = ε3/2t, (3.10)

with ν−2
0 = LC0. Writing

V (x, t) = V (ε−1/2s+ ν0ε
−3/2T, ε−3/2T ),

we find that
∂

∂x
= ε1/2 ∂

∂s
and

∂

∂t
= ε3/2 ∂

∂T
− ε1/2ν0

∂

∂s
. (3.11)

Using the formula for C(V ), we rewrite the left-hand side of (3.4):

LC0
∂

∂t

[
(1− bV )

∂V

∂t

]
= ν−2

0

∂2

∂t2

(
V − b

2
V 2

)
.

Using this and (3.11), we rewrite (3.4) in terms of the long space and time variables

s and T :

ν−2
0

(
ε3 ∂

2

∂T 2
− 2ε2ν0

∂2

∂T∂s
+ εν2

0

∂2

∂s2

)(
V − b

2
V 2

)
= ε

∂2V

∂s2
+
h2

12
ε2∂

4V

∂s4
(3.12)

Now introducing the formal expansion

V = εV1 + ε2V2 + · · · , (3.13)
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the order ε2 terms in (3.12) cancel. Keeping terms to lowest order, ε3, we find

ν0
∂2V1

∂s∂T
+
bν2

0

4

∂2V 2
1

∂s2
+
ν2

0h
2

24

∂4V1

∂s4
= 0, (3.14)

In what follows, we abuse notation by using V to denote V1. Integrating (3.14) with

respect to s yields the KdV equation:

∂V

∂T
+
bν0

2
V
∂V

∂s
+
ν0h

2

24

∂3V

∂s3
= 0. (3.15)

The KdV equation has been investigated throughly and many of its properties are

well-known, including solution by inverse scattering, complete integrability, and geo-

metric structure [8]. Hence we will not pursue these topics here.

3.1.4 Remark 1: Zero-Dispersion Case

If we had a purely continuous transmission line, we would take the h → 0 limit of

(3.4) and obtain

L
∂

∂t

[
C(V )

∂V

∂t

]
=
∂2V

∂x2
. (3.16)

This equation, which in general yields discontinuous shock solutions, has been studied

before[58] and we will not repeat the general analysis. However, note that if we carry

out the reductive perturbation method on (3.16), we end up with the h→ 0 limit of

(3.15), which is the inviscid Burgers equation:

∂V

∂T
+
bc0
2
V
∂V

∂s
= 0. (3.17)

It is well-known [59] that for any choice of initial condition V (x, 0), no matter how

smooth, the solution V (x, t) of (3.17) develops discontinuities (shock waves) in finite

time. Meanwhile, for large classes of initial data, the KdV equation (3.15) possesses

solutions that stay smooth globally in space and time[60].

What is intriguing is this: suppose we keep h as an arbitrary, non-zero parame-

ter and solve (3.15) analytically, using the inverse scattering method. We obtain a
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function uh(x, t). In the work of Lax and Levermore[61], it was shown that in the

zero-dispersion h → 0 limit, the sequence uh(x, t) does not converge to a solution of

Burgers’ equation (3.17). Therefore, we conclude that the h > 0 continuum model

allows fundamentally different phenomena than the h = 0 model. In the nonlinear

regime, we must keep track of discreteness.

3.1.5 Remark 2: Linear Case

Note that if C(V ) = C is constant, we arrive at the linear, dispersive wave equation

∂2V

∂t2
− 1

LC

∂2V

∂x2
=
h2

12

∂4V

∂x4
. (3.18)

This equation can be solved exactly using Fourier transforms. In fact, we will carry

out this procedure for a similar equation in the following section.

3.1.6 Frequency Response

So far we have discussed special solutions of (3.4) and the KdV equation. Our primary

concern is the transmission lines for the mixing of EWB signals. The physical setup

requires that an incoming signal enter the transmission line at, say, its left boundary.

The signal is transformed in a particular way and exits the line at, say, its right

boundary.

Various authors have examined the initial-value problem for the KdV equation.

It is found that, as t → ∞, the solution of the KdV equation consists of a system

of interacting solitons. Therefore, we expect that incoming sinusoidal signals will be

reshaped into a series of soliton-like pulses. Suppose we wish to determine the precise

frequency response in the nonlinear regime: given an input sinusoid of frequency α,

we expect to see solitons of frequency F (α) at the output end of the line. We will

address the problem of quantitatively determining F (α) in future work.

For now, we mention that a comprehensive mathematical analysis of the quarter-
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plane problem

ut + uux + uxxx = 0 (3.19a)

u(x, 0+) = 0 (3.19b)

u(0, t) = g(t) (3.19c)

for the KdV equation is not possible at this time. This includes the frequency response

problem for which g(t) = A sinαt. Inverse scattering methods applied to (3.19) yield

information only in the simplest of cases, i.e. when g(t) is a constant[62]. The problem

is that in order to close the evolution equations for the scattering data associated with

(3.19), one needs to postulate some functional form for ux(0, t) and uxx(0, t). It does

not appear possible to say a priori what these functions should be.

One approach[63] is to postulate that these functions vanish identically for all

t. They obtain approximate closed-form solutions in the case where g(t) is a single

square-wave pulse, with g(t) ≡ 0 for t > T . In future work, we will investigate

whether this is possible if g(t) is a sinusoidal pulse.

In this work, we attempt an analytical solution of the frequency response problem

only in the linear regime. For the nonlinear regime, we discuss special solutions and

the solution of the initial-value problem for the underlying model equations, to gain

a qualitative understanding of the models. For quantitative information about the

general nonlinear, nonuniform frequency response problem, we use direct numerical

simulations of the semidiscrete model equations.

3.2 Nonuniform Linear 1D

In this section, models for nonuniform transmission lines will be derived and their

dynamics will be discussed. We study the one-dimensional case because they can be

solved exactly; these solutions will be used in our analysis of the two-dimensional

case. By nonuniform, we mean that the inductance L(x) and capacitance C(x) varies
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as a function of position:
∂L

∂x
6= 0,

∂C

∂x
6= 0.

3.2.1 Linear case

For now, assume that the line is linear:

∂L

∂I
= 0,

∂C

∂V
= 0.

Then, modifying (3.1), we obtain the exact, semi-discrete model

Vn − Vn+1 = `n+1/2

dIn+1/2

dt
(3.20a)

In−1/2 − In+1/2 = cn
dVn

dt
, (3.20b)

which can be combined into the single second-order equation

`n+1/2(Vn−1 − Vn)− `n−1/2(Vn − Vn+1) = cn`n−1/2`n+1/2
d2Vn

dt2
. (3.21)

Let L(x) and C(x) be, respectively, the inductance and capacitance per unit length

at the position x along the transmission line. This yields the relations L(x) = `n/h

and C(x) = cn/h, and allows us to expand

`n+1/2 = hL(x+ h/2) = h

(
L+

h

2

dL

dx
+
h2

8

d2L

dx2
+
h3

48

d3L

dx3
+O(h4)

)
`n−1/2 = hL(x− h/2) = h

(
L− h

2

dL

dx
+
h2

8

d2L

dx2
− h3

48

d3L

dx3
+O(h4)

)
.

Expanding V as before, we retain terms up to fifth-order in h on both sides:

h3(LVxx − VxLx) + h5

(
1

12
LVxxxx +

1

8
LxxVxx −

1

6
LxVxxx −

1

24
LxxxVx

)
= h3C

(
L2 − h2

4
(Lx)

2

)
Vtt, (3.22)
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where we have used subscripts to denote differentiation. We now assume that L varies

slowly as a function of space, so that L� hLx. Hence our continuum model is:

Vxx − LCVtt = Vx
Lx

L
− h2

(
1

12
Vxxxx −

1

6

Lx

L
Vxxx

)
. (3.23)

To be clear, we specify that L : [0,∞) → R and C : [0,∞) → R are smooth and

positive. The parameter h is a measure of discreteness, which as discussed above,

contributes dispersion to the line.

3.2.2 Physical Scenario

We are interested in solving the following signaling problem: the transmission line

is dead (no voltage, no current) at t = 0, at which point a sinusoidal voltage source

is switched on at the left boundary. We assume that the transmission line is long,

and that it is terminated at its (physical) right boundary in such a way that the

reflection coefficient there is very small. This assumption means that we may model

the transmission line as being semi-infinite.

We formalize this as an initial-boundary-value problem (IBVP). Given a transmis-

sion line on the half-open interval [0,∞), we seek a function V (x, t) : [0,∞)×[0,∞) →

R that solves

LCVtt = Vxx +
h2

12
Vxxxx −

Lx

L

(
Vx +

h2

6
Vxxx

)
(3.24a)

V (x, 0) = 0 (3.24b)

Vt(x, 0) = 0 (3.24c)

V (0, t) = A sinαt (3.24d)

Vx(0, t) = 0 (3.24e)

where A,α are arbitrary constants, while λ must be positive.
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3.2.3 Non-Dimensionalization

Examining the form of problem (3.24), we expect that when Lx = 0 (the uniform

case), it may be possible to find exact traveling wave solutions. Hence we exploit the

linearity of (3.24a) and seek solutions when L is a slowly varying function of x.

In order to carry this out, we must first non-dimensionalize the continuum model

(3.23). Suppose that the transmission line consists of N sections, each of length

h. This gives a total length d = Nh. Next, suppose that we are interested in the

dynamics of (3.24) on the time scale T . Using the constants d and T , we introduce

the rescaled, dimensionless length and time variables

x′ =
x

d
and t′ =

t

T
. (3.25)

We then non-dimensionalize (3.23) by writing it in terms of the variables (3.25):

LCd2

T 2
Vt′t′ = Vx′x′ +

1

12N2
Vx′x′x′x′ −

Lx′

L
(Vx′ +

1

6N2
Vx′x′x′). (3.26)

For the purposes of notational convenience, we omit primes from now on.

3.2.4 Exponential Tapering

The general nonuniform problem, with arbitrary L and C, may not be classically

solvable in closed-form. Here we consider the exponentially tapering given by

L(x) = Beλx (3.27a)

C(x) =
1

Bν2
0

e−λx (3.27b)

where ν0, λ, B are positive constants. In our discussion of 2D transmission lattices,

we will see that a generalization of this tapering solves certain EWB signal-shaping

problems. Using (3.27), the non-dimensionalized 1D equation (3.26) simplifies con-
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siderably to

ν−2
0 d2

T 2
Vtt = Vxx +

1

12N2
Vxxxx − λ

(
Vx +

1

6N2
Vxxx

)
. (3.28)

We will analyze this equation subject to the previously discussed initial/boundary

conditions (3.24b-3.24e).

3.2.5 Perturbative Solution

We will find solutions of (3.28) accurate to first order in λ. Let us begin by solving

the λ = 0 case. Note that the case λ = 0 arose in our discussion of the uniform

problem (see (3.18)).

From the setup of the problem, it is clear that the solution will consist of a

wavetrain moving to the right at some finite speed. Hence we try the ansatz

V (x, t) =

f(kx− ωt) x < ω
k
t

0 x ≥ ω
k
t

(3.29)

Substituting this into (3.28) gives

ν−2
0 d2

T 2
ω2f ′′(z) = k2f ′′(z) +

1

12N2
k4f (4)(z),

where z = kx − ωt. Integrating twice with respect to z and setting integration

constants to zero gives a second-order ODE, which has the general solution

f(kx− ωt) = Ā sin

(
N
√

12(k2 − ν−2
0 d2T−2ω2)

k2
(kx− ωt) + ψ

)
.

Now imposing the boundary condition (3.24d), we solve for the amplitude and phase:

(Ā, ψ) = (−A, 0). We also obtain the dispersion relation

ω2 = k2ν
2
0T

2

2d2

(
1±

√
1− 1

3

ν−2
0 h2

T 2
α2

)
.
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Because this is a dispersion relation for a non-dimensionalized equation, ω and k are

unitless†, as is the parameter α. For a physical solution, the phase velocity must be

positive (ω/k > 0), so we raise the above equation to the 1/2 power and discard the

negative root. Putting everything together, we have the two fundamental modes

V±(x, t) =

sin
[
α
(

k
ω±
x− t

)]
x < ω±

k
t

0 x ≥ ω±
k
t.

(3.30a)

ω±
k

=
ν0T√

2d

(
1±

√
1− 1

3

ν−2
0 h2

T 2
α2

)1/2

. (3.30b)

By linearity of (3.28), the general solution of the λ = 0 equation is the superposition

V = −A1V+ − A2V−, (3.31)

where A1 + A2 = A. Applying the second boundary condition (3.24e) we have

A1 =
Aω+

ω+ − ω−
, A2 = − Aω−

ω+ − ω−
. (3.32)

3.2.6 Discussion

Using the dispersion relation (3.30b), we can calculate the cut-off frequency of the

line. This is the frequency α for which ω becomes imaginary, which in the case of

(3.30b) gives the relation

α2 <
3T 2

lc
.

Here we used the definition ν−1
0 =

√
LC where L = l/h and C = c/h.

Taking h = 0 in the above formula produces the classical solution to the linear

wave equation, with the single right-moving mode

ω0/k = ν0.

†The careful reader may verify that, because L and C still represent distributed inductance and
capacitance, the number ν2

0 has units of velocity squared, implying that the right-hand side of
dispersion relation (3.30b) is also unitless, and remains so even in the h → 0 limit.
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Taking h > 0 in (3.30), we find three effects of discreteness. The first is dispersion:

though the phase velocity equals the group velocity of the outgoing signal, viz.

ω±
k

=
dω±
dk

,

we see from (3.30b) that both of these velocities are nonlinear functions of α, the

frequency of the incoming signal. Second, there are now two right-moving modes,

one fast and one slow, corresponding to ω+/k and ω−/k. Finally, discreteness causes

a decrease in the maximum speed of the wave train; this follows immediately from

ω+/k < ω0/k.

3.2.7 General Case

We examine (3.28) with λ > 0. On physical grounds we expect that the voltage grows

as a function of distance from its starting point x = 0. Accordingly, we introduce the

ansatz

V λ(x, t) = exp(c1x)f(z) (3.33)

where z = kx− ωt. Inserting (3.33) in (3.28), we obtain

ν−2
0 ω2f ′′ = (c21f + 2c1kf

′ + k2f ′′) +
h2

12

(
c41f + 4c31kf

′ + 6c21k
2f ′′ + 4c1k

3f (3) + k4f (4)
)

− λ
(
c1f + kf ′ +

h2

6

(
c31f + 3c21kf

′ + 3c1k
2f ′′ + k3f (3)

))
. (3.34)

Choose c1 = λ/2 to eliminate the f (3) terms exactly. Two of the f ′ terms cancel. We

further ignore all terms of order λm, m ≥ 2, obtaining

ν−2
0 ω2f ′′ = k2f ′′ +

h2

12
k4f (4),

which is precisely the equation we solved in the λ = 0 case. Hence an approximate

solution of (3.28), correct to O(λ2), is given by

V λ(x, t) = exp(λx/2)V (x, t), (3.35)
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with V defined in (3.30-3.32).

Discussion. The qualitative effect of a small but positive value of λ is now clear.

The frequency and speed of propagation for the outgoing signal is unchanged from

the λ = 0 case. The only effect we expect to observe is growth of the initial sinusoid

as it propagates down the line.

Since it appears from (3.35) that we have produced a voltage that is unbounded in

space, we remind the reader that in reality, the transmission line is terminated at its

right boundary, say at x = X. So long as the resistive termination is chosen so that

the reflection coefficient is nearly zero, we may use (3.35) to predict the waveform at

any point x ∈ [0, X].

Remark. Exact solutions of (3.34) can be obtained computationally. Let us outline

the procedure in this case. First, we write the full expression of (3.34) in the form

4∑
i=0

qi+1f
(i)(z) = 0, where q =



−(λ2/4)− (λ4h2/64)

(λ3h2/12)k

k2 − ν−2
0 ω2 − (λ2h2/8)k2

0

h2k4/12


. (3.36)

Here we use the convention that q = (q1, q2, q3, q4, q5). One way to determine a unique

solution is to specify the four initial conditions f (i)(0) where i = 0, 1, 2, 3. We leave

it as an exercise to show that the four conditions (3.24b-3.24e) also determine the

solution uniquely. Then (3.36) can be solved via the matrix exponential. Let y ∈ R4

have coordinates yi = f (i−1) for i = 1, 2, 3, 4. Now write (3.36) as the first-order

system
dy

dz
= My, (3.37)
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where

M =


0 1 0 0

0 0 1 0

0 0 0 1

−q1/q5 −q2/q5 −q3/q5 0

 . (3.38)

The solution to (3.37) is then

y(z) = eMzy(0). (3.39)

In practice, given particular values of all required constants, the solution can be found

easily using Matlab. As a final remark, note that we do not need to compute the

entire vector y, but merely the first component y1(z) = f(z).

3.3 Nonuniform Nonlinear Case

Of course, we can build transmission lines that are both nonuniform and nonlinear.

To model such lines, we recognize that cn(V ) in (3.20b) is no longer time-independent.

Hence combining (3.20a) and (3.20b) in the nonlinear case, where ∂C/∂V 6= 0, we

find

`n+1/2(Vn−1 − Vn)− `n−1/2(Vn − Vn+1) = `n−1/2`n+1/2
d

dt

(
cn
dVn

dt

)
. (3.40)

From here, the derivation of the continuum model proceeds precisely as in the linear

case. The end result is

Vxx − L
∂

∂t
(CVt) = Vx

Lx

L
− h2

(
1

12
Vxxxx −

1

6

Lx

L
Vxxx

)
. (3.41)

Suppose we take C(x, V ) = C0(x)(1 − bV ) and L(x)C0(x) = ν−2
0 . Then introducing

the change of variables (3.10), we may again use (3.11) to rewrite our equation. We

note that in order to balance terms, we must treat the inductance in a particular way.

We first write

L(x) = L(ε−1/2s+ ν0ε
−3/2T ),
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so that
∂L

∂T
= ε−3/2dL

dx
.

In this case, the order ε3 equation is

ν0
∂2V1

∂s∂T
+
bν2

0

4

∂2V 2
1

∂s2
+
ν2

0h
2

24

∂4V1

∂s4
− ν2

0

LT

L

∂V1

∂s
= 0. (3.42)

By introducing the time variable τ = ν0T and taking LT/L = λ/ν0, we remove ν0

from the equation. We integrate with respect to s, obtaining

Vτ +
b

2
V Vs +

h2

24
Vsss − λV = 0, (3.43)

where as before we use V to denote V1, the leading-order contribution in the expansion

(4.25). Equation (3.43) has been studied before as a ”variable-depth” KdV equation.

The now classical result[64] is that for λ small but positive, the usual soliton waveform

of the KdV equation is modified by a shelf of elevation that trails the solitary wave.

That is, the solution is no longer a symmetric sech2 pulse, but instead the wave

decays at its left boundary with a larger height than at its right boundary. The shelf

elevation is O(λ) while its length is O(λ−1). The detailed τ → ∞ dynamics have

been analyzed[65] by way of the transformation

V (s, τ) = u(s, τ) exp(λτ),

which is used to convert (3.43) to a variable-coefficient KdV equation

uτ +
b

2
eλτuus +

h2

24
usss = 0.

It is found that on a sufficiently large time scale, the trailing shelf degenerates into a

train of small-amplitude solitary waves.
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3.4 Numerics

We have performed direct numerical simulations of realistic transmission lines, using a

finite-difference scheme. After describing the numerical scheme, we discuss different

test cases. Our first goal is to validate our continuum models by comparing their

predictions against numerical solutions of the underlying semi-discrete equations. Our

second goal is to demonstrate useful applications through carefully selected numerical

experiments.

3.4.1 Scheme

Equations (3.23) and (3.41) are, respectively, linear and nonlinear continuum models

of the semi-discrete system (3.20). Continuum models are very useful for analytical

studies; for numerical studies, we work directly with the semi-discrete system (3.20),

which we rewrite here:

dIn+1/2

dt
=
Vn − Vn+1

`n+1/2

, n ∈ [0, 1, 2, . . . , N ] (3.44a)

dVn

dt
=
In−1/2 − In+1/2

cn(Vn)
, n ∈ [1, 2, . . . , N − 1]. (3.44b)

As in the continuum model, we take the line to be initially dead,

Vn(0) = 0 and
dVn

dt
(0) = 0, n > 0, (3.45)

and we also incorporate sinusoidal forcing at the left boundary:

V0(t) = A sinαt. (3.46)

However, for obvious reasons, the computational transmission line cannot be semi-

infinite. We terminate the line at node N , necessitating the right boundary condition

VN(t) = IN−1/2(t)R, (3.47)
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Figure 3.2: Voltage Vi versus element number i at T = 10 ns for a 1D nonuniform
linear transmission line with parameters: N = 100, L0 = 0.1 nH, C0 = 1 pF. The
input, at the left end of the line (i = 0), is a sinusoid with frequency α = 5 GHz.

where R is the termination resistance. We choose R such that the reflection coefficient

at the right boundary is practically zero. Taking (3.44-3.47) together, we have a closed

system for the interior voltages and inductances. We solve this system directly using

the standard ode45 Runge-Kutta method in Matlab.

3.4.2 Remark

The procedure described above is entirely equivalent to solving the PDEs (3.23) and

(3.41) by the method of lines combined with a finite difference spatial discretization.

The method is accurate to second-order in space and fourth-order in time.

3.4.3 Results

First we simulate a linear exponentially tapered line. As predicted by the perturbative

theory, we see two modes propagating inside an exponentially shaped envelope. As

shown in Figure 3.2, the amplitude of the wave increases slowly as a function of

element number.

Next we simulate both uniform and nonuniform NLTLs. In the nonuniform case,
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we use the exponential tapering described above. We observe in Figure 3.3(a) that

sinusoids are now converted to soliton-like waveforms. If we switch on nonuniformity,

multiple pulse generation is suppressed, as shown in Figure 3.3(b). That is, fewer

solitonic pulses are generated from the same incoming sinusoidal signal.

The nonuniformity also allows us to narrow the width of pulses considerably, as

demonstrated in 3.4. Note that Figure 3.4 also shows that the resulting pulses are

not symmetric, as predicted by theory. The asymmetry appears on the left (trailing)

side of the pulse.

To summarize,

• The nonuniform linear transmission line can be used for pulse compression /

voltage amplification. However, the frequency and speed of outgoing waves

cannot be significantly altered using a linear circuit.

• The nonuniform nonlinear transmission line can increase both the voltage am-

plitude and the frequency content of incoming waves.

