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ABSTRACT

Decoupled, separable equations describing perturbations
of a Kerr black hole are derived. These equations can be used to
study black-hole processes involving scalar, electromagnetic,
neutrino or gravitational fields. A number of astrophysical
applications are made: Misner's idea that gravitational synchro-
tron radiation might explain Weber's observations is shown to
be untenable; rotating black holes are shown to be stable against
small perturbations; energy ampiification by "superradiant scat-
tering" of waves off a rotating black hole is computed; the
"spin down" (loss of angular momentum) of a rotating black hole

caused by a stationary non-axisymmetric perturbation is calcuiated.
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This dissertation treats interactions of a rotating black
hole by means of perturbation techniques. The motivation for this
approach is that the full nonlinear system of equations describing
black-hole interactions (e.g., the coupled Einstein-Maxwell system) is
too complicated for an exact solution; however, a perturbation solu-
tion is often a good approximation for many physical situations.

The solution describing an unperturbed black hole will be
taken to be the Kerr (1963) solution of the Einstein field equations.
The Kerr metric describes the exterior gravitational field of a rotat-
ing black hole of mass M and angular momentum aM (0 < a <M ; we
use units with ¢ = G = 1). There is good reason to believe that the
Kerr black hole is the uhique final state of the gravitational col-
lapse of a sufficiently massive star (for discussion and references to
the Titerature see Misner, Thorne and Wheeler 1973). Einstein's equa-
tions in fact allow the possibility that the black hole is charged; I
shall adopt the viewpoint that any charged astrophysical object would
quickly have its charge néutralized and so will consider only uncharged
black holes.

Four types of perturbations will be treated: scalar, electro-
magnetic, neutrino and gravitational. Although no massless scalar
field is known in nature, such a field is often used as a model for
other interactions because of its mathematical simplicity.

Previous perturbation treatments were confined to
Schwarzschild (non-rotating) black holes, which are much simpler to
analyze--and also much less interesting! The background Schwarzschild

metric is static and spherically symmetric, so the time and angular
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dependence can easily be separated out of the equations. It turns out
that the resulting coupled radial equations can then be decoupled.
(The scalar equation is of course already decoupled since there is
only one field component.) Examples are the Regge-Wheeler (1957) and
Zeril1i (1970) equations , describing odd and even parity gravitational
perturbations respectively. These approaches all used conventional
tensor analysis, and the gravitational case in particular involved
considerable algebraic complexity.

In the Kerr case, the background metric is much more compli-
cated than the Schwarzschild metric, and an attempt to find convenient
perturbation equations along the above lines seems doomed from the
start. In addition, the replacement of spherical symmetry by axial
symmetry means that a separation into spherical harmonics is no longer
possible; one expects to-end up with partial differential equations in
r and 6 instead of ordinary differential equations in r .

An alternative to the tensor approach is provided by the
Newman-Penrose (1962) formalism, hereafter called "NP". This formalism
was used to treat Schwarzschild perturbations by Price (1972), and his
results were extended by Bardeen and Press (1973). Here again it was
possible to obtain decoupled equations governing the perturbations.

The Schwarzschild and Kerr metrics are very similar from the
NP point of view. (Technically, they are both Petrov Type D.) This
similarity leads one to suspect that it may be possible to derive
decoupled Kerr perturbation equations using the NP formalism. More-
over, Carter (1968) showed that the scalar wave equation in the Kerr

background is completely separable into ordinary differential
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equations, even though there is no known group-theoretical reason for
this.

The most important result of this thesis is the construction of
decoupled, separable equations for Kerr perturbations. These equations
allow one to treat a number of interesting black-hole problems in a
convenient way.

The plan of the thesis is as follows: Part II consists of back-
ground material to the papers comprising the rest of the thesis. A
general outline of the perturbation approach to black-hole problems is
given. Also included is a short introduction to the Newman-Penrose
formalism. Part III consfsts of two papers in which a scalar field is
used to investigate properties of rotating black holes. The first
paper discusses Misner's idea (1972) that gravitational synchrotron
radiation might explain Weber's observations. It is shown that syn-
chrotron radiation can be produced only by particles moving in astro-
physically unreasonable orbits, orbits with "specific energy at
infinity" large compared to 1. The Penrose process for extracting
energy from a rotating black hole is discussed and also found to be
astrophysically unlikely. The formalism of "Locally Non-Rotating
Observers" is described and shown to be a powerful tool for analyzing
physical processes near rotating black holes. The second paper in
Part III discusses Misner's idea of "superradiant scattering", the
wave analog of the Penrose process, which involves particles. The
conditions for superradiant scattering to occur are much less stringent
than those for the Penrose process, making it a phenomenon of possible

astrophysical importance. The magnitude of the effect is found to be
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at most 0.3% energy amplification for scalar waves. The paper contains
an idealized calculation of the "floating orbit" effect, where a par-
ticle in orbit around a rotating black hole can radiate energy to
infinity without spiralling into the hole. The energy loss to infinity
is balanced by superradiant scattering of the energy going down the
hole. |