In the next chapter, we generalize 1D transmission lines to 2D transmission lattices.

The extra dimension allows us to create a circuit that can simultaneously upconvert

and combine incoming signals.
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(a) Uniform

(b) Nonuniform

Figure 3.3: Voltage Vi versus element number i at various times for the (a) uniform
NLTL, with b = 0.5, λ = 0, and (b) nonuniform NLTL, with b = 0.25, λ = 0.02. All
other parameters are the same as in the linear case. The input frequency is α = 5
GHz.
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Figure 3.4: Voltage Vi versus element number i for the 1D nonuniform NLTL, with
parameters identical to the previous figure. The outgoing pulse has a larger ampli-
tude and much smaller wavelength than the sinusoidal signal that enters at the left
boundary.
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Chapter 4

Theory of Two-Dimensional
Transmission Lattice

In this chapter, the extension of 1D transmission line to two dimensions is considered.

For the description of long waves in a 2D lattice consisting of 1D lines coupled together

by capacitors, one obtains a modified Zakharov-Kuznetsov (ZK) equation [57]. It

should be mentioned that in §2.9 of Scott’s treatise[4], precisely this sort of lattice is

considered, and a coupled mode theory is introduced. These lattices consist of weakly

coupled 1D transmission lines, in which wave propagation in one direction is strongly

and inherently favored.

When a small transverse perturbation is added to the KdV equation, one obtains

a Kadomtsev-Petviashvili (KP) model equation. Dinkel et al. [50] carry out this

procedure for a uniform nonlinear 2D lattice, and mention that the circuit may be

useful for ”mixing” purposes; however, no physical applications are described beyond

this brief mention in the paper’s concluding remarks.

In this work, for a linear nonuniform lattice, we write the continuum model and

derive a family of exact solutions. A continuum model is also derived for the nonlinear

nonuniform lattice. In this case, we apply the reductive perturbative method and show

that a modified Kadomtsev-Petviashvili (KP) equation describes weakly nonlinear

wave propagation in the lattice.

Furthermore, we present a variety of numerical results. We choose the inductance

and capacitance of lattice elements in a particular way, which we call an electric lens
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Figure 4.1: 2D transmission lattice

or funnel configuration. We solve the semi-discrete model of the lattice numerically,

and show that the resulting solutions have physically useful properties. For example,

our numerical study predicts that a linear nonuniform lattice can focus up to 70%

of the power of input signals with frequency content in the range 0-100 GHz. We

present numerical studies of nonlinear lattices as well. In this case, power focusing

is present alongside frequency upconversion, or the ability of the lattice to increase

the frequency content of input signals. The numerical studies show that nonlinear

nonuniform lattices can be used for wideband signal shaping applications.

4.1 Nonuniform Linear Case

Consider a section of the two-dimensional transmission lattice shown in Figure 4.1.

Using only regular polygons, there are three possible lattice blocks that can be used

to tile the two-dimensional plane: triangular, rectangular, and hexagonal. Though

the governing equations in each case will be different, at the continuum limit, they

will have the same physical properties. Therefore, for mathematical simplicity, we

analyze only the rectangular case. As in the previous section, we suppose that the
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lattice is nonuniform, meaning

∇L(x, y) 6= 0, ∇C(x, y) 6= 0.

For now, we assume the lattice is linear:

∂C

∂V
= 0,

∂L

∂I
= 0.

Then Kirchoff’s laws yield the semi-discrete system:

Ii,j−1/2 + Ii−1/2,j − Ii+1/2,j − Ii,j+1/2 = cij
dVij

dt
(4.1a)

Vij − Vi,j−1 = −`i,j−1/2
d

dt
Ii,j−1/2 (4.1b)

Vij − Vi+1,j = `i+1/2,j
d

dt
Ii+1/2,j (4.1c)

Differentiating (4.1a) with respect to time, we substitute (4.1b-4.1c), yielding

Vij − Vi,j−1

`i,j−1/2

+
Vij − Vi−1,j

`i−1/2,j

+
Vij − Vi+1,j

`i+1/2,j

+
Vij − Vi,j+1

`i,j+1/2

= −cij
d2Vij

dt2
. (4.2)

Taking the continuum limit in the usual way, we obtain the O(h0) lattice model

∇2V − LCVtt =
∇V · ∇L

L
, (4.3)

where

∇2V = Vxx + Vyy.

Or, if we keep all terms at order h2, we obtain

∇2V − LCVtt =
∇V · ∇L

L

− h2

[
1

12
(Vxxxx + Vyyyy)−

1

6

LxVxxx + LyVyyy

L
− 1

4

L2
xVyy + L2

yVxx

L2

]
(4.4)
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In the practical examples we consider, L will be a slowly varying function of both x

and y, rendering negligible the terms involving squared derivatives of L, i.e., L2
x/L

2

and L2
y/L

2. Our O(h2) lattice model is

∇2V − LCVtt =
∇V · ∇L

L
− h2

12
(Vxxxx + Vyyyy) +

h2

6

LxVxxx + LyVyyy

L
(4.5)

In this equation, the left-hand side is the normal wave propagation equation. On

the right, the first term corresponds to the inhomogeneity, the second term is due to

the discreteness and the last term represents both inhomogeneity and discreteness.

4.1.1 Large Lattice

e will now consider an extremely large lattice, i.e., the case when M and N are both

very large. In this case, we may ignore the O(h2) terms and use (4.3) as our governing

equation. The reason is simple: suppose we non-dimensionalize (4.5) and write an

equation analogous to the 1D equation (3.26). The third- and fourth-order derivatives

of voltage V will be multiplied by factors of 1/N2 and 1/M2 in the resulting equation;

hence these terms are negligible.

The approximation gains further justification due to the linearity of (4.5). Let V h

denote the solution of (4.5). Because (4.5) is linear, we expect that for small h, the

solution can be expanded in the form

V h(x, y, t) = V0(x, y, t) + h2V1(x, y, t) +O(h4),

where V0 is the solution of the h = 0 equation (4.3). Then it is clear that

|V h − V0| = O(h2),

or in words, the solution V0 is in fact the zero-dispersion limit of the solutions V h.

Note that a similar analysis would not work in the nonlinear regime—see our earlier

remarks on zero-dispersion limits for uniform 1D NLTLs.
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Figure 4.2: Keeping Zij constant and defining Tij = n
√
LijCij by the above graph

results in an electric lens. Keeping Tij constant and defining Zij =
√
Lij/Cij by the

above graph results in an electric funnel. Note that this is the precise impedance
surface used in the 2D numerical simulations that follow.

4.1.2 Lens/Funnel

For the purposes of combining signals, we wish to build an electric lens or electric

funnel. The situation is analogous to that in optics. The main physical property of

the lens that is responsible for its focusing action is the wave velocity increases as we

go farther away from the z-axis as shown in Figure 4.2. In this way, the input sources

add coherently at the focal point.

Let us examine some physical arguments that suggest various configurations of L

and C which result in lens/funnel circuits. Standard transmission line theory shows

that the delay of the LC transmission line is approximately

T = n
√
LC

where n is the number of LC sections. Also the characteristic impedance of the line

is given by:

Z =
√
L/C.
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In order to have a lens, we keep the impedance Z constant but let the delay T vary

in space as shown in Figure 4.2. Of course, this method works for a single frequency.

(For other frequencies, the phase shift from the input to the output is different, and

as a result, the focal length is different as well).

Another approach is to keep T constant (i.e. keep constant the delay from the

input to the output), while increasing Z as shown in Figure 4.2. This approach works

for all frequencies and the resulting circuit is wideband. We call this circuit a funnel.

Here we concentrate our efforts on the two-dimensional electric funnel that has a

shape similar to that of these functions:

L(x, y) = B exp(λxy2)

C(x, y) =
1

Bν2
0

exp(−λxy2),

where ν0, λ, B are positive constants. In what follows, we assume that L(x, y)C(x, y) =

ν−2
0 everywhere, but we will leave open the exact functional expression for L.

4.1.3 A Physical Scenario

The transmission lattice is dead (no voltage, no current) at t = 0, at which point

a sinusoidal voltage source is switched on at the left boundary. We assume that

the transmission lattice is long in the x coordinate, and that it is terminated at its

(physical) right boundary in such a way that the reflection coefficients there are very

small. Hence we model the transmission lattice as semi-infinite in the x coordinate,

but bounded in the y coordinate by the lines y = −1 and y = +1.

We formalize this as an initial-boundary-value problem (IBVP). Given a trans-

mission lattice on S = [0,∞)× [−1, 1], we seek a function V (x, y, t) : S× [0,∞) → R
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that solves

ν−2
0 Vtt = ∇2V − ∇V · ∇L

L
(4.6a)

V (x, y, 0) = 0 (4.6b)

Vt(x, y, 0) = 0 (4.6c)

V (0, y, t) = A sinαt (4.6d)

Vx(0, y, t) = 0 (4.6e)

where A,α are arbitrary constants. We first describe a family of exact solutions of

this system that can be derived in an elegant fashion. Then we describe numerical

simulations for a specific class of functions L. The simulations will show the EWB

signal-shaping properties of the lattice.

4.1.4 Exact Solutions

Suppose we insist on a solution V that is separable in the following sense:

V (x, y, t) = f(x, y)g(x, t). (4.7)

Here g satisfies the constant impedance equation ν−2
0 gtt = ∇2g, i.e.

g(x, t) = −A sin

[
α

ν0

(x− ν0t)

]
. (4.8)

In words, V represents a sinusoidal wave front g that propagates to the right along

perfectly horizontal rays, with spatially dependent amplitude f . Inserting (4.7) into

(4.6a) gives

(
fxx − fx

Lx

L

)
+

(
fyy − fy

Ly

L

)
=

(
f
Lx

L
− 2fx

)
gx

g
. (4.9)
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Now suppose that (fLxL
−1 − 2fx) 6= 0. In this case, we could divide both sides of

(4.9) by this quantity and obtain

(
f
Lx

L
− 2fx

)−1 [(
fxx − fx

Lx

L

)
+

(
fyy − fy

Ly

L

)]
=
gx

g
.

As the left-hand side is time-independent, we would deduce that

∂

∂t

gx

g
= 0,

which is a contradiction. Hence we know that

f
Lx

L
− 2fx = 0,

which can be integrated easily, giving

f(x, y) = κ1(y)
√
L(x, y), (4.10)

where κ1 is an arbitrary positive function of y only. Reexamining (4.9), we see that

a sufficient condition for a solution is if f and L satisfy

(
fxx − fx

Lx

L

)
= 0 (4.11a)(

fyy − fy
Ly

L

)
= 0. (4.11b)

Substituting (4.10) into the first equation, we obtain an equation in L only:

−3(Lx)
2 + 2LLxx = 0.

This ODE can be solved, and the answer is

L(x, y) =
4

(κ3(y)x+ κ2(y))2
(4.12)
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where κ3(y), κ2(y) are functions of y only, and κ3 > 0. Now substituting this back

into (4.10), we obtain

f(x, y) =
2κ1(y)

κ3(y)x+ κ2(y)
. (4.13)

Boundary conditions dictate that f(0, y) = 1, so we must have 2κ1 = κ2. Now using

(4.12) and (4.13) in the final equation (4.11b), we derive

κ3

κ1

=
κ3yy

κ1yy

, (4.14)

which relates κ3 to κ1.

Result. Putting everything together, we arrive at the following result. Suppose

that we are given κ2(y) > 0 and κ3(y) > 0 that satisfy the equation

κ3 =
κ2

κ2yy

κ3yy. (4.15)

Then, using the inductance L(x, y) = 4(κ3(y)x+ κ2(y))
−2, the equation (4.6) has the

exact solution

V (x, y, t) =
−Aκ2(y)

κ3(y)x+ κ2(y)
sin

[
α

ν0

(x− ν0t)

]
. (4.16)

4.1.5 Properties

Using (4.16), we compute various quantities of interest.

1. Current. So far we have assumed that the current vector has a preferred direc-

tion and can be modeled by the scalar I. However, directly taking the continuum

limit of (4.1b-4.1c) yields a formula for the current vector i:

i = − 1

L

∫
∇V dt (4.17)

Let G =
∫
g(x, t) dt where g was defined in (4.8). Then substitution of the exact
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solution (4.16) in (4.17) gives

i = −1

4

−κ2κ3G+ κ2(κ3x+ κ2)Gx

κ′2κ3xG− κ2κ
′
3xG

 . (4.18)

2. Power. We compute P = ‖i‖V and obtain

P =
κ2

2

[
κ2

2κ
2
3 + x2

(
κ′2

2κ2
3 − 2κ′2κ2κ

′
3κ3 + κ2

2κ
′
3
2
)

(κ3x+ κ2)
2 G2 − 2κ2

2κ3

κ3x+ κ2

GGx + κ2
2G

2
x

]1/2

.

(4.19)

Though we will not pursue this approach further in this thesis, we outline how

the exact solution might be used in practice. Suppose we are interested in

building a circuit that shapes signals in a particular way. Translated into our

mathematical framework, this means that we seek an inductance function L

that gives solutions V such that either V , i, or P has some desired shape. For

simplicity, suppose we are interested in designing a circuit such that P (R, y, t)

has a given profile for some fixed R ∈ (0,∞).

Now in principle, for a certain class of functions p(y, t), it is possible to find κ2

and κ3 in such a way that (4.15) is satisfied and

P (R, y, t) = p(y, t). (4.20)

Equation (4.15) and (4.20) are two equations for the two unknowns κ2 and

κ3. Suppose we find κ2 and κ3 that satisfy these constraints. Then we may

immediately write the inductance L that we should use in our circuit to achieve

the desired output power.

4.1.6 Discussion

We have chosen a particular L that allows us to explicitly solve the IBVP (4.6)

assuming perfectly straight propagation of waves. In general, the solution V (x, y, t)

will not assume the convenient separation (4.7) that we have assumed, and an explicit
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closed-form solution may not exist. A general funnel-shaped inhomogeneity causes

rays to bend; the solution will be of the form

V (x, y, t) = f(x, y)g[k(x) · x− ωt],

where the wave vector k is not constant in space. We will explore applications of this

idea in future work.

4.2 Nonuniform Nonlinear Case

Let us now add nonlinearity to the nonuniform 2D transmission lattice, i.e., suppose

that
∂C

∂V
6= 0.

As in the 1D case, the continuum equation needs only one modification in the second-

order time-derivative term. That is, examining the semi-discrete equations (4.1) we

see that if cij depends on Vij, then differentiating (4.1a) results in the right-hand

side d
dt

(
cij

dVij

dt

)
. This carries over to the continuum model, which we write for the

nonlinear case:

L
∂

∂t

[
C(V )

∂V

∂t

]
= ∇2V +

h2

12
(Vxxxx + Vyyyy)−

∇V · ∇L
L

− h2

6

LxVxxx + LyVyyy

L
.

(4.21)

We carry out the reductive perturbation procedure on this equation, to determine how

long, uni-directional waves propagate through the lattice. Suppose that the varactors

satisfy C(V, x, y) = C0(x, y)(1 − bV ), and that ν−2
0 = L(x, y)C0(x, y). Introduce the

scaled variables

ξ = ε1/2(x− ν0t) (4.22a)

η = εy (4.22b)

T = ε3/2t. (4.22c)
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which correspond to the notions that (1) the wave motion occurs primarily along the

semi-infinite x direction, (2) the wave form varies far less in the y direction than the

x direction, (3) the length of the wave is large compared to its speed of propagation.

In the scaled variables, we have

V (x, y, t) = V (ε−1/2ξ + ν0ε
−3/2T, ε−1η, ε−3/2T ),

which gives

∂

∂x
= ε1/2 ∂

∂ξ
(4.23a)

∂

∂y
= ε

∂

∂η
(4.23b)

∂

∂t
= ε3/2 ∂

∂T
− ε1/2ν0

∂

∂ξ
. (4.23c)

The inductance transforms as

L(x, y) = L(ε−1/2ξ + ν0ε
−3/2T, ε−1η).

Again we use ∂L/∂x = ε3/2(∂L/∂T ) and also ∂L/∂y = ε(∂L/∂η). Now introducing

(4.23) into (4.21) we have

ν−2
0

(
ε3 ∂

2

∂T 2
− 2ε2ν0

∂2

∂T∂ξ
+ εν2

0

∂2

∂ξ2

)(
V − b

2
V 2

)
= ε

∂2V

∂ξ2
+ ε2∂

2V

∂η2
+
h2

12
ε2∂

4V

∂ξ4
+
h2

12
ε4∂

4V

∂η4

− ε2LT

L
Vξ − ε2Lη

L
Vη −

h2

6

(
ε3LT

L
Vξξξ + ε4Lη

L
Vηηη

)
. (4.24)

Now introducing the formal expansion

V = εV1 + ε2V2 + · · · , (4.25)
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and keeping terms to lowest order, ε3, we write a modified KP equation

2ν−1
0 VTξ + b(V Vξ)ξ +

h2

12
Vξξξξ + Vηη −

LT

L
Vξ −

Lη

L
Vη = 0.

Introducing the time variable τ = (ν0/2)T , we have the perturbed KP equation

Vτξ + b(V Vξ)ξ +
h2

12
Vξξξξ + Vηη −

ν0

2

Lτ

L
Vξ −

Lη

L
Vη = 0. (4.26)

In the case where the line is uniform and Lτ = Lη = 0, this reduces to the standard

KP-II equation, or KP equation with positive dispersion:

[
Vτ + b(V Vξ) +

h2

12
Vξξξ

]
ξ

+ Vηη = 0. (4.27)

We make the trivial observation that for both (4.26) and (4.27), if we take V to be

a one-dimensional wave front propagating across the (ξ, η) plane, i.e. V (ξ, η, τ) =

V (ξ, τ), then both equations reduce to the KdV equations considered earlier. Of

course, (4.27) displays a wealth of phenomena beyond the KdV equation, of which

soliton resonance is perhaps the most intriguing from the applications point of view.

We will discuss this phenomenon in Chapter 8 in more details.

4.3 Numerics

So far we have presented analytical results for both linear and nonlinear lattices. Let

us now turn to numerical simulations of the lattice dynamics, starting from Kirchoff’s

equations (4.1). These equations are discrete in space but continuous in time. For

a lattice with M elements in the vertical direction and N elements in the horizontal

direction, we have a system of 2MN ordinary differential equations (ODEs). By

prescribing inductance and capacitance functions L and C together with initial and

boundary conditions, we may numerically integrate these ODEs and solve for the

voltage and current in the lattice. In our studies, we shall suppose that the lattice is

initially dead: that is, at t = 0, all voltages and currents are zero except at the left
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boundary. The left boundary is where we introduce the input signal, via

V1,j(t) = V0 sinαt.

Although our methods are general, in this work, we shall present results for lattices

in which M < N .

For all subsequent numerical results, we will use the “funnel” inductance function

of the form

L(x, y) = L0 exp(λMNh2x|y|). (4.28)

Recall that for the funnel, we keep LC constant, which means that

C(x, y) = C0 exp(−λMNh2x|y|). (4.29)

Physical limitations for on-chip fabrication of inductors and capacitors limit the max-

imum and minimum inductance and capacitance in the lattice. Hence for N = 100,

λ should be of the order 10−2.

4.3.1 Linear case.

First let us discuss numerical results for a linear nonuniform lattice. Given an input

signal with power that is distributed evenly in the vertical direction, we will find

that the power of the output signal is focused in a narrow vertical region. We present

results for a lattice in the funnel configuration (4.28-4.29) with L0 = 0.1nH, C0 = 1pF,

and λ = 0.02.

For Figures 4.3-4.5, the input frequency α = 10GHz. As shown in Figure 4.3, the

voltage increases as the wave front moves to the right. However, due to the constant

delay (LC = const), we do not see bending of the wave form. Also, due to the

linearity of the lattice, the output frequency is the same as the input frequency. For

the same simulation, the current is shown in Figure 4.4. We clearly see the focusing

of current near the central line j = M/2.

Let us explain these results intuitively. The current is voltage divided by impedance.
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Figure 4.3: Voltage Vij as a function of position (i, j) for the 2D nonuniform linear
lattice.

Figure 4.4: Current Iij as a function of position (i, j) for the 2D nonuniform linear
lattice, showing the funneling effect: the signal is stronger in the middle.
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Figure 4.5: Power Pij as a function of position (i, j) for the 2D nonuniform linear
lattice, demonstrating the funneling effect.
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Figure 4.6: Efficiency as a function of input frequency for the 2D nonuniform linear
lattice. Note that for an extremely wide range of input frequencies (0 - 100 GHz),
the lattice focuses ≥ 60% of the input power.
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Based on Figure 4.3, we see that for each fixed i, the voltage is constant across all j.

However, the impedance is larger at the vertical edges (see Figure 4.2), so the current

is smaller there.

Figure 4.5 shows the instantaneous power profile in the lattice, computed using

the previous solutions (P = V I). Note that the power is distributed evenly at i = 0,

but at i = 110, the power is narrowly focused nearly the central line j = M/2.

For EWB applications, it is necessary that this power focusing behavior occur for

input signals with frequency content in the range 0 ≤ α ≤ 100GHz. This is precisely

what is shown in Figure 4.6. To produce this data, we simulated the linear uniform

lattice repeatedly, with increasing values of α. In this figure, L0 = 0.1nH, C0 = 1pF,

and λ = 0.03. The plotted quantity is the percentage of the input power that has

been focused onto the central element of the lattice, at a fixed i > 0, and at a fixed

time t > 0. (Recall that at t = 0, the power is distributed evenly, which means that

the fraction of power in the central element at i = 0 is exactly 1/M .)

4.3.2 Nonlinear Case

Next we provide numerical results for a nonlinear nonuniform lattice. To summarize,

nonlinearity causes a change in the shape and frequency content of the input signal,

features that are not present in linear lattices. We present results for a lattice in the

funnel configuration, where L is the same as in the linear case—see (4.28). Nonlin-

earity arises from voltage-dependent capacitors, which we model using the first-order

approximation

C(V ) = C0(1− bV )

C0(x, y) = Ĉ0 exp(−λMNh2x|y|).
(4.30)

For our simulations, we choose L0 = 0.1nH, C0 = 1pF, λ = 0.02, and b = 0.25volts−1.

Figures 4.7 and 4.8 show the voltage and current, respectively, for a rectangular

lattice where M = 9 and N = 140. The plot of the voltage in Figure 4.7 shows similar

behavior as in the one-dimensional nonlinear case—see Figure 3.4. In particular,
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Figure 4.7 shows the narrowing of the input wave front at i = 70. One feature of

the simulation that our theory does not explain is the nonuniform distribution of the

voltage in j, for any fixed i.