Part IV contains the derivations of the separable, decoupled
perturbation equations. The equations can all be written in a unified
way, the master equation depending only on a parameter s describing
the "spin weight" of the field (s = 0 for scalar, s =£1/2 for
neutrino, s = +1 for electromagnetic and s = +2 for gravitational).
Included in this section are all the formulae necessary for doing an
actual calculation, such as formulae for the energy flux and polariza-
tion of radiation at infinity.

Part V applies the perturbation equations to the important
question of the stability of rotating black holes. It is shown numeri-
cally that rotating black holes are in fact stable against small per-
turbations; if they were not, one would have been forced to dismiss
them as astrophysically 1hteresting objects.

Part VI describes results from work still in progress. One
interesting application of the perturbation equations is to the "spin
down" effect which occurs when a rotating black hole is subjected to a
stationary, non-axisymmetric perturbation. The magnitude of the effect
is computed in the electromagnetic and gravitational cases. Also in

Part VI is a discussion of the superradiance effect and the results of
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some computations of its magnitude in the electromagnetic and gravita-

tional cases.

The Appendix contains some unrelated work on viscous

Maclaurin spheroids.
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PART II

BACKGROUND MATERLAL

(a) The Perturbation Problem for Black Holes
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When treating black-hole interactions we generally consider
a gravitational field, which we denote symbolically by g , and a
non-gravitational field ¢ produced by a source J (e.g., ¢ may be
'the electromagnetic field tensor Fuv and J the electromagnetic

d-current Ju)' Einstein's equations are symbolically

D(g) = T(g.6%) (2.1)

where ¢j is a complicated nonlinear differential operator and T is
the stress-energy tensor of the field ¢ . Note that T depends
quadratically on ¢ . For gravitational perturbations (e.g., when ¢
is the mass of an infalling partic]e), this is the complete set of
equations. For non-gravitational berturbations, we have in addition a
set of field equations for ¢ (e.g., Maxwell's equations in curved

spacetime); symbolically,

Llg.0) = J (2.2)

where & is a linear differential operator on ¢ 1in the cases we
shall treat. In the perturbation approach, g is regarded as the sum
of two pieces, gA and gB, say. The quantity gA describes the un-
perturbed Kerr solution, while gB is the perturbation due to the
field ¢B . The quantity ¢A vanishes because the unperturbed hole
possesses only a gravitational field.

Consider non-graQitationa] perturbations (no gB present
except that generated by ¢B ). If we linearize equations (2.1) in

gB, we obtain the equations describing the perturbation of the
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gravitational field:
n
D ("P) = B . (2.3)

Here 9J' is some other differentia] operator, linear in gB . If
¢B is a small non-gravitational perturbation, we see that gB is a
second-order small quantity; hence, in equation (2.2) we can use the

unperturbed gravitational field gA :

Pt o8 = oB : (2.4)

This equation describes the perturbation ¢B propagating in the unper-
turbed background geometry gA , and is sometimes called the "test-
field approximation". It is a good approximation whenever the density
of energy-momentum due to ¢B is much smaller than ]/MZ, a typical
tidal gravitational force in the unperturbed solution. We see that,
provided the questions we seek to answer do not require knowing gB,
it is relatively easy to treat non-gravitational perturbations: one

simply writes down the equations for the field ¢ = ¢B

propagating in
the unperturbed Kerr geometry. Note that this simplification would not
occur if we were treating electromagnetic perturbations of a charged
black hole. 1In that case there would be an unperturbed electromagnetic
field ¢A . Since T 1is quadratic in ¢ = ¢A+ ¢B s T would be first-
order in ¢B and would give rise to a first-order change in g .
Gravitational perturbations, on the other hand, by definition

involve gB and require an explicit linearization of the Einstein field

equations. One is able to discuss with this approximation phenomena
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such as the interactions of a small mass m with a black hole (m << M),
including the emission of gravitational waves, or one can look for
vacuum solutions of the field equations "close" to the black-hole
solution. This latter aspect is related to the stability problem for

black holes (see Part V).
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(b) The Newman-Penrose Formalism
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The NP formalism arises naturally by introducing spinor cal-
culus into general relativity, and by then building a tetrad calculus
that mimics the spinor calculus. Since most readers are probably more
familiar with tetrads than spinors, I shall briefly describe the NP
formalism in the language of tetrads, without following the spinor
route; a good description of the spinor approach has been given by
Pirani (1964). More details on tetrad calculus can be found in Misner,
Thorne and Wheeler (1973).

A tetrad is a set {ga} of fdur basis vectors chosen at each

point of spacetime. The tetrad is normalized:

> >
e -e =

o €g g (2.5)

where Mg is a matrix of constants with signature -2. A familiar

example is an orthonormal tetrad, when = diag(1,-1,-1,-1); we do

Mg
not assume Nag has this special form here. It is sometimes conven-
ient to regard the tetrad as a linear combination of coordinate basis
vectors:

. (2.6)

where gu. = a/ax“ in some coordinate system. (Throughout this sec-
tion, unprimed indices refer to tetrad indices and primes refer to
coordinate indices.) The components of the metric tensor in the coor-

dinate system are

= L“u.n LB (2.7)

gu'\)' N u'oov u' o ) B) aB ™ V'



-14-

t
where Lau. is the inverse matrix of L* - We thus see that (with
Nyg chosen once and for all) specifying the tetrad everywhere, which
. ]
is equivalent to specifying LM o everywhere, is equivalent to speci-

fying gu'v' everywhere. It is which plays the dominant role

gul\)l
in ordinary tensor analysis.
Note that equation (2.5) is invariant under Lorentz transforma-

tions of the tetrad:

g = A*Z , (2.8)

a GOL

where

RN
naB_naé_ Aano‘BAE . (2.9)

Since the Lorentz group has six parameters, there are six degrees of
freedom at each point in spacetime in choosing tetrads equivalent to
the same gu'v' . One can alternatively think of the tetrad as fixed
(e.g., defined by some symmetry property of spacetime), while making
the usual coordinate transformations of tensor analysis on gu.v.
For this reason, the tetrad components of a tensor are often called
"scalars" in the literature; a better name would be "coordinate
scalars".

If the tetrad vectors are regarded as differential operators,

they do not in general commute:

> > - [T
[ea,eB] g L . (2.10)
]
For a coordinate basis, the commutation coefficients H o are

CG.IBI
zero since partial derivatives do commute. The commutation coeffi-

cients are related to the connection coefficients P”Ba of the
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basis gﬁ ., Which define covariant derivatives:

ve = T¢ @

88 8a &, R (2.11)

Copy " Fuﬁa - FuaB . (2.12)

These connection coefficients, which are antisymmetric in the first two
indices, are sometimes called "Ricci rotation coefficients".

The Riemann tensor in a non-coordinate basis is given by

a Ol ol

R = - + % % M
BYS g BS ,Y ! BY S g UYF BS r udr BY
- 7% H
T 8u Cys . (2.13)
The Ricci tensor is defined by
= pM
RuB R - . (2.14)

(This has the opposite sign to Misner, Thorne and Wheeler and is chosen
to agree with Newman and Penrose.)
The Riemann tensor can be decomposed into the Weyl tensor, the

Ricci tensor and the scalar curvature:

R 5 =% 5 - zaE“EY RB]6] + 6[a[y53]&J R . (2.15)

The Bianchi identities are

RQB[YS;EJ = 0 ) (2.16)

The Einstein field equations with these conventions are
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R R = -8r Tuv . (2.17)

1
w T2 v
So far we have described a general tetrad calculus. The NP
version dispenses with the summation convention and gives every quantity
its own name. The basis vectors are null vectors called 3, ﬁ, m and
mE . (An asterisk or a bar will be used to denote complex conjugation.

> > . >, .
The vectors % and n are real, while m 1is complex with real and

imaginary parts each spacelike.) The tetrad satisfies

> > > >
Len =1 , mem*

-1 , all other dot products zero, (2.18)

1.8.,
0 1 0
- 1 0 0
nuB -
0 O -1 (2.19)
0 0 -1 0

For example, from Cartesian basis vectors in special relativity one can

construct an NP tetrad by setting

§ =3, +8 , n=(3 -8)/2, E=(ZX+1Ey)//E. (2.20)

NP tetrads do not strictly speaking fall into the class of tetrads de-
scribed earlier because they introduce complex quantities. However, the
restrictions that ? and 1 be real and that the real and imaginary
parts of m be spacelike ensure that no problems arise if we manipulate

NP tetrads in the same way as real tetrads of signature -2 .
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Regarded as differential operators, the tetrad vectors are

denoted by D, A , § and § respectively (i.e., the intrinsic deriv-

ative along the E direction is D , etc.)  The connection coeffi-

cients are denoted by twelve complex quantities, called "spin coeffi-

cients":
K= Thoe Tl % Tam e P ngm
mET o) s vET oo ME T e M= T
e+ e =T 0o €-€=T 0y YHY ST o0,
Y-Y =T, G+B =T, B-a =l

The commutation relations (2.10) in this notation are:
(AD — DAyo = [(v + 7)D + (e + A
—(r+ Db — (7 +)dle
(6D — Dd)p = [(@+ B — ®D + «A
— b —(F+e—0 dle
(6A — Ad)p = [—3D + ( — &@ — B)A
+ X6+ (u— v+ 7)dle
(86 — 8b)p = [( — WD + (5 — p)A
~ (@~ B)s — (B — a)ée.