For the same simulation, we plot the current in Figure 4.8, and observe the focusing

of current along the center line j = M/2. The input wave front narrows considerably

by i = 70. Nonlinearity of the lattice yields currents that are focused across a much

narrower range of vertical elements than is possible in linear lattices. Note especially

the sharp drop-off in current that is already present at j = 50. Not only is the

focusing sharp, but it occurs faster than in the linear case.

Figures 4.9 and 4.10 show the instantaneous power profile (P = V I) for a lattice

with M = 5 and N = 140. These plots demonstrate both the funneling effect and

frequency upconversion. As shown, the maximum power level is higher than in the

linear case, because the lattice compresses power simultaneously in space and time.

(In the linear case, the power is compressed in space only.)

Conclusion Chapters 3 and 4 cover the theory of wave propagation in one and two

dimensional LC lattices and show how to treat the effect of dispersion, nonlinearity,

and inhomogeneity. Several analytical solutions as well as numerical results have been

presented. Before we discuss the application of these theories in chapters 6 and 7, let

us consider another approach for solving lattice equations using scattering method in

the chapter 5.
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Figure 4.7: Voltage Vij as a function of position (i, j) for the 2D nonuniform nonlinear
lattice.

Figure 4.8: Current Iij as a function of position (i, j) for the 2D nonuniform nonlinear
lattice.
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Figure 4.9: Power Pij as a function of position (i, j) for the 2D nonuniform nonlinear
lattice, demonstrating both the funneling effect and frequency upconversion.

Figure 4.10: Power Pij as a function of position (i, j) for the 2D nonuniform nonlinear
lattice. This shows the same data as Figure (4.9).
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Chapter 5

Scattering Theory for Electrical
lines/lattices

An alternative approach to analytically solve one and two dimensional lattices, shown

in previous chapters, is presented in this chapter. Here we introduce change of vari-

ables in order to modify our partial differential equations to the well-known equa-

tions such as Schrödinger equation. First we examine this method in one dimensional

nonuniform transmission lines and then we will attempt to extend same methods to

the problem of two dimensional inhomogeneous lattice.

5.1 One-Dimensional Transmission Line

Lets start with a 1D transmission line shown in 5.1

Figure 5.1: 1D nonuniform linear transmission line

We begin with the equations for current and voltage in a linear, one-dimensional,
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infinite lattice:

cn
dVn

dt
(t) = In−1(t)− In(t) (5.1a)

`n
dIn
dt

(t) = Vn(t)− Vn+1(t) (5.1b)

5.1.1 Continuum Model

In order to pass to a continuum limit, we suppose that the elements in the lattice are

separated by a constant distance h. Then, we introduce variables I(z, t) and V (z, t)

which are meant to approximate the discrete variables In(t) and Vn(t), respectively.

Specifically, we intend that

V (nh, t) = Vn(t) (5.2a)

I(nh, t) = In(t) (5.2b)

This implies that

∂V

∂t
(nh, t) =

dVn

dt
(t) (5.3a)

∂I

∂t
(nh, t) =

dIn
dt

(t) (5.3b)

Taylor expansions of (5.2) yield

V ((n+ 1)h, t) = V (nh, t) + h
∂V

∂z
(nh, t) +O(h2) (5.4a)

I((n− 1)h, t) = I(nh, t)− h
∂I

∂z
(nh, t) +O(h2). (5.4b)

Using (5.2-5.4) in (5.1) gives

cn
∂V

∂t
(nh, t) = −h∂I

∂z
(nh, t) +O(h2) (5.5a)

`n
∂I

∂t
(nh, t) = −h∂V

∂z
(nh, t) +O(h2) (5.5b)
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We introduce the capacitance per unit length, C(z), and the inductance per unit

length, L(z). These new quantities are related to the old ones by

hC(nh) = cn (5.6a)

hL(nh) = `n (5.6b)

Substituting (5.6) in (5.5), dividing by an overall factor of h, and using z = nh results

in

C(z)
∂V

∂t
(z, t) = −∂I

∂z
(z, t) +O(h) (5.7a)

L(z)
∂I

∂t
(z, t) = −∂V

∂z
(z, t) +O(h) (5.7b)

Then, as h→ 0, we obtain the continuum model

C
∂V

∂t
= −∂I

∂z
(5.8a)

L
∂I

∂t
= −∂V

∂z
(5.8b)

The typical initial-value problem for this system goes as follows: suppose, for all z,

we are given C(z), L(z), I(z, 0), and V (z, 0). Using this information, solve (5.8) for

the current I(z, t) and V (z, t) for all z and for all t > 0.

Remarks:

1. If we had included higher-order derivatives in the Taylor expansions (5.4), we

could have accounted for dispersion in the lattice. Because all the dynamical

equations we consider are linear, dispersion would produce a perturbative cor-

rection to the zero-dispersion solution. If h is sufficiently small, the behavior of

(5.8) will closely approximate the true behavior.

2. Note that when L and C are both constant, system (5.8) reduces to the linear
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wave equations

LC
∂2V

∂t2
− ∂2V

∂z2
= 0 (5.9a)

LC
∂2I

∂t2
− ∂2I

∂z2
= 0 (5.9b)

The solution of the initial-value problem for (5.9) is then given by D’Alembert’s

formula. The situation is identical to Maxwell’s equations in a medium where

both the permittivity and permissivity are constant.

3. Because the solution of (5.8) is known when L and C are constant, one may

attempt an adiabatic approximation when L and C are slowly varying functions

of the position z. This has not yet been attempted systematically.

Fourier transform. In what follows, we make use of the Fourier transform in time.

For a function f(z, t) we define its Fourier transform to be

f̂(z, ω) =
1

2π

∫ ∞

−∞
f(z, t)eiωt dt. (5.10)

Given the Fourier transform f̂(z, ω), we may reconstruct the original signal using the

inversion formula

f(z, t) =

∫ ∞

−∞
f̂(z, ω)e−iωt dω. (5.11)

In particular, using integration by parts, we may show that the Fourier transform of

the time-derivative of f(z, t) has a particularly nice form:

∂̂f

∂t
(z, ω) =

1

2π

∫ ∞

−∞

∂f

∂t
(z, t)eiωt dt

= − 1

2π

∫ ∞

−∞
f(z, t)

∂

∂t
eiωt dt

= −iω 1

2π

∫ ∞

−∞
f(z, t)eiωt dt

= −iωf̂(z, ω). (5.12)
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The Fourier transform is especially well-suited to constant coefficient linear partial

differential equations posed on an infinite domain. Examining our system (5.8), we

see that though C(z) and L(z) depend on space, they are constant with respect to

time. Hence, taking the Fourier transform of (5.8), both C(z) and L(z) pass through

the time integrals. For the time-derivatives, we apply (5.12), and thus obtain

iωC(z)V̂ (z, ω) =
∂Î

∂z
(z, ω) (5.13a)

iωL(z)Î(z, ω) =
∂V̂

∂z
(z, ω) (5.13b)

Because (5.13) contains derivatives only with respect to the variable z, it is a system

of ordinary rather than partial differential equations. In what follows, we will work

only with the Fourier transforms V̂ (x, ω) and Î(x, ω). Therefore, we will leave off the

“hats” and use V (x, ω) and I(x, ω).

5.1.2 Schrödinger Equation

We now describe how (5.13) is mathematically equivalent to the Schrödinger equation

associated with a certain potential. This discussion follows Klemer and Sharpe [1984],

IEEE Transactions on Antennas and Propagation, Vol. AP-32, No. 2, pp. 181-184.

First we introduce a change of variables:

x := x(z) =

∫ z

0

√
L(z′)C(z′) dz′. (5.14)

We may think of x as a normalized distance, though it has units of time since the delay
√
LC has units of time/distance. We also define the local characteristic impedance

Z0(x) =

√
L(x)

C(x)
. (5.15)



69

Using (5.14-5.15), we may rewrite (5.13) as

iω
1

Z0(x)
V (x, ω) =

dI

dx
(x, ω) (5.16a)

iωZ0(x)I(x, ω) =
dV

dx
(x, ω). (5.16b)

To verify that (5.16) is equivalent to (5.13), substitute x = x(z) into (5.16), multiply

by dx/dz =
√
L(z)C(z), and then apply the chain rule in reverse. Next, we introduce

the normalized voltage U and normalized current W defined by

U(x, ω) =
V (x, ω)√
Z0(x)

(5.17a)

W (x, ω) = I(x, ω)
√
Z0(x). (5.17b)

Differentiating (5.17) with respect to x yields

dU

dx
= (Z0)

−1/2dV

dx
− V

2
(Z0)

−3/2dZ0

dx
(5.18a)

dW

dx
=
dI

dx
(Z0)

1/2 +
I

2
(Z0)

−1/2dZ0

dx
. (5.18b)

Using (5.16) and (5.17), we may write this as

dU

dx
= iωW − U

2
(Z0)

−1dZ0

dx
(5.19a)

dW

dx
= iωU +

W

2
(Z0)

−1dZ0

dx
(5.19b)

There is a quantity on the right-hand sides of (5.19) that we will call p(x), and it is

defined as:
1

2
(Z0(x))

−1dZ0

dx
(x) =

d

dx
log
√
Z0(x) =: p(x). (5.20)
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Using the definition of p(x) in (5.19), we may write

dU

dx
(x, ω) + p(x)U(x, ω) = iωW (x, ω) (5.21a)

dW

dx
(x, ω)− p(x)W (x, ω) = iωU(x, ω) (5.21b)

Now, by differentiating (5.21a) with respect to x and then using (5.21a-5.21b) to

eliminate first-derivatives of U and W , we obtain the following second-order equation

for U :
d2U

dx2
(x, ω) +

[
ω2 + p′(x)− p2(x)

]
U(x, ω) = 0. (5.22)

Rewriting this in the more suggestive form

[
d2

dx2
+ p′(x)− p2(x)

]
U = −ω2U,

it is clear that (5.22) is mathematically identical to the time-independent Schrödinger

equation [
− ~2

2m

d2

dx2
+ V

]
ψ = Eψ.

The quantity p′(x)− p2(x) can be thought of as a potential V (x), while −ω2 can be

thought of as an energy eigenvalue E.

In what follows, we will specify an exponentially tapered impedance function

Z0(x), which corresponds to a piecewise constant choice of p(x). Then, borrow-

ing scattering theory techniques from quantum mechanics, we will solve the reflec-

tion/transmission problem for (5.22) with our particular choice of p(x). At this point,

our discussion departs from that of Klemer and Sharpe. Their analysis of the scat-

tering problem is valid only in the large ω regime.
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5.1.3 Exponentially Tapered Line

We consider a transmission line with local characteristic impedance given by

Z0(x) =


z1 x < 0

α2 exp(2βx) 0 < x < l

z2 x > l

(5.23)

We say that the impedance is matched if Z0(x) is continuous at x = 0 and x = l, i.e.,

if α2 = z1 and β = (log z2/z1)/2l. For the above choice of Z0(x), we apply definition

(5.20) and obtain the following expression for p(x):

p(x) =


0 x < 0

β 0 < x < l

0 x > l

(5.24)

As promised, the exponentially tapered impedance profile (5.23) corresponds to a

piecewise constant function p with zero derivative p′. Using (5.24) in (5.22) gives two

equations: for x < 0 and x > l, we must find U(x, ω) that solves

d2U

dx2
(x, ω) + ω2U(x, ω) = 0. (5.25)

When 0 < x < l, we must find U(x, ω) that solves

d2U

dx2
(x, ω) + (ω2 − β2)U(x, ω) = 0. (5.26)

Both equations (5.25-5.26) can be solved trivially using linear combinations of expo-

nentials. For example, we may immediately write down the most general solution of

(5.26):

U(x, ω) = A(ω) exp(i
√
ω2 − β2x) +B(ω) exp(−i

√
ω2 − β2x). (5.27)
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This solution is valid as long as ω 6= β. Here A(ω) and B(ω) are unknown amplitude

coefficients. Without specifying further conditions on (5.25-5.26), we cannot obtain

more information from this approach.

5.1.4 Scattering

Let us study the (forward) scattering problem for (5.25-5.26). We imagine a situation

in which we send an incident wave from x = −∞ towards the beginning of the tapered

section at x = 0. The incident wave interacts with the inhomogeneity located between

x = 0 and x = l. Part of the incident wave is transmitted through the inhomogeneity

and propagates from x = l outward to x = +∞. The remaining part of the incident

wave is reflected and propagates backward from x = 0 to x = −∞.

Mathematically, we represent this picture by writing, for x < 0,

U(x, ω) = a1(ω) exp(iωx) + b1(ω) exp(−iωx), (5.28)

and for x > l,

U(x, ω) = c1(ω) exp(iωx). (5.29)

Here a1(ω) is the amplitude of the incident wave, b1(ω) is the amplitude of the re-

flected wave, and c1(ω) is the amplitude of the transmitted wave. In the interior,

inhomogeneous region 0 < x < l, we have (5.27) as before. We summarize this in one

equation:

U(x, ω) =


a1(ω) exp(iωx) + b1(ω) exp(−iωx) x < 0

A(ω) exp(iβrx) +B(ω) exp(−iβrx) 0 < x < l

c1(ω) exp(iωx) x > l

(5.30)

Here we have used

r =

√
ω2

β2
− 1. (5.31)
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Now using (5.21a), we may write down W (x, ω) in each of the three regions:

W (x, ω) =


a1(ω) exp(iωx)− b1(ω) exp(−iωx) x < 0

βA(ω)ω−1 (r − i) exp(iβrx)− βB(ω)ω−1 (r + i) exp(−iβrx) 0 < x < l

c1(ω) exp(iωx) x > l

(5.32)

For this scattering problem, we are interested in obtaining relationships between the

five quantites a1, b1, c1, A, and B. In particular, we seek a closed form expression for

the reflection coefficient

ρ =

∥∥∥∥ b1a1

∥∥∥∥
and the transmission coefficient

τ =

∥∥∥∥ c1a1

∥∥∥∥ .
Because of the relation ρ2 +τ 2 = 1, we need only determine one of the two quantities.

Through definition (5.17), the functions U and W determine, respectively, the

voltage V and current I in the transmission line. Voltage and current are physically

measurable quantities, and therefore V and I must be continuous at x = 0 and x = l.

To carry out this analysis in the greatest generality, we would have to assume that

Z0(x), given for example by (5.23), is discontinuous at x = 0 and x = l.

Therefore, in general, we would have to use (5.30) and (5.32) together with (5.23)

to write down expressions for V and I in each of the three regions. Then, enforcing

continuity of V and I at the boundaries x = 0 and x = l would yield four rela-

tions between the five unknown amplitude coefficients, and exact expressions for the

reflection and transmission coefficients would quickly follow.

5.1.5 Reflection Coefficient for Matched Case

or the matched case, we know that Z0 is continuous at x = 0 and x = l. In this case,

both U and W are also continuous at x = 0 and x = l.
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Enforcing continuity of U and W at x = 0 gives

a1 + b1 = A+B

a1 − b1 = βω−1A(r − i)− βω−1B(r + i).

Combining these equations, we obtain

b1
a1

=
1 + iβω−1 − βω−1rq

1− iβω−1 + βω−1rq
,

where

q =
A−B

A+B
.

Then, enforcing continuity of U and W at x = l gives

A exp(iβrl) +B exp(−iβrl) = c1 exp(iωl)

βAω−1(r − i) exp(iβrl)− βBω−1(r + i) exp(−iβrl) = c1 exp(iωl)

Combining these equations, we obtain the following relation between A and B:

A = −B 1 + βω−1(r + i)

1− βω−1(r − i)
exp(−2iβrl).

We may then substitute this expression into q and then into b1/a1. Let

y =
ω

β
.

Then the final result is, for y > 1,

∥∥∥∥ b1a1

∥∥∥∥2

=
−1 + cos(2βl

√
y2 − 1)

1− 2y2 + cos(2βl
√
y2 − 1)

, (5.33)

while for y < 1, the final result is

∥∥∥∥ b1a1

∥∥∥∥2

=
−1 + cosh(2βl

√
1− y2)

1− 2y2 + cosh(2βl
√

1− y2)
. (5.34)



75

We note that the reflection coefficient is indeed continuous at y = 1 and the limit

there is

lim
y→1

∥∥∥∥ b1a1

∥∥∥∥2

=
l2ω2

1 + l2ω2
. (5.35)

For extremely low and extremely high frequencies, we have the limits

lim
y→0

∥∥∥∥ b1a1

∥∥∥∥2

= tanh2(lβ)

lim
y→∞

∥∥∥∥ b1a1

∥∥∥∥2

= 0

This confirms Klemer and Sharpe’s result that sufficiently large frequencies are, for

all practical purposes, completely transmitted.

Qualitatively, the shape of ‖b1/a1‖2 is the same regardless of the scaling parameter

2βl. Quantitatively, this parameter is crucial towards determining whether there is

appreciable reflection for sufficiently low frequencies. For example, when 2βl = O(1),

we find that reflection of sufficiently low-frequency incoming signals is significant:

Figure 5.2: Reflection coefficient as a function of the ratio ω/β, for 2βl = 1. Note
that for sufficiently low frequencies ω, more than 15% of the input signal is reflected.
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However, when 2βl is small, reflection is negligible for all frequencies. For example,

when 2βl = O(10−6), we have

Figure 5.3: Reflection coefficient as a function of ω/β, for 2βl = 10−6.5. Note that
the maximum value of the reflection coefficient is less than 10−13 so, for all practical
purposes, we have 100% transmission of the input signal.

5.2 Two-Dimensional Transmission Lattice

In this section we examine the same approach for the case of 2D inhomogenous lattice

shown in figure 5.4.

5.2.1 Continuum Model

We begin with the continuum model of the lattice (see chapter 4), neglecting the

dispersion:

LCVtt = ∇2V − ∇V · ∇L
L

(5.36)

or in fourier domain:

−ω2τ 2V = ∇2V − ∇V · ∇L
L

(5.37)
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1, +jiL

jiL ,

Figure 5.4: 1D nonuniform linear transmission line

Now we examine the same change of variable for the case of 2D described by

(5.37):

u =
V√
Z0

=⇒ ∇u =
∇V√
Z0

− 1

2
(Z0)

−3/2(∇Z0)V (5.38a)

w = I
√
Z0 =⇒ ∇w = ∇I

√
Z0 +

1

2
(Z0)

−1/2(∇Z0)I (5.38b)

by defining p as

−→p = ∇(ln
√
Z0) (5.39)

we will have:

∇u =
∇V√
Z0

− u−→p (5.40)

by taking the divergence of the above and substituting into (5.37), we will have:

(∇2 +−→p · −→p +∇ · −→p − ∇L
L
· −→p )u = −ω2τ 2u+ (

∇L
L
− 2−→p ) · ∇u (5.41)
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5.2.2 Electrical Funnel

The funnel is a 2D lattice with constantτand variable Z0. the first choice of funnel is:

L(x, y) = B exp(λxy) (5.42a)

C(x, y) =
τ 2

B
exp(−λxy) (5.42b)

one could show that these choices of inductors and capacitors will result in:

(∇2 − λ2

4
(x2 + y2))u = −ω2τ 2u (5.43)

this equation has solutions in Hermitian polynomial format; however the difficulty

is that after we found the uandV , we should do a reverse fourier transform to have

the voltage in time domain, and the solution of(5.43)does not have a simple form.

Another choice of inductors and capacitors is:

L(x, y) = B exp(λ1x+ λ2y) (5.44a)

C(x, y) =
τ 2

B
exp(−λ1x− λ2y) (5.44b)

again, by finding −→p and substituting it in (5.41), we will have:

(∇2 +
1

4
(λ2

1 + λ2
2))u = −ω2τ 2u (5.45)

this equation is a well-known Helmholtz differential equation.

5.2.3 Electrical Lens

the funnel is a 2D lattice with variableτand constant Z0. unfortunately, the change

of variables described by (5.38)will not eliminate the τ from the equation. To solve
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this problem, we are looking for transform like:

x = F (x′, y′) (5.46a)

y = G(x′, y′) (5.46b)

so we will have:

∂V

∂x′
=
∂V

∂x

∂F

∂x′
+
∂V

∂y

∂G

∂x′
(5.47a)

∂V

∂y′
=
∂V

∂x

∂F

∂y′
+
∂V

∂y

∂G

∂y′
(5.47b)

and similarly for the second derivatives,

∂2V

∂x′2
=
∂2V

∂x2
(
∂F

∂x′
)2 +

∂V

∂x

∂2F

∂x′2
+
∂2V

∂y2
(
∂G

∂x′
)2 +

∂V

∂y

∂2G

∂x′2
(5.48a)

∂2V

∂y′2
=
∂2V

∂x2
(
∂F

∂y′
)2 +

∂V

∂x

∂2F

∂y′2
+
∂2V

∂y2
(
∂G

∂y′
)2 +

∂V

∂y

∂2G

∂y′2
(5.48b)

in order to compensate the time dependance in the equation (5.37) and reduce it to

the Helmholtz equation, one could show that, we must have:

(
∂F

∂x′
)2 + (

∂F

∂y′
)2 = τ 2 (5.49a)

(
∂G

∂x′
)2 + (

∂G

∂y′
)2 = τ 2 (5.49b)

∂2F

∂x′2
+
∂2F

∂y′2
= ∇2F =

Lx

L
(5.49c)

∂2G

∂x′2
+
∂2G

∂y′2
= ∇2G =

Ly

L
(5.49d)

the first two conditions, will result in an equation similar to (5.43)and if all four hold,

we will get a simple Helmholtz equation. Equations (5.49) are similar to Eikonal

equations in Geometric mechanics and we might be able to solve them with similar

techniques; However, we will develop a simpler method to attack this problem in

chapter 9 using optical ideas. Now we are ready to discuss the application of the

theory of wave propagation in one and two dimensional lattices in chapters 6 and 7.
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Chapter 6

Extremely Wideband Signal
Generation and Processing

In this chapter, we first show a soliton line on a conventional silicon technology,

which can achieve very narrow (soliton) pulses with a bandwidth in excess of the

cut-off frequency, fT , of the fastest transistor available in the process technology.

Another possible application of NLTLs is pulse sharpening for the more tradi-

tional non-return-to-zero (NRZ) data transmission in digital circuits by improving

the edges of the pulses. Improving the transitions by shrinking the rise and fall times

of pulses can be useful in other applications, such as high-speed sampling and timing

systems. Non-linear transmission lines’ (NLTLs) sharpening of either the rising or

the falling edge of a pulse has been demonstrated on a GaAs technology [73]. How-

ever, to the best of our knowledge, to this date there has been no demonstration of

simultaneous reduction of both rise and fall times in an NLTL. Neither are we aware

of any demonstration of such NLTLs in silicon-based CMOS process technologies. In

the second part of this chapter, we demonstrate that using a favorable characteristic

of MOS varactors, which leads to a different kind of non-linearity, we can improve

both the rise and fall times, simultaneously. This is not possible with the nonlinear

elements commonly used in the NLTLs (e.g., reverse bias PN junctions). Neither can

it be done using transistors, as they are limited by their unity gain frequency, fT .

Here, we introduce two different types of non-linear transmission lines to generate

narrow pulses and to sharpen pulse transitions, respectively, and we show the exper-
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imental results verifying the agreement between the theory and the measurement.

6.1 Pulse Narrowing Non-Linear Transmission Line

As shown in equation 3.9, the traveling wave solution of NLTL with varactor model

of C(V ) = C0(1− bV ) equation can be written as:

V (x, t) =
3(ν2 − ν2

0)

bν2
sech2

[√
3(ν2 − ν2

0)

ν0h
(x− νt)

]
. (6.1)

where ν is the propagation velocity of the pulse and ν0 = 1/
√
LC0. In chapter 3,

we proved mathematically that 6.1 is the only physically meaningful traveling wave

solution that maintains its shape while propagating through NLTL. This solution is

shown in Figure 6.1 for three different values of L and C, and hence different h. Note

that this solution is not a function of the input waveform, and thus any arbitrary

input will eventually turns into 6.1, if it goes through a line which is long enough.

As can be seen from 6.1, the peak amplitude is a function of the velocity. Defining

an effective capacitance, Ceff , so that ν = 1/
√
LCeff , the pulse height is given by:

Vmax =
3

b
· ν

2 − ν2
0

ν2
=

3

b
· (1− Ceff

C0

) (6.2)

Using 6.2, we can relate Ceff to an effective voltage Veff . It is straightforward to

show that

Veff =
Vmax

3
(6.3)

So it is the capacitance at one-third the peak amplitude, that determines the

effective propagation velocity. Using these relationships, we can easily calculate the

half-height width of the pulse to be:

W ≈ h

ν

ν0√
(ν2 − ν2

0)
(6.4)

A few important observations are:
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Figure 6.1: Three normalized soliton shapes for different values of L and C (a) L=1nH
and C= 1nF (b) L=2nH and C=2nF (c) L=4nH and C=4nF

• the velocity of the solitary wave increases with its amplitude,

• pulse width decreases with increasing pulse velocity,

• the width shrinks for higher amplitudes,

• the sign of solution depends on the sign of non-linearity factor, b, i.e. for

a capacitor with a positive voltage dependence (e.g., an nMOS varactor in

accumulation mode) we have:

C(V ) = C0(1 + bV ) (6.5)

resulting in upsidedown pulses.

Based on these results, to achieve large-amplitude narrow pulses, inductance and

capacitance of the NLTL must be as small as possible, and non-linearity factor, b,
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should be large enough to compensate the dispersion of the line.

It is also important to know the characteristic impedance of these lines (for

impedance matching, etc.). As in a NLTL, the capacitance is a function of voltage,

we can only define an effective semi-empirical value for the characteristic impedance.

Simulation results indicate that one can approximate Zeff using the capacitance at

Veff defined in 6.3 , i.e.:

Zeff =

√
L

C(Veff )
(6.6)

6.1.1 Intuitive Explanation

As can be seen, in a weakly dispersive and non-linear transmission line, the non-

linearity can counteract the normally present dispersive properties of the line main-

taining solitary waves that propagate without dispersion. This behavior can be ex-

plained using the following intuitive argument.

Figure 6.2: Dispersion and non-linear effects in the NLTL

The instantaneous propagation velocity at any given point in time and space is
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given by ν = 1/
√
LC . In the presence of a non-linear capacitor with a characteristic

given by C(V ) = C0(1 − bV ), the instantaneous capacitance is smaller for higher

voltages. Therefore, the points closer to the crest of the voltage waveform experience

a faster propagation velocity and produce a shock-wave front, due to the nonlinearity,

as shown symbolically in the upper part of Figure 6.2. Note that this is not a real

waveform and more a fictitious representation of how each point on the curve tends

to evolve. On the other hand, dispersion of the line causes the waveform to spread

out, as shown in the lower half of Figure 6.2. For a proper non-linearity, these two

effects can cancel each other out resulting in a pulse which can propagate without

experiencing dispersion or nonlinearity.

6.1.2 Pulse Degeneration Problem

As mentioned in chapter 3, one problem in pulse narrowing NLTLs is that if the input

pulse is wider than a certain minimum related to the natural pulse width of the line

in 6.4, the line is incapable of concentrating all that energy into one pulse and instead

the input pulse degenerates into multiple soliton pulses, as shown in the simulated

upper waveforms of Figure 6.3. This is an undesirable effect that cannot be avoided

in a standard line. We can solve this problem by using gradually scaled non-linear

transmission lines [73].

We notice that the characteristic pulse width of the line is controlled by the node

spacing, h, and the propagation velocity, ν, which is in turn controlled by L and C.

Thus, we use a gradual line consisting of several segments that are gradually scaled

to have smaller characteristic pulse width, as shown in Figure 6.4.

The first few segments have the widest characteristic pulse, meaning that their

output is wider and has smaller amplitude. As a result, the input pulse will cause just

one pulse at the output of these segments. The following segments have a narrower

response and the last segment has the narrowest one. This will guarantee the gradual

narrowing of the pulses and avoids degeneration. Each segment has to be long enough

so that the pulse can reach the segment’s steady-state response before entering the
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Figure 6.3: Output waveforms of the normal and gradual soliton line

next segment.

One design consideration is that the characteristic impedance of each segment

matches those of the adjacent segments to avoid reflections. This requires the same

scaling factor for both L and C, so that their ratio remains constant.

The mathematical treatment of this inhomogeneous nonlinear transmission line

was studied in section . The waveforms of this gradually scaled NLTL are shown in

the lower part of Figure 6.3, demonstrating the effectiveness of this technique.

6.2 Edge Sharpening Line

It is possible to design NLTLs to sharpen the pulse transitions. This is particularly

useful for digital transmission such as non-return to zero (NRZ) data. Unfortunately,
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Figure 6.4: Schematic of the gradually scaled non-linear transmission line

all the efforts in the past [73] have resulted in sharpening of only one of the rising and

falling edges. This, however, has very little practical value, as both transitions are

equally important in common NRZ digital systems. This problem can be traced back

to the monotonic dependence of the non-linear capacitive elements used in NLTL on

the voltage (e.g., reverse biased PN junction, or the ideal behavior of 6.5). Fortu-

nately, CMOS processes offer different characteristics for non-linear capacitors that

can be exploited to achieve simultaneous edge sharpening for both rising and falling

edges. More specifically, accumulation mode MOS varactors (shown in Figure 6.5) (an

nMOS capacitor in an n-well) [35] offer non-monotonic voltage dependence. Particu-

larly, the secondary reduction of capacitance shown in Figure 6.6 due to poly-silicon

depletion [36][37] and short-channel charge quantization [37] effects can be used for

edge sharpening.

6.2.1 Intuitive Explanation

Figure 6.7 shows symbolically how one can use the behavior of Figure 6.6 to sharpen

both edges.

First, let us focus on the rise-time reduction. Consider the rising edge shown in the
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Figure 6.5: Schematic of an accumulation mode MOS varactor

Figure 6.6: Capacitance versus voltage for a MOSVAR

upper part of Figure 6.7. Initially the voltage is low, which corresponds to a smaller

capacitance per Figure 6.6, and hence a faster instantaneous propagation velocity

for the lower end of the pulse. As the voltage goes up, the capacitance increases,

resulting in a decrease in the instantaneous propagation velocity. This pushes the

lower end of the transition forward in time and results in sharpening of the rising

edge. This effect is symbolically shown in the fictitious middle waveform of Figure

6.7. The fall time reduction can be explained using the lower part of Figure 6.7. This

is where the non-monotonic behavior of Figure 6.6 plays its role. The upper part

of the transition (voltages above V2) will be accelerated due to the reduction of the

capacitance and will create an advancing front, as symbolically shown in the middle

waveform of Figure 6.7. The lower capacitance at the very low voltages can generate

a leading tail, which will be partially dissipated by the line. The weak reduction
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Figure 6.7: How rise and fall time vary within the NLTL

in capacitance from V2 to V3 versus reduction from V1 to V2 results in mismatched

rise/fall time as can be seen in Figure 6.7.

While the above explanation based on a simplified memory-less description of the

line provides a basic intuition for its operation, a complete description can only be

obtained by solving the differential equation governing the line to account for the

memory of the system ∗. Our numerically solution of this equation, also confirms

that as long as the input voltage range exceeds voltages, V1 and V3, for a range of L’s

and C’s, the line sharpens both rising and falling edges, simultaneously.

It may also be possible to achieve a symmetrical wave form by:

• Using an n-type and a p-type MOSVAR in parallel to create a symmetrical

C(V ) curve. The problem of this method is that a p-type MOSVAR is not as

fast as n-type MOSVAR therefore the frequency response of the line would be

limited to the frequency response of the p-type MOSVARs.

∗We hypothesize that other dynamic effects in the MOS varactor may also help edge sharpening,
e.g., the processes of charge being attracted from the n+ diffusions to the channel and repelling them
are not exact inverses of each other over short time intervals. Some of the repelled accumulation
charges will be absorbed inside the well. This changes the response time of the capacitor and keeps
it higher for a longer period of time for the falling edge.
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• Using two n-type MOSVAR at each node, as shown in Figure 6.8. This way, we

can have a symmetrical C(V ) curve, however the capacitance of each node would

be twice as large which limits the cut-off frequency of the line by a factor of
√

2.

Another limitation of this method is the additional parasitic capacitance to the

substrate that may lower the effective non-linearity factor, b, of the capacitors.

Figure 6.8: A proposed NLTL for symmetrical edge sharpening

In this work, the goal was to achieve the minimum rise time while decreasing

the fall time at the same time, so we used a single capacitor at each node. For

other applications with different objectives one of these alternative methods may be

preferred.

6.3 The Effect of Loss

Figure 6.9 shows a simple model of a lossy non-linear transmission line.

By applying KCL at node n, whose voltage with respect to ground is Vn, and

applying KVL across the two branches connected to this node, one can easily show

that voltages of adjacent nodes on this NLTL are related via:

Vn−1 − 2Vn + Vn+1 = `
d

dt
(In−1 − In) + r(In−1 − In) (6.7)
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Figure 6.9: Simple model of a lossy non-linear transmission line with series resisitor

where r is the series resistance of each section. Let L = `/h, C(V ) = c(V )/h, and

R = r/h be, respectively, the inductance, capacitance, and resistance per unit length.

By applying techniques shown in chapter 3, a continuous partial differential equation

can be obtained form 6.7:

∂2V

∂x2
+
h2

12

∂4V

∂x4
= L

∂

∂t

[
C(V )

∂V

∂t

]
+RC(V )

∂V

∂t
(6.8)

Unfortunately, we could not find an analytical solution for 6.8 and had to use

numerical methods to solve it.

Other model for the loss of the transmission line is shown in figure 6.10. In this

case one can show that the governing equation of the line is:

∂2V

∂t2
− b

∂2V 2

∂t2
= ν2

0

[
∂2V

∂x2
+

1

12

∂4V

∂x4

]
+
R

L

[
∂2V

∂x2
− b

∂2V 2

∂x2

]
(6.9)

which can be reduced to Burgers equation [74].

In both models, the numerical solution of the governing equations shows that loss

has an effect similar to the dispersion, meaning that loss causes the waveform to

spread out, so in order to have a soliton pulse in a lossy non-linear transmission line,

non-linearity should be strong enough to cancel out both dispersion and loss.
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Figure 6.10: Simple model of a lossy non-linear transmission line with parallel resistor

6.4 Simulations

We have designed one edge sharpening and two pulse narrowing NLTLs with different

tapering factors using the accumulation-mode MOS varactors and metal micro-strip

transmission lines in a 0.18 µm BiCMOS process. Figure 6.11 shows the measured

characteristic of the accumulation-mode MOSVAR used in this design. All the capac-

itors have similar C-V characteristics; however, we used different capacitances along

the line in order to build a gradually scaled NLTL.

To achieve the lowest pulse width in the pulse narrowing lines or the shortest

rise and fall times in the edge sharpening line, it is necessary to carefully select the

dc level and the voltage swing. In general, this may be an additional constraint in

system design since it will require additional dc level shifting and amplification or

attenuation to adjust the input levels. Nonetheless, this level of signal conditioning

is easily achieved in today’s integrated circuits. The dc level and the voltage swing

for each application is mentioned in the following sections. All three lines consist

of one hundred capacitors and one hundred inductors. We simulated the passive

transmission lines in Sonnet [66] and the complete NLTL in ADS [67]. Next, we will

discuss the details specific to each kind of lines separately.
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Figure 6.11: Measured characteristic of MOSVAR used in the line

6.4.1 Pulse Narrowing Line

For pulse narrowing lines, we would like to have the maximum change in the ca-

pacitance with voltage. Thus, we chose the baseline dc bias point at 0.8V which

corresponds to the maximum capacitance point, and applied negative input pulses

from this dc level. For a typical pulse amplitude of 1V, the effective non-linearity

factor, b in C(V ) = C0(1− bV ) is around 0.5V −1. As we explained in Section 6.1.2,

the lines are not continuously scaled, but consist of several segments with constant

values of inductors and capacitors within a segment. (However it turns out that a

continuous scaling of the line is preferable because of internal reflections between

different segments of the line due to mismatch). The inductances and capacitances

within each segment are lower than those of the previous segment. One of the lines

consists of three different segments and the other of four. The results reported in this
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Section and Section 6.5 are those associated with the four-segment line which has a

smaller output pulse width. The lines are designed in such a way that the character-

istic pulse width of each segment (given by equation 6.4) is half that of the previous

segment so the line can at least compress the input pulse by a factor of sixteen with-

out degenerating into multiple pulses. The simulated output waveform of the line to

a 65ps wide input pulse is shown in Figure 6.12. The simulation predicts that this

silicon-based NLTL can produce negative pulses as narrow as 2.5ps (half amplitude

width) with a 0.8V amplitude at the output. It is noteworthy that transistors in this

process are incapable of producing pulses nearly as narrow as those generated by the

NLTL.

Figure 6.12: Simulated output waveform of the pulse narrowing line using ADS

6.4.2 Edge Sharpening Line

As we showed in the Section 6.2, to build an edge sharpening line we need take

advantage of the non monotonic C-V behavior exemplified by the secondary reduction

in the capacitance, as shown in Figure 6.11. Computer simulations show the best

bias point and voltage swing are around -0.25V and 2V at the input, respectively.

Although these levels led to the best achievable improvement in the rise and fall times,
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the line still enhances the rising and falling edges for input signal voltage swings

between 1.5V and 2V. Figure 6.13 shows the simulated input and output waveforms

of this line. The output pulses exhibit reduced rise and fall times of 1.5ps and 20ps,

respectively. The rise and fall times of the output pulses are different because of the

asymmetrical behavior of the non-linear element for two different edges. We have also

simulated this line with a pseudo-random data source and verified its edge sharpening

functionality for any arbitrary data sequence †.

Figure 6.13: Simulated input and scaled output waveforms of the edge sharpening
line using ADS

Unfortunately in this line, we cannot fully control the characteristic impedance

of the lines because we have to pick the lowest capacitance and inductance -limited

by the parasitic elements- to obtain that maximum improvement in the rise and fall

times. This will allow us to maximize the cut-off frequency of the line. However, it

is not possible to build very small non linear capacitors, because if we shrink the size

of the accumulation-mode MOSVARs the effect of the parasitic capacitors becomes

more important. These parasitic capacitors are voltage independent, hence linear,

and will result in an effective reduction of the nonlinearity factor, b. In this design,

†There seems to be some data dependant delay due to the non-linear behavior of the lines in the
simulations (See Fig. 13). This could have some implications for the data dependant jitter in the
lines, which merits further studies.
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the effective input impedance of the edge sharpening line is around 20Ω gradually

scales to 50Ω at the output. So the input reflection coefficient of the line is roughly

0.4. We must take this effect into account to be able to match the simulation and the

measurement results.

6.5 Experimental Results

All three lines were fabricated in a 0.18µm BiCMOS technology. Figure 6.14 shows a

chip micro photograph. We use RF probes to apply input to the line and to measure

its output waveform. A 50GHz sampling oscilloscope is used to measure the input

and output waveforms. A k-connector system of probes, connectors, and cables with

a bandwidth of approximately 40GHz is used to bring the data to the oscilloscope.

The main challenge in this measurement is the low bandwidth of the measurement

system compared to the signal bandwidth, so it is essential to carefully characterize

the measurement setup.

Figure 6.14: Chip micro photograph: the middle line is an edge sharpening line and
the other two are pulse narrowing lines.

First the oscilloscope was characterized using a signal source. We swept the source

frequency and measured the amplitude of the signal on the oscilloscope; then using the

same signal source, cables, and connectors, we measured the signal amplitude using

a wideband power meter. The ratio of these two values is the amplitude response of

the oscilloscope. Figure 6.15 shows this response.
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Figure 6.15: The frequency response of the oscilloscope

Then we characterize all other cables, connectors, probes, and bias tees using a

50GHz network analyzer. The response of these parts is shown in Figure 6.16. The

amplitude response of the entire measurement setup is the product of Figure 6.15and

Figure 6.16. Using Matlab [75], one can show that the 10%-to-90% rise-time of such

system is around 10.5ps, which indicates that it is not possible to resolve rise times

lower than 10.5ps and pulse widths lower than 21ps.

Figure 6.17 shows the measured response of the pulse narrowing line to a 50ps

input pulse. Based on response of the measurement setup (Figure 6.15and Figure

6.16), the response of the measurement setup to a 2.5ps pulse is 21.5ps wide. The

measured pulse width is 22ps, which is in good agreement with the simulation.

Matlab simulations show that if we have an ideal pulse with rise and fall times of

1.5ps and 20ps, we should expect rise and fall times of 10.5ps and 23ps, respectively

with this measurement setup, as it is shown in Figure 9.15. The measured rise and

fall times for this line are 11ps and 25ps, as shown in Figure 6.19. Also it is important
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Figure 6.16: The frequency response of the cables, connectors, and probes

to note that the rise and fall times do not change with the input amplitude, as shown

in Figure 6.20, which verifies the nonlinear behavior of the line.

In conclusion, in this chapter, We exploit the theory of pulse propagation through

the NLTL and demonstrated a soliton line on a conventional silicon technology and

a line capable of improving both the rise and fall times, simultaneously. Finally, we

showed the experimental results verifying the agreement between the theory and the

measurement.
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Figure 6.17: Input and output of pulse narrowing line

Figure 6.18: Response of the measurement setup to an ideal input
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Figure 6.19: Input and output waveforms of the edge sharpening line
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Figure 6.20: Output waveforms of the edge sharpening line with different amplitude
verifying the nonlinear behavior of the line
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Chapter 7

A Novel Broadband Power
Generation Technique

7.1 Motivation

Recently, there has been growing interest in using silicon-based integrated circuits at

high microwave and millimeter wave frequencies. The high level of integration offered

by silicon enables numerous new topologies and architectures for low-cost reliable SoC

applications at microwave and millimeter wave bands, such as broadband wireless

access (e.g., WiMax), vehicular radars at 24GHz and 77GHz citePfeiffer, short range

communications at 24GHz and 60GHz, and ultra narrow pulse generation for UWB

radar.

Power generation and amplification is one of the major challenges at millimeter

wave frequencies. This is particularly critical in silicon integrated circuits due to the

limited transistor gain, efficiency, and breakdown on the active side and lower quality

factor of the passive components due to ohmic and substrate losses.

Efficient power combining is particularly useful in silicon where a large number

of smaller power sources and/or amplifiers can generate large output power levels

reliably. This would be most beneficial if the power combining function is merged

with impedance transformation that will allow individual transistors to drive more

current at lower voltage swings to avoid breakdown issues [77]. Most of the traditional

power combining methods use either resonant circuits and are hence narrowband or
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employ broadband, yet lossy, resistive networks [78].

In this chapter, we propose a general class of two-dimensional passive propagation

media that can be used for power combining and impedance transformation among

other things. These media take advantage of wave propagation in an inhomogeneous

2-D electrical lattice. Using this approach we show a power amplifier capable of

generating 125mW at 85GHz in silicon [69].

7.2 A variation of Electrical Funnel

Chapter 4 covered the theory of wave propagation in 2D electrical lattices, also the

concept of electrical funnel was introduced there. In this section, we offer a more

intuitive explanation of how funnel works.

One-dimensional LC ladders have been extensively studied before. A homogeneous

1-D LC ladder consists of identical LC blocks repeated multiple times and can support

wave propagation. It can also be used for broadband delay generation and low ripple

filtering. An inhomogeneous linear 1-D line can be used to introduce controlled

amount of dispersion to a signal.

A 1-D LC ladder can be generalized to a 2-D propagation medium by forming

a lattice consisting of inductors (L) and capacitors (C). Figure 7.1 shows a square

lattice. Generally, this lattice can be inhomogeneous where the L’s and C’s vary

in space or nonlinear where they are current and/or voltage dependent. When the

L’s and C’s do not change too abruptly, it is possible to define local propagation

delay (α
√
LC) and local characteristic impedances (α

√
L/C) at each node. This

allows us to define local impedance and velocity as functions of x and y, which can

be engineered to achieve the desired propagation and reflection properties [68]. In

this work, we show one application of these 2-D lattices as a means for simultaneous

power combining and impedance transformation.

One way these surfaces can be engineered is by keeping the propagation velocity

constant vertically (constant LC product for a given y), while increasing the charac-

teristic impedance at the top and bottom of the lattice at a faster rate as we move
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Figure 7.1: 2D square electrical lattice

along the x axis to the right, as illustrated in Figure 7.2. A planar wave propagating

in the x direction from left to right gradually experiences higher impedances at the

edges, creating a lower resistance path for the current in the middle; this funnels

more power to the center as the wave propagates to the right, while we can perform

a gradual impedance transformation from the left to the right. This is shown in the

simulated voltage and current waveforms of Figure 7.3 (for more detail, see Chapter

4). By keeping the propagation velocity independent of y as we move along the x axis,

we can maintain a plane wave keeping the lattice response frequency independent for

the frequencies lower than its natural cut-off frequency [68]. We call this an electrical

funnel due to the way it combines and channels the power to the center at the output.