The Weyl tensor is represented by five complex quantities:

Yo = Comam Y17 Conem e ¥y = -C

Y, = -C

3 2nmn Y7 O

(2.21)

(2.22)

(2.23)
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The scalar curvature is denoted by

A = R/24

(2.24)

The remaining nine degrees of freedom in the Ricci tensor are repre-

sented by three real quantities

@00 =

and three complex quantities

i

201

1 o o
7R s Y E Ryt R s 0 = -5
1 1 o

- §'R2m > % - §'an > ®pp = - E'Rmm

R

nn

(2.25a)

(2.25b)

Equation (2.13) for the Riemann tensor becomes, using the decomposition

(2.15), a set of eighteen complex equations:

Dp -3k
D¢-—ék
Dt —AK
Dot — Se
Dp ~Se
DY;fAe
DA -8
Du —sm
Dv -am
AN -3y
8p -5
S« -~5p
5\ ~Snu
&y ~ O

= (P qf&)f(e +3)p k% -k(3+3E-1) + P,

il

(e +p)T + (3¢ —Z)r—(?-’ﬁ +o 43(3))< + V¥,

(2+7)p + (F4me +(e-20 - (35 +¥)k + ¥, + &,

(p+Z-26) +pF —Fe -kA-KY + (c+pT + P,
= (o4 MT +(f -2 = (u+v)K —--(I-ﬁ)e + &
= (r+ T+ (F+)p ~(+D)Y ~(Y+7)e + 11 - # Py ~A + D,

=(ph +Tu) + T2 + («-PT -VYE ~(3¢-)) + P,,

1l

o +TN 4 TR "(6-42)’1,( —mld-p) = ¥K +§z 4+ 2A

"

C‘n‘—f’?)/u. + (T+2N + (¥ =¥ — (3¢ +&)v +\_.P3 + @zv

[

~(uAR)A —(3Y-F)IN + (3t +B + W -E)v - B,

PP ~ cGL-B) + (p-P)T + (u- Ak - % + $.
= (,uf»—)dr) T A PR -2ap -fo—F) +e(/«x~,§)~‘£’z + A *(P,,

(p-P)v + (u=om + i+ ) + NZ-3p) - B + &,
= (U aK) # (Y 4T < 4 [t -3p Ty + By,
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Y AR = (r-2-p)Y + pr STV - €V -p(Y~T —p) +oLN +@,2

§r-Ac = (e +Xp) (24 -2 ~BI-F¢ -Kk5 ~+ Poa

.A(JJSZ =-(pR 40N 4+ (-t ~-T)2 +(¥4¥p v =P, - 2

Bet=Fy = (p+ )y = (24ph + (T <ot + (5-17 - B, | (2.26)

The Bianchi identities in this notation have been given by Pirani (1964):

¥ ~DE + D&, -5P., = (4a-mT, -2 p+F +3x7F, +
T @ -28-2p) P00 +2(€47)B,, + 27D, -2xD, -K B,
AY, ~ 8% + D, -8B, = (47w —20224p)F, +30F, — Xt
T uUT-pP, + 20P, + (2e-28+p)D,, —2k D,
3(8% -DE) +2(08,-5&,) + 5B, - Ad.o = 320F, -2p%, +
ﬁ*é(o(—w)‘f, + ¢k, )}(/I o —2Y-2%) D + (2427 +27T)D,,
+2(2-22 +TP,, + z(z'p“p)é, 20,0 —T P, kP, 2k by,
300F, - 51 + 203, -5B) + (5. -8.,) = 39F, + (3,
-0t¥, +¢el 253, t 2 g -W) Py, —28 bt 202 02m) S,
+ (20 t27 + T -28)P., +(27-2p-42)P,, 2 &, -2k %,,
3(5%, -D¥) + D&, - 88, +2(53, -43.) = 63, - 9wV,
+6le-pTy +3kd 2y, +208,, +2 (T -2%)E,,
T2 +4 ), + (Zp"n r+722)d, 27, +2((3—?-é)§2,—1?§u
3(AY, -5 E,) +D8,,- 82, +2(8d, -0d,)= 62§, -9ut,
| +6(p-00; + 308, -2y Po ~25 810 2025 ) Dy +220 D, - 8,
t2(r+T 2@, + 2(p+24+WE, +(p-2e -22 ~20) S,
5¢, -DF, + 5D, -0 D,, = 320, —2(a+2mY, +(+e-pE, -2vE,
+2)1 &, +(2¥—27+/E)§2, +2(T-)d,, - T2,,
A -s¥, +59,, A%, = 338 —2(6’—(-1/«)1:3 + (4P—t)‘l3+
—2vd, - 9P, + 208, +2 Y4) Py + (B ~2F -24) &4
DE, =53 -5 For +5F00 +3DA = (2yp 127 @Ftr 20050,