Multiple synchronous signal sources driving the low-impedance left-hand side of

the funnel can generate a planar wave-front moving along the x axis. The output

node is at the center of the right boundary. The entire right boundary nodes are

terminated with a resistor matched to the local impedance at that node. The up

and down boundaries are kept open. Figure 7.3 shows simulated efficiency of one

implementation vs. frequency demonstrating the broadband nature of the electrical

funnel. Efficiency is defined by the ratio of the power at the output node to the sum

of powers of inputs.

As mentioned in Chapter 4, there is a dual to the funnel where the local charac-

teristic impedance is kept independent of y while the propagation velocity is modified



104

Figure 7.2: Basic idea of a funnel

to increase at the top and bottom of the combiner as the wave front moves to the

right. The input sources on the left boundary add coherently at the focal point which

should occur in middle of the right boundary where the output is taken. This resem-

bles the behavior of an optical lens and is thus called an electrical lens, due to its

focusing nature. However, this focusing behavior is frequency dependent and hence

works perfectly only at one frequency. For other frequencies, the phase shift from the

input to the output is different, resulting in a different focal length. For this reason,

electrical lens might not be an ideal power combiner, however it could take spatial

Fourier transform of the input signal. We will investigate this property in Chapter 9.

In practice, the characteristic impedance at the edges of the rectangular imple-

mentation keeps increasing and hence it is possible to discard the higher impedance

parts of the mesh as we move to the right, effectively reducing it to a trapezoid. In a

silicon process with multiple metals, we can use different metal layers as the ground

plane at different points on the y axis. Our design uses four lower metal layers to form

the variable depth ground plane. This leads to different capacitance per unit length
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Figure 7.3: Simulation results of an ideal funnel with 30pH ≤ L ≤ 150pH and 30fF
≤ C ≤ 300fF

that can be used to control the local characteristic impedance across the combiner,

as shown in Figure 7.4. Since this does not change the inductance, the propagation

delay is not constant vs. y, resulting in a band-pass response. The output is matched

to 50Ω while each of the inputs is matched to around 15Ω. The difference between

this structure and a standard tapered transmission line is a larger bandwidth (45%

increase in this case) over a shorter distance (lower loss) due to the variable-depth

ground plane. This has reduced the combiner’s dimension to 410µm by 240µm.

7.3 Power Amplifier Architecture

To verify the feasibility of this approach, we used this combiner to design a power

amplifier in a 0.12µm SiGe BiCMOS with a bipolar cutoff frequency of 200GHz.

Figure 7.5 shows the chip architecture.

Four power amplifier drive the power combiner to maximize the output power.



106

Figure 7.4: Combiner structure
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Figure 7.5: The architecture of power amplifier

Assume that the voltage at node A in Figure 7.5 is Vin, then we could write input

and output power as:

Pin = n · V
2
in

2Z1

(7.1a)

Pout = n · A
2
vV

2
in

2Z2

· ηcomb. (7.1b)

Where Z1 and Z2 are input and output impedance of each amplifier, Av is its

voltage gain, n is the number of amplifiers, and ηcomb. is the combining efficiency.
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From input and output power, we can find the power gain of the amplifier, G, as:

G =
Pout

Pin

= A2
v · ηcomb. ·

Z1

Z2

(7.2)

7.3.1 Driver Design

In order to obtain a wideband response, we use degenerate cascode distributed am-

plifiers with emitter degeneration as input drivers, shown in Figure 7.6. The main

advantage of cascode stage over single transistor is its higher maximum stable power

gain. As Figure 7.7 shows, a non-degenerate cascode amplifying stage in this pro-

cess has a maximum stable power gain of 15dB at 80GHz, as opposed to 7dB for a

standard common-emitter. The cascode stages are emitter degenerated to improve

bandwidth and avoid thermal runaway.

Figure 7.6: Cascode architecture

Each of the four distributed amplifiers consists of eight cascode stages driving the

output transmission line, which drive the inputs of the combiner. Figure 7.8 shows

the structure of each distributed amplifier.

Figure 7.9 shows the gain of each stand alone distributed amplifier. Using equation

7.2, for our amplifier, with Av ∼ 1.8, ηcomb. ∼ 0.7, and Z1 ∼ 4Z2 the power gain in 84
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Figure 7.7: Maximum stable power gain of a cascode stage vs. a single transistor

B

c

Figure 7.8: One stand alone distributed power amplifier

GHz should be around 9dB, which is close to the measured value of 8dB.

7.4 Implementation

Die photo of the amplifier is shown in Figure 7.10. Figure 7.11 shows the setup that

we used to measure the characteristic of the power amplifier.

The chip is mounted on a brass substrate which is connected to ground. The input

is provided by an HP 83650B signal generator and a Spacek frequency multiplier which

could generate power from 60GHz to 90GHz. To be able to control input power, a

variable attenuation is used before the RF probes. We probe input and output of our
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Figure 7.9: Simulated gain of each distributed amplifier

amplifier and measure the output power using a power-meter. Because the chip has

two supplies (-2.5V and 0.8V), we can’t directly connect the chip substrate (which is

at -2.5V) to the brass. On the other hand it is critical to have a good heat sink for our

chip. To solve this problem we use a thin low-cost CVD diamond [79] between our

chip and brass. Diamond is a superior electrical insulator and is the best isotropic

thermal conductor with thermal conductivity of around 10 W/cm/K. Figure 7.12

shows the chip under the test.

7.4.1 Measurement Results

The driver amplifiers have two power supplies of -2.5V and 0.8V and draws 750mA

of current. Figure 7.13 and Figure 7.14 show the measured small signal gain and

peak output power of the amplifier vs. frequency. The maximum output power was

measured using two different signal sources: a backward wave oscillator (BWO) and

a frequency multiplier. The overall small-signal gain is above 8dB at 85GHz where

the peak power of 125mW is achieved. The lower measured maximum power in the

multiplier measurement is due to its limited output power compared to BWO and the

lower amplifier gain above 86GHz. At 85GHz, the output power and drain efficiency
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Figure 7.10: Chip micro photograph

as a function of input power are shown in Figure 7.15. At 85GHz, drain efficiency is

more than 4% at 3dB gain compression. The amplifier has a 3dB power bandwidth

of 24GHz (between 73GHz and 97GHz).

7.4.2 Comparison and Conclusion

A comparison of presented power amplifier with previous work on mm-wave power

amplifiers (mostly in silicon) is summarized in table 7.1. Among other amplifiers

on silicon substrate this work demonstrates the highest achieved center frequency of

operation (85GHz) and the highest achieved power output (120mW) at this frequency.

It is noteworthy that the relatively low efficiency of the amplifier is due to the low

efficiency of the drivers as we used class A distributed amplifiers. The peak efficiency

of the power combiner is around 70% and we could use different classes of drivers to

increase the power efficiency by sacrificing some bandwidth.
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Figure 7.11: Measurement setup

Freq. Device Pout(dBm) PAEmax(%) Gain(dB) Ref.
85GHz 0.12µm SiGe HBT 20.8 4 8 This work
77GHz 0.12µm SiGe HBT 17.5 12.8 17 [80]
77GHz 0.12µm SiGe HBT 13 3.5 6.1 [76]
60GHz 0.12µm SiGe HBT 16 4.3 10.8 [81]
90GHz 0.12µm GaAs pHEMPT 21 8 19 [82]

Table 7.1: A comparison between this work and other designs
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Figure 7.12: The power amplifier chip under test
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Figure 7.15: Large signal behavior of the amplifier at 85GHz
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Chapter 8

Nonlinear Resonance in
Two-Dimensional Electrical
Lattices

8.1 Introduction

Consider an electrical lattice comprised of inductors and capacitors, as shown in Fig-

ure 8.1. Suppose that voltages are applied at the boundaries, producing two or more

Figure 8.1: 2-D Nonlinear Transmission Lattice
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wave fronts that propagate towards the center of the lattice. In this chapter, we

show that for certain configurations of inductors and voltage-dependent capacitors,

the incoming waves combine nonlinearly, producing a single outgoing wave with peak

amplitude greater than the sum of the incoming waves’ amplitudes. Through numer-

ical experiments, we shall examine how this resonant wave interaction is affected by

varying the incoming waves’ amplitudes, phases, and frequency content. In all cases,

we are concerned with the regime in which (1) the ratio of amplitude to wavelength

is large and (2) the ratio of lattice spacing to wavelength is non-negligible.

The lattice in Figure 8.1 is the natural generalization to two spatial dimensions

of the classical one-dimensional transmission line shown in Figure 8.2. It has been

Figure 8.2: 1-D Nonlinear Transmission Line

known [38][39][40][4] since the 1960s that the presence of voltage-dependent capacitors

in these one-dimensional structures leads to nonlinear wave phenomena, including the

formation of solitons. As a result, nonlinear transmission lines (NLTLs) have been

studied by various groups [45][46][43][47][48] with a focus on solitonic generation of

ultrashort, high-power, stable electrical pulses. Recent developments [56; 55] have

demonstrated that NLTLs are suitable for a variety of ultra-wideband pulse-shaping

applications, and that they can be built inexpensively on silicon chips.
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As early as the 1940’s, Léon Brillouin analyzed wave propagation in two-dimensional

linear lattices [33]. In contrast, two-dimensional nonlinear electrical lattices have not

received as much attention, and we are aware of only three works on this subject other

than our own. These papers were concerned with establishing that 2-D soliton for-

mation was possible, either through experiments [83][84] or through weakly nonlinear

asymptotics [50]. For the remainder of this chapter, we label inductors and capacitors

in the 2-D lattice as shown in Figure 8.3. In [50], the authors assume a uniform, non-

Figure 8.3: 2-D Nonlinear Lattice Block

linear 2-D lattice with Lij = L and Cij(V ) = C(V ) everywhere; they show that the

Kadomtsev-Petviashvili (KP) equation describes weakly nonlinear wave propagation

in such lattices. In [68], it is shown how to choose Lij and Cij nonuniformly in space,

for both linear and nonlinear lattices, in order to design circuits that focus power from

different input signals. Let us quickly review the mathematical modeling of these 2-D

lattices; a detailed description of what follows may be found in [68].

Using Kirchoff’s laws, one writes equations for the current I and voltage V in the

lattice:

Ii,j−1/2 + Ii−1/2,j − Ii+1/2,j − Ii,j+1/2 =
d

dt
(Cij(Vij)Vij) (8.1a)

Vij − Vi,j−1 = −Li,j−1/2
d

dt
Ii,j−1/2 (8.1b)

Vij − Vi+1,j = Li+1/2,j
d

dt
Ii+1/2,j (8.1c)
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Here Lij and Cij are prescribed, while Iij and Vij are unknown functions of time only.

System (8.1), with appropriate boundary conditions that we will make precise later,

is what we solve numerically in order to study wave interactions in 2-D electrical

lattices. In order to obtain analytical insight into the problem, we may examine

various continuum limits of (8.1).

From the lattice equations to the KP equation. Starting from (8.1), we may

outline one possible path to the KP equation. For now we take Lij = L and Cij(V ) =

C0(1 − bV ) everywhere, and consider a continuum model of (8.1) for the case of

an equispaced lattice, where h is the distance between any two adjacent nodes. We

switch from L and C to, respectively, the inductance and capacitance per unit length

L′ = L/h and C ′
0 = C0/h. Next, we decouple (8.1) and obtain a single second-order

equation for the unknown Vij:

1

h2
(Vi,j−1 − 2Vij + Vi,j+1 + Vi−1,j − 2Vij + Vi+1,j) = L′C ′

0

[
(1− bVij)

d2Vij

dt2
− b

(
dVij

dt

)2
]
.

(8.2)

Standard Taylor series ∗ then allows us to approximate the discrete function Vij(t) by

a smooth function V (x, y, t), and then rewrite the left-hand side of (8.2) as follows:

∇2V +
h2

12
(Vxxxx + Vyyyy) = L′C ′

0

[
(1− bV )Vtt − b (Vt)

2] . (8.3)

Here and in what follows, subscripts denote partial derivatives. Starting from the

continuum model (8.3), we now seek an equation that describes, asymptotically, small-

amplitude two-dimensional long waves propagating through the lattice. To derive

such an equation, we set ν0 = (L′C ′
0)
−1/2 and introduce scaled variables

ξ = ε1/2(x− ν0t), η = εy, T =
1

2
ν0ε

3/2t. (8.4)

∗Inherent in this application of Taylor series is the assumption that h/λ is sufficiently small,
where λ is a characteristic wavelength.
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We insert (8.4) into (8.3), expand V = εV1 + ε2V2 + · · · , and drop all terms except

those of lowest order in ε. The scaling (8.4) selects certain waves; specifically those

that propagate mainly in the x-direction with the y-direction treated as a perturba-

tion. The expansion/truncation of V is valid only if A/λ, the ratio of amplitude to

wavelength, is sufficiently small. The result of this procedure will be the Kadomtsev-

Petviashvili (KP) equation †:

[
(V1)t + V1 (V1)x + (V1)xxx

]
x

+ (V1)yy = 0. (8.5)

Equation (8.5) is a weakly nonlinear limit of the continuum lattice model (8.3).For

more details, please consult [68].

Remark. Starting from (8.1), suppose we choose Lij and Cij such that they are not

constant functions of i and j. Following the same procedure as outlined above, the

final equation will be KP plus two extra terms that involve the spatial derivatives Lx

and Ly; again, see [68] for full details.

8.1.1 KP Resonance

In prior work on nonlinear resonant wave interaction, the KP equation is often the

starting point. One reason is that the KP equation is rather special: it is completely

integrable by the inverse scattering method [85]. Related to its integrability is the fact

that KP possesses exact soliton solutions. Prior studies of nonlinear wave interaction

in the KP system, originating from the works of J. W. Miles [86; 87], have yielded a

wealth of information regarding collisions of two or more KP solitons. Let us review

what is known about the most basic resonant interactions possible in KP, interactions

that involve two incoming solitons merging together to form one outgoing soliton. In

what follows, (ki, ωi) denotes the wave vector and angular frequency of each soliton,

†Equation (8.5) as we have written it is actually the “negative–dispersion KP” or “KP-II” equa-
tion. Flipping the sign on the φyy term yields the “positive–dispersion KP” or “KP-I” equation. As
we are concerned with resonant wave interactions, which are impossible for KP-I (see Fig. 7.3 in
[8]), we will consider only KP-II and refer to it as simply “KP” for the remainder of this work.
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with i = 1, 2 denoting incoming solitons and i = 3 denoting the outgoing soliton.

1. In a resonant collision of solitons, the outgoing wave vector and frequency are

the sums of the incoming wave vectors and frequencies, respectively:

k3 = k1 + k2 (8.6)

ω3 = ω1 + ω2. (8.7)

2. As established rigorously in [88], resonance occurs when the incoming solitons

interact at an angle ψ that belongs to a certain range [ψc1 , ψc2 ]. The interaction

angle is defined by

ψ = ψ2 − ψ1,

where each ψi is defined via ki = k (cosψi, sinψi).

3. If the incoming solitons have the same amplitude A, the outgoing soliton can

have an amplitude of at most 4A. As pointed out in [89], this is a simple conse-

quence of (8.6) and the fact that, for a soliton, the amplitude and wavenumber

are tied together via

Aj ≈Mk2
j

where M is a constant independent of j.

Prior studies of KP resonance typically focus on the interaction of solitons only, not

general nonlinear waves. The focus on soliton interactions means that very little

is known about the interactions of more general waves in the KP system. Let us

also mention that the soliton solutions of KP are themselves special, requiring an

infinite domain and decaying boundary data. Finally, little is known about whether

resonance is possible in systems described by an equation consisting of KP plus extra

terms (perturbations), as would arise when we introduce inhomogeneities into the Lij

and Cij matrices for our 2-D lattice.
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8.1.2 Resonance in Electrical Lattices

In the present work, we demonstrate that a KP-like resonance is possible in two-

dimensional, bounded, nonlinear electrical lattices. Such lattices can be built on

chip and the resonance phenomena can be used for a variety of applications. The

applications we have in mind involve input signals with frequency content that exceeds

the cut-off frequency of the fastest active components (e.g., transistors). Hence we

consider lattices with passive components only. Of course, even a lattice with only

passive components has a natural cut-off frequency. We can see this most concretely

in the case of a linear, homogeneous lattice, which is modeled by (8.2) with b = 0:

Vi,j−1 − 2Vi,j + Vi,j+1 + Vi−1,j − 2Vi,j + Vi+1,j = LC
d2

dt2
Vij. (8.8)

By considering plane wave propagation with wave vector k = (kx, ky), and frequency

f , one finds the dispersion relation

4π2f 2 =
2

LC
[2− (cos kx + cos ky)] . (8.9)

Clearly the maximum value of f occurs when kx = ky = ±π. In this case,

fM =
1

2π

√
8

LC
. (8.10)

With today’s state of the art integrated circuit technologies, on a silicon substrate, the

minimum possible integrated inductance and capacitance are, approximately, LM =

30 pH and CM = 5 fF. Below these values, the parasitic inductance and capacitance

would be dominant. Using these values in (8.10), we find that the maximum frequency

for plane wave propagation on a 2-D silicon transmission lattice is fM ≈ 1.16 THz.

In the present work, our working values of L and C will be

C = 1.0× 10−12 F = 1.0 pF (8.11a)

L = 1.0× 10−9 H = 1.0 nH. (8.11b)
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Suppose we wish to determine, for such a lattice, how many lattice points are needed

to describe one wavelength of a 10 GHz plane wave. We use (8.11), ky = 0, and f =

1010 in the dispersion relation (8.9), and find that kx ≈ 2.91 < π, which corresponds

to λx ≈ 2.16h, where h is the lattice spacing.

Recall that for a lattice with spacing h, the minimum wavelength is 2h. Moreover,

for the lattices we consider, the lattice spacing h is on the order of microns. Though

the preceding analysis is exact only for linear lattices, it is clear that general gigahertz-

range circuits will involve waves where the A/λ ratio is large and the λ/h ratio is

small. This is a regime where the asymptotics described earlier, and therefore the KP

equation itself, does not apply. Therefore, in our analysis, we work with the lattice

ODE equations (8.1) directly, rather than with the KP equation or with any other

continuum model.

8.1.3 Main Results

By solving (8.1) numerically, we demonstrate that KP-like nonlinear resonant com-

bining of input signals is possible in electrical lattices. Moreover, we demonstrate that

the resonance is in some cases enhanced by working in the strongly nonlinear, highly

discrete regime where the two ratios h/λ and A/λ are not small. In this regime, the

KP equation and other perturbative approaches to the lattice dynamics are invalid.

We further demonstrate that the resonance is robust with respect to unequal input

signal amplitudes as well as mismatched input phases. Finally, we study multiple

resonance effects as well as resonant combining of non-sinusoidal waves.

Outline. This chapter is organized as follows. In Section 8.2, we provide details

regarding the system of differential equations we solve, as well as their initial and

boundary conditions. Basic results on resonance phenomena, including the effects

of unequal input amplitudes and varying interaction angles, are presented in Section

8.3. Finally, in Section 8.4, we provide further results showing various ways by which

one can enhance the resonance phenomena.
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8.2 Numerical Setup

Our study of resonance in 2-D electrical lattices proceeds by systematically carrying

out numerical experiments on system (8.1). Unless other dimensions are explicitly

given, we assume we are working with a square 80× 80 lattice. This lattice contains

capacitors Cij at all nodes except for those on the left boundary, as shown in Figure

1. Linear capacitors correspond to ∂Cij/∂Vij = 0; in the present work, we consider

nonlinear capacitors that have the following piecewise-linear dependence on voltage:

Cij(Vij) =


(C0)ij Vij < 0

(C0)ij (1− bVij) 0 ≤ Vij ≤ VM

(C0)ij (1− bVM) Vij > VM

(8.12)

Precise values of b and VM will be specified for each numerical run. Typically we will

consider homogeneous lattices with parameters (C0)ij = C and Lij = L, where L and

C were given in (8.11).

Unlike what is shown in Figure 8.1, our lattice is bounded on the right, as shown in

Figure 8.4. In practical applications, we choose this value so as to minimize reflection

of incident wave energy. For the simulations presented here, we stop running before

the signal reaches the right boundary; hence the exact value of the right boundary

resistance does not affect the results we report. In future work, we will examine the

scattering problem that arises when nonlinear lattice waves hit the right boundary.

For each simulation, we assume that the interior of the lattice is initially free of

current and voltage, i.e., Vij(t = 0) = 0 for all i and all j > 0, and Ii±1/2,j(t =

0) = Ii,j±1/2(t = 0) = 0 for all i and all j. In most of the experiments, we consider

sinusoidal forcing of amplitudes AL and AB applied to, respectively, the left and

bottom boundaries of the lattice. We use the convention that the left boundary

corresponds to (i, j) = (1, j) and the bottom boundary corresponds to (i, j) = (i, 1),
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Figure 8.4: Right boundary of the 2-D electrical lattice, showing the resistive termi-
nation.

so

V1,j(t) = AL sin (2πft+ φj) (8.13a)

Vi,1(t) = AB sin (2πft+ φi) , (8.13b)

with f = 10 GHz, 1 ≤ i ≤ 40, and 1 ≤ j ≤ 40. In case AL 6= AB, we use AB for

the corner node (1, 1). Occasionally we consider different types of forcing applied to

the same or different boundaries of the lattice; when we do so, we shall mention it

explicitly.

With the initial and boundary conditions as specified, we solve (8.1) numerically.

In each numerical experiment, waves introduced into the lattice through boundary

forcing interact, producing outgoing waves. In what follows, we record and discuss

numerical observations of these outgoing waves. We focus on the amplitudes of the

outgoing waves, as a function of the amplitudes/angles of the incoming waves.

8.3 Results of Numerical Experiments

8.3.1 Equal amplitude and in-phase.

First we examine the case where both incoming waves have equal amplitude and are

in phase. Along the left and bottom boundaries, we stipulate that the voltages are
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given by

V1,j(t) = A sin(2πft) (8.14a)

Vi,1(t) = A sin(2πft) (8.14b)

For this experiment, we use nonlinear capacitors modeled by 8.12 with parameters

b = 0.5 and VM = 1.9. Then, with the numerical setup given in Section 8.2, we find

that the two incoming waves collide to produce one single outgoing wave of amplitude

AR. By repeating the experiment with different values of A, we study the dependence

of the resonance amplitude AR on the incoming amplitude A. The resulting data is

shown in Figure 8.5.