+(ﬁ"2; “2.’1'>§,o + Z(F"‘F)§u +§:§pz -t Q‘i;},o —_E§4l '—'K%.’J
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DB, - 58, 550, + 08, +35A = (27 -u-2@bo, 17do0 N Eio
+2(5F-2) ¢, +(n+2§~2a—?7%;2+(Zp+?~zé)§n-+¢§2;’k%zz
D3, ~5%, -3, + 0%, 430N =vEa +5 $io - 2upah -2 S
;}'%20 +Gr-T+2p%, +(2f5"&"12?f/‘§21 +pap-2e ~22) ks,
(2.27)
One way 1in which the formalism has been used is to find exact and
approximate solutions of the vacuum Einstein equations. The reason for
the success in this case is that the Bianchi identities (2.27) simplify
considerably in vacuum, where all the ¢'s are zero.
Maxwell's equations in NP formalism are written in terms of

three complex quantities representing the electromagnetic field tensor:

6y = Fo s 0 Z(Fp +Fo) 0y = (2.28)
They reduce to four complex equations:

D&, - Sbo = (7 —2a)®0 t 200, - k@, + 2mJ)

D2, - 5@1 = A0t 2mey * (p-2e)o, + 2mi

6@1 - A0 = (u -2y)®0 + 2r®] - 00, * 2md

80, - A®, = Vo, * 2u®] + (1 -28)®2 + 2an . (2.29)

Here JQ = JUQU etc., where J" is the electromagnetic 4-current.
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PART III

SCALAR-FIELD CALCULATIONS OF
ROTATING BLACK-HOLE PHENOMENA

(a) Rotating Black Holes: Locally Nonrotating Frames,
Energy Extraction, and Scalar Synchrotron Radia-
tion (Paper I; collaboration with J. M. Bardeen
and W. H. Press, published in Ap. J. 178, 347 [19721).



~23=

THE ASTROPHYSICAL JOURNAL, 178:347-369, 1972 December 1
© 1972. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ROTATING BLACK HOLES: LOCALLY NONROTATING FRAMES,
ENERGY EXTRACTION, AND SCALAR
SYNCHROTRON RADIATION*
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ABSTRACT

This paper outlines and applies a technique for analyzing physical processes around rotating
black holes. The technique is based on the orthonormal frames of “locally nonrotating observers.”
As one application of the technique, it is shown that the extraction of the rotational energy of a
black hole, although possible in principle (e.g., the ' Penrose-Christodoulou™ process), is unlikely
in any astrophysically plausible context. As another application, it is shown that, in order to emit
‘“*scalar synchrotron radiation,” a particle must be highly relativistic as seen in the locally non-
rotating frame—and can therefore not move along an astrophysically reasonabie orbit. The paper
includes a number of useful formulae for particle orbits in the Kerr metric, many of which have
not been published previously.

I. INTRODUCTION

Although there is as yet no certain observational identification of a black hole, the
study of the properties of black holes and their interactions with surrounding matter
is astrophysically important. Black-hole astrophysics is important for the following
reasons. (i) At least some stars of mass > 2 M probably fail to shed sufficient matter,
when they die, to become white dwarfs or neutron stars, and instead collapse to form
black holes. (ii) At least one irregularly pulsating X-ray source, Cygnus X-1, has
been identified with a binary system which has a massive, invisible component; this
might well be a black hole emitting X-rays as it accretes matter from its companion
(for observations, see, e.g., Schreier er al. 1971 and Wade and Hjeliming 1972).
(iii) A black hole of 10*~10% M, might lie at the center of the Galaxy and be responsible
for radio and infrared phenomena observed there (Lynden-Bell and Rees 1971).
(iv) Gravitational waves seem to have been detected coming from the direction of the
galactic center with such intensity (Weber 1971 and references cited therein) that
black-hole processes are the least unreasonable source. We are faced with a double
mystery: first, puzzling observations; second, a poor theoretical understanding of
what processes might occur near a black hole. Both sides of the mystery call for further
theoretical work.

Most interactions of a black hole with its surroundings can be treated accurately
by perturbation techniques, where the dynamics of matter, electromagnetic and
gravitational waves takes place in the fixed background geometry generated by the

* Supported in part by the National Science Foundation [GP-15267] at the University of
Washington, and [GP-28027, GP-27304] at the California Institute of Technology.

1 Present address: Yale University, New Haven, Connecticut.
1 Fannie and John Hertz Foundation Fellow.
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hole. (Notable exceptions are the interactions of two or more black holes, or of
black holes with neutron stars of comparable mass, and the highly nonspherical
collapse of a star to form a black hole; currently there are no adequate techniques
for treating such processes.) Most previous perturbation analyses have dealt with
nonrotating (Schwarzschild) black holes. The static nature of the Schwarzschild
metric and its spherical symmetry vastly simplify most problems. The orbits of particles
can be described easily, and the theory of electromagnetic (Price 19724) and gravita-
tional (Zerilli 1971; Price 19726) perturbations is well developed. A number of
interesting model applications have begun to appear in the literature (Davis et al.
1971, 1972; Press 1971; Misner 1972a; Misner et al. 1972).

However, black holes in nature are likely to be highly rotating (Bardeen 1970a),
and must therefore be described by the Kerr (1963) metric, rather than the Schwarzs-
child metric. Phenomena in the vicinity of a rotating black hole are considerably
more complicated than in the nonrotating case. The metric is only stationary, not
static, and only axisymmetric, not spherically symmetric. A complete description of
particle orbits is rather complex (e.g., de Felice 1968; Carter 1968a). The equations
governing-electromagnetic and gravitational perturbations have only recently been
separated into ordinary differential equations (Teukolsky 1972). The scalar wave
equation has been known to be separable for some time, and has therefore been
heavily relied on for qualitative perturbation results, even though there are no
known classical scalar fields in nature.

A further difficulty is the complexity of coordinate systems for describing processes
near a Kerr hole. Boyer-Lindquist (1967) coordinates are the natural generalization of
Schwarzschild curvature coordinates and are the best for many purposes, but sufficiently
close to the hole—in the “ergosphere”—they are somewhat unphysical. Example:
Physical observers cannot remain “at rest” (r, 6, » = constant).

In this paper we outline a method for treating physical processes in the Kerr
geometry which has proved extremely fruitful in our research. The method, previously
used by one of us for a different application (Bardeen 1970b), replaces coordinate
frames by orthonormal tetrads (i.e., nonholonomic frames) which are carried by
“locally nonrotating observers.” In essence, the nonrotating observers are chosen to
cancel out, as much as possible, the ““frame-dragging” effects of the hole’s rotation.
They “rotate with the black hole” in such a way that physical processes as analyzed
in their frame are far more transparent than in any coordinate frame. The method of
locally nonrotating frames (LNRF), and the nature of the Kerr geometry as seen
from the LNRF, are described in § III.

In § I, as a foundation for the LNRF description, we review properties of the Kerr
metric and formulae for its particle orbits. While many of these results are known to
those working in the field, many have not appeared in the literature; also we have
used computer-assisted algebraic techniques, and other methods, to find equivalent
formulae much simpler than many in the literature. These should prove useful to
other investigators.

In § IV we apply the formalism of locally nonrotating frames to the question of
synchrotron radiation (here, scalar synchrotron radiation) from particles in orbits
near a black hole. (See Teukolsky 1972 for a proof that electromagnetic and gravita-
tional synchrotron radiation are qualitatively the same as the scalar case.) This type
of mechanism has been proposed by Misner (1972a) as a possible explanation for the
intensity of Weber’s observed radiation: a narrow synchrotron cone beamed in the
galactic plane. We find that substantial beaming is possible only for particles in
unstable, highly energetic orbits—orbits much more energetic than mere infall from
infinity can produce. It is theoretically possible to extract energy from the rotating
black hole itself (Penrose 1969; Christodoulou 1970). The LNRF methods give a
clear picture of this energy extraction process, and make the process seem astro-
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physically implausible. In particular, it seems unlikely that such extraction could
realistically accelerate matter into a synchrotron-radiating orbit. These results make
us pessimistic about the applicability of Misner’s interesting synchrotron concept to
any realistic astrophysical model.

In future papers, we will make use of methods described here to analyze more
detailed and realistic processes near a rotating black hole.