Based on this data, we make the following observations:

1. The ratio AR/A measures the efficiency of the combining; for linear combining,

the output amplitude AR = 2A always. Since our lattice itself was nonlinear,

we expected all incoming waves to combine nonlinearly, regardless of their am-

plitude A. In our experiments, we found AR/A > 2 always, confirming this

expectation.

2. When the voltages in the lattice are small (much less than unity), we may be

in the KP regime, but when AR ≥ 1V , it is clear that the weakly nonlinear KP

theory no longer applies. At A = 0.3V , for example, we are able to produce

an output signal that has more than six times the amplitude (AR > 6A) of

the input. Note that for a range of inputs, 0.25V < A < 0.4V , the discrete

resonance exceeds the AR = 4A bound established for the KP equation.

3. We also expected a saturation effect due to the form of nonlinearity we assumed

in the capacitor model (8.12). For V > VM , the capacitance of each Cij is

independent of V . A signal for which V > VM everywhere in space (e.g.,

a DC biased signal) would not see the nonlinearity of the lattice at all; for

such a signal, linear dynamics prevail. However, the signals we deal with in

this chapter, do not have any DC bias—they oscillate about zero with some
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amplitude A. If A > VM , then some portion of the signal will experience only

linear dynamics.

For this experiment in particular, VM = 1.9, so we do not expect nonlinear

combination to work as efficiently when AR ≈ 1.9. This explains the drop in

the ratio AR/A as A increases beyond A = 0.3. For A = 0.4, we are already

producing an output signal with AR = 1.92. Increasing the input voltage to

A = 0.5 has no effect on the output voltage—at this point, the nonlinearity of

the capacitors has been saturated. In Figure 8.5, this corresponds to the part

of the graph that is relatively flat.

The net effect of this circuit is to combine and convert the sinusoidal inputs into a

soliton-like pulse, as shown in Figure 8.6.

We did not record in Figure 8.5 the wave vectors of the output signals. It is clear

that the input signals have wave vectors k1 = (1, 0) and k2 = (0, 1). Recall from

(8.6) that for KP soliton interactions, input signals with these wave vectors would

combine to form an output signal with wave vector k3 = (1, 1), which is precisely

what we observed in all of the experiments we performed to generate Figure 8.5.

8.3.2 Unequal Amplitude and In-Phase

Next we consider the effect of varying the amplitude of the input signals, while keeping

these signals in phase. Along the left and bottom boundaries, we prescribe:

V1,j(t) = AL sin(2πft) (8.15a)

Vi,1(t) = AB sin(2πft). (8.15b)

Just as for the equal amplitude case, the capacitor model is (8.12) with b = 0.5 and

VM = 1.9. All other parameters are given in Section 8.2. Using repeated numerical

simulations, we compute the amplitude of the output signal AR for various cases of

input signal amplitudes AL and AB. The data is recorded in Table 8.1.

Homogeneity of the lattice (8.11) ensures that the table is symmetric across its
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0.4 0.3 0.25 0.2 0.15 0.1
0.4 1.92 1.90 1.90 1.89 1.78 1.73
0.3 1.85 1.39 1.11 0.930 0.799
0.25 1.02 0.845 0.713 0.599
0.2 0.690 0.563 0.467
0.15 0.460 0.368
0.1 0.280

Table 8.1: Amplitude AR of the outgoing resonant pulse that forms from two incoming
sinusoids of amplitude AL and AB. All amplitudes are in Volts.

0.4 0.3 0.25 0.2 0.15 0.1
0.4 2.40 2.71 2.92 3.15 3.24 3.45
0.3 3.08 2.53 2.23 2.07 2.00
0.25 2.04 1.88 1.78 1.71
0.2 1.73 1.61 1.56
0.15 1.53 1.47
0.1 1.40

Table 8.2: Efficiency AR/(AL + AB) (or the ratio of outgoing amplitude to the sum
of incoming amplitudes) as a function of AL and AB. All amplitudes are in Volts.

diagonal, so only half the entries are shown. In all cases, it is clear that the efficiency

ratio AR/(AL + AB) > 1, so the wave interaction is always nonlinear, just as in the

equal-amplitude case. However, a closer inspection of this ratio, as shown in Table 8.2,

reveals an interesting effect. When AL < 0.4, the efficiency increases as AB increases.

However, when AL = 0.4, the efficiency increases as AB decreases. In future work, we

shall investigate theoretically the source of this phenomenon.

Other features of the unequal-amplitude case are the same as the equal-amplitude

case. Let us specifically mention that input signals colliding at a right angle yield

an output pulse that travels at a 45-degree angle. The net effect of the circuit is to

generate concentrated soliton-like pulses from sinusoidal inputs.
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8.3.3 Equal amplitude but out-of-phase

Finally we consider the effect of varying the interaction angle of the two inputs, while

keeping their amplitudes fixed and equal:

V1,j(t) = 0.25 sin(2πft+ j∆ϕ) (8.16a)

Vi,1(t) = 0.25 sin(2πft). (8.16b)

Each choice of the phase shift ∆ϕ corresponds to a certain interaction angle θ between

the two incoming waves. As an example, the trivial choice of ∆ϕ = 0 corresponds to

an interaction angle of θ = π/2. In general,

cos θ =
λ

h

∆ϕ

2π
, (8.17)

where h is the distance between two nodes (i, 1) and (i+1, 1) and λ is the wavelength

of the incoming signal. In practice ‡, for an input frequency of 10 GHz, the nonlinear

lattice described in Section 8.2 has a ratio λ/h ∼ 22.4. We consider the collision at

an angle θ of two waves that begin as sinusoidal forcing (8.16) with phase shift ∆ϕ.

From each collision, a resonant outgoing wave with amplitude AR results. We plot

the outgoing amplitude AR as a function of θ in Figure 8.7.

Note that the efficiency ratio in this case is simply AR/(0.25 + 0.25) = 2AR.

Therefore, it is clear that the resonant collision of maximum efficiency occurs when

the interaction angle is 90 degrees. However, if the interaction angle is decreased to

82 degrees, the amplitude of the output signal is decreased only by 7%. For practical

applications, even if the interaction angle is not precisely 90 degrees, we still see

nonlinear resonant combining.

‡The ratio λ/h ∼ 22.4 was established through direct numerical simulation of the nonlinear
lattice.
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8.4 Practical Considerations

8.4.1 Double resonance.

Of course, there is nothing stopping us from designing circuits that feature multiple

resonant interactions. We have numerically simulated such a circuit, based on a

80×40 lattice, i.e., M = 80 and N = 40, with capacitor model (8.12) and parameters

b = 0.25, VM = 3. Here the boundary forcing is

Vi,1(t) = 0.5 sin(2πft) (8.18a)

V1,j(t) = 0.5 sin(2πft) (8.18b)

Vi,N(t) = 0.5 sin(2πft), (8.18c)

where 1 ≤ i ≤ 20 and 1 ≤ j ≤ 40. With this choice of boundary forcing, three

resonant interactions occur. The first two interactions are simultaneous: the wave

originating from the bottom (i, 1) boundary nodes collides with the wave originating

from the left (1, j) nodes, and at the same time, the wave originating at the top (i, N)

collides with the (1, j) wave. The resulting waves have wave vectors of (1,−1) and

(1, 1) respectively. These waves then collide at an angle of 90 degrees for a third

resonant interaction, producing a single outgoing pulse with wave vector (1, 0). The

voltage and power profiles of this pulse are shown in Figure 8.8.

Indeed, this process may be continued, and we may envision a circuit in which

numerous input signals are combined nonlinearly to produce a single pulse.

8.4.2 Non-sinusoidal inputs

So far, our study has focused only on input signals which consist of single-frequency

sinusoids. The question remains as to whether nonlinear combination is possible given



130

A (V) AR (V) AR/A
0.1 0.25 2.50
0.15 0.38 2.53
0.2 0.54 2.70
0.25 0.71 2.84
0.3 0.92 3.07
0.35 1.2 3.49
0.4 1.8 4.50

Table 8.3: Output amplitude AR (in Volts) and efficiency AR/A for nonlinear reso-
nance involving two square waves inputs each of amplitude A (in Volts).

input signals with more complicated frequency content, such as

V1,j(t) = A sq(2πft) (8.19a)

Vi,1(t) = A sq(2πft), (8.19b)

where sq t is a square wave with period 2π:

sq t =

1 0 ≤ t < π

−1 π ≤ t < 2π

(8.20)

and sq(t + 2πK) = sq t for any integer K. Using nonlinear capacitors modeled by

(8.12) with b = 0.5 and VM = 1.9, we repeatedly simulate the lattice. We find that the

lattice combines and converts the two incoming square waves into a single nonlinear

pulse. The data, showing the relationship between input and output amplitudes, is

given in Table 8.3. Comparison with Figure 8.5 shows that the resonance output

amplitude AR is smaller for square wave inputs than it is for sinusoidal inputs. The

reason is that the square wave inputs, unlike the sinusoidal inputs we considered

earlier, have their energy spread across the entire Fourier spectrum. The lattice

ignores frequencies higher than its own cut-off frequency fM . Hence a portion of the

square wave input signals’ energy does not find its way into the output signal, and

this is realized as a smaller amplitude AR than we would have expected for sinusoidal

inputs.
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Still, the efficiency ratio of 4.50 seen in the last line of Table 8.3 is twice the

ratio of vanilla linear combining in which AR = 2A. We expect that the nonlinear

resonance phenomena can be made practical even for extremely wideband signals

whose frequency content is in the range of DC to 100 GHz.

8.5 Discussion

We have provided numerical evidence that KP-like soliton production and nonlinear

resonance are possible in a 2-D nonlinear LC lattice. This is true even in the regime

where the ratio of amplitude to wavelength may be large. Similar studies have been

carried out in other physical contexts, and it is worthwhile to briefly examine the

connections.

The infinite 1-D Fermi-Pasta-Ulam (FPU) lattice is one of the most studied non-

linear lattices. It has been known for some time that weakly nonlinear waves in the

FPU lattice are governed, in a formal continuum limit, by the Korteweg-de Vries

(KdV) equation. More recently, it was shown [70] that sufficiently high-speed pulses

in the FPU lattice converge uniformly to KdV solitons, on all length and time scales,

not just the ones suggested by weakly nonlinear asymptotics. Might it also be true

that pulses in the 2-D nonlinear electrical lattice converge to KP solitons on all length

and time scales? It has already been demonstrated that KP-like resonance is possible

in the completely integrable 2-D Toda lattice and its discretizations [71].

Both the FPU and Toda lattices are completely integrable dynamical systems;

while we do not expect the finite 2-D electrical lattice to be integrable, it would be

of considerable interest to determine its higher symmetries. This, along with further

exploration of the relationship between nonlinear lattices and continuum models away

from the weakly nonlinear regime, will be the subject of future work.
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(a) Resonance amplitude

(b) Efficiency ratio

Figure 8.5: Resonance amplitude AR and efficiency AR/A as a function of incoming
amplitude A, for the case of in-phase, equal amplitude incoming waves, showing (1)
the robustness of nonlinear combining (AR > 2A) in all cases; (2) the heightened
efficiency for certain input voltages, i.e. two signals of amplitude A = 0.3V combine
nonlinearly to produce an AR > 6A output pulse; and (3) the saturation of output
amplitude AR for high input voltages A.
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For this experiment in particular, VM = 1.9, so we do not expect nonlinear combination

to work as efficiently when AR ≈ 1.9. This explains the drop in the ratio AR/A as A

increases beyond A = 0.3. For A = 0.4, we are already producing an output signal

with AR = 1.92. Increasing the input voltage to A = 0.5 has no effect on the output

voltage—at this point, the nonlinearity of the capacitors has been saturated. In Figure

5, this corresponds to the part of the graph that is relatively flat.

The net effect of this circuit is to combine and convert the sinusoidal inputs into a soliton-like

pulse, as shown in Figure 6. We did not record in Figure 5 the wave vectors of the output
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FIG. 6: (Color online) Plot of Vij(t0) for a particular instant of time t0 > 0, showing the generation

of a sharp soliton-like nonlinear pulse. The solution shown is for an 80 × 80 lattice, assuming left-

and bottom-boundary input signals (14) with equal amplitudes AL = AB = 0.5. The capacitor

model is given by (12) with parameters b = 0.5 and VM = 1.9.

signals. It is clear that the input signals have wave vectors k1 = (1, 0) and k2 = (0, 1).

Recall from (6) that for KP soliton interactions, input signals with these wave vectors would

combine to form an output signal with wave vector k3 = (1, 1), which is precisely what we

observed in all of the experiments we performed to generate Figure 5.

12

Figure 8.6: Plot of Vij(t0) for a particular instant of time t0 > 0, showing the gen-
eration of a sharp soliton-like nonlinear pulse. The solution shown is for an 80 × 80
lattice, assuming left- and bottom-boundary input signals (8.14) with equal ampli-
tudes AL = AB = 0.5. The capacitor model is given by (8.12) with parameters b = 0.5
and VM = 1.9.

Figure 8.7: Resonance amplitude AR as a function of interaction angle θ, for the case
of incoming waves with equal amplitude 0.25V .
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FIG. 8: (Color online) Voltage Vij(t0) (in Volts) and power Pij(t0) = Vij(t0)Ii+1/2,j(t0) (in Watts)

at a particular instant of time t0 > 0 after three nonlinear interactions have occurred, producing a

large nonlinear pulse propagating horizontally to the right.

and this is realized as a smaller amplitude AR than we would have expected for sinusoidal

inputs.

Still, the efficiency ratio of 4.50 seen in the last line of Table III is twice the ratio of vanilla

linear combining in which AR = 2A. We expect that the nonlinear resonance phenomena
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FIG. 8: (Color online) Voltage Vij(t0) (in Volts) and power Pij(t0) = Vij(t0)Ii+1/2,j(t0) (in Watts)

at a particular instant of time t0 > 0 after three nonlinear interactions have occurred, producing a

large nonlinear pulse propagating horizontally to the right.

and this is realized as a smaller amplitude AR than we would have expected for sinusoidal

inputs.

Still, the efficiency ratio of 4.50 seen in the last line of Table III is twice the ratio of vanilla

linear combining in which AR = 2A. We expect that the nonlinear resonance phenomena
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(b) Power profile Pij(t0)

Figure 8.8: Voltage Vij(t0) (in Volts) and power Pij(t0) = Vij(t0)Ii+1/2,j(t0) (in Watts)
at a particular instant of time t0 > 0 after three nonlinear interactions have occurred,
producing a large nonlinear pulse propagating horizontally to the right.
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Chapter 9

Optotronics

9.1 Introduction

Figure 9.1: Two-dimensional lattice of inductors and capacitors (2-D LC lattice)

Two-dimensional lattices of inductors and capacitors (2-D LC lattices), an ex-

ample of which is diagrammed in Figure 9.1, are a natural generalization of one-

dimensional transmission lines. In a recent investigation [68], both linear and non-

linear versions of 2-D LC lattices were proposed for the solution of signal-shaping

problems in the frequency range of DC to 100 GHz. One reason for favoring LC

lattices is that they are composed only of passive devices, which as compared with

active devices do not suffer from limited gain, efficiency, and breakdown voltage. Fur-

thermore, the quality factor for passive components is reasonable enough to allow a
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cut-off frequency of approximately 300 GHz, which is difficult to achieve using active

device solutions. Hence 2-D LC lattices are reasonable candidates to introduce into

high microwave and millimeter-wave integrated circuit design.

In previous chapters, general models for 2-D LC lattices were derived, starting

from Kirchhoff’s laws of voltage and current. These models consist of partial differ-

ential equations (PDE) arising from continuum and quasi-continuum limits, which

are valid for signals with frequency content below a certain threshold value. The

quasi-continuum models consist of the continuum models plus higher-order dispersive

corrections designed to take into account lattice discreteness. Based on the PDE

models and numerical simulations, it was found that a 2-D LC lattice could be used

to combine the power from various input signals. Such a lattice has been designed

and fabricated on chip [69] in a 0.13µm SiGe BiCMOS process, where it has been

used to implement a power amplifier that generates 125mW at 85 GHz.

Here we apply our continuum model to demonstrate that 2-D LC lattices can, if

configured in a certain way, generate approximate Fourier transforms of input signals.

Let us be more specific about this claim. Suppose we are given an input vector of

length M , denoted by x ∈ RM . In this case, we work with a 2-D LC lattice that

has N nodes in the horizontal direction and M nodes in the vertical direction. For

definiteness, in this work we use (1, 1) and (N,M) to denote, respectively, the lower-

left and upper-right corners of the lattice. We drive the left boundary of the lattice

with the voltage

V1,j(t) = α1xj sin(2πωt), 1 ≤ j ≤M,

where α1 is an appropriate scaling factor, xj is the j-th component of the input

vector x, and ω is an appropriate carrier frequency. Later in this chapter we describe

how to choose the lattice inductances Lij and capacitances Cij in a certain way, to

take advantage of electrical analogues of optical phenomena such as refraction and

diffraction. Our claim is that in such a lattice, the voltage at the right boundary will

take the form

VN,j(t) = α2yj sin(2πωt), 1 ≤ j ≤M.
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Here α2 is an appropriate scaling factor, yj is the j-th component of the output vector

y, and

y ≈ x̂,

where x̂ is the exact discrete Fourier transform of x. We may think of y and x̂ as

M -vectors of phasors, or, equivalently, as elements of the complex vector space CM .

9.2 Methodology and Merits

As mentioned, our solution takes advantage of the connection between 2-D LC lattices

in optics. For waves with sufficiently large wavelength, Kirchhoff’s laws of voltage

and current for a 2-D LC lattice can be approximated very well by a continuum model

consisting of the scalar wave equation. The same PDE arises in the context of optics;

starting from this PDE, the theories of Kirchhoff, Sommerfeld, Fresnel, and Huygens

show that a thin-slit diffraction aperture can be used to generate an analog Fourier

transform of an image. Such theories assume, typically, that light propagates in a 3-D

continuum such as air. In this chapter, we present analytical and numerical results

for thin-slit diffraction in a 2-D LC lattice. Together, these results indicate that by

choosing lattice capacitance/inductance, lattice size, and input carrier frequency in a

careful way, we can design 2-D LC lattices that generate analog Fourier transforms

in the same way as a thin-slit diffraction aperture for 3-D optics.

This is almost the entire solution. Our analysis also indicates that, by itself, the

output through a 2-D thin-slit diffraction suffers a phase shift that can be corrected

using a lens. We show through numerical simulations that a 2-D LC lattice can be

used to refract incoming waves, and therefore that such a lattice can be used as a

lens. Our Fourier transform device, therefore, is effectively the superposition of a

diffractive lattice with a lattice-based lens. The combination of these effects yields

an in-phase analog Fourier transform.

Using a 2-D LC lattice as an approximate Fourier transform device has three

distinct features. First, the latency of the device, defined as the time required for the
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input signal to propagate from the left to the right boundary, can be be extremely

small. The latency is computed by multiplying the characteristic delay of the lattice,

τ , by the number of nodes in the horizontal direction. The delay τ can be as low as

1 psec for today’s Silicon processes. As a rule of thumb, we find that to transform a

vector with M components requires a lattice with roughly N = (5/4)M nodes in the

horizontal direction. As a function of M , the latency is (5/4)Mτ . Using a 2-D LC

lattice, a vector of length 1024 could be transformed in less than 0.2 ns. Note that

the latency is independent of the carrier frequency ω, and that it grows linearly in

the size of the input vector M .

Second, the device throughput can be extremely high. One does not need to

wait for an input signal to propagate all the way from the left boundary to the

right boundary of the lattice before injecting a new, different input signal. Inputs

could be stacked in time, and multiple Fourier transforms could be computed without

waiting. Preliminary simulations indicate that the throughput of the lattice can reach

10 Gbits/sec.

Finally, in a 2-D LC lattice, we are able to vary both inductance and capacitance

independently, enabling us to create lattices that have large changes in the delay

(refraction index) while keeping impedance constant, or vice versa. Let us remark

that engineering LC lattices is easier and less expensive than engineering optical

materials with similar properties.

9.3 Historical Remarks

Classic texts [90][91], on wave and Fourier optics concentrate their efforts on three-

dimensional media, ostensibly because most experimental diffraction setups involve

light propagation in three spatial dimensions. However, the propagation of light in

two-dimensional media has been considered before. Diffraction integrals for a two-

dimensional dispersion-free continuum were almost surely known to Sommerfeld—see,

for example, equations (2.23)-(2.26) of Bouwkamp’s survey article[92] and references

therein. Recent work in this area is due to J. J. Stamnes [93][94][95][96][97], who
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has derived exact, approximate, and numerical results for focusing and diffraction

of two-dimensional waves. Stamnes’ results stop short of showing that even for 2-D

waves, a standard Fourier transform integral can be derived. Furthermore, Stamnes’

work deals exclusively with waves propagating through a dispersionless continuum,

which describes our discrete 2-D LC lattice only approximately, and only in certain

frequency regimes. Other papers on 2-D diffraction [98][99] do not differ in this regard.

Our work owes a great deal to the classical approaches of Sommerfeld and Kirch-

hoff, also employed by Stamnes. Their approach for single-slit diffraction problems

consists primarily in using one of Green’s identities to express the diffracted field at

a point P0 in terms of a particular integral around a curve centered at P0. Denote

this integral by I(P0). Next, assume that the spatial part of the diffracted field is a

solution of the Helmholtz equation

(
∇2 + k2

)
ψ = 0. (9.1)

Knowledge of the radially symmetric solutions of (9.1), together with a choice of

boundary conditions for the field and its normal derivative on the aperture of the slit,

enables us to pass from the integral I(P0) to a diffraction integral. In the present

work, we validate our numerical results on diffraction using this classical approach.

The main alternative to the Kirchhoff-Sommerfeld approach outlined above is the

geometric or ray theory of diffraction due to Keller[100; 101] and his collaborators.

Application of Keller’s elegant methods to the context of 2-D LC lattices shall have

to wait until a future publication.

Finally, let us note that the classical work [33] of Brillouin on crystal lattices makes

explicit the analogy between crystal lattices, mass-spring models, and LC lattices in

one, two, and three spatial dimensions. Brillouin’s primary focus in this work was

the development of band-gap theories for lattices with periodic inhomogeneities. The

lattice inhomogeneities we consider are of an entirely different type.
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9.4 Lattice Equations and PDE Models

9.4.1 Kirchhoff’s Laws

For a two-dimensional LC lattice that extends infinitely in both directions, Kirchhoff’s

laws of voltage and current read:

Ii,j−1/2 + Ii−1/2,j − Ii+1/2,j − Ii,j+1/2 = Cij
d

dt
Vij, (9.2a)

Vi,j−1 − Vij = Li,j−1/2
d

dt
Ii,j−1/2, (9.2b)

Vij − Vi+1,j = Li+1/2,j
d

dt
Ii+1/2,j. (9.2c)

Here we have assumed that the capacitances Cij and the inductances Lαβ stay fixed as

a function of time. Otherwise the right-hand sides of (9.2) would have to be modified,

and the dynamics of the lattice would be nonlinear. In contrast, system (9.2) is linear.

9.4.2 Continuum Limit

In [68], the continuum limit of (9.3) was derived using standard Taylor series argu-

ments. In the case of a uniform lattice, one can arrive at a continuum limit simply by

examining the dispersion relation, a procedure we now describe. Take Cij = C and

Lα,β = L everywhere, differentiate (9.2a) with respect to time, and then substitute

(9.2b-9.2c) to derive the single second-order equation for lattice voltage:

(Vi−1,j − 2Vi,j + Vi+1,j + Vi,j−1 − 2Vi,j + Vi,j+1) = LCV̈ij. (9.3)

Assume that the spacing between lattice elements is the same in both x and y direc-

tion, and denote this constant lattice spacing by d. Then making the ansatz

Vi+1,j(t) = eikxdVi,j(t), Vi,j+1(t) = eikydVi,j(t), Vi,j(t) = e−iωt,
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one derives the dispersion relation

ω =
2√
LC

[
sin2 kxd

2
+ sin2 kyd

2

]1/2

. (9.4)

When θ � 1, we may approximate sin θ ≈ θ. Therefore, when kxd� 1 and kyd� 1,

the dispersion relation may be approximated by

ω =
d√
LC

[
k2

x + k2
y

]1/2
. (9.5)

Replace L by d` and C by dc, where ` and c are, respectively, inductance and capac-

itance per unit length. Assuming that ` and c stay constant in the d → 0 limit, we

arrive at the continuum dispersion relation

ω =
1√
`c

[
k2

x + k2
y

]1/2
, (9.6)

which is the exact dispersion relation for the scalar wave equation

∇2v = `c
∂2v

∂t2
. (9.7)

In previous derivations[68], we started with (9.3), then posited a continuous function

v(x, y, t) such that v(id, jd, t) ≈ Vij(t), expanded Vi+σ,j and Vi,j+σ in Taylor series

about Vi,j, and thereby derived precisely the same PDE model (9.7). The derivation

of (9.7) as a continuum model of (9.3) on the basis of exact/approximate dispersion

relations has its own utility, as we now show.

9.4.3 Range of Validity

One wants to understand, quantitatively, where the continuum model (9.7), is valid.

First off, one can easily determine that the relative error in the approximation sin2 θ ≈

θ2 is less than 2.5% for |θ| < 1/4. Hence we want kxd < 1/4 and kyd < 1/4. Because
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wavelength is related to wave number by λ = 2π/k, the conditions on kx and ky imply

λx

d
,
λy

d
>

2π

1/4
≈ 25.

As long as one wavelength of the lattice wave occupies more than 25 lattice spacings,

the continuum dispersion relation (9.6) and PDE (9.7) is a decent approximation to

the fully discrete dispersion relation (9.4) and differential equation (9.3).

We may go further. For the sake of illustration, let us fix the inductance and

capacitance to be, respectively, L = 30pH and C = 20fF. Inductors and capacitors

with these values (and somewhat smaller values) can be fabricated in today’s Silicon

processes; at values that are much smaller, parasitic effects become an issue. Suppose

waves of frequency ω propagate through such a lattice, in the x direction only. In

this case ky = 0. The dispersion relation (9.4) may now be used to determine that,

with these parameters,

kxd = 2 sin−1 ω

2.6× 1012
.

Then kxd < 1/4 as long as ω < 52GHz, the cut-off frequency for validity of the

continuum model of the 2-D LC lattice. Note also that is easy to read off the cut-off

frequency ωM for the lattice itself from the above calculation:

ωM ≈ 2.6× 1012sec−1 ≈ 410GHz.

9.4.4 Dispersive Correction

If one seeks a PDE model for (9.3) with an extended range of validity, one way to

proceed is to use higher-order terms when approximating sin in (9.4). That is, starting

with (9.4), we use a two-term Taylor series approximation for sin θ, resulting in

sin2 θ ≈ θ2 − θ4

3
. (9.8)
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The resulting approximate dispersion relation is

ω =
d√
`c

[
k2

x + k2
y −

d2

12

(
k4

x + k4
y

)]1/2

. (9.9)

This dispersion relation is the exact dispersion relation for the scalar PDE

∇2v +
d2

12
∇4v = `c

∂2v

∂t2
, (9.10)

where ∇4 is the bilaplacian operator

∇4 =
∂4

∂x4
+

∂4

∂y4
. (9.11)

Equation (9.10), derived previously[68] using Taylor series approximations, is a quasi-

continuum model for the discrete equation (9.3). To evaluate where this model is valid,

consider that the relative error in the approximation (9.8) is now less than 2.5% for

|x| < 1. Repeating the above calculation in this case, we obtain the conditions

λx

d
,
λy

d
> 2π ≈ 6.

As long as lattice waves occupy at least 7 lattice spacings, the dispersion relation (9.9)

closely matches the true dispersion relation (9.4). Using the full dispersion relation

(9.4), we determine that this condition holds for plane waves moving in the x direction

when ω < 198GHz, assuming as before a uniform lattice with inductance L = 30pH

and C = 20fF.

9.4.5 Effect of Boundaries

Of course, experimentally realizable lattices must be of finite extent. Furthermore,

when we numerically simulate the lattice equations, we must take into account ap-

propriate boundary conditions that arise due to finiteness of the lattice. For these

reasons we give a few details regarding Kirchhoff’s laws on the boundaries.

For a finite lattice with M nodes in the x direction and N nodes in the y direction,
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we see that

Equation (9.2a) holds for 2 ≤ i ≤M, 2 ≤ j ≤ N,

Equation (9.2b) holds for 1 ≤ i ≤M, 2 ≤ j ≤ N, and

Equation (9.2c) holds for 1 ≤ i ≤M − 1, 1 ≤ j ≤ N.

Equations (9.2b-9.2c) already take into account contributions due to voltage nodes

on the boundary and need not be modified. Meanwhile, equation (9.2a) for i = 1,

i = M , j = 1, and j = N must be corrected by deleting those terms on the left-hand

side corresponding to edges outside the lattice. Furthermore, we assume the right

boundary of the lattice is resistively terminated with resistors obeying Ohm’s law, so

that the equations for i = M read:

CM,j
d

dt
VM,j =


IM−1/2,j − IM,j+1/2 − VM,jR

−1
j j = 1

IM,j−1/2 + IM−1/2,j − IM+1/2,j − VM,jR
−1
j 2 ≤ j ≤ N − 1

IM,j−1/2 + IM−1/2,j − VM,jR
−1
j j = N.

The resistances Rj are chosen to minimize the reflection coefficient for waves incident

on the right boundary. This is a basic impedance matching problem, and for a

uniform medium the solution is given by choosing R =
√
L/C everywhere along the

right boundary.

9.5 Refraction

9.5.1 Snell’s law

Figure (9.2) shows the simplest scenario: a 2-D LC lattice with a jump in the delay,

τ =
√
LC, along a horizontal interface. That is to say, above the interface, the

delay equals τ1 =
√
L1C1, while below the interface, the delay equals τ2 =

√
L2C2.

The incident wave arrives at the interface (from above) at an angle θI and is partly
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reflected at an angle θR, and partly transmitted at an angle θT .

Figure 9.2: Incident, reflected, and transmitted waves in a simple refraction problem

The continuum model for the lattice is given by (9.7), repeated here:

∇2V = τ 2∂
2V

∂t2
(9.12)

where V is the voltage and τ =
√
LC. By assuming that the incident, reflected, and

transmitted waves are plane wave solutions of (9.12), propagating with the appropri-

ate dispersion relation depending on whether they are in the upper or lower halves

of the lattice, one can apply standard arguments to derive θI = θR, as well as Snell’s

law:
sin θT

sin θI
=
τ1
τ2
. (9.13)

The derivation of (9.13) starting from (9.12) is completely standard[90; 91] and we

shall not repeat it here. Instead, let us examine the effect of discreteness on the

simple refraction problem—more specifically, let us derive a version of Snell’s law

that accounts (to lowest order) for the dispersion induced by discreteness. Suppose

that the incident, reflected, and transmitted waves are solutions of the dispersive,
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quasi-continuum model

∇2V +
h2

12
∇4V = τ 2∂

2V

∂t2
, (9.14)

where ∇4 is the bilaplacian defined in (9.11). This equation has plane wave solutions

of the form

V = exp(i(k · x− ωt))

as long as frequency ω and wave number k are related by the dispersion relation

ω2 =
1

τ 2

[
‖k‖2 − h2

12

(
k4

x + k4
y

)]
.

With this dispersion relation, we consider the standard refraction problem, and as-

sume plane wave forms

V I = exp(i(kI · x− ωIt))

V R = R exp(i(kR · x− ωRt))

V T = T exp(i(kT · x− ωT t))

for incident, reflected, and transmitted voltage. By matching voltages at the interface

y = 0, we obtain

exp i(kI
xx− ωIt) +R exp i(kR

x x+ ωRt) = T exp i(kT
x x− ωT t), (9.15)

which must be true for all x and all t. Therefore, we must have the following equalities:

kR
x = kT

x = kI
x (9.16)

ωR = ωT = ωI (9.17)

These equalities are quite useful in the following derivation. The derivation of a

dispersively corrected version of Snell’s law begins by noticing from the geometry of

the problem that
sin θT

sin θI
=

∥∥kI
∥∥

‖kT‖
. (9.18)
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The procedure from here onwards consists of using equalities (9.16-9.17) together with

the dispersion relations in the y < 0 and y > 0 half-planes to try and express the

right-hand side of (9.18) in terms of incident wave number kI , the lattice spacing h,

and the delays τ1 and τ2. Assuming we have done that, we can expand the right-hand

side in powers of h. At order h0 we expect to recover the non-dispersive Snell’s law

(9.13).

We begin by rearranging the dispersion relation in the y < 0 half-plane to write

∥∥kT
∥∥ =

√
τ 2
2ω

2 +
h2

12

[
kT

x
4 + kT

y
4],

which we then substitute into the denominator of (9.18), producing

sin θT

sin θI
=

√√√√ kI
x
2 + kI

y
2

τ 2
2ω

2 + h2

12

[
kI

x
4 + kT

y
4] . (9.19)

Here we have used kT
x = kI

x. The dispersion relation for ωI reads

ω2 =
1

τ 2
1

[∥∥kI
∥∥2 − h2

12

(
kI

x

4
+ kI

y

4
)]

.

Substituting this into (9.19) and squaring both sides gives

(
sin θT

sin θI

)2

=
kI

x
2
+ kI

y
2

τ 2
2 τ

−2
1

[
kI

x
2 + kI

y
2 − h2

12

(
kI

x
4 + kI

y
4)]+ h2

12

[
kI

x
4 + kT

y
4] , (9.20)

As regards the y-component of the outgoing wave vector, kT
y , using ωT = ωI and the

dispersion relation, we write

1

τ 2
1

[∥∥kI
∥∥2 − h2

12

(
kI

x

4
+ kI

y

4
)]

=
1

τ 2
2

[∥∥kT
∥∥2 − h2

12

(
kT

x

4
+ kT

y

4
)]

. (9.21)

After substituting kT
x = kI

x, we use the quadratic formula to solve for kT
y

2
as a function
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of kI . The result is

kT
y

2
=

6τ 2
1 ∓

√(
−h4kI

x
4 + 12h2kI

x
2 + 36

)
τ 4
1 + h2

(
h2kI

x
4 − 12kI

x
2 + h2kI

y
4 − 12kI

y
2) τ 2

2 τ
2
1

h2τ 2
1

,

(9.22)

and we choose the root with a negative sign, because its h→ 0 limit reproduces the

non-dispersive relationship

kT
y

2
=
τ 2
2

τ 2
1

(
kI

x

2
+ kI

y

2
)
− kI

x

2
.

Finally, we substitute (9.22) in (9.20) and obtain a lengthy expression that depends

only on τ1, τ2, h, and kI . Taylor expansion of this expression in powers of h gives a

dispersive O(h2) correction to Snell’s law:

(
sin θT

sin θI

)2

=
τ 2
1

τ 2
2

+ h2

(1− τ 2
1 /τ

2
2 )
(
2kI

x
4
τ 2
1 /τ

2
2 −

∥∥kI
∥∥4
)

6 ‖kI‖2

+O(h4). (9.23)

Note that the dispersive correction depends on τ1 and τ2 only through the ratio τ1/τ2.

Note also that when τ1 = τ2, the O(h2) term vanishes and we recover sin θT = sin θI .

Let us rewrite (9.23) slightly by factoring out ‖kI‖2 from the O(h2) term:

(
sin θT

sin θI

)2

=
τ 2
1

τ 2
2

+
h2‖kI‖2

6

(
1− τ 2

1

τ 2
2

)(
2
kI

x
4

‖kI‖4

τ 2
1

τ 2
2

− 1

)
+O(h4).

Note that
kI

x
4

‖kI‖4
= sin4 θI .

Next, assuming h‖kI‖ is small, we may use
√
α2 + φ ≈ α+ φ/(2α) to write

sin θT

sin θI
=
τ1
τ2

+
h2‖kI‖2

12

(
1− τ 2

1

τ 2
2

)(
2 sin4 θI τ

2
1

τ 2
2

− 1

)
τ2
τ1

+O(h4). (9.24)

Given θI , h, and τ1/τ2, it is easy to evaluate this formula to obtain the refracted angle

θT .
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9.5.2 Thick Parabolic Lens

Suppose we have a parabolic lens described by F (x, y) = 0 where

F (x, y) = x− α

2
y2.

The curve F (x, y) = 0 is the left boundary of the lens. The right boundary of the

lens is taken to be a vertical line as in Figure9.3.

L

y

f

Figure 9.3: Refraction problem for thick parabolic lens

Suppose we have a wave front propagating from left to right at angle θ̂I , incident

on the left boundary of the lens. The wave front’s angle from the normal is given by

θI = θ̂I + tan−1(αy).

We use Snell’s law to compute the angle of the transmitted wave:

sin θT =
τ1
τ2

sin θI =
τ1
τ2

sin
(
θ̂I + tan−1(αy)

)
.

Of course, θT is the angle the transmitted wave front makes with the normal to the
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curved part of the lens. Subtracting off the contribution of this normal, we obtain

θ̂T = θT − tan−1(αy)

= sin−1

[
τ1
τ2

sin
(
θ̂I + tan−1(αy)

)]
− tan−1(αy)

The angle θ̂T is the angle of incidence for the refraction problem at the right boundary

of the lens. This is a simple consequence of the fact that the right boundary of the

lens is vertical. We apply Snell’s law again to determine the angle of the outgoing

wave that is transmitted through the right boundary of the lens:

sin θL = sin θ̂T τ2
τ1

= sin

{
sin−1

[
τ1
τ2

sin
(
θ̂I + tan−1(αy)

)]
− tan−1(αy)

}
τ2
τ1

Simple geometry shows that
y

f
= tan θL,

where f is the focal distance. This implies that

f =
y

tan θL
= y

[
tan sin−1

(
sin

{
sin−1

[
τ1
τ2

sin
(
θ̂I + tan−1(αy)

)]
− tan−1(αy)

}
τ2
τ1

)]−1

.

9.5.3 Paraxial Approximation

Note that we can easily recover the paraxial approximation from the above formula

for f . First set θ̂I = 0. Next assume α � 1, which in essence converts all of the

nonlinear functions tan and sin to the identity, i.e., if q = O(α), then

tan q ≈ q, sin q ≈ q,
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and likewise for the inverse functions. One obtains for the denominator of f the

approximation

tan sin−1

(
sin

{
sin−1

[
τ1
τ2

sin
(
θ̂I + tan−1(αy)

)]
− tan−1(αy)

}
τ2
τ1

)
≈
{
τ1
τ2
αy − αy

}
τ2
τ1

≈
(

1− τ2
τ1

)
αy.

Therefore f can be approximated by

f ≈ y(
1− τ2

τ1

)
αy

=
1

α
(
1− τ2

τ1

) .
9.5.4 Numerics

We simulate the lattice by solving Kirchoff’s laws (9.2) for an 80 × 80 lattice with

boundary conditions given in Section 9.4.4 of this work. For these simulations, we

have one (or more) vertical interface separating two (or more) sections of the lattice.

In certain sections of the lattice, we have L1 = 1nH and C1 = 1pF, while in other

sections, we have

L2 = L1/
√

10, C2 = C1/
√

10.

For the purposes of the following discussion, we define the following lattice delay

constants:

τ1 =
√
L1C1 = 10−10.5sec−1

τ2 =
√
L2C2 = 10−11sec−1.

In all simulations that follow, the frequency in time of the boundary forcing is ω =

1G rad/sec.

Snell’s law. For the first simulation, we take the lattice to have a single interface at

i = 30. For i < 30, the delay is τ1, while for i > 30, the delay is τ2. Hence the effective

index of refraction is τ1/τ2 =
√

10. The incident angle, for the wave propagating from



152

the left boundary towards the interface, is approximately

θI ≈ 0.149 rad,

and based on Snell’s law we predict a transmitted angle

θT ≈ 0.488 rad,

which is exactly what we see in the numerical simulation results displayed in Figure

9.4. The black lines are drawn to match the incident and refracted wave vectors, as

Figure 9.4: Refraction in a 2-D LC lattice, showing the validity of Snell’s law. The
black lines show incident and refracted wave vectors predicted by Snell’s law. Colors
correspond to level sets of the voltage Vij(t), at a particular instant of time t > 0.
At t = 0, voltage forcing is switched on along the left boundary; resulting waves
propagate at an angle, towards the interface at i = 30, where they are refracted,
causing a change in the direction and wavelength of the wave. For i < 30, the lattice
delay equals τ1, while for i > 30, the lattice delay equals τ2.

predicted by Snell’s law. Note that the black line in the i > 30 region is orthogonal
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to the numerically generated wavefronts. This implies that, in the direct numerical

simulation, the angle that the refracted waves make with the normal to the interface

is given quite accurately by Snell’s law.

Plane waves refracted by a slab. Next we examine a section of lattice with delay

τ2 sandwiched between two sections with delay τ1. Here we take the incident angle

to be zero, and note the change in wavelength of the wave as it propagates in the τ2

section—see Figure 9.5. Here the delay is τ1 for i < 20 and i > 70, and the delay is τ2

Figure 9.5: Plane slab showing pure transmission and wavelength expansion in the
20 ≤ i ≤ 70 section. Colors correspond to level sets of the voltage Vij(t), at a
particular instant of time t > 0. At t = 0, voltage forcing is switched on along
the left boundary; resulting waves propagate to the right, towards the interface at
i = 20, where they are refracted, causing a change in wavelength. At i = 70, the
wave encounters a second interface and is refracted again, causing the wavelength to
return to its original value. The lattice delay equals τ1 except inside the 20 ≤ i ≤ 70
section, where the delay equals τ2.

for 20 ≤ i ≤ 70. Waves propagate from the left boundary towards the first interface

at i = 20, undergo refraction and a change in wavelength, and continue propagating
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to the right until they are refracted again at the i = 70 interface, at which point

their wavelength increases back to its original value. Impedance is matched at both

interfaces so there is no reflection, i.e., there is no wave propagating from right to left

from the interface back towards the left boundary.

Total internal reflection. Finally we present simulation results showing total

internal reflection. Here the wave is launched from the left boundary and, more

specifically, from the lower-left corner of the lattice consisting of the first 20 nodes

1 ≤ j ≤ 20 on the left boundary. The nodes on the left boundary with j > 20

are left open, meaning that waves will reflect perfectly off those nodes. The wave

propagates at an angle of roughly 56 degrees and hits the interface, located at i = 20.

Because the effective index of refraction is
√

10, the critical angle for total internal

reflection is approximately 18.5 degrees, so our incident angle is well beyond that.

Figure 9.6 shows clearly the wave bouncing off the i = 20 boundary at approximately

j = 30, then propagating back towards the left i = 0 boundary, and then continuing

to bounce off different boundaries as it propagates towards j = 100.

9.6 Diffraction

The lattices we just simulated were all finite in extent. Let us turn our attention

to waves with wavelength sufficiently large so that only a few wavelengths fit in the

finite lattice. In this situation, we claim that the lattice acts as a diffraction slit. To

give a definite example, consider a 100× 80 lattice where we drive the left boundary

as follows:

V1,j(t) = 0.5 sin(βj) sin(2πωt). (9.25)

Take the lattice parameters to be L = 30pH and C = 20fF, and take the driving

frequency to be ω = 60GHz. Then the dispersion relation for the lattice tells us that

waves propagating in the x-direction only have the following ratio of wavelength to
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Figure 9.6: Total internal reflection. Colors correspond to level sets of the voltage
Vij(t), at a particular instant of time t > 0. At t = 0, voltage forcing is switched on
along the left boundary at nodes 1 ≤ j ≤ 20; resulting waves propagate at a sharp
angle towards the interface at i = 20, where they undergo total internal reflection and
are sent back towards the boundary at i = 0. The waves bounce repeatedly off the
effective boundaries at i = 0 and i = 20 as they propagate upwards towards j = 100.
The lattice delay equals τ1 for i < 20 and equals τ2 for i > 20. In this simulation,
unlike the previous two, we used a 100× 100 lattice.

lattice spacing:
λ

d
=

π

sin−1(ω
√
LC/2)

≈ 21.4.

In other words, there are only about 4 or 5 wavelengths of the wave that can fit inside

the 100× 80 lattice. Moreover, if the forcing is of the form (9.25), then the wave will

not propagate in the x-direction only. Parts of the wave will reflect off the top and

bottom boundaries of the lattice in ostensibly complicated ways, and we would not

expect the outgoing signal, V100,j(t), to look anything like the original input signal.