1. BASIC PROPERTIES OF THE KERR METRIC AND ITS ORBITS
We choose units with G = ¢ = . In Boyer-Lindquist coordinates the metric is
ds? = —(1 — 2Mr[Z)dt? — (4Mar sin® 0/Z)dtdp
+ (Z/A)dr? + 2d8? + (r? + a® + 2Ma?r sin? 0/Z) sin? 0dg?, 2.1)

or, in contravariant form (matrix inverse),

2\: _ A (9\* 4Mar(o)\(&)\ A[d)\2
) = "sa\a) T =a \#@)\e) T\

1 /0\2 A —qg%sin?0/0)\2
+§("a‘é) t TSAsnze (é;}) ' 22

Here M is the mass of the black hole, a is its angular momentum per unit mass
(0 < a £ M), and the functions A, %, A are defined by

A=r?—2Mr+a,

X=r%2+4 a%cos?0,

A= (r?+ a%* — a?Asin? 6. (2.3)

For a = 0, equations (2.1) and (2.2) reduce to the Schwarzschild solution in curvature
coordinates.

It will be useful to express the metric (2.1) in the standard form valid for any
stationary, axisymmetric, asymptotically flat spacetime—vacuum or nonvacuum—

ds? = —e®di? + e¥(dp — wdt)? + e*1dr? + e2d0? . (2.4)
This standard metric becomes Kerr if
e = XA/A4, e = sin? 04/,
e = Z/A e = 3 w = 2Mar|A . (2.5)

The event horizon (“one-way membrane”) is located at the outer root of the
equation A = 0,

r=r,

il

M 4+ (M? — a?)*? (2.6)

for all 6, . Over the range 0 < a < M, r, varies from 2M to M. The static limit
(outer boundary of the ergosphere) is at the outer root of (£ — 2Mr) = 0,

r=ro= M+ (M? — a®cos® )2 . Q.7

A physical observer—i.e., one who follows a timelike world line—must be dragged in
the positive ¢ direction if he is inside the static limit. Observers inside the static limit,
i.e., in the ergosphere, have access to the “negative energy trajectories”” which extract
energy from the black hole (see § I11).

The general orbits of particles (or photons) in the Kerr geometry are described by
three constants of motion (Carter 1968a). In terms of the covariant Boyer-Lindquist
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components of the particle’s 4-momentum at some instant, these conserved quantities
are

E = —p, = total energy,
L = p, = component of angular momentum parallel to symmetry axis ,
Q = p® + cos® 0[a*(u® — p®) + p,®[sin® 6] . (2.8)

Here p is the rest mass of the particle (u = 0 for photons), which is a trivial fourth
constant of the motion. Note that Q = 0 is a necessary and sufficient condition for
motion initially in the equatorial plane to remain in the equatorial plane for all time.
Any orbit which crosses the equatorial plane has Q > 0. When a = 0, Q + p,? is
the square of the total angular momentum. By solving equation (2.8) for the p,’s
and thence the p*’s, one obtains equations governing the orbital trajectory,

dr _ 12

T =2, (2.9a)
de

z - * (Vo)'2, (2.9b)
de .,

z it —(aE — L/sin® 8) + aT/A, (2.9¢)

> % — —a(@Esin® § — L) + (> + a)TJA. (2.94)

Here A is related to the particle’s proper time by A = 7/u, and is an affine parameter
in the case » — 0, and

T=Er?*+a* — La,
V,=T? — Ap2? + (L — aE)? + 0],
Vo= Q — cos? 0a®(u® — E?) + L?/sin® 6] . (2.10)

Without loss of generality one is free to take . = 1 for particles and p = 0 for photons,
in equations (2.8), (2.9), (2.10). (For particles this merely renormalizes E, L, and Q
to a ““per unit rest mass” basis.) V, and V, are “effective potentials” governing
particle motions in » and 6. Notice that ¥, is a function of r only, V, is a function of
6 only, and consequently equations (2.9a) and (2.9b) form a decoupled pair. Also, it
is not difficult to show (Wilkins 1972) that if E/n < 1 the orbit is bound (does not
reach r = oo), while all orbits with £/p > 1 are unbound except for a “ measure-zero”
set of unstable orbits.

The single most important class of orbits are the circular orbits in the equatorial
plane. For a circular orbit at some radius r, dr/dA must vanish both instantaneously
and at all subsequent times (orbit at a perpetual turning point). Equation (2.9a) then
gives the conditions

V(r)=0, V./(r)y=0. (2.11)
These equations can be solved simultaneously for £ and L to give
r3/2 _ 2Mr1/2 + aMllz

Elp = rOE( 3 — 30Mr 1 + 2aM V%)i2 ’ (2.12)
+ MY2(p2 T 2aMM2P 2 4 g?)
Lip = FE(PSZ — 3Mr 2 + 2aM )12 : (2.13)
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In these and all subsequent formulae, the upper sign refers to direct orbits (i.e.,
corotating with L > 0), while the lower sign refers to retrograde orbits (counter-
rotating with L < 0). For an extreme-rotating black hole, a = M, equations (2.12)
and (2.13) simplify somewhat,

r+ MUz — M
r3/4(,1/2 i 2M1/2)1/2
_i_M(rG/Z i M1/2r + Mr1/2 ¥ MG/Z)

Lip = P AN ) VT s fora=M. (2.15)

The coordinate angular velocity of a circular orbit is
Q =dpldt = + MY2[(r®2 + aM*?) . (2.16)

Circular orbits do not exist for all values of r. The denominator of equations (2.12)
and (2.13) is real only if

Elp = > fora= M; (2.14)

P2 — 3MPU2 4 2gMV2 > 0. (2.17)

The limiting case of equality gives an orbit with infinite energy per unit rest mass,
i.e., a photon orbit. This photon orbit is the innermost boundary of the circular orbits
for particles; it occurs at the root of (2.17),

r=ry=2M{l + cos [$cos™ ! (Fa/M)]}. (2.18)

Fora = 0, rpy, = 3M, while for a = M, r,, = M (direct) or 4M (retrograde).

For r > ryy, not all circular orbits are bound. An unbound circular orbit is one
with Efu > 1. Given an infinitesimal outward perturbation, a particle in such an orbit
will escape to infinity on an asymptotically hyperbolic trajectory. The unbound
circular orbits are circular in geometry but hyperbolic in energetics, and they are all
unstable. Bound circular orbits exist for r > r,,, where r, is the radius of the
marginally bound (“parabolic’) circular orbit with Efu = 1,

Faw = 2M T a + 2MY3(M T a)t2 . (2.19)

Note also that rp,, is the minimum perihelion of all parabolic (E/x = 1) orbits. In
astrophysical problems, particle infall from infinity is very nearly parabolic, since the
velocities of matter at infinity satisfy v « ¢. Any parabolic trajectory which penetrates
to r < ry, must plunge directly into the black hole. Fora = 0, rp,, = 4M; fora = M,
Fmp = M (direct) or 5.83M (retrograde).

Even the bound circular orbits are not all stable. Stability requires that ¥,"(r) < 0,
which yields the three equivalent conditions

b — (E[p)® = 3(M]r),
r?2 — 6Mr + 8aM??r12 — 342 > (),

or
P> Foss (2.20)

where ry is the radius of the marginally stable orbit,

rms = M{3 + Z, ¥ [3 — Z)(3 + Z, + 2Z,)]V%,

Zy=14+ (1 — /MY + a/M)'? + (1 — a/M)3],

Z, = (3a®/M? + Z,2)12 (2.21)
Fora =0, ryn, = 6M; for a = M, r,, = M (direct) or 9M (retrograde). Figure 1

I
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Fic. 1.—Radii of circular, equatorial orbits around a rotating black hole of mass M, as
functions of the hole’s specific angular momentum a. Dashed and dotted curves (for direct
and retrograde orbits) plot the Boyer-Lindquist coordinate radius of the innermost stable (ms),
innermost bound (mb), and photon (ph) orbits. Solid curves indicate the event horizon (r.)
and the equatorial boundary of the ergosphere (ro).

shows the radii r,, ro(6 = #/2), ron, Fmv, and rye as functions of a for direct and
retrograde orbits.

Fora = M,r, = rpy = rmp = rms = M, and it appears that the photon, marginally
bound, and marginally stable orbits are coincident with the horizon. Appearances are
deceptive! The horizon is a null hypersurface, and no timelike curves can lie in it.
The confusion is due to the subtle nature of the Boyer-Lindquist coordinates at » = M
for a = M. In fact the orbits at r,y, #mp, and ry are all outside the horizon and all
distinct. Figure 2 illustrates the nature of the problem; it shows schematically the
equatorial plane embedded in a Euclidean 3-space, for ¢/M = 0.9, 0.99, 0.999, and 1.
In the limit @ — M the orbits at r,,, rmp, and r,, remain separated in proper radial
distance, but the entire section of the manifold r < r,, becomes singularly projected
into the Boyer-Lindquist coordinate location r = M. In the limit a — M, the proper
radial distance between r and r,, goes to infinity, as does that between r,,; and r,.
The proper distance between r,, and r,, remains finite and nonzero, as does that
between r,, and r,. (The infinities are not physically important; an infalling particle
follows a timelike curve, while the infinite distances are in a spacelike direction.)

For astrophysical applications with a very close to M (see Bardeen 1970a), one
often needs to know explicitly the limiting behavior of r,, ron, rmp and ryg. Let
a = M(1 — §8); then

ri =~ M[1 + (28)4%], Fon
rmn & M[1 + 26'7], P

M1 + 2(38)7],
MI1 + (48)43] . (2.22)
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