The problem of squeezing a long wave through a narrow opening is really just a

thin-slit diffraction problem. We are about to consider the problem of two uniform 2-D
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continuous media separated by a thin one-dimensional slit, where the slit is just a few

wavelengths wide. Waves propagating from left to right through the slit are diffracted,

and one can develop a Huygens-Fresnel type theory to predict the illumination far

to the right of the aperture, due to a source to the left of the aperture. Roughly

speaking, the illumination will be a phase-shifted Fourier transform of the source.

Going back to the 100 × 80 lattice with the above choice of parameters and the

sinusoidal forcing (9.25), Figure 9.7 shows what we see from a numerical simulation

of the 2-D LC lattice equations (9.2).
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Figure 9.7: Simulation of a uniform 2-D LC lattice showing diffractive effects. The
input signal is our choice of forcing function at the left boundary of the lattice, and
the output signal is the signal at the right boundary of the lattice. The forcing is
sinusoidal and given by (9.25), with ω = 60GHz. Lattice inductances are L = 30pH
and lattice capacitances are C = 20fF.

The input is a sinusoidal function of the vertical coordinate j, and the output is

clearly a different sort of function altogether. It turns out that the output is a phase-

shifted or “blurry” version of the 1-D Fourier transform of the input. Eventually

we will show simulations of a lattice with the same parameters, except inside a lens-

shaped region in the lattice interior. The lens will cancel out the phase shift and

bring the Fourier transform into focus.

Before discussing these simulations, let us take a moment to develop the elemen-

tary theory of scalar diffraction for 2-D waves. Though derivations of Kirchhoff and

Rayleigh-Sommerfeld diffraction integrals have appeared in the literature before, we

offer our own derivations here. This is in part because diffraction of 2-D waves has

not attracted much attention in the literature, and the reader may not be fully aware
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of the near- and far-field Hankel function asymptotics necessary to proceed in this

case. Also, we believe our derivations, which follow the models set before by Born,

Wolf, Goodman, and Stamnes[90; 91; 94], have their own advantages.

We begin by proving a Green’s identity that forms the cornerstone of the 2-D

wave theory of diffraction. Suppose we have a 2-D domain Ω, as in Figure 9.8.

0

Figure 9.8: Setup for deriving Green’s function representation of U(P0).

Assume that U is a scalar field that satisfies the Helmholtz equation

(∇2 + k2)U = 0

Given a point P0 ∈ Ω, we want to relate U(P0) to the values of U on the boundary

of Ω, which we label as ∂Ω. Use Green’s Theorem (with U , G as solutions of the

Helmholtz equation) which says

∫∫
Ω

U∇2G−G∇2U ds =

∫∫
∂Ω

U
∂G

∂n
−G

∂U

∂n
dl.

Because ∇2G = −k2G and ∇2U = −k2U , the left-hand side of the above equation is

zero, i.e., ∫∫
Ω

U(−k2G)−G(−k2U) ds = 0.
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The boundary of Ω is the sum of two curves Γ and Γε. The outer curve Γ is smooth

but otherwise arbitrary. The inner curve Γε is a circle of radius ε with center P0.

Green’s Theorem says

0 =

∫
∂Ω

U
∂G

∂n
−G

∂U

∂n
dl,

and because

∂Ω = Γ + Γε,

this implies

−
∫

Γε

U
∂G

∂n
−G

∂U

∂n
dl =

∫
Γ

U
∂G

∂n
−G

∂U

∂n
dl. (9.26)

We evaluate the left integral, using the fact that on the curve Γε, we have dl = εdθ.

We set G(r) equal to the radially symmetric solutions of the 2D Helmholtz equation.

These are solutions of the equation

1

r

∂

∂r

(
r
∂G

∂r

)
+ k2G = 0,

which is in fact Bessel’s equation. Solutions of Bessel’s equation are Hankel functions,

i.e.,

G(r) = H0(kr) = J0(kr) + iY0(kr),

where J0 is a Bessel function of the first kind and Y0 is a Bessel function of the second

kind. Then

−
∫

Γε

U
∂G

∂n
−G

∂U

∂n
dl = −2πε

(
−kU(P0 + ε)

∂H0

∂r
(kε)−H0(kε)

∂U

∂n

)
≈ −2πε

(
−kU(P0)

(
−kε

4
+ i

2

π

1

kε

)
−
(

1 + i
2

π
log

(
kε

2

)))
,

(9.27)
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where we have made the approximations

H0(kε) ≈ 1 + i
2

π
log

(
kε

2

)
∂

∂r
H0(kε) ≈ −

kε

4
+ i

2

π

1

kε
.

These approximations are valid for ε� 1, and the right- and left-hand sides of (9.27)

have the same asymptotic behavior in the ε → 0 limit. However, the ε → 0 limit of

the right-hand side of (9.27) is easily computable, leading to the result

lim
ε→0

[
−
∫

Γε

U
∂G

∂n
−G

∂U

∂n
dl

]
= 4iU(P0).

Using this result in (9.26), we write

U(P0) =
1

4i

∫
Γ

U
∂G

∂n
−G

∂U

∂n
dl. (9.28)

9.6.1 Kirchhoff

Consider diffraction in 2D from a screen with aperture Σ as in Figure 9.9.

0
1

2

1

01

Figure 9.9: Setup for deriving Kirchhoff diffraction integral.
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We now use the integral formula (9.28) to compute U(P0) with Γ = S1 + S2. We

break the integral over Γ into two pieces, i.e.,

U(P0) =
1

4i

∫
S1

U
∂G

∂n
−G

∂U

∂n
dl +

1

4i

∫
S2

U
∂G

∂n
−G

∂U

∂n
dl. (9.29)

First let’s do the integral over S2 and show that it vanishes.

∫
S2

U
∂G

∂n
−G

∂U

∂n
dl =

∫
S2

Uk

√
2

πkR
i exp[i(kr − π/4)]−

√
2

πkR
exp[i(kR− π/4)]

∂U

∂n
dl

=

√
2

πk

∫ √
R

(
ikU − ∂U

∂n

)
exp[i(kR− π/4)] dθ,

where we use the following approximations, valid for R� 1:

G(R) = H0(kR) ≈
√

2

πkR
exp[i(kR− π/4)]

∂G

∂R
= k

∂

∂r
H0(kR) ≈ k

√
2

πkR
i exp[i(kr − π/4)].

Therefore, we have the following condition: if, for all θ,

lim
R→∞

[√
R

(
ikU − ∂U

∂n

)]
= 0,

then the S2 integral vanishes. This condition is the 2D analogue of the Sommerfeld

outgoing radiation condition. Assuming that the condition holds, the only contribu-

tion to the integral comes from S1, i.e., formula (9.29) reduces to

U(P0) =
1

4i

∫
S1

U
∂G

∂n
−G

∂U

∂n
dl.

If we now make the Kirchhoff assumptions, then both U and ∂U/∂n are zero every-

where on S1 except inside Σ. Take P1 ∈ Σ and define r01 as the vector from P0 to P1.

Here and in what follows, we use r01 to denote the magnitude of the vector r01. Then

U(P0) =
1

4i

∫
Σ

U
∂

∂n
H0(kr01)−H0(kr01)

∂U

∂n
dl.
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The Kirchhoff assumptions continue: assume that, inside Σ, both U and ∂U/∂n are

the same as if there is no screen. That is to say, assume that U(P1) is the field due

to a radially symmetric point source located at P2, where P2 is a point to the left of

the screen, as in Figure 9.10.

0
1

01

2

21

Figure 9.10: Illumination by point source in Kirchhoff diffraction integral.

Then, if r21 is the vector joining P1 to P2, we have

U(P1) = AH0(kr21).

Using this in the above integral yields

U(P0) =
1

4i

∫
Σ

AH0(kr21)
∂

∂n
H0(kr01)−H0(kr01)

∂

∂n
AH0(kr21) dl

=
A

4i

∫
Σ

H0(kr21)
∂

∂r
H0(kr01) cos(n, r01)−H0(kr01)

∂

∂r
H0(kr21) cos(n, r21) dl

=
Ak

4i

∫
Σ

−H0(kr21)H1(kr01) cos(n, r01) +H0(kr01)H1(kr21) cos(n, r21) dl.

This is the Kirchhoff diffraction integral.
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9.6.2 Rayleigh-Sommerfeld

There are inconsistencies in the Kirchhoff boundary conditions. If U and ∂U/∂n are

both zero everywhere on a part of S1, and if U satisfies the Helmholtz equation in the

domain contained by Γ = S1+S2, then one can prove that U must be zero everywhere

inside the curve Γ. To remedy this condition, we choose different Green’s functions

so that we have to enforce only one of the two conditions U = 0 or ∂U/∂n = 0 on

the part of S1 that does include the aperture Σ.

In what follows, G− will be the Green’s function that corresponds to taking

∂U/∂n = 0 on S1 not including Σ. We could also evaluate the integral using G+, the

Green’s function that corresponds to taking U = 0 on S1 not including Σ. Using G−

or G+ to deriving, respectively, the first and second Rayleigh-Sommerfeld diffraction

integrals. Here we pursue the calculation for G− only.

The picture here is that P0 is a point to the right of the screen, P1 ∈ Σ is a point

inside the aperture, and P̃0 is a point to the left of the screen that “mirrors” P0. This

means that r01 is the reflection of r̃01. The outward unit normal n points to the left

from Σ, as in Figure 9.11.

Figure 9.11: Setup for Sommerfeld Green’s function

Using G− in (9.28) gives

UI(P0) =
1

4i

∫
Σ

U
∂G−

∂n
dl.
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Note that

∂G−

∂n
= k

∂

∂r
H0(kr01) cos(n, r01)− k

∂

∂r
H0(kr̃01) cos(n, r̃01)

= −kH1(kr01) cos(n, r01) + kH1(kr̃01) cos(n, r̃01).

On Σ, we know that cos(n, r̃01) = − cos(n, r01) and that r01 = r̃01. Therefore,

∂G−

∂n
= −2k cos(n, r01)H1(kr01).

This implies

UI(P0) = − k

2i

∫
Σ

U cos(n, r01)H1(kr01) dl. (9.30)

This is the 2-D version of the first Rayleigh-Sommerfeld diffraction integral.

We could of course specialize this integral to the case where P1 is illuminated by

a radially symmetric point source located at P2, an arbitrary point to the left of the

screen. This means that U(P1) = AH0(kr21), which can be substituted into (9.30) to

produce

UI(P0) = −kA
2i

∫
Σ

H0(kr21)H1(kr01) cos(n, r01) dl. (9.31)

Let λ = 2π/k. For r01 � λ, r21 � λ, we obtain

UI(P0) =
−kA
2i

∫
Σ

(√
2

πkr21
exp[ikr21 − iπ/4]

)
×
[√

2

πkr01
exp[ikr01 − iπ/4] · (−i)

]
cos(n, r01) dl,

where the term in parentheses is the large r approximation ofH0(kr21) and the term in

square brackets is the large r approximation of H1(kr01). Using these approximations,

we have

UI(P0) =
A

π

∫
Σ

1
√
r21r01

exp[ik(r01 + r21)](−i) cos(n, r01) dl.
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9.6.3 Huygens-Fresnel

Our goal here is to determine the illumination onto a plane screen located several

wavelengths away from the aperture. For diffraction problems in two spatial dimen-

sions, we do not believe this calculation has appeared previously in the literature.

The picture is given in Figure 9.12.

x

y
001

1

Figure 9.12: Huygens-Fresnel picture showing illumination on a line several wave-
lengths away from the thin slit diffraction aperture.

We start with the Rayleigh-Sommerfeld diffraction integral (9.30), which we repeat

here:

UI(P0) =
−k
2i

∫
Σ

U cos(n, r01)H1(kr01) dl.

Inside the aperture Σ, we have cos θ = x/r01, which gives

UI(y) = −kx
2i

∫
Σ

U(ξ)
H1(kr01)

r01
dξ.

We use r2
01 = x2 + (y − ξ)2 and approximate

r01 = x

√
1 +

(
y − ξ

x

)2

≈ x

(
1 +

1

2

(
y − ξ

x

)2
)

= x+
1

2

(y − ξ)2

x
.

The same approximation strategy gives

1

r01

≈ 1

x

1

1 + (y − ξ)2/(2x2)
≈ 1

x

(
1− 1

2

(y − ξ)2

x2

)
=

1

x
− 1

2

(y − ξ)2

x3
.
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The difference between the approximations of r01 and r−1
01 is that the O(y − ξ)2 term

appears in r−1
01 with an extra factor of x−2. Since x is assumed large compared with

the wavelength, we keep the O(y− ξ)2 term only when r01 appears in the numerator,

and drop it whenever r01 appears in the denominator. This gives

UI(y) =
−k
2i

∫
Σ

U(ξ)H1

[
kx

(
1 +

(
y − ξ

x

)2
)]

dξ.

Now we use the far-field asymptotics of the Hankel function to approximate

H1

[
kx

(
1 +

(
y − ξ

x

)2
)]

≈
√√√√ 2

πkx
(
1 +

(
y−ξ
x

)2) exp

[
i

(
kx+

k

x
(y − ξ)2 − π/4

)]

≈
√

2

π

eikx

√
xk

exp

[
ik

x
(y − ξ)2 − iπ/4

]
.

Inserting this approximation into the integral we have

UI(y) ≈ −
k

2i

√
2

π

eikxe−iπ/4

√
kx

∫
Σ

U(ξ) exp

[
ik

x
(y − ξ)2

]
dξ

= −e
iπ/4
√

2

2i
√
π

√
k
eikx

√
x

∫
Σ

U(ξ) exp

[
ik

x
(y2 − 2yξ + ξ2)

]
dξ

= C
√
k
eikx

√
x
e

ik
x

y2

∫ +∞

−∞

{
U(ξ)e

ik
x

ξ2
}
e−( 2ik

x )yξ dξ, (9.32)

where U(ξ) = 0 when ξ /∈ Σ, and where the constant C is given by

C = −e
iπ/4
√

2

2i
√
π
.

Note that this last integral (9.32) is the Fourier integral with phase shift. If we can

design a lens that cancels out the phase shift e
ik
x

ξ2
, then we have designed a 2-D LC

lattice that takes the spatial Fourier transform of an input signal.
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9.7 Applications

9.7.1 Comments on the Implementation

It is feasible to make this lattice on a semiconductor substrate. Here we assume a

Silicon substrate that is more popular in today’s Silicon technology. We use pieces of

metal as our inductor and metal-to-metal capacitance as the capacitor.

From the lattice dispersion relation (9.4), we know that in order to maximize the

lattice cut-off frequency, we need to minimize the values of inductors and capacitors in

each section. However, we cannot arbitrarily shrink the capacitances of each section,

because at some point, parasitic capacitance becomes comparable with our lumped

capacitance. In today’s typical Silicon processes, we can have inductances as low as

30pH and capacitances as small as 5fF before the parasitic factors become an issue.

The quality factor for these elements is around 20, giving us a lattice cut-off frequency

of around 300GHz.

One important issue is ohmic loss of the Silicon substrate. To address this problem,

we need to use a ground plane beneath our inductors to shield the Silicon substrate.

By adding this layer, we could achieve higher quality factors in our inductors. To

find the exact value of inductance and capacitance as well as loss in each section, we

use an E/M simulator such as Ansoft HFSS[72].

Another issue that has an effect on the performance of the structure is magnetic

coupling of the inductors. Adjacent inductors induce current in each other; to model

this accurately requires additional terms in our circuit model (9.2). Fortunately, with

typical values of inductors and capacitors, this mutual inductance is not that large:

a careful E/M simulation shows that the coupling coefficient of adjacent inductors is

less than 0.1. In our numerical analysis, we take this effect into account, but because

of complexity we neglected this effect in our mathematical analysis.

Using the exact circuit models, we have simulated this structure and are in the

process of fabricating the Fourier transform circuit in a SiGe BiCMOS process.

Figure 9.13 clearly shows the architecture of the circuit, with a lens-shaped region

in the interior designed to cancel out the phase shift in the Huygens-Fresnel integral
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(9.32).
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Figure 9.13: Architecture

9.7.2 Fourier Transform

Direct numerical simulations show quite clearly the Fourier transform capabilities of

the 2-D LC lattice. By this we mean that if the forcing of the lattice’s left boundary

is given by

V1,j(t) = pj sin(2πωt), (9.33)

then the signal at the right boundary will consist of an approximate, discrete Fourier

transform of the spatial part p of the input signal. In what follows, all reported

numerical results arise from solving Kirchoff’s laws (9.2) for 80×100 lattices, subject

to the boundary conditions described in Section II-D.

Sinusoidal inputs. Figure 9.14 shows the Fourier transform of two sinusoids, with

two different spatial wavelengths.

The lattice parameters are nearly the same as before for Figure 9.7: namely,

outside the lens-shaped region shown in Figure 9.13, we take L = 30pH, C = 20fF,
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Figure 9.14: Results for two different numerical simulations of the 2-D LC lattice
showing how diffraction and lensing effects combine to effectively take the spatial
1-D Fourier transform of the input signal. The plots on the left (input signals)
correspond to two different choices of pj in expression (9.33), with ω = 60GHz.
Lattice parameters are L = 30pH and C = 20fF, except in a lens-shaped region in
the center of the lattice where L is unchanged but C = 60fF. For each input signal,
such a lattice was simulated, and the plots on the right show V100,j(t) as a function
of vertical section number j, for a particular instant of time t > 0.

and ω = 60GHz. Inside the lens-shaped region, we leave L unchanged but take

C = 60fF. The lattice has 80 nodes in the vertical direction and 100 nodes in the

horizontal direction. We force the left boundary with a sinusoidal forcing function of

the form (9.25), and examine the output at the right boundary.

To ensure that the simulations are realistic, we add two effects not present in

our mathematical analysis above. Namely, we add a mutual inductance term that

takes into account coupling of adjacent inductors. As mentioned above, the coupling

coefficient for this term is very small compared with unity (0.1), and the effect is

not large. Furthermore, we assume each section as a resistance of 0.1Ω, and that all

inductors and capacitors vary randomly by about 5% from the values reported above.

The output of the circuit shows clearly two peaks, as expected. Furthermore,
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the sinusoid with smaller wavelength (and therefore higher wave number) yields two

peaks that are more widely separated than those generated by the sinusoid with larger

wavelength (and therefore smaller wave number). Because the aperture of the lens

is comparable with the wavelength of the input signal, diffractive effects are quite

important. The output is not simply a focused version of the input, but a focused

and diffracted version of the input. Comparing Figure 9.7 and Figure 9.14, it is now

clear that the lens brings into focus the blurry Fourier transform that results from

diffraction alone.

Finally, Figure 9.14 clearly shows the DC value of the input. The first waveform

has a lower average value compared to the second one and we can clearly see this

difference in our output waveform.

Step input. Next we consider precisely the same lattice, changing the boundary

forcing to be equal to a step function, namely,

V1,j(t) = 0.15 sin(2πωt). (9.34)

The output signal is shown in Figure 9.15.

The Fourier transform of the step input is a sinc function, shown by the green

curve. Our mathematical analysis predicts that the output should be given by the

blue curve, while the numerical simulation itself yielded the black curve.

The three curves are qualitatively the same except in the tails, where there is

some discernible disagreement. In the tails, one finds that our analysis is closer to the

numerical simulation than the true Fourier transform. The error in the tails is due to

two factors: (1) due to boundary effects, the finite lattice is not exactly the same as

a thin slit diffraction problem, though it features qualitatively identical physics, and

(2) the lens-shaped region in the middle of the 2-D LC lattice is not quite a “thin

lens,” meaning that the paraxial approximation is not quite valid. Some of the phase

shift from the original Huygens-Fresnel diffraction integral is not quite canceled out

in the tails.
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Figure 9.15: Numerical simulation of the 2-D LC lattice (in black) as compared with
our analytical prediction (in blue) and the true Fourier transform (in green) of the
input given by (9.34), with ω = 60GHz. Lattice parameters are unchanged from
Figure 9.14. The black curve shows the numerically computed values of V100,j(t) as a
function of vertical section number j, for a particular instant of time t > 0.

Sinc input. Finally we consider the same lattice again but with input equal to a

sinc function:

V1,j(t) = 0.3 sinc(βj) sin(2πωt). (9.35)

The input signal is shown in Figure 9.16, and the output signal is shown in Figure

9.17. The output is roughly symmetric, and roughly constant between elements 28

and 52. The true discrete Fourier transform, limited to a particular band of wave

numbers, would be perfectly symmetric and have much steeper rise and fall sections

than the curve shown in Figure 9.17. However, given that we included just over two

full cycles of the sinc function as input, the output is quite reasonable.
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Figure 9.16: Sinc input for the 2-D LC lattice, corresponding to Equation (9.35) with
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Figure 9.17: Simulated output V100,j(t) at a fixed instant of time t > 0, plotted versus
vertical section number j. The input that generated this output is given by Equation
(9.35) and Figure 9.16. Lattice parameters are unchanged from Figure 9.14.
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Chapter 10

Conclusion

Broadly speaking, the main innovation in our work is to design circuits based on the

mathematical theory of wave propagation, inspired by commonly used structures in

electromagnetics, and more specifically optics. Let us examine how this process works.

Given a discrete line/lattice, we write general continuum models that apply to a large

range of circuits. These continuum models consist of nonlinear, dispersive differen-

tial equations with wave solutions. We subject these models to both mathematical

analysis and numerical simulation. In doing so, we obtain relationships between the

parameters (i.e. the local values of inductance/capacitance) of the line/lattice and

the solutions of the differential equations. Then, if we want the solutions to behave

in a particular way (e.g. focusing all the energy from the left boundary into a single

pulse at the right boundary), we select the parameters accordingly. This procedure

enables us to exploit the vast body of mathematical knowledge concerning nonlinear

wave equations, and it opens a door to new techniques for circuit designers.

In this work we demonstrated:

• The narrowest reported pulse on silicon (2.5ps),

• The first in-silicon transmission line system capable of sharpening both rising

and falling edges of NRZ data by increasing the bandwidth,

• For a single integrated-circuit silicon-based amplifier, the highest achieved cen-

ter frequency of operation (85GHz) and the highest achieved power output

(120mW) at this frequency,
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• Ultra-fast computation systems such as a sub-nanosecond Fourier and Hankel

transformers in silicon.

Also we showed how the same approach can be applied to realize other structures,

leading to a new design discipline we like to call ”Optotronics”.
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